
A3C-S: Automated Agent Accelerator Co-Search
towards Efficient Deep Reinforcement Learning

Yonggan Fu
Rice University

yf22@rice.edu

Yongan Zhang
Rice University

yz87@rice.edu

Chaojian Li
Rice University

cl114@rice.edu

Zhongzhi Yu
Rice University

zy42@rice.edu

Yingyan Lin
Rice University

yingyan.lin@rice.edu

Abstract—Driven by the explosive interest in applying deep
reinforcement learning (DRL) agents to numerous real-time con-
trol and decision-making applications, there has been a growing
demand to deploy DRL agents to empower daily-life intelligent
devices, while the prohibitive complexity of DRL stands at odds
with limited on-device resources. In this work, we propose an
Automated Agent Accelerator Co-Search (A3C-S) framework,
which to our best knowledge is the first to automatically co-
search the optimally matched DRL agents and accelerators that
maximize both test scores and hardware efficiency. Extensive
experiments consistently validate the superiority of our A3C-S
over state-of-the-art techniques.

Index Terms—Network Accelerator Co-design, Deep Rein-
forcement Learning, AutoML

I. INTRODUCTION

Recent successes in deep reinforcement learning (DRL) [1],

which integrates reinforcement learning (RL) and deep neu-

ral networks (DNNs), have triggered tremendous enthusi-

asm in developing and deploying DRL-powered intelligence

into numerous inference and control applications, including

robotics and autonomous vehicles. Many of them, such as

autonomous vehicles, require real-time control and decision-

making policies for which the DRL agents have to derive

real-time policies using real-time data for dynamic systems.

However, real-time control and decision-making for DRL can

be prohibitively challenging in many real-world applications

due to DRL’s integrated complex DNNs and edge devices’

constrained resources, calling for DRL-powered intelligent

solutions that favor both test scores and hardware efficiency.
To address the large gap between the growing need for

on-device DRL and DRL’s prohibitive complexity, emerging

network and accelerator co-exploration (NACoS) methods [2]–

[4] are promising as they can boost DNN acceleration effi-

ciency. However, directly applying NACoS methods to design

DRL agents can easily fail due to the commonly observed

vulnerability and instability of DRL training, which occur

with a high variance [5]. Furthermore, such instability will

be further exacerbated when considering differentiable NAS

(DNAS) based NACoS methods, which requires competitively

low search cost and thus can enable efficient navigation over

the large DRL agent and accelerator joint space, because the

success of DNAS requires unbiased gradient estimation with

low variance. To this end, we aim to develop a novel NACoS

framework dedicated to DRL agent acceleration to promote

fast development and highly efficient DRL-powered solutions.

Specifically, we make the following contributions:

• We propose an Automated Agent Accelerator Co-Search

(A3C-S) framework, which to our best knowledge is the

first to automatically co-search the optimally matched

DRL agents and accelerators that maximize both test

scores and hardware efficiency.

• A3C-S integrates and demonstrates the first DNAS search

dedicated to DRL that features a novel distillation mech-

anism to effectively stabilize agent search, despite the

instability of DRL training.

• A3C-S incorporates a parameterized micro-architecture

with over 1027 searchable choices of accelerators and

dataflows to enable a differentiable search for DRL agent

accelerators. A3C-S is generic and can be applied on top

of different accelerator templates.

• Through FPGA measurements, extensive experiments and

ablation studies validate A3C-S’s effectiveness in gener-

ating efficient DRL agents/accelerators that consistently

outperform state-of-the-art (SOTA) agents/accelerators.

II. RELATED WORKS

Deep reinforcement learning. DRL integrates traditional

RL algorithms with DNNs to handle higher-dimensional and

more complex problems, e.g., DQN [1] introduces DNNs to

Q-Learning and [6] utilizes DNNs to model both the actor and

critic in AC-based DRL. More DRL works can be found in

[7]. Despite DRL’s promising success, automating the design

of DRL agents has not yet been explored, while there is a

growing need for fast development of DRL-powered solutions.

Hardware-aware neural architecture search. NAS has

been widely adopted to automate the design of efficient DNNs.

To tackle the prohibitive search cost of previous RL-based

NAS methods, DNAS [8], [9] has gained more attention thanks

to its excellent search efficiency. However, the possibility of

applying NAS or DNAS to DRL hasn’t been explored.

DNN accelerator design. SOTA DNN accelerators [10],

[11] tackle the prohibitive complexity of DNNs through novel

micro-architectures/dataflows to maximize data reuses, and

thus improve acceleration efficiency. Early works require ex-

perts’ manual design, and thus were time-consuming. Later,

various design flow and automation tools [12], [13] were

developed. However, they mostly explored DNN acceleration,

leaving automated DRL accelerator design unexplored.978-1-6654-3274-0/21/$31.00 ©2021 IEEE

a
rX

iv
:2

1
0
6
.0

6
5
7
7
v
1

[c

s.
L

G
]

 1
1
 J

u
n
 2

0
2
1

Network and accelerator co-search. Jointly exploring

DNNs and their accelerators is very promising towards ef-

ficient DNN solutions, as shown in pioneering works [2], [3],

where the former suffers from large search time and the latter

considers a limited search space. These works motivate us to

explore the joint search for DRL agents and their accelerators

to maximize the test scores and hardware efficiency.

III. PRELIMINARIES OF DRL

Here we describe the preliminaries of DRL. RL can be

viewed as a Markov Decision Process (MDP) determined by

a tuple (S,A, T,R, γ), where S is the state space, A is the

action space, T (s′|s, a) is the transition probability of ending

up in state s′ when executing the action a in the state s, R

is the reward function, and γ is a discount factor. A policy

π(st, at) = p(at|st) defines the probability that an agent in

the MDP executes the action a in the state s. In particular,

the agent performs the action at ∈ A sampled from the policy

π(st, at) at each time step t and the state st ∈ S, leading to

the next state st+1 ∈ S and acquiring a reward rt.

In DRL, a policy is parameterized by θπ , i.e., the weights

of a DNN, and the agent’s goal is learning an optimal policy

to maximize the expected cumulative reward:

θ∗π = argmax
θπ

J(π(·|θπ)) = argmax
θπ

Eπ

[

H
∑

t=0

γtrt

]

(1)

where H is the time horizon, and γ is a discount factor.

To solve the optimization problem in Eq. 1, stochas-

tic policy gradient methods [14] are widely adopted where

∇θπJ(π(·|θπ)):

∇θπJ(π(·|θπ)) = Eπ

[

H
∑

t=0

δt∇θπ log(π(at, st|θπ))

]

(2)

In this work, we adopt the temporal difference error (td-error)

δt = rt + γVπ(st+1) − Vπ(st) to reduce the variance in

policy gradients, where Vπ(s) = Eπ

[

∑H

t=0
γtrt|s0 = s

]

is

the value function which estimates the expected cumulative

reward of the policy π starting from the state s. Since the value

function Vπ is hard to estimate, AC-based DRL methods [15]

parameterize the value function (i.e., the critic) with the

learnable parameter θv , i.e. the weights of a DNN in DRL.

The objective of θv is to minimize the td-error of the estimated

value between consecutive states:

θ∗v = argmin
θv

Eπ

[

H
∑

t=0

1

2
(rt + γVπ(st+1|θv)− Vπ(s|θv))

2

]

(3)

Therefore, in the AC framework, the actor and critic parame-

terized by θπ and θv , respectively can be iteratively updated

to lead the agent towards an optimal policy.

IV. THE PROPOSED A3C-S FRAMEWORK

There exist three main challenges in designing A3C-S:

(1) the huge joint search space, (2) the non-differentiable

accelerator parameters and the gap between DNAS’s required

layer-wise hardware-cost penalty and the optimal accelerators’

dependency on all the layers, and (3) the training instability

with a high variance of DRL which may lead to the failure of

applying NAS to search DRL agents. In this section, we first

introduce the component techniques of A3C-S in Sec. IV-A

that tackles the first two challenges with a novel differentiable

search strategy and a differentiable accelerator search engine,

and then A3C-S’s AC-distillation mechanism in Sec. IV-B to

tackle the third challenge.

A. A3C-S: the co-search pipeline

A3C-S formulation. We formulate A3C-S as below:

min
θπ,θv,α

Ltask(θπ, θv, net(α)) + λLcost(hw(φ
∗), net(α)) (4)

s.t. φ∗ = argmin
φ

Lcost(hw(φ), net(α)) (5)

where α and φ are the variables maintaining the probability of

choosing different (1) network operators and (2) accelerator

parameters, with θπ and θv being the supernet weights of

the actor and critic in a AC-based DRL, respectively, Ltask

and Lcost are the task loss (see Sec. IV-B for details) and

the hardware-cost loss, respectively, and net(α) and hw(φ)
denote the network and accelerator parameterized by α and φ,

respectively.

A3C-S’s co-search pipeline. During co-search, A3C-S

starts by updating the accelerator parameters φ given the

current network structure net(α), and then updates θπ , θv ,

and α in the same iteration based on the accelerator hw(φ∗)
resulting from the previous step. Our A3C-S adopts one-

level optimization [16] instead of bi-level optimization [17],

considering that the one-step SGD approximation of bi-level

optimization will lead to biased gradient estimation [18] which

can largely suffer from the high variance of DRL training

evaluated in Sec. V-D. The updates of α and φ follow:

Forward : Al+1 =

N
∑

i=1

GShard(α
l
i)Oi(A

l) = Ol
fw(A

l) (6)

Backward :
∂Ltask

∂αl
i

=

K
∑

k=1

∂Ltask

∂GS(αl
k)

∂GS(αl
k)

∂αl
i

=
∂Ltask

∂Al+1

K
∑

k=1

Ol
k(A

l)
∂GS(αl

k)

∂αl
i

(7)

∂Lcost

∂αl
i

= 1(GShard(α
l
i) = 1)L

αl

i

cost(hw(φ
∗), net(αl

i)) (8)

where Al and Al+1 are the feature maps of the l-th and (l+1)-
th layer, respectively, GShard is the hard Gumbel Softmax

operator generating a one-hot output, i.e., only one operator

Ol
fw will be activated during forward, N is the total number

of operator choices, and Ol
i is the i-th operator in the l-th layer

parameterized by αl
i. Meanwhile, GS is a Gumbel Softmax

function and K is the number of activated paths with the top

K probability, and similar to [19], K ∈ (1, N) in A3C-S to

control the computational cost. In Eq. 8, 1 is an indicator

denoting whether αl
i (i.e., the i-th operator in the l-th layer)

is activated during forward.

A3C-S’s co-search strategy. A3C-S integrates a novel

search strategy to solve Eq. 4 for effective yet efficient search

to avoid memory explosion due to the large joint search spaces:

Single-path forward: (see Eq. 6) A3C-S adopts hard Gumbel

Softmax sampling [20], i.e., only the choice with the highest

probability will be activated to narrow the gap between the

supernet and the finally derived network thanks to the single-

path property of hard Gumbel Softmax sampling.

Multi-path backward: (see Eq. 7) A3C-S activates multiple

paths to approximate the gradients of α via Gumbel Soft-

max relaxation to balance the search efficiency (prefer fewer

activated paths) and stability (prefer more activated paths),

inspired by [19] which targets DNAS for DNNs.

Hardware-cost penalty: The network search in Eq. 4 re-

quires layer-wise hardware-cost penalties assuming the layer-

wise operators running on the final optimal accelerator

hw(φ∗), which is not yet available at each co-search epoch

as the optimal network is still unknown, i.e., the chicken-and-

egg problem. To handle this, we approximate the layer-wise

hardware-cost by assuming that the single-path network de-

rived during each forward is close to the final derived network,

since the network operators that have higher probabilities are

also more likely to appear in the final optimal network.

A3C-S’s Differentiable accelerator search (DAS).

EDD [3] made a pioneering effort to differentiably co-search

the network and accelerator, yet their accelerator search space

is limited to the parallel factor of their template, which can be

analytically fused into their computational cost, whereas this

is not always applicable to other naturally non-differentiable

accelerator design knobs such as PE numbers and buffer allo-

cation strategies. A more general search engine is desirable.

A3C-S’s accelerator search algorithm: We propose a gen-

eral DAS engine to efficiently search for the optimal acceler-

ator, including the micro-architectures and dataflows, given a

DNN based on the single-path sampling in Eq. 6, i.e.:

φ∗ = argmin
φ

M
∑

m=1

GShard(φ
m) L̂

where L̂ = Lcost(hw({GShard(φ
m)}), net(α))

(9)

where M is the number of accelerator parameters. Given the

network net(α) which is the most likely network sampled

during the single-path forward, the search engine utilizes hard

Gumbel Softmax GShard sampling on each design parameter

φm to build an accelerator hw({GShard(φ
m)}) and penalize

each sampled accelerator parameter with the overall hardware-

cost Lcost through relaxation in a differentiable manner.

A3C-S’s accelerator template: We adopt a parameterized

accelerator template built upon a SOTA chunk-based pipeline

micro-architecture [21]. The accelerator template comprises

multiple sub-accelerators (i.e., chunks) and executes DNNs

in a pipeline fashion. In particular, each chunk is assigned

with multiple but not necessarily consecutive layers which are

executed sequentially within the chunk. Similar to Eyeriss,

each chunk consists of levels of buffers/memories (e.g., on-

chip buffer and local register files) and processing elements

(PEs) to facilitate data reuses and parallelism with searchable

accelerator parameters, including PE interconnections (i.e.,

Network-on-chip), buffer sizes, and MAC operations’ schedul-

ing and tiling (i.e., dataflows) (see more details in Sec. V-A).

B. A3C-S: the AC-distillation mechanism

Motivation. Policy distillation [22] shows that the distilla-

tion from a teacher agent can effectively reduce the variance

of gradient estimates and stabilize the training process of

the student agent, motivating us to introduce a distillation

mechanism to stabilize the DNAS process for DRL. However,

vanilla policy distillation merely distills the policy without

considering the value function which can play a critical role in

both assisting the policy updates and reducing the variance of

vanilla policy gradients. We conjecture that further distilling

the value function from the teacher agent can better improve

the training stability and the convergence.
A3C-S’s AC-distillation. In A3C-S, we propose an AC-

distillation mechanism to distill knowledge from both the actor

and critic of a pretrained teacher agent to the student agent,

where the two distillation losses for the actor and critic are:

Ldistill
actor = Eπ

[

H
∑

t=0

π(at, st|θ
tea
π) log

π(at, st|θ
tea
π)

π(at, st|θstuπ)

]

(10)

Ldistill
critic = Eπ

[

H
∑

t=0

1

2

(

Vπ(st|θ
stu
v)− Vπ(st|θ

tea
v)

)2

]

(11)

where π(at, st|θ
tea
π) and π(at, st|θ

stu
π) are the teacher and

student actor, respectively, and Vπ(st|θ
tea
v) and Vπ(st|θ

stu
v)

are the teacher and student critic, respectively. We adopt KL

divergence to distill the knowledge from the teacher actor

following [22] and the MSE loss as a soft constraint to enforce

the student critic to mimic the estimated value of the teacher

critic. The final objective during both search and training is:

Ltask = Lpolicy + Lvalue + β1Lentropy

+ β2L
distill
actor + β3L

distill
critic

(12)

where β1, β2, and β3 are the weighted coefficients. Here

Lpolicy is the policy gradient loss as in [14], Lvalue is the

value loss based on the td-error, and Lentropy is the entropy

loss on top of the policy to encourage exploration, i.e.:

Lpolicy = Eπ

[

−
H
∑

t=0

δt log(π(at, st|θ
stu
π))

]

(13)

Lvalue = Eπ

[

H
∑

t=0

1

2

(

rt + γVπ(st+1|θ
stu
v)− Vπ(st|θ

stu
v)

)2

]

(14)

Lentropy = Eπ

[

H
∑

t=0

π(at, st|θ
stu
π) log(π(at, st|θ

stu
π))

]

(15)

The search algorithm of A3C-S is summarized in Alg. 1.

V. EXPERIMENT RESULTS

In this section, we first introduce our experiment setting, and

then present ablation studies to evaluate A3C-S’s component

techniques and our A3C-S framework.

	I Introduction
	II Related works
	III Preliminaries of DRL
	IV The Proposed A3C-S Framework
	IV-A A3C-S: the co-search pipeline
	IV-B A3C-S: the AC-distillation mechanism

	V Experiment results
	V-A Experiment setup
	V-B Ablation study: DRL with different model sizes
	V-C Ablation study: evaluating the proposed AC-distillation
	V-D Ablation study: one-level vs. bi-level optimization
	V-E Evaluating the proposed A3C-S framework

	VI Conclusion
	References

