2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) | 978-1-6654-3922-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/ISLPED52811.2021.9502478

DIAN: Differentiable Accelerator-Network
Co-Search Towards Maximal DNN Efficiency

Yongan Zhangl, Yonggan Fu', Weiwen Jiangz, Chaojian Li', Haoran You', Meng Li3,
Vikas Chandra’ and Yingyan Lin'
"Rice University, Houston, TX; 2Ge:orge Mason University, Fairfax, VA; 3Faceb00k, Inc., Menlo Park, CA
Corresponding to: 1yingyan.lin@rice.edu

Abstract—We present DIAN, a Differentiable Accelerator-
Network Co-Search framework for automatically searching for
matched networks and accelerators to maximize both the accu-
racy and efficiency. Specifically, DIAN integrates two enablers:
(1) a generic design space for DNN accelerators that is applicable
to both FPGA- and ASIC-based DNN accelerators; and (2)
a joint DNN network and accelerator co-search algorithm that
enables the simultaneous search for optimal DNN structures
and their accelerators. Experiments and ablation studies based
on FPGA measurements and ASIC synthesis show that the
matched networks and accelerators generated by DIAN con-
sistently outperform state-of-the-art (SOTA) DNNs and DNN
accelerators (e.g., 3.04% better FPS with a 5.46% higher accuracy
on ImageNet), while requiring notably reduced search time (up
to 1234.3x) over SOTA co-exploration methods, when evaluated
over ten SOTA baselines on three datasets.

Index Terms—Network Accelerator Co-design, DNN Accelera-
tor, Neural Architecture Search

I. INTRODUCTION

Powerful deep neural networks’ (DNNs’) prohibitive com-
plexity has motivated intensive studies of efficient DNN solu-
tions. Early works merely explore from either the algorithm or
hardware level. For example, compression techniques attempt to
trim down DNNs’ complexity, while hardware accelerators [1],
[2] develop customized micro-architectures (e.g., # of memory
hierarchies and processing elements (PEs), PE array dimension
and shape, size of different memories, and network-on-chip
(NoC) design) and algorithm-to-hardware mapping methods
(e.g., loop tiling strategy, loop size, and loop order) to boost
DNN acceleration efficiency. Later, hardware-aware neural
architecture search (HA-NAS) [3], [4] emerged to automate
the design of efficient network structures (e.g., # of layers
and channels, size of kernels, and layer operations). Recently,
it has been recognized that maximizing DNN accelerators’
efficiency requires joint exploration of both the networks and
their accelerators (the latter refers to the accelerators’ micro-
architectures and mapping methods hereafter) [5]-[7].

Despite their promise, the great potential of jointly optimiz-
ing DNNs and their accelerators has not been unleashed. The
key challenges include (1) the prohibitively large joint space
consisting of the coupled yet different network and accelerator
spaces with extremely sparse optima, (2) non-differentiable
hardware costs, and (3) how to algorithmically describe a
generic accelerator search space. To tackle the aforementioned
challenges, this work makes the following contributions:

o We propose DIAN, a DIfferentiable Accelerator-Network
co-search framework (see Fig. 1) that jointly searches

978-1-6654-3922-0/21/$31.00 ©2021 IEEE

for DNNs’ networks and their accelerators to boost the
efficiency and expedite the development speed.

« We develop Differentiable Accelerator Search (DAS), a
generic accelerator search engine for exploring the large
and discrete design space of DNN accelerators. DAS
distinguishes itself from existing methods which mostly
adopt Reinforcement Learning (RL)-based methods and
thus are limited in scalability.

o We construct a Generic DNN Accelerator Design Space
(GADS) that is applicable to both FPGA- and ASIC-based
accelerators and can enable algorithmically exploration of
DNN accelerators’ large and discrete design space, facili-
tating future development in DNN accelerator innovations.

o Through FPGA and ASIC synthesis, extensive experiments
validate DIAN’s effectiveness in outperforming SOTA
DNNs/accelerators while requiring a notably reduced
search time over SOTA methods.

II. RELATED WORKS

Hardware-Aware NAS (HA-NAS). HA-NAS has been de-
veloped to automate the design of efficient DNNs. Early works
utilize RL-based methods, and thus suffer from substantially
large search time [9]. Later, differentiable HA-NAS [4] emerged
to greatly improve both the search and hardware efficiency.
However, existing HA-NAS methods (1) mostly consider
hardware costs (e.g., FLOPs) on one given device/accelerator
and (2) have not yet fully explored the hardware space,
motivating network-accelerator co-search techniques.

DNN accelerators. DNNs’ powerful performance and pro-
hibitive complexity have motivated extensive research in cus-
tomized DNN accelerators. Given a DNN and its acceleration
specification, SOTA accelerators [1], [10] explore different
micro-architectures and algorithm-to-hardware mappings to
maximize the acceleration efficiency. To reduce the design
effort, recently, there has been a growing interest in design
flow tools like [11] and DNN accelerator design automation
such as [12], [13]. However, these works only explore the
accelerator design space, leading to sub-optimal solutions.

Software/Hardware co-exploration. Network-accelerator
co-exploration has been shown to be promising in boosting
DNN acceleration efficiency: [5], [14] conduct RL-based
search to jointly search for the networks and their accelerator
parameters; [15] adopts RL-based controllers to search for
the networks and select accelerators from two pre-configured
templates; and [6], [16] extend differentiable NAS to network
and accelerator co-search. Despite their promise, they have not

./ Input !Differentiable Accelerator-Network (DIAN) Co-Search :: Output
i n A 5 Hardware " '
' " Differentiable Network Feedback Differentiable Accelerator) " .
' o Search (DNS) Engine Search (DAS) Engine h '
| Task Application E . Proxy Task Proxy Task ") H
' 1 — 11 Optimal Networks !
' @ " Task Loss I IHardware Efflclencyl Co-Search Energy Latency " |
: ¥ T :
H 11 ||Generic Network Differentiable Generic Accel Diff " ;ﬂ E
! Hardware Resources | | Design Space Search Algorithm Input DNN Design Space Search Algorithm E E Optimal Accelerators E
! O _ 1 '

Fig. 1: Overview of our DIAN co-search framework, which accepts target datasets and accelerator specifications and then
automatically generates matched DNN and accelerator pairs to maximize both the accuracy and efficiency.

” Designs with
ACC>73.5% & FPS>45 74
0 s
. ALDE A . jf?. . .
5 host? .

150 200 250 300771

Network options

Fig. 2: FPGA measured Frame-Per-Second (FPS; the left
axis) on a ZC706 FPGA [8] and CIFAR-100 based accuracy
(the right colorbar) of 300 randomly sampled networks from
the FBNet [4] search space, when each of the networks is
accelerated by 300 randomly sampled accelerators from a
generic accelerator space. Designs with ACC > 73.5% and
FPS > 45 are marked as stars and extremely sparse.

Accelerata " Options i 50

yet tackled the challenges associated with generic algorithm-
accelerator co-exploration. First, existing works have not yet
considered a generic accelerator space, limiting their general
applicability. Second, RL-based methods requiring large search
costs suffer from poor scalability and achievable performance.
For instance, [16] and [6] consider merely one or a few design
factors in the accelerator design space to make the hardware
cost differentiable, suffering from sub-optimal acceleration
performance and thus calling for co-exploration innovations
that adopt generic accelerator design space and more efficient
co-search algorithms.

III. THE PROPOSED DIAN FRAMEWORK

This section describes our DIAN framework. We first provide
an overview and the problem formulation, and then DIAN’s
co-search algorithm, followed by DIAN’s two search engines
and the proposed generic accelerator space.

A. DIAN: overview and formulation

As mentioned in Sec. I, the challenges of network-accelerator
co-search include (1) the prohibitively large and irregular
joint space versus very sparse optima (see Fig. 2), (2) non-
differentiable hardware costs, and (3) the lack of a generic
accelerator space description.

Fig. 1 shows an overview of our DIAN framework. To
simultaneously tackle all the three challenges above, we
propose an effective yet efficient joint co-search algorithm
(see Sec. III-B) that leverages our developed DAS engine
(see Sec. III-C) integrated with a generic accelerator design
space (see Sec. III-D). Formally, DIAN’s optimization can be

formulated as: _ .
min Ly (w , NET(a)) + ALy (NET (o), HW (77)) (1)

st w* =argmin Ly, (w, NET(a)), 2)
sit. ~* =argmin L, (NET(a), HW (¥)) 3)

where Lyqin and7 L, are the task loss of training and valida-
tion, respectively; w, «, and ~y are the supernet weights, DNNs’
structure parameters [17], and the accelerator parameters,
respectively; NET («) and HW (~) denote the network and
accelerator spaces parameterized by « and -y, respectively; Ly,
is the hardware-cost loss determined by both the network and its
accelerator; and)\ is adjusted to balance the weighting of task
and hardware-cost loss. Despite its simplicity in formulation,
it is in general intractable to analytically solve Eq. 1~Eq. 3.
DIAN integrates its Differentiable Network Search (DNS) and
DAS engines to search for optimally matched networks and
accelerators at much improved search efficiency, as in Fig. 3.

B. DIAN: the joint search algorithm

Here we describe DIAN’s co-search algorithm. There are two
practical issues to design differentiable co-search algorithms.
First, ideally the hardware-cost penalty for each layer-wise
network operator should be obtained when being executed
on the final searched optimal accelerator, which is not yet
available at each co-search epoch as the optimal network is
still unknown, i.e., the chicken-and-egg problem. Second, the
network is searched by regularizing « in a layer-wise manner
(see Eq. 6), while the accelerator v is determined by the whole
DNN (see Eq. 7) due to the global accelerator parameters (e.g.,
the loop-order in Tab. I) shared among all the layers.

To address the above issues, DIAN obtains the hardware-
cost loss Ly, at each co-search epoch by approximating the
final optimal accelerator using the accelerator optimized for
the network with the most probable operators. The hypothesis
is that the network operators that have higher probabilities are
also more likely to appear in the final optimal network, and
thus, the corresponding optimal accelerators are likely to be the
final optimal one. Specifically, at each epoch, DIAN samples
M networks from the current network distribution N ET(«)
and obtains the optimal accelerator for each of them using its
DAS engine (see Sec. III-C); the hardware-cost loss of each
operator is then obtained using its average hardware cost on
the M optimal accelerators generated from the previous step.
For example, the hardware cost of the k-th operator in the [-th
layer Oy, is formulated as:

Enpr~p(NET|0)(Lhw (O, HW (7))

M

1 N 4

~ Z Lpw (O, HW) @
m=1

PRad

PR ~::~*.

~ NET(e)
S~ Sak- "
ap Q= O3 Q9
s <
' N hw (NET(e) , HW(v¥))

Layer 41 |:':| |_:| |::| E:lL

M

GB
Yorder

B

Oy

Eoi
=3 3
<28 (|2
R E

o

(O]

“(NoC Design |
i

Fig. 3: DIAN’s differentiable co-search of the network-accelerator joint space, where our DAS engine (right) optimizes the
accelerator parameters based on Egs. 3-7 based on the input networks N ET () and then returns the corresponding hardware
cost to the DNS engine (left) for which to penalize the costly operators. Here VZZder denotes the accelerator parameter of
loop-order in the register file (RF), and similar notations are adopted for other accelerator parameters in Tab. L.

Algorithm 1: DIAN’s differentiable network-accelerator co-search algorithm.

Input: supernet weight w, the network space N ET'(«), the accelerator space HW (vy), the total search epoch max_epoch
Output: the optimal network optimal_net and the optimal accelerator optimal_accelerator

while epoch < max_epoch do
Obtain optimized accelerators HW,, (m =1, ...,

M) using Eq. 7 for M DNNs sampled from the current network

distribution NET(«) and calculate the average hardware cost for each operator based on Eq. 4

for one training epoch do
update w based on Eq. 2

update « based on Eq. 1 where Ly, is calculated using Eq. 5

end
end

Derive optimal_net by selecting the operator with the maximal weighted coefficients for each layer based on Eq. 6
Derive optimal_accelerator for the optimal optimal_net based on Eq. 7

return {optimal_net, optimal_accelerator}

where HW," is the optimal accelerator generated using DIAN’s
DAS engine (see Eq. 7 in Sec. III-C) for the m-th sampled
network, and Ly, (Oyz, HW,.) is the hardware-cost loss of
accelerating the operator Oy, using the accelerator HW,,.
Therefore, the hardware-cost loss of the whole DNN in Eq. 1
can be formulated in a layer-wise manner:

Lhw(NET(a)7 HW(’V*))

L K
= ZOé]k[ENET PV ET]) (Lo (O, HW (77)))]
I=1 k=1)
| LK M
S M Z Z Z g L (O, HW)

l

Il
[

Essentially, the hardware-cost loss Ly, at each co-search
epoch is approximated using the weighted sum of the approxi-
mated hardware cost for all the layer-wise operators. DIAN’s
co-search algorithm is summarized in Alg. 1, the effectiveness
of which is consistently validated in Sec. IV’s experiments.

Without loss of generality, DIAN’s network search adopts
both SOTA hardware-friendly search space in [4], which
searches the kernel size, channel expansion ratio, and group
number for each building block, and network search algorithm.
This is to better illustrate the benefits of co-search on top of
SOTA HA-NAS techniques. In particular, the network search
computes the output of the [-th layer A; as a weighted sum of
all candidate operators:

K
Ay = Z O (A-1) (6)

k=1
where K denotes the total number of layer-wise candidate
operators, Oy, denotes the k-th operator for the [-th layer, and
oy, denotes the weighted coefficient of Oy,.

C. DIAN: the DAS engine

Our DAS engine realizes a generic differentiable accelerator
search engine built on top of our GADS (see Sec. III-D).
Specifically, we reformulate Eq. 3 and propose a differentiable
method to solve it:
min Yo GS(Y") Ly (NET(a*), HW(GS(Y'), ..., GS(7°)))

(7
where the accelerator W is characterized by its parameters
7v° (s=1,...,5), which is a normalized vector representing
the s-th accelerator parameter with each element of +* defining
the probability of the corresponding choice of its represented
accelerator parameter, and G'S(y”) denotes Gumbel-Softmax
sampling [18] of the s-th accelerator parameter +°, so that the
hardware cost is differentiable w.r.t. ~°.

Unlike NAS, different options of one accelerator parameter
are NOT additive, i.e., cannot be formulated as a sum weighted
by their probability. As such, for each accelerator parameter,
we apply Gumbel-Softmax sampling [18] to sample one
choice GS(7°) of the s-th accelerator parameter. Once all
the accelerator parameters are sampled, the corresponding ac-
celerator’s hardware-cost are obtained using SOTA accelerator

*
v =

TABLE I: The constructed generic accelerator search space,
where TBS denotes “to be searched”.

Memory Hierarchy Loop-order Loop-size
DRAM TBS -
Global Buffer TBS TBS
PE array - TBS
Register File (RF) TBS TBS
NoC design Max # of PEs Pipeline/Multi-cycle
TBS TBS TBS

performance estimators, where in this work we refer to [13]
for FPGA-based accelerators and [19]-[21] for ASIC-based
accelerators. We then multiply the resulting hardware-cost loss
with the sampled GS(7*) and relax it to Gumbel-Softmax
during backpropagation for estimating the gradients.

D. Generic Accelerator Design Space (GADS)

Similar to NAS, a generic accelerator search space is a
prerequisite for algorithmic accelerator exploration. However,
it is challenging to develop such a space for DNN accelerators
due to their large and discrete design space. First, there
are numerous choices for the algorithm-to-hardware mapping
methods (i.e., how to temporally and spatially schedule all the
DNN’s operations to be executed in the target accelerators).
Second, there are many ways to design the accelerators’ micro-
architectures, which are characterized by the number of memory
hierarchies and PEs, the size of each memory hierarchy, the
shape and size of the PE array, and the NoC design [1].

We construct a generic accelerator search space as shown
in Tab. I by leveraging the commonly used nested for-loop
accelerator description [21], [22] which naturally bridges
the accelerator’s micro-architectures and mapping methods
with DNNs’ network parameters. Next, we introduce each
accelerator parameter in Tab. I:

loop-order: the orders of the loops within each memory
hierarchy, each of which has to consider all the data dimensions;

loop-size: the size of each loop in the for-loop description;

NoC design: the parallel execution pattern of MACs (mul-
tiply—accumulate operations) when accelerating DNNs on an
accelerator. In this work, we consider three NoC options:

« parallelizing the computation over the output partial sums,
where the dimensions of output channels, output rows,
and output columns are executed in parallel.

« parallelizing the computation over the kernels, where the
dimensions of output channels, input channels, kernel
rows, and kernel columns are executed in parallel.

« parallelizing the computation over both the kernel and out-
put dimensions, where the dimensions of output channels,
kernel rows, and output columns are executed in parallel.

max number of PEs: the maximal number of PEs in the
design which are determined by the area constraint.

pipeline/multi-cycle: a binary choice between a chunk-based
pipeline or multi-cycle micro-architecture shared by all layers.

Note that these accelerator parameters are platform agnostic
and thus compatible with both FPGA- and ASIC-based DNN
accelerators, for which only the implementation flows and cost
models are different as elaborated in Sec. IV-A.

IV. EXPERIMENT RESULTS

In this section, we introduce the experiment setup, evaluate
DIAN over both SOTA (1) HW/SW co-exploration works and
(2) HA-NAS methods, and present ablation studies to evaluate
DIAN’s co-search algorithm and DAS engine.

A. Experiment setup

Evaluation baselines and datasets. For evaluating
DIAN over SOTA co-exploration works, we consider (1)
three co-exploration FPGA baselines: HS-Co-Opt [14],
BSW [5], EDD [6] and (2) two co-exploration ASIC base-
lines: NASAIC [15] and DANCE [16]. For benchmarking
over SOTA HA-NAS methods, we consider four baselines:
EfficientNet-BO [9], FBNet [4], FBNet-V2 [23], and Proxy-
lessNAS [3]. For evaluating DIAN’s DAS engine, we consider
both expert-designed and tool-generated SOTA accelerators in
[2], [24]. Our experiments consider three datasets: CIFAR-10,
CIFAR-100, and ImageNet.

Search and evaluation on CIFAR-10/100. We adopt the
same search space as [4], except the stride settings for each
group to adapt to the resolution of the input images in CIFAR-
10/100, and the same search and evaluate settings as [4].

Search and evaluation on ImageNet. Search space: we
adopt the same search space as [4] which is a SOTA search
space for generating efficient DNNs via NAS. Search and
evaluation settings: we follow the same hyper-parameter
settings as [4] for searching and evaluating on ImageNet, while
additionally updating the hardware accelerator parameters at
each epoch using an SGD optimizer with a momentum of 0.9
and a fixed learning rate of 1E-9.

Hardware cost and hyperparameters. We adopt Frame-
Per-Second (FPS), latency, or Energy-Delay-Product (EDP)
as the hardware-cost loss (i.e., Ly, in Eq. 1) to compare
with various baselines and set M = 10 for Eq. 4 in all the
experiments. The performance of our DIAN is not sensitive to
M for M > 5, and we thus choose M = 10.

Accelerator evaluation methodology. To evaluate DIAN’s
generated accelerators, we adopt standard FPGA and ASIC
evaluation flows. For FPGA-based accelerators, we employ the
Vivado HLS flow [25] and use a SOTA accelerator performance
predictor [13] to obtain fast and reliable estimation during
search. For ASIC-based accelerators, we use SOTA accelerator
performance estimators Timeloop [20] and Accelergy [19]
during and after the search, with CACTI7 [26] and Aladdin [27]
based on a commercial 32nm or 45nm CMOS technology for
the unit energy/latency.

B. DIAN over SOTA co-exploration works

Search efficiency. Here we benchmark our DIAN over
SOTA co-exploration works [5], [6], [14], [15] in terms of
search space size and search time. As shown in Tab. II,
DIAN can handle a remarkably larger (e.g., 2.21E+48 vs.
3.63E+09) joint search space while requiring the shortest search
time (e.g., 4.2 vs. 5184 GPU hours), compared with all the
SOTA baselines. Specifically, on ImageNet, DIAN achieves a
5.46% and 0.7% higher accuracy with a 3.04Xx and 1.94X
higher FPS under a 450 and 900 Digital-Signal-Processor

TABLE II: DIAN vs. SOTA co-exploration works for generating both FPGA- and ASIC-based accelerators. Note that we

quantize the DIAN generated networks to 8-bit when comparing with EDD [6] for a fair comparison.

Method target on

Network

Accelerator

Joint

Search Time

DSP

Accuracy

FPGA Dataset g e Space Space (GPU Hours) Limit (%) FPS
HS-Co-Opt [14] CIFAR-10 1.15E+18 1 1.15E+18 103.9 450 85.19 35.5
DIAN (Proposed) 9.85E+20 2.24E+27 2.21E+48 4.2 (124.7x) 96.10 (110.91) 52.4 (11.48x)
BSW [5] CIFAR-100 4.20E+05 8.64E+03 3.63E+09 5184 512 72.00 54.5
DIAN (Proposed) 9.85E+20 2.24E+27 221E+48 4.2 (11234.3%x) - 79.35 (17.35) 64.3 (11.18x)
HS-Co-Opt [14] ImageNet 2.22E+18 1 2.22E+18 266.8 450 70.24 10.5
DIAN (Proposed) & 9.85E+20 2.24E+27 2.21E+48 144 (11.9%) 75.70 (15.46) 31.9 (13.04%)
EDD [6] ImageNet 3.65E+19 - - - 900 74.40 40.2
DIAN 8-bit (Proposed) mag 9.85E+20 2.24E+27 2.21E+48 144 75.10 (10.7) 78.1 (11.94x)
Method target on Dataset Network Accelerator Joint Search Time Area Accuracy EDP
ASIC Space Space Space (GPU Hours) (mm2) (%) (J * clock cycle)
NASAIC [15] CIFAR-10 1.70E+03 9.84E+05 1.67TE+09 4.6 3.34E+03 92.62 1.62E+06
DIAN (Proposed) 9.85E+20 2.24E+27 2.21E+48 4.2 (L1.1x) 5.92E-01 96.50 (13.88) 4.99E+03 (1324.0x)
_______________ 76
% — 79 * 3.04x >
o * - . 75 *
3.39; 74 %
* +|1o.91% * o * | +548% 3.72x Il
S 90 26 +5.15% * S
o® W H5-Co-OptsW o W BSW-Cod-1 o 210 W HS-Co-Optsw
O 86 ® HS-Co-OptHW or ® BSW-Cod-2 on : ® HS-Co-OptHW
< 4 DIAN - FPGA < # DIAN — FPGA < n % DIAN - FPGA
84 74 700
82 B . 3.44x 69
sl @ 72 D) ! e8] o
40 60 80 100 120 40 60 80 100 120 140 160 180 10 15 20 25 30 35 40 45
FPS FPS FPS
(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet

Fig. 4: DIAN generated FPGA-based accelerators over those of SOTA co-exploration works HS-CO-Opt [14] and BSW [5],
where we adopt the same DSP limits as the baselines, i.e., 450/512/450 on CIFAR-10/100/ImageNet, respectively.

(DSP) limit over HS-Co-Opt [14] and EDD [6], respectively;
on CIFAR-100, DIAN achieves a 1234.3x speed-up in search
time when handling a 6.1E+38x larger search space, resulting
in a 7.35% better accuracy and 1.18X higher FPS. This set of
experiments validate that DIAN’s differentiable co-search can
indeed handle a notably larger joint space with much improved
search efficiency. Note that HS-Co-Opt [14] considers only
one choice in its accelerator search space, because it uses
an algorithm to automatically infer the optimal accelerator
given the specific network structure. However, its inefficient
RL search strategy still leads to much longer search time
compared with DIAN.

Achieved FPS on FPGA. Fig. 4 compares DIAN’s gener-
ated accelerators with SOTA co-exploration methods, HS-Co-
Opt [14] and BSW [5] under the same FPGA resource budgets
and datasets. We can see that DIAN generated accelerators
consistently achieve the highest FPS with the same or even a
higher accuracy: on CIFAR-10 with a 450 DSP limit, DIAN
boosts the FPS by 1.48X ~ 3.39x, while offering a 8.01% ~
10.91% higher accuracy over HS-Co-Opt; on CIFAR-100 with
a 512 DSP limit, DIAN achieves a 1.18X ~ 3.44Xx higher FPS
while boosting the accuracy by 0.35% ~ 5.15% over BSW; and
on ImageNet with a 450 DSP limit, DIAN achieves a 3.04X
higher FPS with a 5.46% higher accuracy over HS-Co-Opt.

Achieved EDP/latency on ASIC. For benchmarking on
ASIC-based accelerators, we consider two SOTA co-search
works, NASAIC [15] and DANCE [16], based on their reported
results. Fig. 5 shows that DIAN generated accelerators achieve a
324.0x lower EDP and a 3.88% higher accuracy over NASAIC.

TABLE III: Evaluating DIAN generated ASIC-based accelera-
tors over DANCE [16] under the same setting.
Optimization
Methods

DANCE [16]
DIAN (Proposed)

Precision
(bit)
16
16

Area
(mm?)
2.73
2.12 (122.34%)

Accuracy
(%)
68.70
72.20 (13.50)

Latency
(ms)
8.13
2.85 (164.94%)

Second, like the cases in FPGA, DIAN generated ASIC-based
accelerators can flexibly trade-off between the accuracy and
efficiency (i.e., EDP here). Note that the surprisingly higher
EDP/area for NASAIC, as noted in Tab. II, is caused by
the much reduced hardware utilization due to their target
of heterogeneous tasks. Tab. IIT shows that DIAN generated
accelerators outperform DANCE in all aspects: a 3.50% higher
accuracy on ImageNet with a 64.94% and 22.34% reduction
in the required latency and area, respectively, under the same
dataset (ImageNet), precision (16-bit), and accelerator metric
(latency) as DANCE.

C. DIAN ablation: DIAN over SOTA HA-NAS works

Here we evaluate DIAN over SOTA HA-NAS works by
comparing the acceleration efficiency of DIAN generated
accelerators and SOTA HA-NAS generated networks when
they are accelerated by their optimal accelerators, which are
generated by the DAS engine under a DSP constraint of 900
(the maximum one in a ZC706 board [8]) to maximize the
achieved FPS, as shown in Fig. 6. Note that we consider two
kinds of precision, i.e., 16-bit and 8-bit, and adopt 8-bit for a
fair comparison with EDD which reports performance under
8-bit and 16-bit when comparing with all other HA-NAS works
to maintain their reported accuracy. We can see that compared

.
96.5 B NAS-ASIC
96.0 @ ASIC-HW-NAS
— 955 A NASAIC
X % DIAN — ASIC
~ 950 *
Q 95 w« +3.88%
< [
94.0
93.5
93.0 324.0x Reduction
925 — A .
0.002 0.003 0.004 0.005 1.5 2.0 2.5 3.0,¢,06

EDP (J*Clock Cycle)
Fig. 5: Accuracy vs. EDP of DIAN generated ASIC-based

accelerators over three SOTA co-exploration designs [15].

76.25] 244 X_> -0.1% ["m ProxylessNAS-Mobile
! ® EfficientNet-BO
76.00 * + FBNetC
—75.75 4 FBNetV2F4
°\° ? EDD-Net-3
= 75.50 £ DIAN (16-bit)
| | % DIAN (8-bit
Q 75.25 +0:7%
75.00 +<i 48L,l
74.75 +0.7%
|
74.50 ‘ 1.94x
20 30 40 50 60 70 80
FPS

Fig. 6: Accuracy vs. FPS of DIAN and SOTA HA-NAS
generated networks [3], [4], [9], [23] and EDD [6].

with (1) EDD, DIAN (8-bit) achieves a 0.7% higher accuracy
and 1.94x higher FPS; and (2) SOTA HA-NAS methods, DIAN
(16-bit) achieves a 1.48% higher FPS while having a +0.7%
higher accuracy over FBNet and a 1.60x higher FPS with a
comparable accuracy (-0.1%) over EfficientNet-BO.

D. DIAN ablation: DAS over SOTA DNN accelerators

The proposed DAS is a key enabler of DIAN. To evaluate
its efficacy, we compare the hardware efficiency of DAS
generated accelerators with SOTA accelerators under the
same conditions. We consider two representative FPGA-based
accelerators including [2], [24], when accelerating VGG16
on ImageNet. The results in Tab. IV show that our DIAN
generated accelerators outperform both expert-designed and
tool-generated SOTA accelerators under the same dataset,
DNNs, and FPGA resources. For example, DAS generated
accelerators achieve up to 2.12X improvement in throughput
on VGGI16 under the same setting. The consistent better
performance of our DAS generated accelerators validates the
effectiveness of our DAS engine in navigating over the large and
discrete design space of DNN accelerators to search for optimal
DNN accelerators. Note that when using DAS to generate
optimal accelerators, we adopt the same precision and FPGA
resources as the baselines for a fair comparison.

V. CONCLUSION

We propose DIAN, a generic network-accelerator co-search
framework, to enable automated search for matched DNNs
and their accelerators that maximize both task accuracy and
hardware efficiency. Extensive experiments validate that DIAN
generated networks and accelerators consistently outperform
SOTA baselines in terms of both task accuracy and hardware
efficiency, while notably boosting the search efficiency.

TABLE IV: DAS generated vs. SOTA FPGA accelerators on a
Zynq XC70Z45 FPGA, with VGG16 on ImageNet at 200MHz.
[2] [24] DAS generated
Resource Utilization __ 680/900 DSP__ 824/900 DSP 723/900 DSP
Performance (GOP/s) 262 230 291 (TL1IX - 12.12%)
ACKNOWLEDGMENT
This work was supported in part by the National Institutes
of Health under Award RO1HL 144683, National Science Foun-
dation under Awards CCF-1838873 and CAREER-2048183.

REFERENCES

[1] Y. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks,” JSSC 2017, 2017.

[2] X. Zhang et al., “Dnnbuilder: An automated tool for building high-
performance dnn hardware accelerators for fpgas,” in ICCAD, 2018.

[3] H. Cai et al., “Proxylessnas: Direct neural architecture search on target
task and hardware,” arXiv preprint arXiv:1812.00332, 2018.

[4] B. Wu et al., “Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search,” in CVPR, 2019.

[S] M. S. Abdelfattah et al., “Best of both worlds: Automl codesign of a
cnn and its hardware accelerator,” in DAC, 2020.

[6] Y. Li et al., “Edd: Efficient differentiable dnn architecture and imple-
mentation co-search for embedded ai solutions,” in DAC, 2020.

[7]1 Y. Lin et al., “Neural-hardware architecture search,” 2019.

[8] Xilinx Inc., “Xilinx zc706 evaluation kit,” https://www.xilinx.com/
products/boards-and-kits/ek-z7-zc706-g.html, (Accessed on 09/30/2020).

[9] M. Tan et al., “Efficientnet: Rethinking model scaling for convolutional

neural networks,” in ICML, 2019.

Y. Zhao, X. Chen, Y. Wang, C. Li, H. You, Y. Fu, Y. Xie, Z. Wang, and

Y. Lin, “Smartexchange: Trading higher-cost memory storage/access for

lower-cost computation,” arXiv preprint arXiv:2005.03403, 2020.

D. Chen et al., “xpilot: A platform-based behavioral synthesis system,”

SRC TechCon, vol. 5, 2005.

R. Venkatesan et al., “MAGNet: A Modular Accelerator Generator for

Neural Networks,” in ICCAD, 2019.

P. Xu et al., “Autodnnchip: An automated dnn chip predictor and builder

for both fpgas and asics,” arXiv preprint arXiv:2001.03535, 2020.

W. Jiang et al., “Hardware/software co-exploration of neural architectures,

TCAD, 2020.

L. Yang, et al., “Co-exploration of neural architectures and heterogeneous

asic accelerator designs targeting multiple tasks,” in DAC, 2020.

K. Choi et al., “Dance: Differentiable accelerator/network co-exploration,”

arXiv preprint arXiv:2009.06237, 2020.

H. Liu et al., “Darts: Differentiable architecture search,” arXiv preprint

arXiv:1806.09055, 2018.

E. Jang et al., “Categorical reparameterization with gumbel-softmax,”

arXiv preprint arXiv:1611.01144, 2016.

Y. Wu et al., “Accelergy: An architecture-level energy estimation

methodology for accelerator designs,” in /ICCAD, 2019.

A. Parashar et al., “Timeloop: A Systematic Approach to DNN Acceler-

ator Evaluation,” in ISPASS, 2019.

Y. Zhao et al., “Dnn-chip predictor: An analytical performance predictor

for dnn accelerators with various dataflows and hardware architectures,”

in ICASSP, 2020.

X. Yang et al., “A systematic approach to blocking convolutional

neural networks,” CoRR, vol. abs/1606.04209, 2016. [Online]. Available:

http://arxiv.org/abs/1606.04209

A. Wan et al., “Fbnetv2: Differentiable neural architecture search for

spatial and channel dimensions,” arXiv preprint arXiv:2004.05565, 2020.

Q. Xiao et al., “Exploring heterogeneous algorithms for accelerating

deep convolutional neural networks on fpgas,” in DAC, 2017.

Xilinx Inc., “Vivado High-Level Synthesis,” https://https://www.xilinx.

com/products/design-tools/vivado/integration/esl-design.html, accessed

2019-09-16.

R. Balasubramonian et al., “Cacti 7: New tools for interconnect

exploration in innovative off-chip memories,” ACM Trans. Archit.

Code Optim., vol. 14, no. 2, Jun. 2017. [Online]. Available:

https://doi.org/10.1145/3085572

Y. S. Shao et al., “Aladdin: A pre-rtl, power-performance accelerator

simulator enabling large design space exploration of customized archi-

tectures,” in ISCA, 2014.

[10]

(1]
[12]
[13]
[14] ’
[15]
[16]
[17]
(18]
[19]
[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

