
DIAN: Differentiable Accelerator-Network
Co-Search Towards Maximal DNN Efficiency

Yongan Zhang
1
, Yonggan Fu

1
, Weiwen Jiang

2
, Chaojian Li

1
, Haoran You

1
, Meng Li

3
,

Vikas Chandra
3

and Yingyan Lin
1

1
Rice University, Houston, TX;

2
George Mason University, Fairfax, VA;

3
Facebook, Inc., Menlo Park, CA

Corresponding to:
1
yingyan.lin@rice.edu

Abstract—We present DIAN, a Differentiable Accelerator-
Network Co-Search framework for automatically searching for
matched networks and accelerators to maximize both the accu-
racy and efficiency. Specifically, DIAN integrates two enablers:
(1) a generic design space for DNN accelerators that is applicable
to both FPGA- and ASIC-based DNN accelerators; and (2)
a joint DNN network and accelerator co-search algorithm that
enables the simultaneous search for optimal DNN structures
and their accelerators. Experiments and ablation studies based
on FPGA measurements and ASIC synthesis show that the
matched networks and accelerators generated by DIAN con-
sistently outperform state-of-the-art (SOTA) DNNs and DNN
accelerators (e.g., 3.04× better FPS with a 5.46% higher accuracy
on ImageNet), while requiring notably reduced search time (up
to 1234.3×) over SOTA co-exploration methods, when evaluated
over ten SOTA baselines on three datasets.

Index Terms—Network Accelerator Co-design, DNN Accelera-
tor, Neural Architecture Search

I. INTRODUCTION

Powerful deep neural networks’ (DNNs’) prohibitive com-

plexity has motivated intensive studies of efficient DNN solu-

tions. Early works merely explore from either the algorithm or

hardware level. For example, compression techniques attempt to

trim down DNNs’ complexity, while hardware accelerators [1],

[2] develop customized micro-architectures (e.g., # of memory

hierarchies and processing elements (PEs), PE array dimension

and shape, size of different memories, and network-on-chip

(NoC) design) and algorithm-to-hardware mapping methods

(e.g., loop tiling strategy, loop size, and loop order) to boost

DNN acceleration efficiency. Later, hardware-aware neural

architecture search (HA-NAS) [3], [4] emerged to automate

the design of efficient network structures (e.g., # of layers

and channels, size of kernels, and layer operations). Recently,

it has been recognized that maximizing DNN accelerators’

efficiency requires joint exploration of both the networks and

their accelerators (the latter refers to the accelerators’ micro-

architectures and mapping methods hereafter) [5]–[7].
Despite their promise, the great potential of jointly optimiz-

ing DNNs and their accelerators has not been unleashed. The

key challenges include (1) the prohibitively large joint space

consisting of the coupled yet different network and accelerator

spaces with extremely sparse optima, (2) non-differentiable

hardware costs, and (3) how to algorithmically describe a

generic accelerator search space. To tackle the aforementioned

challenges, this work makes the following contributions:

• We propose DIAN, a DIfferentiable Accelerator-Network

co-search framework (see Fig. 1) that jointly searches

for DNNs’ networks and their accelerators to boost the

efficiency and expedite the development speed.

• We develop Differentiable Accelerator Search (DAS), a

generic accelerator search engine for exploring the large

and discrete design space of DNN accelerators. DAS

distinguishes itself from existing methods which mostly

adopt Reinforcement Learning (RL)-based methods and

thus are limited in scalability.

• We construct a Generic DNN Accelerator Design Space

(GADS) that is applicable to both FPGA- and ASIC-based

accelerators and can enable algorithmically exploration of

DNN accelerators’ large and discrete design space, facili-

tating future development in DNN accelerator innovations.

• Through FPGA and ASIC synthesis, extensive experiments

validate DIAN’s effectiveness in outperforming SOTA

DNNs/accelerators while requiring a notably reduced

search time over SOTA methods.

II. RELATED WORKS

Hardware-Aware NAS (HA-NAS). HA-NAS has been de-

veloped to automate the design of efficient DNNs. Early works

utilize RL-based methods, and thus suffer from substantially

large search time [9]. Later, differentiable HA-NAS [4] emerged

to greatly improve both the search and hardware efficiency.

However, existing HA-NAS methods (1) mostly consider

hardware costs (e.g., FLOPs) on one given device/accelerator

and (2) have not yet fully explored the hardware space,

motivating network-accelerator co-search techniques.

DNN accelerators. DNNs’ powerful performance and pro-

hibitive complexity have motivated extensive research in cus-

tomized DNN accelerators. Given a DNN and its acceleration

specification, SOTA accelerators [1], [10] explore different

micro-architectures and algorithm-to-hardware mappings to

maximize the acceleration efficiency. To reduce the design

effort, recently, there has been a growing interest in design

flow tools like [11] and DNN accelerator design automation

such as [12], [13]. However, these works only explore the

accelerator design space, leading to sub-optimal solutions.

Software/Hardware co-exploration. Network-accelerator

co-exploration has been shown to be promising in boosting

DNN acceleration efficiency: [5], [14] conduct RL-based

search to jointly search for the networks and their accelerator

parameters; [15] adopts RL-based controllers to search for

the networks and select accelerators from two pre-configured

templates; and [6], [16] extend differentiable NAS to network

and accelerator co-search. Despite their promise, they have not978-1-6654-3922-0/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Lo

w
 P

ow
er

 E
le

ct
ro

ni
cs

 a
nd

 D
es

ig
n

(IS
LP

ED
) |

 9
78

-1
-6

65
4-

39
22

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

LP
ED

52
81

1.
20

21
.9

50
24

78

TABLE I: The constructed generic accelerator search space,

where TBS denotes “to be searched”.

Memory Hierarchy Loop-order Loop-size

DRAM TBS -
Global Buffer TBS TBS

PE array - TBS
Register File (RF) TBS TBS

NoC design Max # of PEs Pipeline/Multi-cycle

TBS TBS TBS

performance estimators, where in this work we refer to [13]

for FPGA-based accelerators and [19]–[21] for ASIC-based

accelerators. We then multiply the resulting hardware-cost loss

with the sampled GS(γ
s
) and relax it to Gumbel-Softmax

during backpropagation for estimating the gradients.

D. Generic Accelerator Design Space (GADS)

Similar to NAS, a generic accelerator search space is a

prerequisite for algorithmic accelerator exploration. However,

it is challenging to develop such a space for DNN accelerators

due to their large and discrete design space. First, there

are numerous choices for the algorithm-to-hardware mapping

methods (i.e., how to temporally and spatially schedule all the

DNN’s operations to be executed in the target accelerators).

Second, there are many ways to design the accelerators’ micro-

architectures, which are characterized by the number of memory

hierarchies and PEs, the size of each memory hierarchy, the

shape and size of the PE array, and the NoC design [1].

We construct a generic accelerator search space as shown

in Tab. I by leveraging the commonly used nested for-loop

accelerator description [21], [22] which naturally bridges

the accelerator’s micro-architectures and mapping methods

with DNNs’ network parameters. Next, we introduce each

accelerator parameter in Tab. I:

loop-order: the orders of the loops within each memory

hierarchy, each of which has to consider all the data dimensions;

loop-size: the size of each loop in the for-loop description;

NoC design: the parallel execution pattern of MACs (mul-

tiply–accumulate operations) when accelerating DNNs on an

accelerator. In this work, we consider three NoC options:

• parallelizing the computation over the output partial sums,

where the dimensions of output channels, output rows,

and output columns are executed in parallel.

• parallelizing the computation over the kernels, where the

dimensions of output channels, input channels, kernel

rows, and kernel columns are executed in parallel.

• parallelizing the computation over both the kernel and out-

put dimensions, where the dimensions of output channels,

kernel rows, and output columns are executed in parallel.

max number of PEs: the maximal number of PEs in the

design which are determined by the area constraint.

pipeline/multi-cycle: a binary choice between a chunk-based

pipeline or multi-cycle micro-architecture shared by all layers.

Note that these accelerator parameters are platform agnostic

and thus compatible with both FPGA- and ASIC-based DNN

accelerators, for which only the implementation flows and cost

models are different as elaborated in Sec. IV-A.

IV. EXPERIMENT RESULTS

In this section, we introduce the experiment setup, evaluate

DIAN over both SOTA (1) HW/SW co-exploration works and

(2) HA-NAS methods, and present ablation studies to evaluate

DIAN’s co-search algorithm and DAS engine.

A. Experiment setup

Evaluation baselines and datasets. For evaluating

DIAN over SOTA co-exploration works, we consider (1)

three co-exploration FPGA baselines: HS-Co-Opt [14],

BSW [5], EDD [6] and (2) two co-exploration ASIC base-

lines: NASAIC [15] and DANCE [16]. For benchmarking

over SOTA HA-NAS methods, we consider four baselines:

EfficientNet-B0 [9], FBNet [4], FBNet-V2 [23], and Proxy-

lessNAS [3]. For evaluating DIAN’s DAS engine, we consider

both expert-designed and tool-generated SOTA accelerators in

[2], [24]. Our experiments consider three datasets: CIFAR-10,

CIFAR-100, and ImageNet.

Search and evaluation on CIFAR-10/100. We adopt the

same search space as [4], except the stride settings for each

group to adapt to the resolution of the input images in CIFAR-

10/100, and the same search and evaluate settings as [4].

Search and evaluation on ImageNet. Search space: we

adopt the same search space as [4] which is a SOTA search

space for generating efficient DNNs via NAS. Search and

evaluation settings: we follow the same hyper-parameter

settings as [4] for searching and evaluating on ImageNet, while

additionally updating the hardware accelerator parameters at

each epoch using an SGD optimizer with a momentum of 0.9

and a fixed learning rate of 1E-9.

Hardware cost and hyperparameters. We adopt Frame-

Per-Second (FPS), latency, or Energy-Delay-Product (EDP)

as the hardware-cost loss (i.e., Lhw in Eq. 1) to compare

with various baselines and set M = 10 for Eq. 4 in all the

experiments. The performance of our DIAN is not sensitive to

M for M > 5, and we thus choose M = 10.

Accelerator evaluation methodology. To evaluate DIAN’s

generated accelerators, we adopt standard FPGA and ASIC

evaluation flows. For FPGA-based accelerators, we employ the

Vivado HLS flow [25] and use a SOTA accelerator performance

predictor [13] to obtain fast and reliable estimation during

search. For ASIC-based accelerators, we use SOTA accelerator

performance estimators Timeloop [20] and Accelergy [19]

during and after the search, with CACTI7 [26] and Aladdin [27]

based on a commercial 32nm or 45nm CMOS technology for

the unit energy/latency.

B. DIAN over SOTA co-exploration works

Search efficiency. Here we benchmark our DIAN over

SOTA co-exploration works [5], [6], [14], [15] in terms of

search space size and search time. As shown in Tab. II,

DIAN can handle a remarkably larger (e.g., 2.21E+48 vs.

3.63E+09) joint search space while requiring the shortest search

time (e.g., 4.2 vs. 5184 GPU hours), compared with all the

SOTA baselines. Specifically, on ImageNet, DIAN achieves a

5.46% and 0.7% higher accuracy with a 3.04× and 1.94×

higher FPS under a 450 and 900 Digital-Signal-Processor

