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ABSTRACT

The many-body expansion (MBE) is an efficient tool that has a long history of use for calculating interaction energies, binding energies, lattice
energies, and so on. In the past, applications of MBE to correlation energy have been unfeasible for large systems, but recent improvements
to computing resources have sparked renewed interest in capturing the correlation energy using the generalized nth order Bethe-Goldstone
equation. In this work, we extend this approach, originally proposed for a Slater determinant, to a tensor product state (TPS) based wavefunc-
tion. By partitioning the active space into smaller orbital clusters, our approach starts from a cluster mean field reference TPS configuration
and includes the correlation contribution of the excited TPSs using the MBE. This method, named cluster MBE (cMBE), improves the con-
vergence of MBE at lower orders compared to directly doing a block-based MBE from a RHF reference. We present numerical results for
strongly correlated systems, such as the one- and two-dimensional Hubbard models and the chromium dimer. The performance of the cMBE
method is also tested by partitioning the extended 7 space of several large -conjugated systems, including a graphene nano-sheet with a very
large active space of 114 electrons in 114 orbitals, which would require 10°° determinants for the exact FCI solution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057752

I. INTRODUCTION

Modern electronic structure methods are usually based on the
Hartree-Fock (HF) reference.!” Although most of the energy is
already accounted for by this reference, the missing energy, or cor-
relation energy, is necessary in order to obtain accurate and mean-
ingful results. A full configuration interaction (FCI)** calculation
is required for the exact correlation energy but is unfeasible when
the system size is large due to its exponential scaling. Less expen-
sive single reference electronic structure methods, such as density
functional theory (DFT)" or truncated coupled cluster (CC),° can be
used to capture part of this correlation and for most ground state
properties. However, if the system has an ill-defined reference deter-
minant, these methods tend to fail since they are dependent on the
reference. This type of correlation is broadly referred to as strong
or static correlation and usually arises in transition metal com-
plexes, excited states, and bond breaking. In these cases, there is usu-
ally orbital near-degeneracy and contributions from more than one

determinant become important. One usually resorts to active space
based methods for such cases, but even these approaches are plagued
by the exponential scaling of the wavefunction with respect to system
size. Improved computational resources and approximations have
allowed for the application of accurate wavefunction-based quan-
tum mechanical methods to many challenging strongly correlated
systems in recent years.”’

The FCI wavefunction is extremely sparse, and there are
different approximate methods that can be used to exploit this
sparsity.'’ Selected configuration interaction (SCI) exploits this
idea and approximates the wavefunction by selecting important
configurations. The first selected CI algorithm was proposed by
Huron et al. in the 1970s.!! Other selected CI methods include
recent improvements to the CIPSI algorithm,'*!? semi-stochastic
heat bath CI (SHCI),'""* adaptive CL'® coordinate descent FCL'’
iterative CL'®!° adaptive sampling CL*’ and Monte Carlo CI
(MCCI).”! The recently proposed full configuration interaction
quantum Monte Carlo (FCIQMC) method samples the determinant
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used to develop the semi-stochastic computer aided design cluster
analysis driven (CAD)-FCIQMC where the higher excitations
of FCIQMC are used with a CC formalism similar to externally
corrected coupled cluster methods.”*>* A selected coupled cluster
method, full coupled cluster reduction (FCCR), has also been
proposed and has shown very accurate results with a perturbation
theory (PT) correction.”®

Another set of approaches used for solving strongly corre-
lated large active spaces are tensor network based methods. Density
matrix renormalization group (DMRG),”?" initially designed for
the exact solution of 1D spin lattices, has shown impressive results
for chemical systems.””*! DMRG is mostly applicable for pseudo-
one-dimensional systems. There are also a few higher-dimensional
tensor network based methods, such as tree tensor network states
(TTNSs),* complete graph tensor network states (CGTNSs),** and
0 on.

Similar to the approach that we will discuss below, there are
also approaches in which the active space is partitioned into orbital
groups, and then, the system is solved by restricting the excita-
tions between those groups. Occupation restricted multiple active
space (ORMAS),”*?” restricted active space (RAS),”® and generalized
active space (GAS)*”*® can all be conceptualized in this way.

Nesbet in the 1960s proposed to use a many-body expan-
sion (MBE) to capture the correlation energy using the nth order
Bethe-Goldstone equation.””*' The MBE and its variants** " are
versatile tools used in traditional chemistry applications, such as
predicting binding energies,”"** crystal lattice energies and struc-
tures,”> > dipole moment and polarizability,””*’ vibrational fre-
quencies,” "* forces,*®" and excited state energies.****®” Even
though MBE has been used in these contexts, its ability to solve
for the correlation energy of large systems was not widely exploited
until recently. In recent years, with increased computing power and
smart pruning, the use of the MBE method to approximate FCI
energy has seen new interest. One of the earliest methods where
the MBE was used is the method of increment (Mol) approach by
Stoll where orbital blocks were used as n-body entities.”’"”* Paulus
and co-workers further used the Mol with localized orbitals to study
a variety of systems and also proposed a multi-reference version
for bond breaking problems.”*7° Ruedenberg and co-workers pro-
posed the correlation energy extrapolated many-body expansion
where they combined the correlation energy extrapolation by the
intrinsic scaling method with the many-body expansion using local
orbitals.””’® The incremental FCI (iFCI) method by Zimmerman
et al.””®" used SHCI' as a solver for higher order calculations and
has also been extended to do orbital optimization.®"*” Eriksen and
Gauss proposed the many-body expansion full configuration inter-
action (MBE-FCI) method by expanding over virtual orbitals.®*~% A
generalized MBE-FCI was later proposed® and has been extended
to excited states.”” Recently, the incremental approach has also been
used with frozen natural orbitals for reducing the dimension of the
virtual space dimension at each order.*

As the degree of strong correlation increases, higher-body
corrections need to be incorporated to get exact results since the HF
reference is not a reliable guess.®**® The perfect pairing reference®
instead of a Hartree-Fock reference has shown improved results
for strongly correlated systems,® but generalizing it to cases where
there are more than two orbitals in a block is challenging. Another
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drawback of the traditional MBE approaches expanded over an
orbital basis is that as the size of the system increases, the calculation
of each order gets more expensive with the increased number of
virtual and occupied orbitals.

In this paper, we propose the use of the tensor product state
(TPS) basis as an alternative to the traditional Slater determinant
basis in the many-body expansion. The basic idea is to partition
the system into separate clusters, solve the smaller many-electron
problem within each cluster, and then represent the wavefunction
as a tensor product of these cluster states.”” Using this alternate
wavefunction expansion has multiple advantages when the system is
“clusterable.” A system is said to be “clusterable” when the Hamil-
tonian has a structure to it which can be exploited to partition
the orbital space into different orthonormal orbital clusters. Even
though orbital locality is the most sensible clustering criteria, some-
times other factors such as symmetry and even bonding and anti-
bonding orbital pairings can also lead to efficient clustering crite-
ria.”” Most of the large molecular systems of interest such as crystal
lattices or polymetallic complexes have an intrinsic structure that
can be used to partition the orbitals into separate groups. Recently,
Jiménez-Hoyos and Scuseria proposed the cluster mean field (cMF)
method for fermions, where a single TPS configuration is variation-
ally minimized.”’ ¢MF defines a reference TPS configuration, like
Hartree-Fock is the reference determinant for Slater determinant
based methods. There are different methods that use the basic struc-
ture of the TPS basis and add correlation to it using perturbation
theory (PT),”! configuration interaction,””””
tensor networks,’*?” and effective Hamiltonians.

In the approach described in this paper, the cluster many-body
expansion (cMBE), the increments, or the building blocks are the
clusters themselves and not the virtual or occupied orbitals. The def-
initions of the reference state and expansion orders change when
using many-electron cluster states as the basis. This tensor product
state and corresponding orbitals are optimized using cMF.” Hence,
in this new representation, the correlation component within each
cluster is exactly captured. Since the exact solution of the cluster
basis is used, the size of the clusters is restricted, but with selected CI
methods, this could also be alleviated. Using the cMBE method, we
propose to both surpass the computational challenge and improve
the convergence of the MBE by exploiting the structure of the
system.

Some of the advantages of using a mean field TPS reference are
as follows:

3-95

coupled cluster,”
98-101

1. The cMF reference with orbital optimization provides a bet-
ter reference than Hartree-Fock since it incorporates more
correlation.

2. Faster convergence means fewer terms to compute, which
avoids numerical precision issues.

3. The tensor product reference allows one to exploit the local-
ized structure in the molecule for increased efficiency.

4. Although less of a black-box approach, a cluster-based method
can provide a more intuitive framework for chemists to ana-
lyze and interpret ab initio results.

Even with these advantages, the tensor product based methods
do not entirely remove the issue of dimensionality. In the tensor
product basis, calculating the matrix elements for the Hamiltonian
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is more expensive than just using the Slater-Condon rules. One of
the attractive features of cMBE is that the higher-body corrections
can be formed in either the TPS basis or the orbital basis using an
effective embedding approach. We briefly describe the cMF method
along with the orbital optimization and the cMBE method in Sec. II.
We then show the performance of the cMBE method by applying it
to the strongly correlated 1D and 2D Hubbard models in Sec. III A.
In Sec. III B, we study the commonly benchmarked strongly
correlated dichromium system. In Sec. III C, we apply the
cMBE method to the delocalized polycyclic aromatic hydrocarbons
(PAHs). We also study the benzene molecule using the cc-pVDZ
(Dunning’s cc-pVDZ basis set) basis in Sec. ITI D. Finally, in Sec. IV,
we summarize the results and discuss future directions.

Il. THEORY

Traditional wavefunction-based methods start from a mean
field determinant and expand the wavefunction as excitations from
this reference. Usually, the Hartree-Fock determinant is used as the
reference wavefunction and contributions from the excited determi-
nants need to be included for chemical accuracy. The Hartree-Fock
orbitals are extremely delocalized and may not provide the best ref-
erence orbitals for larger systems. There are also studies in which
coupled-cluster single double (CCSD) natural orbitals or localized
orbitals are used for the MBE.*** Even with these modified orbitals,
the reference determinant is not changed significantly and hence can
be non-ideal for strongly correlated systems. We propose to use a

cMF

= usae

cMBE 2

e
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CMF reference instead of a HF reference and expand the MBE in
a TPS basis. Using this modified reference can be helpful because
part of the strong correlation is already included inside the cluster,
and the interaction outside can be captured using MBE or any other
approach.

To understand the clustering and the TPS wavefunction, we
look at the polypyrrole (PPy) polymer unit shown in Fig. 1.
This molecule has strong local interactions and weak inter-pyrrole
interactions in its ground state and has applications in molecu-
lar switches.!’”'% In the neutral form, it is a good test system to
show the applicability of cMBE. Each pyrrole unit is a single clus-
ter with five orbitals corresponding to the 7 space in each unit
(Fig. 2). The exact solution of each unit can be solved since it is just
a (6e, 50) active space and corresponding cluster states can be gen-
erated, as shown in Fig. 2. In Fig. 1, for each unit, the energies of
the ground and excited cluster states within each cluster have been
plotted. For the reference, we form a tensor product of each of the
ground states in each cluster. The many-body expansion can then be
formed on top of this reference configuration. In Sec. II A, we give a
brief description of the cMF method and then introduce the cMBE
method in detail in Sec. IT B.

A. Cluster mean field

The ¢cMF method, originally proposed by Jiménez-Hoyoz and
Scusceria, is an ideal reference for any TPS-based method and has
shown promising results for the 1D and 2D Hubbard systems.”’ In
this approach, the active space is partitioned into separate clusters

cMBE 1

== - ) - - )--( )--- -=- I ] -- -- ) ---

cMBE 3

ﬁﬂﬂﬁﬂ

s s

FIG. 1. Pictorial depiction of the reference cMF state and example terms from a given subsequent cMBE expansion for the polypyrrole molecule. The green lines correspond
to the cluster state energies of each cluster (here, each pyrrole unit is considered as a cluster). The cMF reference as shown is a single tensor product state (TPS) formed by
the direct product of the lowest energy cluster states. The subsequent many-body expansion can be understood by including the degrees of freedom for the active clusters.

We show the example terms for cMBE1, cMBE2, and cMBES3.
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( (6e,50) )
& 8 CASCI

() 11 1]

FIG. 2. The orbitals within a given cluster are plotted in the left panel. Solving the
exact CASCI problem inside the cluster gives the cluster states in the right panel.
The lowest energy cluster state is optimized during cMF.

or blocks and many-electron states are formed within these clusters.
The full system wavefunction can then be represented using a tensor
product of the local cluster states,

Z Ctx;,ﬁ],yK,...wN|0‘I>ﬁ]: VK> wN): (1)
aB.y,...w

lv) =

where ¢y, g, 5.0y cOrresponds to the coefficient for a given state in
the tensor product basis. Here, we use upper case letters for repre-
senting blocks or clusters of orbitals and Greek letters to represent
the many-electron cluster states.

The ground state of the full system can be approximated by
taking the lowest many-body cluster state as

[wo) = 01,05, 0k, . .. On), ()

where |0z) is the lowest energy cluster state for cluster L. We can
write the cluster state |0) as the linear combination of determinants
in the cluster L,

loL) = > |1 ), 3)
1

where [ is the determinant index in the cluster state basis.
The Hamiltonian in the clustered form can be represented as

ﬁ = ZHI + ZH[/ + Z ﬁ[]}( + Z ﬁI]KLa (4)
1 I<J I<J<K I<J<K<L

where H;, H I H 1K, and H pkr correspond to Hamiltonian terms
with one, two, three, and four cluster interactions, respectively.

Analogous to Hartree-Fock,' we seek a self-consistent opti-
mization of the cluster states [0z) such that the reference TPS is
variationally minimized. The Lagrangian under the constraint that
the reference state is normalized can be written as

£ = {yolHlyo) + e({volyo) - 1). (5)
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Differentiating this Lagrangian with respect to the cluster basis
coefficients for a given cluster state [0z ),

oL
= O,
o(0¢

(6)

and substituting |y, ) and the Hamiltonian in the clustered form into
Eq. (6) yields

8<8OL| ( Z (OL,0M|HL + HM + I:ILM|0L,0M) - €(<OL|0L) - 1)) =0.
M=#L
(7)

In Eq. (7), since the differentiation is with respect to cluster
L, only Hamiltonian terms that have contributions from cluster L
are needed. Because Hamiltonian terms with three- or four-body
terms (Hpyx, Hykr) will necessarily have an odd number of cre-
ation/annihilation operators on at least one cluster, they do not con-
tribute to the cMF energy. This can be easily demonstrated using an
example as follows:

Ay < Y523 (palrs)p'q'st (®)
prelge] seK

= 2> palls){p{d" }s). 9)
prelge]seK

Action of this term on the reference would produce a new TPS with
a new electron configuration where cluster I will have the same elec-
trons as before, but cluster J will have an extra electron because of
the 4" term and cluster K will have one less electron because of the
§ term. Hence, three- and four-body terms do not contribute to the
energy evaluation at the cMF step.

After the differentiation and collecting terms, we have

(m+ > Vi +EM)\0L) —e1]0L) = 0, (10)
M

where VL[ M = (0p|H1a|0) is the potential from the cluster M and
Ewm = (Op1|H|0n). Equation (10) is an eigenvalue problem where e;
corresponds to the cluster state energy similar to the orbital energies
in HF. For the fermionic Hamiltonian, VL[ M) can be represented as

Vi = 20 Y (pallrshegss (11)

preL qseM

where quvs[ = (0n|g7s|0ar) is a one-particle density matrix for
cluster M.

Because the effective potential in cluster L has contributions
from each cluster M through its one-particle density matrix (p™),
we must solve for the cMF state self-consistently by updating the
effective potential iteratively until convergence.

The Hamiltonian from Eq. (10) can be understood as the many-
electron Fock-like operator for the cMF procedure,

HO = ZI:H1+;VI[]]' (12)
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Because these equations arise from a variational minimiza-
tion of a well-defined energy functional, we can easily improve the
ansatz by minimizing with respect to the orbitals and the cluster
state CI coefficients. As previously demonstrated,””’! the orbital
optimization is a key step that can improve the energy significantly.

For a given wavefunction |¥ ), we can define the unitary trans-
formation in the single particle basis that minimizes the energy using
an anti-Hermitian matrix £,

k= Kp(p'a—q'p), (13)
P<q

where «p, are the orbital rotation parameters.
The single particle basis gets transformed into a new basis,

15 = e'ef)e_’e, (14)
such that the energy now carries an orbital dependence
E[] = (Wole™*He| o). (15)

The orbitals are optimized when the orbital rotation gradient
goes to zero. Hence, the orbital gradient at each step is formed and
a conjugate gradient or BFGS algorithm can be used to optimize
the orbitals. The gradient can be expressed in terms of a generalized
Fock matrix similar to traditional quantum chemistry methods,”!%*

Gpg = 2(Fpq — Fgp), (16)

where F; is the generalized Fock matrix that can be formed using
the one- and two-particle density matrices of the cMF reference,

qu = Dprhqr + rprstgqrst- (17)

Therefore, cMF with orbital optimization is identical to a
CASSCF with multiple active spaces. The orbital optimization can
be accelerated by forming the orbital Hessian as well,>?! but we do
not take this approach in the current study.

B. Cluster many-body expansion

Although cMF provides an exact description of local correla-
tions, as a direct product of single cluster states, it lacks entangle-
ment between clusters. To reintroduce inter-cluster entanglement,
higher energy TPS configurations need to be included to improve the
wavefunction. In this framework, we define a singly excited TPS as
when a single cluster is allowed to have multiple cluster states rather
than just the ground cluster state,

|l//,1[4) = |01,0],.../1L,...0N). (18)

For a given single excitation, the matrix element between the
reference TPS and the singly excited TPS can be written as

(01,05, . AL, ... 0|01, 05, ... 0L, . .. ON)
= (Ac|FrjoL) = (Ac|Fiz|or) = 0. (19)
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This matrix element is zero for a self-consistently optimized TPS ref-
erence due to the cMF stationary conditions. Hence, we can define a
generalized Brillouin' condition for TPSs,

(ws|Hlyo) =0 vs. (20)

A doubly excited TPS would be when two clusters are allowed
to have full degrees of freedom (Fig. 1),

|WAL>HM> = |01,0],.../\L,...,‘IJM...ON>, (21)

where |A1) and |u,,) are the two excited configurations in clusters
L and M, respectively. In this work, we introduce an incremental
approach, cluster many-body expansion, on top of the cMF reference
to capture the rest of the correlation energy. Since cMF captures part
of the correlation energy missing from Hartree-Fock, we refer to
the correlation energy not captured by the cMF as inter-cluster cor-
relation energy. The general many-body expansion method can be
written as

EC:Z€I+Z€U+ Z EgK + 0, (22)
I

J<I I<J<K

where E, is the inter-cluster correlation energy instead of the tra-
ditional correlation energy. The two-body term can be expanded as

€ = EU - EI - E]. (23)

Ey is the dimer energy, where the two clusters I and J have full
degrees of freedom, as shown in Fig. 1. This is equivalent to per-
forming a complete active space CI (CASCI)-like calculation where
the active space is composed of orbitals in clusters I and J, embedded
in the 1IRDM from the rest of the clusters in their ground state.

A three-body correction for clusters I, J, and K can be
written as

€K = EUK - EU - E]K —Eix + Er + E] + Ek. (24)

Ejk is the energy of the TPS wavefunction, where three clusters I,
J, and K have full degrees of freedom, as shown in Fig. 1. As can be
seen, the computational cost of higher-body terms would increase
drastically. If all the clusters have # states each, the three-body term
will have a variational space of 7’ in the initial Fock space config-
uration. For the system in Fig. 1, this would be around 10° TPS
configurations. This will become intractable at higher orders very
quickly.

One way to tackle this problem is by using a truncated basis in
each cluster. However, truncating the cluster basis can affect the final
energy quite a lot, especially for systems that have non-negligible
interactions between clusters. As a significant improvement over
energy-based truncation, we can instead choose states that are highly
entangled via the embedded Schmidt truncation introduced in our
previous work.”’ However, even though this can significantly reduce
the number of necessary states, the full dimension formed using the
tensor product of the states of each cluster will still grow exponen-
tially. Recently, we proposed the tensor product selected configura-
tion interaction (TPSCI) method that approximates the exact solu-
tion as a variational linear combination of tensor product states that
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are chosen by a selected CI procedure. TPSCI is ideal for our current
purposes since it will adaptively form the wavefunction depending
on the interaction between clusters.

One issue with the TPS-based approaches is the expensive
matrix element evaluation compared to Slater determinant based
approaches. This can be considered as one of the advantages of the
cMBE approach compared to other TPS-based approaches since the
expansion can be computed by avoiding the TPS basis altogether.
For example, for a dimer term Ep, we can compute the effective
integrals inside a combined cluster I by combining the two clusters.
Hence, if cluster I has n; electrons and cluster ] has n; electrons, the
combination of the two clusters forms a new cluster (I]) with n; + ny
electrons. This is similar to forming the effective Hamiltonian inside
an active space in a CASCI calculation. The effective Hamiltonian
inside the new cluster can be formed, and the CASCI problem can be
solved in the determinant basis. Even for the orbital basis approach
where we avoid the TPSs, the new combined active space can be large
for higher order terms and approximate approaches ultimately have
to be used. This can be solved using any approximate FCI method,
such as selected CI or DMRG or even CCSD(T), if the complete
active space (CAS) becomes large. Although both methods can be
used, it is difficult to tell a priori which one will be ideal for com-
puting higher MBE terms for a general system. If a system can be
clustered efficiently, the TPSCI approach offers unique advantages
arising from the natural representation that mirrors the physical sys-
tem. Therefore, we use the orbital basis approach for smaller sized
cluster systems since CASCI is cheaper and use the TPSCI-based
approach for large clusters.

Similar to other many-body expansion methods, the approx-
imate dimer and trimer terms can be computed using any many-
electron method. If the system is not fully strongly correlated, tra-
ditional methods such as CCSD(T) can be used to solve for cMBE
terms. For example, if we have a molecular crystal, coupled cluster is
a good ansatz for the ground state of each monomer and the full sys-
tem. Hence, a CCSD(T) result can be achieved using a many-body
expansion with CCSD(T) results for dimer and trimer systems. We
can even start from a cMF reference with an approximate CCSD
density in Eq. (11) and use it as the reference for the MBE. Even
though these are interesting possible directions where ¢cMBE can
give very convergent results, in this study, we only focus on the cor-
relation energy. The cMBE method is also exactly size extensive even
though it is not variational.

As with any adaptive model, the computational complexity of
cMBE varies with each application and is rather difficult to precisely
characterize. Since the method starts with cMF, there is an initial
factorial scaling with cluster size, N. Assuming the worst-case sce-
nario where each cluster of the k clusters is half-filled and where
exact diagonalization is performed for each of the n-body terms,
then truncation at n will have the following scaling:

Nk E—

However, this the worst case scenario as we use approximate dia-
gonalization for higher-body terms (reduces the second factor) and
use efficient screening to avoid computing negligible n-body terms
(reduces the first factor).

ARTICLE scitation.org/journalljcp

I1l. RESULTS

In this section, we present data for the cMBE method for a
variety of systems. First, we study the half-filled one- and two-
dimensional Hubbard model. We then apply the cMBE method
to the strongly correlated dichromium system and some polycyclic
aromatic hydrocarbon (PAH) systems. The PAH systems are exten-
sively delocalized and hence can be considered challenging for the
cMBE approach. Finally, we apply the cMBE method to the recently
benchmarked benzene molecule with the cc-pVDZ basis.'”> The
integrals for the molecular systems were computed using the PySCF
package.'”® All DMRG calculations provided for the Hubbard model
in this work have been carried out using the ITensor package.'””

A. Hubbard model

In this section, we study the one- and two-dimensional Hub-
bard model'”* using the cMBE method. The Hubbard Hamiltonian
used in this study can be represented using two different hopping
values,

H= ) - hal,aj, + > ~ hal,aj, + U nipny, (26)
(ijeA)o (i€A,jeB)o j

where 1 (f;) are the hopping terms within (between) clusters and U
is the same-site Coulomb repulsion. The Hubbard model becomes
strongly correlated when the two-electron Coulomb repulsion (U)
is much larger than the hopping term. For all calculations, we use
U = 5and t; = 1, which is the strongly correlated regime. We study
the effect of clusterability of the system by scanning the ¢, hopping
term with respect to the t; parameter. For example, cMF would be
exact for ¢, = 0 since the clusters are non-interacting.

1. 1D chain

For the 1D system considered, we present results for values
of t:t; = 1:1, 3:4, and 1:2 for a 40 site periodic Hubbard
system. We divide the system into ten four site clusters. Since
this is a 1D system, we used DMRG for computation of all the
higher order terms in the cMBE method. We used the original local
orbitals and did not perform any orbital optimization since orbital
optimization can remove some of the sparseness leading to more
terms.”

Even though the 1D system is exactly solvable using DMRG, the
cMBE gives us a good indication of clusterability of these systems.
From Fig. 3, it can be seen that for all cases except for ¢, : ¢t =1:1,
the cMBE expansion converges quickly, almost at second order, even
att, 1t =3:4.

2. 2D lattice

Here, we attempt to study the two-dimensional Hubbard model
with 64 sites as an example. We have 16 clusters with 4 sites each.
We consider t:¢; = 1:8, 1:4, and 1:2 for these systems. For
the cMBE results, we use TPSCI to solve for higher-body correc-
tions. We use the FermiCluster package developed by our group
for the cMBE results.'”” The two-dimensional Hubbard model has
been studied previously using an increment based approach and has
shown promising results just by using third order corrections.'"’
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FIG. 3. The cMBE energy per site for the 40 site Hubbard model. The black line
corresponds to DMRG results. Blue line: t,/t; = 0.5. Orange line: t,/t; = 0.75.
Red line: tp/ty = 1.

From the results shown in Fig. 4, we can see that for a ratio
such as 1: 8, the cMBE approach converges quickly. For these two-
dimensional systems, the DMRG results also get complicated as
we go to higher ratios. We use the variational TPSCI results for
the terms at each order. The DMRG values are computed using
M = 1600 except for the case where t,:t; = 1:2 where we use
M = 3000. From Fig. 4, it can be seen that the cMBE and DMRG
values match well for all ratios considered. We can conclude from
the results that the cMBE method can be used for strongly correlated
systems with reasonable inter-cluster interactions.

B. Chromium dimer

The chromium dimer at 1.5 A using an Ahlrichs-SV basis
set'!! is a common test system used to study methods developed

for strong correlation.’®!'>-11* All orbitals up to 3s orbitals are
9
® )
’ es
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FIG. 4. The many-body expansion for the 64 site 2D Hubbard model. The black
line corresponds to the reference DMRG result with M = 1600 for £, : {1 of 1: 8
and 1 : 4 and M = 3000 for the ratio of 1 : 2. Blue line: f,/t; = 0.125. Orange line:
to/t; = 0.25. Red line: t /t; = 0.5.

frozen, leading to an active space with 24 electrons in 30 orbitals.
This system is studied to benchmark new methods developed for
static and dynamic correlation since it has a hextuple bond with
one o, two 7, and three § bonds involving the 4s orbitals and the
3d valence orbitals. There are benchmark results computed using
DMRG,"*!'"* FCIQMC,'"* and SHCL'"> among others. In a recent
study, Lehtola and co-workers showed that there are excitations as
high as octuples using their cluster decomposition method.''® Cr,
has also been studied using the MBE-FCI approach,®® where it was
observed that the many-body expansion converges at approximately
the 10th excitation rank.

The cMBE approach requires us to partition the orbital space
of the system into clusters. In the case of the chromium dimer, this
may initially seem difficult. A simple clustering approach is to use
each bond as a separate cluster. As shown by the exchange matrix
in Fig. 5, the 3d orbitals and 44 orbitals with the similar shape have

0

— N
()
&l e
JOV
A,
e
@ O

FIG. 5. The clustering of the dichromium system. The absolute value of the exchange matrix is plotted, and the clusters are selected as blocks. The ordering of the orbital
is similar to the ordering of orbitals in the right. Each four orbital cluster corresponds to a bond in the hextuple bonded Cr dimer.
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TABLE 1. Correction at each order up to four-body correction for the Cr, system (24e,
300). The orbital basis used is RHF. We present reference values for other methods
using the same HF core.

Order cMBE
1 —-2085.9921
2 —2086.4482
3 -2086.3278
4 -2086.4211
Method Energy
CCSDTQ'"? —2086.4067
DMRG!'" -2086.4211
FCIQMC'* -2086.4212
SHCI'"® -2086.4211

large off-diagonal elements, implying significant interaction. Hence,
we put these 3d and 44 orbitals in the same cluster. The bonding and
antibonding orbital pairs formed from each atom’s 3p,, 3p,, and 3p,
atomic orbitals, which are fully occupied, are each treated as their
own cluster. The orbital clustering (shown in Fig. 5) is as follows:

(3p2), (3px), (3py)s (35, 45), (3dxy, 4dsy), (3dyz, 4dy2), (3diz, 4dxz),
(3dxz_yz 5 4dxz_yz ), and (3dzz > 4dzz )

We present the data for the Cr dimer in Table I. Coupled
cluster with up to quadruple excitations is unable to get a good
estimate for this system.''” The cMBE result for the four-body cor-
rection is within chemical accuracy compared to other FCI qual-
ity results.!!*!* We use the tightly converged TPSCI + PT results
for the individual terms for the cMBE. We use selection threshold
1 x 107" and search threshold 1 x 1072 for the variational space.

cMBE or any other TPS-based methods are ideally designed for
studying spatially extended molecules where localized orbitals can
be used and the drastic decay of electron correlation can be taken
advantage of. The presented Cr dimer data demonstrate that the
cMBE approach, even though not meant or designed for small sys-
tems, such as diatomics, is capable of providing very accurate results.
Given the notably non-monotonic convergence of the energies
with MBE order, a definitive assessment will require more accurate

~905.00] = )
—e— k2
~905.05 1
=
< _905.10
>
o
Q
[
& —905.15
~905.20 1

CcMBE order
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calculations incorporating five-body terms into the calculations.
This is needed to confirm that the cMBE calculation has actually
converged on the accurate point (especially since the four-body
terms provided a significant effect). However, we were not able to
converge the individual five-body terms accurately enough with the
current implementation. In future work, we plan to further exploit
the cluster basis representation to simplify such higher-body terms.

C. PAH system

Next, we study several polycyclic aromatic hydrocarbon (PAH)
systems using the cMBE method. Due to the extended 7 conjugation
in these systems, they have possible applications in light-emitting
diodes, solar cells, and so on. Large graphene nanodots''” have appli-
cations in bioimaging and photovoltaics and can be considered as
strongly correlated systems. The extended m-conjugation in these
systems makes them a relatively hard problem for a fragmentation-
based approach, such as cMBE. Hence, the PAH systems should be
challenging for the cMBE method. Geometries for all the PAH sys-
tems in this study were optimized using B3LYP with the cc-pVDZ
basis except for the hexacene system whose geometry was obtained
from Ref. 118. All structures are provided in the supplementary
material.

There exist multiple classical rules that give a good qualitative
idea of the correlation and structure of PAH systems.!'*~?! One
such model is the Kekulé structure. The PAH molecules are mainly
formed by conjugated double bonds; hence, it makes sense to clus-
ter PAH systems using one of its Kekulé structures as the guiding
clustering option. Because this leads to a two orbital cluster, we can
include higher order corrections to see the convergence properties
of the cMBE approach.

1. Different Kekulé structures

For a simple PAH system, there can be multiple Kekulé cluster-
ings possible. In this section, we study the coronene molecule using
two different clustering approaches. It has previously been debated
whether the coronene molecule has weak outer double bonds or two
concentric 7-conjugations, leading to clustering in k1 or k2, respec-
tively, in Fig. 6. By defining a clustering based on a Kekulé structure

S vt
_QmQ O

k1 k2

FIG. 6. Comparison of the two different clustering options considered for the coronene molecule. The highlighted yellow region corresponds to the atom pairs in a cluster.
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(whereby the p, orbitals defining each double bond in a given Kekulé
structure are taken to be a cluster), cMBE can be used to determine
which clustering provides a more physically correct picture. Based
on just the Kekulé structure, it is difficult to say which of the two
clustering is ideal. We present data for both clustering approaches
in Fig. 6. Both Kekulé clusters provide the same Clar structure in the
end, but it can be seen that k2 clustering is more convergent than k1.
We also note that we found the cMF reference to have a lower energy
for k2 compared to k1, which can be used as a good indicator for rel-
atively better clustering. Using this as a metric, we can avoid doing
the expensive cMBE for all possible Kekulé structures. This is usu-
ally the case with systems that do not have too many empty virtual
orbital clusters. It has previously been demonstrated experimentally
and theoretically that the coronene molecule has weak outer dou-
ble bonds unlike benzene that clearly suggests that the k2 clustering
would be better.!?>!?* Even with k2, we need to go to higher orders
for the expansion to converge since the system is delocalized.

2. Comparison between cMF and split localized
RHF basis

Now, we move on to evaluate the effect of starting from a cMF
reference by comparing it with the RHF reference. As mentioned,

(@)

—981.81 RHF-cMBE

—e— CcMBE

A
et

—981.9 1

—982.0 1 :I ;1

—982.11

Energy (En)

—982.2 1

—982.3 1

T T T T

0 1 2 3 4 5
cMBE order

©)

—829.95

RHF-cMBE
—e— CcMBE

—830.00
—830.05
—830.10
—830.15

Energy (Ep)

—830.20 1
—830.25 1
—830.30 -

—830.35 -

0 1 2 3 4 5
cMBE order

the MBE can be formulated without the cMF reference by directly
using RHF orbitals. We take a few PAH molecules and localize
the occupied and virtual 7-orbitals separately. We then cluster the
orbitals based on bonding/antibonding pairs. This leads to an auto-
matic stable Kekulé-type clustering for some PAH systems. In con-
trast to the cMF reference, where part of the correlation is already
captured, the MBE using RHF reference starts from a less stable RHF
solution. For the RHF-based MBE, the reference is the RHF determi-
nant with all the occupied orbitals doubly occupied. The first order
correction for this RHF-cMBE amounts to a CAS calculation for a
single cluster while constraining the occupied orbital in all other
clusters to be doubly occupied. The two-body correction is then a
CAS calculation by combining the orbitals in the two clusters, while
others are doubly occupied and so on.

We present data for the comparison of the cMBE with the
split localized RHF-cMBE method in Fig. 7. It can be seen that
the cMF reference is much better than the RHF reference. The
cMBE and the RHF-cMBE approaches converge to the exact result
at higher orders with cMBE having better convergence for all the
systems. The reference energies are extrapolated SHCI values com-
puted using the Arrow'’* package except for the hexacene molecule,
for which we use the DMRG value from Ref. 118. Pruning can be
used for truncating the number of terms for larger systems. In the
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~905.9 1 RHF-cMBE
—e— cMBE
—906.0 /
5 ) P
g . \ \ 4
o —906.1 (! L
w e
—906.2 VN J !
—906.3
0 1 2 3 4 5
CcMBE order
904.8 @
' RHF-cMBE
—e— CMBE
—904.9 1 ,
e
< —905.01 .
o
: {
& —905.1 ’ m OH
—905.2
0 1 2 3 4 5
cMBE order

FIG. 7. Comparison of the cMF reference using the split localized RHF basis for four PAH systems. The yellow highlighted region of the molecules corresponds to the double
bonds considered as clusters. The reference value corresponds to the DMRG result for (a) and extrapolated SHCI results for (b)—(d).
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FIG. 8. Large PAH systems considered in this work using Clar’s rule clustering. The active space comprises of the n-conjugated electrons. The yellow highlighted regions

correspond to a single cluster.

supplementary material, we present two different pruning tech-
niques, scheme-0 and scheme-1, and apply it to the Kekulene
molecule.

3. Clar’s clustering

For the PAH systems, even though the Kekulé clustering gives
very accurate results, we need to go to larger orders of cMBE. In this
section, we consider a larger cluster size based on Clar’s rule such
that most correlation is captured within the clusters and the cMBE
can be truncated at lower orders. Clar’s aromatic sextet rule has also
been used with a fragmentation based DFT approach and provides
promising results.'*> For larger systems, Clar’s rule based clustering
would be more ideal.

First, we consider the Kekulene molecule. Kekulene, similar to
coronene, also has two possible structures: the two superaromatic
inner and outer rings or Clar’s sextet based structure. The Kekulene
molecule was recently synthesized and visualized using ultra-high-
resolution atomic force microscopy (AFM), and the superaromatic
behavior was not observed.'”® There are computational studies also
suggesting Kekulene to have Clar’s rule based structure;'*” hence, we
expect more convergent behavior using Clar’s clustering.

The Kekulene molecule (P1) in the Clar-type clustering leads
to a 12 cluster system with six two orbital clusters and six sextet
clusters (Fig. 8). The P2 molecule, which is a part of a graphene
nanosheet, has an active space of 60 orbitals in 60 electrons. This
system requires about 10°* determinants for the exact results. We

also study an even larger nanographene system P3, which has an
active space of 114 orbitals in 114 electrons. The FCI space for this
molecule in the 77 space would have 10° determinants for the ground
state. This system has 19 clusters, and we provide data up to third
order correction.

For all these systems, we use the energy obtained using the
TPSCI + PT for the tuples. The TPSCI method, being a selected CI
approach, forms a smaller variational space for clusters that interact
less. For example, the interaction between the 7 sextets at the two
corners of the P3 molecule are nearly negligible. Hence, considering
the two-body term between these two clusters has a variational
space of 94 TPS configurations. The variational space for one of the
nearest neighbor interactions was ~4000 configurations. Both these
values are much less than the full dimension for a 12 orbitals in
12 electrons active space, which has 853776 determinants. Using
a RHF reference and performing CAS calculations for the many-
body expansion would be intractable at third order. Hence, using a
TPSCI procedure, we avoid forming the full space dimension for the
two- and three-body terms for the cMBE approach. Using Clar’s
clustering, the cMBE approach should converge faster and higher
order corrections would not be required. Obtaining higher-body
corrections would require further coarse-graining of the variational
space. There are multiple possible ways this can be achieved, which
will be discussed in future work.

In Table II, we present data for the large PAH systems using
Clar’s rule based clustering and compare them to extrapolated SHCI
and CCSD(T) results. For the P1 molecule, the errors are within

TABLE . Data for the large PAH systems studied using Clar's rule clustering.

CCSD(T) Extrp SHCI cMF cMBE2 cMBE3
P1 (48e, 480) —-1810.3857 —1810.3842 —-1810.2330 —-1810.3578 —-1810.3838
P2 (60e, 600) —2258.5624 —2258.5360 —2258.3885 —2258.5262 —2258.5559
P3 (114e, 1140) —4283.9319 —4284.2751 —4284.5790 —4284.5999
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0.2mEy,. For the next largest PAH system, P2, the storage of the PT
space gets very large; hence, the SHCI values could not be computed
at very accurate threshold. Hence, the extrapolated SHCI number
for this system, as seen from Table I, is not a good estimate. The P3
molecule is a larger graphene-type system and has extended electron
delocalization. It is interesting to observe that the variational cMF
energy is already lower in energy than CCSD(T), even before adding
any many-body interactions.

D. Benzene cc-pVDZ

In a recent review, most of the methods mentioned in the Intro-
duction were tested in a blind challenge to approach the full config-
uration interaction energy of the benzene molecule in a cc-pVDZ
basis.!’> Even though the benzene molecule is not strongly corre-
lated, the numerically exact result for this large active space with 30
electrons in 108 orbitals is not trivial. The correlation energy for this
system was estimated to be ~863mE),.!"

There is no simple strategy to cluster the benzene molecule, and
partitioning the benzene system is a non-trivial problem. However,
since the focus of this work is not the optimal clustering but rather
the cMBE method itself, we do not yet explore different clustering
possibilities. We localize the 7 space by taking both occupied and
virtual orbitals from the 7 bond formed by the 2p, orbitals. The
rest of the occupied and virtual orbitals are localized separately. We
use a clustering where all the o bonds and the corresponding anti-
bonding orbitals are in a single cluster. The 7 space is then clustered
using a Kekulé structure. Hence, the valence and occupied space are
relatively easier to cluster compared to the large virtual space. For
simplicity, we also clustered the full valence space using the Kekulé
criteria by pairing the orbitals with similar shape in adjacent C atoms
into a cluster. This basically means that the system is partitioned
into three main parts: orbitals corresponding to C1-C2, C3-C4, and
C5-C6. Within these groups, the orbitals are clustered such that
orbitals with the same principle quantum numbers, angular momen-
tum, and shape are in the same cluster. For example, each of the 3p,
orbitals in C1 and C2 is in a cluster and similarly for other orbitals.
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FIG. 9. The cMBE values for the benzene system with the cc-pVDZ basis using
scheme-1 pruning. The threshold used for two different cMBE calculations is also
given in the legend. The black line corresponds to the estimated energy value from
Ref. 105.
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This makes a total of 54 clusters with six C-H clusters, six C-C clus-
ters, and 14 x 3 clusters for the valence 7 space and virtual orbitals.
The clustering for the benzene system is pictorially depicted in the
supplementary material.

For the benzene molecule, we present the data in Fig. 9. We
use the scheme-1 pruning for the benzene system. All the tuples
are considered up to third order. We present data for two differ-
ent pruning thresholds €;: 1 x 10%and 1 x 1077 Ej,. € is the
pruning cutoff, as discussed in the supplementary material. For the
loose threshold, the correlation energy is not fully captured even
at five-body. This is expected since we have a large virtual orbital
space and we need to include the effect of even smaller contri-
butions. For the tighter threshold, we get a correlation energy of
-862.6mEy, at five-body, which is within the range of the estimated
FCI result.'%>?® Only a very small fraction of the terms are consid-
ered using pruning. For the tight threshold calculation, only 16%
and 2% of the total possible terms are considered after pruning at
four-body and five-body, respectively. The most expensive calcula-
tion for the cMBE is the five-body terms, which is still only a ten
orbital active space and is solvable without much computational
resources.

IV. CONCLUSION

We present a new increment based method on top of a cMF
wavefunction formed by clustering the strongly interacting orbitals
into clusters. We show how the cMBE method can be used to obtain
the correlation energy for different types of systems, including
model Hamiltonians and molecular systems. The cMBE approach
gives good results for systems with large active spaces, as presented
in this work. If only expectation values are needed, it can be used
as an alternative to other methods such as DMRG and selected
CI when the wavefunction is approximately clusterable. We test
this method on large 7-conjugated systems and even the strongly
correlated dichromium system.

Future work will focus on further decreasing the computational
cost. One simple approach could be to use an approximate treat-
ment [e.g., CCSD(T)] for the cluster calculations. Another future
direction could be to include a PT correction from other clusters on
top of the cMBE similar to using RPA or MP correction terms for
higher orders in traditional methods.”” This would lead to higher-
body corrections at every correction level, which can improve the
convergence of the expansion. We can also introduce a better prun-
ing criterion than the energy-based criteria used in this work. For
example, a distance-based criterion can also be used for the PAH
systems,!2%130

One of the main future directions would be to extend the cMBE
method to do larger systems and apply it to other properties such
as excited states and interaction energies. Recently, the many-body
expansion with the diabatic state method was proposed and applied
to charge transfer reactions.”” A similar framework can be used
with a multi-reference cMF to study excited states using the cMBE
approach.

Another interesting direction we are interested in is to use the
TPS framework and coarse-grain the degrees of freedom at each
order. This would lead to a compact wavefunction and allow for the
application of the TPS framework for higher-body corrections for
larger clusters.
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SUPPLEMENTARY MATERIAL

See the supplementary material for the orbital clustering of ben-
zene, a comparison of couple pruning techniques, and all the xyz
structures.
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