
Auto-NBA: Efficient and Effective Search Over the Joint Space of

Networks, Bitwidths, and Accelerators

Yonggan Fu
1

Yongan Zhang
1

Yang Zhang
2

David Cox
2

Yingyan Lin
1

Abstract

While maximizing deep neural networks’

(DNNs’) acceleration efficiency requires a joint

search/design of three different yet highly cou-

pled aspects, including the networks, bitwidths,

and accelerators, the challenges associated with

such a joint search have not yet been fully

understood and addressed. The key challenges

include (1) the dilemma of whether to explode

the memory consumption due to the huge joint

space or achieve sub-optimal designs, (2) the

discrete nature of the accelerator design space

that is coupled yet different from that of the

networks and bitwidths, and (3) the chicken and

egg problem associated with network-accelerator

co-search, i.e., co-search requires operation-wise

hardware cost, which is lacking during search as

the optimal accelerator depending on the whole

network is still unknown during search. To tackle

these daunting challenges towards optimal and

fast development of DNN accelerators, we pro-

pose a framework dubbed Auto-NBA to enable

jointly searching for the Networks, Bitwidths, and

Accelerators, by efficiently localizing the optimal

design within the huge joint design space for each

target dataset and acceleration specification. Our

Auto-NBA integrates a heterogeneous sampling

strategy to achieve unbiased search with constant

memory consumption, and a novel joint-search

pipeline equipped with a generic differentiable

accelerator search engine. Extensive experiments

and ablation studies validate that both Auto-NBA

generated networks and accelerators consistently

outperform state-of-the-art designs (including

co-search/exploration techniques, hardware-

aware NAS methods, and DNN accelerators),

in terms of search time, task accuracy, and

1
Department of Electrical and Computer Engineering, Rice Uni-

versity
2
MIT-IBM Watson AI Lab. Correspondence to: Yingyan

Lin <yingyan.lin@rice.edu>.

Proceedings of the 38
th

International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

accelerator efficiency. Our codes are available at:

https://github.com/RICE-EIC/Auto-NBA.

1. Introduction

The prohibitive complexity of deep neural networks (DNNs)

have fueled a tremendous demand for efficient DNN ac-

celerators which could boost the acceleration efficiency by

orders-of-magnitude. In response, extensive research efforts

have been devoted to developing DNN accelerators. Early

works decouple the design of efficient DNN algorithms

(Liu et al., 2018b; Wu et al., 2018b; You et al., 2020) and

their accelerators (Du et al., 2015; Chen et al., 2017; Li

et al., 2020a; Zhao et al., 2020). On the algorithms level,

pruning, quantization, or neural architecture search (NAS)

have been adopted; On the hardware level, various FPGA-

/ASIC-based accelerators customize the micro-architectures

(e.g., memory hierarchies/size and network-on-chip design)

and algorithm-to-hardware mapping methods (e.g., loop

tiling strategies and loop orders) to optimize the acceler-

ation efficiency for given DNNs. Later, hardware-aware

NAS (HA-NAS) was proposed to further improve DNNs’

acceleration efficiency (Tan et al., 2019; Fu et al.).

It has been recently recognized that (1) optimal DNN accel-

erators require a joint consideration for three different yet

coupled aspects: the network structure, network precision,

and their accelerators, and (2) merely exploring a subset of

these aspects will lead to sub-optimal hardware efficiency

or task accuracy. For example, the optimal accelerators for

DNNs with different structures (e.g., width/depth/kernel-

size) can be very different; while the optimal networks and

their bitwidths for different accelerators can differ a lot (Wu

et al., 2019). However, the direction of jointly designing or

searching for all three aspects has only been slightly touched

on. For example, (Chen et al., 2018; Gong et al., 2019; Wang

et al., 2020) proposed to jointly search for DNNs’ structure

and precision for a fixed target hardware; (Abdelfattah et al.,

2020; Yang et al., 2020; Jiang et al., 2020a;c) proposed to

jointly search for the networks and their accelerators, yet

either their network or accelerator choices are limited, due

to the prohibitive time cost required by their adopted rein-

forcement learning (RL) based methods; and EDD (Li et al.,

2020b) formulated a differentiable joint search framework,

Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

which however only consider one accelerator parameter (i.e.,

parallel factor) and more importantly, has not yet solved the

key challenges of efficient joint search.

Although differentiable search is promising in terms of

search efficiency to explore the huge joint search space

(see Sec. 4.2), plethora of challenges exist to achieve an

effective, generic joint search for the above three aspects.

First (Challenge 1), to co-search for a DNN and its preci-

sion, there exists a dilemma whether to activate all the paths

during search. On one hand, the required memory can easily

explode and thus constrain the search scalability to more

complex tasks if all paths are activated; on the other hand,

partially activating a subset of the paths require a sequential

training of different precisions on the same weights, causing

inaccurate accuracy ranking among different precisions (Jin

et al., 2020). Second (Challenge 2), DNN accelerators’ de-

sign factors are not differentiable, and it is non-trivial to

abstract generic accelerator design spaces integrating all

important factors, e.g., the number of memory hierarchies,

loop orders/sizes, and processing array size/shape. Third

(Challenge 3), there exists the chicken and egg problem as-

sociated with network-accelerator co-search, i.e., co-search

requires operation-wise hardware costs, which is lacking

during search as the optimal accelerator depending on the

whole network is still unknown during search.

We aim to enable efficient and effective joint search for the

mentioned three aspects, and make contributions as follows:

• We propose Auto-NBA that for the first time enables

Automated joint search for the Networks, Bitwidths,

and Accelerators for efficiently exploring the huge joint

design space which cannot be afforded by previous

RL-based methods due to their required prohibitive

search cost. Auto-NBA identifies and tackles the above

Challenges 1-3 towards scalable joint search of the

three for maximizing both the accuracy and efficiency.

• We propose a heterogeneous sampling strategy inte-

grated by Auto-NBA for simultaneous updating the

weights and network structures to (1) avoid sequen-

tially training different precisions and (2) achieve unbi-

ased search with constant memory consumptions, i.e.,

solving the above Challenge 1. We further develop a

novel joint-search pipeline integrating a differentiable

accelerator search engine to address Challenges 2-3.

• Extensive experiments and ablation studies validate the

effectiveness and advantages of our Auto-NBA frame-

work in terms of the resulting search time, task accu-

racy, and accelerator efficiency, when benchmarked

over state-of-the-art (SOTA) co-search/exploration

techniques, HA-NAS methods, and DNN accelerators,

respectively. Furthermore, we visualize the searched

accelerators by Auto-NBA to discuss insights towards

efficient DNN accelerator design.

• Auto-NBA’s searched algorithms and accelerators out-

perform both SOTA automatically searched and expert-

designed DNNs and accelerators. Additionally, our

Auto-NBA is general and allows users to easily plug-

in both their own DNN search space and/or accelera-

tor search space. Hence, we believe that Auto-NBA

has made a nontrivial step to provide automated tools

for expediting the development of DNN accelerators

which falls far behind DNN algorithm advances.

2. Related works

Hardware-aware NAS. Hardware-aware NAS (HW-NAS)

automates the design of efficient DNNs. Early works (Tan

et al., 2019; Howard et al., 2019; Tan & Le, 2019) utilize

RL-based NAS that requires a massive search time/cost,

while recent works (Wu et al., 2019; Wan et al., 2020; Cai

et al., 2018; Stamoulis et al., 2019) adopt differentiable

search (Liu et al., 2018a) with much improved searching

efficiency. Along another direction, one-shot NAS meth-

ods (Cai et al., 2019; Guo et al., 2020; Yu et al., 2020)

pretrain the supernet and directly evaluate the performances

of the sub-networks in a weight sharing manner as a proxy

of their independently trained performances at the cost of a

longer pretrain time. Additionally, NAS has been adopted

to search for quantization strategies (Wang et al., 2019; Wu

et al., 2018a; Cai & Vasconcelos, 2020; Elthakeb et al.,

2020) to trimming down the complexity of DNNs. However,

these works leave the hardware design space unexplored,

which is a crucial enabler for DNN’s acceleration efficiency.

DNN accelerators. Motivated by customized accelera-

tors’ large potential gains, SOTA accelerators (Du et al.,

2015; Chen et al., 2017) innovate micro-architectures and

mapping methods to optimize the acceleration efficiency,

given a DNN and the hardware specifications. However,

it is non-trivial to design an optimal accelerator as it re-

quires cross-disciplinary knowledge in algorithm, micro-

architecture, and circuit design. SOTA accelerator design

relies on either experts’ time-consuming manual design

or design flow (Chen et al., 2005; 2009; Rupnow et al.,

2011) and DNN accelerator design automation (Wang et al.,

2016; Zhang et al., 2018a; Guan et al., 2017; Venkatesan

et al., 2019; Wang et al., 2018a; Gao et al., 2017; Xu et al.,

2020). As they merely explore the accelerator space, they

can result in sub-optimal solutions as compared to SOTA

co-search/exploration methods and our Auto-NBA.

Co-exploration/search techniques. Pioneering efforts

have been made towards jointly searching of DNNs and

their accelerators to some extent. For joint searching for

DNNs and their precision, (Chen et al., 2018; Gong et al.,

2019; Wang et al., 2020) adopt either differentiable or evo-

lutionary algorithms yet without exploring their hardware

accelerators. For joint searching for DNNs and their acceler-

ators, (Abdelfattah et al., 2020; Yang et al., 2020; Jiang et al.,

Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

max GS(β
l
j), where β

l
j parameterizes the probability of the

j-th precision in the l-th layer, and the gradients is estimated

by the straight through estimator (STE) (Zhou et al., 2016)

as ∂Ltrain/∂A
l
≈ ∂Ltrain/∂Ā

l so that no extra interme-

diate feature maps need to be stored during backward. For

updating β, we adopt hard Gumbel Softmax (Jang et al.,

2016) with one-hot outputs GShard(β
l
j) to save memory

computation while reducing the correlation among preci-

sion choices. Under the same co-search setting as Fig. 2

(b), all the blocks searched using our heterogeneous sam-

pling converge to the highest precision towards the end of

the search (see Fig. 2 (c)), indicating an effective search as

further validated in Sec. 4.

3.3. Auto-NBA Enabler 2: Differentiable Accelerator

Search Engine

Motivation. Although EDD (Li et al., 2020b) also co-

searches the accelerator with the network, their search space

is limited to include merely one accelerator parameter (i.e.,

the parallel factor within their template) which can be fused

into their computational cost, whereas this is not always

applicable to other naturally non-differentiable accelerator

design parameters such as memory hierarchies and tiling

strategies. Hence, a more general and efficient search engine

is needed towards generic differentiable accelerator search.

Search algorithm. We propose a differentiable search en-

gine to efficiently search for the optimal accelerator (includ-

ing the micro-architectures and mapping methods) given a

DNN and its precision using single-path sampling as dis-

cussed in Sec. 3.4. Specifically, we solve Eq. (4) as follows:

argmin
γ

M

∑
m=1

GShard(γ
m
)Lcost(hw({GShard(γ

m
)}),

net({O
l
fw}), prec({B

l
fw}))

(6)

where M is the total number of accelerator design pa-

rameters. Given the network net({O
l
fw}) and precision

prec({B
l
fw}), where O

l
fw ∈ α and B

l
fw ∈ β are the acti-

vated forward operator and precision for each layer as dis-

cussed in Sec. 3.4. Our search engine utilizes hard Gumbel

Softmax GShard sampling on each design parameter γ
m

to

build an accelerator hw({GShard(γ
m
)}) and penalize each

sampled accelerator parameter with the overall hardware-

cost Lcost through relaxation in a gradient manner.

Hardware template. We adopt a unified template for both

the FPGA and ASIC accelerators, which is a parameterized

chunk-based pipeline micro-architecture inspired by (Shen

et al., 2017). As elaborated in Sec. 4.1, the hardware/micro-

architecture template comprises multiple sub-accelerators

(i.e., chunks) and executes DNNs in a pipeline fashion. Each

chunk is assigned with multiple but not necessarily con-

secutive layers which are executed sequentially within the

chunk. Similar to Eyeriss, each chunk consists of several

levels of memories (e.g., on-chip buffer and local register

files) and processing elements (PEs) to facilitate data reuses

and parallelism with searchable design knobs, such as PE

interconnections (i.e., Network-on-chip), allocated buffer

sizes, multiply-and-accumulate (MAC) operations’ schedul-

ing and tiling (i.e., dataflows), and so on.

General applicability. As shown in Eq. (6), our accelerator

search engine is general and does not hold any prior assump-

tions about the adopted accelerators. Hence, it is applicable

to different accelerator architectures and mapping methods.

Specifically, for a given target accelerator architecture or

template, such as TPU-like (Jouppi et al., 2017) or other

accelerators (Chen et al., 2016; Li et al., 2020a; Zhao et al.,

2020), our search engine can be directly applied once given

(1) a simulator to estimate the hardware cost, and (2) a set of

user-defined searchable accelerator design knobs abstracted

from the target accelerator template.

3.4. Auto-NBA: The Overall Joint-Search Framework

Objective and challenges. The key objective of Auto-

NBA is formulated in Eq. (1) involving all the

three major aspects towards efficient DNN accelerators.

The key challenges for joint-search of the three include (1)

the prohibitively large joint space (e.g., 2.3E+21 in this

work) which, if not addressed, will limit the search scala-

bility to practical yet complex tasks; (2) the entangled co-

adaptation (Hong et al., 2020), correlation (Li et al., 2019),

and cooperation (Tian et al., 2020) issues among different

network and precision choices can enlarge the gap between

the supernet during search and the final derived network,

thus failing the joint search; and (3) the chicken and egg

problem associated with network-accelerator co-search, i.e.,

co-search requires operation-wise hardware cost, which is

lacking during search as the optimal accelerator depending

on the whole network is still unknown during search.

Auto-NBA implementation. Auto-NBA integrates the two

enablers in Sec. 3.2 and Sec. 3.3 to develop a unified joint-

search pipeline. Specifically, Auto-NBA search starts from

updating both the supernet weights ω and accelerator pa-

rameters γ (based on Enablers 1-2 in Sec. 3.2 and Sec. 3.3,

respectively), given the current network net(α) quantized

using precision prec(β), and then updates α and β based

on the derived optimal weights ω
∗

and accelerator hw(γ
∗

)
resulting from the previous step.

During joint-search, Auto-NBA updates α and β as follows

(see Eq. (7)-Eq. (9)) to solve Eq. (1), where only the update

for α is shown for simplicity as it is similarly applicable

to update β. Note that here we define path to be one of

the parallelled candidate operators between the layer input

and layer output within one searchable layer, which can be

viewed as a coarse-grained (layer-wise) version of the path

Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

Table 2. Benchmark Auto-NBA’s Search efficiency over SOTA co-search/exploration works and one-shot NAS methods.

Method Dataset Network Space Accelerator Space Precision Space Joint Space Search Time (GPU hours)

HS-Co-Opt (Jiang et al., 2020c) CIFAR-10 1.15E+18 - - 1.15E+18 103.9

Auto-NBA CIFAR-10 9.85E+20 2.24E+27 2.40E+15 5.30E+63 6

BSW (Abdelfattah et al., 2020) CIFAR-100 4.20E+05 8.64E+03 - 3.63E+09 5184

Auto-NBA CIFAR-100 9.85E+20 2.24E+27 2.40E+15 5.30E+63 12

HS-Co-Opt (Jiang et al., 2020c) ImageNet 2.22E+18 - - 2.22E+18 266.8

Once-For-All (Cai et al., 2019) ImageNet 2.00E+19 - - 2.00E+19 1200

APQ (Wang et al., 2020) ImageNet 1.00E+35 - 1.00E+10 1.00E+45 2400

Single One-shot (Guo et al., 2020) ImageNet 7.00E+21 - - 7.00E+21 288

Auto-NBA ImageNet 9.85E+20 2.24E+27 2.40E+15 5.30E+63 80

definition in (Wang et al., 2018b; Qiu et al., 2019).

Single-path forward: For updating both α (see Eq. (7)) and

β during forward, Auto-NBA adopts hard Gumbel Softmax

sampling (Hu et al., 2020a), i.e., only the choice with the

highest probability will be activated to narrow the gap be-

tween the search and evaluation, leveraging the single-path

property of hard Gumbel Softmax sampling. In Eq. (7), A
l

and A
l+1

denote the feature maps of the l-th and (l + 1)-th

layer, respectively, N is the total number of operator choices,

O
l
i is the i-th operator in the l-th layer parameterized by α

l
i,

and O
l
fw is the activated operator during forward.

Forward ∶ A
l+1

=

N

∑
i=1

GShard(α
l
i)Oi(A

l
) = O

l
fw(A

l
) (7)

Backward ∶

∂Lval

∂αl
i

=

K

∑
k=1

∂Lval

∂GS(αl
k)

∂GS(α
l
k)

∂αl
i

=

∂Lval

∂Al+1

K

∑
k=1

O
l
k(A

l
)
∂GS(α

l
k)

∂αl
i

(8)

∂Lcost

∂αl
i

= 1(GShard(α
l
i) = 1)L

α
l

i

cost(hw(γ
∗

), net(α
l
i), prec(β))

(9)

Multi-path backward: For updating both α (see Eq. (8)) and

β during backward, Auto-NBA activates multiple paths to

calculate the gradients of α and β through Gumbel Softmax

relaxation in order to balance the search efficiency and sta-

bility inspired by (Cai et al., 2018; Hu et al., 2020b), where

α
l
i’s gradients are calculated using Eq. (8), with K ∈ (1, N)

being the number of activated choices with the top K Gum-

bel Softmax probability and controlling the search cost.

Hardware-cost penalty: The network search in Eq. (1)

is performed in a layer/block-wise manner as in (Liu

et al., 2018a), thus requiring layer/block-wise hardware-

cost penalty which is determined by both the layer/block-

to-accelerator mapping method and the corresponding

layer/block execution cost on the optimal accelerator

hw(γ
∗

). The optimal mapping method is yet determined

by the whole network. To handle this gap, we derive the

layer/block-wise hardware-cost assuming that the single-

path network derived from the current forward would be

the final derived network, as this single-path network has a

higher if not the highest probability to be finally derived. In

Eq. (9), 1(⋅) is an indicator denoting whether α
l
i (i.e., the

i-th operator in the l-th layer) is activated during forward.

4. Experiment Results

4.1. Experiment Setup

Software settings. Search space and hyper-params. We

adopt the same search space as (Wu et al., 2019) for the

ImageNet experiments, from which we disable the first two

down sampling operations for the CIFAR-10/100 experi-

ments. We use [4, 6, 8, 12, 16] as the candidate precision

set, where the precisions of the first and last blocks are fixed

to 8-bit, and each block shares the same precision for both

the weights and activations for more hardware friendly im-

plementation. We activate two paths during backward, i.e.,

K = 2 in Eq. (8), for search efficiency. For Lcost in Eq.

(4), we use the acceleration latency, i.e., Frame-Per-Second

(FPS), and Energy-Delay-Product (EDP) for FPGA- and

ASIC-based accelerators, respectively.

Search settings. We adopt standard search settings used in

SOTA hardware-aware NAS works (Wu et al., 2019). Specif-

ically, for searching on the CIFAR-10/100 datasets, we use

half of the dataset for updating supernet weights ω and the

other half for updating the network and precision parameter

α and β, and search for 90 epochs with an initial gumbel

softmax temperature of 5 decayed by a factor of 0.975 every

epoch; For searching on ImageNet, we randomly sample

100 classes as a proxy search dataset from which we use

80% for updating ω and the other 20% for updating α and

β, pretrain the supernet for 30 epochs without updating the

network architecture and precision, and then search for 90

epochs with an initial temperature of 5 decayed by a factor

of 0.956 every epoch, following (Wu et al., 2019). For both

CIFAR-10/100 and ImageNet, we use an initial learning rate

of 0.1 and an annealing cosine learning rate.

Training settings. For CIFAR-10/100, we train the derived

networks for 600 epochs using a batch size of 256 with an

initial learning rate of 0.1 and an annealing cosine learning

rate on a single NVIDIA RTX-2080Ti GPU following (Liu

et al., 2018a). For ImageNet, we follow the training recipe

in (Wu et al., 2019) on four NVIDIA Tesla V100 GPUs.

Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

k5
_e

1
8b

it

sk
ip

sk
ip

sk
ip

sk
ip

k5
_e

3
6b

it

sk
ip

sk
ip

k5
_e

6
8b

it

k5
_e

1_
g2

 6
bi

t

k5
_e

1_
g2

 8
bi

t

k5
_e

1
6b

it

k5
_e

1_
g2

 6
bi

t

k5
_e

6
8b

it

k5
_e

6
8b

it

k3
_e

3
6b

it

k5
_e

3
8b

it

k5
_e

6
8b

it

k5
_e

6
6b

it

k5
_e

3
6b

it

k5
_e

3
8b

it

k5
_e

6
8b

it

Chunk1
Spatially tiled across feature height

and width

Chunk2
Spatially tiled across feature height

and width

Chunk3
Spatially tiled across input and

output channels

Chunk4
Spatially tiled across input and

output channels

Chunk5
Spatially tiled across input and

output channels

Chunk6
Spatially tiled across input and

output channels

DW Chunk1
Spatially tiled across feature height

and width

DW Chunk2
Spatially tiled across channels

Chunks tiled across feature height and width

Chunks tiled across input and output channels

Searched
Network

Searched
Accelerator

Figure 6. Visualization of the searched network, precision, and accelerator that achieves a 72.2% top -1 accuracy on ImageNet and an FPS

of 110 on ZC706 FPGA, where the block definition follows (Wu et al., 2019).

able to a large range of required acceleration efficiency.

Effectiveness of heterogeneous sampling. In addition to

the example and analysis in Sec. 3.2, we further validate

the effectiveness of the proposed heterogeneous sampling

strategy by benchmarking Auto-NBA w/ and w/o homoge-

neous sampling that adopts hard GS sampling (K = 2) for

updating both the weights ω and precision choices β as that

in Fig. 2 (b), the latter of which is termed as Auto-NBA

w/o h-sampling. The achieved trade-offs between the task

accuracy and acceleration FPS in Fig. 5 show that Auto-

NBA w/o h-sampling tends to select lower precision choices

which hurt the achieved accuracy, and is consistently infe-

rior than Auto-NBA with heterogeneous sampling, due to

its inaccurate estimation for different precision ranking.

Comparison with sequential optimization. Considering

the great flexibility on both DNNs’ structure and accelerator

sides, a natural baseline of Auto-NBA is to search the net-

work and precision based on theoretical efficiency metrics

(e.g., total bit operations), and then search for the optimal

accelerator given the searched network and precision from

the first search. We benchmark Auto-NBA over the afore-

mentioned sequential search in Fig. 5 on CIFAR-100, which

shows that Auto-NBA consistently outperforms the sequen-

tial optimization baseline, e.g., a 1.95% higher accuracy

with a 1.75× better FPS, indicating the poor correlation

between theoretical efficiency and real hardware efficiency

and thus motivating the necessity of joint-search.

4.5. Visualization of the searched network, precision,

and accelerator

Fig. 6 visualizes Auto-NBA’ searched network, precision,

and accelerator, from which we discuss our extracted in-

sights below.

Insights for the searched networks of Auto-NBA. The

automatically searched network of Auto-NBA is shown in

Fig. 6 and we can find that wide-shallow networks tend

to better favor real-device efficiency on the ZC706 FPGA

board while achieving a similar accuracy. We conjecture the

reason is that wider networks offer more opportunities for

making use of feature/channel-wise parallelism for a given

batch size, thus leading to a higher resource utilization rate

and thus an overall higher throughput.

Insights for the searched accelerators of Auto-NBA. As

shown in Fig. 6, we can observe that the whole network

is partitioned into multiple pipelined chunks to maximize

the acceleration throughput, with each chunk being high-

lighted using a different color. As (Shen et al., 2017) points

out, such multi-chunk accelerator architectures can boost the

overall utilization of the PE arrays via 1) optimizing each ac-

celerator chunk (i.e., sub-accelerator) for a cluster of layers

which have similar patterns/workloads and 2) pipelining all

the chunks to process different network inputs and process

non-consecutive layers. Additionally, the chunks which are

assigned with the early layers of the network prefer spatially

tiling the feature map height and width as this offers more

parallelism, while the chunks handling the deeper layers

of the network tend to tile the channel dimension as the

parallelism opportunity is more prominent along channel

dimensions at the deeper layers.

An ablation study for Auto-NBA’s accelerator search engine

is provided in the Appendix.

5. Conclusion

In this work, we present Auto-NBA, which is the first to

identify and tackle the prohibitive challenges of jointly

search for the networks, bitwidths, and accelerators for max-

imizing the task accuracy and acceleration efficiency. When

benchmarking with a comprehensive set of SOTA efficient

DNN algorithms, accelerators, and co-explored/co-searched

works, Auto-NBA consistently achieves large improve-

ments, outperforming both SOTA automatically searched

and expert-designed DNNs and accelerators. Auto-NBA

promises to expedite the development of DNN accelerators

which falls far behind DNN algorithm advances.

Acknowledgements

The work is supported by the National Science Foundation

(NSF) CAREER Program (Award number: 2048183).

Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

References

Abdelfattah, M. S., Dudziak, Ł., Chau, T., Lee, R., Kim, H.,

and Lane, N. D. Best of both worlds: Automl codesign

of a cnn and its hardware accelerator. arXiv preprint

arXiv:2002.05022, 2020.

Balasubramonian, R., Kahng, A. B., Muralimanohar, N.,

Shafiee, A., and Srinivas, V. Cacti 7: New tools for

interconnect exploration in innovative off-chip memories.

ACM Trans. Archit. Code Optim., 14(2), June 2017. ISSN

1544-3566. doi: 10.1145/3085572. URL https://

doi.org/10.1145/3085572.

Cai, H., Zhu, L., and Han, S. Proxylessnas: Direct neural

architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-

for-all: Train one network and specialize it for efficient

deployment. arXiv preprint arXiv:1908.09791, 2019.

Cai, Z. and Vasconcelos, N. Rethinking differentiable search

for mixed-precision neural networks. In Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 2349–2358, 2020.

Chen, D., Cong, J., Fan, Y., Han, G., Jiang, W., and Zhang,

Z. xpilot: A platform-based behavioral synthesis system.

SRC TechCon, 5, 2005.

Chen, D., Cong, J., Fan, Y., and Wan, L. Lopass: A low-

power architectural synthesis system for FPGAs with

interconnect estimation and optimization. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, 18

(4):564–577, 2009.

Chen, Y., Krishna, T., Emer, J., and Sze, V. Eyeriss: An

energy-efficient reconfigurable accelerator for deep con-

volutional neural networks. JSSC 2017, 52(1):127–138,

2017.

Chen, Y., Meng, G., Zhang, Q., Zhang, X., Song, L., Xi-

ang, S., and Pan, C. Joint neural architecture search and

quantization. arXiv preprint arXiv:1811.09426, 2018.

Chen, Y.-H., Emer, J., and Sze, V. Eyeriss: A spatial ar-

chitecture for energy-efficient dataflow for convolutional

neural networks. ACM SIGARCH Computer Architecture

News, 44(3):367–379, 2016.

Dong, X. and Yang, Y. Searching for a robust neural archi-

tecture in four gpu hours. In Proceedings of the IEEE

Conference on computer vision and pattern recognition,

pp. 1761–1770, 2019.

Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T.,

Feng, X., Chen, Y., and Temam, O. Shidiannao: Shifting

vision processing closer to the sensor. In ACM SIGARCH

Computer Architecture News, volume 43, pp. 92–104.

ACM, 2015.

Elthakeb, A. T., Pilligundla, P., Mireshghallah, F., Yazdan-

bakhsh, A., and Esmaeilzadeh, H. Releq: A reinforce-

ment learning approach for automatic deep quantization

of neural networks. IEEE Micro, 2020.

Fu, Y. et al. Autogan-Distiller: Searching to compress

generative adversarial networks. In ICML’20.

Gao, M., Pu, J., Yang, X., Horowitz, M., and Kozyrakis,

C. Tetris: Scalable and efficient neural network accel-

eration with 3d memory. In Proceedings of the Twenty-

Second International Conference on Architectural Sup-

port for Programming Languages and Operating Systems,

pp. 751–764, 2017.

Gong, C., Jiang, Z., Wang, D., Lin, Y., Liu, Q., and Pan,

D. Z. Mixed precision neural architecture search for

energy efficient deep learning. In ICCAD, pp. 1–7, 2019.

Guan, Y., Liang, H., Xu, N., Wang, W., Shi, S., Chen,

X., Sun, G., Zhang, W., and Cong, J. FP-DNN: An

automated framework for mapping deep neural networks

onto FPGAs with RTL-HLS hybrid templates. In 2017

IEEE 25th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM),

pp. 152–159. IEEE, 2017.

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y.,

and Sun, J. Single path one-shot neural architecture

search with uniform sampling. In European Conference

on Computer Vision, pp. 544–560. Springer, 2020.

Hong, W., Li, G., Zhang, W., Tang, R., Wang, Y., Li, Z.,

and Yu, Y. Dropnas: Grouped operation dropout for

differentiable architecture search. In International Joint

Conference on Artificial Intelligence, 2020.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,

Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,

et al. Searching for mobilenetv3. In Proceedings of the

IEEE International Conference on Computer Vision, pp.

1314–1324, 2019.

Hu, S., Xie, S., Zheng, H., Liu, C., Shi, J., Liu, X., and

Lin, D. Dsnas: Direct neural architecture search without

parameter retraining. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp. 12084–12092, 2020a.

Hu, Y., Wu, X., and He, R. Tf-nas: Rethinking three

search freedoms of latency-constrained differentiable neu-

ral architecture search. arXiv preprint arXiv:2008.05314,

2020b.

Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

Jang, E., Gu, S., and Poole, B. Categorical repa-

rameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144, 2016.

Jiang, W., Lou, Q., Yan, Z., Yang, L., Hu, J., Hu, X. S.,

and Shi, Y. Device-circuit-architecture co-exploration for

computing-in-memory neural accelerators. IEEE Trans-

actions on Computers, 2020a.

Jiang, W., Yang, L., Dasgupta, S., Hu, J., and Shi, Y. Stand-

ing on the shoulders of giants: Hardware and neural

architecture co-search with hot start. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, 39(11):4154–4165, 2020b.

Jiang, W., Yang, L., Sha, E. H.-M., Zhuge, Q., Gu, S.,

Dasgupta, S., Shi, Y., and Hu, J. Hardware/software co-

exploration of neural architectures. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, 2020c.

Jin, Q., Yang, L., and Liao, Z. Adabits: Neural network

quantization with adaptive bit-widths. In Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 2146–2156, 2020.

Jouppi, N. P. et al. In-datacenter performance analysis of

a tensor processing unit. In 2017 ACM/IEEE 44th An-

nual International Symposium on Computer Architecture

(ISCA), pp. 1–12. IEEE, 2017.

Li, G., Zhang, X., Wang, Z., Li, Z., and Zhang, T. Stac-

nas: Towards stable and consistent differentiable neural

architecture search. arXiv, pp. arXiv–1909, 2019.

Li, W., Xu, P., Zhao, Y., Li, H., Xie, Y., and Lin, Y.

Timely: Pushing data movements and interfaces in pim

accelerators towards local and in time domain. In 2020

ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA), pp. 832–845, 2020a. doi:

10.1109/ISCA45697.2020.00073.

Li, Y., Hao, C., Zhang, X., Liu, X., Chen, Y., Xiong, J., Hwu,

W.-m., and Chen, D. Edd: Efficient differentiable dnn

architecture and implementation co-search for embedded

ai solutions. arXiv preprint arXiv:2005.02563, 2020b.

Lin, Y., Hafdi, D., Wang, K., Liu, Z., and Han, S. Neural-

hardware architecture search. 2020.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055,

2018a.

Liu, S., Lin, Y., Zhou, Z., Nan, K., Liu, H., and Du, J. On-

demand deep model compression for mobile devices: A

usage-driven model selection framework. In Proceedings

of the 16th Annual International Conference on Mobile

Systems, Applications, and Services, MobiSys ’18, pp.

389–400, New York, NY, USA, 2018b. Association for

Computing Machinery. ISBN 9781450357203. doi: 10.

1145/3210240.3210337. URL https://doi.org/

10.1145/3210240.3210337.

Parashar, A., Raina, P., Shao, Y. S., Chen, Y., Ying, V. A.,

Mukkara, A., Venkatesan, R., Khailany, B., Keckler,

S. W., and Emer, J. Timeloop: A systematic approach

to dnn accelerator evaluation. In 2019 IEEE Interna-

tional Symposium on Performance Analysis of Systems

and Software (ISPASS), pp. 304–315, 2019.

Qiu, Y., Leng, J., Guo, C., Chen, Q., Li, C., Guo, M., and

Zhu, Y. Adversarial defense through network profiling

based path extraction. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pp.

4777–4786, 2019.

Rupnow, K., Liang, Y., Li, Y., Min, D., Do, M., and Chen,

D. High level synthesis of stereo matching: Productivity,

performance, and software constraints. In 2011 Interna-

tional Conference on Field-Programmable Technology,

pp. 1–8. IEEE, 2011.

Shao, Y. S., Reagen, B., Wei, G., and Brooks, D. Aladdin:

A pre-rtl, power-performance accelerator simulator en-

abling large design space exploration of customized ar-

chitectures. In 2014 ACM/IEEE 41st International Sym-

posium on Computer Architecture (ISCA), pp. 97–108,

2014.

Shen, Y., Ferdman, M., and Milder, P. Maximizing

cnn accelerator efficiency through resource partition-

ing. In Proceedings of the 44th Annual International

Symposium on Computer Architecture, ISCA ’17, pp.

535–547, New York, NY, USA, 2017. Association for

Computing Machinery. ISBN 9781450348928. doi: 10.

1145/3079856.3080221. URL https://doi.org/

10.1145/3079856.3080221.

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D.,

Priyantha, B., Liu, J., and Marculescu, D. Single-path

nas: Designing hardware-efficient convnets in less than 4

hours. In Joint European Conference on Machine Learn-

ing and Knowledge Discovery in Databases, pp. 481–497.

Springer, 2019.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model

scaling for convolutional neural networks. arXiv preprint

arXiv:1905.11946, 2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,

Howard, A., and Le, Q. V. Mnasnet: Platform-aware

neural architecture search for mobile. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2820–2828, 2019.

Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

Tian, Y., Liu, C., Xie, L., Jiao, J., and Ye, Q.

Discretization-aware architecture search. arXiv preprint

arXiv:2007.03154, 2020.

Venkatesan, R., Shao, Y. S., Wang, M., Clemons, J., Dai, S.,

Fojtik, M., Keller, B., Klinefelter, A., Pinckney, N., Raina,

P., et al. MAGNet: A Modular Accelerator Generator

for Neural Networks. In Proceedings of the International

Conference on Computer-Aided Design (ICCAD), 2019.

Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu,

B., Yu, M., Xu, T., Chen, K., et al. Fbnetv2: Differen-

tiable neural architecture search for spatial and channel

dimensions. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp.

12965–12974, 2020.

Wang, J., Lou, Q., Zhang, X., Zhu, C., Lin, Y., and Chen,

D. Design flow of accelerating hybrid extremely low

bit-width neural network in embedded FPGA. In 2018

28th International Conference on Field Programmable

Logic and Applications (FPL), 2018a.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. Haq:

Hardware-aware automated quantization with mixed pre-

cision. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp. 8612–8620,

2019.

Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin,

Y., and Han, S. Apq: Joint search for network architecture,

pruning and quantization policy. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 2078–2087, 2020.

Wang, Y., Xu, J., Han, Y., Li, H., and Li, X. Deep-

burning: Automatic generation of fpga-based learn-

ing accelerators for the neural network family. DAC

’16, New York, NY, USA, 2016. Association for Com-

puting Machinery. ISBN 9781450342360. doi: 10.

1145/2897937.2898003. URL https://doi.org/

10.1145/2897937.2898003.

Wang, Y., Su, H., Zhang, B., and Hu, X. Interpret neural

networks by identifying critical data routing paths. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 8906–8914, 2018b.

Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., and Keutzer,

K. Mixed precision quantization of convnets via dif-

ferentiable neural architecture search. arXiv preprint

arXiv:1812.00090, 2018a.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,

Y., Vajda, P., Jia, Y., and Keutzer, K. Fbnet: Hardware-

aware efficient convnet design via differentiable neural

architecture search. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp.

10734–10742, 2019.

Wu, J., Wang, Y., Wu, Z., Wang, Z., Veeraraghavan, A.,

and Lin, Y. Deep k-means: Re-training and parameter

sharing with harder cluster assignments for compress-

ing deep convolutions. In Dy, J. and Krause, A. (eds.),

Proceedings of the 35th International Conference on Ma-

chine Learning, volume 80 of Proceedings of Machine

Learning Research, pp. 5363–5372. PMLR, 10–15 Jul

2018b. URL http://proceedings.mlr.press/

v80/wu18h.html.

Wu, Y. N., Emer, J. S., and Sze, V. Accelergy: An

architecture-level energy estimation methodology for ac-

celerator designs. In 2019 IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD), pp. 1–8,

2019.

Xilinx Inc. Vivado High-Level Synthesis, a. https:

//https://www.xilinx.com/products/

design-tools/vivado/integration/

esl-design.html, accessed 2019-09-16.

Xilinx Inc. Xilinx zynq-7000 soc zc706 evalua-

tion kit. https://www.xilinx.com/products/

boards-and-kits/ek-z7-zc706-g.html, b.

(Accessed on 09/30/2020).

Xu, P., Zhang, X., Hao, C., Zhao, Y., Zhang, Y., Wang, Y.,

Li, C., Guan, Z., Chen, D., and Lin, Y. AutoDNNchip:

An automated dnn chip predictor and builder for both

FPGAs and ASICs. The 2020 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, Feb

2020. doi: 10.1145/3373087.3375306. URL http:

//dx.doi.org/10.1145/3373087.3375306.

Yang, L., Yan, Z., Li, M., Kwon, H., Lai, L., Krishna,

T., Chandra, V., Jiang, W., and Shi, Y. Co-exploration

of neural architectures and heterogeneous asic acceler-

ator designs targeting multiple tasks. arXiv preprint

arXiv:2002.04116, 2020.

Yang, X., Pu, J., Rister, B. B., Bhagdikar, N., Richard-

son, S., Kvatinsky, S., Ragan-Kelley, J., Pedram, A., and

Horowitz, M. A systematic approach to blocking convo-

lutional neural networks, 2016.

You, H., Chen, X., Zhang, Y., Li, C., Li, S., Liu, Z.,

Wang, Z., and Lin, Y. Shiftaddnet: A hardware-

inspired deep network. In Larochelle, H., Ranzato,

M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.),

Advances in Neural Information Processing Systems,

volume 33, pp. 2771–2783. Curran Associates,

Inc., 2020. URL https://proceedings.

neurips.cc/paper/2020/file/

Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

1cf44d7975e6c86cffa70cae95b5fbb2-Paper.

pdf.

Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.-J., Tan,

M., Huang, T., Song, X., Pang, R., and Le, Q. Bignas:

Scaling up neural architecture search with big single-

stage models. arXiv preprint arXiv:2003.11142, 2020.

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., and

Cong, J. Optimizing fpga-based accelerator design

for deep convolutional neural networks. In Proceed-

ings of the 2015 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, FPGA ’15, pp.

161–170, New York, NY, USA, 2015. Association for

Computing Machinery. ISBN 9781450333153. doi: 10.

1145/2684746.2689060. URL https://doi.org/

10.1145/2684746.2689060.

Zhang, C., Sun, G., Fang, Z., Zhou, P., Pan, P., and Cong,

J. Caffeine: Towards uniformed representation and ac-

celeration for deep convolutional neural networks. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2018a.

Zhang, X., Wang, J., Zhu, C., Lin, Y., Xiong, J., Hwu,

W.-m., and Chen, D. Dnnbuilder: An automated tool

for building high-performance dnn hardware acceler-

ators for fpgas. In Proceedings of the International

Conference on Computer-Aided Design, ICCAD ’18,

New York, NY, USA, 2018b. Association for Com-

puting Machinery. ISBN 9781450359504. doi: 10.

1145/3240765.3240801. URL https://doi.org/

10.1145/3240765.3240801.

Zhao, Y., Chen, X., Wang, Y., Li, C., You, H., Fu, Y., Xie, Y.,

Wang, Z., and Lin, Y. SmartExchange: Trading higher-

cost memory storage/access for lower-cost computation.

In 2020 ACM/IEEE 47th Annual International Sympo-

sium on Computer Architecture (ISCA), pp. 954–967,

2020. doi: 10.1109/ISCA45697.2020.00082.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y.

Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. arXiv preprint

arXiv:1606.06160, 2016.

