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Abstract—The recent breakthroughs and prohibitive complex-
ities of Deep Neural Networks (DNNs) have excited extensive
interest in domain specific DNN accelerators, among which
optical DNN accelerators are particularly promising thanks to
their unprecedented potential of achieving superior performance-
per-watt. However, the development of optical DNN accelerators
is much slower than that of electrical DNN accelerators. One key
challenge is that while many techniques have been developed
to facilitate the development of electrical DNN accelerators,
techniques that support or expedite optical DNN accelerator
design remain much less explored, limiting both the achievable
performance and the innovation development of optical DNN ac-
celerators. To this end, we develop the first-of-its-kind framework
dubbed O-HAS, which for the first time demonstrates automated
Optical Hardware Accelerator Search for boosting both the
acceleration efficiency and development speed of optical DNN
accelerators. Specifically, our O-HAS consists of two integrated
enablers: (1) an O-Cost Predictor, which can accurately yet
efficiently predict an optical accelerator’s energy and latency
based on the DNN model parameters and the optical accelerator
design; and (2) an O-Search Engine, which can automatically
explore the large design space of optical DNN accelerators and
identify the optimal accelerators (i.e., the micro-architectures and
algorithm-to-accelerator mapping methods) in order to maximize
the target acceleration efficiency. Extensive experiments and
ablation studies consistently validate the effectiveness of both our
O-Cost Predictor and O-Search Engine as well as the excellent
efficiency of O-HAS generated optical accelerators.

I. INTRODUCTION

With state-of-the-art inference accuracy, Deep Neural Net-

works (DNNs) have been widely employed in a myriad of

AI applications, including speech recognition (e.g., Apple Siri

and Amazon Alexa), face identification (e.g., Google Picasa),

autonomous vehicles, etc. In parallel, the recent breakthroughs

and prohibitive complexity of DNNs have excited extensive

interest in domain specific DNN accelerators [1], [2], [3].

Among them, optical accelerators (OAs) provide a brand-new

yet remarkably promising kind of computing platforms for

DNNs. They can potentially achieve unparalleled massive par-

allelism, ultra-low latency, and little to no power consumption

by leveraging silicon photonic technologies. It is estimated

that OAs can be potentially 1000× faster than electronics

with 1000× less power for the same die area [4]. What’s

more, commercially manufacturable photonic integrated cir-

cuits (PICs) now also achieve economies of scale that is

previously enjoyed solely by microelectronics [5].

OA designs flourish since 2017, for which the capabilities of

optics are widely explored to perform fast and efficient linear

operations [6], [7], [8], [9], [10]. Based on their core com-

puting optical components and principles, they fall into three

categories: First, Mach–Zehnder Interferometer (MZI)-based

OAs were first proposed and could easily mass-fabricated for

matrix-vector products using coherent lights; Singular value

decomposition (SVD) [11] and Fast Fourier transform (FFT)

[12] implementations based on analog computing have been

demonstrated, achieving high parallelism but suffering from a

limited scalability to large-scale networks; Additionally, large-

footprint MZIs also fail in on-chip integration. Second, to bet-

ter tradeoff between the network scale and required footprint,

an Electro-Optical Mach–Zehnder Modulator (EOM)-based

OA [8] was presented by making full use of time, wavelength

and spatial multiplexing with incoherent lights. Third, another

alternative to MZI-based architectures, micro-resonator (MR)-

based OAs [7], [9], [10] are capable of operating across

different wavelengths, modes, or polarization and occupying

a much smaller chip area within a tight package, greatly

increasing the compute parallelism, not only because many

independent channels coexist in a single waveguide but also

more optical components can be integrated on-chip.

However, the development of optical DNN accelerators

is much slower than that of electrical DNN accelerators.

Unlike the latter that many techniques have been developed

to facilitate their development, techniques that support or

expedite optical DNN accelerator design remain much less

explored, limiting both the achievable performance and the

innovation development of OAs. Overall, there are three

critical bottlenecks: 1) Numerous OA architectures have been

designed but no existing works fairly compare their advantages

and shortages. For implementing the same DNN functionality,

different OA architecture designs can lead to dramatically

different performance/energy trade-offs. This makes it hard

to obtain effective guidance for OA designers. 2) OA design

is a cross-disciplinary field with a large design space, which

often takes months to even years for manually designing

effective OAs and requires cross-disciplinary knowledge, both

limiting OAs’ fast development. 3) In addition to the large

design space formed by the extensive micro-architecture and

dataflow choices, OA design is also application-specific. There

has been no one-for-all OA design yet, which could perfectly
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Fig. 1: Three types of OCUs: a) a MZI-based optical SVD unit for matrix multiplication [6]; b) an EOM-based optical unit

for vector convolution [8]; and c) a MR-based optical matrix-vector multiplier [7].
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Fig. 2: OAs’ performance on LeNet-5: There are a total of

1.42E+05 randomly sampled OA architecture points in this

figure and the designs with Thro. Eff. >100 GOPS/mm2 and

Thro-per-Joule >100 POPS/mm2 are marked as red, which are

extremely sparse (<0.72%) within this search space.

suit massive and rapidly developed DNN models that vary

in network shapes and sizes. Thus, ideally a customized OA

architecture is required for a given DNN model and application

pairs for achieving the best performance. This can be a

prohibitive challenge for OA designers, especially when the

ecosystem of facilitating OA development is currently still at

its infancy. Moreover, as shown in Fig. 2, satisfactory designs

are extremely sparse in the large OA design space, which

further exacerbates the difficulty for OA design.

To tackle the aforementioned challenges, we develop the

first-of-its-kind framework dubbed O-HAS that for the first

time demonstrates automated Optical Hardware Accelerator

Search for boosting both the acceleration performance and

development speed of optical DNN accelerators. Our O-HAS

consists of two integrated enablers: 1) an O-Cost Predictor,

which can accurately yet efficiently predict an optical accel-

erator’s energy and latency based on the DNN model parame-

ters and the optical accelerator design; and 2) an O-Search

Engine, which can automatically explore the large design

space of optical DNN accelerators and identify the optimal

accelerators (i.e., the type, shape, size of micro-architectures

for both data computation and data access, algorithm-to-

accelerator mapping methods, and memory hierarchy) in order

to maximize the target acceleration efficiency. Extensive ex-

periments and ablation studies consistently validate that the

proposed O-Cost Predictor achieves excellent efficiency in

not only the prediction accuracy (with an average error of

∼8.5%) but also exploration and search time, which enables

our O-Search Engine to perform fast and effective design

space exploration. The O-HAS generated optical accelerators

outperform the state-of-the-art (SOTA) optical accelerators by

up to 119.70×.

II. PRIOR ART AND OPPORTUNITIES

OAs and Optical Convolution Units (OCUs). Current

DNN models require dense linear operations such as convolu-

tions or matrix computations, which accounts for the major

computing costs in DNNs (e.g., 55% to 90% of the total

computing power and time [8]). Optical linear operations

exhibit stark advantages in bandwidth density, latency, and

energy over their electrical counterparts. To boost inference ef-

ficiency, many optical micro-architectures have been designed

for convolution acceleration [6], [7], [8], [9], [10]. They are

referred to as Optical Convolution Units (OCUs) in this paper.

According to our comprehensive survey, we classify the SOTA

OCUs into three categories as shown in Tab. I, based on

their operation principles and foundational computing optical

components, i.e., Z-, E- and R-OCUs.

MZI-based OCUs (Z-OCUs): They are the first type of

OCUs proposed for matrix-vector multiplication acceleration

using coherent light. SVD-based Z-OCU was designed and

fabricated in [6]. It shows that every N ×N weight matrix

W can be decomposed into three matrices using SVD, i.e.,

W
SV D
= UΣV ∗, where U and V ∗ are N×N unitary matrices and

Σ is a diagonal matrix with singular values. MZIs are excellent

candidates to optically implement unitary transformations as

any arbitrary unitary matrix (e.g., U and V ) can be imple-

mented with a triangular planar array of MZIs (shown in Fig.

1(a)). By modulating the phase of the input signal via phase

shifters, this OCU realizes matrix multiplication operations

in the analog domain. SVD-based micro-architectures can

achieve high computing speed close to light speed but is

limited by their required large amount of hardware resources

and thus heavy chip area cost. To improve the area efficiency
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TABLE I: Hardware cost and performance comparison of

SOTA OCUs when processing [1, N]×[N, N] matrix-vector

multiplication, where B is the operand precision and nb is the

multi-bit capability of MRs. For a fair comparison, the device

counts are converted to # MR based on real device footprints

(the area and the energy ratio between one MZI/EOM and one

MR are denoted as α and β , respectively ) [13].

E-OCU

[8]

Z-OCU R-OCU

SVD

[6]

FFT

[12]

HolyLight

[7]

PIXEL

[9]

CrossLight

[10]

# Wavelen. N2B 1 1 B
nb

B B
κnk

Power β βN(N −1) ∼ βN(N −1) N2 B
nb

N2B N2 B
nb

Latency NB 1 1 1 1 κ

Area

(# MR)
α αN(N −1) ∼ α

4
N(N −1) N2 B

nb
2N2B N2 B

nb

Control

Complexity
Low High Medium High

*For R-OCUs, there is a trade-off between latency and area cost as matrix
multiplication can be performed by either spatial multiplexing with multiple
R-OCUs or time multiplexing on the same R-OCU. In this table, we show
the cases with the optimal latency via spatially-multiplexed architectures.

over the SVD-based designs, a new FFT-based Z-OCU was

further proposed in [12]. By leveraging optical fast Fourier

transform and its inverse, it improved the area efficiency over

SVD by ∼4× on average.

EOM-based OCUs (E-OCUs): EOM-based OCU is another

recently proposed micro-architecture for improving OAs’ scal-

ability and area efficiency [8]. As shown in Fig. 1 (b), the

input vector X is encoded as the intensity of temporal symbols

in a serial electrical waveform. The convolutional kernel is

represented by a flattened weight matrix W that is encoded

to the optical power of the MicroComb lines via spectral

shaping. The temporal waveform X is then multi-casted onto

the kernel wavelength channels via electro-optical modulation,

generating the replicas weighted by W . Next, the optical

waveform is transmitted through a dispersive single-mode fibre

(SMF) with a delay step. Finally, the delayed and weighted

replicas are summed via photodetector (PD). Each time slot

yields a convolution between X and W for a given receptive

field of convolution. The convolution window slides at the

modulation speed to get the output vector Y . E-OCUs have

the least number of optical devices and realize convolutions

via effective time and wavelength interleaving. However, their

heavy energy consumption is the major bottleneck.

MR-based OCUs (R-OCUs): Compared with MZIs and

EOMs, MRs (such as microrings and microdisks) have much

smaller footprints and thus are excellent candidates for imple-

menting photonic integrated circuits (PICs). R-OCUs have at-

tracted the most attention for on-chip OA designs [7], [9], [10].

A typical MR-based OCU relies on an array of on-chip laser

sources, MRs, PDs, a wavelength splitter, and a multiplexer

to conduct parallel matrix multiplication operations, as shown

in Fig. 1(c). To calculate the multiplication between matrix

W and vector X , elements in matrix W are represented by the

transmissivity of an N×N MR array, while elements in vector

X are denoted by the input optical power values produced

Fig. 3: The proposed O-HAS framework.

by N on-chip laser diodes (LDs) with different wavelengths

(λ1, · · · ,λN). Vector X is multiplexed, split, and transmitted to

each row of the matrix equally. An MR with a specific reso-

nance wavelength in a row of the matrix will react on the input

signal in the same wavelength, and the output power is then the

product between the input power and the MRs’ transmissivity.

In a row, N multiplications between the row vector of W and

the vector X are realized and then aggregated together in the

same waveguide. The multiply-accumulate (MAC) result is

finally collected by the PD. The same operations occur in

all rows, thus the R-OCU finishes all convolutions with high

parallelism. We have listed three SOTA R-OCUs in Tab. I.

They achieve different performances resulting from different

manufacturing technologies and architecture parameters.

Opportunities. Although these OAs are promising with

exciting performance, OA development is at its very early

stage. All of them are manually designed with a great deal

of design/time overhead. There lacks a mature ecosystem

to support and assist OA designers and researchers, which

largely limits the development of this new field. To resolve

this problem, there are two necessities. One is a generic

predictor that enables accurate yet efficient estimation of the

performance and hardware cost of any arbitrary OAs. It is vital

because this predictor makes it practical to fairly compare the

pros and cons of distinct OAs, which allows OA designers

to accurately analyze accelerators’ performance and hardware

cost before the actual implementation, thus can largely reduce

the design cycles and facilitates the development of OAs. The

other essential is an automated search framework for effective

optical DNN accelerators exploration. Considering the vast

and increasing gap between the prohibitive complexity of

powerful DNN models and OA development speed, this frame-

work should perform automated exploration of OAs’ large

design space and generate the optimized designs satisfying

the target acceleration efficiency, without humans in the loop.

To sum up, both factors are indispensable to boost both OAs’

achieved acceleration performance and development speed. In

this paper, we present the first-of-its-kind framework dubbed

O-HAS that for the first time demonstrates automated optical

accelerator search.

III. THE PROPOSED O-HAS FRAMEWORK

To automatically search for the optimal hardware architec-

ture for a given DNN model, we first unify the taxonomy of

a generic optical accelerator architecture and specify the huge

search space, in order to ensure a wide applicability. After

that, we develop the O-HAS framework as illustrated in Fig.
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Fig. 4: An illustration of generic optical accelerator architectures.

Fig. 5: The optical convolution unit pipeline.

3. O-HAS integrates two enablers: 1) an O-Cost Predictor,

to accurately yet efficiently predict an optical accelerator’s

energy, latency (as well as throughput), and area costs based on

the DNN model parameters and the optical accelerator design;

and 2) an O-Search Engine, to automatically explore the large

design space of OAs and identify the optimal accelerators that

maximize the target user-defined acceleration efficiency.

A. Generic Optical DNN Accelerator

Overview. As shown in Fig. 4, a generic optical accelerator

includes an off-chip DRAM and a chip node, the latter of

which consists of multiple tiles connected via an on-chip

network. Each tile communicates with the others through

its router, and relies on a global buffer (GLB) and multiple

register files (RFs) to store and load the operands and interme-

diate results generated by the computation units. As the main

computation components, OCU, POOL, and ACTF units are

used for the convolution, pooling, and activation operations,

respectively. Convolutions during DNN inferences can be

computed by multiple OCUs connected through a shared

bus. For each OCU, one or multiple DAC(s) and ADC(s)

(depending on their sampling frequency) and electrical shift-

and-add (S+A) units are used for digital-analog conversion

and aggregation, respectively. In addition to the OCUs, POOL,

ACTV, S+A circuits, DACs and ADCs can also be potentially

implemented with optics, which are far from mature yet [14].

As such, We focus on OCUs in this paper and leave the other

components to future works.

Computing flow and pipeline. Different types of OAs have

different dataflows. For accelerators using R- and Z-OCUs,

after a DNN model is sufficiently trained, weight matrices of

various layers of the DNN will be pre-programmed into OCUs

by configuring the transmissivity of the resonators in each R-

OCU and the transmission phase angle of the phase shifters

in each Z-OCU. on the other hand, different from R- and Z-

OAs, the weight matrices of the DNN will not be stationed

in E-OCUs, with no local reuse. As illustrated in Fig. 5, for

an OA, inputs of a CONV layer are pre-fetched from off-chip

DRAMs and routed to available tiles and stored in their global

buffers. During inferences, the input pixels are tiled and feed

to OCUs’ register files from the global buffer. They will be

converted into optical signals via DAC(s) and electrical-optical

(E/O) conversion in OCUs (e.g., using optical transmitters

(TX) like LDs and MicroCombs). To collaboratively compute

convolutions, the accelerator controller steers OCUs producing

intermediate results in the form of electrical voltages via

optical-electrical (O/E) conversion in OCUs (e.g., using optical

receiver (RX) like PDs). The intermediate result voltages are

sampled and converted to digital values by ADCs. Digital

results are aggregated in register files and global buffers via

S+A operations, and sent to pooling and activation units to

generate layer outputs that will be buffered back to the global

buffer for processing the next layer. The computation continues

until the final result is produced. It is noteworthy that the

processing among multiple layers in one OCU will be executed

in a pipeline manner, while multiple OCUs are able to perform

in parallel to boost the throughput. Here we simplify the

pipeline and assume the number of cycles occupied by each

stage to be the same in Fig. 5, which actually depends on the

execution latency of each stage. A detailed latency analysis

will be presented in Section III-B.

Search space definition. Similar to Network Architecture

Search (NAS), an search space of optical hardware acceler-

ators is a prerequisite for accelerator architecture exploration

and optimization. However, it is challenging to specify such a

space for DNN optical accelerators due to their huge design

space. First, while the capabilities of optics to efficiently

perform linear convolutions have been widely explored, there

are numerous optical devices that can realize convolutions,

such as MRs, EOMs, and MZIs. Different devices have

their unique optical responses and characteristics, resulting in

distinct performance and hardware costs when being used to

build accelerators. Second, there are lots of ways to design

the accelerators’ micro-architectures, which are characterized

by the number of hierarchical memory (e.g., RF, GLB, and

DRAM) and computation units (e.g., tile, OCU, POOL, and

ACF), the size of each memory level, the type and size of

computation units (e.g., there are 3 types of OCUs for OAs),

and the NoC design [1]. Third, there are a lot of choices

for the algorithm-to-hardware mapping methods, i.e., how to

TABLE II: Generic optical DNN accelerator search space.

Memory Hierarchy Loop-order Loop-tiling

Register File (RF)
√ √

Global Buffer (GLB)
√ √

DRAM
√

–

Computation Type # of units Size of units Perip. # of Tile

OCU
√ √ √

Tile
√
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Fig. 6: The proposed O-Cost Predictor.

temporally and spatially schedule all the operations in DNNs

to be executed in the target accelerators, with fine-grained

consideration for the loop order of the memory hierarchy as

well as MAC tiling and scheduling.

We extract a search space for generic optical DNN acceler-

ators in Tab. II by leveraging the nested for-loop accelerator

description. Here the descriptions of the loop-order and loop

tiling within each memory level are referred to [15], which

aims to maximize local data reuses for optimal memory

access performance and minimal data access cost. A similar

methodology is utilized in our O-Search Engine. In addition,

different types of OCUs will occupy distinct chip areas and

consume different time/energy costs, and there are numerous

choices for the sizes and numbers of OCUs.

B. The O-Cost Predictor

Based on the generic OA architecture space presented

above, we then develop an O-Cost Predictor as shown in Fig.

6 to evaluate the latency (as well as throughput), the energy

consumption, and the area cost of an given optical DNN

accelerator, by jointly considering algorithmic (e.g., DNN

parameters including the height and weight of input and output

feature maps, kernels, input and output channels), architectural

(e.g., the number of tiles, the type, number and size of OCUs,

the size of RFs and GLBs), and mapping level (e.g., loop-order

of memory hierarchy, MAC tiling and scheduling) parameters.

Energy. Modern DNNs usually consist of a cascade of

multiple convolution (CONV), fully-connected (FC), pooling,

normalization, and activation function layers, through which

the inputs are progressively processed. In this paper, we focus

on the energy consumed by convolutions as it is the major

contributor to the total energy consumption. Given a DNN

model that contains J CONV/FC layers, the overall energy

consumption can be modeled as:

E =
J

∑
i=1

E i
mem +E i

comp (1)

where E i
mem and E i

comp are the energy costs of data access and

data computation in the i-th CONV/FC layer, respectively. An

FC layer’s energy cost can be similarly modelled.

Different types of OCUs will result in distinct hardware

costs in energy, latency, and area. In this section, we take R-

OCUs as an example due to the space limit, the principle of

which can be applied to modeling E- and Z-OCUs. Parameters

used in our Predictor are listed in Tab. III.

TABLE III: Parameters used in the O-Cost Predictor.
DNN Params Description

Ci/Di input/output channel in the i-th layer

Hi/Wi input feature map height/weight in the i-th layer

Zi/Si filter height (= weight)/stride in the i-th layer

Ei/Fi output feature map height/weight in the i-th layer

OA Params Description

Kt , K
Ty
OCU # of tiles in one accelerator; # of OCUs in one tile

Ty Type of OCUs in one tile (Type R, E, Z in this paper)

eRF
read /eRF

wrt the unit energy of the register file read/write

eGLB
read /eGLB

wrt the unit energy of the global buffer read/write

eD
read /eD

wrt the unit energy of the DRAM read/write

lRF , lGLB the absolute hit latency of register file and global buffer access

lDRAM the absolute hit latency of the DRAM access

QRF , QGLB the size of the register file and global buffer

QDRAM # of data transferred from the off-chip DRAM

eT X , eRX the unit energy of the optical transmitter and receiver

eR the unit energy per symbol of a MR (w/ multi-bit capacity)

etune the unit tuning energy of a MR

eD/A, eA/D the unit energy of the D/A and A/D conversion

eS+A the unit energy of the Shift-and-Add circuits

RR the symbol rate of a MR

Nb, B # of MRs for mapping one weight; # of bits per weight

N ×N, aR the size of an OCU; the area of a R-OCU

aRF /aGLB the unit area of the register file and global buffer

Data Access Energy: As kernel weights stay stationary in

one or multiple R-OCU(s), the data access energy of one

layer is composed of the data movement energy of the input

pixels, intermediate results (Psums), and output pixels. Their

access energy is proportional to the unit energy per data access

and the total number of data accesses. Each input is pre-read

from the GLB in the tile to the RF in the OCU, and then

modulated into different wavelengths via DAC(s) and TX(s)

for computation. If all the weights in one layer is mapped

onto a N ×N OCU, Psums are only written to and read from

its RF, of which the energy per Psum access can be denoted

as (eRF
read + eRF

wrt ). Otherwise, if one layer is large and needs to

be mapped onto multiple OCUs, Psums will also be accessed

from the GLB in addition to the RFs, for which the energy

per Psum access can be denoted as (eGLB
read +eGLB

wrt ). The output

write energy of this layer is proportional to the number of

outputs written into the GLB (i.e., EiFiDi) and the energy per

output write (i.e., eGLB
wrt ).

E i
mem =



























(eGLB
read + eRF

read)EiFiZ
2
i CidDiNb

N e+ (Einput)

(eRF
read + eRF

wrt)EiFiDiNbd Z2
i Ci

N e+ (ERF
Psum)

(eGLB
read + eGLB

wrt )EiFiDiNb×
dd Z2

i Ci

N edDiNb

N e/(KtK
Ty
OCU )−1e+ (EGLB

Psum)
eGLB

wrt EiFiDi (Eout put)

(2)

Data Computation Energy: The data computation energy of

one layer consists of the energy consumed by the D/A and

A/D conversions, E/O and O/E conversions using TXs and

RXs, MAC, local tuning, and S+A operations, i.e.,:

E i
comp =











(eD/A + eT X )EiFiZ
2
i CidDiNb

N e+ (ED/A)

(eR + etune)EiFiDiNbZ2
i Ci+ (EMAC)

(eRX + eA/D + eS+A)EiFiDiNbd Z2
i Ci

N e (EA/D)

(3)
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Latency and Throughput. Considering that the accel-

erators can operate in a layer-wise pipeline manner with

fine-grained balanced pipeline as shown in Fig. 5, the OA

throughput and the latency can be modeled as (4):

T = #MACs
max(L1,L2,...,LJ)

& Li = max(Li
mem,L

i
comp) (4)

where Li
mem and Li

comp denote the data access latency and data

computation latency of the i-th layer, respectively.

Data Access Latency: The total access time for the RF, GLB

and DRAM can be modeled as (5). Given the size of RF and

GLB, each access is either a hit or a miss. Considering the

three-level memory hierarchy in this paper, we can calculate

the average data access time as the sum of the time spent

in hits and that spend on misses. We calculate the absolute

hit rate as the fraction of all accesses that hit in this level of

memory. Therefore, assumed that the requirements for RF and

GLB access to generate one 3D output pixel is respectively

QRF
req and QGLB

req , we can calculate the absolute hit rate for RF

and GLB accesses as (5), and thus obtain the total data access

time. Note that there are two contributors to GLB access. One

is from RF access misses, and the other is from Psums accesses

due to inter-OCU data movement.

Li
mem =EiFi







































lRF ·min(
QRF Kt K

Ty
OCU

QRF
req

, 1)+ LRF
Access

lGLB ·
(min(QGLB , QRF

req−QRF Kt K
Ty
OCU

)

QRF
req

+min(QGLBKt

QGLB
req

, 1)
)

+ LGLB
Access

lDRAM ·
(

min(QDRAM , QRF
req−QRF Kt K

Ty
OCU

−QGLBKt )

QRF
req

+

min(QDRAM , QGLB
req −QGLBKt )

QGLB
req

)

LDRAM
Access

(5)

Data Computation Latency: Every MR in a R-OCU achieves

a transmission rate of RR. Assuming that there are K
Ty
OCU

R-OCU(s) per tile and Kt tile(s) on-chip in total, it takes

d dZ2
i Ci/NedDiNb/Ne

Kt K
Ty
OCU

e time cycles to generate one 3D output pixel.

Thus, to generate EiFi 3D output pixels, the computation

latency can be formulated as follow:

Li
comp = EiFidd

Z2
i Ci

N
edDiNb

N
e/(KtK

Ty
OCU )e/RR (6)

Area Cost. We model the area cost of OAs by taking into

account the area for both the data access and convolution

computation:

A = aRF QRF KtK
Ty
OCU +aGLBQGLBKt +aRKtK

Ty
OCU

(7)

O-Cost Predictor Validation. We validate the accuracy

of the proposed O-Cost Predictor in energy and latency

prediction against two SOTA OAs (i.e., HolyLight [7] and

PIXEL [9]). In particular, we evaluated the O-Cost Predictor

on six DNNs (including LeNet-5, AlexNet, ZFNet, ResNet-18,

GoogLeNet, and VGG-16), and compare the predicted results

with the results obtained from HolyLight and PIXEL (which

are set as the ground truth values). We use a deep learning

accelerator simulator FODLAM [16] for HolyLight and an

in-house simulator for PIXEL. As shown in Fig. 7(a), the

energy prediction error between our Predictor and the ground

truth values in HolyLight are between 2% and 17%, and the

Prediction

Error 

(a) Energy prediction accuracy.

Prediction

Error 

(b) Latency prediction accuracy.

Fig. 7: The prediction accuracy of our O-Cost Predictor

against HolyLight and PIXEL, where the error boxplots show

the statistical distribution of the prediction errors (Error =

|VPred −VGT |/VGT , while VPred and VGT are our O-Cost Predic-

tor’s estimated value and the ground truth result, respectively).

differences between our Predictor and PIXEL are between 5%

and 7%. These errors are acceptable with an average of ∼8.5%

while supporting generic MR-based optical accelerators.

The latency prediction is much more complex than energy

estimation, as it is hard to accurately emulate the dataflow

and the pipeline control of accelerators. We adopt the same

dataflow and the pipeline strategy in HolyLight and validate

the latency model of the proposed O-Cost Predictor against

HolyLight and PIXEL. Fig. 7(b) shows the results. The latency

prediction error between our Predictor and the ground truth

values in HolyLight are between 9% and 23%, and the

differences between our Predictor and PIXEL are between 7%

and 14%, with a satisfactory average error of ∼12.5%.

C. The O-Search Engine

To realize a generic OA design search engine, our O-Search

Engine aims to solve the OA design parameter γ∗ that satisfies

γ∗ = argmin
γ

Lhw(NET,HW (γ)), (8)

where NET is the given DNN architecture and HW is the

OA design search space parameterized by γ , Lhw denotes the

resulting hardware cost for the NET and HW (γ) pair.

To achieve the optimal trade-off between the exploration

and exploitation during search, we reformulate Eq. (8) to the

following format:

γ∗ = argmin
γ

S

∑
i=1

Lhw(NET,HW (GS(γ1), · · · ,GS(γS))), (9)
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where γ i(i = 1, · · · ,S) is a normalized vector representing the

i-th OA design parameter, the j-th value of γ i represents the

probability of selecting the j-th choice to be the OA’s i-th

parameter, S is the total number of design parameters in the

OA design search space, GS(γ i) is the Gumbel-Softmax [17],

[18] sampling of the i-th parameter parameterized by γ i from

the OA design search space. In each update, we apply Gumbel-

Softmax to each searchable parameter in the OA design

search space and sample one OA design, and then evaluate

the hardware cost Lhw(NET,HW (GS(γ1), · · · ,GS(γS))) of the

sampled OA design using our proposed O-Cost Predictor in

Eq. III-B. After that, Lhw(NET,HW (GS(γ1), · · · ,GS(γS))) is

multiplied with the sampled GS(γ i), for i = 1, · · · ,S to relax

γ i(i = 1, · · · ,S) during backpropogation. In this manner, the

randomness of Gumbel-Softmax helps the exploration of the

whole search space while the relaxation of γ i(i = 1, · · · ,S)
helps the exploitation of the optimal OA design.

IV. PERFORMANCE EVALUATION

Benchmark DNNs and Datasets. We studied our O-HAS

framework on six DNNs including LeNet-5, AlexNet, ZFNet,

ResNet-18, GoogLeNet, and VGG-16. LeNet-5 was trained

with MNIST to classify simple handwritten digits, while the

rest were trained with ImageNet to recognize complex objects.

More details of the network topology are shown in Tab. IV.

Methodology. We build the O-Search Engine in PyTorch

for automated design space exploration, in which we use the

Adam [20] optimizer with a learning rate of 1×10−7, β1 = 0.5,

and β2 = 0.999. For each DNN benchmark, we obtained two

optimized OA designs using our O-Search Engine, subjecting

to the chip area constraint. These two designs, which are

referred to as OHAS-EA and OHAS-TEA in this paper,

prioritize high energy efficiency and throughput-per-Joule

performance, respectively. We then studied their accelerator

performance and inference performance for practical uses, by

comparing them against six SOTA OAs, including EOM [8],

SVD [6], FFT [12], HolyLight [7], PIXEL [9], and CrossLight

[10]).

Accelerator modeling. We use our O-Cost Predictor to

study the energy consumption, throughput, and area cost of

all the accelerators running different DNN models. For a fair

comparison, we are consistent in the parameters for the core

functional components used in all the accelerators. All the

parameters of the optical devices are generated based on a

130 nm SOI CMOS process, and the parameters of hierarchical

memories are obtained based on a commercial 28 nm process

technology. We model and adopt On-chip LDs from [21], MR

from [22], optical Splitter&MUX from [23], [24], PDs from

[22], S+A circuits from [9], 1-bit DAC from [7], ADC (8b,

TABLE IV: DNN benchmarks [7], [19].
Name Data Set Topology Total # MACs

LeNet-5 MNIST 3C,2P,2F 2.86E+05

AlexNet ImageNet 5C,3P,3F 7.15E+08

ZFNet ImageNet 5C,3P,2F 7.78E+08

ResNet-18 ImageNet 20C,2P,1F 1.82E+09

GoogLeNet ImageNet 57C,14P,1F 1.50E+09

VGG-16 ImageNet 13C,6P,3F 1.55E+10

10-2 10-1 100 101

1011

1012

1013

C
o

m
p

u
te

 D
e

n
s
it
y
 (

O
P

S
/m

m
2
)

Energy (J)

 

 

HolyLight
PIXEL
CrossLight
EOM

SVD

FFT

OHAS-EA

OHAS-TEA

A: 222.47×
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CD/E: 1.0× (SOTA)A: 0.31×

CD/E: 2.32×

A: 1.0× (SOTA)
CD/E: 0.24×

Fig. 8: Average performance comparison of our O-HAS with

the SOTA optical accelerators.

1.2GSps) from [25], Microcomb and optical spectral sharper

from [21], [8], EOM and On-chip SMF from [8], MZIs from

[6], [12], and other periphery circuits from [11], respectively.

Accelerator performance. Fig. 8 illustrates the average

performance of the generated OAs (OHAS-EA and OHAS-

TEA) and the SOTA OAs. We adopt a figure-of-merit, Com-

pute Density (CD), to describe OAs’ throughput efficiency in

OPS/mm2, similar to [4]. It shows that, among the six SOTA

OAs, FFT achieves the highest compute density resulting

from its excellent area efficiency, while HolyLight has the

maximum throughput-per-energy. Compared with the SOTA

OAs, OHAS-TEA improves the compute density by 1.86× and

the throughput-per-energy by 27.68× with an area cost similar

to HolyLight. Considering edge applications, which require

OAs to have low energy and area costs), we also generate

OHA-EA, which achieves minimized energy consumption and

chip area cost with satisfying throughput: further improves the

area efficiency by 69% and achieves a 2.32× improvement in

throughput-per-energy over SOTAs.

Fig. 9 illustrates the performance of these hardware plat-

forms on various DNN models, in terms of compute density,

energy consumption, and throughput-per-energy. We can see

that the performance of the OAs varies on different DNN

modes and for the same DNN, different OA designs have

distinct performance, from which we make three observations.

First, our OHAS-TEA and OHAS-EA consistently outperform

the SOTAs with greatly improved compute density and re-

duced energy cost. Second, using analog computing, MZI-

based OAs (i.e., SVD and FFT) in general achieve higher

compute density. However, this advantage degrades on large

DNNs due to their limited scalability. The computation re-

liability decreases as the size of MZI-based OAs increases,

which will largely reduce the inference accuracy. Third, MR-

based OAs excel in energy efficiency, e.g., HolyLight better

favors large DNNs against PIXEL and CrossLight because it

occupies the largest chip area (being composed of 28 tiles

with 8 OCUs in each tile). Although EOM shows limited

performance advantages over the others, it proposes a brand-

new and promising wavelength-temporal-spatial interleaving

methodology for OA design.

Inference performance. The DNN inference performance

comparison of various accelerators is shown in Figure 10.

Our OHAS-TEA achieves both the highest frame-per-second

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 31,2022 at 22:36:26 UTC from IEEE Xplore.  Restrictions apply. 





REFERENCES

[1] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138,
2016.

[2] Y. Zhao, X. Chen, Y. Wang, C. Li, H. You, Y. Fu, Y. Xie, Z. Wang, and
Y. Lin, “Smartexchange: Trading higher-cost memory storage/access for
lower-cost computation,” 2020.

[3] W. Li, P. Xu, Y. Zhao, H. Li, Y. Xie, and Y. Lin, “Timely: Pushing data
movements and interfaces in pim accelerators towards local and in time
domain,” in 2020 ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA), 2020, pp. 832–845.

[4] M. A. Nahmias, T. F. De Lima, A. N. Tait, H.-T. Peng, B. J. Shastri,
and P. R. Prucnal, “Photonic multiply-accumulate operations for neural
networks,” IEEE Journal of Selected Topics in Quantum Electronics,
vol. 26, no. 1, pp. 1–18, 2019.

[5] B. J. Shastri, A. N. Tait, T. F. de Lima, W. H. Pernice, H. Bhaskaran,
C. D. Wright, and P. R. Prucnal, “Photonics for artificial intelligence
and neuromorphic computing,” Nature Photonics, vol. 15, no. 2, pp.
102–114, 2021.

[6] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al., “Deep
learning with coherent nanophotonic circuits,” Nature Photonics, vol. 11,
no. 7, p. 441, 2017.

[7] W. Liu, W. Liu, Y. Ye, Q. Lou, Y. Xie, and L. Jiang, “Holylight: A
nanophotonic accelerator for deep learning in data centers,” in 2019

Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2019, pp. 1483–1488.

[8] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T.
Chu, B. E. Little, D. G. Hicks, R. Morandotti et al., “11 tops photonic
convolutional accelerator for optical neural networks,” Nature, vol. 589,
no. 7840, pp. 44–51, 2021.

[9] K. Shiflett, D. Wright, A. Karanth, and A. Louri, “Pixel: Photonic neural
network accelerator,” in 2020 IEEE International Symposium on High

Performance Computer Architecture (HPCA). IEEE, 2020, pp. 474–
487.

[10] F. Sunny, A. Mirza, M. Nikdast, and S. Pasricha, “Crosslight: A cross-
layer optimized silicon photonic neural network accelerator,” 2021.

[11] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[12] J. Gu, Z. Zhao, C. Feng, Z. Ying, M. Liu, R. T. Chen, and D. Z.
Pan, “Towards hardware-efficient optical neural networks: Beyond fft
architecture via joint learnability,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2020.

[13] J. Gu, C. Feng, Z. Zhao, Z. Ying, M. Liu, R. T. Chen, and D. Z. Pan,
“Squeezelight: Towards scalable optical neural networks with multi-
operand ring resonators.”

[14] G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić,
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