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Abstract

More than 30 years ago, synergistic effects of the interaction between evolutionary biology
and physiology gave rise to the field of evolutionary physiology. This caused comparative
physiologists to improve their research methods by incorporating evolutionary thinking.
Simultaneously, evolutionary biologists began focusing more on physiological mechanisms
that may help to explain constraints on and trade-offs during microevolutionary processes,
as well as macroevolutionary patterns in physiological diversity. Here we argue that
evolutionary physiology has yet to reach its full potential, and propose new avenues that
may lead to unexpected advances. Viewing physiological adaptations in wild animals as
potential solutions to human diseases offers enormous possibilities for biomedicine. New
evidence of epigenetic inheritance that regulates physiological traits may also arise in
coming years, which would represent an overlooked enhancer of natural selection to explain
physiological evolution. Synergistic interactions at these intersections and other areas will

lead to a novel understanding of organismal biology.



49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Enhanced Abstract

Background

More than 30 years ago, synergistic effects of the interaction between evolutionary biology
and physiology gave rise to the new field of evolutionary physiology. Explanations for how
organisms work do not require knowledge of their evolutionary origin nor of ecological
circumstances that cause ongoing natural or sexual selection, but it was realized that
considering these factors provided a more integrative view of organismal biology. This
view caused comparative and ecological physiologists to improve their research methods
by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began
focusing more on physiological mechanisms that may help to explain constraints on and
trade-offs during microevolutionary processes, as well as macroevolutionary patterns in
physiological diversity. This cross-fertilization resulted in the development and wide
application of phylogenetic comparative analyses that allowed separation of the effects of
common ancestry from recent adaptation. Selection experiments elucidated diverse
pathways of physiological evolution that were then traced to genetic variants. The
genetic/genomic revolution also fostered studies of the molecular basis of physiological
variation and evolutionary adaptation in natural populaitons of a wide range of organisms,

including humans.

Advances

We briefly review the significant progress that has occurred as a consequence of
reciprocal illumination between evolutionary biology and physiology since the advent of
evolutionary physiology three decades ago. Evolutionary biology has led physiology back
to its original aim of providing a comprehensive view of organismal function and human
pathology, by providing a rigorous framework within which to conduct comparisons among

species. The study of wild animals beyond traditional laboratory models has revealed
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performance in many physiological processes superior to humans, which has facilitated
the understanding of the synthesis of biologically active compounds, including peptide-
processing enzymes and estrogens for medical purposes. This has also inspired new
strategies for combating various disorders and conditions, such as porphyrias, macular
degeneration, aging, and tissue loss. Studies on wild animals have informed our
understanding of the endogenous contraints limiting physiological adaptation to the
environment. At the same time, physiology has shown potential to explain both the
evolutionary origin of particular traits, such as honest communication mechanisms, and
the process of genetic adaptation, which directly depends on physiological variation.
Physiological explanations of adaptations are exemplified by experiments on birds, where
fluctuating environmental factors have been shown to induce epigenetic modifications in
genes of cysteine metabolism, in their expression, and in the production of associated
pigments that affect the external body appearance. These changes have been proven
physiologically adaptive as they offer protection from environmental stressors, and the
associated changes in pigmentation are open to sexual selection. These types of studies
reveal a nexus between environment, physiology and evolution. In fact, advances in the
molecular basis of epigenetic modifications have revealed these as a source of phenotypic
plasticity in multiple organisms, underpinning previously unsuspected mechanisms of

physiological adaptation to the environment.

Outlook

Notwithstanding its many successes, we argue that evolutionary physiology has yet to
reach its full potential. Here we propose new avenues that may lead to unexpected
advances in this field. Viewing physiological adaptations in wild, non-model species of
animals as potential solutions to human diseases offers enormous possibilities for

biomedicine, and may lead to novel perceptions of the human condition. New evidence of
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environmentally induced transgenerational epigenetic inheritance that regulates
physiological traits may also arise in coming years, which would represent an overlooked
enhancer of natural selection to explain physiological evolution. Synergistic interactions at
these intersections and other areas will lead to a novel understanding of organismal

biology.

Introduction

Since the first appearances of an identifiable field of evolutionary physiology more
than three decades ago (1, 2), both evolutionary biology and physiology have benefited.
Evolutionary biology has provided physiology with such tools as phylogenetic analyses
(3), selection experiments (4), and genetic/genomic analyses (e.g., (6—7)). Atthe same
time, physiology and biochemistry have enhanced knowledge of the functional
mechanisms that underlie various evolutionary processes and phenomena, including
epigenetic inheritance, adaptation, allometric relationships, trade-offs, constraints, and
convergence (8-13). We believe, however, that evolutionary physiology, as originally
outlined (74—16), has yet to reach its full potential. We provide a brief perspective on the
field, from the outlook of vertebrate biologists, with the goal of pointing the way towards its
enhancement and maturation. We would also direct readers to other papers that provide
partial reviews of evolutionary physiology and discussions of future directions (7, 17-24).

Evolutionary physiology sits at the intersection of evolution, ecology, and
organismal biology (Figure 1). Most generally, physiology is the study of how organisms
work. (We include within "physiology" such related areas of biochemistry, neurobiology,
endocrinology, functional morphology, and biomechanics.) Elucidating the mechanisms
that underpin organismal function does not require an explanation for their origin, nor does
it require an understanding of why these mechanisms continue to be favored (or become

disfavored) by ongoing natural or sexual selection in the wild, as dictated by ecological



127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

circumstances (e.g., see (25-27)). Rather, understanding the origin and maintenance of
traits and characteristics at all levels of biological organization is the provenance of
evolutionary biology. Understanding the evolution of physiological mechanisms equals
understanding their causes at both proximate and ultimate levels (25), which promotes
comprehension of factors that facilitate and constrain evolutionary processes (e.g., see
(27-31)), as well as the causes of and solutions to human pathologies (32, 33). The
influence of rigorous evolutionary thinking on physiology has resulted in the rise of
evolutionary medicine (34, 35), but it has also led to more sophisticated analyses and
approaches in non-medical physiology.

We believe that the aims and scope of evolutionary physiology should now be
revisited to explore new possibilities derived from the synergy between evolutionary
biology and physiology. We first highlight three now-familiar approaches in modern
evolutionary physiology, none of which were common three decades ago. We then
provide some examples illustrating how evolutionary thinking has influenced physiology
and vice versa, and in so doing we propose new avenues that may lead to unexpected

advances in both disciplines.

Three well-established approaches

Phylogenetically informed comparative studies

Of the various tools that evolutionary physiology has adopted from evolutionary
biology, none has had a greater impact than the use of phylogenetic comparative methods
(36). These approaches were in rapid development when comparative and ecological
physiologists were first encouraged to take advantage of them (e.g., (15, 37—42)).
Formalized procedures for phylogenetically based statistical analyses (36, 43, 44) have

caused a mini-revolution in evolutionary biology, and this has been reflected in



153  comparative physiology (3, 45). Phylogenetically informed analyses have improved, for
154  example, the understanding of aging mechanisms in animals (46, 47), the evolution of
155 endothermy (48) and of diving (49), and the diversity of photosynthesis types in plants
156  (50).

157

158  Selection experiments and experimental evolution

159 Moving from macroevolutionary to microevolutionary analyses, selection

160  experiments and experimental evolution in both laboratory and field settings have

161  provided unique insights regarding adaption, coadaptation, and the genetic/genomic

162  mechanisms of evolutionary change (4, 571, 52). For example, Lenski and colleagues had
163  maintained 12 populations of E. coli in the laboratory for more than 25 years and 60,000
164  generations (63, 54). Among various results, they discovered a trade-off between growth
165 on glucose and acetate involving two metabolic "ecotypes" that can stably coexist. Each
166  ecotype has a competitive advantage when rare, which it loses when it becomes more
167 common.

168 As a vertebrate example, Garland and colleagues began replicated artificial

169  selection for voluntary exercise behavior in laboratory house mice in 1993, and the

170  experiment has now proceeded for more than 90 generations. Numerous correlated

171  responses have been documented at the levels of both motivation for physical activity and
172 ability to sustain aerobic exercise, including increased endurance and maximal oxygen
173 consumption during forced exercise, changes in muscle size and fiber type composition,
174  skeletal alterations, endocrine changes, and brain changes (55-59).

175

176  Evolutionary genetics and genomics

177 The low cost of sequencing has led to a genetic and genomic revolution that has

178  found its way into all approaches and areas of biology, including selection experiments
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and experimental evolution (60-62), the study of adaptation in natural populations (63—
67), and the study of human morphological and physiological evolution (68, 69). As one
example, the Kkillifish, Fundulus heteroclitus, has been a subject of studies in evolutionary
genetics, biochemistry, and physiology since the late 1970s (e.g., see references in (15,
70)). Overall, decades of studies have led to the conclusion that evolutionary adaptation
related to the glycolytic enzyme lactate dehydrogenase B has involved small changes in
the allele frequencies of many genes, and these changes are manifest at the levels of
transcription, biochemistry, metabolism, osmoregulation, and whole-organism physiology

(71).

Evolutionary biology influences physiology

Non-model species widen knowledge in animal physiology

Traditionally, and justifiably, physiology has focused on human beings to find
solutions to disease and other pathological conditions (72). However, given the difficulty,
cost, and ethical issues involved with conducting human studies, the use of "animal
models" to elucidate aspects of human physiology became widespread. Although other
animal models are available for particular physiological processes (e.g., (73)), the house
mouse Mus musculus is by far the most common animal model in physiology, as it is in
most biological sciences.

Early studies in comparative physiology recognized that the neglect of among-
species comparisons was retarding the progress of physiology and pathology (74), but still
usually had elucidation of human physiology as the ultimate goal. And comparative
physiology has a long history of contributions to basic physiology, including relevance to
humans (33, 75). For example, Mathew Kluger’s studies of thermoregulation and

behavioral fever in lizards (76—78) and Fred White’s studies of acid-base balance during
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hypothermia in reptiles (references in (15)) have affected the way physicians view and
treat human patients.

Although the majority of animal physiological research has at least an implicit focus
on human beings, evolutionary biology addresses all biological diversity. Therefore, by
not limiting studies to humans, mice, and other laboratory animals, evolutionary biology
necessarily considers physiological systems different from those represented by traditional
animal models. This represents an opportunity to widen the general knowledge on animal
physiology, and to find unsuspected ways to treat human pathology that could not be
approached with traditional animal models (e.g., see (33, 79, 80)). Beyond species that
produce substances such as venoms that are useful for the preparation of drugs (87),
many wild non-model species present physiological processes that are similar to those of
humans, and sometimes have superior performance. We refer to species whose
maintenance and breeding in captivity are not as easily achievable as in laboratory
animals. Such species represent a great potential to offer solutions to human pathology.

Examples include many species of frogs that store in the skin an extraordinary
diversity of biologically active peptides at high concentrations, many of which have
mammalian counterparts, thus representing a source for discovering new hormones,
neuropeptides, and peptide-processing enzymes that might not be as readily found with
conventional animal models (82). Several species of songbirds and teleost fishes have
unusually high levels of aromatase activity that make them interesting models to
understand the mechanisms of estrogen synthesis (83). Wild rodent species have been
proposed as a resource for research on immunity and infection, given their high genetic
diversity and environmental pressures to which they are exposed as compared with
laboratory rodents (84). In 1971, it was found that fox squirrels Sciurus niger accumulate
large amounts of the pigment uroporphyrin | in internal organs and the skin due a very low

activity of the enzyme uroporphyrinogen Il synthase in different tissues under healthy
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conditions (85). In humans, congenital erythropoietic porphyria is caused by a defect in
uroporphyrinogen lll synthase that leads to a similar low enzymatic activity and
uroporphyrin | overproduction, which allowed researchers to propose the fox squirrel as an
animal model for this disease (86). The Honduran white bat (Ectophylla alba) has recently
been reported as the first mammal that has evolved the physiological capacity to esterify
and deposit high amounts of carotenoid pigments in the skin, thus constituting a model
that may help to improve the assimilation of carotenoids in humans and avoid macular
degeneration (87). The study of all these species was not primarily motivated by
physiological questions. Instead, these studies were started by researchers investigating
evolutionary and ecological aspects of these species (e.g., (88)), and interest in
physiology arose later.

Non-model species have also contributed to our understanding of the process of
aging. How animals age is determined by the failures of physiological processes.
Understanding why different physiological processes fail faster or slower in different
organisms can bring insight to the evolution of cellular protection and repair processes, as
well as the evolution of life histories (89, 90). For example, a comparison across 18
rodents species with lifespan ranging from two (mice) to 30 years (beavers) determined
that the ability to repair double-strand breaks in DNA (via SIRTG6) is a tight correlate of long
lifespan (97). Although humans express IGF2 at high levels as adults (92), biomedical
rodent models do not (93, 94), resulting in this hormone being understudied in the context
of senescence. Recent studies demonstrate that reptiles and birds express IGF2 at high
levels in adulthood (95, 96), similar to humans, providing new model systems to study the
physiological effects of this hormone.

Many non-model species exhibit regenerative abilities that are coveted by the
biomedical community (97, 98). Within vertebrates, there is considerable diversity in the

degree to which a species can regenerate tissue and which types of tissues can be
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regenerated (99), with a clear phylogenetic signal of reduced regenerative abilities moving
from fish and amphibians to amniotes and then to mammals. Some species of fish and
amphibians have incredible regenerative capacities, including whole limbs (97, 100-102),
eyes (7103), and internal organs (104, 105). In newts, for example, after the complete
removal of the lens from the eye, the lens can be de novo regenerated from the dorsal iris
cells that can undergo a dedifferentiation process (706). Within reptiles the regenerative
diversity is more restricted, the best known example being tail regeneration in many lizard
species that is associated with autotomy as an anti-predator defense, but brain tissue and
optic nerve regeneration has also been demonstrated in lizards (707). Snakes, which are
derived from lizards, have lost the ability to regenerate their tails, but some have rapid
organ regeneration. For example, pythons may go months without feeding, during which
time their digestive organs regress in size. Within hours to days of refeeding, the intestine
regenerate thorough hyperplasia and hypertrophy to accommodate the physiological
demands of processing the meal (708-770). In contrast, significant regeneration in adult
mammals is largely restricted to the liver (777) and antler regeneration in deer (112),
whereas other types of limb loss and tissue damage typically result in scarring.
Comparative studies across these non-model species have begun to illuminate common
factors in exceptional regenerative abilities, including the maintenance of juvenile
physiology or the ability to reactivate an embryonic cellular program, and the need for the
regenerating tissues to “hide” from the immune system similar to cancerous tumors (7713—
115).

Examples like those described in the previous paragraphs, with an identified
potential to provide solutions to specific human health issues, do not abound in the
literature. Furthermore, the utility of these cited systems to widen general physiological
knowledge is only beginning to be considered, and only in some cases (7176). A

remarkable example is the fox squirrel mentioned above, which was was proposed as a
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model for human congenital erythropoietic porphyria in the 1970s, with a great potential to
provide insights into physiological mechanisms that avoid the toxicity of porphyrin
accumulation (85, 86), a proposal that has been overlooked. The use of physiological
systems represented in wild, non-model species of animals studied by evolutionary
biologists certainly remains an underexplored and promising area for physiologists,
especially given that model and non-model species may differ in systematic ways (7117),

although this may often require the development of new tools (e.g., see (118, 1719)).

Physiological characteristics affect the capacity for physiological adaptation

The concept of adaptation is central to biology, but the term is used in two distinct
ways (7120-122). First, "evolutionary adaptation" refers to cross-generational changes in
the allele frequencies of populations in response to natural selection. Second,
"physiological adaptation" refers to changes that occur within individuals in response to
external (or internal) stimuli and that lead to homeostasis and/or improved abilities to
perform various tasks and/or improved Darwinian fithess (the beneficial acclimation
hypothesis: (723-125)). Some capacity for physiological adaptation is, of course,
adaptive in an evolutionary sense. In any case, the mechanistic basis of all evolutionary
adaptation is necessarily physiological at some level (126).

Evolutionary studies that include examination of physiological adaptation illustrate
the potential to discover the mechanisms by which organisms cope with fluctuating
environments as well as directional climate change (e.g., (127-129)). In 16 species of
birds inhabiting Chernobyl, for example, physiological adaptation occurs in the systemic
levels of the master cellular antioxidant (glutathione, GSH) and in the capacity to avoid
DNA damage as a response to exposure to ionizing radiation, which generates oxidative
stress (130). The degree of this adaptation, however, depends at least in part on the

amount of the pigment pheomelanin that birds produce in their plumage, as pheomelanin
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synthesis consumes cysteine (a constitutive amino acid of GSH), produces free radicals
upon radiation exposure, and may thus cause chronic oxidative stress (730). Although
these studies do not demonstrate the exact mechanism by which physiological adaptation
in response to ionizing radiation occurs, they do clearly show that antioxidant-demanding
processes, such as pheomelanin synthesis, can be constraining factors in physiological
adaptation.

The foregoing avian example illustrates that some characteristics of organisms limit
their ability for physiological adaptation. For instance, as in many other organisms, the
production of heat-shock proteins is a common response of notothenioid fishes against
thermal stress, as this allows restoration of heat-denatured proteins (737). The activation
of this stress response requires modulating the expression of genes that regulate heat-
shock protein production in a temperature-dependent manner. However, some species
with an evolutionary thermal history that has not favored phenotypic plasticity for
temperature-mediated gene expression are limited in their ability to acclimate to increased
temperatures (732).

Similarly, the exposure of birds and mammals to hypoxia activates changes in the
expression of some genes that affect Oz transport and erythropoiesis, but the performance
of this physiological adaptation depends on whether the animals are previously
acclimatized to living at low or high altitudes (733). Also, the capacity of melanins to
absorb solar radiation means that the pigmentation pattern of animals partly determines
their ability to cope with thermal stress; thus, darker birds may be somewhat limited from
occupying environments with high temperatures (734). These sorts of characteristics of
organisms can be viewed as endogenous constraints and they exemplify how the
evolution of certain traits helps explain the capacity of animals to achieve physiological
adaptation to the environments where they live, both in terms of phenotypic plasticity and

cross-generational genetic changes (71, 120, 135). Detailed investigations of the
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mechanisms that facilitate or constrain the ability for physiological adaptation are an
exciting future direction for evolutionary physiology and may also facilitate finding

solutions to diseases related to allostatic load (736).

Physiology informs evolutionary biology

The evolution of honest signals has a physiological basis

Biological communication is mainly driven by signals, traits that evolve because of
the benefits obtained by their recipients (737). When signals can allow the Darwinian
fithess (reproductive success) of their recipients to improve, they are considered "honest."
This appears to be the case for most biological traits that fulfill a signaling role (7138).
Signal honesty is closely related to the concept of individual quality. As stated in the
handicap principle, a cornerstone of behavioral ecology, ethe production of large
(expensive) signals is limited to high-quality signalers because low-quality ones cannot
afford the costs derived from signal production (739). However, this explanation has been
challenged in recent years because costs for low-quality individuals are frequently not
found in empirical studies, and, indeed, natural selection is not expected to favor the
evolution of signals when it implies incurring substantive costs (740, 1471). As a
consequence, the existence of costs predicted by the handicap principle is not fully
accepted by evolutionary biology, which currently lacks an integrated approach to explain
the concept of individual quality and the evolution of honesty.

Recent physiological experiments on the classical honest signaling system of the
black bib of male house sparrows (Passer domesticus) illustrate the possibility that costs
are not necessary to explain why low-quality individuals do not develop high-quality
signals (i.e., large bibs). Large bibs are associated with low amounts of the pigment

pheomelanin in their constitutive feathers, which allows researchers to experimentally
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create physiological conditions that favor the production of small or large bibs by exposing
birds to substances that act as inhibitors or enhancers of pheomelanin synthesis (742,
143). Despite these induced physiological conditions, the resulting phenotype could be
manipulated in high-quality birds (i.e., those with largest bibs initially) only. A physiological
mechanism may therefore exist in low-quality individuals that makes them less sensitive to
environmental factors than high-quality individuals, which prevents low-quality individuals
from producing high-quality signals even if they took the "decision" to do so or if
environmental conditions favored the production of large signals (142, 143).

The experiments on the signaling system of male house sparrows exemplify how
the details of the machinery controling the expression of signals can explain their honesty
without the costs predicted by the handicap principle. Although specific to visual traits
whose production is mediated by the synthesis of melanin pigments, these experiments
show that the evolution of honesty can have a physiological basis. Similar studies on the
physiological basis of trait production in other honest signaling systems, including those in
humans (744), may provide a more general concept of individual quality and consequently

represent a new understanding of this aspect of biological communication.

Elucidating the physiological underpinnings of evolutionary adaptations

Evolutionary physiology can play a fundamental role in identifying the mechanisms
by which adaptations arise (e.g., see (8, 15, 16, 31, 67, 71, 120, 126, 145-147)). As
evolutionary adaptations directly depend on physiology, physiology has the potential to
provide a conjectural background to understand them (e.g., see (748, 149)). Examples of
this include simple economical ideas applied to understand the evolution of pigmentation
phenotypes (750) and theories of sensory cue integration helping to understand the

evolution of perception capacity (157).
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Research methods in physiology have always strongly relied on experimental
manipulations of biological processes (152) and the advent of molecular tools, such as
CRISPR, allow manipulations at the level of the genome to prove physiological
mechanisms. Although evolutionary adaptations have been linked to specific genes in a
growing number of cases (e.g., (9, 64, 1563—156)), typically these genes fit in to molecular
networks—interactions among genes, proteins, and RNAs that are coordinated within the
cell—to regulate physiological outcomes. Selection acting on a larger network makes it
much harder to detect effects on particular loci because the impact can be shared across
loci with relatively small effect, and the probability of pleiotropic effects is high in a
network. Moreover, the experimental manipulation of multiple genes concurrently to
understand their physiological effects is much more difficult than changing single genes.

Rather than attempting to manipulate genes directly, selection experiments focused
at behavioral or other whole-organism levels can be used to understand how evolution
can bring about adaptations through shaping of a molecular network. Dog are a great
example, having been under artificial selection for thousands of years, resulting in breeds
defined by form, function, and behavior (757). The evolutionary response to selection that
targeted growth, strength, and body size has involved the insulin and insulin-like signaling
(IIS) network (758, 159). This molecular network integrates over 100 genes, and this
network has been studied extensively for its pleiotropic effects on both early (growth and
reproduction) and late life (rate of aging) traits in various model organisms (160, 1617).
Selection has sorted alleles by dog breed for at least seven loci, and most of these genes
are in or related to the 1IS network (759). The allelic variation at these seven loci explains
over 50% of the variation in body size among breeds. Together, in the context of the
function of the 1IS network on the cellular and organismal physiology, the alleles in the

small-bodied breeds (e.g. Chihuahua) reduce the cellular signaling through IIS network
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resulting in the correlated phenotypes of small body, small litters, and longer lifespans
relative to the larger breeds (e.g. Mastiff) (1568, 159, 162, 163).

Sensory systems also provide clear illustrations of how physiological knowledge
helps us to understand evolutionary adaptations (see also examples in (8)). In the most
general sense, the sensory perception of organisms depends on their physiological
allocation to the systems involved. This physiological allocation differs among species
and even individuals, but this does not mean that perceived objects are only the product of
neuronal activity nor that the brain produces realistic models without capturing reality itself.
The chromatic experience of animals, for example, is not only a type of neural state or
process, but also reflects to a large degree the color of the objects being perceived as a
physical attribute of these objects. Color perception is thus the combination of an
objective and a subjective experience, the former greatly influencing the
ecological/evolutionary implications of perceiving the color of given objects (764). Color
interpretation in some evolutionary studies has been made in a way that gives much
weight to the subjective component of color perception (e.g., 'Color is not an inherent
property of the object; it is a product of the brain of the animal perceiving the object',
(7695)), but it must be remembered that color is also a physical attribute of the objects.
Considering the objective component of color perception may be useful in interspecific
comparisons of animal coloration, and thus provide clues into the adaptiveness of color
traits. Indeed, human vision can detect much of the variation in bird coloration in the
visible range and also provide a valid proxy for avian perception of such color traits as
sexual dichromatism (766, 167), suggesting that considering color exclusively as a neural
state may be an incomplete view. That color resides in both the objects being perceived
and in the brain of the perceiving animals is known in neuroscience since the 1990s,

notably through the work of Francisco J. Varela and others (7164, 168). Considering this
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theoretical background of sensory physiology may therefore help in gaining a deeper

insight into the adaptive value of color phenotypes.

The role of epigenetics in physiological and evolutionary adaptation

Use of the term "epigenetic" has changed over time, but currently it usually refers to
chemical modifications on the DNA, RNA, or associated proteins that regulate the genome
(and the expression of genes), without changes in the DNA sequence (169, 770). In the
last 30 years, the molecular basis for how epigenetic modifications can result in
phenotypic plasticity has been revealed in different organisms (777-173). Such
epigenetic plasticity can be induced by environmental factors, and such alterations have
been identified as important mechanisms underlying physiological adaptation of
organisms to a diversity of environments (174, 175). Epigenetic plasticity thus acts as a
potential enhancer of physiological adaptation. Examples of this are studies of teleost fish
where a concerted role for DNA methylation and histone modifications induced by
hypoxia, thermal stress, osmotic challenges, and starvation has been shown to regulate
the expression of genes involved in, respectively, apoptosis, folate metabolism, osmotic
stress transcription factors and autophagy (776). Such changes may facilitate
physiological adaptations to environmental conditions and, in some cases, also affect
external phenotypic traits on which selection can act (for another example, see Box 1).

If the epigenetic plasticity is inherited, this may provide an additional, accelerated
pathway for evolutionary adaptation (7177, 178). For example, the response to hypoxia
involves epigenetic modifications to open the chromatin at regulatory elements to allow
transcription of genes, such as EPAS1 (779). A change in the timing of this chromatin
opening during the hypoxia response appears be part of the adaptive response to hypoxia

in Tibetan relative to Han human populations (179).
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Epigenetics modifications can be transmitted across generations and be important
component of preparing the next generation for the parental environment. In these cases
of "epigenetic inheritance,” the modifications that occur in reponse to environmental
conditions in the parents are passed on to offspring or even subsequent generations
(780-183). The importance of epigenetic inheritance in the context of evolution is strongly
debated (784—-186). Intergenerational inheritance (where the embryo and its germline is
directly exposed to the parental environment while in uterolin ovo) is quite common. In this
context, Danchin and Pocheville (787) have made the important claim that "non-genetic
inheritance shatters the frontier between physiology and evolution, and leads to the
coupling of physiological and evolutionary processes to a point where there exists a
continuum between accomodation by phenotypic plasticity and adaptation by natural
selection."

Transgenerational epigenetic inheritance, in which the epigenetic marks and
consequential phenotypes persist to the generation that has not had direct exposure to the
epigenetic defining environment, is prevalent in yeast and plants. But transgenerational
epigenetic inheritance occurs substantially less in other organisms (788), particularly in
sexually reproducing species where the germline is seperated from the soma, DNA
methylation is globally reduced twice in each generation, and histone marks are
reprogrammed in the germline and after fertilization. In vertebrates, mechanisms such as
histone retention in sperm and ncRNAs are the more likely candidates for
transgenerational inheritance (783). Although evidence of environmentally induced
transgenerational epigenetic inheritance in vertebrates is limited, it has been
experimentally demonstrated in some species, including rodents (7189) and humans (788),
although typically associated with unhealthy or disease phenotypes rather than adaptive
responses. For example, in rats, DNA hypermethylation induced by chronic stress

exposure has been shown to be transgenerationally inherited to at least three generations
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(790, 191). Additionally, injection of herbicides in rats has been demonstrated to cause
transgenerational effects (4th generation) via the alteration of histone retention in sperm
that associate with diseases (792).

Epigenetic modifications regulate physiological responses that selection acts on.
This link beween physiology and evolution agrees with West-Eberhard's (793) idea that
genes are "followers" rather than initiators of evolutionary change, when they stabilize
phenotypic (physiological) changes that are started by epigenetic processes. Following
this idea, epigenetic inheritance has a high potential to affect phenotypic evolution,
because epigenetic variation may facilitate the role of natural selection in overcoming

stochastic loss of new heritable variants (794).

Concluding Remarks and Future Directions

We are optimistic about the future of evolutionary physiology. [In passing, we note
that current college students may well experience "evolution" as one of the core principles
in physiology education (795), although perhaps at the bottom of the priority list (796).]
Among various possibilities, we believe that the way forward needs to embrace other
subfields (e.g., Figure 1) that often do not view themselves as part of "evolutionary
physiology," including evolutionary endocrinology, evolutionary biochemistry,
ecoimmunology, and functional genomics. For example, many studies in comparative
biomechanics/functional morphology/ecomorphology attempt to elucidate evolutionary
patterns or processes (e.g., (148, 149, 197-203)), but they typically do not include
physiological functions in their analyses (but see (204)). In addition, the reciprocity
between evolutionary biology and physiology needs to proceed under an unbiased
interdisciplinary approach that widens the skills of scientists in both fields, from the view

that all physiological processes are the result of evolution.
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In addition, entirely new areas of research have emerged in the last 30 years,
including the microbiome (205, 206). The coming years should provide many
opportunities for evolutionary physiology to contribute towards understanding the
coevolution of organisms and their microbiota (e.g., (207-209)).

In addition to the experimental method, statistical analyses are essential to detect
patterns in physiological data (752). It is important, however, that evolutionary inferences
from physiological data are not exclusively dependent on statistics, in the sense of using
only data that are devoid of clear functional, physiological meaning. Evolutionary
biologists should take advantage of research approaches in physiology and related
functional fields that allow less dependence on statistics. For example, several studies
have reconstructed ancestral proteins and measured or inferred their functional
characteristics to gain insight regarding physiological adaptation (e.g., (21, 210, 211)).

Another way forward is greater integration among studies on different types of
organisms (e.g., animals, plants, bacteria) in the hopes of reaching a more general
understanding of physiological evolution. Although this suggestion has been made before
(e.g., (212, 213)), little cross-organism integration is evident in the current literature.
Tracking metabolic pathways in different organisms, for example, provides insight into the
adaptive value of metabolic products. This is the case of biological pigments, whose
whole chemical diversity can be categorized into three common synthesis routes after
tracking them down across all organisms, suggesting common functional roles (2714).

Finally, we encourage more studies that attempt to tie physiological traits in a
causal way to evolutionary adaptation, constraint, and diversification (e.g., (48, 49, 199,
201, 204, 215-219)). In this regard, the view of adaptations in wild animals as potential
solutions to human diseases, as pointed out by Singer (33) a decade ago, still holds huge
potential for biomedical scientists to explore (220). An attraction to adaptations in the wild

from a variety of fields outside of evolutionary biology may lead to novel perceptions of the
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human condition, and perhaps new strategies for combating disease and injuries, in the

next years.
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Box 1. Environmental epigenetics of pigmentation genes. Synthesis of the pigment
pheomelanin in melanocytes of developing Eurasian nuthatches Sitta europaea is
regulated, in part, by some genes of cysteine metabolism whose expression can be
affected by two environmental factors defined at the top of the diagram: availability of
cysteine in the diet and perceived predation risk. At the physiological level, excess dietary
cysteine alters the expression of these genes by modifying DNA and RNA methylation
levels, promoting pheomelanin synthesis and resulting in flank plumage patches of

increased pigmentation intensity. In this way, the epigenetic changes promote usage of
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the excess cysteine for pheomelanin synthesis. The excess cysteine would otherwise
cause cellular oxidative stress, thus the epigenetic changes are physiologically adaptive in
an environment that is rich in dietary cysteine (227). Higher levels of perceived predation
risk produce opposite changes in the expression of these genes, limiting pheomelanin
synthesis and resulting in flanks of reduced pigmentation intensity. As cysteine is a
constituent amino acid of the main cellular antioxidant (i.e., glutathione, GSH), these
changes may also be adaptive because they increase the antioxidant capacity and thus
allow the animal to avoid oxidative stress/damage expected from predation risk (222). At
the level of evolution, these changes in the pigmentation of nuthatches have
consequences for sexual selection, as adult females mate preferentially with males
showing flanks of reduced pigmentation intensity (223). Thus, the physiological
responses to perceived predation risk lead to reduced pigmentation intensity, in addition to

providing immediate physiological benefits, and are probably favored by sexual selection.



