

1 **Evolutionary physiology at 30+: has the promise been**
2 **fulfilled?**

3 Ismael Galván^{1*}, Tonia S. Schwartz², Theodore Garland, Jr.³

4

5 ¹Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC; 28006
6 Madrid, Spain

7 ²Department of Biological Sciences, Auburn University; Auburn, AL 36830, USA

8 ³Department of Evolution, Ecology, and Organismal Biology, University of California,
9 Riverside; Riverside, CA 92521, USA

10 *Corresponding author. Email: galvan@mncn.csic.es

11

12

13

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 More than 30 years ago, synergistic effects of the interaction between evolutionary biology
26 and physiology gave rise to the field of evolutionary physiology. This caused comparative
27 physiologists to improve their research methods by incorporating evolutionary thinking.
28 Simultaneously, evolutionary biologists began focusing more on physiological mechanisms
29 that may help to explain constraints on and trade-offs during microevolutionary processes,
30 as well as macroevolutionary patterns in physiological diversity. Here we argue that
31 evolutionary physiology has yet to reach its full potential, and propose new avenues that
32 may lead to unexpected advances. Viewing physiological adaptations in wild animals as
33 potential solutions to human diseases offers enormous possibilities for biomedicine. New
34 evidence of epigenetic inheritance that regulates physiological traits may also arise in
35 coming years, which would represent an overlooked enhancer of natural selection to explain
36 physiological evolution. Synergistic interactions at these intersections and other areas will
37 lead to a novel understanding of organismal biology.

38

39

40

41

42

43

44

45

46

47

48

49 **Enhanced Abstract**50 **Background**

51 More than 30 years ago, synergistic effects of the interaction between evolutionary biology
52 and physiology gave rise to the new field of evolutionary physiology. Explanations for how
53 organisms work do not require knowledge of their evolutionary origin nor of ecological
54 circumstances that cause ongoing natural or sexual selection, but it was realized that
55 considering these factors provided a more integrative view of organismal biology. This
56 view caused comparative and ecological physiologists to improve their research methods
57 by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began
58 focusing more on physiological mechanisms that may help to explain constraints on and
59 trade-offs during microevolutionary processes, as well as macroevolutionary patterns in
60 physiological diversity. This cross-fertilization resulted in the development and wide
61 application of phylogenetic comparative analyses that allowed separation of the effects of
62 common ancestry from recent adaptation. Selection experiments elucidated diverse
63 pathways of physiological evolution that were then traced to genetic variants. The
64 genetic/genomic revolution also fostered studies of the molecular basis of physiological
65 variation and evolutionary adaptation in natural populations of a wide range of organisms,
66 including humans.

67

68 **Advances**

69 We briefly review the significant progress that has occurred as a consequence of
70 reciprocal illumination between evolutionary biology and physiology since the advent of
71 evolutionary physiology three decades ago. Evolutionary biology has led physiology back
72 to its original aim of providing a comprehensive view of organismal function and human
73 pathology, by providing a rigorous framework within which to conduct comparisons among
74 species. The study of wild animals beyond traditional laboratory models has revealed

75 performance in many physiological processes superior to humans, which has facilitated
76 the understanding of the synthesis of biologically active compounds, including peptide-
77 processing enzymes and estrogens for medical purposes. This has also inspired new
78 strategies for combating various disorders and conditions, such as porphyrias, macular
79 degeneration, aging, and tissue loss. Studies on wild animals have informed our
80 understanding of the endogenous constraints limiting physiological adaptation to the
81 environment. At the same time, physiology has shown potential to explain both the
82 evolutionary origin of particular traits, such as honest communication mechanisms, and
83 the process of genetic adaptation, which directly depends on physiological variation.

84 Physiological explanations of adaptations are exemplified by experiments on birds, where
85 fluctuating environmental factors have been shown to induce epigenetic modifications in
86 genes of cysteine metabolism, in their expression, and in the production of associated
87 pigments that affect the external body appearance. These changes have been proven
88 physiologically adaptive as they offer protection from environmental stressors, and the
89 associated changes in pigmentation are open to sexual selection. These types of studies
90 reveal a nexus between environment, physiology and evolution. In fact, advances in the
91 molecular basis of epigenetic modifications have revealed these as a source of phenotypic
92 plasticity in multiple organisms, underpinning previously unsuspected mechanisms of
93 physiological adaptation to the environment.

94

95 **Outlook**

96 Notwithstanding its many successes, we argue that evolutionary physiology has yet to
97 reach its full potential. Here we propose new avenues that may lead to unexpected
98 advances in this field. Viewing physiological adaptations in wild, non-model species of
99 animals as potential solutions to human diseases offers enormous possibilities for
100 biomedicine, and may lead to novel perceptions of the human condition. New evidence of

101 environmentally induced transgenerational epigenetic inheritance that regulates
102 physiological traits may also arise in coming years, which would represent an overlooked
103 enhancer of natural selection to explain physiological evolution. Synergistic interactions at
104 these intersections and other areas will lead to a novel understanding of organismal
105 biology.

106

107 **Introduction**

108 Since the first appearances of an identifiable field of evolutionary physiology more
109 than three decades ago (1, 2), both evolutionary biology and physiology have benefited.
110 Evolutionary biology has provided physiology with such tools as phylogenetic analyses
111 (3), selection experiments (4), and genetic/genomic analyses (e.g., (5–7)). At the same
112 time, physiology and biochemistry have enhanced knowledge of the functional
113 mechanisms that underlie various evolutionary processes and phenomena, including
114 epigenetic inheritance, adaptation, allometric relationships, trade-offs, constraints, and
115 convergence (8–13). We believe, however, that evolutionary physiology, as originally
116 outlined (14–16), has yet to reach its full potential. We provide a brief perspective on the
117 field, from the outlook of vertebrate biologists, with the goal of pointing the way towards its
118 enhancement and maturation. We would also direct readers to other papers that provide
119 partial reviews of evolutionary physiology and discussions of future directions (7, 17–24).

120 Evolutionary physiology sits at the intersection of evolution, ecology, and
121 organismal biology (**Figure 1**). Most generally, physiology is the study of how organisms
122 work. (We include within "physiology" such related areas of biochemistry, neurobiology,
123 endocrinology, functional morphology, and biomechanics.) Elucidating the mechanisms
124 that underpin organismal function does not require an explanation for their origin, nor does
125 it require an understanding of why these mechanisms continue to be favored (or become
126 disfavored) by ongoing natural or sexual selection in the wild, as dictated by ecological

127 circumstances (e.g., see (25–27)). Rather, understanding the origin and maintenance of
128 traits and characteristics at all levels of biological organization is the provenance of
129 evolutionary biology. Understanding the evolution of physiological mechanisms equals
130 understanding their causes at both proximate and ultimate levels (25), which promotes
131 comprehension of factors that facilitate and constrain evolutionary processes (e.g., see
132 (27–31)), as well as the causes of and solutions to human pathologies (32, 33). The
133 influence of rigorous evolutionary thinking on physiology has resulted in the rise of
134 evolutionary medicine (34, 35), but it has also led to more sophisticated analyses and
135 approaches in non-medical physiology.

136 We believe that the aims and scope of evolutionary physiology should now be
137 revisited to explore new possibilities derived from the synergy between evolutionary
138 biology and physiology. We first highlight three now-familiar approaches in modern
139 evolutionary physiology, none of which were common three decades ago. We then
140 provide some examples illustrating how evolutionary thinking has influenced physiology
141 and vice versa, and in so doing we propose new avenues that may lead to unexpected
142 advances in both disciplines.

143

144 **Three well-established approaches**

145

146 **Phylogenetically informed comparative studies**

147 Of the various tools that evolutionary physiology has adopted from evolutionary
148 biology, none has had a greater impact than the use of phylogenetic comparative methods
149 (36). These approaches were in rapid development when comparative and ecological
150 physiologists were first encouraged to take advantage of them (e.g., (15, 37–42)).
151 Formalized procedures for phylogenetically based statistical analyses (36, 43, 44) have
152 caused a mini-revolution in evolutionary biology, and this has been reflected in

153 comparative physiology (3, 45). Phylogenetically informed analyses have improved, for
154 example, the understanding of aging mechanisms in animals (46, 47), the evolution of
155 endothermy (48) and of diving (49), and the diversity of photosynthesis types in plants
156 (50).

157

158 Selection experiments and experimental evolution

159 Moving from macroevolutionary to microevolutionary analyses, selection
160 experiments and experimental evolution in both laboratory and field settings have
161 provided unique insights regarding adaption, coadaptation, and the genetic/genomic
162 mechanisms of evolutionary change (4, 51, 52). For example, Lenski and colleagues had
163 maintained 12 populations of *E. coli* in the laboratory for more than 25 years and 60,000
164 generations (53, 54). Among various results, they discovered a trade-off between growth
165 on glucose and acetate involving two metabolic "ecotypes" that can stably coexist. Each
166 ecotype has a competitive advantage when rare, which it loses when it becomes more
167 common.

168 As a vertebrate example, Garland and colleagues began replicated artificial
169 selection for voluntary exercise behavior in laboratory house mice in 1993, and the
170 experiment has now proceeded for more than 90 generations. Numerous correlated
171 responses have been documented at the levels of both motivation for physical activity and
172 ability to sustain aerobic exercise, including increased endurance and maximal oxygen
173 consumption during forced exercise, changes in muscle size and fiber type composition,
174 skeletal alterations, endocrine changes, and brain changes (55–59).

175

176 Evolutionary genetics and genomics

177 The low cost of sequencing has led to a genetic and genomic revolution that has
178 found its way into all approaches and areas of biology, including selection experiments

179 and experimental evolution (60–62), the study of adaptation in natural populations (63–
180 67), and the study of human morphological and physiological evolution (68, 69). As one
181 example, the killifish, *Fundulus heteroclitus*, has been a subject of studies in evolutionary
182 genetics, biochemistry, and physiology since the late 1970s (e.g., see references in (15,
183 70)). Overall, decades of studies have led to the conclusion that evolutionary adaptation
184 related to the glycolytic enzyme lactate dehydrogenase B has involved small changes in
185 the allele frequencies of many genes, and these changes are manifest at the levels of
186 transcription, biochemistry, metabolism, osmoregulation, and whole-organism physiology
187 (71).

188

189 **Evolutionary biology influences physiology**

190

191 Non-model species widen knowledge in animal physiology

192 Traditionally, and justifiably, physiology has focused on human beings to find
193 solutions to disease and other pathological conditions (72). However, given the difficulty,
194 cost, and ethical issues involved with conducting human studies, the use of "animal
195 models" to elucidate aspects of human physiology became widespread. Although other
196 animal models are available for particular physiological processes (e.g., (73)), the house
197 mouse *Mus musculus* is by far the most common animal model in physiology, as it is in
198 most biological sciences.

199 Early studies in comparative physiology recognized that the neglect of among-
200 species comparisons was retarding the progress of physiology and pathology (74), but still
201 usually had elucidation of human physiology as the ultimate goal. And comparative
202 physiology has a long history of contributions to basic physiology, including relevance to
203 humans (33, 75). For example, Mathew Kluger's studies of thermoregulation and
204 behavioral fever in lizards (76–78) and Fred White's studies of acid-base balance during

205 hypothermia in reptiles (references in (15)) have affected the way physicians view and
206 treat human patients.

207 Although the majority of animal physiological research has at least an implicit focus
208 on human beings, evolutionary biology addresses all biological diversity. Therefore, by
209 not limiting studies to humans, mice, and other laboratory animals, evolutionary biology
210 necessarily considers physiological systems different from those represented by traditional
211 animal models. This represents an opportunity to widen the general knowledge on animal
212 physiology, and to find unsuspected ways to treat human pathology that could not be
213 approached with traditional animal models (e.g., see (33, 79, 80)). Beyond species that
214 produce substances such as venoms that are useful for the preparation of drugs (81),
215 many wild non-model species present physiological processes that are similar to those of
216 humans, and sometimes have superior performance. We refer to species whose
217 maintenance and breeding in captivity are not as easily achievable as in laboratory
218 animals. Such species represent a great potential to offer solutions to human pathology.

219 Examples include many species of frogs that store in the skin an extraordinary
220 diversity of biologically active peptides at high concentrations, many of which have
221 mammalian counterparts, thus representing a source for discovering new hormones,
222 neuropeptides, and peptide-processing enzymes that might not be as readily found with
223 conventional animal models (82). Several species of songbirds and teleost fishes have
224 unusually high levels of aromatase activity that make them interesting models to
225 understand the mechanisms of estrogen synthesis (83). Wild rodent species have been
226 proposed as a resource for research on immunity and infection, given their high genetic
227 diversity and environmental pressures to which they are exposed as compared with
228 laboratory rodents (84). In 1971, it was found that fox squirrels *Sciurus niger* accumulate
229 large amounts of the pigment uroporphyrin I in internal organs and the skin due a very low
230 activity of the enzyme uroporphyrinogen III synthase in different tissues under healthy

231 conditions (85). In humans, congenital erythropoietic porphyria is caused by a defect in
232 uroporphyrinogen III synthase that leads to a similar low enzymatic activity and
233 uroporphyrin I overproduction, which allowed researchers to propose the fox squirrel as an
234 animal model for this disease (86). The Honduran white bat (*Ectophylla alba*) has recently
235 been reported as the first mammal that has evolved the physiological capacity to esterify
236 and deposit high amounts of carotenoid pigments in the skin, thus constituting a model
237 that may help to improve the assimilation of carotenoids in humans and avoid macular
238 degeneration (87). The study of all these species was not primarily motivated by
239 physiological questions. Instead, these studies were started by researchers investigating
240 evolutionary and ecological aspects of these species (e.g., (88)), and interest in
241 physiology arose later.

242 Non-model species have also contributed to our understanding of the process of
243 aging. How animals age is determined by the failures of physiological processes.
244 Understanding why different physiological processes fail faster or slower in different
245 organisms can bring insight to the evolution of cellular protection and repair processes, as
246 well as the evolution of life histories (89, 90). For example, a comparison across 18
247 rodents species with lifespan ranging from two (mice) to 30 years (beavers) determined
248 that the ability to repair double-strand breaks in DNA (via SIRT6) is a tight correlate of long
249 lifespan (91). Although humans express IGF2 at high levels as adults (92), biomedical
250 rodent models do not (93, 94), resulting in this hormone being understudied in the context
251 of senescence. Recent studies demonstrate that reptiles and birds express IGF2 at high
252 levels in adulthood (95, 96), similar to humans, providing new model systems to study the
253 physiological effects of this hormone.

254 Many non-model species exhibit regenerative abilities that are coveted by the
255 biomedical community (97, 98). Within vertebrates, there is considerable diversity in the
256 degree to which a species can regenerate tissue and which types of tissues can be

257 regenerated (99), with a clear phylogenetic signal of reduced regenerative abilities moving
258 from fish and amphibians to amniotes and then to mammals. Some species of fish and
259 amphibians have incredible regenerative capacities, including whole limbs (97, 100–102),
260 eyes (103), and internal organs (104, 105). In newts, for example, after the complete
261 removal of the lens from the eye, the lens can be *de novo* regenerated from the dorsal iris
262 cells that can undergo a dedifferentiation process (106). Within reptiles the regenerative
263 diversity is more restricted, the best known example being tail regeneration in many lizard
264 species that is associated with autotomy as an anti-predator defense, but brain tissue and
265 optic nerve regeneration has also been demonstrated in lizards (107). Snakes, which are
266 derived from lizards, have lost the ability to regenerate their tails, but some have rapid
267 organ regeneration. For example, pythons may go months without feeding, during which
268 time their digestive organs regress in size. Within hours to days of refeeding, the intestine
269 regenerate thorough hyperplasia and hypertrophy to accommodate the physiological
270 demands of processing the meal (108–110). In contrast, significant regeneration in adult
271 mammals is largely restricted to the liver (111) and antler regeneration in deer (112),
272 whereas other types of limb loss and tissue damage typically result in scarring.
273 Comparative studies across these non-model species have begun to illuminate common
274 factors in exceptional regenerative abilities, including the maintenance of juvenile
275 physiology or the ability to reactivate an embryonic cellular program, and the need for the
276 regenerating tissues to “hide” from the immune system similar to cancerous tumors (113–
277 115).

278 Examples like those described in the previous paragraphs, with an identified
279 potential to provide solutions to specific human health issues, do not abound in the
280 literature. Furthermore, the utility of these cited systems to widen general physiological
281 knowledge is only beginning to be considered, and only in some cases (116). A
282 remarkable example is the fox squirrel mentioned above, which was proposed as a

283 model for human congenital erythropoietic porphyria in the 1970s, with a great potential to
284 provide insights into physiological mechanisms that avoid the toxicity of porphyrin
285 accumulation (85, 86), a proposal that has been overlooked. The use of physiological
286 systems represented in wild, non-model species of animals studied by evolutionary
287 biologists certainly remains an underexplored and promising area for physiologists,
288 especially given that model and non-model species may differ in systematic ways (117),
289 although this may often require the development of new tools (e.g., see (118, 119)).

290

291 **Physiological characteristics affect the capacity for physiological adaptation**

292 The concept of adaptation is central to biology, but the term is used in two distinct
293 ways (120–122). First, "evolutionary adaptation" refers to cross-generational changes in
294 the allele frequencies of populations in response to natural selection. Second,
295 "physiological adaptation" refers to changes that occur within individuals in response to
296 external (or internal) stimuli and that lead to homeostasis and/or improved abilities to
297 perform various tasks and/or improved Darwinian fitness (the beneficial acclimation
298 hypothesis: (123–125)). Some capacity for physiological adaptation is, of course,
299 adaptive in an evolutionary sense. In any case, the mechanistic basis of all evolutionary
300 adaptation is necessarily physiological at some level (126).

301 Evolutionary studies that include examination of physiological adaptation illustrate
302 the potential to discover the mechanisms by which organisms cope with fluctuating
303 environments as well as directional climate change (e.g., (127–129)). In 16 species of
304 birds inhabiting Chernobyl, for example, physiological adaptation occurs in the systemic
305 levels of the master cellular antioxidant (glutathione, GSH) and in the capacity to avoid
306 DNA damage as a response to exposure to ionizing radiation, which generates oxidative
307 stress (130). The degree of this adaptation, however, depends at least in part on the
308 amount of the pigment pheomelanin that birds produce in their plumage, as pheomelanin

309 synthesis consumes cysteine (a constitutive amino acid of GSH), produces free radicals
310 upon radiation exposure, and may thus cause chronic oxidative stress (130). Although
311 these studies do not demonstrate the exact mechanism by which physiological adaptation
312 in response to ionizing radiation occurs, they do clearly show that antioxidant-demanding
313 processes, such as pheomelanin synthesis, can be constraining factors in physiological
314 adaptation.

315 The foregoing avian example illustrates that some characteristics of organisms limit
316 their ability for physiological adaptation. For instance, as in many other organisms, the
317 production of heat-shock proteins is a common response of notothenioid fishes against
318 thermal stress, as this allows restoration of heat-denatured proteins (131). The activation
319 of this stress response requires modulating the expression of genes that regulate heat-
320 shock protein production in a temperature-dependent manner. However, some species
321 with an evolutionary thermal history that has not favored phenotypic plasticity for
322 temperature-mediated gene expression are limited in their ability to acclimate to increased
323 temperatures (132).

324 Similarly, the exposure of birds and mammals to hypoxia activates changes in the
325 expression of some genes that affect O₂ transport and erythropoiesis, but the performance
326 of this physiological adaptation depends on whether the animals are previously
327 acclimatized to living at low or high altitudes (133). Also, the capacity of melanins to
328 absorb solar radiation means that the pigmentation pattern of animals partly determines
329 their ability to cope with thermal stress; thus, darker birds may be somewhat limited from
330 occupying environments with high temperatures (134). These sorts of characteristics of
331 organisms can be viewed as endogenous constraints and they exemplify how the
332 evolution of certain traits helps explain the capacity of animals to achieve physiological
333 adaptation to the environments where they live, both in terms of phenotypic plasticity and
334 cross-generational genetic changes (71, 120, 135). Detailed investigations of the

335 mechanisms that facilitate or constrain the ability for physiological adaptation are an
336 exciting future direction for evolutionary physiology and may also facilitate finding
337 solutions to diseases related to allostatic load (136).

338

339 **Physiology informs evolutionary biology**

340

341 The evolution of honest signals has a physiological basis

342 Biological communication is mainly driven by signals, traits that evolve because of
343 the benefits obtained by their recipients (137). When signals can allow the Darwinian
344 fitness (reproductive success) of their recipients to improve, they are considered "honest."
345 This appears to be the case for most biological traits that fulfill a signaling role (138).

346 Signal honesty is closely related to the concept of individual quality. As stated in the
347 handicap principle, a cornerstone of behavioral ecology, the production of large
348 (expensive) signals is limited to high-quality signalers because low-quality ones cannot
349 afford the costs derived from signal production (139). However, this explanation has been
350 challenged in recent years because costs for low-quality individuals are frequently not
351 found in empirical studies, and, indeed, natural selection is not expected to favor the
352 evolution of signals when it implies incurring substantive costs (140, 141). As a
353 consequence, the existence of costs predicted by the handicap principle is not fully
354 accepted by evolutionary biology, which currently lacks an integrated approach to explain
355 the concept of individual quality and the evolution of honesty.

356 Recent physiological experiments on the classical honest signaling system of the
357 black bib of male house sparrows (*Passer domesticus*) illustrate the possibility that costs
358 are not necessary to explain why low-quality individuals do not develop high-quality
359 signals (i.e., large bibs). Large bibs are associated with low amounts of the pigment
360 pheomelanin in their constitutive feathers, which allows researchers to experimentally

361 create physiological conditions that favor the production of small or large bibs by exposing
362 birds to substances that act as inhibitors or enhancers of pheomelanin synthesis (142,
363 143). Despite these induced physiological conditions, the resulting phenotype could be
364 manipulated in high-quality birds (i.e., those with largest bibs initially) only. A physiological
365 mechanism may therefore exist in low-quality individuals that makes them less sensitive to
366 environmental factors than high-quality individuals, which prevents low-quality individuals
367 from producing high-quality signals even if they took the "decision" to do so or if
368 environmental conditions favored the production of large signals (142, 143).

369 The experiments on the signaling system of male house sparrows exemplify how
370 the details of the machinery controlling the expression of signals can explain their honesty
371 without the costs predicted by the handicap principle. Although specific to visual traits
372 whose production is mediated by the synthesis of melanin pigments, these experiments
373 show that the evolution of honesty can have a physiological basis. Similar studies on the
374 physiological basis of trait production in other honest signaling systems, including those in
375 humans (144), may provide a more general concept of individual quality and consequently
376 represent a new understanding of this aspect of biological communication.

377
378 Elucidating the physiological underpinnings of evolutionary adaptations

379 Evolutionary physiology can play a fundamental role in identifying the mechanisms
380 by which adaptations arise (e.g., see (8, 15, 16, 31, 67, 71, 120, 126, 145–147)). As
381 evolutionary adaptations directly depend on physiology, physiology has the potential to
382 provide a conjectural background to understand them (e.g., see (148, 149)). Examples of
383 this include simple economical ideas applied to understand the evolution of pigmentation
384 phenotypes (150) and theories of sensory cue integration helping to understand the
385 evolution of perception capacity (151).

386 Research methods in physiology have always strongly relied on experimental
387 manipulations of biological processes (152) and the advent of molecular tools, such as
388 CRISPR, allow manipulations at the level of the genome to prove physiological
389 mechanisms. Although evolutionary adaptations have been linked to specific genes in a
390 growing number of cases (e.g., (9, 64, 153–156)), typically these genes fit in to molecular
391 networks—interactions among genes, proteins, and RNAs that are coordinated within the
392 cell—to regulate physiological outcomes. Selection acting on a larger network makes it
393 much harder to detect effects on particular loci because the impact can be shared across
394 loci with relatively small effect, and the probability of pleiotropic effects is high in a
395 network. Moreover, the experimental manipulation of multiple genes concurrently to
396 understand their physiological effects is much more difficult than changing single genes.

397 Rather than attempting to manipulate genes directly, selection experiments focused
398 at behavioral or other whole-organism levels can be used to understand how evolution
399 can bring about adaptations through shaping of a molecular network. Dogs are a great
400 example, having been under artificial selection for thousands of years, resulting in breeds
401 defined by form, function, and behavior (157). The evolutionary response to selection that
402 targeted growth, strength, and body size has involved the insulin and insulin-like signaling
403 (IIS) network (158, 159). This molecular network integrates over 100 genes, and this
404 network has been studied extensively for its pleiotropic effects on both early (growth and
405 reproduction) and late life (rate of aging) traits in various model organisms (160, 161).
406 Selection has sorted alleles by dog breed for at least seven loci, and most of these genes
407 are in or related to the IIS network (159). The allelic variation at these seven loci explains
408 over 50% of the variation in body size among breeds. Together, in the context of the
409 function of the IIS network on the cellular and organismal physiology, the alleles in the
410 small-bodied breeds (e.g. Chihuahua) reduce the cellular signaling through IIS network

411 resulting in the correlated phenotypes of small body, small litters, and longer lifespans
412 relative to the larger breeds (e.g. Mastiff) (158, 159, 162, 163).

413 Sensory systems also provide clear illustrations of how physiological knowledge
414 helps us to understand evolutionary adaptations (see also examples in (8)). In the most
415 general sense, the sensory perception of organisms depends on their physiological
416 allocation to the systems involved. This physiological allocation differs among species
417 and even individuals, but this does not mean that perceived objects are only the product of
418 neuronal activity nor that the brain produces realistic models without capturing reality itself.

419 The chromatic experience of animals, for example, is not only a type of neural state or
420 process, but also reflects to a large degree the color of the objects being perceived as a
421 physical attribute of these objects. Color perception is thus the combination of an
422 objective and a subjective experience, the former greatly influencing the
423 ecological/evolutionary implications of perceiving the color of given objects (164). Color
424 interpretation in some evolutionary studies has been made in a way that gives much
425 weight to the subjective component of color perception (e.g., 'Color is not an inherent
426 property of the object; it is a product of the brain of the animal perceiving the object',
427 (165)), but it must be remembered that color is also a physical attribute of the objects.

428 Considering the objective component of color perception may be useful in interspecific
429 comparisons of animal coloration, and thus provide clues into the adaptiveness of color
430 traits. Indeed, human vision can detect much of the variation in bird coloration in the
431 visible range and also provide a valid proxy for avian perception of such color traits as
432 sexual dichromatism (166, 167), suggesting that considering color exclusively as a neural
433 state may be an incomplete view. That color resides in both the objects being perceived
434 and in the brain of the perceiving animals is known in neuroscience since the 1990s,
435 notably through the work of Francisco J. Varela and others (164, 168). Considering this

436 theoretical background of sensory physiology may therefore help in gaining a deeper
437 insight into the adaptive value of color phenotypes.

438

439 **The role of epigenetics in physiological and evolutionary adaptation**

440 Use of the term "epigenetic" has changed over time, but currently it usually refers to
441 chemical modifications on the DNA, RNA, or associated proteins that regulate the genome
442 (and the expression of genes), without changes in the DNA sequence (169, 170). In the
443 last 30 years, the molecular basis for how epigenetic modifications can result in
444 phenotypic plasticity has been revealed in different organisms (171–173). Such
445 epigenetic plasticity can be induced by environmental factors, and such alterations have
446 been identified as important mechanisms underlying physiological adaptation of
447 organisms to a diversity of environments (174, 175). Epigenetic plasticity thus acts as a
448 potential enhancer of physiological adaptation. Examples of this are studies of teleost fish
449 where a concerted role for DNA methylation and histone modifications induced by
450 hypoxia, thermal stress, osmotic challenges, and starvation has been shown to regulate
451 the expression of genes involved in, respectively, apoptosis, folate metabolism, osmotic
452 stress transcription factors and autophagy (176). Such changes may facilitate
453 physiological adaptations to environmental conditions and, in some cases, also affect
454 external phenotypic traits on which selection can act (for another example, see **Box 1**).

455 If the epigenetic plasticity is inherited, this may provide an additional, accelerated
456 pathway for evolutionary adaptation (177, 178). For example, the response to hypoxia
457 involves epigenetic modifications to open the chromatin at regulatory elements to allow
458 transcription of genes, such as EPAS1 (179). A change in the timing of this chromatin
459 opening during the hypoxia response appears be part of the adaptive response to hypoxia
460 in Tibetan relative to Han human populations (179).

461 Epigenetics modifications can be transmitted across generations and be important
462 component of preparing the next generation for the parental environment. In these cases
463 of "epigenetic inheritance," the modifications that occur in response to environmental
464 conditions in the parents are passed on to offspring or even subsequent generations
465 (180–183). The importance of epigenetic inheritance in the context of evolution is strongly
466 debated (184–186). Intergenerational inheritance (where the embryo and its germline is
467 directly exposed to the parental environment while *in utero/in ovo*) is quite common. In this
468 context, Danchin and Pocheville (187) have made the important claim that "non-genetic
469 inheritance shatters the frontier between physiology and evolution, and leads to the
470 coupling of physiological and evolutionary processes to a point where there exists a
471 continuum between accommodation by phenotypic plasticity and adaptation by natural
472 selection."

473 Transgenerational epigenetic inheritance, in which the epigenetic marks and
474 consequential phenotypes persist to the generation that has not had direct exposure to the
475 epigenetic defining environment, is prevalent in yeast and plants. But transgenerational
476 epigenetic inheritance occurs substantially less in other organisms (188), particularly in
477 sexually reproducing species where the germline is separated from the soma, DNA
478 methylation is globally reduced twice in each generation, and histone marks are
479 reprogrammed in the germline and after fertilization. In vertebrates, mechanisms such as
480 histone retention in sperm and ncRNAs are the more likely candidates for
481 transgenerational inheritance (183). Although evidence of environmentally induced
482 transgenerational epigenetic inheritance in vertebrates is limited, it has been
483 experimentally demonstrated in some species, including rodents (189) and humans (188),
484 although typically associated with unhealthy or disease phenotypes rather than adaptive
485 responses. For example, in rats, DNA hypermethylation induced by chronic stress
486 exposure has been shown to be transgenerationally inherited to at least three generations

487 (190, 191). Additionally, injection of herbicides in rats has been demonstrated to cause
488 transgenerational effects (4th generation) via the alteration of histone retention in sperm
489 that associate with diseases (192).

490 Epigenetic modifications regulate physiological responses that selection acts on.
491 This link between physiology and evolution agrees with West-Eberhard's (193) idea that
492 genes are "followers" rather than initiators of evolutionary change, when they stabilize
493 phenotypic (physiological) changes that are started by epigenetic processes. Following
494 this idea, epigenetic inheritance has a high potential to affect phenotypic evolution,
495 because epigenetic variation may facilitate the role of natural selection in overcoming
496 stochastic loss of new heritable variants (194).

497

498 **Concluding Remarks and Future Directions**

499 We are optimistic about the future of evolutionary physiology. [In passing, we note
500 that current college students may well experience "evolution" as one of the core principles
501 in physiology education (195), although perhaps at the bottom of the priority list (196).]
502 Among various possibilities, we believe that the way forward needs to embrace other
503 subfields (e.g., Figure 1) that often do not view themselves as part of "evolutionary
504 physiology," including evolutionary endocrinology, evolutionary biochemistry,
505 ecoimmunology, and functional genomics. For example, many studies in comparative
506 biomechanics/functional morphology/ecomorphology attempt to elucidate evolutionary
507 patterns or processes (e.g., (148, 149, 197–203)), but they typically do not include
508 physiological functions in their analyses (but see (204)). In addition, the reciprocity
509 between evolutionary biology and physiology needs to proceed under an unbiased
510 interdisciplinary approach that widens the skills of scientists in both fields, from the view
511 that all physiological processes are the result of evolution.

512 In addition, entirely new areas of research have emerged in the last 30 years,
513 including the microbiome (205, 206). The coming years should provide many
514 opportunities for evolutionary physiology to contribute towards understanding the
515 coevolution of organisms and their microbiota (e.g., (207–209)).

516 In addition to the experimental method, statistical analyses are essential to detect
517 patterns in physiological data (152). It is important, however, that evolutionary inferences
518 from physiological data are not exclusively dependent on statistics, in the sense of using
519 only data that are devoid of clear functional, physiological meaning. Evolutionary
520 biologists should take advantage of research approaches in physiology and related
521 functional fields that allow less dependence on statistics. For example, several studies
522 have reconstructed ancestral proteins and measured or inferred their functional
523 characteristics to gain insight regarding physiological adaptation (e.g., (21, 210, 211)).

524 Another way forward is greater integration among studies on different types of
525 organisms (e.g., animals, plants, bacteria) in the hopes of reaching a more general
526 understanding of physiological evolution. Although this suggestion has been made before
527 (e.g., (212, 213)), little cross-organism integration is evident in the current literature.

528 Tracking metabolic pathways in different organisms, for example, provides insight into the
529 adaptive value of metabolic products. This is the case of biological pigments, whose
530 whole chemical diversity can be categorized into three common synthesis routes after
531 tracking them down across all organisms, suggesting common functional roles (214).

532 Finally, we encourage more studies that attempt to tie physiological traits in a
533 causal way to evolutionary adaptation, constraint, and diversification (e.g., (48, 49, 199,
534 201, 204, 215–219)). In this regard, the view of adaptations in wild animals as potential
535 solutions to human diseases, as pointed out by Singer (33) a decade ago, still holds huge
536 potential for biomedical scientists to explore (220). An attraction to adaptations in the wild
537 from a variety of fields outside of evolutionary biology may lead to novel perceptions of the

538 human condition, and perhaps new strategies for combating disease and injuries, in the
539 next years.

540 **References and Notes**

541 1. M. E. Feder, A. F. Bennett, W. W. Burggren, R. B. Huey, *New Directions in*
 542 *Ecological Physiology* (Cambridge University Press, Cambridge, 1987).

543 2. F. H. Pough, Evolutionary Physiology: New Directions in Ecological Physiology. *Science*. **240**, 1349–1351 (1988).

545 3. E. L. Rezende, J. A. F. Diniz-Filho, Phylogenetic Analyses: Comparing Species to
 546 Infer Adaptations and Physiological Mechanisms. *Comprehensive Physiology*. **2**,
 547 639–674 (2012).

548 4. T. Garland Jr, M. R. Rose, *Experimental Evolution* (University of California Press,
 549 Berkeley, 2009;
 550 <https://www.degruyter.com/document/doi/10.1525/9780520944473/html>).

551 5. K. van Oers, J. C. Mueller, Evolutionary genomics of animal personality. *Philosophical Transactions of the Royal Society B: Biological Sciences*. **365**, 3991–
 552 4000 (2010).

554 6. D. J. Kvitek, G. Sherlock, Whole Genome, Whole Population Sequencing Reveals
 555 That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant
 556 Environment. *PLOS Genetics*. **9**, e1003972 (2013).

557 7. J. F. Storz, J. T. Bridgham, S. A. Kelly, T. Garland, Genetic approaches in
 558 comparative and evolutionary physiology. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*. **309**, R197–R214 (2015).

560 8. K. Autumn, M. J. Ryan, D. B. Wake, Integrating historical and mechanistic biology
 561 enhances the study of adaptation. *The Quarterly Review of Biology*. **77**, 383–408
 562 (2002).

563 9. E. B. Rosenblum, H. Römler, T. Schöneberg, H. E. Hoekstra, Molecular and
 564 functional basis of phenotypic convergence in white lizards at White Sands.
 565 *Proceedings of the National Academy of Sciences of the USA*. **107**, 2113–2117
 566 (2010).

567 10. D. Noble, Physiology is rocking the foundations of evolutionary biology. *Experimental Physiology*. **98**, 1235–1243 (2013).

569 11. C. R. White, M. R. Kearney, Metabolic Scaling in Animals: Methods, Empirical
 570 Results, and Theoretical Explanations. *Comprehensive Physiology*. **4**, 231–256
 571 (2014).

572 12. C. Natarajan, F. G. Hoffmann, R. E. Weber, A. Fago, C. C. Witt, J. F. Storz,
 573 Predictable convergence in hemoglobin function has unpredictable molecular
 574 underpinnings. *Science*. **354**, 336–339 (2016).

575 13. A. Vianello, S. Passamonti, Biochemistry and physiology within the framework of the
 576 extended synthesis of evolutionary biology. *Biology Direct*. **11**, 7 (2016).

577 14. J. M. Diamond, in *The logic of life: the challenge of integrative physiology*, C. A. R.
 578 Boyd, D. Noble, Eds. (Oxford University Press, Oxford, 1993), pp. 89–111.

579 15. T. Garland Jr., P. A. Carter, Evolutionary Physiology. *Annual Review of Physiology*.
580 **56**, 579–621 (1994).

581 16. M. E. Feder, A. F. Bennett, R. B. Huey, Evolutionary Physiology. *Annual Review of
582 Ecology and Systematics*. **31**, 315–341 (2000).

583 17. A. J. Zera, L. G. Harshman, T. D. Williams, Evolutionary Endocrinology: The
584 Developing Synthesis between Endocrinology and Evolutionary Genetics. *Annual
585 Review of Ecology, Evolution, and Systematics*. **38**, 793–817 (2007).

586 18. R. F. Nespolo, L. D. Bacigalupe, C. C. Figueroa, P. Koteja, J. C. Opazo, Using new
587 tools to solve an old problem: the evolution of endothermy in vertebrates. *Trends in
588 Ecology & Evolution*. **26**, 414–423 (2011).

589 19. A. J. Zera, Microevolution of intermediary metabolism: evolutionary genetics meets
590 metabolic biochemistry. *Journal of Experimental Biology*. **214**, 179–190 (2011).

591 20. V. Careau, O. R. P. Bininda-Emonds, G. Ordóñez, T. Garland, Are voluntary wheel
592 running and open-field behavior correlated in mice? Different answers from
593 comparative and artificial selection approaches. *Behavior Genetics*. **42**, 830–844
594 (2012).

595 21. M. J. Harms, J. W. Thornton, Evolutionary biochemistry: revealing the historical and
596 physical causes of protein properties. *Nature Reviews Genetics*. **14**, 559–571
597 (2013).

598 22. D. Noble, E. Jablonka, M. J. Joyner, G. B. Müller, S. W. Omholt, Evolution evolves:
599 physiology returns to centre stage. *Journal of Physiology*. **592**, 2237–2244 (2014).

600 23. J. F. Husak, A. R. Keith, B. N. Wittry, Making Olympic lizards: the effects of
601 specialised exercise training on performance. *Journal of Experimental Biology*. **218**,
602 899–906 (2015).

603 24. R. M. Cox, J. W. McGlothlin, F. Bonier, Hormones as Mediators of Phenotypic and
604 Genetic Integration: an Evolutionary Genetics Approach. *Integrative and
605 Comparative Biology*. **56**, 126–137 (2016).

606 25. E. Mayr, Cause and Effect in Biology: Kinds of causes, predictability, and teleology
607 are viewed by a practicing biologist. *Science*. **134**, 1501–1506 (1961).

608 26. P. Bateson, K. N. Laland, Tinbergen's four questions: an appreciation and an
609 update. *Trends in Ecology & Evolution*. **28**, 712–718 (2013).

610 27. R. M. Nesse, Tinbergen's four questions, organized: a response to Bateson and
611 Laland. *Trends in Ecology & Evolution*. **28**, 681–682 (2013).

612 28. S. A. MacDougall-Shackleton, The levels of analysis revisited. *Philosophical
613 Transactions of the Royal Society B: Biological Sciences*. **366**, 2076–2085 (2011).

614 29. J. Otsuka, Using causal models to integrate proximate and ultimate causation.
615 *Biology & Philosophy*. **30**, 19–37 (2015).

616 30. A. J. Zera, J. A. Brisson, in *Integrative Organismal Biology*, L. B. Martin, C. K.
617 Ghalambor, H. A. Woods, Eds. (John Wiley & Sons, Hoboken, 2015), pp. 71–90.

618 31. E. Ng'oma, A. M. Perinchery, E. G. King, How to get the most bang for your buck:
619 the evolution and physiology of nutrition-dependent resource allocation strategies.
620 *Proceedings of the Royal Society B: Biological Sciences*. **284**, 20170445 (2017).

621 32. R. M. Nesse, S. C. Stearns, The great opportunity: Evolutionary applications to
622 medicine and public health. *Evolutionary Applications*. **1**, 28–48 (2008).

623 33. M. A. Singer, Insights into Biomedicine from Animal Adaptations. *Comprehensive
624 Physiology*. **1**, 2063–2081 (2011).

625 34. G. C. Williams, R. M. Nesse, The Dawn of Darwinian Medicine. *Quarterly Review of
626 Biology*. **66**, 1–22 (1991).

627 35. V. D. Longo, C. E. Finch, Evolutionary Medicine: From Dwarf Model Systems to
628 Healthy Centenarians? *Science*. **299**, 1342–1346 (2003).

629 36. R. B. Huey, T. Garland Jr., M. Turelli, Revisiting a Key Innovation in Evolutionary
630 Biology: Felsenstein's "Phylogenies and the Comparative Method." *American
631 Naturalist*. **193**, 755–772 (2019).

632 37. M. A. Elgar, P. H. Harvey, Basal Metabolic Rates in Mammals: Allometry, Phylogeny
633 and Ecology. *Functional Ecology*. **1**, 25–36 (1987).

634 38. R. B. Huey, A. F. Bennett, Phylogenetic Studies of Coadaptation: Preferred
635 Temperatures Versus Optimal Performance Temperatures of Lizards. *Evolution*. **41**,
636 1098–1115 (1987).

637 39. P. H. Harvey, M. D. Pagel, *The Comparative Method in Evolutionary Biology* (Oxford
638 University Press, Oxford, 1991).

639 40. D. E. L. Promislow, The Evolution of Mammalian Blood Parameters: Patterns and
640 Their Interpretation. *Physiological Zoology*. **64**, 393–431 (1991).

641 41. T. Garland Jr., A. W. Dickerman, C. M. Janis, J. A. Jones, Phylogenetic Analysis of
642 Covariance by Computer Simulation. *Systematic Biology*. **42**, 265–292 (1993).

643 42. T. Garland Jr., S. C. Adolph, Why Not to Do Two-Species Comparative Studies:
644 Limitations on Inferring Adaptation. *Physiological Zoology*. **67**, 797–828 (1994).

645 43. C. L. Nunn, *The Comparative Approach in Evolutionary Anthropology and Biology*
646 (University of Chicago Press, Chicago, 2011).

647 44. L. Z. Garamszegi, *Modern Phylogenetic Comparative Methods and Their Application
648 in Evolutionary Biology: Concepts and Practice* (Springer-Verlag, Heidelberg, 2014).

649 45. T. Garland Jr., A. F. Bennett, E. L. Rezende, Phylogenetic approaches in
650 comparative physiology. *Journal of Experimental Biology*. **208**, 3015–3035 (2005).

651 46. T. G. Valencak, V. Azzu, Making heads or tails of mitochondrial membranes in
652 longevity and aging: a role for comparative studies. *Longevity & Healthspan*. **3**, 3
653 (2014).

654 47. I. Galván, A. Naudí, J. Erritzøe, A. P. Møller, G. Barja, R. Pamplona, Long lifespans
655 have evolved with long and monounsaturated fatty acids in birds. *Evolution*. **69**,
656 2776–2784 (2015).

657 48. E. L. Rezende, L. D. Bacigalupe, R. F. Nespolo, F. Bozinovic, Shrinking dinosaurs
658 and the evolution of endothermy in birds. *Science Advances*. **6**, eaaw4486 (2020).

659 49. W. C. E. P. Verberk, P. Calosi, F. Brischoux, J. I. Spicer, T. Garland, D. T. Bilton,
660 Universal metabolic constraints shape the evolutionary ecology of diving in animals.
661 *Proceedings of the Royal Society B: Biological Sciences*. **287**, 20200488 (2020).

662 50. M. R. Lundgren, P.-A. Christin, Despite phylogenetic effects, C3–C4 lineages bridge
663 the ecological gap to C4 photosynthesis. *Journal of Experimental Botany*. **68**, 241–
664 254 (2017).

665 51. T. J. Kawecki, R. E. Lenski, D. Ebert, B. Hollis, I. Olivieri, M. C. Whitlock,
666 Experimental evolution. *Trends in Ecology & Evolution*. **27**, 547–560 (2012).

667 52. R. Kassen, *Experimental Evolution and the Nature of Biodiversity* (Macmillan
668 Learning, New York, 2014).

669 53. R. E. Lenski, Experimental evolution and the dynamics of adaptation and genome
670 evolution in microbial populations. *The ISME Journal*. **11**, 2181–2194 (2017).

671 54. R. E. Lenski, Convergence and Divergence in a Long-Term Experiment with
672 Bacteria. *The American Naturalist*. **190**, S57–S68 (2017).

673 55. J. S. Rhodes, S. C. Gammie, T. Garland Jr., Neurobiology of Mice Selected for High
674 Voluntary Wheel-running Activity1. *Integrative and Comparative Biology*. **45**, 438–
675 455 (2005).

676 56. J. G. Swallow, J. P. Hayes, P. Koteja, T. Garland Jr, in *Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments*, T. Garland Jr, M. R. Rose, Eds. (University of California Press, Berkeley, 2009), pp. 301–351.

679 57. T. Garland Jr., M. Zhao, W. Saltzman, Hormones and the Evolution of Complex
680 Traits: Insights from Artificial Selection on Behavior. *Integrative and Comparative
681 Biology*. **56**, 207–224 (2016).

682 58. I. J. Wallace, T. Garland Jr., Mobility as an emergent property of biological
683 organization: Insights from experimental evolution. *Evolutionary Anthropology*. **25**,
684 98–104 (2016).

685 59. A. A. Castro, H. Rabitoy, G. C. Claghorn, T. Garland, Rapid and longer-term effects
686 of selective breeding for voluntary exercise behavior on skeletal morphology in
687 house mice. *Journal of Anatomy*. **238**, 720–742 (2021).

688 60. M. A. Phillips, M. R. Rose, in *Oxford Bibliographies in Evolutionary Biology*, D. J.
689 Futuyma, Ed. (Oxford University Press, New York, 2018;
690 <https://www.oxfordbibliographies.com/view/document/obo-9780199941728/obo-9780199941728-0107.xml>), p. doi: 10.1093/OBO/9780199941728-0107.

692 61. R. J. Wisser, Z. Fang, J. B. Holland, J. E. C. Teixeira, J. Dougherty, T. Weldekidan,
693 N. de Leon, S. Flint-Garcia, N. Lauter, S. C. Murray, W. Xu, A. Hallauer, The

694 Genomic Basis for Short-Term Evolution of Environmental Adaptation in Maize.
 695 *Genetics*. **213**, 1479–1494 (2019).

696 62. D. A. Hillis, L. Yadgary, G. M. Weinstock, F. Pardo-Manuel de Villena, D. Pomp, A.
 697 S. Fowler, S. Xu, F. Chan, T. Garland Jr, Genetic Basis of Aerobically Supported
 698 Voluntary Exercise: Results from a Selection Experiment with House Mice.
 699 *Genetics*. **216**, 781–804 (2020).

700 63. M. E. Feder, T. Mitchell-Olds, Evolutionary and ecological functional genomics.
 701 *Nature Reviews Genetics*. **4**, 649–655 (2003).

702 64. C. R. Linnen, Y.-P. Poh, B. K. Peterson, R. D. H. Barrett, J. G. Larson, J. D. Jensen,
 703 H. E. Hoekstra, Adaptive Evolution of Multiple Traits Through Multiple Mutations at a
 704 Single Gene. *Science*. **339**, 1312–1316 (2013).

705 65. M. Bosse, L. G. Spurgin, V. N. Laine, E. F. Cole, J. A. Firth, P. Gienapp, A. G.
 706 Gosler, K. McMahon, J. Poissant, I. Verhagen, M. A. M. Groenen, K. van Oers, B. C.
 707 Sheldon, M. E. Visser, J. Slate, Recent natural selection causes adaptive evolution
 708 of an avian polygenic trait. *Science*. **358**, 365–368 (2017).

709 66. R. A. Bay, R. J. Harrigan, V. L. Underwood, H. L. Gibbs, T. B. Smith, K. Ruegg,
 710 Genomic signals of selection predict climate-driven population declines in a
 711 migratory bird. *Science*. **359**, 83–86 (2018).

712 67. X. Zhu, Y. Guan, A. V. Signore, C. Natarajan, S. G. DuBay, Y. Cheng, N. Han, G.
 713 Song, Y. Qu, H. Moriyama, F. G. Hoffmann, A. Fago, F. Lei, J. F. Storz, Divergent
 714 and parallel routes of biochemical adaptation in high-altitude passerine birds from
 715 the Qinghai-Tibet Plateau. *Proceedings of the National Academy of Sciences of the
 716 USA*. **115**, 1865–1870 (2018).

717 68. M. O'Bleness, V. B. Searles, A. Varki, P. Gagneux, J. M. Sikela, Evolution of genetic
 718 and genomic features unique to the human lineage. *Nature Reviews Genetics*. **13**,
 719 853–866 (2012).

720 69. G. Sella, N. H. Barton, Thinking About the Evolution of Complex Traits in the Era of
 721 Genome-Wide Association Studies. *Annual Review of Genomics and Human
 722 Genetics*. **20**, 461–493 (2019).

723 70. M. E. Powers, in *New Directions in Ecological Physiology*, M. E. Feder, A. F.
 724 Bennett, W. W. Burggren, R. B. Huey, Eds. (Cambridge University Press,
 725 Cambridge, 1987), pp. 102–134.

726 71. D. L. Crawford, P. M. Schulte, A. Whitehead, M. F. Oleksiak, Evolutionary
 727 Physiology and Genomics in the Highly Adaptable Killifish (*Fundulus heteroclitus*).
 728 *Comprehensive Physiology*. **10**, 637–671 (2020).

729 72. L. Sherwood, *Human Physiology: From Cells to Systems* (Cengage Learning,
 730 Boston, 9th Edition., 2016).

731 73. C. M. Lee, A. C. Boileau, T. W. M. Boileau, A. W. Williams, K. S. Swanson, K. A.
 732 Heintz, J. W. Erdman Jr., Review of Animal Models in Carotenoid Research. *Journal
 733 of Nutrition*. **129**, 2271–2277 (1999).

734 74. J. Loeb, *Studies in general physiology* (Chicago Press, Chicago, 1905).

735 75. H. V. Carey, Lessons learned from comparative and evolutionary physiology.
736 *Physiology*. **30**, 80–81 (2015).

737 76. M. J. Kluger, *Fever: Its Biology, Evolution, and Function* (Princeton University Press,
738 Princeton, 1979).

739 77. M. J. Kluger, W. Kozak, C. A. Conn, L. R. Leon, D. Soszynski, The adaptive value of
740 fever. *Infectious Disease Clinics of North America*. **10**, 1–20 (1996).

741 78. M. J. Kluger, W. Kozak, C. A. Conn, L. R. Leon, D. Soszynski, Role of Fever in
742 Disease. *Annals of the New York Academy of Sciences*. **856**, 224–233 (1998).

743 79. P. Shahrestani, M. K. Burke, R. Birse, J. N. Kezos, K. Ocorr, L. D. Mueller, M. R.
744 Rose, R. Bodmer, Experimental Evolution and Heart Function in *Drosophila*.
745 *Physiological and Biochemical Zoology*. **90**, 281–293 (2016).

746 80. U. Banerjee, J. R. Girard, L. M. Goins, C. M. Spratford, *Drosophila* as a genetic
747 model for hematopoiesis. *Genetics*. **211**, 367–417 (2019).

748 81. G. F. King, Venoms as a platform for human drugs: translating toxins into
749 therapeutics. *Expert Opinion on Biological Therapy*. **11**, 1469–1484 (2011).

750 82. C. L. Bevins, M. Zasloff, Peptides from frog skin. *Annual Review of Biochemistry*. **59**,
751 395–414 (1990).

752 83. P. M. Forlano, B. A. Schlinger, A. H. Bass, Brain aromatase: New lessons from non-
753 mammalian model systems. *Frontiers in Neuroendocrinology*. **27**, 247–274 (2006).

754 84. A. K. Turner, S. Paterson, Wild rodents as a model to discover genes and pathways
755 underlying natural variation in infectious disease susceptibility. *Parasite
756 Immunology*. **35**, 386–395 (2013).

757 85. E. Y. Levin, V. Flyger, Uroporphyrinogen III Cosynthetase Activity in the Fox Squirrel
758 (*Sciurus niger*). *Science*. **174**, 59–60 (1971).

759 86. E. Y. Levin, V. Flyger, Erythropoietic Porphyria of the Fox Squirrel *Sciurus niger*.
760 *Journal of Clinical Investigation*. **52**, 96–105 (1973).

761 87. I. Galván, J. Garrido-Fernández, J. Ríos, A. Pérez-Gálvez, B. Rodríguez-Herrera, J.
762 J. Negro, Tropical bat as mammalian model for skin carotenoid metabolism.
763 *Proceedings of the National Academy of Sciences of the USA*. **113**, 10932–10937
764 (2016).

765 88. B. Rodríguez-Herrera, R. A. Medellín, R. M. Timm, *Neotropical Tent-Roosting Bats*
766 (Instituto de Biodiversidad, Santo Domingo, Costa Rica, 2007).

767 89. X. Tian, A. Seluanov, V. Gorbunova, Molecular Mechanisms Determining Lifespan in
768 Short- and Long-Lived Species. *Trends in Endocrinology & Metabolism*. **28**, 722–
769 734 (2017).

770 90. L. A. Hoekstra, T. S. Schwartz, A. M. Sparkman, D. A. W. Miller, A. M. Bronikowski,
771 The untapped potential of reptile biodiversity for understanding how and why
772 animals age. *Funct Ecol*. **34**, 38–54 (2020).

773 91. X. Tian, D. Firsanov, Z. Zhang, Y. Cheng, L. Luo, G. Tombline, R. Tan, M. Simon, S.
 774 Henderson, J. Steffan, A. Goldfarb, J. Tam, K. Zheng, A. Cornwell, A. Johnson, J.-N.
 775 Yang, Z. Mao, B. Manta, W. Dang, Z. Zhang, J. Vijg, A. Wolfe, K. Moody, B. K.
 776 Kennedy, D. Bohmann, V. N. Gladyshev, A. Seluanov, V. Gorbunova, SIRT6 Is
 777 Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived
 778 Species. *Cell*. **177**, 622-638.e22 (2019).

779 92. L. Fagerberg, B. M. Hallström, P. Oksvold, C. Kampf, D. Djureinovic, J. Odeberg, M.
 780 Habuka, S. Tahmasebpoor, A. Danielsson, K. Edlund, A. Asplund, E. Sjöstedt, E.
 781 Lundberg, C. A.-K. Szigyarto, M. Skogs, J. O. Takanen, H. Berling, H. Tegel, J.
 782 Mulder, P. Nilsson, J. M. Schwenk, C. Lindskog, F. Danielsson, A. Mardinoglu, Å.
 783 Sivertsson, K. von Feilitzen, M. Forsberg, M. Zwahlen, I. Olsson, S. Navani, M.
 784 Huss, J. Nielsen, F. Ponten, M. Uhlén, Analysis of the human tissue-specific
 785 expression by genome-wide Integration of transcriptomics and antibody-based
 786 proteomics. *Molecular & Cellular Proteomics*. **13**, 397–406 (2014).

787 93. M. B. Soares, D. N. Ishu, A. Efstratiadis, Developmental and tissue-specific
 788 expression of a family of transcripts related to rat insulin-like growth factor II mRNA.
 789 *Nucleic Acids Res*. **13**, 1119–1134 (1985).

790 94. F. Yue, Y. Cheng, A. Breschi, J. Vierstra, W. Wu, T. Ryba, R. Sandstrom, Z. Ma, C.
 791 Davis, B. D. Pope, Y. Shen, D. D. Pervouchine, S. Djebali, R. E. Thurman, R. Kaul,
 792 E. Rynes, A. Kirilusha, G. K. Marinov, B. A. Williams, D. Trout, H. Amrhein, K.
 793 Fisher-Aylor, I. Antoshechkin, G. DeSalvo, L.-H. See, M. Fastuca, J. Drenkow, C.
 794 Zaleski, A. Dobin, P. Prieto, J. Lagarde, G. Bussotti, A. Tanzer, O. Denas, K. Li, M.
 795 A. Bender, M. Zhang, R. Byron, M. T. Groudine, D. McCleary, L. Pham, Z. Ye, S.
 796 Kuan, L. Edsall, Y.-C. Wu, M. D. Rasmussen, M. S. Bansal, M. Kellis, C. A. Keller,
 797 C. S. Morrissey, T. Mishra, D. Jain, N. Dogan, R. S. Harris, P. Cayting, T. Kawli, A.
 798 P. Boyle, G. Euskirchen, A. Kundaje, S. Lin, Y. Lin, C. Jansen, V. S. Malladi, M. S.
 799 Cline, D. T. Erickson, V. M. Kirkup, K. Learned, C. A. Sloan, K. R. Rosenbloom, B.
 800 Lacerda de Sousa, K. Beal, M. Pignatelli, P. Flicek, J. Lian, T. Kahveci, D. Lee, W.
 801 James Kent, M. Ramalho Santos, J. Herrero, C. Notredame, A. Johnson, S. Vong,
 802 K. Lee, D. Bates, F. Neri, M. Diegel, T. Canfield, P. J. Sabo, M. S. Wilken, T. A. Reh,
 803 E. Giste, A. Shafer, T. Kutyavin, E. Haugen, D. Dunn, A. P. Reynolds, S. Neph, R.
 804 Humbert, R. Scott Hansen, M. De Bruijn, L. Selleri, A. Rudensky, S. Josefowicz, R.
 805 Samstein, E. E. Eichler, S. H. Orkin, D. Levasseur, T. Papayannopoulou, K.-H.
 806 Chang, A. Skoultchi, S. Gosh, C. Disteche, P. Treuting, Y. Wang, M. J. Weiss, G. A.
 807 Blobel, X. Cao, S. Zhong, T. Wang, P. J. Good, R. F. Lowdon, L. B. Adams, X.-Q.
 808 Zhou, M. J. Pazin, E. A. Feingold, B. Wold, J. Taylor, A. Mortazavi, S. M. Weissman,
 809 J. A. Stamatoyannopoulos, M. P. Snyder, R. Guigo, T. R. Gingeras, D. M. Gilbert, R.
 810 C. Hardison, M. A. Beer, B. Ren, A comparative encyclopedia of DNA elements in
 811 the mouse genome. *Nature*. **515**, 355–364 (2014).

812 95. S. E. McGaugh, A. M. Bronikowski, C.-H. Kuo, D. M. Reding, E. A. Addis, L. E.
 813 Flagel, F. J. Janzen, T. S. Schwartz, Rapid molecular evolution across amniotes of
 814 the IIS/TOR network. *Proceedings of the National Academy of Sciences of the USA*.
 815 **112**, 7055–7060 (2015).

816 96. A. E. Beatty, T. S. Schwartz, Gene expression of the IGF hormones and IGF binding
 817 proteins across time and tissues in a model reptile. *Physiological Genomics*. **52**,
 818 423–434 (2020).

819 97. J. P. Brockes, P. B. Gates, Mechanisms underlying vertebrate limb regeneration:
820 lessons from the salamander. *Biochem Soc Trans.* **42**, 625–630 (2014).

821 98. L. Alibardi, Review: Limb regeneration in humans: Dream or reality? *Annals of*
822 *Anatomy - Anatomischer Anzeiger.* **217**, 1–6 (2018).

823 99. P. A. Tsonis, Regeneration in Vertebrates. *Developmental Biology.* **221**, 273–284
824 (2000).

825 100. A. Simon, E. M. Tanaka, Limb regeneration. *WIREs Developmental Biology.* **2**, 291–
826 300 (2013).

827 101. A. F. Nogueira, C. M. Costa, J. Lorena, R. N. Moreira, G. N. Frota-Lima, C. Furtado,
828 M. Robinson, C. T. Amemiya, S. Darnet, I. Schneider, Tetrapod limb and
829 sarcopterygian fin regeneration share a core genetic programme. *Nature*
830 *Communications.* **7**, 13364 (2016).

831 102. S. Darnet, A. C. Dragalzew, D. B. Amaral, J. F. Sousa, A. W. Thompson, A. N.
832 Cass, J. Lorena, E. S. Pires, C. M. Costa, M. P. Sousa, N. B. Fröbisch, G. Oliveira,
833 P. N. Schneider, M. C. Davis, I. Braasch, I. Schneider, Deep evolutionary origin of
834 limb and fin regeneration. *PNAS.* **116**, 15106–15115 (2019).

835 103. B. Kumar, M. A. Reilly, The Development, Growth, and Regeneration of the
836 Crystalline Lens: A Review. *Current Eye Research.* **45**, 313–326 (2020).

837 104. B. M. Carlson, *Principles of Regenerative Biology* (Academic Press, New York,
838 2011).

839 105. C. J. Vivien, J. E. Hudson, E. R. Porrello, Evolution, comparative biology and
840 ontogeny of vertebrate heart regeneration. *NPJ Regenerative Medicine.* **1**, 1–14
841 (2016).

842 106. P. A. Tsonis, M. Madhavan, E. E. Tancous, K. D. Rio-Tsonis, A newt's eye view of
843 lens regeneration. *Int. J. Dev. Biol.* **48**, 975–980 (2004).

844 107. K. Jacyniak, R. P. McDonald, M. K. Vickaryous, Tail regeneration and other
845 phenomena of wound healing and tissue restoration in lizards. *Journal of*
846 *Experimental Biology.* **220**, 2858–2869 (2017).

847 108. S. M. Secor, J. Diamond, A vertebrate model of extreme physiological regulation.
848 *Nature.* **395**, 659–662 (1998).

849 109. C. Helmstetter, N. Reix, M. T'Flachebba, R. K. Pope, S. M. Secor, Y. L. Maho, J.-H.
850 Lignot, Functional Changes with Feeding in the Gastro-Intestinal Epithelia of the
851 Burmese Python (*Python molurus*). *jzoo.* **26**, 632–638 (2009).

852 110. A. L. Andrew, D. C. Card, R. P. Ruggiero, D. R. Schield, R. H. Adams, D. D. Pollock,
853 S. M. Secor, T. A. Castoe, Rapid changes in gene expression direct rapid shifts in
854 intestinal form and function in the Burmese python after feeding. *Physiological*
855 *Genomics.* **47**, 147–157 (2015).

856 111. G. K. Michalopoulos, Liver Regeneration. *J Cell Physiol.* **213**, 286–300 (2007).

857 112. D. Wang, D. Berg, H. Ba, H. Sun, Z. Wang, C. Li, Deer antler stem cells are a novel
858 type of cells that sustain full regeneration of a mammalian organ—deer antler. *Cell*
859 *Death & Disease*. **10**, 1–13 (2019).

860 113. E. D. Hutchins, G. J. Markov, W. L. Eckalbar, R. M. George, J. M. King, M. A.
861 Tokuyama, L. A. Geiger, N. Emmert, M. J. Ammar, A. N. Allen, A. L. Siniard, J. J.
862 Corneveaux, R. E. Fisher, J. Wade, D. F. DeNardo, J. A. Rawls, M. J. Huentelman,
863 J. Wilson-Rawls, K. Kusumi, Transcriptomic analysis of tail regeneration in the lizard
864 *Anolis carolinensis* reveals activation of conserved vertebrate developmental and
865 repair mechanisms. *PLoS ONE*. **9**, e105004 (2014).

866 114. L. Alibardi, Hyaluronic acid in the tail and limb of amphibians and lizards recreates
867 permissive embryonic conditions for regeneration due to its hygroscopic and
868 immunosuppressive properties. *J Exp Zool B Mol Dev Evol*. **328**, 760–771 (2017).

869 115. N. Vitulo, L. D. Valle, T. Skobo, G. Valle, L. Alibardi, Transcriptome analysis of the
870 regenerating tail vs. the scarring limb in lizard reveals pathways leading to
871 successful vs. unsuccessful organ regeneration in amniotes. *Developmental*
872 *Dynamics*. **246**, 116–134 (2017).

873 116. J. R. Shartouny, J. Jacob, Mining the tree of life: Host defense peptides as antiviral
874 therapeutics. *Seminars in Cell & Developmental Biology*. **88**, 147–155 (2019).

875 117. J. P. Moatt, S. Nakagawa, M. Lagisz, C. A. Walling, The effect of dietary restriction
876 on reproduction: a meta-analytic perspective. *BMC Evol Biol*. **16**, 199 (2016).

877 118. B. A. Rowan, D. Weigel, D. Koenig, Developmental Genetics and New Sequencing
878 Technologies: The Rise of Nonmodel Organisms. *Developmental Cell*. **21**, 65–76
879 (2011).

880 119. C. J. Downs, J. S. Adelman, G. E. Demas, Mechanisms and Methods in
881 Ecoimmunology: Integrating Within-Organism and Between-Organism Processes.
882 *Integrative and Comparative Biology*. **54**, 340–352 (2014).

883 120. A. F. Bennett, in *Comprehensive Physiology*, W. H. Dantzler, Ed. (Oxford University
884 Press, New York, 1997), pp. 3–16.

885 121. T. Garland Jr, S. A. Kelly, Phenotypic plasticity and experimental evolution. *Journal*
886 *of Experimental Biology*. **209**, 2344–2361 (2006).

887 122. T. Panhuis, G. Broitman-Maduro, J. Uhrig, M. Maduro, D. Reznick, Expressed
888 Sequence Tag analysis of the Poeciliopsis placenta. *Integrative and Comparative*
889 *Biology*. **52**, E306 (2012).

890 123. A. M. Leroi, A. F. Bennett, R. E. Lenski, Temperature acclimation and competitive
891 fitness: an experimental test of the beneficial acclimation assumption. *PNAS*. **91**,
892 1917–1921 (1994).

893 124. R. B. Huey, D. Berrigan, G. W. Gilchrist, J. C. Herron, Testing the Adaptive
894 Significance of Acclimation: A Strong Inference Approach1. *American Zoologist*. **39**,
895 323–336 (1999).

896 125. R. S. Wilson, C. E. Franklin, Testing the beneficial acclimation hypothesis. *Trends in*
897 *Ecology & Evolution*. **17**, 66–70 (2002).

898 126. P. W. Hochachka, G. N. Somero, *Biochemical Adaptation: Mechanism and Process*
899 *in Physiological Evolution* (Oxford University Press, Oxford, 2002).

900 127. E. J. Gangloff, M. Sorlin, G. A. Cordero, J. Souchet, F. Aubret, Lizards at the Peak:
901 Physiological Plasticity Does Not Maintain Performance in Lizards Transplanted to
902 High Altitude. *Physiological and Biochemical Zoology*. **92**, 189–200 (2019).

903 128. T. Norin, N. B. Metcalfe, Ecological and evolutionary consequences of metabolic
904 rate plasticity in response to environmental change. *Philosophical Transactions of*
905 *the Royal Society B: Biological Sciences*. **374**, 20180180 (2019).

906 129. V. Radchuk, T. Reed, C. Teplitsky, M. van de Pol, A. Charmantier, C. Hassall, P.
907 Adamík, F. Adriaensen, M. P. Ahola, P. Arcese, J. Miguel Avilés, J. Balbontin, K. S.
908 Berg, A. Borras, S. Burthe, J. Clobert, N. Dehnhard, F. de Lope, A. A. Dhondt, N. J.
909 Dingemanse, H. Doi, T. Eeva, J. Fickel, I. Filella, F. Fossøy, A. E. Goodenough, S.
910 J. G. Hall, B. Hansson, M. Harris, D. Hasselquist, T. Hickler, J. Joshi, H. Kharouba,
911 J. G. Martínez, J.-B. Mihoub, J. A. Mills, M. Molina-Morales, A. Moksnes, A. Ozgul,
912 D. Parejo, P. Pilard, M. Poisbleau, F. Rousset, M.-O. Rödel, D. Scott, J. C. Senar, C.
913 Stefanescu, B. G. Stokke, T. Kusano, M. Tarka, C. E. Tarwater, K. Thonicke, J.
914 Thorley, A. Wilting, P. Tryjanowski, J. Merilä, B. C. Sheldon, A. Pape Møller, E.
915 Matthysen, F. Janzen, F. S. Dobson, M. E. Visser, S. R. Beissinger, A. Courtioli, S.
916 Kramer-Schadt, Adaptive responses of animals to climate change are most likely
917 insufficient. *Nature Communications*. **10**, 3109 (2019).

918 130. I. Galván, A. Bonisoli-Alquati, S. Jenkinson, G. Ghanem, K. Wakamatsu, T. A.
919 Mousseau, A. P. Møller, Chronic exposure to low-dose radiation at Chernobyl
920 favours adaptation to oxidative stress in birds. *Functional Ecology*. **28**, 1387–1403
921 (2014).

922 131. G. E. Hofmann, B. A. Buckley, S. Airaksinen, J. E. Keen, G. N. Somero, Heat-shock
923 protein expression is absent in the antarctic fish *Trematomus bernacchii* (family
924 Nototheniidae). *Journal of Experimental Biology*. **203**, 2331–2339 (2000).

925 132. G. N. Somero, Linking biogeography to physiology: Evolutionary and acclimatory
926 adjustments of thermal limits. *Frontiers in Zoology*. **2**, 1 (2005).

927 133. J. F. Storz, G. R. Scott, Z. A. Chevron, Phenotypic plasticity and genetic adaptation
928 to high-altitude hypoxia in vertebrates. *Journal of Experimental Biology*. **213**, 4125–
929 4136 (2010).

930 134. I. Galván, S. Rodríguez-Martínez, L. M. Carrascal, Dark pigmentation limits thermal
931 niche position in birds. *Functional Ecology*. **32**, 1531–1540 (2018).

932 135. S. A. Kelly, T. M. Panhuis, A. M. Stoehr, Phenotypic Plasticity: Molecular
933 Mechanisms and Adaptive Significance. *Comprehensive Physiology*. **2**, 1417–1439
934 (2012).

935 136. B. N. Harris, Stress hypothesis overload: 131 hypotheses exploring the role of stress
936 in tradeoffs, transitions, and health. *General and Comparative Endocrinology*. **288**,
937 113355 (2020).

938 137. O. Hasson, Towards a General Theory of Biological Signaling. *Journal of Theoretical
939 Biology*. **185**, 139–156 (1997).

940 138. W. A. Searcy, S. Nowicki, *The Evolution of Animal Communication* (Princeton
941 University Press, Princeton, 2005).

942 139. A. Zahavi, Mate selection—A selection for a handicap. *Journal of Theoretical
943 Biology*. **53**, 205–214 (1975).

944 140. K. J. S. Zollman, C. T. Bergstrom, S. M. Huttegger, Between cheap and costly
945 signals: the evolution of partially honest communication. *Proceedings of the Royal
946 Society B: Biological Sciences*. **280**, 20121878 (2013).

947 141. S. Számadó, D. J. Penn, Why does costly signalling evolve? Challenges with testing
948 the handicap hypothesis. *Animal Behaviour*. **110**, e9–e12 (2015).

949 142. I. Galván, K. Wakamatsu, P. R. Camarero, R. Mateo, C. Alonso-Alvarez, Low-quality
950 birds do not display high-quality signals: The cysteine-pheomelanin mechanism of
951 honesty. *Evolution*. **69**, 26–38 (2015).

952 143. I. Galván, C. Alonso-Alvarez, Individual quality via sensitivity to cysteine availability
953 in a melanin-based honest signaling system. *Journal of Experimental Biology*. **220**,
954 2825–2833 (2017).

955 144. J. Havlíček, V. Třebický, J. V. Valentova, K. Kleisner, R. M. Akoko, J. Fialová, R.
956 Jash, T. Kočnar, K. J. Pereira, Z. Štěrbová, M. A. C. Varella, J. Vokurková, E.
957 Vunan, S. C. Roberts, Men's preferences for women's breast size and shape in four
958 cultures. *Evolution and Human Behavior*. **38**, 217–226 (2017).

959 145. J. Nowack, S. Giroud, W. Arnold, T. Ruf, Muscle Non-shivering Thermogenesis and
960 Its Role in the Evolution of Endothermy. *Frontiers in Physiology*. **8**, 889 (2017).

961 146. L. J. Legendre, D. Davesne, The evolution of mechanisms involved in vertebrate
962 endothermy. *Philosophical Transactions of the Royal Society B: Biological Sciences*.
963 **375**, 20190136 (2020).

964 147. F. Seebacher, Is Endothermy an Evolutionary By-Product? *Trends in Ecology &
965 Evolution*. **35**, 503–511 (2020).

966 148. M. E. Alfaro, D. I. Bolnick, P. C. Wainwright, Evolutionary dynamics of complex
967 biomechanical systems: an example using the four-bar mechanism. *Evolution*. **58**,
968 495–503 (2004).

969 149. M. E. Alfaro, D. I. Bolnick, P. C. Wainwright, Evolutionary consequences of many-to-
970 one mapping of jaw morphology to mechanics in labrid fishes. *American Naturalist*.
971 **165**, E140–E154 (2005).

972 150. I. Galván, F. Solano, The evolution of eu- and pheomelanin traits may respond to an
973 economy of pigments related to environmental oxidative stress. *Pigment Cell &
974 Melanoma Research*. **22**, 339–342 (2009).

975 151. C. R. Fetsch, G. C. DeAngelis, D. E. Angelaki, Bridging the gap between theories of
976 sensory cue integration and the physiology of multisensory neurons. *Nature
977 Reviews Neuroscience*. **14**, 429–442 (2013).

978 152. Z. Deyl, *Methods In Animal Physiology* (CRC Press, Boca Ratón, 2019).

979 153. M. W. Nachman, H. E. Hoekstra, S. L. D'Agostino, The genetic basis of adaptive
980 melanism in pocket mice. *PNAS*. **100**, 5268–5273 (2003).

981 154. M. D. Shapiro, M. E. Marks, C. L. Peichel, B. K. Blackman, K. S. Nereng, B.
982 Jónsson, D. Schlüter, D. M. Kingsley, Genetic and developmental basis of
983 evolutionary pelvic reduction in threespine sticklebacks. *Nature*. **428**, 717–723
984 (2004).

985 155. A. I. Vickrey, E. T. Domjan, M. P. Horvath, M. D. Shapiro, Convergent Evolution of
986 Head Crests in Two Domesticated Columbids Is Associated with Different Missense
987 Mutations in EphB2. *Molecular Biology and Evolution*. **32**, 2657–2664 (2015).

988 156. S. Pan, Y. Lin, Q. Liu, J. Duan, Z. Lin, Y. Wang, X. Wang, S. M. Lam, Z. Zou, G.
989 Shui, Y. Zhang, Z. Zhang, X. Zhan, Convergent genomic signatures of flight loss in
990 birds suggest a switch of main fuel. *Nature Communications*. **10**, 2756 (2019).

991 157. M. W. Neff, J. Rine, A Fetching Model Organism. *Cell*. **124**, 229–231 (2006).

992 158. B. C. Hoopes, M. Rimbault, D. Liebers, E. A. Ostrander, N. B. Sutter, The insulin-like
993 growth factor 1 receptor (IGF1R) contributes to reduced size in dogs. *Mamm*
994 *Genome*. **23**, 780–790 (2012).

995 159. M. Rimbault, H. C. Beale, J. J. Schoenebeck, B. C. Hoopes, J. J. Allen, P. Kilroy-
996 Glynn, R. K. Wayne, N. B. Sutter, E. A. Ostrander, Derived variants at six genes
997 explain nearly half of size reduction in dog breeds. *Genome Research*. **23**, 1985–
998 1995 (2013).

999 160. G. Allan, D. Flint, K. Patel, Insulin-like growth factor axis during embryonic
1000 development. *Reproduction*, 31–39 (2001).

1001 161. C. Kenyon, A Conserved Regulatory System for Aging. *Cell*. **105**, 165–168 (2001).

1002 162. K. A. Greer, L. M. Hughes, M. M. Masternak, Connecting serum IGF-1, body size,
1003 and age in the domestic dog. *AGE*. **33**, 475–483 (2011).

1004 163. A. Doherty, I. Lopes, C. T. Ford, G. Monaco, P. Guest, J. P. de Magalhães, A scan
1005 for genes associated with cancer mortality and longevity in pedigree dog breeds.
1006 *Mamm Genome*. **31**, 215–227 (2020).

1007 164. E. Thompson, A. Palacios, F. J. Varela, Ways of coloring: Comparative color vision
1008 as a case study for cognitive science. *Behavioral and Brain Sciences*. **15**, 1–26
1009 (1992).

1010 165. A. T. D. Bennett, I. C. Cuthill, K. J. Norris, Sexual selection and the mismeasure of
1011 color. *American Naturalist*. **144**, 848–860 (1994).

1012 166. N. Seddon, J. A. Tobias, M. Eaton, A. Ödeen, Human Vision can Provide a Valid
1013 Proxy for Avian Perception of Sexual Dichromatism. *Auk*. **127**, 283–292 (2010).

1014 167. Z. T. Bergeron, R. C. Fuller, Using human vision to detect variation in avian
1015 coloration: how bad is it? *American Naturalist*. **191**, 269–276 (2017).

1016 168. F. J. Varela, E. Thompson, E. Rosch, *The Embodied Mind: Cognitive Science and*
1017 *Human Experience* (MIT Press, Cambridge, 1991).

1018 169. H. H. Hoppeler, Epigenetics in comparative physiology. *Journal of Experimental*
1019 *Biology*. **218**, 6–6 (2015).

1020 170. T. Garland Jr., M. D. Cadney, R. A. Waterland, Early-Life Effects on Adult Physical
1021 Activity: Concepts, Relevance, and Experimental Approaches. *Physiological and*
1022 *Biochemical Zoology*. **90**, 1–14 (2017).

1023 171. R. A. Waterland, C. Garza, Potential mechanisms of metabolic imprinting that lead
1024 to chronic disease. *American Journal of Clinical Nutrition*. **69**, 179–197 (1999).

1025 172. C. Allis, M. Caparros, T. Jenuwein, D. Reinberg, *Epigenetics* (Cold Spring Harbor
1026 Laboratory Press, Cold Spring Harbor, 2nd Edition., 2015).

1027 173. C. J. Gunasekara, R. A. Waterland, A new era for epigenetic epidemiology.
1028 *Epigenomics*. **11**, 1647–1649 (2019).

1029 174. J.-P. Etchegaray, R. Mostoslavsky, Interplay between Metabolism and Epigenetics:
1030 A Nuclear Adaptation to Environmental Changes. *Molecular Cell*. **62**, 695–711
1031 (2016).

1032 175. O. Rey, E. Danchin, M. Mirouze, C. Loot, S. Blanchet, Adaptation to Global Change:
1033 A Transposable Element–Epigenetics Perspective. *Trends in Ecology & Evolution*.
1034 **31**, 514–526 (2016).

1035 176. C. Best, H. Ikert, D. J. Kostyniuk, P. M. Craig, L. Navarro-Martin, L. Marandel, J. A.
1036 Mennigen, Epigenetics in teleost fish: From molecular mechanisms to physiological
1037 phenotypes. *Comparative Biochemistry and Physiology Part B: Biochemistry and*
1038 *Molecular Biology*. **224**, 210–244 (2018).

1039 177. F. D. Klironomos, J. Berg, S. Collins, How epigenetic mutations can affect genetic
1040 evolution: Model and mechanism. *BioEssays*. **35**, 571–578 (2013).

1041 178. M. K. Skinner, Environmental epigenetics and a unified theory of the molecular
1042 aspects of evolution: A Neo-Lamarckian concept that facilitates Neo-Darwinian
1043 evolution. *Genome Biology and Evolution*. **7**, 1296–1302 (2015).

1044 179. J. Xin, H. Zhang, Y. He, Z. Duren, C. Bai, L. Chen, X. Luo, D.-S. Yan, C. Zhang, X.
1045 Zhu, Q. Yuan, Z. Feng, C. Cui, X. Qi, Ouzhuluobu, W. H. Wong, Y. Wang, B. Su,
1046 Chromatin accessibility landscape and regulatory network of high-altitude hypoxia
1047 adaptation. *Nature Communications*. **11**, 4928 (2020).

1048 180. É. Danchin, A. Charmantier, F. A. Champagne, A. Mesoudi, B. Pujol, S. Blanchet,
1049 Beyond DNA: integrating inclusive inheritance into an extended theory of evolution.
1050 *Nat Rev Genet*. **12**, 475–486 (2011).

1051 181. B. Sauce, C. P. Goes, I. Forti, B. G. O. do Monte, I. M. Watanabe, J. Cunha, A. C.
1052 Peripato, A link between thrifty phenotype and maternal care across two generations
1053 of intercrossed mice. *PLoS ONE*. **12**, e0177954 (2017).

1054 182. K. Xie, D. P. Ryan, B. L. Pearson, K. S. Henzel, F. Neff, R. O. Vidal, M. Hennion, I.
1055 Lehmann, M. Schleif, S. Schröder, T. Adler, B. Rathkolb, J. Rozman, A.-L. Schütz,
1056 C. Prehn, M. E. Mickael, M. Weiergräber, J. Adamski, D. H. Busch, G. Ehninger, A.
1057 Matynia, W. S. Jackson, E. Wolf, H. Fuchs, V. Gailus-Durner, S. Bonn, M. H. de
1058 Angelis, D. Ehninger, Epigenetic alterations in longevity regulators, reduced life

1059 span, and exacerbated aging-related pathology in old father offspring mice.
1060 *Proceedings of the National Academy of Sciences of the USA*. **115**, E2348–E2357
1061 (2018).

1062 183. M. F. Perez, B. Lehner, Intergenerational and transgenerational epigenetic
1063 inheritance in animals. *Nature Cell Biology*. **21**, 143–151 (2019).

1064 184. K. Laland, T. Uller, M. Feldman, K. Sterelny, G. B. Müller, A. Moczek, E. Jablonka,
1065 J. Odling-Smee, G. A. Wray, H. E. Hoekstra, D. J. Futuyma, R. E. Lenski, T. F. C.
1066 Mackay, D. Schlüter, J. E. Strassmann, Does evolutionary theory need a rethink?
1067 *Nature*. **514**, 161–164 (2014).

1068 185. B. Horsthemke, A critical view on transgenerational epigenetic inheritance in
1069 humans. *Nature Communications*. **9**, 2973 (2018).

1070 186. K. Skvortsova, N. Iovino, O. Bogdanović, Functions and mechanisms of epigenetic
1071 inheritance in animals. *Nature Reviews Molecular Cell Biology*. **19**, 774–790 (2018).

1072 187. É. Danchin, A. Pocheville, Inheritance is where physiology meets evolution. *J.* **592**,
1073 2307–2317 (2014).

1074 188. G. Cavalli, E. Heard, Advances in epigenetics link genetics to the environment and
1075 disease. *Nature*. **571**, 489–499 (2019).

1076 189. C. W. Abbott, D. J. Rohac, R. T. Bottom, S. Patadia, K. J. Huffman, Prenatal ethanol
1077 exposure and neocortical development: A transgenerational model of FASD.
1078 *Cerebral Cortex*. **28**, 2908–2921 (2018).

1079 190. D. Crews, R. Gillette, S. V. Scarpino, M. Manikkam, M. I. Savenkova, M. K. Skinner,
1080 Epigenetic transgenerational inheritance of altered stress responses. *Proceedings of
1081 the National Academy of Sciences of the USA*. **109**, 9143–9148 (2012).

1082 191. R. Gillette, M. J. Son, L. Ton, A. C. Gore, D. Crews, Passing experiences on to
1083 future generations: endocrine disruptors and transgenerational inheritance of
1084 epimutations in brain and sperm. *Epigenetics*. **13**, 1106–1126 (2018).

1085 192. J. L. M. Thorson, D. Beck, M. B. Maamar, E. E. Nilsson, M. McBirney, M. K. Skinner,
1086 Epigenome-wide association study for atrazine induced transgenerational DNA
1087 methylation and histone retention sperm epigenetic biomarkers for disease. *PLoS
1088 ONE*. **15**, e0239380 (2020).

1089 193. M. J. West-Eberhard, *Developmental Plasticity and Evolution* (Oxford University
1090 Press, Oxford, 2003).

1091 194. C. L. Richards, O. Bossdorf, M. Pigliucci, What Role Does Heritable Epigenetic
1092 Variation Play in Phenotypic Evolution? *BioScience*. **60**, 232–237 (2010).

1093 195. M. E. Feder, Aims of undergraduate physiology education: a view from the
1094 University of Chicago. *Advances in Physiology Education*. **29**, 3–10 (2005).

1095 196. J. Michael, J. McFarland, The core principles (“big ideas”) of physiology: results of
1096 faculty surveys. *Advances in Physiology Education*. **35**, 336–341 (2011).

1097 197. J. Rayner, R. Wootton, *Biomechanics in evolution* (Cambridge University Press,
1098 Cambridge, 1992).

1099 198. E. J. McElroy, K. L. Hickey, S. M. Reilly, The correlated evolution of biomechanics,
1100 gait and foraging mode in lizards. *Journal of Experimental Biology*. **211**, 1029–1040
1101 (2008).

1102 199. A. Herrel, J. Podos, B. Vanhooydonck, A. P. Hendry, Force–velocity trade-off in
1103 Darwin’s finch jaw function: a biomechanical basis for ecological speciation?
1104 *Functional Ecology*. **23**, 119–125 (2009).

1105 200. G. Taylor, A. Thomas, *Evolutionary Biomechanics: Selection, Phylogeny, and*
1106 *Constraint* (Oxford University Press, Oxford, 2014).

1107 201. T. E. Higham, S. M. Rogers, R. B. Langerhans, H. A. Jamniczky, G. V. Lauder, W. J.
1108 Stewart, C. H. Martin, D. N. Reznick, Speciation through the lens of biomechanics:
1109 locomotion, prey capture and reproductive isolation. *Proceedings of the Royal*
1110 *Society B: Biological Sciences*. **283**, 20161294 (2016).

1111 202. M. M. Muñoz, S. A. Price, The Future is Bright for Evolutionary Morphology and
1112 Biomechanics in the Era of Big Data. *Integrative and Comparative Biology*. **59**, 599–
1113 603 (2019).

1114 203. F. A. Karakostis, D. Haeufle, I. Anastopoulou, K. Moraitis, G. Hotz, V. Tourloukis, K.
1115 Harvati, Biomechanics of the human thumb and the evolution of dexterity. *Current*
1116 *Biology*. **31**, 1317–1325 (2021).

1117 204. A. M. Hein, C. Hou, J. F. Gillooly, Energetic and biomechanical constraints on
1118 animal migration distance. *Ecology Letters*. **15**, 104–110 (2012).

1119 205. R. E. Ley, M. Hamady, C. Lozupone, P. J. Turnbaugh, R. R. Ramey, J. S. Bircher,
1120 M. L. Schlegel, T. A. Tucker, M. D. Schrenzel, R. Knight, J. I. Gordon, Evolution of
1121 Mammals and Their Gut Microbes. *Science*. **320**, 1647–1651 (2008).

1122 206. K. D. Kohl, An Introductory “How-to” Guide for Incorporating Microbiome Research
1123 into Integrative and Comparative Biology. *Integrative and Comparative Biology*. **57**,
1124 674–681 (2017).

1125 207. K. D. Kohl, E. T. Sadowska, A. M. Rudolf, M. D. Dearing, P. Koteja, Experimental
1126 Evolution on a Wild Mammal Species Results in Modifications of Gut Microbial
1127 Communities. *Frontiers in Microbiology*. **7** (2016), doi:10.3389/fmicb.2016.00634.

1128 208. W. T. Loo, R. Y. Dudaniec, S. Kleindorfer, C. M. Cavanaugh, An inter-island
1129 comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and
1130 island on the gut microbiome. *PLoS ONE*. **14**, e0226432 (2019).

1131 209. M. P. McNamara, J. M. Singleton, M. D. Cadney, P. M. Ruegger, J. Borneman, T.
1132 Garland, Early-life effects of juvenile Western diet and exercise on adult gut
1133 microbiome composition in mice. *Journal of Experimental Biology*. **224** (2021),
1134 doi:10.1242/jeb.239699.

1135 210. D. M. Tufts, C. Natarajan, I. G. Revsbech, J. Projecto-Garcia, F. G. Hoffmann, R. E.
1136 Weber, A. Fago, H. Moriyama, J. F. Storz, Epistasis Constrains Mutational

1137 Pathways of Hemoglobin Adaptation in High-Altitude Pikas. *Molecular Biology and*
1138 *Evolution*. **32**, 287–298 (2015).

1139 211. J. T. Bridgham, S. M. Carroll, J. W. Thornton, Evolution of hormone-receptor
1140 complexity by molecular exploitation. *Science*. **312**, 97–101 (2006).

1141 212. D. D. Ackerly, S. A. Dudley, S. E. Sultan, J. Schmitt, J. S. Coleman, C. R. Linder, D.
1142 R. Sandquist, M. A. Geber, A. S. Evans, T. E. Dawson, M. J. Lechowicz, The
1143 Evolution of Plant Ecophysiological Traits: Recent Advances and Future
1144 DirectionsNew research addresses natural selection, genetic constraints, and the
1145 adaptive evolution of plant ecophysiological traits. *BioScience*. **50**, 979–995 (2000).

1146 213. M. E. Feder, Plant and Animal Physiological Ecology, Comparative
1147 Physiology/Biochemistry, and Evolutionary Physiology: Opportunities for Synergy:
1148 An Introduction to the Symposium1. *Integrative and Comparative Biology*. **42**, 409–
1149 414 (2002).

1150 214. C. Gudin, *Une histoire naturelle de la séduction* (Éditions du Seuil, Paris, 2003).

1151 215. M. E. Feder, T. Garland, J. H. Marden, A. J. Zera, Locomotion in Response to
1152 Shifting Climate Zones: Not So Fast. *Annual Review of Physiology*. **72**, 167–190
1153 (2010).

1154 216. Z. W. Culumber, M. Tobler, Correlated evolution of thermal niches and functional
1155 physiology in tropical freshwater fishes. *Journal of Evolutionary Biology*. **31**, 722–
1156 734 (2018).

1157 217. M. C. Miles, F. Goller, M. J. Fuxjager, Physiological constraint on acrobatic courtship
1158 behavior underlies rapid sympatric speciation in bearded manakins. *eLife*. **7**, e40630
1159 (2018).

1160 218. B. G. Lovegrove, Obligatory Nocturnalism in Triassic Archaic Mammals:
1161 Preservation of Sperm Quality? *Physiological and Biochemical Zoology*. **92**, 544–
1162 553 (2019).

1163 219. M. N. Vitousek, M. A. Johnson, C. J. Downs, E. T. Miller, L. B. Martin, C. D. Francis,
1164 J. W. Donald, M. J. Fuxjager, W. Goymann, M. Hau, J. F. Husak, B. K. Kircher, R.
1165 Knapp, L. A. Schoenle, T. D. Williams, Macroevolutionary Patterning in
1166 Glucocorticoids Suggests Different Selective Pressures Shape Baseline and Stress-
1167 Induced Levels. *American Naturalist*. **193**, 866–880 (2019).

1168 220. A. C. de O. Neves, I. Galván, Models for human porphyrias: Have animals in the
1169 wild been overlooked? *BioEssays*. **42**, 2000155 (2020).

1170 221. S. Rodríguez-Martínez, R. Márquez, Â. Inácio, I. Galván, Changes in melanocyte
1171 RNA and DNA methylation favour pheomelanin synthesis and may avoid systemic
1172 oxidative stress after dietary cysteine supplementation in birds. *Molecular Ecology*.
1173 **28**, 1030–1042 (2019).

1174 222. I. Galván, Predation risk determines pigmentation phenotype in nuthatches by
1175 melanin-related gene expression effects. *Journal of Evolutionary Biology*. **31**, 1760–
1176 1771 (2018).

1177 223. I. Galván, S. Rodríguez-Martínez, Females mate with males with diminished
1178 pheomelanin-based coloration in the Eurasian nuthatch *Sitta europaea*. *Journal of*
1179 *Avian Biology*. **49**, e01854 (2018).

1180
1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201 **Acknowledgments**

1202 Funding: **T.G. was supported by U.S. National Science Foundation grant DEB-**

1203 **1655362**; Authors contributions: ; Competing interests: **No competing interests**

1204 **declared**; Data and materials availability: **All data is available in the manuscript or the**

1205 **supplementary materials**.

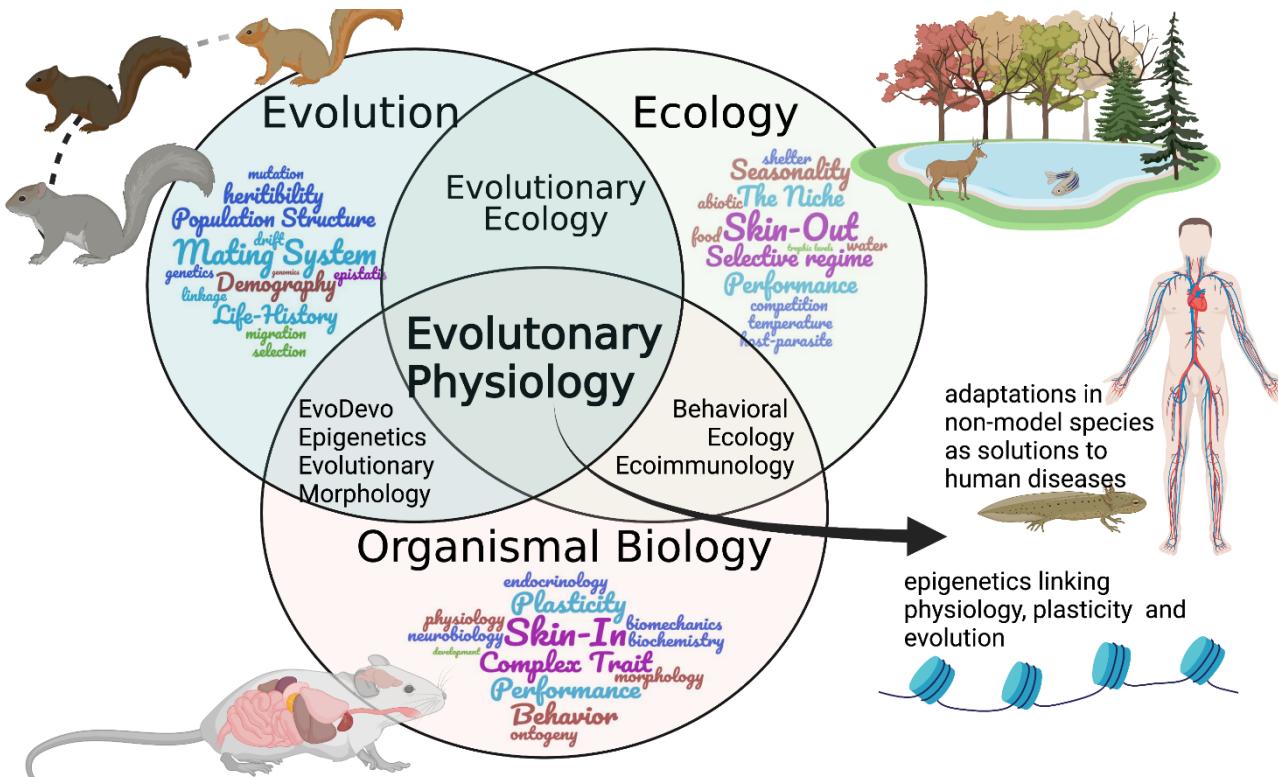
1206

1207

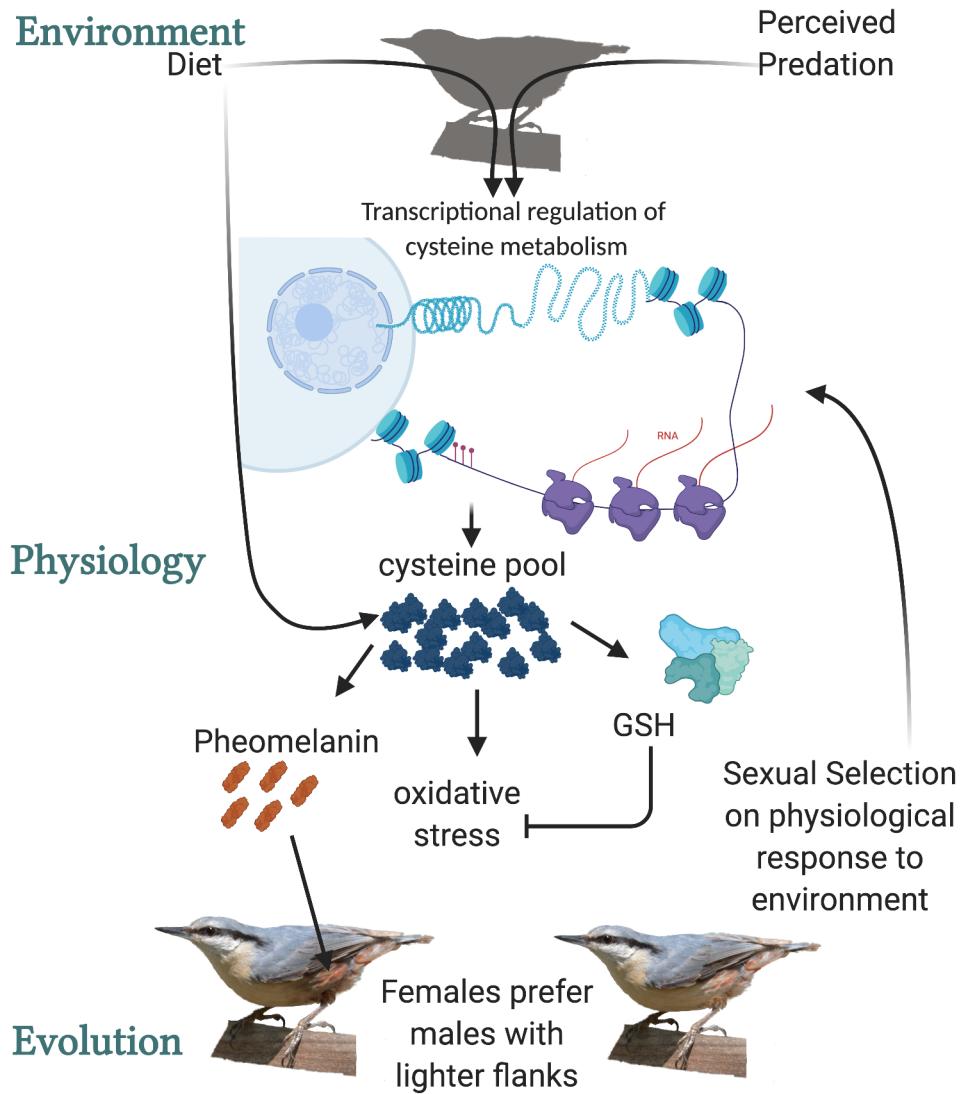
1208

1209

1210


1211

1212


1213

1214

1215

1216 **Figure 1.** Evolutionary physiology resides in the intersection of evolution, ecology, and
1217 organismal biology.

1218

1219 **Box 1. Environmental epigenetics of pigmentation genes.** Synthesis of the pigment
 1220 pheomelanin in melanocytes of developing Eurasian nuthatches *Sitta europaea* is
 1221 regulated, in part, by some genes of cysteine metabolism whose expression can be
 1222 affected by two environmental factors defined at the top of the diagram: availability of
 1223 cysteine in the diet and perceived predation risk. At the physiological level, excess dietary
 1224 cysteine alters the expression of these genes by modifying DNA and RNA methylation
 1225 levels, promoting pheomelanin synthesis and resulting in flank plumage patches of
 1226 increased pigmentation intensity. In this way, the epigenetic changes promote usage of

1227 the excess cysteine for pheomelanin synthesis. The excess cysteine would otherwise
1228 cause cellular oxidative stress, thus the epigenetic changes are physiologically adaptive in
1229 an environment that is rich in dietary cysteine (221). Higher levels of perceived predation
1230 risk produce opposite changes in the expression of these genes, limiting pheomelanin
1231 synthesis and resulting in flanks of reduced pigmentation intensity. As cysteine is a
1232 constituent amino acid of the main cellular antioxidant (i.e., glutathione, GSH), these
1233 changes may also be adaptive because they increase the antioxidant capacity and thus
1234 allow the animal to avoid oxidative stress/damage expected from predation risk (222). At
1235 the level of evolution, these changes in the pigmentation of nuthatches have
1236 consequences for sexual selection, as adult females mate preferentially with males
1237 showing flanks of reduced pigmentation intensity (223). Thus, the physiological
1238 responses to perceived predation risk lead to reduced pigmentation intensity, in addition to
1239 providing immediate physiological benefits, and are probably favored by sexual selection.