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Abstract 24 

More than 30 years ago, synergistic effects of the interaction between evolutionary biology 25 

and physiology gave rise to the field of evolutionary physiology.  This caused comparative 26 

physiologists to improve their research methods by incorporating evolutionary thinking.  27 

Simultaneously, evolutionary biologists began focusing more on physiological mechanisms 28 

that may help to explain constraints on and trade-offs during microevolutionary processes, 29 

as well as macroevolutionary patterns in physiological diversity.  Here we argue that 30 

evolutionary physiology has yet to reach its full potential, and propose new avenues that 31 

may lead to unexpected advances.  Viewing physiological adaptations in wild animals as 32 

potential solutions to human diseases offers enormous possibilities for biomedicine.  New 33 

evidence of epigenetic inheritance that regulates physiological traits may also arise in 34 

coming years, which would represent an overlooked enhancer of natural selection to explain 35 

physiological evolution.  Synergistic interactions at these intersections and other areas will 36 

lead to a novel understanding of organismal biology.  37 
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Enhanced Abstract 49 

Background 50 

More than 30 years ago, synergistic effects of the interaction between evolutionary biology 51 

and physiology gave rise to the new field of evolutionary physiology.  Explanations for how 52 

organisms work do not require knowledge of their evolutionary origin nor of ecological 53 

circumstances that cause ongoing natural or sexual selection, but it was realized that 54 

considering these factors provided a more integrative view of organismal biology.  This 55 

view caused comparative and ecological physiologists to improve their research methods 56 

by incorporating evolutionary thinking.  Simultaneously, evolutionary biologists began 57 

focusing more on physiological mechanisms that may help to explain constraints on and 58 

trade-offs during microevolutionary processes, as well as macroevolutionary patterns in 59 

physiological diversity.  This cross-fertilization resulted in the development and wide 60 

application of phylogenetic comparative analyses that allowed separation of the effects of 61 

common ancestry from recent adaptation.  Selection experiments elucidated diverse 62 

pathways of physiological evolution that were then traced to genetic variants.  The 63 

genetic/genomic revolution also fostered studies of the molecular basis of physiological 64 

variation and evolutionary adaptation in natural populaitons of a wide range of organisms, 65 

including humans.        66 

 67 

Advances 68 

We briefly review the significant progress that has occurred as a consequence of 69 

reciprocal illumination between evolutionary biology and physiology since the advent of 70 

evolutionary physiology three decades ago.  Evolutionary biology has led physiology back 71 

to its original aim of providing a comprehensive view of organismal function and human 72 

pathology, by providing a rigorous framework within which to conduct comparisons among 73 

species.  The study of wild animals beyond traditional laboratory models has revealed 74 
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performance in many physiological processes superior to humans, which has facilitated 75 

the understanding of the synthesis of biologically active compounds, including peptide-76 

processing enzymes and estrogens for medical purposes.  This has also inspired new 77 

strategies for combating various disorders and conditions, such as porphyrias, macular 78 

degeneration, aging, and tissue loss.  Studies on wild animals have informed our 79 

understanding of the endogenous contraints limiting physiological adaptation to the 80 

environment.  At the same time, physiology has shown potential to explain both the 81 

evolutionary origin of particular traits, such as honest communication mechanisms, and 82 

the process of genetic adaptation, which directly depends on physiological variation.  83 

Physiological explanations of adaptations are exemplified by experiments on birds, where 84 

fluctuating environmental factors have been shown to induce epigenetic modifications in 85 

genes of cysteine metabolism, in their expression, and in the production of associated 86 

pigments that affect the external body appearance.  These changes have been proven 87 

physiologically adaptive as they offer protection from environmental stressors, and the 88 

associated changes in pigmentation are open to sexual selection.  These types of studies 89 

reveal a nexus between environment, physiology and evolution.  In fact, advances in the 90 

molecular basis of epigenetic modifications have revealed these as a source of phenotypic 91 

plasticity in multiple organisms, underpinning previously unsuspected mechanisms of 92 

physiological adaptation to the environment. 93 

 94 

Outlook 95 

Notwithstanding its many successes, we argue that evolutionary physiology has yet to 96 

reach its full potential.  Here we propose new avenues that may lead to unexpected 97 

advances in this field.  Viewing physiological adaptations in wild, non-model species of 98 

animals as potential solutions to human diseases offers enormous possibilities for 99 

biomedicine, and may lead to novel perceptions of the human condition.  New evidence of 100 
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environmentally induced transgenerational epigenetic inheritance that regulates 101 

physiological traits may also arise in coming years, which would represent an overlooked 102 

enhancer of natural selection to explain physiological evolution.  Synergistic interactions at 103 

these intersections and other areas will lead to a novel understanding of organismal 104 

biology. 105 

 106 

Introduction 107 

 Since the first appearances of an identifiable field of evolutionary physiology more 108 

than three decades ago (1, 2), both evolutionary biology and physiology have benefited.  109 

Evolutionary biology has provided physiology with such tools as phylogenetic analyses 110 

(3), selection experiments (4), and genetic/genomic analyses (e.g., (5–7)).  At the same 111 

time, physiology and biochemistry have enhanced knowledge of the functional 112 

mechanisms that underlie various evolutionary processes and phenomena, including 113 

epigenetic inheritance, adaptation, allometric relationships, trade-offs, constraints, and 114 

convergence (8–13).  We believe, however, that evolutionary physiology, as originally 115 

outlined (14–16), has yet to reach its full potential.  We provide a brief perspective on the 116 

field, from the outlook of vertebrate biologists, with the goal of pointing the way towards its 117 

enhancement and maturation.  We would also direct readers to other papers that provide 118 

partial reviews of evolutionary physiology and discussions of future directions (7, 17–24). 119 

 Evolutionary physiology sits at the intersection of evolution, ecology, and 120 

organismal biology (Figure 1).  Most generally, physiology is the study of how organisms 121 

work.  (We include within "physiology" such related areas of biochemistry, neurobiology, 122 

endocrinology, functional morphology, and biomechanics.)  Elucidating the mechanisms 123 

that underpin organismal function does not require an explanation for their origin, nor does 124 

it require an understanding of why these mechanisms continue to be favored (or become 125 

disfavored) by ongoing natural or sexual selection in the wild, as dictated by ecological 126 
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circumstances (e.g., see (25–27)).  Rather, understanding the origin and maintenance of 127 

traits and characteristics at all levels of biological organization is the provenance of 128 

evolutionary biology.  Understanding the evolution of physiological mechanisms equals 129 

understanding their causes at both proximate and ultimate levels (25), which promotes 130 

comprehension of factors that facilitate and constrain evolutionary processes (e.g., see 131 

(27–31)), as well as the causes of and solutions to human pathologies (32, 33).  The 132 

influence of rigorous evolutionary thinking on physiology has resulted in the rise of 133 

evolutionary medicine (34, 35), but it has also led to more sophisticated analyses and 134 

approaches in non-medical physiology.   135 

 We believe that the aims and scope of evolutionary physiology should now be 136 

revisited to explore new possibilities derived from the synergy between evolutionary 137 

biology and physiology.  We first highlight three now-familiar approaches in modern 138 

evolutionary physiology, none of which were common three decades ago.  We then 139 

provide some examples illustrating how evolutionary thinking has influenced physiology 140 

and vice versa, and in so doing we propose new avenues that may lead to unexpected 141 

advances in both disciplines. 142 

 143 

Three well-established approaches 144 

 145 

Phylogenetically informed comparative studies 146 

 Of the various tools that evolutionary physiology has adopted from evolutionary 147 

biology, none has had a greater impact than the use of phylogenetic comparative methods 148 

(36).  These approaches were in rapid development when comparative and ecological 149 

physiologists were first encouraged to take advantage of them (e.g., (15, 37–42)).  150 

Formalized procedures for phylogenetically based statistical analyses (36, 43, 44) have 151 

caused a mini-revolution in evolutionary biology, and this has been reflected in 152 
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comparative physiology (3, 45).  Phylogenetically informed analyses have improved, for 153 

example, the understanding of aging mechanisms in animals (46, 47), the evolution of 154 

endothermy (48) and of diving (49), and the diversity of photosynthesis types in plants 155 

(50). 156 

 157 

Selection experiments and experimental evolution 158 

 Moving from macroevolutionary to microevolutionary analyses, selection 159 

experiments and experimental evolution in both laboratory and field settings have 160 

provided unique insights regarding adaption, coadaptation, and the genetic/genomic 161 

mechanisms of evolutionary change (4, 51, 52).  For example, Lenski and colleagues had 162 

maintained 12 populations of E. coli in the laboratory for more than 25 years and 60,000 163 

generations (53, 54).  Among various results, they discovered a trade-off between growth 164 

on glucose and acetate involving two metabolic "ecotypes" that can stably coexist.  Each 165 

ecotype has a competitive advantage when rare, which it loses when it becomes more 166 

common.   167 

 As a vertebrate example, Garland and colleagues began replicated artificial 168 

selection for voluntary exercise behavior in laboratory house mice in 1993, and the 169 

experiment has now proceeded for more than 90 generations.  Numerous correlated 170 

responses have been documented at the levels of both motivation for physical activity and 171 

ability to sustain aerobic exercise, including increased endurance and maximal oxygen 172 

consumption during forced exercise, changes in muscle size and fiber type composition, 173 

skeletal alterations, endocrine changes, and brain changes (55–59).  174 

 175 

Evolutionary genetics and genomics 176 

 The low cost of sequencing has led to a genetic and genomic revolution that has 177 

found its way into all approaches and areas of biology, including selection experiments 178 
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and experimental evolution (60–62), the study of adaptation in natural populations (63–179 

67), and the study of human morphological and physiological evolution (68, 69).  As one 180 

example, the killifish, Fundulus heteroclitus, has been a subject of studies in evolutionary 181 

genetics, biochemistry, and physiology since the late 1970s (e.g., see references in (15, 182 

70)).  Overall, decades of studies have led to the conclusion that evolutionary adaptation 183 

related to the glycolytic enzyme lactate dehydrogenase B has involved small changes in 184 

the allele frequencies of many genes, and these changes are manifest at the levels of 185 

transcription, biochemistry, metabolism, osmoregulation, and whole-organism physiology 186 

(71). 187 

 188 

Evolutionary biology influences physiology  189 

 190 

Non-model species widen knowledge in animal physiology 191 

 Traditionally, and justifiably, physiology has focused on human beings to find 192 

solutions to disease and other pathological conditions (72).  However, given the difficulty, 193 

cost, and ethical issues involved with conducting human studies, the use of "animal 194 

models" to elucidate aspects of human physiology became widespread.  Although other 195 

animal models are available for particular physiological processes (e.g., (73)), the house 196 

mouse Mus musculus is by far the most common animal model in physiology, as it is in 197 

most biological sciences. 198 

 Early studies in comparative physiology recognized that the neglect of among-199 

species comparisons was retarding the progress of physiology and pathology (74), but still 200 

usually had elucidation of human physiology as the ultimate goal.  And comparative 201 

physiology has a long history of contributions to basic physiology, including relevance to 202 

humans (33, 75).  For example, Mathew Kluger’s studies of thermoregulation and 203 

behavioral fever in lizards (76–78) and Fred White’s studies of acid-base balance during 204 
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hypothermia in reptiles (references in (15)) have affected the way physicians view and 205 

treat human patients.  206 

 Although the majority of animal physiological research has at least an implicit focus 207 

on human beings, evolutionary biology addresses all biological diversity.  Therefore, by 208 

not limiting studies to humans, mice, and other laboratory animals, evolutionary biology 209 

necessarily considers physiological systems different from those represented by traditional 210 

animal models.  This represents an opportunity to widen the general knowledge on animal 211 

physiology, and to find unsuspected ways to treat human pathology that could not be 212 

approached with traditional animal models (e.g., see (33, 79, 80)).  Beyond species that 213 

produce substances such as venoms that are useful for the preparation of drugs (81), 214 

many wild non-model species present physiological processes that are similar to those of 215 

humans, and sometimes have superior performance.  We refer to species whose 216 

maintenance and breeding in captivity are not as easily achievable as in laboratory 217 

animals.  Such species represent a great potential to offer solutions to human pathology.   218 

 Examples include many species of frogs that store in the skin an extraordinary 219 

diversity of biologically active peptides at high concentrations, many of which have 220 

mammalian counterparts, thus representing a source for discovering new hormones, 221 

neuropeptides, and peptide-processing enzymes that might not be as readily found with 222 

conventional animal models (82).  Several species of songbirds and teleost fishes have 223 

unusually high levels of aromatase activity that make them interesting models to 224 

understand the mechanisms of estrogen synthesis (83).  Wild rodent species have been 225 

proposed as a resource for research on immunity and infection, given their high genetic 226 

diversity and environmental pressures to which they are exposed as compared with 227 

laboratory rodents (84).  In 1971, it was found that fox squirrels Sciurus niger accumulate 228 

large amounts of the pigment uroporphyrin I in internal organs and the skin due a very low 229 

activity of the enzyme uroporphyrinogen III synthase in different tissues under healthy 230 
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conditions (85).  In humans, congenital erythropoietic porphyria is caused by a defect in 231 

uroporphyrinogen III synthase that leads to a similar low enzymatic activity and 232 

uroporphyrin I overproduction, which allowed researchers to propose the fox squirrel as an 233 

animal model for this disease (86).  The Honduran white bat (Ectophylla alba) has recently 234 

been reported as the first mammal that has evolved the physiological capacity to esterify 235 

and deposit high amounts of carotenoid pigments in the skin, thus constituting a model 236 

that may help to improve the assimilation of carotenoids in humans and avoid macular 237 

degeneration (87).  The study of all these species was not primarily motivated by 238 

physiological questions.  Instead, these studies were started by researchers investigating 239 

evolutionary and ecological aspects of these species (e.g., (88)), and interest in 240 

physiology arose later.         241 

 Non-model species have also contributed to our understanding of the process of 242 

aging.  How animals age is determined by the failures of physiological processes. 243 

Understanding why different physiological processes fail faster or slower in different 244 

organisms can bring insight to the evolution of cellular protection and repair processes, as 245 

well as the evolution of life histories (89, 90).  For example, a comparison across 18 246 

rodents species with lifespan ranging from two (mice) to 30 years (beavers) determined 247 

that the ability to repair double-strand breaks in DNA (via SIRT6) is a tight correlate of long 248 

lifespan (91).  Although humans express IGF2 at high levels as adults (92), biomedical 249 

rodent models do not (93, 94), resulting in this hormone being understudied in the context 250 

of senescence.  Recent studies demonstrate that reptiles and birds express IGF2 at high 251 

levels in adulthood (95, 96), similar to humans, providing new model systems to study the 252 

physiological effects of this hormone. 253 

 Many non-model species exhibit regenerative abilities that are coveted by the 254 

biomedical community (97, 98).  Within vertebrates, there is considerable diversity in the 255 

degree to which a species can regenerate tissue and which types of tissues can be 256 
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regenerated (99), with a clear phylogenetic signal of reduced regenerative abilities moving 257 

from fish and amphibians to amniotes and then to mammals.  Some species of fish and 258 

amphibians have incredible regenerative capacities, including whole limbs (97, 100–102), 259 

eyes (103), and internal organs (104, 105).  In newts, for example, after the complete 260 

removal of the lens from the eye, the lens can be de novo regenerated from the dorsal iris 261 

cells that can undergo a dedifferentiation process (106).  Within reptiles the regenerative 262 

diversity is more restricted, the best known example being tail regeneration in many lizard 263 

species that is associated with autotomy as an anti-predator defense, but brain tissue and 264 

optic nerve regeneration has also been demonstrated in lizards (107).  Snakes, which are 265 

derived from lizards, have lost the ability to regenerate their tails, but some have rapid 266 

organ regeneration.  For example, pythons may go months without feeding, during which 267 

time their digestive organs regress in size.  Within hours to days of refeeding, the intestine 268 

regenerate thorough hyperplasia and hypertrophy to accommodate the physiological 269 

demands of processing the meal (108–110).  In contrast, significant regeneration in adult 270 

mammals is largely restricted to the liver (111) and antler regeneration in deer (112), 271 

whereas other types of limb loss and tissue damage typically result in scarring.  272 

Comparative studies across these non-model species have begun to illuminate common 273 

factors in exceptional regenerative abilities, including the maintenance of juvenile 274 

physiology or the ability to reactivate an embryonic cellular program, and the need for the 275 

regenerating tissues to “hide” from the immune system similar to cancerous tumors (113–276 

115).  277 

 Examples like those described in the previous paragraphs, with an identified 278 

potential to provide solutions to specific human health issues, do not abound in the 279 

literature.  Furthermore, the utility of these cited systems to widen general physiological 280 

knowledge is only beginning to be considered, and only in some cases (116).  A 281 

remarkable example is the fox squirrel mentioned above, which was was proposed as a 282 
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model for human congenital erythropoietic porphyria in the 1970s, with a great potential to 283 

provide insights into physiological mechanisms that avoid the toxicity of porphyrin 284 

accumulation (85, 86), a proposal that has been overlooked.  The use of physiological 285 

systems represented in wild, non-model species of animals studied by evolutionary 286 

biologists certainly remains an underexplored and promising area for physiologists, 287 

especially given that model and non-model species may differ in systematic ways (117), 288 

although this may often require the development of new tools (e.g., see (118, 119)). 289 

 290 

Physiological characteristics affect the capacity for physiological adaptation 291 

 The concept of adaptation is central to biology, but the term is used in two distinct 292 

ways (120–122).  First, "evolutionary adaptation" refers to cross-generational changes in 293 

the allele frequencies of populations in response to natural selection.  Second, 294 

"physiological adaptation" refers to changes that occur within individuals in response to 295 

external (or internal) stimuli and that lead to homeostasis and/or improved abilities to 296 

perform various tasks and/or improved Darwinian fitness (the beneficial acclimation 297 

hypothesis: (123–125)).  Some capacity for physiological adaptation is, of course, 298 

adaptive in an evolutionary sense.  In any case, the mechanistic basis of all evolutionary 299 

adaptation is necessarily physiological at some level (126).   300 

 Evolutionary studies that include examination of physiological adaptation illustrate 301 

the potential to discover the mechanisms by which organisms cope with fluctuating 302 

environments as well as directional climate change (e.g., (127–129)).  In 16 species of 303 

birds inhabiting Chernobyl, for example, physiological adaptation occurs in the systemic 304 

levels of the master cellular antioxidant (glutathione, GSH) and in the capacity to avoid 305 

DNA damage as a response to exposure to ionizing radiation, which generates oxidative 306 

stress (130).  The degree of this adaptation, however, depends at least in part on the 307 

amount of the pigment pheomelanin that birds produce in their plumage, as pheomelanin 308 
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synthesis consumes cysteine (a constitutive amino acid of GSH), produces free radicals 309 

upon radiation exposure, and may thus cause chronic oxidative stress (130).  Although 310 

these studies do not demonstrate the exact mechanism by which physiological adaptation 311 

in response to ionizing radiation occurs, they do clearly show that antioxidant-demanding 312 

processes, such as pheomelanin synthesis, can be constraining factors in physiological 313 

adaptation.   314 

 The foregoing avian example illustrates that some characteristics of organisms limit 315 

their ability for physiological adaptation.  For instance, as in many other organisms, the 316 

production of heat-shock proteins is a common response of notothenioid fishes against 317 

thermal stress, as this allows restoration of heat-denatured proteins (131).  The activation 318 

of this stress response requires modulating the expression of genes that regulate heat-319 

shock protein production in a temperature-dependent manner.  However, some species 320 

with an evolutionary thermal history that has not favored phenotypic plasticity for 321 

temperature-mediated gene expression are limited in their ability to acclimate to increased 322 

temperatures (132).   323 

 Similarly, the exposure of birds and mammals to hypoxia activates changes in the 324 

expression of some genes that affect O2 transport and erythropoiesis, but the performance 325 

of this physiological adaptation depends on whether the animals are previously 326 

acclimatized to living at low or high altitudes (133).  Also, the capacity of melanins to 327 

absorb solar radiation means that the pigmentation pattern of animals partly determines 328 

their ability to cope with thermal stress; thus, darker birds may be somewhat limited from 329 

occupying environments with high temperatures (134).  These sorts of characteristics of 330 

organisms can be viewed as endogenous constraints and they exemplify how the 331 

evolution of certain traits helps explain the capacity of animals to achieve physiological 332 

adaptation to the environments where they live, both in terms of phenotypic plasticity and 333 

cross-generational genetic changes (71, 120, 135).  Detailed investigations of the 334 
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mechanisms that facilitate or constrain the ability for physiological adaptation are an 335 

exciting future direction for evolutionary physiology and may also facilitate finding 336 

solutions to diseases related to allostatic load (136). 337 

 338 

Physiology informs evolutionary biology 339 

 340 

The evolution of honest signals has a physiological basis 341 

 Biological communication is mainly driven by signals, traits that evolve because of 342 

the benefits obtained by their recipients (137).  When signals can allow the Darwinian 343 

fitness (reproductive success) of their recipients to improve, they are considered "honest."  344 

This appears to be the case for most biological traits that fulfill a signaling role (138).  345 

Signal honesty is closely related to the concept of individual quality.  As stated in the 346 

handicap principle, a cornerstone of behavioral ecology, ethe production of large 347 

(expensive) signals is limited to high-quality signalers because low-quality ones cannot 348 

afford the costs derived from signal production (139).  However, this explanation has been 349 

challenged in recent years because costs for low-quality individuals are frequently not 350 

found in empirical studies, and, indeed, natural selection is not expected to favor the 351 

evolution of signals when it implies incurring substantive costs (140, 141).  As a 352 

consequence, the existence of costs predicted by the handicap principle is not fully 353 

accepted by evolutionary biology, which currently lacks an integrated approach to explain 354 

the concept of individual quality and the evolution of honesty. 355 

 Recent physiological experiments on the classical honest signaling system of the 356 

black bib of male house sparrows (Passer domesticus) illustrate the possibility that costs 357 

are not necessary to explain why low-quality individuals do not develop high-quality 358 

signals (i.e., large bibs).  Large bibs are associated with low amounts of the pigment 359 

pheomelanin in their constitutive feathers, which allows researchers to experimentally 360 
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create physiological conditions that favor the production of small or large bibs by exposing 361 

birds to substances that act as inhibitors or enhancers of pheomelanin synthesis (142, 362 

143).  Despite these induced physiological conditions, the resulting phenotype could be 363 

manipulated in high-quality birds (i.e., those with largest bibs initially) only.  A physiological 364 

mechanism may therefore exist in low-quality individuals that makes them less sensitive to 365 

environmental factors than high-quality individuals, which prevents low-quality individuals 366 

from producing high-quality signals even if they took the "decision" to do so or if 367 

environmental conditions favored the production of large signals (142, 143).  368 

 The experiments on the signaling system of male house sparrows exemplify how 369 

the details of the machinery controling the expression of signals can explain their honesty 370 

without the costs predicted by the handicap principle.  Although specific to visual traits 371 

whose production is mediated by the synthesis of melanin pigments, these experiments 372 

show that the evolution of honesty can have a physiological basis.  Similar studies on the 373 

physiological basis of trait production in other honest signaling systems, including those in 374 

humans (144), may provide a more general concept of individual quality and consequently 375 

represent a new understanding of this aspect of biological communication. 376 

 377 

Elucidating the physiological underpinnings of evolutionary adaptations  378 

 Evolutionary physiology can play a fundamental role in identifying the mechanisms 379 

by which adaptations arise (e.g., see (8, 15, 16, 31, 67, 71, 120, 126, 145–147)).  As 380 

evolutionary adaptations directly depend on physiology, physiology has the potential to 381 

provide a conjectural background to understand them (e.g., see (148, 149)).  Examples of 382 

this include simple economical ideas applied to understand the evolution of pigmentation 383 

phenotypes (150) and theories of sensory cue integration helping to understand the 384 

evolution of perception capacity (151). 385 
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 Research methods in physiology have always strongly relied on experimental 386 

manipulations of biological processes (152) and the advent of molecular tools, such as 387 

CRISPR, allow manipulations at the level of the genome to prove physiological 388 

mechanisms.  Although evolutionary adaptations have been linked to specific genes in a 389 

growing number of cases (e.g., (9, 64, 153–156)), typically these genes fit in to molecular 390 

networks—interactions among genes, proteins, and RNAs that are coordinated within the 391 

cell—to regulate physiological outcomes.  Selection acting on a larger network makes it 392 

much harder to detect effects on particular loci because the impact can be shared across 393 

loci with relatively small effect, and the probability of pleiotropic effects is high in a 394 

network.  Moreover, the experimental manipulation of multiple genes concurrently to 395 

understand their physiological effects is much more difficult than changing single genes. 396 

 Rather than attempting to manipulate genes directly, selection experiments focused 397 

at behavioral or other whole-organism levels can be used to understand how evolution 398 

can bring about adaptations through shaping of a molecular network.  Dog are a great 399 

example, having been under artificial selection for thousands of years, resulting in breeds 400 

defined by form, function, and behavior (157).  The evolutionary response to selection that 401 

targeted growth, strength, and body size has involved the insulin and insulin-like signaling 402 

(IIS) network (158, 159).  This molecular network integrates over 100 genes, and this 403 

network has been studied extensively for its pleiotropic effects on both early (growth and 404 

reproduction) and late life (rate of aging) traits in various model organisms (160, 161).  405 

Selection has sorted alleles by dog breed for at least seven loci, and most of these genes 406 

are in or related to the IIS network (159).  The allelic variation at these seven loci explains 407 

over 50% of the variation in body size among breeds.  Together, in the context of the 408 

function of the IIS network on the cellular and organismal physiology, the alleles in the 409 

small-bodied breeds (e.g. Chihuahua) reduce the cellular signaling through IIS network 410 
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resulting in the correlated phenotypes of small body, small litters, and longer lifespans 411 

relative to the larger breeds (e.g. Mastiff) (158, 159, 162, 163). 412 

 Sensory systems also provide clear illustrations of how physiological knowledge 413 

helps us to understand evolutionary adaptations (see also examples in (8)).  In the most 414 

general sense, the sensory perception of organisms depends on their physiological 415 

allocation to the systems involved.  This physiological allocation differs among species 416 

and even individuals, but this does not mean that perceived objects are only the product of 417 

neuronal activity nor that the brain produces realistic models without capturing reality itself.  418 

The chromatic experience of animals, for example, is not only a type of neural state or 419 

process, but also reflects to a large degree the color of the objects being perceived as a 420 

physical attribute of these objects.  Color perception is thus the combination of an 421 

objective and a subjective experience, the former greatly influencing the 422 

ecological/evolutionary implications of perceiving the color of given objects (164).  Color 423 

interpretation in some evolutionary studies has been made in a way that gives much 424 

weight to the subjective component of color perception (e.g., 'Color is not an inherent 425 

property of the object; it is a product of the brain of the animal perceiving the object', 426 

(165)), but it must be remembered that color is also a physical attribute of the objects.  427 

Considering the objective component of color perception may be useful in interspecific 428 

comparisons of animal coloration, and thus provide clues into the adaptiveness of color 429 

traits.  Indeed, human vision can detect much of the variation in bird coloration in the 430 

visible range and also provide a valid proxy for avian perception of such color traits as 431 

sexual dichromatism (166, 167), suggesting that considering color exclusively as a neural 432 

state may be an incomplete view.  That color resides in both the objects being perceived 433 

and in the brain of the perceiving animals is known in neuroscience since the 1990s, 434 

notably through the work of Francisco J. Varela and others (164, 168).  Considering this 435 
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theoretical background of sensory physiology may therefore help in gaining a deeper 436 

insight into the adaptive value of color phenotypes. 437 

 438 

The role of epigenetics in physiological and evolutionary adaptation 439 

 Use of the term "epigenetic" has changed over time, but currently it usually refers to 440 

chemical modifications on the DNA, RNA, or associated proteins that regulate the genome 441 

(and the expression of genes), without changes in the DNA sequence (169, 170).  In the 442 

last 30 years, the molecular basis for how epigenetic modifications can result in 443 

phenotypic plasticity has been revealed in different organisms (171–173).  Such 444 

epigenetic plasticity can be induced by environmental factors, and such alterations have 445 

been identified as important mechanisms underlying physiological adaptation of 446 

organisms to a diversity of environments (174, 175).  Epigenetic plasticity thus acts as a 447 

potential enhancer of physiological adaptation. Examples of this are studies of teleost fish 448 

where a concerted role for DNA methylation and histone modifications induced by 449 

hypoxia, thermal stress, osmotic challenges, and starvation has been shown to regulate 450 

the expression of genes involved in, respectively, apoptosis, folate metabolism, osmotic 451 

stress transcription factors and autophagy (176).  Such changes may facilitate 452 

physiological adaptations to environmental conditions and, in some cases, also affect 453 

external phenotypic traits on which selection can act (for another example, see Box 1).  454 

If the epigenetic plasticity is inherited, this may provide an additional, accelerated 455 

pathway for evolutionary adaptation (177, 178).  For example, the response to hypoxia 456 

involves epigenetic modifications to open the chromatin at regulatory elements to allow 457 

transcription of genes, such as EPAS1 (179).  A change in the timing of this chromatin 458 

opening during the hypoxia response appears be part of the adaptive response to hypoxia 459 

in Tibetan relative to Han human populations (179). 460 
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Epigenetics modifications can be transmitted across generations and be important 461 

component of preparing the next generation for the parental environment.  In these cases 462 

of "epigenetic inheritance,” the modifications that occur in reponse to environmental 463 

conditions in the parents are passed on to offspring or even subsequent generations 464 

(180–183).  The importance of epigenetic inheritance in the context of evolution is strongly 465 

debated (184–186).  Intergenerational inheritance (where the embryo and its germline is 466 

directly exposed to the parental environment while in utero/in ovo) is quite common. In this 467 

context, Danchin and Pocheville (187) have made the important claim that "non-genetic 468 

inheritance shatters the frontier between physiology and evolution, and leads to the 469 

coupling of physiological and evolutionary processes to a point where there exists a 470 

continuum between accomodation by phenotypic plasticity and adaptation by natural 471 

selection." 472 

Transgenerational epigenetic inheritance, in which the epigenetic marks and 473 

consequential phenotypes persist to the generation that has not had direct exposure to the 474 

epigenetic defining environment, is prevalent in yeast and plants.  But transgenerational 475 

epigenetic inheritance occurs substantially less in other organisms (188), particularly in 476 

sexually reproducing species where the germline is seperated from the soma, DNA 477 

methylation is globally reduced twice in each generation, and histone marks are 478 

reprogrammed in the germline and after fertilization. In vertebrates, mechanisms such as 479 

histone retention in sperm and ncRNAs are the more likely candidates for 480 

transgenerational inheritance (183).  Although evidence of environmentally induced 481 

transgenerational epigenetic inheritance in vertebrates is limited, it has been 482 

experimentally demonstrated in some species, including rodents (189) and humans (188), 483 

although typically associated with unhealthy or disease phenotypes rather than adaptive 484 

responses.  For example, in rats, DNA hypermethylation induced by chronic stress 485 

exposure has been shown to be transgenerationally inherited to at least three generations 486 
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(190, 191).  Additionally, injection of herbicides in rats has been demonstrated to cause 487 

transgenerational effects (4th generation) via the alteration of histone retention in sperm 488 

that associate with diseases (192).   489 

Epigenetic modifications regulate physiological responses that selection acts on.  490 

This link beween physiology and evolution agrees with West-Eberhard's (193) idea that 491 

genes are "followers" rather than initiators of evolutionary change, when they stabilize 492 

phenotypic (physiological) changes that are started by epigenetic processes.  Following 493 

this idea, epigenetic inheritance has a high potential to affect phenotypic evolution, 494 

because epigenetic variation may facilitate the role of natural selection in overcoming 495 

stochastic loss of new heritable variants (194). 496 

 497 

Concluding Remarks and Future Directions 498 

 We are optimistic about the future of evolutionary physiology.  [In passing, we note 499 

that current college students may well experience "evolution" as one of the core principles 500 

in physiology education (195), although perhaps at the bottom of the priority list (196).]  501 

Among various possibilities, we believe that the way forward needs to embrace other 502 

subfields (e.g., Figure 1) that often do not view themselves as part of "evolutionary 503 

physiology," including evolutionary endocrinology, evolutionary biochemistry, 504 

ecoimmunology, and functional genomics.  For example, many studies in comparative 505 

biomechanics/functional morphology/ecomorphology attempt to elucidate evolutionary 506 

patterns or processes (e.g., (148, 149, 197–203)), but they typically do not include 507 

physiological functions in their analyses (but see (204)).  In addition, the reciprocity 508 

between evolutionary biology and physiology needs to proceed under an unbiased 509 

interdisciplinary approach that widens the skills of scientists in both fields, from the view 510 

that all physiological processes are the result of evolution. 511 
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 In addition, entirely new areas of research have emerged in the last 30 years, 512 

including the microbiome (205, 206).  The coming years should provide many 513 

opportunities for evolutionary physiology to contribute towards understanding the 514 

coevolution of organisms and their microbiota (e.g., (207–209)). 515 

 In addition to the experimental method, statistical analyses are essential to detect 516 

patterns in physiological data (152).  It is important, however, that evolutionary inferences 517 

from physiological data are not exclusively dependent on statistics, in the sense of using 518 

only data that are devoid of clear functional, physiological meaning.  Evolutionary 519 

biologists should take advantage of research approaches in physiology and related 520 

functional fields that allow less dependence on statistics.  For example, several studies 521 

have reconstructed ancestral proteins and measured or inferred their functional 522 

characteristics to gain insight regarding physiological adaptation (e.g., (21, 210, 211)).   523 

 Another way forward is greater integration among studies on different types of 524 

organisms (e.g., animals, plants, bacteria) in the hopes of reaching a more general 525 

understanding of physiological evolution.  Although this suggestion has been made before 526 

(e.g., (212, 213)), little cross-organism integration is evident in the current literature.  527 

Tracking metabolic pathways in different organisms, for example, provides insight into the 528 

adaptive value of metabolic products.  This is the case of biological pigments, whose 529 

whole chemical diversity can be categorized into three common synthesis routes after 530 

tracking them down across all organisms, suggesting common functional roles (214).  531 

 Finally, we encourage more studies that attempt to tie physiological traits in a 532 

causal way to evolutionary adaptation, constraint, and diversification (e.g., (48, 49, 199, 533 

201, 204, 215–219)).  In this regard, the view of adaptations in wild animals as potential 534 

solutions to human diseases, as pointed out by Singer (33) a decade ago, still holds huge 535 

potential for biomedical scientists to explore (220).  An attraction to adaptations in the wild 536 

from a variety of fields outside of evolutionary biology may lead to novel perceptions of the 537 



 22 

human condition, and perhaps new strategies for combating disease and injuries, in the 538 

next years.539 
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 1215 

Figure 1.  Evolutionary physiology resides in the intersection of evolution, ecology, and 1216 

organismal biology. 1217 
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 1218 

Box 1.  Environmental epigenetics of pigmentation genes.  Synthesis of the pigment 1219 

pheomelanin in melanocytes of developing Eurasian nuthatches Sitta europaea is 1220 

regulated, in part, by some genes of cysteine metabolism whose expression can be 1221 

affected by two environmental factors defined at the top of the diagram: availability of 1222 

cysteine in the diet and perceived predation risk.  At the physiological level, excess dietary 1223 

cysteine alters the expression of these genes by modifying DNA and RNA methylation 1224 

levels, promoting pheomelanin synthesis and resulting in flank plumage patches of 1225 

increased pigmentation intensity.  In this way, the epigenetic changes promote usage of 1226 
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the excess cysteine for pheomelanin synthesis.  The excess cysteine would otherwise 1227 

cause cellular oxidative stress, thus the epigenetic changes are physiologically adaptive in 1228 

an environment that is rich in dietary cysteine (221).  Higher levels of perceived predation 1229 

risk produce opposite changes in the expression of these genes, limiting pheomelanin 1230 

synthesis and resulting in flanks of reduced pigmentation intensity.  As cysteine is a 1231 

constituent amino acid of the main cellular antioxidant (i.e., glutathione, GSH), these 1232 

changes may also be adaptive because they increase the antioxidant capacity and thus 1233 

allow the animal to avoid oxidative stress/damage expected from predation risk (222).  At 1234 

the level of evolution, these changes in the pigmentation of nuthatches have 1235 

consequences for sexual selection, as adult females mate preferentially with males 1236 

showing flanks of reduced pigmentation intensity (223).  Thus, the physiological 1237 

responses to perceived predation risk lead to reduced pigmentation intensity, in addition to 1238 

providing immediate physiological benefits, and are probably favored by sexual selection. 1239 


