

Physiological and Biochemical Zoology
Trade-offs (and constraints) in organismal biology
--Manuscript Draft--

Manuscript Number:	21022R2
Full Title:	Trade-offs (and constraints) in organismal biology
Short Title:	Trade-offs (and constraints) in organismal biology
Article Type:	Invited Perspective
Corresponding Author:	Theodore Garland, Jr., Ph.D. University of California Riverside Riverside, CA UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	University of California Riverside
Corresponding Author's Secondary Institution:	
First Author:	Theodore Garland, Jr., Ph.D.
First Author Secondary Information:	
Order of Authors:	Theodore Garland, Jr., Ph.D. Cynthia Downs Anthony R. Ives
Order of Authors Secondary Information:	
Abstract:	Trade-offs and constraints are inherent to life. Studies of these phenomena also play a central role in both organismal and evolutionary biology, but conceptions of these phenomena vary among fields and are sometimes contradictory. Trade-offs can be defined, categorized, and studied in several, not mutually exclusive ways. Six common causes of trade-offs are recognized, some of which exist at different levels of biological organization. (1) Allocation constraints occur when a resource (e.g., energy, time, space, essential nutrients) is limited, such that increasing allocation to one component necessarily requires a decrease in another. When only two components are considered, this is referred to as the Y-model, and one classic example is the energy devoted to size versus number of offspring. (2) Functional conflicts occur when features that enhance performance of one task decrease performance of another. Well-known examples involve the biomechanics of bone and muscle function (e.g., relative lengths of in-levers and out-levers, force-velocity trade-offs related to muscle fiber type composition). Functional trade-offs seem to underlie much of the interspecific variation in bird beaks and bills. (3) Integrator molecules (e.g., hormones, neurotransmitters, transcription factors) often simultaneously affect multiple traits, with some effects being beneficial for one or more components of Darwinian fitness (e.g., survival, age at first reproduction, fecundity) and others detrimental. One example involves circulating concentrations of testosterone: high levels can increase growth rate, muscle mass, bone density, and territorial/aggressive behavior, but also increase parasitism and decrease paternal care. (4) Antagonistic pleiotropy describes genetic variants that increase one component of Darwinian fitness (or a lower-level trait) while simultaneously decreasing another. For example, one model for the evolution of senescence relies on the idea that alleles benefitting early reproduction will be favored by natural selection even if they have negative effects on later survival. (5) Ecological circumstances may impose trade-offs. For example, a behavior that increases energy availability (e.g., foraging) might also decrease survival (e.g., because of increased exposure to predators). (6) Sexual selection may lead to the elaboration of (male) secondary sexual characters that improve mating success but handicap survival because they impose costs (e.g., in terms of energetics, performance abilities or conspicuousness to predators). Overlap occurs among the types of trade-offs. For example, the effects of integrator molecules may be underlain

by alleles with antagonistic pleiotropic effects. Empirical studies of trade-offs often search for negative correlations between two traits (e.g., as caused by allocation constraints) that are the expected outcomes of the trade-offs, but this will generally be inadequate if more than two traits are involved and especially for complex physiological networks of interacting traits. Moreover, trade-offs often occur only in populations that are experiencing harsh conditions (e.g., cold winters, droughts), energetic challenges, or at the extremes of phenotypic distributions, as among individuals or species that have exceptional athletic abilities. The six categories of trade-offs can be placed upon organizational axes related to their duration and causality. Proximate vs. ultimate categorizes trade-offs into mechanistic and evolutionary causes. Time durations of trade-offs range from acute that occur on the order of seconds to days to cross-generational, evolutionary processes. Trade-offs may be (partially) circumvented through various compensatory mechanisms that relate to the duration. Going forward, a pluralistic view of trade-offs and constraints, combined with integrative analyses that cross levels of biological organization and traditional boundaries among disciplines, will enhance the study of evolutionary organismal biology.

1 Perspective: Trade-offs (and constraints) in organismal
2 biology

3
4 Running Page Head: Trade-offs (and constraints) in organismal biology

5
6
7
8
9
10
11
12
13
14
15
16
17 Key words: adaptation; allocation; evolution; genetic correlation; hormones; integrator
18 molecules; plasticity; selection experiments

19
20 **What is already known:**
21 Trade-offs and constraints play a central role in both organismal and evolutionary biology.
22 However, definitions of these concepts vary among fields and are sometimes contradictory.

23
24 **What this study adds:**
25 We attempt to provide a comprehensive framework for relating the concepts of trade-offs and
26 constraints. We identify six types of trade-offs (both proximate and ultimate), illustrate them
27 with empirical examples, and consider the various ways they can be studied in biological
28 systems.

29

30 [Abstract](#)

31

32 Trade-offs and constraints are inherent to life, and studies of these phenomena play a central
33 role in both organismal and evolutionary biology. Trade-offs can be defined, categorized,
34 and studied in at least six, not mutually exclusive, ways. (1) Allocation constraints are caused
35 by a limited resource (e.g., energy, time, space, essential nutrients), such that increasing
36 allocation to one component necessarily requires a decrease in another (if only two
37 components are involved, this is referred to as the Y-model, e.g., energy devoted to size
38 versus number of offspring). (2) Functional conflicts occur when features that enhance
39 performance of one task decrease performance of another (e.g., relative lengths of in-levers
40 and out-levers, force-velocity trade-offs related to muscle fiber type composition). (3) Shared
41 biochemical pathways, often involving integrator molecules (e.g., hormones,
42 neurotransmitters, transcription factors), can simultaneously affect multiple traits, with some
43 effects being beneficial for one or more components of Darwinian fitness (e.g., survival, age
44 at first reproduction, fecundity) and others detrimental. (4) Antagonistic pleiotropy describes
45 genetic variants that increase one component of fitness (or a lower-level trait) while
46 simultaneously decreasing another. (5) Ecological circumstances (or selective regime) may
47 impose trade-offs, such as when foraging behavior increases energy availability yet also
48 decreases survival. (6) Sexual selection may lead to the elaboration of (usually male)
49 secondary sexual characters that improve mating success but handicap survival and/or impose
50 energetic costs that reduce other fitness components. Empirical studies of trade-offs often
51 search for negative correlations between two traits that are the expected outcomes of the
52 trade-offs, but this will generally be inadequate if more than two traits are involved and
53 especially for complex physiological networks of interacting traits. Moreover, trade-offs
54 often occur only in populations that are experiencing harsh environmental conditions or
55 energetic challenges at the extremes of phenotypic distributions, such as among individuals or
56 species that have exceptional athletic abilities. Trade-offs may be (partially) circumvented
57 through various compensatory mechanisms, depending on the time scale involved, ranging
58 from acute to evolutionary. Going forward, a pluralistic view of trade-offs and constraints,
59 combined with integrative analyses that cross levels of biological organization and traditional
60 boundaries among disciplines, will enhance the study of evolutionary organismal biology.

61

62 *Keywords:* adaptation, allocation, antagonistic pleiotropy, biomechanics, constraint,
63 energetics, locomotion, sexual selection.

64

65

66 [Introduction](#)

67

68 Evolutionary biology has long considered trade-offs as central to the field, and many
69 subfields within organismal biology also hold this view (e.g., see Schmidt-Nielsen 1984;
70 Garland, Jr. and Carter 1994; Ackerly et al. 2000; Taylor and Thomas 2014; Zamer and
71 Scheiner 2014; Martin et al. 2015; Agrawal 2020). Historically, evolutionary considerations
72 of trade-offs did not include much effort to elucidate underlying mechanisms at the
73 molecular, biochemical, morphological or physiological levels of biological organization, but
74 more recent studies are often quite mechanistic (Sinervo and Svensson 1998; Flatt et al. 2011;
75 Immonen et al. 2018). For example, biomechanical trade-offs related to feeding may be a
76 root cause of some adaptive radiations (Grant 1986; Schluter 1995; Marroig and Cheverud
77 2005; Slater et al. 2009; Monteiro and Nogueira 2011).

78 Here, we outline a general framework for relating the concepts of trade-offs and
79 constraints in biology, with an emphasis on the perspectives of organismal biology. We will
80 see that some types of constraints and trade-offs are simple in origin, arising from the laws of
81 geometry and physics (Alexander 1985; Taylor and Thomas 2014), such as those pertaining
82 to lever arms (Aerts 1990) (but see McHenry and Summers 2011). These are relatively easy
83 to understand, even intuitive, and sometimes straightforward to study. Others emerge
84 unpredictably from the properties of networks and the very nature of complex biological
85 systems, or from the idiosyncratic ways that signaling molecules interact with target tissues
86 and with each other.

87 Even though both trade-offs and constraints are widely invoked in biology, precisely
88 what these terms mean to practitioners is often unclear (e.g., see Antonovics and van
89 Tienderen 1991; Roff and Fairbairn 2007; Bourg et al. 2019). Given their long history of
90 usage in different fields and often in the absence of formal definitions, we do not attempt to
91 impose rigid, unitary definitions. Instead, we highlight definitions that seem the most useful
92 to us. In total, we recognize six general categories of trade-offs (**Table 1**). We will discuss
93 the first four in detail but devote relatively little space to the last two because they are
94 exceedingly broad topics that entail a voluminous literature (V. Ecological circumstances and
95 VI. Sexual selection).

96 The range of trade-offs we consider is broad and diverse, and it might seem that we are
97 trying to compare apples and oranges. We are, intentionally. Trade-offs impact all aspects of
98 organismal biology, and they can be studied at the mechanistic level to understand proximate
99 causes, at the population level to understand how trade-offs affect evolutionary trajectories,
100 and everything in between. Our point in bringing together different research approaches and
101 perspectives is to argue for a broader, synthetic view of trade-offs that cuts across different
102 levels of biological organization (genes to molecules to species) and different conceptual
103 goals. This is particularly important when recognizing that most trade-offs are not simple,
104 binary, A versus B propositions. Instead, there is growing appreciation that trade-offs occur
105 as networks of interacting processes, where, for example, the trade-off between A versus B

106 might depend on the resolution of a prior trade-off between A1 and A2 upstream in a network
107 that culminates in A. Accepting that trade-offs occur as networks promotes an
108 interdisciplinary approach to studying organismal biology, because the trade-offs that govern
109 the network will likely involve mechanisms that span disciplines (e.g., genetics, physiology,
110 endocrinology) and selective forces that encompass yet more disciplines (e.g., behavior,
111 ecology, sexual selection).

112

113 [What are Trade-offs and Constraints?](#)

114

115 In biology, the simplest type of trade-off occurs when one trait cannot increase without
116 a decrease in another (Garland, Jr. 2014; Cohen et al. 2020). The key word here is "cannot."
117 For something to be called a trade-off, we should have evidence that it is at least difficult, if
118 not impossible, to increase one thing without decreasing another. Furthermore, "cannot" is
119 distinct from "does not." Specifically, trade-offs refer to the mechanistic processes that cause
120 one trait to decrease when another increases, in contradistinction to simply an observed
121 pattern of negative association between traits. Thus, when studying the outcomes of an
122 evolutionary process, we think of trade-offs as a cause rather than a symptom. The observed
123 patterns should be viewed as the results of trade-offs, rather than the trade-offs themselves
124 (see also Cohen et al. 2020).

125 A constraint can be defined very broadly as "bias on the production of variant
126 phenotypes or a limitation on phenotypic variability caused by the structure, character,
127 composition, or dynamics" of biological systems (Maynard Smith et al. 1985). From an
128 evolutionary perspective, one might simply say that "populations unable to evolve to
129 selectively favored states are constrained" (Gomulkiewicz and Houle 2009, p. E218). A
130 perhaps more tangible way to express this is simply "Physical constraints ... set
131 the design space that evolution and behaviour are free to explore" (Taylor and Thomas 2014,
132 p. 7). Reviews of the term "phylogenetic constraints" are available elsewhere (McKittrick
133 1993; Blomberg and Garland 2002).

134 Although the concepts of trade-offs and constraints are closely related (see also Taylor
135 and Thomas 2014), we note that two major reviews of the role of (developmental) constraints
136 in evolution did not mention trade-offs a single time (Maynard Smith et al. 1985; Arnold et
137 al. 1989), nor did a paper on physical constraints on evolution (Alexander 1985). Moreover,
138 relatively few empirical studies have tried to test alternative hypotheses of constraints versus
139 trade-offs (Shine 1992). Cohen et al. (2020, p. 154) "contrast trade-offs, which may be
140 modulated via organismal or evolutionary processes to adjust the balance between the
141 mechanisms/traits in question, with constraints, which are limits on fitness or functioning that
142 are not subject to important modulation." In this distinction, a constraint could involve a
143 single trait, with the constraint setting a limit on the trait's value (e.g., a constraint on
144 maximum body size: Goldbogen 2018). Organismal biologists often view an animal's

145 performance capacities (e.g., how high it can jump) as constraining its behavioral options
146 (Garland, Jr. and Carter 1994; Orr and Garland, Jr. 2017). This is much the same as we
147 argued for the trade-off definition in two paragraphs above, except a trade-off involves a
148 constraint placed simultaneously on the functional relationship between two (or more) traits.

149 As a simple biological example of a constraint causing a trade-off, we can consider
150 resources, such as energy. If the total amount of energy that is available to an organism is
151 constrained, then increasing the amount of energy allocated to one function will necessarily
152 mean that another function must use less energy. When only two such competing functions
153 are involved, this is termed the Y-model (e.g., de Jong 1993; Harshman and Zera 2007; Roff
154 and Fairbairn 2007; Careau and Garland, Jr. 2012; Lailvaux and Husak 2014; Harris 2020).

155 One classic example of a Y-model trade-off involves size versus number of offspring
156 (e.g., for turtles see Fig. 2 in Iverson et al. 1993). Aside from energy, the amount of space
157 inside the body cavity could limit the size and number of eggs a female could carry.
158 However, resource-related constraints will only cause trade-offs if the organism is using all of
159 the available resource. In other words, the total amount of available resource may be limited,
160 but if the organism is not close to reaching that cap, then a trade-off will not be ineluctable
161 (cf. Bateson 1963; Shine 1992; Speakman and Garratt 2014). For an example related to time
162 (Kronfeld-Schor and Dayan 2003), if an organism is strictly diurnal and lives near the
163 equator, then it will have about 12 hours within which to accomplish its normal activities,
164 such as foraging. However, it might be able to satisfy its daily needs within far less than 12
165 hours. If so, then it would have the potential to increase the amount of time spent on foraging
166 without a necessary decrease in the amount of time spent on some other daily activity (e.g.,
167 building or maintaining a nest). Indeed, time budgets show that many animals appear to have
168 excess time available for foraging, advertising (typically by males) or shopping for mates
169 (typically by females), and other activities (Herbers 1981). One might expand the scope of
170 this example by wondering why an organism would be "constrained" to be 100% diurnal. For
171 many organisms, this could have something to do with visual abilities. For ectotherms that
172 must bask in the sun to raise body temperature (heliotherms), it would have much to do with
173 thermoregulatory constraints.

174 Physiologists, morphologists, and evolutionary biologists often appeal to constraints or
175 limits related to body size, allometry, and scaling relationships, some of which can be
176 deduced based on first principles of physics (e.g., see Stearns 1980; McMahon and Bonner
177 1983; Calder 1984; Schmidt-Nielsen 1984; Lindstedt 1987; Nijhout and Emlen 1998; Kelt
178 and Van Vuren 1999; Hein et al. 2012; Taylor and Thomas 2014; Voje et al. 2014; Rezende
179 and Bacigalupi 2015; Bright et al. 2016; Jones et al. 2018; White et al. 2019; Downs et al.
180 2020; Verberk et al. 2020; Cloyed et al. 2021). For example, body size will constrain the
181 length of time that an animal can fast, how fast it can run, and the size of prey that can be
182 subdued.

183 As constraints and trade-offs pervade our everyday lives, many related concepts come
184 to mind when we think about them, such as something being a double-edged sword (e.g.,

185 Stahlschmidt et al. 2015), you can't have it both ways, you can't have your cake and eat it too,
186 and there's no such thing as a free lunch. Our familiarity with these sorts of concepts can be
187 both a blessing and a curse when we try to formalize definitions and consider
188 interrelationships among things in a rigorous, physical, mathematical, or statistical way.
189 Sometimes metaphors help us understand biology, but other times they obfuscate (Slobodkin
190 2001).

191 [Six categories of Trade-offs](#)

193 To present our perspective on trade-offs, we focus on six common categories of trade-
194 offs that are frequently discussed in the literature (Table 1).

196 [1. Allocation constraints](#)

198 Allocation constraints occur when a limit exists for the total amount of a resource that
199 is available (e.g., energy, time, space, essential nutrients), such that increasing allocation to
200 one component necessarily requires a decrease in allocation to another. When only two
201 components are considered, this is the Y-model, which is the easiest type of trade-off to think
202 about, to depict graphically, to model mathematically, and to analyze statistically. Frequently
203 in real biological systems, the situation is more complex.

204 For a given resource, multiple, hierarchically arranged Y-model constraints often exist.
205 For example, energy might be devoted to the frequency versus duration of foraging bouts, so
206 those two components of foraging behavior will trade-off if only so much energy is available
207 for foraging in general. An organism might take energy from other activities (such as
208 searching for mates) and thus break the trade-off between foraging bout frequency and
209 duration, but then it will be trading-off foraging with mate searching. And so it goes among
210 components of the overall energy budget, unless the total amount of energy available to the
211 organism can be increased. Another strategy is to switch between resource-intensive
212 behaviors or physiological states, which is a type of phenotypic plasticity (for an example
213 with crickets, see Miyashita et al. 2020).

214 Some apparent allocation constraints are partly definitional. For example, if muscle
215 fiber type composition is recorded in only two categories (e.g., fast versus slow) and in a way
216 that only allows quantification as a proportion of the total muscle fibers, then the proportion
217 of fiber types necessarily sum to unity. In practice, this is usually done because it is not
218 feasible to measure every muscle fiber in the cross section of an entire muscle (let alone all of
219 the muscles in, say, the thigh). Using proportions will necessarily increase negative
220 covariation.

221 A real example involving interspecific variation in muscle fiber type composition of
222 lizards (Bonine et al. 2005) is somewhat more complicated (**Figure 1A**). Different types of
223 muscle fibers are relatively better or worse at various functions, including speed of

224 contraction and stamina, and may differ in energetic efficiency (McGillivray et al. 2009;
225 Schiaffino and Reggiani 2011; Brooks 2012; Blaauw et al. 2013). In the lizard example
226 shown here, three main fiber types occur: fast-twitch glycolytic (FG), fast-twitch oxidative-
227 glycolytic (FOG), and slow-twitch oxidative (SO) fibers. The last of these is relatively rare,
228 but we know of no fundamental reason why lizards with a high percentage of SO fibers could
229 not exist, even if no such species has yet been discovered. Therefore, based on the data
230 shown in **Figure 1A**, one might conclude that the combined action of natural and sexual
231 selection has never favored lizards with a high proportion of SO fibers.

232 Although the different characteristics of muscle fiber types have the potential to cause
233 functional constraints, we must be careful when considering negative relations that occur
234 simply because two or more components must sum to unity. **Figure 1B** illustrates this point.
235 Data for three independent random variables (X_1 , X_2 , X_3) were created with zero correlation
236 using the Microsoft Excel function RAND(), which returns a value between 0 and 1. Then,
237 the plotted values were created with the formulas $FG = X_1/(X_1 + X_2 + X_3)$, $FOG = X_2/(X_1$
238 $+ X_2 + X_3)$, and $SO = 1 - (X_1 + X_2)$. Thus, the values for FG, FOG, and SO are constrained
239 to sum to unity (**Figure 1B** shows them plotted as percentages). As shown in **Figure 1C**
240 (below the diagonal), some correlations occur simply because the parts must sum to one. If
241 these were real data, we might be tempted to draw important conclusions about biological
242 functions, but an important "signal" in the data only exists after accounting for correlations
243 that must occur by construction. In the case of muscle fibers, the constraint and apparent
244 trade-off caused by methodological/definitional issues could be avoided by use of absolute
245 counts rather than percentages of different fiber types, but absolute counts generally are not
246 available because it is too laborious to make complete counts for entire muscles.
247

248 2. Functional conflicts

249

250 Functional conflicts (or constraints) can cause trade-offs when features that enhance
251 performance of one task decrease performance of another (Holzman et al. 2011; Shoval et al.
252 2012). Well-known examples involve the biomechanics of bone and muscle function
253 involving the relative lengths of in-levers and out-levers (Alfaro et al. 2004; Arnold et al.
254 2011; Santana 2016). Other examples include force-velocity trade-offs related to muscle
255 fiber type composition (Herrel et al. 2009; Schaeffer and Lindstedt 2013)], the effects of
256 shape on swimming performance in fish (Blob et al. 2010; Langerhans and Reznick 2010),
257 and the effects of wing shape on flight performance in birds (Taylor and Thomas 2014). The
258 model in **Figure 2** involves a muscle fiber-type based trade-off. As another example,
259 functional trade-offs between running and fighting appear to have emerged as greyhounds
260 and pit bulls were being developed by artificial selection (Pasi and Carrier 2003; Kemp
261 2005). Functional trade-offs also seem to underlie much of the interspecific variation in bird
262 beaks and bills species (Herrel et al. 2009; Shoval et al. 2012; Rico-Guevara et al. 2019) (but
263 see Bright et al. 2016). Moreover, variation in bird bills affects "vocal performance" as it

264 relates to a trade-off between rates of sound production and the frequency bandwidth of
265 sounds, partially due to biomechanical constraints that cause trade-offs involving maximal
266 force and velocity or torque and angular velocity (Derryberry et al. 2018).

267 In turtles, maximum egg width appears to be constrained by the size of the pelvic
268 aperture. However, the pelvic girdle also functions during locomotion and limb retraction, so
269 selection on pelvic architecture may often be complex and in opposition with respect to
270 reproduction versus locomotion (Congdon and Gibbons 1987; see also Oufiero and Gartner
271 2014 on lizards).

272 Functional conflicts also occur at the levels of physiology (e.g., on optimal hematocrit,
273 see Schuler et al. 2010; Stark and Schuster 2012), integrator molecules (Martin et al. 2011),
274 and molecular biology (Somero and Hochachka 2002).

275

276 3. Shared biochemical pathways

277

278 Many biochemical and physiological pathways share integrator molecules (e.g.,
279 hormones, neurotransmitters, transcription factors) (Ketterson and Nolan Jr 1992; Finch and
280 Rose 1995; Harshman and Zera 2007; Hau and Wingfield 2011; Martin and Cohen 2015;
281 Garland, Jr. et al. 2016) that simultaneously affect multiple traits, with some effects
282 potentially being beneficial for components of Darwinian fitness (e.g., survival, age at first
283 reproduction, fecundity) and others having detrimental effects. One well-studied example
284 involves circulating concentrations of testosterone: high levels can increase growth rate,
285 muscle mass, bone density, activity levels, and territorial/aggressive behavior, but also
286 increase parasitism and decrease paternal care (Marler et al. 1995; Sinervo and Svensson
287 1998; McGlothlin et al. 2007, 2010; Miles et al. 2007; Mills et al. 2008; John-Alder et al.
288 2009; Moore and Hopkins 2009). Glucocorticoids also influence many aspects of physiology
289 (Sapolsky 2000) under both baseline and stressed conditions, and may underlie correlations
290 among numerous traits at various levels of biological organization (Sinervo and Svensson
291 1998; Sapolsky 2000; John-Alder et al. 2009; Romero and Wingfield 2015; Garland, Jr. et al.
292 2016; Singleton and Garland, Jr. 2019; Harris 2020).

293 A human example involves use of caffeine, the most widely consumed central-
294 nervous-system stimulant. Caffeine can increase motivation and performance in both mental
295 and physical tasks (Grgic et al. 2019) and coffee consumption is associated with lower
296 mortality rates (Park et al. 2017), but caffeine also increases heart rate and blood pressure
297 (Mort and Kruse 2008), and has been associated with increased frequency of anxiety and
298 sleep disorders (Cappelletti et al. 2015; Bertasi et al. 2021). Happily, one review concluded
299 that "daily coffee and caffeine intake can be part of a healthy balanced diet; its consumption
300 does not need to be stopped in elderly people" (Nehlig 2016, p. 89).

301 Recently, trade-offs involving integrator molecules have been placed within a network
302 framework (Martin et al. 2011; Cohen et al. 2012). This has led to insights about the
303 connected nature of physiological traits and insights about how molecules that

304 mechanically regulate a trade-off can also trigger other physiological responses that help
305 mitigate that same trade-off (Adamo 2017). We discuss physiological networks below (see
306 "Physiological regulatory networks").

307

308 [4. Antagonistic pleiotropy](#)

309

310 Antagonistic pleiotropy (Rose 1982; Austad and Hoffman 2018) occurs when genetic
311 variants that increase one component of Darwinian fitness simultaneously decrease another,
312 causing a negative additive genetic correlation between the two components. Antagonistic
313 pleiotropy underlies one of the major evolutionary theories of aging, and is perhaps most
314 commonly discussed in that context (Williams 1957; Kirkwood and Rose 1991; Finch and
315 Rose 1995; Cohen et al. 2020). This theory of ageing posits that alleles increasing
316 components of early-life reproductive success (e.g., age at first reproduction) may reduce
317 late-life survival, but the latter "problem" is not so important because the strength of selection
318 is generally stronger early in life. Indeed, antagonistic pleiotropy is sometimes virtually
319 synonymized with trade-offs between reproduction and longevity (e.g., see Austad and
320 Hoffman 2018).

321 Antagonistic pleiotropy is not a unique category under which to organize trade-offs,
322 but rather a level of biological organization at which trade-offs can be conceptualized and
323 studied. For example, alleles that increase foraging duration should increase energy
324 acquisition and hence the ability to grow and reproduce, but will also increase exposure to
325 predators and parasites, and so decrease survival (e.g., see Clobert et al. 2000). Note that in
326 this hypothetical example the pleiotropy is rather indirect. More direct effects will occur in
327 many cases, such as when variation in the circulating concentrations of a hormone
328 simultaneously interact with receptors in two different tissues or organs, with both positive
329 and negative consequences for fitness components. Whatever the context, pleiotropy occurs
330 not magically but via ordinary biochemical pathways and physiological mechanisms,
331 including integrator molecules, and in the context of ecological circumstances and whatever
332 sexual selection may be occurring. Therefore, this category of trade-off is not separate from
333 the others that we recognize (Table 1).

334

335 [5. Ecological circumstances \(selective regime\)](#)

336

337 Trade-offs under our categories of (I) allocation constraints, (II) functional conflicts,
338 and (III) shared biochemical pathways involve proximate mechanisms that are typically
339 internal to an individual organisms, and our category (IV) antagonistic pleiotropy places these
340 proximate mechanisms in an explicitly genetic context. Our next category, (V) ecological
341 circumstances, emphasizes the external context of trade-offs. Many trade-offs are driven by
342 ecological circumstances, and when the relationship between traits and Darwinian fitness
343 varies with environmental conditions, they will be context dependent. For example, Y-model

344 trade-offs related to energy availability may only occur during particular seasons or years, as
345 food availability varies. Similarly, a trade-off between time spent foraging and predation risk
346 may not occur if predators are rare. In this case, nothing inherent to foraging reduces survival
347 -- no direct, mechanistic connection exists.

348 Variation in external factors, which causes variation in the selective regime, is likely to
349 affect the balance between the trade-off alternatives, and this variation likely occurs in regular
350 ways, such as deserts generally imposing limits on absolute resource availability (e.g., water).
351 For example, frogs experience trade-offs among body size, temperature regulation, and water
352 regulation that are mediated by behavior, physiology, and environmental conditions (Tracy et
353 al. 2010). Frogs typically require proximity to water or humid environmental conditions,
354 because in general they have low cutaneous skin resistance to water loss (Shoemaker et al.
355 1992). This represents a constraint on the distribution of frogs among habitats. However,
356 various behavioral adaptations, including nocturnal activity and selection of humid
357 microhabitats, allow them to survive in terrestrial environments (Wells 2007; Hillman et al.
358 2009; Tracy et al. 2010). These adaptations turn a constraint (low skin resistance to water
359 loss) into a set of trade-offs involving ecological circumstances. For example, there might be
360 a trade-off between selecting microhabitats with high humidity versus those with high prey or
361 predator abundance. Such a trade-off in microhabitat selection is likely to vary across
362 seasons (e.g., spring vs. the heat of summer) and across regions (e.g., lower elevation vs.
363 higher elevation sites that have lower evapotranspiration), so that studying these trade-offs
364 necessarily involves considering ecological circumstances.

365 In addition, proximate trade-offs, such as functional conflicts, may come into play.
366 For example, to live arboreally while avoiding desiccation, some frogs evolved high skin
367 resistance to water loss and large body size, with the latter decreasing surface area-to-volume
368 ratios and hence relative water loss. However, this combination of traits also limits their
369 ability to elevate body temperature by basking (Tracy et al. 2010), which imposes a
370 functional conflict trade-off between reducing water loss and elevating body temperature. To
371 bask in dry places and be small, frogs must return to water regularly to replenish evaporated
372 water (Tracy et al. 2013). This example for frogs illustrates how trade-offs can be interpreted
373 at different conceptual levels. Proximate mechanisms involving trade-offs (categories I-III)
374 limit what organisms can do, whereas ecological circumstances weight the alternatives that
375 must be traded off by setting the selective regime.

376

377 [6. Sexual selection](#)

378

379 Although some researchers prefer to consider sexual selection as a type of natural
380 selection, Darwin viewed the former as distinct enough to warrant separate consideration
381 (Darwin 1871). Keeping them separate also facilitates empirical studies of selection (Wade
382 and Arnold 1980; Arnold and Wade 1984a, 1984b). Sexual selection may lead to the
383 elaboration of (male) secondary sexual characters (e.g., tails of male peacocks or swords of

384 male swordtail fish) that improve mating success but impose energetic, performance, or other
385 costs (Pough 1989; Oufiero and Garland, Jr. 2007; Husak and Swallow 2011; Husak and
386 Lailvaux 2014; Mowles and Jepson 2015). From the perspective of conflicts with natural
387 selection, many papers have considered the evolution of compensatory mechanisms for such
388 traits (e.g., Oufiero and Garland, Jr. 2007; Husak and Swallow 2011; Husak and Lailvaux
389 2014). Others have considered how allocation-based trade-offs may occur even among
390 sexually selected traits, such as song versus plumage among species of birds (Shutler 2011;
391 Wiens and Tuschhoff 2020), or among body parts in the development and evolution of
392 holometabolous insects (Nijhout and Emlen 1998).

393 Just as ecological circumstances (category V) determine the selective regime
394 (ecological theater: Hutchinson 1965) under which mechanistic trade-offs play out (categories
395 I-III) and influence cross-generational, microevolutionary changes, so too does sexual
396 selection. Furthermore, the context under which sexual selection influences mechanistic
397 trade-offs may depend on ecological circumstances. For example, some hypotheses about
398 sexual selection theorize that females are selecting for traits that indicate how well a male
399 reduces a trade-off. Specifically, the immunohandicap hypothesis posits that females prefer
400 males that can maintain ornamental secondary sex characteristics in the face of parasites,
401 specifically because these traits are subject to damage by parasites. As such, parasites act to
402 ensure that that ornamental traits are honest traits (Hamilton and Zuk 1982). In this case, the
403 level of parasitism in a population, and hence how honest ornamental traits are, could be
404 viewed as an ecological circumstance surrounding sexual selection. Sexual selection will
405 also involve mechanistic trade-offs. A mechanistic hypothesis is that androgens have the dual
406 role of increasing expression of sexual ornaments while suppressing immune function
407 (Owens and Short 1995). It follows that males can only have ornamental characteristics and
408 fight parasite infections if they are of high quality. Although the immunosuppressive effects
409 of androgens are debated (Roberts et al. 2004; Foo et al. 2017), the hypothesis built around
410 androgens and the hypothesis built around sexual selection are not conflicting or even
411 separate hypotheses: they are simply addressing the question of ornamentation and parasite
412 infection from different conceptual directions.

413 Some Examples of Why Trade-offs Matter

414

415 Trade-offs are fascinating, and their prevalence and diversity in organisms means that
416 they should be targets of study in their own right. But trade-offs also shape evolutionary and
417 ecological processes, and this makes trade-offs a central concern in any attempt to explain
418 how organisms evolve and how the evolution-driven characteristics of organisms act to
419 structure ecological communities. Addressing this topic in depth would be too ambitious
420 here, so we just touch on it lightly.

421 Trade-offs have a key role in maintaining the genetic diversity of species. To illustrate
422 this, we present some examples of trade-offs for pea aphids (*Acyrthosiphon pisum*). We use

423 pea aphids not because we think they are an exceptional species, but instead because they are
424 unexceptional; other species are likely to show similarly diverse trade-offs that maintain
425 genetic diversity.

426 Pea aphids come in two colors, green and red, with the inheritance of color behaving
427 like a single-locus, biallelic character when there is sexual reproduction (Caillaud and Losey
428 2010). Color involves a trade-off that depends on ecological circumstances, because green
429 aphids are more susceptible to parasitic wasps, while red aphids are more susceptible to some
430 species of predatory ladybeetles. Because parasitism by wasps is density-dependent, this
431 generates frequency-dependent selection on green vs. red aphid morphs, thus maintaining the
432 color polymorphism by balancing selection (Losey et al. 1997).

433 As another example, pea aphids contain facultative bacterial symbionts that are
434 inherited between asexual generations with very high fidelity; the symbionts are part of the
435 extended aphid genotype and phenotype. One symbiont, *Serratia symbiotica*, confers
436 resistance to heat shocks that, when experienced by susceptible juvenile instars, give rise to
437 adults with lower fecundity (Oliver et al. 2010). This reduction in fecundity due to heat
438 shocks is ameliorated for aphids containing *S. symbiotica*, but there is a trade-off because *S.*
439 *symbiotica*-containing aphids have reduced population growth rates under normal
440 temperatures (Harmon et al. 2009). Variation in the frequency of heat shocks in summer, at
441 least in part, explains the maintenance of variation in resistance (intermediate frequencies of
442 aphid clones containing *S. symbiotica*).

443 As a final example, a second bacterial symbiont, *Hamiltonella defensa*, confers
444 resistance to parasitic wasps (Moran et al. 2005), but at the cost of reduced reproduction rates,
445 thus giving an example of a survival-reproduction trade-off (Ives et al. 2020). At a regional
446 spatial scale, the wasps likely exert frequency-dependent selection on resistant *H. defensa*-
447 containing aphid clones, because low prevalence of resistant clones allows for increases in the
448 wasp population, while high prevalence causes the population of wasps to decline. This can
449 generate ecological-evolutionary (eco-evo) dynamics and rapid evolution that maintain an
450 intermediate frequency of *H. defensa*-containing clones in the pea aphid population.
451 Although eco-evo dynamics can maintain diversity for resistance at the regional scale, at the
452 local scale of individual fields the strong selection exerted by wasps can lead to high variation
453 in the frequencies of *H. defensa*-containing clones (from 2 to 88% among fields sampled at
454 the same time, or within the same field sampled through time). Thus, the trade-off between
455 resistance to parasitism and reproduction can lead to eco-evo dynamics and a spatio-temporal
456 mosaic of genotypes in the population.

457 Although studies often focus on the role of trade-offs in maintaining genetic diversity
458 within a species, trade-offs can also lead to variation in a trait among species. In a classic
459 example of natural selection in the wild, Grant and Grant (1993) showed that when seed
460 production on the island of Daphne Major ceased due to a drought, individuals of a Darwin's
461 finch (*Geospiza fortis*) with deeper beaks had greater survival, because they were more able
462 to crack the hard seeds that were left after the more-easily cracked small seeds had been

463 eaten. Bill depth is under temporally varying balancing selection, however, and mean bill
464 depth decreased when rains and seeds returned. Thus, variation in bill depth causes a trade-
465 off, with the optimal bill depth depending on environmental conditions. The variation in bill
466 depth observed within this population, however, is small compared to the variation in bill
467 depth among species of Darwin's finches, and bill depth is a trait involved in the adaptive
468 radiation of this group of species on the Galapagos Islands. The trade-offs involving bill
469 depth that explain some of the variation within a species likely also explain some of the
470 variation in bill depth among species (Herrel et al. 2009; Shoval et al. 2012).

471 Such examples as bill depth and the adaptive radiation of Darwin's finches illustrate
472 why trade-offs play a central role in ecological theory about the generation and maintenance
473 of biodiversity. Robert MacArthur's (1972) paradigm of species coexistence is based on the
474 assumption that trade-offs define the niches of species, and that the restrictions set by trade-
475 offs ultimately explain the number of competing species that can coexist in a community. In
476 the absence of trade-offs, a single species could potentially be better than all other species at
477 securing resources, leading to a community with a single "superspecies." Even as ecological
478 understanding of competition has broadened, the importance of trade-offs has not diminished.
479 Competition occurs not only among species for shared resources, but also among species with
480 shared predators (Holt 1977). In the absence of trade-offs, a single species might be able to
481 develop extreme defenses against all predators and thereby become a superspecies.
482 Coexistence among competitors can also occur by species using different strategies to cope
483 with spatial and temporal environmental variation, with trade-offs again underlying the
484 differences among strategies. Without the trade-offs experienced by all species, the world
485 would likely be a biologically much less rich place.

486 Proximate vs. Ultimate Causation: Mechanism vs. Evolution

487

488 Ernst Mayr (1961) introduced the concepts of proximate and ultimate causation as an
489 organizational paradigm for understanding cause and effect in biology, and applying these
490 concepts can aid in understanding trade-offs. Proximate causation refers to immediate
491 mechanisms of a biological trait. For trade-offs, proximate causes include resource
492 limitations leading to allocation constraints, functional conflicts, and shared biochemical
493 pathways (**Table 1**). In contrast, ultimate causation refers to the evolutionary processes that
494 shape a biological trait (Mayr 1961), including ecological circumstances that cause variation
495 in selection regimes, sexual selection (Table 1), and other evolutionary mechanisms (e.g.,
496 founder effects, genetic drift). Thus, we can loosely associate proximate causes with
497 processes that occur within an organism's lifetime, and ultimate causes as processes that
498 involve Darwinian selection that spans generations. Proximate versus ultimate causation
499 might also be separated into effects that are observed within a generation versus those
500 observed among generations (see also below). Proximate and ultimate trade-offs are not
501 mutually exclusive in part because ultimate trade-offs act through proximate mechanisms and

502 those mechanisms can evolve. For example, whether selection favors an increase or decrease
503 in the frequency of an allele will depend on the balance of its positive and negative
504 (antagonistic) effects on Darwinian fitness, and these effects will depend on the other genetic
505 variants present in the population (i.e., the genetic background) (Mayr 1954; Sarup et al.
506 2011; Chandler et al. 2014; Taylor and Ehrenreich 2015) which change over time. Thus, in
507 Table 1, we have, perhaps awkwardly, tagged antagonistic pleiotropy as both proximate and
508 ultimate. In any case, understanding proximate causes of trade-offs can inform our
509 understanding of ultimate causes, and vice versa (e.g., see Kirkwood and Rose 1991; Sinervo
510 and Licht 1991; Garland, Jr. and Carter 1994; Sinervo and Svensson 1998; Feder et al. 2000;
511 Taylor and Thomas 2014).

512 One example of an antagonistic proximate mechanism of a trade-off involves the
513 pleiotropic effects of the tumor suppressor gene *TP53* on aging and cancer. The gene *TP53*
514 codes for the protein p53, which responds to cell damage by initiating cell cycle arrest or
515 apoptosis (Kastan et al. 1991; Clarke et al. 1993; Lowe et al. 1993; Nelson and Kastan 1994).
516 Mice with mutations in *TP53* that enhance activity of its associated pathway have fewer
517 spontaneous tumors compared to wild-type littermates, but these mice also exhibit early onset
518 of phenotypes associated with ageing (Tyner et al. 2002; Poyurovsky 2006). At the
519 proximate level over an individual's lifetime, this demonstrates a trade-off between ageing
520 and incidences of cancer that are mediated by the pleiotropic effects of *TP53*. At the ultimate
521 level of human evolution, this also suggests the reason natural selection cannot simply act to
522 increase activity of *TP53* to reduce cancer risk: doing so would reduce longevity.
523

524 [Proximate Causes of Trade-offs](#)

525

526 Many internal factors underpin trade-offs. Signaling or integrator molecules are prime
527 examples (e.g., hormones, cytokines, neurotransmitters, transcription factors: Martin and
528 Cohen 2015). Integrator molecules can cause changes in energy flow to different functions
529 even when an organism is not at its ceiling of energy availability (Ketterson and Nolan Jr
530 1992; Finch and Rose 1995; Harshman and Zera 2007; Moore and Hopkins 2009; Hau and
531 Wingfield 2011; Garland, Jr. et al. 2016). Similarly, many organisms have endogenous
532 seasonal rhythms (Budki et al. 2012; Weil and Nelson 2016) that partly control energy
533 allocation to growth, reproduction, the immune system, and physical activity, among various
534 components of the overall energy budget (Carey 1996; Garland, Jr. et al. 2011b; Martin et al.
535 2015; Careau and Wilson 2017a). Internally driven annual and circadian rhythms often cause
536 changes in resource availability via their effects on both behavior (e.g., amount of time spent
537 foraging) and physiology (e.g., digestive efficiency, amount of body fat, biochemical
538 pathways). In general, these effects will occur via integrator molecules. Although the
539 coordinated changes that depend on integrator molecules are essential for organismal function

540 during development and reproduction, and in response to environmental conditions, they may
541 also have "unintended consequences" that result in downstream trade-offs.

542

543 Physiological regulatory networks

544

545 Physiological regulatory networks provide a framework for understanding the
546 relationships among physiological functions and for identifying the consequences of changes
547 in integrator molecules. They consist of a network of signaling molecules grouped into
548 subnetworks, and each subnetwork regulates a particular set of physiological processes (e.g.,
549 immune defenses, reproduction) (Cohen et al. 2012). Maintaining organismal function
550 requires both crosstalk among the subnetworks and integration of information from the
551 external environment, which is facilitated by a limited number of molecules termed
552 integrators (Martin et al. 2011; Cohen et al. 2012). Each integrator has numerous
553 connections, so a change in the integrator facilitates changes in numerous subnetworks
554 (Cohen et al. 2012). Moreover, perturbations that cause a response in one subnetwork can
555 ripple through other subnetworks (Cohen et al. 2012). Because integrator molecules
556 coordinate responses across physiological systems, they may often constitute proximate
557 mechanisms underlying trade-offs. In the context of **Figure 2 or 3**, variation in the presence
558 (e.g., concentration in the circulation) of an integrator molecule might serve as the trait that
559 mediates the relationship between two other traits, much as variation in muscle fiber types
560 partly determines both locomotor speed and endurance. However, integrator molecules often
561 have much more complicated interactions than the binary ones in that relatively simple model
562 (Zera and Harshman 2001; Moore and Hopkins 2009; Martin et al. 2011).

578 Within a physiological network framework, it becomes clear that not all interactions
 579 mediated by integrator molecules cause trade-offs, and that the outcome will depend on the

580 species, the internal and external context, and the pathway involved (Adamo 2017),
581 highlighting the need to investigate the mechanism underpinning trade-offs rather than
582 relying on measuring negative correlations [see “Studying Trade-Offs (and Constraints)”].
583 Some interactions facilitate responses that help reduce the effects of trade-offs induced by the
584 regulatory network and others cause reconfiguration of the system. (Adamo 2017). It follows
585 that integrator molecules can help ameliorate the effects of a trade-off as well as cause a
586 trade-off. As researchers investigate trade-offs within this framework, the complexity of the
587 interactions among physiological systems that cause and mitigate trade-offs will be further
588 illuminated (and the same is true for biomechanical systems, e.g., see Holzman et al. 2011).
589 Such a perspective will help clarify why trade-offs involving integrator molecules are context
590 dependent (Adamo 2017).

591 Integrator molecules also play critical roles in coordinating potential trade-offs
592 between incompatible stages, such as wake and sleep or feeding and fasting, by helping
593 regulate circadian rhythms in the body. For example, mammalian basal glucocorticoid
594 concentrations are partially controlled by signals from the suprachiasmatic nuclei (SCN), the
595 master synchronizer of the mammalian circadian timing system in the brain (Oster et al.
596 2006; Dibner et al. 2010). Glucocorticoids help communicate the circadian patterns from the
597 SCN to cells throughout the body by binding with receptors on those cells and synchronizing
598 cellular rhythms (Dibner et al. 2010). Circulating concentrations of glucocorticoids peak just
599 before the onset of the active phase (Munck and Náray-Féjes-Tóth 1992), and prepare the
600 organism for activity by increasing the release and production of glucose, and increasing
601 physiological arousal (Sapolsky et al. 2000; Oster et al. 2017). In so doing, glucocorticoids
602 help regulate a trade-off between wake and sleep stages, in relation to associated activities,
603 such as feeding and fasting (Dibner et al. 2010; Oster et al. 2017; Riede et al. 2017).

604 The concept of physiological regulatory networks is one of several frameworks
605 developed to explain why suites of physiological traits and their associated trade-offs change
606 in tandem. Other frameworks include the concepts of allostasis/allostatic overload (McEwen
607 and Wingfield 2003; Korte et al. 2005), the reactive scope model (Romero et al. 2009), and
608 tolerance/resistance strategies for dealing with infections [See (Harris 2020) for a review of
609 all hypotheses exploring the role of stress, many of which invoke trade-offs.]. Central to
610 these frameworks is the concept that an external or internal perturbation shifts the
611 physiological network in a manner that results in trade-offs and potentially fitness costs.
612 Additionally, these frameworks emphasize that the magnitude and duration of the signal is
613 important in determining the organismal phenotype expressed.

614

615 [Integrator molecules and trade-offs: examples involving immune defenses](#)

616

617 The concept of regulatory networks also helps explain some trade-offs that arise within
618 the immune system (Heng et al. 2008; Downs et al. 2014). The immune system is an
619 interconnected network of molecules and pathways that includes redundancies in signaling,

620 self-regulatory pathways, and sequential responses in which prior responses provide signals
621 that direct later responses (Murphy et al. 2007). Early steps within a pathway include the
622 release of signaling molecules that constrain subsequent responses and result in trade-offs, as
623 illustrated by the integrated signaling pathways for pro- and anti-inflammatory response
624 (Zimmerman et al. 2014). For example, the pro-inflammatory cytokine interleukin-6 (IL-6) is
625 produced in response to bacterial components, and it initiates downstream effects including
626 the production of acute phase proteins in the liver that then simulate an acute-phase
627 inflammatory response (Jørgensen et al. 2000; Nakae et al. 2001; Dienz and Rincon 2009).
628 Interleukin-6 is also part of a chemical cocktail that suppresses anti-inflammatory responses
629 (Dienz and Rincon 2009). Similarly, a type 2 T helper cell (Th2) response by a host against
630 macroparasites, such as helminths, inhibits the type 1 T helper cell (Th1) responses that are
631 elicited by microparasites, leading to the possibility that infection with a macroparasite
632 facilitates coinfection with a microparasite, and vice versa (Romagnani 1997). This cross-
633 regulation between Th1 and Th2 responses might explain the prevalence of bovine
634 tuberculous (TB, *Mycobacterium bovis*) infection in African buffalo (*Synacerus caffer*) (Jolles
635 et al. 2008; Ezenwa and Jolles 2011, 2015). Prevalence of helminths and TB infections were
636 negatively associated across herds, and within herds, buffalo with coinfections had increased
637 mortality. Furthermore, buffalo exhibited a negative relationship between markers for Th1
638 and Th2 responses during the dry season, suggesting that cross-regulation may make buffalo
639 more susceptible to coinfection and associated morbidity (Jolles et al. 2008). Although
640 experimentally deworming buffalo did not decrease risk of acquiring TB, dewormed buffalo
641 with TB had increased survival (Ezenwa and Jolles 2015).

642 A framework for thinking about classes of immunological defense mechanisms and
643 their associated trade-offs is resistance and tolerance to infections (Romero et al. 2009).
644 Infection *resistance* involves fighting infection to limit the number of parasites or pathogens
645 infecting a host (Best et al. 2014; Kutzer and Armitage 2016). In contrast, infection *tolerance*
646 emphasizes reducing the fitness costs of infections rather than control of parasite burden
647 (Råberg 2014; Kutzer & Armitage 2016); it should not be confused with *immunological*
648 *tolerance*, which is the failure to mount an immune response to an infection (Owen 1945;
649 Schwartz 2012).

650 The costs of parasite resistance and tolerance are context dependent (Sears et al. 2011).
651 Nutritional limitations are an example of extrinsic factors that can influence which class of
652 mechanism is used in response to an immune challenge (Kutzer and Armitage 2016). For
653 example, flies on a reduced-nutrient diet had similar bacterial loads compared with flies on a
654 standard diet, but had higher survival and were more tolerant to the infection with *Salmonella*
655 *typhimurium* (Ayres and Schneider 2009), suggesting an unseen nutrient-driven trade-off.
656 Switches between parasite resistance and tolerance can also be mediated by integrator
657 molecules. For example, high concentrations of glucocorticoids in red-winged blackbirds
658 (*Agelaius phoeniceus*) are associated with higher tolerance to Haemosporidian parasites, an
659 agent of avian malaria (Schoenle et al. 2018).

660 Time Scales and Trade-off Compensation

661

662 A broad way to classify the temporal duration of trade-offs is acute, chronic, lifetime,
663 and intergenerational. The absolute duration of acute and chronic trade-offs will depend on
664 the life history of the species; a trade-off that lasts a week might be considered acute for an
665 elephant but chronic for an aphid. Distinguishing between ephemeral trade-offs that arise
666 from suboptimal investment in traits driven by limited resources and more permanent trade-
667 offs that arise from genetics and integrator molecules is useful because it informs the
668 biological scale at which consequences of the trade-off occurs (Ardia et al. 2011). Acute
669 changes driven by resource limitations are going to have organism-level consequences,
670 whereas trade-offs that are maintained across generations have consequences for ecological
671 community function and hence underpin evolutionary patterns that are driven by trade-offs
672 (see also Slobodkin and Rapoport 1974; Agur and Slobodkin 1986).

673 Humans faced with economic or engineering trade-offs usually try to overcome them
674 or at least minimize their adverse effects. For example, a change from internal combustion
675 engines to electric motors has changed the basic physical rules that govern relationships
676 between power, torque, weight, and the financial cost of transport by automobile. Like
677 humans, other organisms faced with trade-offs involving either internal or external factors are
678 not generally passive. Rather, they respond in various ways on multiple time scales
679 (Slobodkin and Rapoport 1974; Woods and Wilson 2015). For example, animals that have
680 recently eaten (Garland, Jr. and Arnold 1983; Huey et al. 1984) or are pregnant (e.g., Garland,
681 Jr. 1985; Seigel et al. 1987; Ghalambor et al. 2004) may experience reduced locomotor
682 performance, which could hamper their ability to escape from predators. Such a reduction
683 caused by pregnancy can be viewed as a cost of reproduction, which is a key component of
684 life-history trade-offs. However, pregnant lizards, snakes, and fish have been shown to alter
685 their behavior in ways that should at least partly compensate for this reduction (Bauwens and
686 Thoen 1981; Brodie III 1989; Shine 2005; Banet et al. 2016), and some species may show
687 physiological or biomechanical (kinematic) compensations to help maintain locomotor
688 abilities (Scales and Butler 2007). Similarly, low body temperatures that reduce locomotor
689 performance can lead to behavioral changes that should partly compensate for the reduced
690 locomotor performance (Hertz et al. 1982; Crowley and Pietruszka 1983).

691 In this section, we explore how trade-offs are organized along a temporal scale, from
692 acute to microevolutionary, and how the duration of a trade-off relates to the scale of the
693 consequences and the compensation strategies employed.

694

695 [Acute trade-offs](#)

696

697 Acute trade-offs are ephemeral, shorter than an individual's lifetime, and organisms
698 have evolved various systems to compensate for them. Aside from plants, most organisms
699 can alter their behavior immediately in ways that might mitigate a trade-off, and they may
700 learn from past experiences. For instance, if a small mammal starts getting cold, it may move

701 into the sun, and if this happens repeatedly, it may learn good places to find sun. If the cold
702 challenge persists, then it can piloerect. With further cold challenge, non-shivering
703 thermogenesis will likely occur, followed by shivering. All of these changes occur within
704 seconds to minutes. Integrator molecules can promote these behaviors. For example, if a
705 trade-off arises because of limited energy resource in a given location, then increased
706 circulating glucocorticoids can motivate increased food consumption and increased foraging
707 behavior, which facilitates acquisition of food, although these responses are context
708 dependent (Dallman et al. 2007; St. Juliana et al. 2017). In anemonefish, the nonapeptides
709 arginine, vasotocin, and isotocin mediate a trade-off in parental care behaviors on a time scale
710 of tens of minutes (DeAngelis et al. 2020).

711 Physiological responses that mediate acute trade-offs can also occur within seconds to
712 minutes to hours. In a study of humans, for example, both muscle power output and mental
713 performance decreased when tested together compared to in isolation (Longman et al. 2017).
714 As another example, physiological regulatory networks can lead to fairly rapid trade-offs
715 between stress and immune responses, and they can also cause a rearrangement of immune
716 responses to mitigate the effects of a trade-off or facilitate a relevant immune response
717 (Martin 2009; Adamo 2017).

718 Acute trade-offs are often condition dependent; that is, they are facultative rather than
719 obligate trade-offs (French et al. 2007a; Ardia et al. 2011). *Urosaurus ornatus* lizards, for
720 example, only show reduced wound healing while reproductive when food resources are
721 limited; the severity of the trade-off depends on the severity of the resource limitation; and
722 the trade-off disappears when the limiting resource is restored (French et al. 2007b). These
723 acute allocation trade-offs can be mechanistically regulated by a perturbation that shifts a
724 physiological regulatory network into a new state (Martin and Cohen 2014; Martin et al.
725 2016) or changes the concentration of a physiological signal (Zera and Harshman 2001).
726

727 Chronic trade-offs

728

729 Chronic trade-offs last longer than acute trade-offs, but for a shorter duration than life-
730 long trade-offs. Chronic trade-offs can be adaptive or they can represent responses to a
731 chronic internal or external perturbation that can result in dysregulation of an organismal
732 response (Zera and Harshman 2001; McEwen and Wingfield 2003; Martin et al. 2016).
733 Adaptive (evolved) chronic trade-offs can involve predictable changes, including those that
734 occur in response to seasons or life-stage events. For example, a Common Eider (*Somateria*
735 *mollissima*) never leaves its nest during laying and incubation, and, thus, trades off foraging
736 in favor of reproduction (Afton and Paulus 1992). Although a chronic trade-off during
737 reproduction, this trade-off quickly dissipates at the end of incubation.

738 Plasticity in organismal responses has evolved in part to mitigate and alleviate chronic
739 trade-offs. Physiological acclimation (in the lab) and acclimatization (in the wild) occur,
740 which are examples of phenotypic plasticity (Garland, Jr. and Kelly 2006; Piersma and van
741 Gils 2010). This kind of plasticity occurs by many mechanisms, including epigenetic
742 alterations of gene expression (Kelly et al. 2012; Hau and Goymann 2015; Garland, Jr. et al.
743 2017). Depending on the type of plastic change that occurs, it may or may not be reversible,

744 and plasticity that occurs early in life is generally less likely to be reversible (Garland, Jr. et
745 al. 2017).

746

747 Developmental trade-offs

748

749 Developmental trade-offs are plastic responses that occur early in life or during critical
750 (sensitive) periods and hence are relatively likely to have long-lasting effects, sometimes
751 irreversible (e.g., Howie et al. 2012; Garland, Jr. et al. 2017; Dunn et al. 2018; and references
752 therein). These trade-offs can arise because a signal during a critical developmental window
753 leads to irreversible change to a phenotype; this type of phenotypic plasticity is known as
754 developmental plasticity (West-Eberhard 2003). One mechanism by which this can occur is
755 canalization, whereby a trait's developmental pathway is pushed down one of many possible
756 developmental pathways by a signal early during development (Waddington 1942). For
757 example, *Daphnia ambigua* respond to predator cues during development by shifting their
758 life histories so they mature more slowly and produce fewer offspring relative to those raised
759 without predator cues (Walsh et al. 2015).

760

761 Transgenerational effects

762

763 Transgenerational trade-offs can be caused by maternal effects or other processes in
764 which the factors generating the trade-off, or the effects that the trade-off has, are transmitted
765 to the next generation(s). Thus, transgenerational trade-offs may involve plasticity in which
766 the environment experienced by parents alters the phenotypes of subsequent generations (Fox
767 and Mousseau 1998). For example, parthenogenic pea aphid (*Acyrthosiphon pisum*) females
768 determine whether their offspring develop wings; when population densities are high, females
769 are more likely to produce winged offspring (Johnson 1965; Müller et al. 2001). Having
770 wings or not is a trade-off, because pea aphids without wings have greater fecundity, whereas
771 offspring with wings can disperse to habitat that (hopefully) has better resources. Similarly,
772 when cues indicate high densities or a deteriorating environment, parthenogenic *Daphnia*
773 produce male offspring, and mated sexual females produce resting eggs (Hobaek and Larsson
774 1990; Kato et al. 2011). Here, the trade-off is between asexual reproduction and sexual
775 reproduction with a resting stage to wait out possibly poor environmental conditions.

776 Cabbage loopers (*Trichoplusia ni*) exhibit a trade-off between transgenerational
777 immune priming and transfer of nutritional stress tolerance (Shikano et al. 2015) when they
778 are simultaneously exposed to a nutritional stress and sublethal immune challenge by the
779 bacterial pathogen *Bacillus thuringiensis*. Parents could only transfer resistance to pathogens,
780 but not nutritional stress tolerance (Shikano et al. 2015). Three mechanisms by which
781 transgenerational effects can occur are via the environment created by the mother for the
782 offspring (Fox and Mousseau 1998), by direct passing of resources or hormones to the
783 offspring (Schwabl 1993; Mousseau and Fox 1998; Groothuis and Schwabl 2008), and by
784 epigenetic alterations of gene expression (Badyaev and Uller 2009). These changes do not
785 entail changes in the genetic code, and thus are not fixed for as long as microevolutionary
786 trade-offs.

787

788 Microevolutionary trade-offs

789

790 Microevolutionary trade-offs are based on genetic variation within populations, and
791 they persist on an evolutionary time scale, i.e., across generations. In contrast to acute and
792 chronic trade-offs, they cannot be broken by behavioral or physiological responses within an
793 individual organism. Rather, breaking cross-generational (microevolutionary) trade-offs
794 requires "solutions" on an evolutionary timescale. Hence, trade-offs that occur within
795 populations may relate to speciation in some cases, thus crossing into the realm of
796 macroevolution (Schluter 1995; Herrel et al. 2009).797 Genetic correlations that underlie trade-offs are caused by internal, proximate
798 mechanisms, including (i) linkage disequilibrium between two or more loci and (ii)
799 pleiotropic gene action (Lande 1982). Trade-offs that arise from linkage disequilibrium can
800 occur because genes that control two traits are located closely to each other on a chromosome
801 and/or because of non-random mating, and they will persist if favored by selection (Lande
802 1984; Falconer and MacKay 1996). Breaking these trade-offs requires a cross-over event
803 during meiosis or relaxation of selection (Lande 1981; Kirkpatrick 1982). "Pleiotropy"
804 denotes the effects of a single gene on multiple traits, and this results in a trade-off when
805 these effects are antagonistic with respect to fitness or some lower-level traits (see previous
806 discussion of TP53). Mutations, including gene duplications, are needed to break pleiotropy-
807 based trade-offs. In general, cross-over events that break trade-offs caused by linkage
808 disequilibrium are thought to be more common than mutations that break trade-offs caused by
809 pleiotropy (Falconer and MacKay 1996; Sinervo and Svensson 1998).810 Genetic correlations might be more ephemeral than expected because they can be
811 affected by environmental factors; that is, there may be genotype-by-environment interactions
812 (Sgrò and Hoffmann 2004; Rose et al. 2005). For example, exposure to a novel environment
813 can cause the expression of a previously unexpressed gene (hidden or cryptic genetic
814 variation), which might break the negative correlation between two traits (Rose 1984; Sgrò
815 and Hoffmann 2004). Alternatively, a correlation could be plastic and expressed differently
816 in different environments (Service and Rose 1985; de Jong 1990; Stearns et al. 1991; Sgrò
817 and Hoffmann 2004). For example, when reared at 25°C, *Drosophila melanogaster* from
818 populations selected for cold resistance exhibited a trade-off between development time and
819 body size, but the direction of the correlation reversed when reared at 14°C (Norry and
820 Loeschke 2002).821 Correlational selection occurs when particular combinations of two or more traits are
822 associated with Darwinian fitness (Endler 1986). For example, anti-predator behavior and
823 aspects of coloration are correlated within populations of the garter snake *Thamnophis*
824 *ordinoides* (Brodie III 1992). Striped patterns inhibit detection of motion by some predators
825 and are associated with direct locomotor escape movements, whereas unmarked or blotched
826 patterns are associated with frequent direction shifts during escape from a human predator
827 (Brodie III 1992). Within our classification scheme (Table 1), correlational selection is an
828 external source of potential trade-offs (V. Ecological circumstances (selective regime)).
829 These trade-offs can be broken when the selection regime changes and no longer favors
830 previously favored suites of traits (Lande 1984) or when compensatory mutations occur. One

831 model suggests that most adaptive signatures detected in genome scans could be the result of
832 compensatory changes, rather than of progressive character adaptations (Pavlicev and
833 Wagner 2012).

834 The proximate genetic mechanisms of microevolutionary trade-offs (linkage
835 disequilibrium and pleiotropy) are in some cases associated with ultimate causes of
836 microevolutionary trade-offs, including correlational selection regimes (Sinervo and
837 Svensson 1998). Correlational selection can occur on traits that are genetically correlated and
838 act to maintain linkage disequilibrium for pairs or sets of loci. If selection relaxes, then
839 linkage disequilibrium can disappear (Lande 1981; Kirkpatrick 1982). Alternatively,
840 selection regimes can lead to genetic correlations by favoring pleiotropically acting alleles.
841 Thus, in these ways and others, genetic architecture can evolve in response to selection
842 (Falconer and Mackay 1996; Lynch and Walsh 1998; Sinervo and Svensson 1998; Walsh and
843 Lynch 2018). These processes occur on an evolutionary time scale.

844 In all cases, the evolutionary resolution of trade-offs will be shaped by costs and
845 benefits with respect to the components of Darwinian fitness. Among many other types of
846 costs, costs of reproduction, in a broad sense, are the subject of a substantial literature in both
847 evolutionary and organismal biology (e.g., Stearns 1976, 1980, 1989, 1992; Partridge and
848 Harvey 1985; Reznick 1985; Seigel et al. 1987; Brodie III 1989; Sinervo and Svensson 1998;
849 Reznick et al. 2000; Harshman and Zera 2007; Speakman 2008; Flatt and Heyland 2011;
850 Speakman and Garratt 2014; Martin et al. 2015; Banet et al. 2016; Andrew et al. 2020). In
851 the most general terms, costs of current reproduction are viewed as being paid through
852 reduced future reproduction and/or survival, but many studies take a more granular or
853 mechanistic focus.

854 Network Perspectives on Trade-offs

855 Discussion of trade-offs in the literature, and to some extent by us in this Perspective,
856 leans towards examples in which trade-offs occur between pairs of traits; trade-offs that are
857 binary are easier to explain both at the proximate level of mechanisms and the ultimate level
858 of the responses of species to natural selection that are molded by the trade-offs. In reality,
859 however, for any species and question studied, there will likely be many inter-related trade-
860 offs that affect multiple traits. One of our main goals in this Perspective is to champion the
861 need for a broad view of trade-offs to encompass simultaneously both multiple proximate
862 mechanisms and ultimate drivers of evolution. Here, we illustrate the complexities that
863 emerge in networks of trade-offs using an explicit numerical model related to locomotor
864 performance. [We would also direct readers to the book by Taylor and Thomas (2014),
865 which provides an interesting analysis of constraints related to different walking gaits, and to
866 Cloyd et al. (Cloyd et al. 2021), who review constraints related to body size.]

867 Simple binary trade-offs

868 The focus in the literature on binary trade-offs can lead researchers to miss important
869 trade-offs or to misinterpret the nature of a trade-off (Speakman and Garratt 2014). To
870 illustrate some of the issues involved in conceptualizing and defining trade-offs that may

874 involve multiple traits, as well as testing for them with data, we present simulations of
875 functionally (causally) related traits. We begin with a simple system in which a trade-off
876 might occur: one trait affects two others in opposite directions. Specifically, we simulated
877 random data from a normal distribution to represent individual variation in the percent fast-
878 twitch fibers in hindlimb muscles, which had a positive effect on maximal sprint speed but a
879 negative effect on locomotor endurance (for an example with bird displays, see Miles et al.
880 2018). We intentionally ignored other traits that would affect these two performance metrics.
881 As shown in the Online Supplemental Material, we then added some random error to both
882 speed and endurance so they would not be perfectly correlated with fiber-type variation or
883 with each other.

884 **Figure 2** shows the bivariate relations for 40 simulated data points. The negative
885 correlation between speed and endurance (Fig. 2A) is highly statistically significant ($r = -$
886 0.636 , 2-tailed $P < 0.001$). However, a path analytic model (Fig. 2B) indicates no correlation
887 between speed and endurance ($r = -0.015 \pm 0.078$ [estimate \pm standard error]): this is the
888 correlation of variation in speed and endurance that is not explained by muscle fiber
889 variation. Similar results are obtained by partial correlation analysis or by correlating the
890 residuals from simple linear regressions of each performance trait on percent fast fibers,
891 whereas a principal components analysis is unclear regarding the speed-endurance correlation
892 (Online Supplemental Material).

893 What do we learn from this simple example? First, the "trade-off" is the joint effect of
894 one trait on two others, whereas the consequence of that trade-off is observed in the simple
895 bivariate correlation of the two dependent traits. In much of the literature, that bivariate
896 correlation would be called a trade-off, rather than the consequence of a trade-off. As a
897 shorthand, we will sometimes refer to a negative relationship between two traits simply as a
898 trade-off, keeping in mind that it is actually the result of a trade-off. In any case, the negative
899 relationship between speed and endurance can be accounted for entirely by the joint causal
900 effects of percent fast fibers, and once this is controlled for statistically, the negative
901 relationship disappears.

903 A trade-off network of seven traits

904 Complex traits require complex causal models (e.g., see Zaman et al. 2014; Melo and
905 Marroig 2015; Orr and Garland, Jr. 2017; Lightfoot et al. 2018; Sella and Barton 2019), and
906 trade-offs within a network are more complex than depicted in the 2-trait model of Figure 2.
907 **Figure 3** presents a network that expands the example in Figure 2 to seven morphological,
908 performance, and fitness traits (Online Supplemental Material). For simplicity, we did not
909 perform genetic simulations to obtain values for the morphological/physiological traits.
910 Rather, we began by creating uncorrelated random normal variables for hypothetical hindlimb
911 lengths and percent fast-twitch fibers in the hindlimb muscles. Simulations that began with
912 genes or genetic parameters would also allow exploration of antagonistic pleiotropy as a basis
913 for trade-offs at higher levels of organization (Table 1).

914 The network model is a caricature that might apply to a generalized terrestrial
915 vertebrates. For quadrupeds (or bipeds), maximum sprint speed will be the product of
916 maximum stride length and stride frequency. These two traits would be affected by more

918 than just leg length and contraction speed, respectively, but other causal traits (e.g., degree of
919 pelvic rotation, length of the airborne phase) are viewed as unmeasured variables absent from
920 the model. Thus, for this model, speed is computed as the product of leg length and percent
921 fast fibers.

922 Endurance, on the other hand, was computed as a positive function of leg length,
923 which should have a positive effect on locomotor efficiency, and a negative function of
924 percent fast fibers, which should reduce muscle efficiency. This is the first functional trade-
925 off built into the model. It can also be viewed as an allocation trade-off because muscle
926 fibers are given as a percent rather than an absolute amount, and we do not have a variable of
927 muscle size in the model (see the section on Allocation constraints and Figure 1). Again,
928 many more lower-level traits affect muscle function and running endurance capacity,
929 including hormones and probably signals from the central nervous system (e.g., see Garland,
930 Jr. 1984, 1993; Bramble and Lieberman 2004; Noakes 2012; Tobiansky et al. 2020), but we
931 have tried to keep the model simple.

932 We modeled endurance as having a positive effect on both probability of survival to
933 reproductive age and reproduction, which can be taken as the number of offspring produced if
934 the individual survives (otherwise zero). Speed, however, was modeled as having a positive
935 effect on survival (e.g., via better ability to escape from predators when chased) but a
936 negative effect on reproduction (e.g., perhaps because it is tied to display frequency in a way
937 that is not attractive to potential mates, thus bringing in sexual selection, which we identify as
938 another source of trade-offs in Table 1). This is the second built-in trade-off, one that would
939 likely be modified by ecological circumstances in our classification scheme (Table 1).
940 Finally, fitness is the product of survival probability and reproduction. We present one
941 representative simulated data set for 40 hypothetical individuals (Figs. 3 and 4).
942

943 [Analysis of the entire network](#)

944 For the simulated data, the bivariate relationships between the lower-level traits and
945 performance (e.g., leg length with speed and endurance) are as one would expect from basic
946 knowledge of physiology and biomechanics, and as are built into the model (**Figure 4**).
947 However, the expected negative relationship between speed and endurance does not exist ($r =$
948 -0.062), nor is there a negative relationship for the two fitness components, survival and
949 reproduction. These bivariate relationships are confirmed by a path analysis that estimates all
950 of the coefficients simultaneously (**Figure 3**). Thus, this relatively simple simulation model
951 illustrates how unexpected results can emerge from a network perspective on trade-offs. In
952 this particular case, the surprises involve an absence of two negative relationships (speed vs.
953 endurance and survival vs. reproduction). The trade-off that might be expected to generate the
954 negative relationship between speed and endurance -- the trade-off involving fast muscle
955 fibers -- is counterbalanced by the positive effect of leg length on both speed and endurance.
956 The absence of a negative relationship between survival and reproduction is more complex to
957 explain, because it occurs further along in the trade-off network. A negative relationship
958 between survival and reproduction might be expected from the positive effect of speed on
959 survival and the negative effect of speed on reproduction. However, fast muscle fibers
960 increase speed and decrease endurance, and this acts to counterbalance the opposing direct

962 effects of speed on survival and endurance. Specifically, the [fast fiber] -> [speed] ->
963 [reproduction] pathway and the [fast fiber] -> [endurance] -> [reproduction] pathway are
964 negative, but the pathways to survival have opposite signs, with the [fast fiber] -> [speed] ->
965 [survival] pathway being positive. There is also a counterbalancing effect of leg length, for
966 which three of the four pathways to survival and reproduction are positive. The overall
967 patterns observed in networks such as this cannot be deduced from only the signs of
968 interactions between network components; the magnitudes of the interactions are also needed.

969 Relationships at higher levels of biological organization may be very difficult to
970 predict from those involving lower-level traits, due to the detail of information that is needed
971 (see also Agrawal 2020). We encourage readers to explore other models with the code
972 provided (Online Supplemental Material), as they may provide both biological and statistical
973 insights, and serve as the basis for teaching materials.

974

975 [Analysis of subsets of the network](#)

976

977 Few studies would include all seven traits in the model (**Figure 3**). A functional
978 biologist, for example, might measure both of the morphological/physiological traits (A, B)
979 and the performance traits (C, D). A behavioral ecologist might wish to measure
980 performance, the two fitness components, and fitness itself. Using the same set of simulated
981 data as discussed above, bivariate correlations (**Figure 4**) and path analysis (**Figure 3**) would
982 indicate a positive effect of both performances on survival, but one negative and one positive
983 effect on reproduction. In spite of these relations, the two fitness components do not show a
984 negative relationship that might have been expected based on much life history theory and
985 empirical examples.

986 Since a resurgence of interest in bringing quantitative genetics more strongly into
987 evolutionary biology that began in the late 1970s, attempts to measure selection in the wild
988 have become increasingly common (Hoekstra et al. 2001; Kingsolver et al. 2001; Irschick et
989 al. 2007, 2008; Moiron et al. 2020). Following the seminal methods papers by Lande and
990 Arnold (1983) and Arnold (1983), a likely approach would be a path analysis including the
991 lowest-level traits, performances, and fitness, i.e., testing the Morphology --> Performance -->
992 Fitness paradigm (**Figure 5**). This path model indicates positive effects of both speed and
993 endurance on fitness, although the effect of speed is marginally non-significant (Likelihood
994 Ratio Test, $P = 0.0581$). Note that the analysis of pairwise correlations would suggest that
995 endurance ($r = 0.623$) but not speed ($r = 0.190$) affects fitness (**Figure 4**).
996

997 [Lessons from network simulations](#)

998

999 Although the simulation model that we present is only a caricature of real-life
1000 complexities, it nonetheless illustrates a fundamental lesson: *To fully understand the role of*
1001 *trade-offs in the functioning and fitness of organisms, we need to integrate across disciplines*
1002 *and explore trade-offs in the context of causal networks rooted in mechanism.* A corollary is
1003 that multiple types of trade-offs generated by different biological processes must be
1004 considered. Another corollary is that unexpected functional properties may emerge even

1005 from relatively simple systems (e.g., see Alfaro et al. 2004). The diversity of types of trade-
1006 offs that interact with each other (**Table 1**) underscores our goal of trying to integrate and
1007 synthesize the range of trade-offs that researchers investigate. Studying trade-offs is
1008 inherently an interdisciplinary endeavor that encompasses both proximate and ultimate
1009 causation and factors both external and internal to the organism, at multiple levels of
1010 biological organization.

1011 **Studying Trade-offs (and Constraints)**

1012

1013 **General Considerations**

1014

1015 Trade-offs are studied in numerous ways, spanning all of the approaches in
1016 evolutionary biology, behavioral ecology, and the many subfields of organismal biology (e.g.,
1017 functional morphology, physiological ecology, comparative physiology). A thorough review
1018 and critique of the many alternatives is beyond the scope of this perspective. Instead, we
1019 offer brief comments and highlight a few examples for each of several approaches. Readers
1020 interested in more detailed discussions are directed first to the extensive literature concerning
1021 life-history evolution (e.g., Stearns 1976, 1980, 1989, 1992; Reznick 1985; Kirkwood and
1022 Rose 1991; Partridge and Sibly 1991; Sibly 1991; Roff 1992, 2002; Charlesworth 1994;
1023 Sinervo and Svensson 1998; Migliano et al. 2007; Flatt and Heyland 2011; Lemaître et al.
1024 2015; Lawson and Borgerhoff Mulder 2016; Cohen et al. 2020).

1025 Regardless of the level at which trade-offs are examined (e.g., within-individual
1026 plasticity, among individuals within a population, among species), empirical studies often
1027 search for negative correlations between two traits, but this will generally be inadequate for
1028 networks of interacting traits (Pease and Bull 1988; Mills et al. 2008; Blows and Walsh 2009;
1029 Walsh and Blows 2009). Failing to include traits that play a key role in a particular trade-off
1030 is another common problem in empirical studies. Moreover, trade-offs often occur only at the
1031 extremes of distributions, as in animals that have exceptional athletic abilities (Poole and
1032 Erickson 2011; Sharp 2012; Wilson et al. 2013; Irschick and Higham 2016; Lailvaux 2018)
1033 or live in extreme environments (Garland, Jr. 1994; Holzman et al. 2011). Therefore, the
1034 choice of individuals, populations or species to study can have a large effect on the ability
1035 and statistical power to detect trade-offs.

1036 Whereas a trade-off involving only two traits implies a negative relationship between
1037 them, the problem becomes much less clear with more than two traits (Pease and Bull 1988;
1038 Charlesworth 1990) (see also Figure 1). Suppose, for example, that an animal could engage
1039 in three types of foraging behavior, A, B and C, that together must sum to the number of
1040 daylight hours. If C is held constant, then the trade-off appears as a negative relationship
1041 between A and B. But if all three vary, then a positive relationship could be observed
1042 between A and B provided there are negative relationships between A and C, and between B
1043 and C. As the number of traits involved increases, using negative (genetic) correlations to

1044 identify trade-offs becomes more problematic (Pease and Bull 1988). Moreover, finding
1045 holes in the conceivable morphospace (e.g., see Raup 1966; Frankino et al. 2009) does not
1046 discriminate among the alternate hypotheses that (1) some internal constraint keeps
1047 organisms from occupying that space, (2) insufficient time has elapsed for organisms to fill
1048 the space, or (3) selection has simply never favored organisms that would occupy the space
1049 because such a niche has not existed (i.e., lack of ecological opportunity) (see also Weber
1050 1990). A more prosaic issue is incomplete sampling of the organisms in question, including a
1051 failure to consider extinct forms that may, for example, have been significantly larger or
1052 smaller in body size than occurs among living forms (e.g., see Gearty et al. 2018).

1053

1054 Comparative studies of differences among species

1055

1056 Trade-offs are often studied by comparing species (or populations). One example
1057 involves the possible trade-off between speed and stamina that would be predicted based on
1058 muscle physiology and biomechanics (a Category II trade-off, caused by functional conflicts,
1059 but also possible involving Category I. Allocation constraints). Studies of lizards have found
1060 mixed support for the existence of such a trade-off (Vanhooijdonck et al. 2001, 2014;
1061 Albuquerque et al. 2015) (see also Toro et al. 2004; Goodman et al. 2007). In male manakin
1062 birds, testosterone implants increase the twitch speed of a dorsal wing muscle but reduce its
1063 endurance, which affects their courtship display (Tobiansky et al. 2020). Thus, this example
1064 of a functional trade-off involves an integrator molecule (Table 1).

1065 Another example is the trade-off between offspring size and number, which is a core
1066 component of life-history theory (Stearns 1976, 1992; Roff 2001) and has been documented
1067 in various animals, including among species of mammals (Walker et al. 2008), birds
1068 (Christians 2000), turtles (Elgar and Heaphy 1989), and lizards (Warne and Charnov 2008).
1069 The offspring size-number trade-off is not absolute. In turtles, for example, the correlation is
1070 -0.7 across genera, meaning that some species are rather far off of the line that describes the
1071 relationship (Elgar and Heaphy 1989).

1072 In addition to trade-offs, constraints can also be recognized in comparative data where
1073 they appear as a limit to the range of a given phenotype or by a gap in phenotypic space.
1074 Consider a single trait, such as body mass, for which a large data base exists (e.g., Okie et al.
1075 2013). If we have data that include all living species, and we find that, say, no adult mammal
1076 is smaller than about two grams, then we might infer that two grams represents the lower
1077 limit (constraint) on body size for mammals. A recent comparative analysis of body masses
1078 of both fossil and living mammals used phylogenetically based statistical methods and an
1079 energetic model to reach the conclusion that, for aquatic mammals, thermoregulatory
1080 limitations on feeding efficiency constrain maximum size, whereas energetic costs constrain
1081 minimum size (Gearty et al. 2018).

1082

1083 Individual variation

1084

1085 Differences among individuals in locomotor performance has received considerable
1086 attention, especially in squamates, since Bennett's (1980) pioneering paper. Bennett (1980, p.
1087 760) did not use the phrase "trade-off" but tested for correlations between maximal sprint
1088 speed and distance-running capacity, and found that "these data do not indicate a
1089 specialization of individual animals into sprinters and distance runners." Since 1980, several
1090 studies of individual variation in lizards and snakes have measured sprint speed and stamina,
1091 generally finding little evidence for trade-offs (e.g., Garland, Jr. 1984, 1988; Garland, Jr. and
1092 Else 1987; Sorci et al. 1995; Robson and Miles 2000; Perry et al. 2004; Lailvaux et al. 2019).

1093 Studies of elite human athletes have found evidence for weak trade-offs in
1094 performance of different events (Van Damme et al. 2002; Walker and Caddigan 2015; Careau
1095 and Wilson 2017b). These analyses involve more sophisticated statistical approaches and
1096 much larger sample sizes than those of the squamate studies, and also sampling from the
1097 extremes of human variation, which, as noted above, may increase the likelihood of observing
1098 trade-offs (Garland, Jr. 1994; Holzman et al. 2011).

1099

1100 Physiological correlations and manipulations

1101

1102 Physiologists study natural variation among individuals, populations, and species
1103 (Bennett 1987; Garland, Jr. and Adolph 1991; Garland, Jr. and Carter 1994; Hayes and
1104 Jenkins 1997; Spicer and Gaston 1999; Williams 2008; Gaston et al. 2009), but they spend
1105 most of their time performing manipulations, and sometimes they address trade-offs and
1106 constraints with such experiments. One example is determining optimal blood hematocrit
1107 levels, which can be manipulated in various ways, including by administration of
1108 erythropoietin (Kolb et al. 2010; Schuler et al. 2010). Higher hematocrit increases
1109 hemoglobin concentration and hence blood oxygen carrying capacity, and is generally
1110 associated with higher maximal rates of oxygen consumption and aerobic exercise
1111 performance (VO₂max). However, very high concentrations of red blood cells increase blood
1112 viscosity to an extent that limits aerobic exercise capacity. In a selection experiment that
1113 targeted swim-induced aerobic metabolic rate in voles, an evolved 60% increase in VO₂swim
1114 was associated with decreased hematocrit (Lipowska et al. 2019). Another example of
1115 physiological manipulations involves use of surgical reductions in yolk and alterations of
1116 follicle-stimulating hormone in *Uta stansburiana* lizards to examine constraints and trade-
1117 offs involving egg size, shape, and number (Sinervo and Licht 1991), and subsequently
1118 relations with many other traits at multiple levels of biological organization (Mills et al.
1119 2008).

1120 Obviously, physiological studies that involve ablations, pharmacological
1121 manipulations, dietary alterations or hormone supplementation can tell us about constraints
1122 and trade-offs that act within the lifespan of an individual. However, controversy has existed

1123 concerning the value of such manipulations for elucidating evolutionary trade-offs (e.g., see
1124 Rose et al. 1996). As argued by Sinervo and Svensson (1998), they can be informative if the
1125 mechanisms altered by physiological manipulations are the same ones that are affected by
1126 genetic variation and pleiotropy. They can also serve as a bridge for understanding proximate
1127 versus ultimate causation.

1128

1129 [Genetic correlations](#)

1130

1131 In combination with knowledge of how selection is acting on traits, genetic
1132 correlations (or, more properly, the additive-genetic covariance matrix [G-matrix]) can be
1133 used to predict the rate and direction of evolutionary changes (e.g., see Lande and Arnold
1134 1983; Arnold 1987, 1992; Schlüter 1996). In the same type of analysis, several methods have
1135 been used to measure the extent of genetic constraints on the response to selection (assuming
1136 that the G-matrix remains constant) (Blows and Walsh 2009; Walsh and Blows 2009).

1137 According to Conner (2012), "quantitative genetic approaches, especially genetic
1138 correlations among traits, have been the dominant empirical methods for studying constraint
1139 on adaptation." Nevertheless, for various reasons, Conner (2012, p. 3313) concluded that
1140 "genetic correlations are not very useful for studying constraint" (see also Houle 1991). One
1141 reason of particular relevance to our Perspective is that estimates of genetic correlations, in
1142 and of themselves, are completely mechanistic "black boxes" that provide no insight
1143 regarding the biology underlying trait correlations. This is not to say that quantitative genetic
1144 approaches are not valid, but instead that they are most useful when tied explicitly to
1145 knowledge of the biological mechanisms that drive phenotypic (co)variation (see also Houle
1146 1991; Sinervo and Svensson 1998; Careau and Garland, Jr. 2012).

1147

1148 [Selection in the wild](#)

1149

1150 If the ecological circumstances that might cause trade-offs are of interest, then studies
1151 of selection in the wild are the method of choice. Such studies can be purely observational or
1152 can involve experiments, such as field introductions or transplants (Endler 1986; Travis and
1153 Reznick 1998; Biro et al. 2006; Irschick and Reznick 2009; Kingsolver and Diamond 2011),
1154 or modification of the characteristics of individual organisms (Curio 1973; Mills et al. 2008;
1155 John-Alder et al. 2009).

1156 Reznick and colleagues (Reznick and Travis 2019) have documented a complex
1157 evolutionary trade-off between the evolution of reproductive allocation and swimming
1158 performance in guppies (*Poecilia reticulata*) from natural populations in Trinidad. They have
1159 studied replicated populations from communities with or without abundant predators
1160 (Reznick and Travis 2019). Guppies adapted to life with predators allocate more resources to
1161 reproduction and, as a consequence, have larger burdens to carry when pregnant (Reznick and
1162 Bryga 1996; Reznick et al. 1996). When startled, they also have faster C-start responses and

1163 more rapid acceleration thereafter (Ghalambor et al. 2004). Independent studies show that
1164 faster startle responses increase the odds of escaping attack from predators (Walker et al.
1165 2005) and that guppies from high predation localities are significantly more likely to survive
1166 attacks by predators (O'Steen et al. 2002). The trade-off between speed of the alarm response
1167 and reproductive allocation is manifested as a significant interaction between the speed of the
1168 response and the stage of development of the developing young. The young increase in wet
1169 mass and volume as development progresses. Guppies from high predation environments are
1170 faster when their litters are in early stages of development, but progressively lose this
1171 advantage as development proceeds. Response speeds are not different when females are
1172 carrying litters in advanced stages of development, which is when the differences between
1173 high and low predation guppies in the volume and mass of developing young is maximized
1174 (Ghalambor et al. 2004).

1175 More recently, Blob and colleagues have studied another fish, the Hawaiian stream
1176 goby (*Sicyopterus stimpsoni*), in which juveniles may face conflicting selective regimes
1177 related to avoiding predators in the lower reaches of a stream versus climbing waterfalls to
1178 reach the habitats occupied by adults (Blob et al. 2010). Laboratory experiments intended to
1179 mimic these different types of selection point to trade-offs based on ecomorphology and
1180 locomotor abilities (Schoenfuss et al. 2013; Moody et al. 2017).

1181 These studies highlight the advantages of addressing trade-offs in multiple ways:
1182 focusing on populations that differ in selective regimes; analyzing trade-offs through
1183 development using well-defined performance metrics; including multiple types of trade-offs
1184 simultaneously. Ongoing work will also incorporate explicit genetic information designed to
1185 give greater insight into the mechanisms underlying trade-offs.
1186

1187 Selection experiments and experimental evolution

1188

1189 Selection experiments of various types in both laboratory and field settings have been
1190 used to address trade-offs and constraints in a variety of organisms (Bell 2008; Garland, Jr.
1191 and Rose 2009; Kassen 2014). Correlated responses to selection indicate genetic correlations,
1192 many of which will represent functional relationships among traits, including trade-offs and
1193 constraints (Chippindale et al. 1996; Dunnington and Siegel 1996; Rauw et al. 1998; Rose et
1194 al. 2005; Garland, Jr. et al. 2016). Here we will give three examples.

1195 As of 2017, Lenski and colleagues (Lenski 2017a, 2017b) had maintained 12
1196 populations of *E. coli* in a simple laboratory environment for more than 25 years and 60,000
1197 generations. Among various results, they discovered a trade-off between growth on glucose
1198 and acetate involving two metabolic "ecotypes" that can stably coexist. Each ecotype has a
1199 competitive advantage when rare, which it loses when it becomes more common. This
1200 represents a classical trade-off of the form that makes interspecific competition less than
1201 intraspecific competition, and facilitates the coexistence of species in nature.

1202 Weber (1990) used artificial selection to test hypotheses about constraints on wing
1203 shape in *Drosophila*. He noted that flies captured from wild populations and from lab
1204 populations subjected to environmental manipulations all fell along the same line for the
1205 relationship between two linear wing measurements. One hypothesis for such a pattern is that
1206 fundamental developmental constraints (Maynard Smith et al. 1985) that disallow other wing
1207 shapes, i.e., resist selection that would act to move them off of the regression line in
1208 morphospace. The alternative hypothesis is that organisms are held in morphospace by
1209 stabilizing selection. When he artificially selected on wing shape, the populations diverged
1210 rapidly from the ancestral form, thus disproving the developmental constraint hypothesis.
1211 This simple and direct -- but elegant -- approach deserves to be used more often (e.g., see
1212 Beldade et al. 2002; Frankino et al. 2009)!

1213 A selective breeding program for voluntary exercise in mice was begun in 1993, with
1214 four replicate High Runner (HR) lines bred for wheel-running behavior on days 5 and 6 of a
1215 6-day period of wheel access and four non-selected control (C) lines (Swallow et al. 1998).
1216 One observed trade-off involves the two components of daily wheel-running distance that can
1217 be quantified: the number of minutes per day that include at least one revolution and the
1218 average speed of running (RPM) computed by dividing total distance by minutes per day. In
1219 the base population, these two traits were positively correlated both phenotypically and
1220 genetically (Swallow et al. 1998; V. Careau and T. Garland, Jr., unpublished animal model
1221 analyses extending from Careau et al. 2013). By generation 43, however, the line means for
1222 speed and duration of running were significantly negatively correlated for both males and
1223 females in the HR lines, and at the level of individual variation the speed-duration correlation
1224 was, on average, lower (less positive) in the HR lines as compared with the C lines (Garland,
1225 Jr. et al. 2011a). Cross-generational analyses with a quantitative genetic "animal model"
1226 clearly demonstrate the evolution of a negative genetic correlation between speed and
1227 duration of running in the HR mice (V. Careau and T. Garland, Jr., unpublished). These
1228 results are consistent with the idea that trade-offs may only occur in organisms that are near
1229 some sort of limit. In addition, the additive-genetic variance-covariance matrix for running
1230 across all six days of the tests used to select breeders each generation evolved in a way that
1231 exacerbated genetic constraints and limited future adaptive response to selection (Careau et
1232 al. 2015).

1233 Mechanisms underlying the evolution of a trade-off between average speed and
1234 duration of daily wheel-running behavior could involve motivation and/or ability. Operant
1235 conditioning studies found that the motivational system of HR mice has evolved in a way that
1236 reduces the reinforcing value of shorter running durations (Belke and Garland, Jr. 2007) and
1237 several pharmacological, neurobiological, and gene expression studies elucidate mechanisms
1238 underlying motivational changes (Rhodes et al. 2005; Keeney et al. 2012; Saul et al. 2017;
1239 Thompson et al. 2017). With respect to ability, the HR lines have higher endurance (Meek et
1240 al. 2009) and maximal aerobic capacity (VO₂max) (Cadney et al. 2021) as measured during
1241 forced exercise, but have not suffered a general decline in maximal sprint speed (but see

1242 Drugosz et al. 2009). Changes in endocrine function, such as increased circulating
1243 concentrations of the "stress hormone" corticosterone in the HR lines, may contribute to
1244 changes in both their motivation and ability for sustained, aerobically supported running
1245 (Malisch et al. 2007; Garland, Jr. et al. 2016; Wallace and Garland, Jr. 2016). At the level of
1246 fitness components, neither litter characteristics at birth or weaning, nor aspects of maternal
1247 care, seem to have suffered general declines in the HR lines (Girard et al. 2002; Keeney
1248 2011). However, lifespan may have declined (Vaanholt et al. 2010) (but see Bronikowski et
1249 al. 2006). No trade-off between activity levels and immune function seems to have evolved
1250 (Malisch et al. 2009; Downs et al. 2012; Drugosz et al. 2013).

1251 These selection studies show the power of manipulating the "ecological"
1252 circumstances of populations in ways that are explicitly designed to reveal trade-offs at the
1253 mechanistic level. As such, they make it possible to understand how the integration of
1254 multiple trade-offs determines the evolutionary trajectories of populations.

1255

1256 Theoretical models

1257

1258 Trade-offs and constraints are often studied with models of various types, including
1259 mathematical formulations and computer simulations. Optimality models (e.g., Alexander
1260 1981, 1996; Taylor and Thomas 2014) are commonly used, based on costs versus benefits,
1261 and all of them assume some sort of constraint (limit) that causes a trade-off; otherwise, they
1262 would always predict "more is better" for all fitness components (e.g., survival, fecundity)
1263 and for many subordinate traits (Shoval et al. 2012). Typically, the assumed allocation
1264 constraints involve limits on available energy, time or some other resource (Rosen 1967;
1265 Maynard Smith 1978; Pierce and Ollason 1987; Parker and Smith 1990; Sibly 1991;
1266 Jørgensen et al. 2016). Alternatively, many more-abstract models define trade-offs or
1267 constraints as simple functions that set conditions on what combinations of trait values are
1268 possible (Schaffer 1974; Charlesworth 1990). Optimization models with trade-offs are
1269 structurally similar to quantitative genetic models in which a genetic covariance matrix
1270 describes how changing multiple genetic traits together affect fitness (Pease and Bull 1988;
1271 Charlesworth 1990; Arnold 1992). Optimality models and the trade-offs they assume may
1272 not give insight into the trade-offs per se, but they may nonetheless give insight into the
1273 logical outcomes that the trade-offs impose. "The role of optimization theories in biology is
1274 not to demonstrate that organisms optimize. Rather, they are an attempt to understand the
1275 diversity of life" (Maynard Smith 1978, p. 52).

1276 We believe that theoretical models and corresponding statistical models -- with strong
1277 ties to real-world empirical examples -- will be needed to understand the mechanisms and
1278 outcomes of trade-off networks like the one we used for our heuristic demonstration (Figs. 3
1279 and 4). Statistical analyses of networks will often involve path analysis, which started with
1280 Wright (1921, 1934). Theoretical models can also be used to ask, for example, when will
1281 antagonistic pleiotropy itself evolve (Guillaume and Otto 2012). Finally, we see a need for

1282 models that explicitly include genetics and mechanistic networks of physiological and
1283 morphological traits, all under natural selection, in order to better understand how patterns of
1284 trait correlations emerge in real populations, and how we can find them in real data.

1285

1286 [Physical models](#)

1287

1288 Physical models can also be used to study trade-offs. For example, aerodynamics have
1289 important effects on the performance of planes and automobiles, so the design process
1290 includes empirical testing of scale or full-size models in wind tunnels. In high-performance
1291 cars, aerodynamic downforce can help them stick to the road during high-speed cornering,
1292 but it also causes drag that hurts fuel economy and reduces top speed. This trade-off can be
1293 circumvented by use of spoilers (usually rear-mounted "wings") that pivot with speed.

1294 Aerodynamics are also key to understanding the evolution of gliding behavior and of
1295 flight, and how body size, body plan, and body shape may affect flight performance (e.g., see
1296 Evangelista et al. 2014; Taylor and Thomas 2014). As one example, Emerson and Koehl
1297 (1990) used tests of live animals in the wild and wind tunnel models to study the effects on
1298 flight performance of the morphology and behavior of "flying" frogs, which have evolved
1299 multiple times from nonflying ancestors. They found that the posture and morphology
1300 associated with "flying" behavior decreases horizontal traveling distance but improves
1301 maneuverability, implying a trade-off.

1302

1303 [Concluding Remarks](#)

1304

1305 Trade-offs are foundational to understanding the evolution of, plasticity of, and
1306 constraints on an organism's phenotype, and they are superficially intuitive to the point that
1307 the concepts underpin popular idioms. Trade-offs in biology, however, are diverse and defy a
1308 single, precise definition because of their pervasiveness and because of the
1309 interconnectedness of trade-offs among levels of organization and levels of causality. Rather
1310 than try to give a precise, unitary definition of trade-off, we have instead described six
1311 categories of trade-offs that span a range of biological levels of organization, and that
1312 encompass both proximate and ultimate causes. Similarly, we discussed the durations of
1313 trade-offs as a way to think about what "strategies" are available that allow individuals to
1314 break trade-offs, and the consequences of trade-offs for an organism's fitness and a species'
1315 evolution. Throughout, we emphasized the need to measure mechanisms of trade-offs to
1316 distinguish trade-offs from observed negative correlations. Finally, we have attempted to
1317 provide a synopsis of different perspectives on trade-offs to show how they give
1318 complementary conceptual tools for understanding both mechanisms and drivers that underlie
1319 evolution. Our hope is that scientists with different perspectives talk to each other about

1320 trade-offs and thus improve our understanding of both how organisms work and how they
1321 evolve.

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333 [Online Supplemental Material.zip](#)

1334

1335 For Figure 2:

1336 SPSS Syntax_Figure_2.sps

1337 reads in this as a starting file:

1338 Random_Numbers_Path_4_all_SPSS.xlsx

1339 and creates:

1340 Random_Numbers_Simple_Trade-off_4.sav

1341 which is read in by:

1342 Onyx_Simple_Trade-off_4.xml

1343

1344 For Figures 3, 4, 5:

1345 SPSS Syntax_Random_Path_7_UPLOAD.sps

1346 reads in this as a starting file:

1347 Random_Numbers_Path_4_all_SPSS.xlsx

1348 and creates:

1349 Random_Numbers_Path_1.sav

1350 which is read in by:

1351 Onyx_7.xml

1352

1353

1354

1356 Table 1. Six ways trade-offs are recognized in the literature.

Category of Trade-off	Proximate vs. Ultimate Causation	Biological example	Human societal or cultural example
I. Allocation constraints	Proximate	competition between energy devoted to size vs. number of eggs; reproduction vs. somatic maintenance and repair	paying the rent vs. feeding the family
II. Functional conflicts	Proximate	speed vs. force in biological lever arms; body shape in relation to swimming performance of fish	speed vs. force in mechanical lever arms; speed and power vs. fuel economy in automobiles
III. Shared biochemical pathways	Proximate	testosterone increases territoriality but decreases parental care	caffeine increases motivation but also anxiety; SSRIs reduce depression but also lower sex drive (with potential fitness consequences)
IV. Antagonistic pleiotropy	Proximate/Ultimate	aging, explained by alleles that increase early-life reproductive success but reduce late-life survival, and so will be favored by selection	aging in the broadest sense, which may occur via many physiological, cellular, biochemical, and molecular mechanisms
V. Ecological circumstances (selective regime)	Ultimate	increased foraging effort brings more energy and fecundity, but also increases predation risk and hence lowers survival	managing ecosystems for one service may come at the expense of another (King et al. 2015)
VI. Sexual versus natural selection	Ultimate	male secondary sexual characters associated with displays (e.g., peacock tail feathers) increase	trade-offs when choosing mates (Waynforth 2001; Vigil et al. 2006)

		reproductive success but decrease survival; different types of signals are negatively correlated among species in some lineages (Wiens and Tuschhoff 2020)	
--	--	--	--

1358

Figure Legends

Figure 1. Example of definitional/methodological constraint and trade-off, illustrated with a tri-plot (ternary diagram). A) Values are means for 24 species of lizards (Bonine et al. 2005). Fiber types of the iliofibularis muscle were recorded in a way that only the percentage of total fibers (counts) are available for fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG), and slow-twitch oxidative (SO) fibers. SO fibers are relatively rare, so a negative relationship between the %FG and %FOG fibers will generally exist. Interspecific variation in lizard fiber types is even more complicated than shown here because some species (not included in this study) can have as many as 50% of a fourth fiber type, tonic fibers (Abu-Ghalyun et al. 1988; Mutungi 1992). B) Simulated data for three random variables (see text). Even here, statistically significant negative correlations are observed, implying trade-offs. Hence, the appropriate null expectation is not necessarily zero correlation, and this must be considered when searching for biological trade-offs (see text).

Figure 2. Analysis of simulated data for a simple trade-off. The % fast-twitch muscle fibers in hindlimb muscle have a positive effect on maximal sprint speed, but a negative effect on endurance (left panel), which causes the two performance measures to be negatively related in a simple bivariate scatterplot (right panel: Pearson's $r = -0.505$). The left panel shows a path diagram; by convention (Wright 1921, 1934; von Oertzen et al. 2015), single-headed arrows indicate causal relations and double headed arrows indicate correlations (for examples, see Foster et al. 2015; Collins and Higham 2017; Hiramatsu and Garland, Jr. 2018). All variables were standardized to unit mean and standard deviation prior to analysis with maximum likelihood estimation in Onyx (von Oertzen et al. 2015). Values next to black arrows are path coefficients (standardized regression coefficients) and their standard errors; values next to gray dashed arrows are estimated correlations and their standard errors. Numbers above or below the boxes indicate the amount of unexplained variance for a given trait. Speed and endurance are uncorrelated based on the path analysis (left panel), which incorporates the effect of % fast fibers on both traits.

Figure 3. Path analysis to illustrate trade-offs in a network of causally related traits. Using SPSS, uncorrelated random data were simulated for the two morphological/physiological traits (leg length, % fast fibers) and then used to compute the downstream traits to the right (Online Supplemental Material includes the SPSS syntax). Survival was converted to a categorical variable (0 = no, 1 = yes). Plus and minus signs indicate the direction of the relationship that was simulated. A set of 40 data points was analyzed. Values next to black arrows are path coefficients (standardized regression coefficients) and their standard errors estimated by maximum likelihood in Onyx. Values next to gray dashed arrows are estimated correlations and their standard errors. Numbers above or below the boxes indicate the amount of unexplained variance for a given trait. The fit of the overall model is acceptable, based on RMSEA of 0.0 and no significant lack-of-fit ($\chi^2 = 1.94$ with restricted degrees of

freedom = 8), and all of the causal relations are statistically significant (as expected by construction of the model), including the two trade-offs built into the model (antagonistic effects of % fast fibers on the two performance metrics and antagonistic effects of maximal sprint speed on the two fitness components). These trade-offs affect the relationships between the two performance traits and between the two fitness components; however, neither of those relationships are significantly negative, because the effects of the built-in trade-offs are counterbalanced by effects of other traits.

Note that other paths could have been estimated, such as one from leg length directly to fitness, but this model follows the tradition of the original Morphology --> Performance --> Fitness paradigm (Arnold 1983; Garland, Jr. and Losos 1994; Figure 2 in Ackerly et al. 2000).

Figure 4. Bivariate scatterplots for all traits from the model shown in Figure 3. Asterisk indicates $P < 0.05$ for a 2-tailed test with no correction for multiple comparisons.

Figure 5. Natural selection quantified by path analysis following the Morphology --> Performance --> Fitness paradigm (Arnold 1983; Lande and Arnold 1983), based on a subset of the traits shown in Figure 3. This path model indicates positive effects of both speed and endurance on fitness, although the effect of speed is marginally non-significant (Likelihood Ratio Test, $P = 0.0581$). In contrast, pairwise correlations suggest that endurance ($r = 0.623$) but not speed ($r = 0.190$) affects fitness. Analyses were performed with Onyx (von Oertzen et al. 2015).

Literature Cited in Zotero

Abu-Ghalyun Y., L. Greenwald, T.E. Hetherington, and A.S. Gaunt. 1988. The physiological basis of slow locomotion in chameleons. *J Exp Zool* 245:225–231.

Ackerly D.D., S.A. Dudley, S.E. Sultan, J. Schmitt, J.S. Coleman, C.R. Linder, D.R. Sandquist, et al. 2000. The evolution of plant ecophysiological traits: recent advances and future directions. *BioScience* 50:979–995.

Adamo S.A. 2017. The stress response and immune system share, borrow, and reconfigure their physiological network elements: Evidence from the insects. *Hormones and Behavior* 88:25–30.

Adamo S.A., J.L. Roberts, R.H. Easy, and N.W. Ross. 2008. Competition between immune function and lipid transport for the protein apolipoporphin III leads to stress-induced immunosuppression in crickets. *Journal of Experimental Biology* 211:531–538.

Aerts P. 1990. Mathematical biomechanics and the "what!"," how?" and "why?" in functional morphology. *Netherlands Journal of Zoology* 40:153–172.

Afton A.D. and S.L. Paulus. 1992. Incubation and brood care. Pp. 62–108 in B.D.J. Batt, A.D. Afton, M.G. Anderson, C.A. Davison, D.H. Johnson, J.A. Kadlec, and G.L. Krapu eds. *Ecology and Management of Breeding Waterfowl*. University of Minnesota Press, Minneapolis, Minn.

Agrawal A.A. 2020. A scale- dependent framework for trade- offs, syndromes, and specialization in organismal biology. *Ecology* 101:in press.

Agur Z. and L.B. Slobodkin. 1986. Environmental fluctuations: How do they affect the topography of the adaptive landscape? *J Genet* 65:45–54.

Albuquerque R.L., K.E. Bonine, and T. Garland, Jr. 2015. Speed and endurance do not trade off in phrynosomatid lizards. *Physiological and Biochemical Zoology* 88:634–647.

Alexander R. 1985. The ideal and the feasible: physical constraints on evolution. *Biological Journal of the Linnean Society* 26:345–358.

Alexander R.M. 1981. Factors of safety in the structure of animals. *Science Progress (1933-)* 109–130.

Alexander R.M. 1996. *Optima for animals*. Revised Edition. Princeton University Press.

Alfaro M.E., D.I. Bolnick, and P.C. Wainwright. 2004. Evolutionary dynamics of complex biomechanical systems: an example using the four-bar mechanism. *Evolution* 58:495–503.

Andrew J.R., T. Garland, Jr., M.A. Chappell, M. Zhao, N.D. Horrell, and W. Saltzman. 2020. Long-term effects of fatherhood on morphology, energetics, and exercise performance in California mice (*Peromyscus californicus*). *Physiol Biochem Zool* 93:75–86.

Antonovics J. and P.H. van Tienderen. 1991. Ontoecogenophyloconstraints? The chaos of constraint terminology. *Trends in Ecology & Evolution* 6:166–168.

Ardia D.R., H.K. Parmentier, and L.A. Vogel. 2011. The role of constraints and limitation in driving individual variation in immune response. *Functional Ecology* 25:61–73.

Arnold A.S., C.T. Richards, I.G. Ros, and A.A. Biewener. 2011. There is always a trade-off between speed and force in a lever system: comment on McHenry (2010). *Biol Lett* 7:878–879.

Arnold S.J. 1983. Morphology, performance and fitness. *American Zoologist* 23:347–361.

_____. 1987. Genetic correlation and the evolution of physiology. Pp. 189–215 in M.E. Feder, A.F. Bennett, W.W. Burggren, and R.B. Huey eds. *New directions in ecological physiology*. Cambridge University Press, Cambridge.

_____. 1992. Constraints on phenotypic evolution. *American Naturalist* 140 Supplement:S85–S107.

Arnold S.J., P. Alberch, V. Csanyi, R.C. Dawkins, S.B. Emerson, B. Fritzsch, T.J. Horder, et al. 1989. How do complex organisms evolve? Pp. 403–433 in *Complex Organismal Functions: Integration and Evolution in Vertebrates*. John Wiley & Sons.

Arnold S.J. and M.J. Wade. 1984a. On the measurement of natural and sexual selection: applications. *Evolution* 38:720–734.

_____. 1984b. On the measurement of natural and sexual selection: theory. *Evolution* 38:709–719.

Austad S.N. and J.M. Hoffman. 2018. Is antagonistic pleiotropy ubiquitous in aging biology? *Evol Med Public Health* 2018:287–294.

Ayres J.S. and D.S. Schneider. 2009. The Role of Anorexia in Resistance and Tolerance to Infections in *Drosophila*. (D. Promislow, ed.) *PLoS Biol* 7:e1000150.

Badyaev A.V. and T. Uller. 2009. Parental effects in ecology and evolution: mechanisms, processes and implications. *Phil Trans R Soc B* 364:1169–1177.

Banet A.I., J.C. Svendsen, K.J. Eng, and D.N. Reznick. 2016. Linking reproduction, locomotion, and habitat use in the Trinidadian guppy (*Poecilia reticulata*). *Oecologia* 181:87–96.

Bateson G. 1963. The role of somatic change in evolution. *Evolution* 17:529–539.

Bauwens D. and C. Thoen. 1981. Escape tactics and vulnerability to predation associated with reproduction in the lizard *Lacerta vivipara*. *The Journal of Animal Ecology* 50:733–743.

Beldade P., K. Koops, and P.M. Brakefield. 2002. Developmental constraints versus flexibility in morphological evolution. *Nature* 416:844–847.

Belke T.W. and T. Garland, Jr. 2007. A brief opportunity to run does not function as a reinforcer for mice selected for high daily wheel-running rates. *Journal of the Experimental Analysis of Behavior* 88:199–213.

Bell G. 2008. Selection: the mechanism of evolution (Second Edition.). Oxford University Press, Oxford, New York.

Bennett A.F. 1980. The thermal dependence of lizard behaviour. *Animal Behaviour* 28:752–762.

Bennett A.F. 1987. Interindividual variability: an underutilized resource. Pp. 147–169 in M.E. Feder, A.F. Bennett, W.W. Burggren, and R.B. Huey eds. *New directions in ecological physiology*.

Bertasi R.A.O., Y. Humeda, T.G.O. Bertasi, Z. Zins, J. Kimsey, and G. Pujalte. 2021. Caffeine intake and mental health in college students. *Cureus* 13:e14313.

Best A., A. White, and M. Boots. 2014. The coevolutionary implications of host tolerance. *Evolution* 68:1426–1435.

Biro P.A., M.V. Abrahams, J.R. Post, and E.A. Parkinson. 2006. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. *Journal of Animal Ecology* 75:1165–1171.

Blaauw B., S. Schiaffino, and C. Reggiani. 2013. Mechanisms modulating skeletal muscle phenotype. *Comprehensive Physiology* 3:1645–1687.

Blob R.W., S.M. Kawano, K.N. Moody, W.C. Bridges, T. Maie, M.B. Ptacek, M.L. Julius, et al. 2010. Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby *Sicyopterus stimpsoni*. *Integrative and Comparative Biology* 50:1185–1199.

Blomberg S.P. and T. Garland. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. *Journal of Evolutionary Biology* 15:899–910.

Blows M. and B. Walsh. 2009. Spherical cows grazing in flatland: constraints to selection and adaptation. Pp. 83–101 in *Adaptation and fitness in animal populations*. Springer.

Bonine K.E., T.T. Gleeson, and T. Garland, Jr. 2005. Muscle fiber-type variation in lizards (Squamata) and phylogenetic reconstruction of hypothesized ancestral states. *Journal of Experimental Biology* 208:4529–4547.

Bourg S., L. Jacob, F. Menu, and E. Rajon. 2019. Hormonal pleiotropy and the evolution of allocation trade-offs. *Evolution* 73:661–674.

Bramble D.M. and D.E. Lieberman. 2004. Endurance running and the evolution of *Homo*. *Nature* 432:345–352.

Bright J.A., J. Marugán-Lobón, S.N. Cobb, and E.J. Rayfield. 2016. The shapes of bird beaks are highly controlled by nondietary factors. *PNAS* 113:5352–5357.

Brodie III E.D. 1989. Behavioral modification as a means of reducing the cost of reproduction. *American Naturalist* 134:225–238.

_____. 1992. Correlational selection for color pattern and antipredator behavior in the garter snake *Thamnophis ordinoides*. *Evolution* 46:1284–1298.

Bronikowski A.M., T.J. Morgan, T. Garland, Jr., and P.A. Carter. 2006. The evolution of aging and age-related physical decline in mice selectively bred for high voluntary exercise. *Evolution* 60:1494–1508.

Brooks G.A. 2012. Bioenergetics of exercising humans. *Comprehensive Physiology* 2:537–562.

Budki P., S. Rani, and V. Kumar. 2012. Persistence of circannual rhythms under constant periodic and aperiodic light conditions: sex differences and relationship with the external environment. *Journal of Experimental Biology* 215:3774–3785.

Cadney M.D., L. Hiramatsu, Z. Thompson, M. Zhao, J.C. Kay, J.M. Singleton, R.L. Albuquerque, et al. 2021. Effects of early-life exposure to Western diet and voluntary exercise on adult activity levels, exercise physiology, and associated traits in selectively bred High Runner mice. *Physiology & Behavior* 234:113389.

Caillaud M.C. and J.E. Losey. 2010. Genetics of color polymorphism in the pea aphid, *Acyrtosiphon pisum*. *Journal of Insect Science* 10:1–13.

Calder W.A. 1984. Size, function, and life history. Harvard University Press, Cambridge, Mass.

Cappelletti S., D. Piacentino, P. Daria, G. Sani, and M. Aromatario. 2015. Caffeine: cognitive and physical performance enhancer or psychoactive drug? *Curr Neuropharmacol* 13:71–88.

Careau V. and T. Garland, Jr. 2012. Performance, personality, and energetics: correlation, causation, and mechanism. *Physiological and Biochemical Zoology* 85:543–571.

Careau V. and R.S. Wilson. 2017a. Of uberfleas and krakens: detecting trade-offs using mixed models. *Integrative and Comparative Biology* 57:362–371.

_____. 2017b. Performance trade-offs and ageing in the ‘world’s greatest athletes.’ *Proceedings of the Royal Society B: Biological Sciences* 284:20171048.

Careau V., M.E. Wolak, P.A. Carter, and T. Garland, Jr. 2015. Evolution of the additive genetic variance–covariance matrix under continuous directional selection on a complex behavioural phenotype. *Proceedings of the Royal Society B: Biological Sciences* 282:20151119.

Carey C., ed. 1996. Avian energetics, ecology, and evolution. Chapman & Hall, New York.

Chandler C.H., S. Chari, D. Tack, and I. Dworkin. 2014. Causes and consequences of genetic background effects illuminated by integrative genomic analysis. *Genetics* 196:1321–1336.

Charlesworth B. 1990. Optimization models, quantitative genetics, and mutation. *Evolution* 520–538.

_____. 1994. Evolution in age-structured populations. second edition. Cambridge University Press, Cambridge.

Chippindale A.K., T.J.E. Chu, and M.R. Rose. 1996. Complex trade-offs and the evolution of starvation resistance in *Drosophila melanogaster*. *Evolution* 50:753–766.

Christians J.K. 2000. Trade-offs between egg size and number in waterfowl: an interspecific test of the van Noordwijk and de Jong model. *Functional Ecology* 14:497–501.

Clarke A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wyllie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. *Nature* 362:849–852.

Clobert J., A. Oppliger, G. Sorci, B. Ernande, J.G. Swallow, and T. Garland, Jr. 2000. Trade-offs in phenotypic traits: endurance at birth, growth, survival, predation and susceptibility to parasitism in a lizard, *Lacerta vivipara*. *Functional Ecology* 14:675–684.

Cloyd C.S., J. Grady, V. Savage, J.C. Uyeda, and A.I. Dell. 2021. The allometry of locomotion. *Ecology* 102:e03369.

Cohen A.A., C. Coste, X.-Y. Li, S. Bourg, and S. Pavard. 2020. Are trade-offs really the key drivers of aging and lifespan? *Functional Ecology* 34:153–166.

Cohen A.A., L.B. Martin, J.C. Wingfield, S.R. McWilliams, and J.A. Dunne. 2012. Physiological regulatory networks: ecological roles and evolutionary constraints. *Trends in Ecology & Evolution* 27:428–435.

Collins C.E. and T.E. Higham. 2017. Individuals of the common Namib Day Gecko vary in how adaptive simplification alters sprint biomechanics. *Scientific Reports* 7.

Congdon J.D. and J.W. Gibbons. 1987. Morphological constraint on egg size: a challenge to optimal egg size theory? *Proceedings of the National Academy of Sciences* 84:4145–4147.

Conner J.K. 2012. Quantitative genetic approaches to evolutionary constraint: how useful? *Evolution* 66:3313–3320.

Crowley S.R. and R.D. Pietruszka. 1983. Aggressiveness and vocalization in the leopard lizard (*Gambelia wislizenii*): The influence of temperature. *Animal Behaviour* 31:1055–1060.

Curio E. 1973. Towards a methodology of teleonomy. *Experientia* 29:1045–1058.

Dallman M.F., J.P. Warne, M.T. Foster, and N.C. Pecoraro. 2007. Glucocorticoids and insulin both modulate caloric intake through actions on the brain: Glucocorticoids and insulin on caloric intake. *The Journal of Physiology* 583:431–436.

Darwin C.R. 1871. The descent of man and selection in relation to sex. First edition. John Murray, London, England.

de Jong G. 1990. Quantitative Genetics of reaction norms. *J Evolution Biol* 3:447–468.

_____. 1993. Covariances between traits deriving from successive allocations of a resource. *Functional Ecology* 7:75-83.

DeAngelis R., L. Dodd, and J. Rhodes. 2020. Nonapeptides mediate trade-offs in parental care strategy. *Hormones and Behavior* 121:in press.

Derryberry E.P., N. Seddon, G.E. Derryberry, S. Claramunt, G.F. Seeholzer, R.T. Brumfield, and J.A. Tobias. 2018. Ecological drivers of song evolution in birds: Disentangling the effects of habitat and morphology. *Ecol Evol* 8:1890–1905.

Dibner C., U. Schibler, and U. Albrecht. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. *Annu Rev Physiol* 72:517–549.

Dienz O. and M. Rincon. 2009. The effects of IL-6 on CD4 T cell responses. *Clinical Immunology* 130:27–33.

Dlugosz E.M., M.A. Chappell, D.G. McGillivray, D.A. Syme, and T. Garland, Jr. 2009. Locomotor trade-offs in mice selectively bred for high voluntary wheel running. *Journal of Experimental Biology* 212:2612–2618.

Dlugosz E.M., H. Schutz, T.H. Meek, W. Acosta, C.J. Downs, E.G. Platzer, M.A. Chappell, et al. 2013. Immune response to a *Trichinella spiralis* infection in house mice from lines selectively bred for high voluntary wheel running. *Journal of Experimental Biology* 216:4212–4221.

Downs C.J., J.S. Adelman, and G.E. Demas. 2014. Mechanisms and methods in ecoimmunology: integrating within-organism and between-organism processes. *Integr Comp Biol* 54:340–352.

Downs C.J., N.A. Dochtermann, R. Ball, K.C. Klasing, and L.B. Martin. 2020. The effects of body mass on immune cell concentrations of mammals. *Am Nat* 195:107–114.

Downs C.J., H. Schutz, T.H. Meek, E.M. Dlugosz, W. Acosta, K.S. de Wolski, J.L. Malisch, et al. 2012. Within-lifetime trade-offs but evolutionary freedom for hormonal and immunological traits: evidence from mice bred for high voluntary exercise. *Journal of Experimental Biology* 215:1651–1661.

Dunn E.C., T.W. Soare, M.R. Raffeld, D.S. Busso, K.M. Crawford, K.A. Davis, V.A. Fisher, et al. 2018. What life course theoretical models best explain the relationship between exposure to childhood adversity and psychopathology symptoms: recency, accumulation, or sensitive periods? *Psychol Med* 48:2562–2572.

Dunnington E.A. and P.B. Siegel. 1996. Long-term divergent selection for eight-week body weight in White Plymouth Rock chickens. *Poult Sci* 75:1168–1179.

Elgar M.A. and L.J. Heaphy. 1989. Covariation between clutch size, egg weight and egg shape: comparative evidence for chelonians. *Journal of Zoology* 219:137–152.

Emerson S.B. and M.A.R. Koehl. 1990. The interaction of behavioral and morphological change in the evolution of a novel locomotor type: “flying” frogs. *Evolution* 44:1931–1946.

Endler J.A. 1986. *Natural Selection in the Wild*. Princeton University Press, Princeton, NJ.

Evangelista D., S. Cam, T. Huynh, A. Kwong, H. Mehrabani, K. Tse, and R. Dudley. 2014. Shifts in stability and control effectiveness during evolution of Paraves support aerial maneuvering hypotheses for flight origins. *PeerJ* 2:e632.

Ezenwa V.O. and A.E. Jolles. 2011. From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. *Integr Comp Biol* 51:540–551.

Ezenwa V.O. and A.E. Jolles. 2015. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. *Science* 347:175–177.

Falconer D.S. and T.F.C. MacKay. 1996. *Introduction to quantitative genetics* (4th ed.). Longman Group, Essex. UK.

Falconer D.S. and T.F.C. Mackay. 1996. *Introduction to quantitative genetics*. 4th edition. Pearson Education Limited, Harlow, Essex, England.

Feder M.E., A.F. Bennett, and R.B. Huey. 2000. Evolutionary physiology. *Annual Review of Ecology and Systematics* 31:315–341.

Finch C.E. and M.R. Rose. 1995. Hormones and the physiological architecture of life history evolution. *The Quarterly Review of Biology* 70:1–52.

Flatt T. and A. Heyland, eds. 2011. *Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs*. Oxford University Press USA - OSO, Oxford, U.K.

Flatt T., A. Heyland, and S.C. Stearns. 2011. What mechanistic insights can or cannot contribute to life history evolution: An exchange between Stearns, Heyland, and Flatt. Pp. 375–379 in T. Flatt and A. Heyland eds. *Mechanisms of life history evolutionthe genetics and physiology of life history traits and trade-offs*. Oxford University Press.

Foo Y.Z., S. Nakagawa, G. Rhodes, and L.W. Simmons. 2017. The effects of sex hormones on immune function: a meta-analysis: Sex hormones and immune function. *Biol Rev* 92:551–571.

Foster K.L., C.E. Collins, T.E. Higham, and T. Garland, Jr. 2015. Determinants of lizard escape performance: decision, motivation, ability, and opportunity. Pp. 287–321 in W.E. Cooper and D.T. Blumstein eds. *Escaping From Predators: An Integrative View of Escape Decisions*. Cambridge University Press, Cambridge, U.K.

Fox C.W. and T.A. Mousseau. 1998. Maternal Effects as Adaptations for Transgenerational Phenotypic Plasticity in Insects. Pp. 159–1777 in Mousseau, Timothy A. and Fox, Charles W. eds. *Maternal Effects as Adaptations*. Oxford University Press, New York.

Frankino W.A., D.J. Emlen, and A.W. Shingleton. 2009. Experimental approaches to studying the evolution of animal form: the shape of things to come. P. in T. Garland, Jr. and M.R. Rose eds. *Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments*. University of California Press.

French S.S., D.F. DeNardo, and M.C. Moore. 2007a. Trade- Offs between the Reproductive and Immune Systems: Facultative Responses to Resources or Obligate Responses to Reproduction? *The American Naturalist* 170:79–89.

French S.S., G.I.H. Johnston, and M.C. Moore. 2007b. Immune activity suppresses reproduction in food-limited female tree lizards *Urosaurus ornatus*. *Funct Ecology* 21:1115–1122.

Garland, Jr. T. 1984. Physiological correlates of locomotory performance in a lizard: an allometric approach. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 247:R806–R815.

_____. 1985. Ontogenetic and individual variation in size, shape and speed in the Australian agamid lizard *Amphibolurus nuchalis*. *Journal of Zoology* 207:425–439.

_____. 1988. Genetic basis of activity metabolism. I. Inheritance of speed, stamina, and antipredator displays in the garter snake *Thamnophis sirtalis*. *Evolution* 42:335–350.

_____. 1993. Locomotor performance and activity metabolism of *Cnemidophorus tigris* in relation to natural behaviors. Pp. 163–210 in J.W. Wright and L.J. Vitt eds. *Biology of Whiptail lizards: genus Cnemidophorus*. Oklahoma Museum of Natural History and University of Oklahoma, Norman, Okla.

_____. 1994. Quantitative genetics of locomotor behavior and physiology in a garter snake. Pp. 251–277 in C.R.B. Boake ed. *Quantitative genetic studies of behavioral evolution*. Univ. of Chicago Press, Chicago.

Garland, Jr. T. 2014. Quick Guide: Trade-offs. *Current Biology* 24:R60–R61.

Garland, Jr. T. and S.C. Adolph. 1991. Physiological differentiation of vertebrate populations. *Annual Review of Ecology and Systematics* 22:193–228.

Garland, Jr. T. and S.J. Arnold. 1983. Effects of a full stomach on locomotory performance of juvenile garter snakes (*Thamnophis elegans*). *Copeia* 1983:1092–1096.

Garland, Jr. T., M.D. Cadney, and R.A. Waterland. 2017. Early-life effects on adult physical activity: concepts, relevance, and experimental approaches. *Physiological and Biochemical Zoology* 90:1–14.

Garland, Jr. T. and P.A. Carter. 1994. Evolutionary physiology. *Annual Review of Physiology* 56:579–621.

Garland, Jr. T. and P.L. Else. 1987. Seasonal, sexual, and individual variation in endurance and activity metabolism in lizards. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 252:R439–R449.

Garland, Jr. T. and S.A. Kelly. 2006. Phenotypic plasticity and experimental evolution. *Journal of Experimental Biology* 209:2344–2361.

Garland, Jr. T., S.A. Kelly, J.L. Malisch, E.M. Kolb, R.M. Hannon, B.K. Keeney, S.L. Van Cleave, et al. 2011a. How to run far: multiple solutions and sex-specific responses to selective breeding for high voluntary activity levels. *Proceedings of the Royal Society B: Biological Sciences* 278:574–581.

Garland, Jr. T. and J.B. Losos. 1994. Ecological morphology of locomotor performance in squamate reptiles. Pp. 240–302 in P.C. Wainwright and S.M. Reilly eds. *Ecological morphology: integrative organismal biology*. University of Chicago Press, Chicago.

Garland, Jr. T. and M.R. Rose, eds. 2009. *Experimental evolution: concepts, methods, and applications of selection experiments*. University of California Press, Berkeley.

Garland, Jr. T., H. Schutz, M.A. Chappell, B.K. Keeney, T.H. Meek, L.E. Copes, W. Acosta, et al. 2011b. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. *Journal of Experimental Biology* 214:206–229.

Garland, Jr. T., M. Zhao, and W. Saltzman. 2016. Hormones and the evolution of complex traits: insights from artificial selection on behavior. *Integrative and Comparative Biology* 56:207–224.

Gaston K.J., S.L. Chown, P. Calosi, J. Bernardo, D.T. Bilton, A. Clarke, S. Clusella- Trullas, et al. 2009. Macrophysiology: a conceptual reunification. *The American Naturalist* 174:595–612.

Gearty W., C.R. McClain, and J.L. Payne. 2018. Energetic tradeoffs control the size distribution of aquatic mammals. *Proc Natl Acad Sci USA* 115:4194–4199.

Ghalambor C.K., D.N. Reznick, and J.A. Walker. 2004. Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (*Poecilia reticulata*). *The American Naturalist* 164:38–50.

Girard I., J.G. Swallow, P.A. Carter, P. Koteja, J.S. Rhodes, and T. Garland, Jr. 2002. Maternal-care behavior and life-history traits in house mice (*Mus domesticus*) artificially selected for high voluntary wheel-running activity. *Behavioural Processes* 57:37–50.

Goldbogen J.A. 2018. Physiological constraints on marine mammal body size. *Proceedings of the National Academy of Sciences, USA* 115:3995–3997.

Gomulkiewicz R. and D. Houle. 2009. Demographic and genetic constraints on evolution. *The American Naturalist* 174:E218–E229.

Goodman B.A., A.K. Krockenberger, and L. Schwarzkopf. 2007. Master of them all: performance specialization does not result in trade-offs in tropical lizards. *Evolutionary Ecology Research* 9:527–546.

Grant B.R. and P.R. Grant. 1993. Evolution of Darwin's finches caused by a rare climatic event. *Proceedings of the Royal Society of London B: Biological Sciences* 251:111–117.

Grant P.R. 1986. Ecology and evolution of Darwin's finches (revised edition). Princeton University Press, Princeton, N.J.

Grgic J., I. Grgic, C. Pickering, B.J. Schoenfeld, D.J. Bishop, and Z. Pedisic. 2019. Wake up and smell the coffee: caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. *Br J Sports Med* bjsports-2018-100278.

Groothuis Ton.G.G. and H. Schwabl. 2008. Hormone-mediated maternal effects in birds: *mechanisms* matter but what do we know of them? *Phil Trans R Soc B* 363:1647–1661.

Guillaume F. and S.P. Otto. 2012. Gene functional trade-offs and the evolution of pleiotropy. *Genetics* 192:1389–1409.

Hamilton W. and M. Zuk. 1982. Heritable true fitness and bright birds: a role for parasites? *Science* 218:384–387.

Harmon J.P., N.A. Moran, and A.R. Ives. 2009. Species response to environmental change: impacts of food web interactions and evolution. *Science* 323:1347–1350.

Harris B.N. 2020. Stress hypothesis overload: 131 hypotheses exploring the role of stress in tradeoffs, transitions, and health. *General and Comparative Endocrinology* 288:113355.

Harshman L.G. and A.J. Zera. 2007. The cost of reproduction: the devil in the details. *Trends in Ecology & Evolution* 22:80–86.

Hau M. and W. Goymann. 2015. Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions. *Front Zool* 12 Suppl 1:S7.

Hau M. and J.C. Wingfield. 2011. Hormonally-regulated trade-offs: evolutionary variability and phenotypic plasticity in testosterone signaling pathways. Pp. 349–361 in T. Flatt and A. Heyland eds. *Mechanisms of life history evolutionthe genetics and physiology of life history traits and trade-offs*. Oxford University Press.

Hayes J.P. and S.H. Jenkins. 1997. Individual variation in mammals. *Journal of Mammalogy* 78:274–293.

Hein A.M., C. Hou, and J.F. Gillooly. 2012. Energetic and biomechanical constraints on animal migration distance. *Ecology Letters* 15:104–110.

Heng T.S.P., M.W. Painter, and The Immunological Genome Project Consortium. 2008. The Immunological Genome Project: networks of gene expression in immune cells. *Nat Immunol* 9:1091–1094.

Herbers J.M. 1981. Time resources and laziness in animals. *Oecologia* 49:252–262.

Herrel A., J. Podos, B. Vanhooydonck, and A.P. Hendry. 2009. Force-velocity trade-off in Darwin's finch jaw function: a biomechanical basis for ecological speciation? *Functional Ecology* 23:119–125.

Hertz P.E., R.B. Huey, and E. Nevo. 1982. Fight versus flight: body temperature influences defensive responses of lizards. *Animal Behaviour* 30:676–679.

Hillman S.S., P.C. Whithers, R.C. Drewes, and S.D. Hillyard. 2009. *Ecological and Environmental Physiology of Amphibians*. Oxford University Press, Oxford.

Hiramatsu L. and T. Garland, Jr. 2018. Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise. *Physiology & Behavior* 194:1–8.

Hobaek A. and P. Larsson. 1990. Sex determination in *Daphnia magna*. *Ecology* 71:2255–2268.

Hoekstra H.E., J.M. Hoekstra, D. Berrigan, S.N. Vignieri, A. Hoang, C.E. Hill, P. Beerli, et al. 2001. Strength and tempo of directional selection in the wild. *Proceedings of the National Academy of Sciences* 98:9157–9160.

Holt R.D. 1977. Predation, apparent competition, and the structure of prey communities. *Theoretical Population Biology* 12:197–229.

Holzman R., D.C. Collar, R.S. Mehta, and P.C. Wainwright. 2011. Functional complexity can mitigate performance trade-offs. *The American Naturalist* 177:E69–E83.

Houle D. 1991. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. *Evolution* 45:630–648.

Howie G.J., D.M. Sloboda, and M.H. Vickers. 2012. Maternal undernutrition during critical windows of development results in differential and sex-specific effects on postnatal adiposity and related metabolic profiles in adult rat offspring. *British Journal of Nutrition* 108:298–307.

Huey R.B., A.F. Bennett, H. John-Alder, and K.A. Nagy. 1984. Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. *Animal Behaviour* 32:41–50.

Husak J.F. and S.P. Lailvaux. 2014. An evolutionary perspective on conflict and compensation in physiological and functional traits. *Current Zoology* 60:755–767.

Husak J.F. and J.G. Swallow. 2011. Compensatory traits and the evolution of male ornaments. *Behaviour* 148:1–29.

Hutchinson G.E. 1965. *The ecological theater and the evolutionary play*. Yale University Press.

Immonen E., A. Hämäläinen, W. Schuett, and M. Tarka. 2018. Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. *Behav Ecol Sociobiol* 72:60.

Irschick D., J.K. Bailey, J.A. Schweitzer, J.F. Husak, and J.J. Meyers. 2007. New directions for studying selection in nature: studies of performance and communities. *Physiological and Biochemical Zoology* 80:557–567.

Irschick D.J. and T.E. Higham. 2016. *Animal athletes: an ecological and evolutionary approach* (First edition.). Oxford University Press, Oxford ; New York.

Irschick D.J., J.J. Meyers, J.F. Husak, and J. Le Galliard. 2008. How does selection operate on whole-organism functional performance capacities? A review and synthesis. *Evolutionary Ecology Research* 10:177–196.

Irschick D.J. and D.R. Reznick. 2009. Field experiments, introductions, and experimental evolution. Pp. 173–193 in Theodore Garland, Jr. and Michael R. Rose eds. *Experimental evolution: concepts, methods, and applications of selection experiments* University of California Press, Berkeley.

Iverson J.B., C.P. Balgooyen, K.K. Byrd, and K.K. Lyddan. 1993. Latitudinal variation in egg and clutch size in turtles. *Can J Zool* 71:2448–2461.

Ives A.R., B.T. Barton, R.M. Penczykowski, J.P. Harmon, K.L. Kim, K. Oliver, and V.C. Radeloff. 2020. Self-perpetuating ecological-evolutionary dynamics in an agricultural host-parasite system. *Nature Ecology & Evolution* In press.

John-Alder H.B., R.M. Cox, G.J. Haenel, and L.C. Smith. 2009. Hormones, performance and fitness: Natural history and endocrine experiments on a lizard (*Sceloporus undulatus*). *Integrative and Comparative Biology* 49:393–407.

Johnson B. 1965. Wing polymorphism in aphids II. Interaction between aphids. *Entomologia Experimentalis et Applicata* 8:49–64.

Jolles A.E., V.O. Ezenwa, R.S. Etienne, W.C. Turner, and H. Olff. 2008. Interactions between macroparasites and microparasites drive infection patterns in free-ranging african buffalo. *Ecology* 89:2239–2250.

Jones K.E., L. Benitez, K.D. Angielczyk, and S.E. Pierce. 2018. Adaptation and constraint in the evolution of the mammalian backbone. *BMC Evolutionary Biology* 18:172.

Jørgensen C., K. Enberg, and M. Mangel. 2016. Modelling and interpreting fish bioenergetics: a role for behaviour, life-history traits and survival trade-offs. *J Fish Biol* 88:389–402.

Jørgensen J.B., H. Lunde, L. Jensen, A.S. Whitehead, and B. Robertsen. 2000. Serum amyloid A transcription in Atlantic salmon (*Salmo salar L.*) hepatocytes is enhanced by stimulation with macrophage factors, recombinant human IL-1b, IL-6 and TNFa or bacterial lipopolysaccharide. *Developmental and Comparative Immunology* 11.

Kassen R. 2014. *Experimental evolution and the nature of biodiversity* (First edition.). Macmillan Learning.

Kastan M.B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R.W. Craig. 1991. Participation of p53 Protein in the Cellular Response to DNA Damage. *Cancer Reserach* 57:6304–6311.

Kato Y., K. Kobayashi, H. Watanabe, and T. Iguchi. 2011. Environmental sex determination in the brachiopod crustacean *Daphnia magna*: deep conservation of a doublesex gene in the sex-determining pathway. (A. Kopp, ed.) *PLoS Genet* 7:e1001345.

Keeney B.K. 2011. *Behavioral, neural, and life history correlates of selective breeding for high voluntary exercise in house mice* (Ph.D. Dissertation). University of California, Riverside.

Keeney B.K., T.H. Meek, K.M. Middleton, L.F. Holness, and T. Garland, Jr. 2012. Sex differences in cannabinoid receptor-1 (CB1) pharmacology in mice selectively bred for high voluntary wheel-running behavior. *Pharmacology Biochemistry and Behavior* 101:528–537.

Kelly S.A., T.M. Panhuis, and A.M. Stoehr. 2012. Phenotypic plasticity: molecular mechanisms and adaptive significance. *Comprehensive Physiology* 2:1417–1439.

Kelt D.A. and D. Van Vuren. 1999. Energetic constraints and the relationship between body size and home range area in mammals. *Ecology* 80:337–340.

Kemp T.J. 2005. Functional trade-offs in the limb bones of dogs selected for running versus fighting. *Journal of Experimental Biology* 208:3475–3482.

Ketterson E.D. and V. Nolan Jr. 1992. Hormones and life histories: an integrative approach. *American Naturalist* S33–S62.

King E., J. Cavender-Bares, P. Balvanera, T.H. Mwampamba, and S. Polasky. 2015. Trade-offs in ecosystem services and varying stakeholder preferences: evaluating conflicts, obstacles, and opportunities. *E&S* 20:art25.

Kingsolver J.G. and S.E. Diamond. 2011. Phenotypic selection in natural populations: what limits directional selection? *The American Naturalist* 177:346–357.

Kingsolver J.G., H.E. Hoekstra, J.M. Hoekstra, D. Berrigan, S.N. Vignieri, C.E. Hill, A. Hoang, et al. 2001. The strength of phenotypic selection in natural populations. *The American Naturalist* 157:245–261.

Kirkpatrick M. 1982. Sexual selection and the evolution of female choice. *Evolution* 1–12.

Kirkwood T.B. and M.R. Rose. 1991. Evolution of senescence: late survival sacrificed for reproduction. *Philos Trans R Soc Lond, B, Biol Sci* 332:15–24.

Kolb E.M., S.A. Kelly, K.M. Middleton, L.S. Sermsakdi, M.A. Chappell, and T. Garland, Jr. 2010. Erythropoietin elevates $VO_2,_{max}$ but not voluntary wheel running in mice. *Journal of Experimental Biology* 213:510–519.

Korte S.M., J.M. Koolhaas, J.C. Wingfield, and B.S. McEwen. 2005. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. *Neuroscience & Biobehavioral Reviews* 29:3–38.

Kronfeld-Schor N. and T. Dayan. 2003. Partitioning of time as an ecological resource. *Annu Rev Ecol Evol Syst* 34:153–181.

Kutzer M.A.M. and S.A.O. Armitage. 2016. Maximising fitness in the face of parasites: a review of host tolerance. *Zoology* 119:281–289.

Lailvaux S. 2018. Feats of strength: how evolution shapes animal athletic abilities. Yale University Press, New Haven.

Lailvaux S.P., A.M. Cespedes, and T.M. Houslay. 2019. Conflict, compensation, and plasticity: Sex-specific, individual-level trade-offs in green anole (*Anolis carolinensis*) performance. *J Exp Zool A Ecol Integr Physiol*.

Lailvaux S.P. and J.F. Husak. 2014. The life history of whole-organism performance. *The Quarterly Review of Biology* 89:285–318.

Lande R. 1981. Models of speciation by sexual selection on polygenic traits. *Proceedings of the National Academy of Sciences* 78:3721–3725.

Lande R. 1982. A Quantitative Genetic Theory of Life History Evolution. *Ecology* 63:607–615.

_____. 1984. The genetic correlation between characters maintained by selection, linkage and inbreeding. *Genet Res* 44:309–320.

Lande R. and S.J. Arnold. 1983. The measurement of selection on correlated characters. *Evolution* 1210–1226.

Langerhans R.B. and D.N. Reznick. 2010. Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. Pp. 200–248 in P. Domenici and B.G. Kapoor eds. *Fish locomotion: an eco-ethological perspective*. CRC Press, Enfield, New Hampshire.

Lattin C.R. and T.R. Kelly. 2020. Glucocorticoid negative feedback as a potential mediator of trade-offs between reproduction and survival. *Gen Comp Endocrinol* 286:113301.

Lawson D.W. and M. Borgerhoff Mulder. 2016. The offspring quantity–quality trade-off and human fertility variation. *Philos Trans R Soc Lond B Biol Sci* 371.

Lemaître J.-F., V. Berger, C. Bonenfant, M. Douhard, M. Gamelon, F. Plard, and J.-M. Gaillard. 2015. Early-late life trade-offs and the evolution of ageing in the wild. *Proceedings of the Royal Society B: Biological Sciences* 282:20150209.

Lenski R.E. 2017a. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. *ISME J* 11:2181–2194.

Lenski R.E. 2017b. Convergence and divergence in a long-term experiment with bacteria. *Am Nat* 190:S57–S68.

Lightfoot J.T., E.J.C. De Geus, F.W. Booth, M.S. Bray, M. den Hoed, J.A. Kaprio, S.A. Kelly, et al. 2018. Biological/genetic regulation of physical activity level: consensus from GenBioPAC. *Medicine and Science in Sports and Exercise* 50:863–873.

Lindstedt S.L. 1987. Allometry: body size constraints in animal design. Pp. 65–79 in *Pharmacokinetics in Risk Assessment Drinking Water and Health, Volume 8*. National Academies Press, Washington, D.C.

Lipowska M.M., G. Dheyongera, E.T. Sadowska, and P. Koteja. 2019. Experimental evolution of aerobic exercise performance and hematological traits in bank voles. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* 234:1–9.

Longman D., J.T. Stock, and J.C.K. Wells. 2017. A trade-off between cognitive and physical performance, with relative preservation of brain function. *Sci Rep* 7:13709.

Lorenz M.W. and G. G  de. 2009. Hormonal regulation of energy metabolism in insects as a driving force for performance. *Integrative and Comparative Biology* 49:380–392.

Losey J.E., J. Harmon, F. Ballantyne, and C. Brown. 1997. A polymorphism maintained by opposite patterns of parasitism and predation. *Nature* 388:269–272.

Lowe S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. *Nature* 362:847–894.

Lynch M. and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, Mass.

MacArthur R.H. 1972. Geographical ecology. Harper and Row, New York, N.Y.

Malisch J.L., S.A. Kelly, A. Bhanvadia, K.M. Blank, R.L. Marsik, E.G. Platzer, and T. Garland, Jr. 2009. Lines of mice with chronically elevated baseline corticosterone levels are more susceptible to a parasitic nematode infection. *Zoology* 112:316–324.

Malisch J.L., W. Saltzman, F.R. Gomes, E.L. Rezende, D.R. Jeske, and T. Garland, Jr. 2007. Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running. *Physiological and Biochemical Zoology* 80:146–156.

Marler C.A., G. Walsberg, M.L. White, and M. Moore. 1995. Increased energy expenditure due to increased territorial defense in male lizards after phenotypic manipulation. *Behavioral Ecology and Sociobiology* 37:225–231.

Marroig G. and J.M. Cheverud. 2005. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. *Evolution* 59:1128–1142.

Martin L.B. 2009. Stress and immunity in wild vertebrates: Timing is everything. *General and Comparative Endocrinology* 163:70–76.

Martin L.B., S.C. Burgan, J.S. Adelman, and S.S. Gervasi. 2016. Host Competence: An Organismal Trait to Integrate Immunology and Epidemiology. *Integr Comp Biol* 56:1225–1237.

Martin L.B. and A.A. Cohen. 2014. Physiological regulatory networks: the orchestra of life? Pp. 137–152 in L.B. Martin, C.K. Chalambor, and H.A. Woods eds. *Integrative Organismal Biology*. John Wiley & Sons, Inc.

Martin L.B. and A.A. Cohen. 2015. Physiological regulatory networks: the orchestra of life? Pp. 137–152 in *Integrative Organismal Biology*. John Wiley & Sons.

Martin L.B., C.K. Ghalambor, and H.A. Woods, eds. 2015. *Integrative organismal biology*. Wiley Blackwell, Hoboken, New Jersey.

Martin L.B., A.L. Liebl, J.H. Trotter, C.L. Richards, K. McCoy, and M.W. McCoy. 2011. Integrator networks: illuminating the black box linking genotype and phenotype. *Integr Comp Biol* 51:514–527.

Maynard Smith J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, et al. 1985. Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. *The Quarterly Review of Biology* 265–287.

Maynard Smith J.M. 1978. Optimization theory in evolution. *Annu Rev Ecol Syst* 9:31–56.

Mayr E. 1954. Change of genetic environment and evolution. Pp. 157–180 in *Evolution as a process*. _____, 1961. *Cause and Effect in Biology* 134:1501–1506.

McEwen B.S. and J.C. Wingfield. 2003. The concept of allostasis in biology and biomedicine. *Hormones and Behavior* 43:2–15.

McGillivray D.G., T. Garland, Jr., E.M. Dlugosz, M.A. Chappell, and D.A. Syme. 2009. Changes in efficiency and myosin expression in the small-muscle phenotype of mice selectively bred for high voluntary running activity. *Journal of Experimental Biology* 212:977–985.

McGlothlin J.W., J.M. Jawor, and E.D. Ketterson. 2007. Natural variation in a testosterone-mediated trade-off between mating effort and parental effort. *The American Naturalist* 170:864–875.

McGlothlin J.W., D.J. Whittaker, S.E. Schrock, N.M. Gerlach, J.M. Jawor, E.A. Snajdr, and E.D. Ketterson. 2010. Natural selection on testosterone production in a wild songbird population. *The American Naturalist* 175:687–701.

McHenry M. and A. Summers. 2011. A force–speed trade-off is not absolute. *Biol Lett* 7:880–881.

McKittrick M.C. 1993. Phylogenetic constraint in evolutionary theory: has it any explanatory power? *Annual Review of Ecology and Systematics* 307–330.

McMahon T.A. and J.T. Bonner. 1983. On size and life. *Scientific American Books - W. H. Freeman & Co.*

Meek T.H., B.P. Lonquich, R.M. Hannon, and T. Garland, Jr. 2009. Endurance capacity of mice selectively bred for high voluntary wheel running. *Journal of Experimental Biology* 212:2908–2917.

Melo D. and G. Marroig. 2015. Directional selection can drive the evolution of modularity in complex traits. *Proceedings of the National Academy of Sciences* 112:470–475.

Migliano A.B., L. Vinicius, and M.M. Lahr. 2007. Life history trade-offs explain the evolution of human pygmies. *Proceedings of the National Academy of Sciences* 104:20216–20219.

Miles D.B., B. Sinervo, L.C. Hazard, E.I. Svensson, and D. Costa. 2007. Relating endocrinology, physiology and behaviour using species with alternative mating strategies. *Functional Ecology* 21:653–665.

Miles M.C., F. Goller, and M.J. Fuxjager. 2018. Physiological constraint on acrobatic courtship behavior underlies rapid sympatric speciation in bearded manakins. *eLife* 7:e40630.

Mills S.C., L. Hazard, L. Lancaster, T. Mappes, D. Miles, T.A. Oksanen, and B. Sinervo. 2008. Gonadotropin hormone modulation of testosterone, immune function, performance, and behavioral trade-offs among male morphs of the lizard *Uta stansburiana*. *The American Naturalist* 171:339–357.

Miyashita A., T.Y.M. Lee, and S.A. Adamo. 2020. High-stakes decision-making by female crickets (*Gryllus texensis*): when to trade in wing muscles for eggs. *Physiol Biochem Zool* 93:450–465.

Moiron M., K.L. Laskowski, and P.T. Niemelä. 2020. Individual differences in behaviour explain variation in survival: a meta-analysis. *Ecology letters* 23.

Monteiro L.R. and M.R. Nogueira. 2011. Evolutionary patterns and processes in the radiation of phyllostomid bats. *BMC Evolutionary Biology* 11:137.

Moody K.N., S.M. Kawano, W.C. Bridges, R.W. Blob, H.L. Schoenfuss, and M.B. Ptacek. 2017. Contrasting post-settlement selection results in many-to-one mapping of high performance phenotypes in the Hawaiian waterfall-climbing goby *Sicyopterus stimpsoni*. *Evolutionary Ecology* 31:489–516.

Moore I.T. and W.A. Hopkins. 2009. Interactions and trade-offs among physiological determinants of performance and reproductive success. *Integrative and Comparative Biology* 49:441–451.

Moran N.A., P.H. Degnan, S.R. Santos, H.E. Dunbar, and H. Ochman. 2005. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. *Proceedings of the National Academy of Sciences* 102:16919–16926.

Mort J.R. and H.R. Kruse. 2008. Timing of blood pressure measurement related to caffeine consumption. *Ann Pharmacother* 42:105–110.

Mousseau T. and C.W. Fox. 1998. The adaptive significance of maternal effects. *Trends in Ecology & Evolution* 13:403–407.

Mowles S.L. and N.M. Jepson. 2015. Physiological costs of repetitive courtship displays in cockroaches handicap locomotor performance. *PLOS ONE* 10:e0143664.

Müller C.B., I.S. Williams, and J. Hardie. 2001. The role of nutrition, crowding and interspecific interactions in the development of winged aphids. *Ecol Entomol* 26:330–340.

Munck A. and A. Náray-Fejes-Tóth. 1992. The ups and downs of glucocorticoid physiology Permissive and suppressive effects revisited. *Molecular and Cellular Endocrinology* 90:C1–C4.

Murphy K.P., P. Travers, and M. Walport. 2007. Janeway's immunobiology. (7th ed.). Garland Science, New York.

Mutungi G. 1992. Slow locomotion in chameleons: Histochemical and ultrastructural characteristics of muscle fibers isolated from the iliofibularis muscle of Jackson's Chameleon (*Chamaeleo jacksonii*). *J Exp Zool* 263:1–7.

Nakae S., M. Asano, R. Horai, and Y. Iwakura. 2001. Interleukin-1b, but not interleukin-1a, is required for T-cell-dependent antibody production 8.

Nehlig A. 2016. Effects of coffee/caffeine on brain health and disease: What should I tell my patients? *Pract Neurol* 16:89–95.

Nelson W.G. and M.B. Kastan. 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. *Mol Cell Biol* 14:1815–1823.

Nijhout H.F. and D.J. Emlen. 1998. Competition among body parts in the development and evolution of insect morphology. *Proceedings of the National Academy of Sciences* 95:3685–3689.

Noakes T.D. 2012. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. *Frontiers in Physiology* 3.

Norry F.M. and V. Loeschke. 2002. Temperature-induced shifts in associations of longevity with body size in *Drosophila melanogaster*. *Evolution* 56:299–306.

Okie J.G., A.G. Boyer, J.H. Brown, D.P. Costa, S.K.M. Ernest, A.R. Evans, M. Fortelius, et al. 2013. Effects of allometry, productivity and lifestyle on rates and limits of body size evolution. *Proc R Soc B* 280:20131007.

Oliver K.M., P.H. Degnan, G.R. Burke, and N.A. Moran. 2010. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. *Annu Rev Entomol* 55:247–266.

Orchard I., J.M. Ramirez, and A.B. Lange. 1993. A Multifunctional Role for Octopamine in Locust Flight. *Annual Review of Entomology* 38:227–249.

Orr T.J. and T. Garland, Jr. 2017. Complex reproductive traits and whole-organism performance. *Integrative and Comparative Biology* 57:407–422.

O'Steen S., A.J. Cullum, and A.F. Bennett. 2002. Rapid evolution of escape ability in Trinidadian guppies (*Poecilia reticulata*). *Evolution* 56:776–784.

Oster H., E. Challet, V. Ott, E. Arvat, E.R. de Kloet, D.-J. Dijk, S. Lightman, et al. 2017. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. *Endocr Rev* 38:3–45.

Oster H., S. Damerow, S. Kiessling, V. Jakubcakova, D. Abraham, J. Tian, M.W. Hoffmann, et al. 2006. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. *Cell Metab* 4:163–173.

Oufiero C.E. and T. Garland, Jr. 2007. Evaluating performance costs of sexually selected traits. *Functional Ecology* 21:676–689.

Oufiero C.E. and G.E.A. Gartner. 2014. The effect of parity on morphological evolution among phrynosomatid lizards. *Journal of Evolutionary Biology* 27:2559–2567.

Owen R.D. 1945. Immunogenetic consequences of vascular anastomoses between bovine twins. *Science* 102:400–401.

Owens I.P. and R.V. Short. 1995. Hormonal basis of sexual dimorphism in birds: implications for new theories of sexual selection. *Trends in Ecology & Evolution* 10:44–47.

Park S.-Y., N.D. Freedman, C.A. Haiman, L. Le Marchand, L.R. Wilkens, and V.W. Setiawan. 2017. Association of coffee consumption with total and cause-specific mortality among nonwhite populations. *Annals of Internal Medicine*.

Parker G.A. and J.M. Smith. 1990. Optimality theory in evolutionary biology. *Nature* 348:27.

Partridge L. and P.H. Harvey. 1985. Costs of reproduction. *Nature* 316:20.

Partridge L. and R. Sibly. 1991. Constraints in the evolution of life histories. *Philosophical Transactions of the Royal Society of London Series B: Biological Sciences* 332:3–13.

Pasi B.M. and D.R. Carrier. 2003. Functional trade-offs in the limb muscles of dogs selected for running vs. fighting. *Journal of evolutionary biology* 16:324–332.

Pavlicev M. and G.P. Wagner. 2012. A model of developmental evolution: selection, pleiotropy and compensation. *Trends in Ecology & Evolution* 27:316–322.

Pease C.M. and J.J. Bull. 1988. A critique of methods for measuring life history trade-offs. *Journal of Evolutionary Biology* 1:293–303.

Perry G., K. LeVering, I. Girard, and T. Garland. 2004. Locomotor performance and social dominance in male *Anolis cristatellus*. *Animal Behaviour* 67:37–47.

Pierce G.J. and J.G. Ollason. 1987. Eight reasons why optimal foraging theory is a complete waste of time. *Oikos* 49:111–118.

Piersma T. and J.A. van Gils. 2010. The flexible phenotype: A body-centred integration of ecology, physiology, and behaviour. Oxford University Press, Oxford, New York.

Poole D.C. and H.H. Erickson. 2011. Highly athletic terrestrial mammals: horses and dogs. *Comprehensive Physiology* 1:1–37.

Pough F.H. 1989. Organismal performance and Darwinian fitness: approaches and interpretations. *Physiological Zoology* 62:199–236.

Poyurovsky M.V. 2006. Unleashing the power of p53: lessons from mice and men. *Genes & Development* 20:125–131.

Raup D.M. 1966. Geometric analysis of shell coiling: general problems. *Journal of Paleontology* 40:1178–1190.

Rauw W.M., E. Kanis, E.N. Noordhuizen-Stassen, and F.J. Grommers. 1998. Undesirable side effects of selection for high production efficiency in farm animals: a review. *Livestock Production Science* 56:15–33.

Rezende E.L. and L.D. Bacigalupe. 2015. Thermoregulation in endotherms: physiological principles and ecological consequences. *Journal of Comparative Physiology B* 185:709–727.

Reznick D. 1985. Costs of reproduction: an evaluation of the empirical evidence. *Oikos* 44:257.

Reznick D., L. Nunney, and A. Tessier. 2000. Big houses, big cars, superfleas and the costs of reproduction. *Trends in Ecology & Evolution* 15:421–425.

Reznick D.N. and H.A. Bryga. 1996. Life-history evolution in guppies (*Poecilia reticulata*: Poeciliidae). V. Genetic basis of parallelism in life histories. *The American Naturalist* 147:339–359.

Reznick D.N., F.H. Rodd, and M. Cardenas. 1996. Life-history evolution in guppies (*Poecilia reticulata*: Poeciliidae). IV. parallelism in life-history phenotypes. *The American Naturalist* 147:319–338.

Reznick D.N. and J. Travis. 2019. Experimental studies of evolution and eco-evo dynamics in guppies (*Poecilia reticulata*). *Annu Rev Ecol Evol Syst* 50:335–354.

Rhodes J.S., S.C. Gammie, and T. Garland, Jr. 2005. Neurobiology of mice selected for high voluntary wheel-running activity. *Integrative and Comparative Biology* 45:438–455.

Rico-Guevara A., M.A. Rubega, K.J. Hurme, and R. Dudley. 2019. Shifting paradigms in the mechanics of nectar extraction and hummingbird bill morphology. *Integrative Organismal Biology* 1.

Riede S.J., V. van der Vinne, and R.A. Hut. 2017. The flexible clock: predictive and reactive homeostasis, energy balance and the circadian regulation of sleep–wake timing. *Journal of Experimental Biology* 220:738–749.

Roberts M.L., K.L. Buchanan, and M.R. Evans. 2004. Testing the immunocompetence handicap hypothesis: a review of the evidence. *Animal Behaviour* 68:227–239.

Robson M.A. and D.B. Miles. 2000. Locomotor performance and dominance in male tree lizards, *Urosaurus ornatus*. *Functional Ecology* 14:338–344.

Roff D., ed. 1992. *Evolution of life histories: theory and analysis*. Chapman & Hall, New York.

Roff D.A. 2001. *Life history evolution*. Oxford University Press, Oxford.

Roff D.A. 2002. *Life history evolution*. Sinauer, Sunderland, Mass.

Roff D.A. and D.J. Fairbairn. 2007. The evolution of trade-offs: where are we? *Journal of Evolutionary Biology* 20:433–447.

Romagnani S. 1997. The Th1/Th2 paradigm. *Immunology Today* 18:263–266.

Romero L.M., M.J. Dickens, and N.E. Cyr. 2009. The reactive scope model — A new model integrating homeostasis, allostasis, and stress. *Hormones and Behavior* 55:375–389.

Romero L.M. and J.C. Wingfield. 2015. Tempests, poxes, predators, and people: stress in wild animals and how they cope. Oxford University Press, New York.

Rose M.R. 1982. Antagonistic pleiotropy, dominance, and genetic variation. *Heredity* 48:63–78.

_____. 1984. Genetic Covariation in *Drosophila* Life History: Untangling the Data. *The American Naturalist* 123:565–569.

Rose M.R., T.J. Nusbaum, and A.K. Chippindale. 1996. Laboratory evolution: the experimental wonderland and the Cheshire cat syndrome. Pp. 221–241 in M.R. Rose and G.V. Lauder eds. *Adaptation*. Academic Press.

Rose M.R., H.B. Passananti, A.K. Chippindale, J.P. Phelan, M. Matos, H. Teotonio, and L.D. Mueller. 2005. The effects of evolution are local: evidence from experimental evolution in *Drosophila*. *Integrative and Comparative Biology* 45:486–491.

Rosen R. 1967. Optimality principles in biology. Butterworth & Co., New York.

Santana S.E. 2016. Quantifying the effect of gape and morphology on bite force: biomechanical modelling and *in vivo* measurements in bats. *Funct Ecol* 30:557–565.

Sapolsky R.M. 2000. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. *Endocrine Reviews* 21:55–89.

Sapolsky R.M., L.M. Romero, and A.U. Munck. 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. *Endocrine Reviews* 21:55–89.

Sarup P., J.G. Sørensen, T.N. Kristensen, A.A. Hoffmann, V. Loeschke, K.N. Paige, and P. Sørensen. 2011. Candidate genes detected in transcriptome studies are strongly dependent on genetic background. (P. Michalak, ed.) *PLoS ONE* 6:e15644.

Saul M., P. Majdak, S. Perez, M. Reilly, T. Garland, Jr., and J.S. Rhodes. 2017. High motivation for exercise is associated with altered chromatin regulators of monoamine receptor gene expression in the striatum of selectively bred mice. *Genes, Brain and Behavior* 16:328–341.

Scales J. and M. Butler. 2007. Are powerful females powerful enough? Acceleration in gravid green iguanas (*Iguana iguana*). *Integrative and Comparative Biology* 47:285–294.

Schaeffer P.J. and S.L. Lindstedt. 2013. How animals move: comparative lessons on animal locomotion. *Comprehensive Physiology* 3:291–314.

Schaffer W.M. 1974. Selection for optimal life histories: the effects of age structure. *Ecology* 55:291–303.

Schiaffino S. and C. Reggiani. 2011. Fiber types in mammalian skeletal muscles. *Physiological Reviews* 91:1447–1531.

Schluter D. 1995. Adaptive radiation in sticklebacks: trade- offs in feeding performance and growth. *Ecology* 76:82–90.

_____. 1996. Adaptive radiation along genetic lines of least resistance. *Evolution* 1766–1774.

Schmidt-Nielsen K. 1984. Scaling: why is animal size so important? Cambridge University Press, Cambridge.

Schoenfuss H.L., T. Maie, K.N. Moody, K.E. Lesteberg, R.W. Blob, and T.C. Schoenfuss. 2013. Stairway to heaven: evaluating levels of biological organization correlated with the successful ascent of natural waterfalls in the Hawaiian stream goby *Sicyopterus stimpsoni*. *PLoS ONE* 8:e84851.

Schoenle L.A., I. Schoepf, N.M. Weinstein, I.T. Moore, and F. Bonier. 2018. Higher plasma corticosterone is associated with reduced costs of infection in red-winged blackbirds. *General and Comparative Endocrinology* 256:89–98.

Schuler B., M. Arras, S. Keller, A. Rettich, C. Lundby, J. Vogel, and M. Gassmann. 2010. Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice. *Proceedings of the National Academy of Sciences* 107:419–423.

Schwabl H. 1993. Yolk is a source of maternal testosterone for developing birds. *Proceedings of the National Academy of Sciences* 90:11446–11450.

Schwartz R.H. 2012. Historical Overview of Immunological Tolerance. *Cold Spring Harbor Perspectives in Biology* 4:a006908–a006908.

Sears B.F., J.R. Rohr, J.E. Allen, and L.B. Martin. 2011. The economy of inflammation: when is less more? *Trends in Parasitology* 27:382–387.

Seigel R.A., M.M. Huggins, and N.B. Ford. 1987. Reduction in locomotor ability as a cost of reproduction in gravid snakes. *Oecologia* 73:481–485.

Sella G. and N.H. Barton. 2019. Thinking about the evolution of complex traits in the era of genome-wide association studies. *Annu Rev Genomics Hum Genet* 20:461–493.

Service P.M. and M.R. Rose. 1985. Genetic covariation among life-history components: the effect of novel environments. *Evolution* 39:943–945.

Sgrò C.M. and A.A. Hoffmann. 2004. Genetic correlations, tradeoffs and environmental variation. *Heredity* 93:241–248.

Sharp N.C.C. 2012. Animal athletes: a performance review. *Veterinary Record* 171:87–94.

Shikano I., M.C. Oak, O. Halpert- Scanderbeg, and J.S. Cory. 2015. Trade- offs between transgenerational transfer of nutritional stress tolerance and immune priming. (P. Hörak, ed.) *Funct Ecol* 29:1156–1164.

Shine R. 1992. Relative clutch mass and body shape in lizards and snakes: is reproduction constrained or optimized. *Evolution* 46:828–833.

_____. 2005. Life-history evolution in reptiles. *Annual Review of Ecology, Evolution, and Systematics* 36:23–46.

Shoemaker V.H., S.S.. Hillman, S.D. Hillyard, D.C. Jackson, L.L. McClanahan, P. Withers, and M. Wygoda. 1992. Exchange of water, ions, and respiratory gases in terrestrial amphibians. Pp. 125–150 in M. Feder and W. Burggren eds. *Environmental Physiology of the Amphibians*. University of Chicago Press, Chichago, IL.

Shoval O., H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel, et al. 2012. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. *Science* 336:1157–1160.

Shutler D. 2011. Sexual selection: when to expect trade-offs. *Biol Lett* 7:101–104.

Sibly R.M. 1991. The life-history approach to physiological ecology. *Functional Ecology* 5:184–191.

Sinervo B. and P. Licht. 1991. Hormonal and physiological control of clutch size, egg size, and egg shape in side-blotched lizards (*Uta stansburiana*): constraints on the evolution of lizard life histories. *Journal of Experimental Zoology* 257:252–264.

Sinervo B. and E. Svensson. 1998. Mechanistic and selective causes of life history trade-offs and plasticity. *Oikos* 83:432–442.

Singleton J. and T. Garland, Jr. 2019. Influence of corticosterone on growth, home-cage activity, wheel running, and maximal oxygen consumption in replicate lines of house mice selectively bred for high voluntary wheel-running behavior. *Physiology & Behavior* 198:27–41.

Slater G.J., E.R. Dumont, and B. Van Valkenburgh. 2009. Implications of predatory specialization for cranial form and function in canids. *Journal of Zoology* 278:181–188.

Slobodkin L.B. 2001. The good, the bad and the reified. *Evolutionary Ecology Research* 3:1–13.

Slobodkin L.B. and A. Rapoport. 1974. An optimal strategy of evolution. *The Quarterly Review of Biology* 49:181–200.

Somero G.N. and P.W. Hochachka. 2002. Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press.

Sorci G., J.G. Swallow, T. Garland, Jr, and J. Clobert. 1995. Quantitative genetics of locomotor speed and endurance in the lizard *Lacerta vivipara*. *Physiological Zoology* 68:698–720.

Speakman J.R. 2008. The physiological costs of reproduction in small mammals. *Philosophical Transactions of the Royal Society B: Biological Sciences* 363:375–398.

Speakman J.R. and M. Garratt. 2014. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. *BioEssays* 36:93–106.

Spicer J.I. and K.J. Gaston. 1999. Physiological diversity: ecological implications. Blackwell Science, Oxford, U.K.

St. Juliana J.R., B.P. Kotler, N. Wielebnowski, and J.G. Cox. 2017. Stress as an adaptation I: Stress hormones are correlated with optimal foraging behaviour of gerbils under the risk of predation. *Evolutionary Ecology Research* 10:571–585.

Stahlschmidt Z.R., M. Acker, I. Kovalko, and S.A. Adamo. 2015. The double-edged sword of immune defence and damage control: do food availability and immune challenge alter the balance? (L. Martin, ed.) *Functional Ecology* 29:1445–1452.

Stark H. and S. Schuster. 2012. Comparison of various approaches to calculating the optimal hematocrit in vertebrates. *Journal of Applied Physiology* 113:355–367.

Stearns S., G. de Jong, and B. Newman. 1991. The effects of phenotypic plasticity on genetic correlations. *Trends in Ecology & Evolution* 6:122–126.

Stearns S.C. 1976. Life-history tactics: a review of the ideas. *The Quarterly Review of Biology* 51:3–47.

_____. 1980. A new view of life-history evolution. *Oikos* 35:266.

Stearns S.C. 1989. Trade-offs in life-history evolution. *Functional Ecology* 3:259–268.

Stearns S.C. 1992. The evolution of life histories. Oxford University Press, Oxford; New York.

Swallow J.G., P.A. Carter, and T. Garland, Jr. 1998. Artificial selection for increased wheel-running behavior in house mice. *Behavior Genetics* 28:227–237.

Taylor G. and A. Thomas. 2014. Evolutionary biomechanics: selection, phylogeny, and constraint. Oxford University Press.

Taylor M.B. and I.M. Ehrenreich. 2015. Higher-order genetic interactions and their contribution to complex traits. *Trends in Genetics* 31:34–40.

Thompson Z., D. Argueta, T. Garland, Jr., and N. DiPatrizio. 2017. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes. *Physiology & Behavior* 170:141–150.

Tobiansky D.J., M.C. Miles, F. Goller, and M.J. Fuxjager. 2020. Androgenic modulation of extraordinary muscle speed creates a performance trade-off with endurance. *J Exp Biol* 223:jeb222984.

Toro E., A. Herrel, and D. Irschick. 2004. The evolution of jumping performance in Caribbean *Anolis* lizards: solutions to biomechanical trade-offs. *The American Naturalist* 163:844–856.

Tracy C.R., K.A. Christian, N. Burnip, B.J. Austin, A. Cornall, S. Iglesias, S.J. Reynolds, et al. 2013. Thermal and hydric implications of diurnal activity by a small tropical frog during the dry season: DIURNAL ACTIVITY BY A SMALL FROG. *Austral Ecology* 38:476–483.

Tracy C.R., K.A. Christian, and C.R. Tracy. 2010. Not just small, wet, and cold: effects of body size and skin resistance on thermoregulation and arboreality of frogs. *Ecology* 91:1477–1484.

Travis J. and D.N. Reznick. 1998. Experimental approaches to the study of evolution. Pp. 437–459 in W.J. Reserarts, Jr. and J. Bernardo eds. *Experimental ecology: issues and perspectives*. Oxford University Press, New York.

Tyner S.D., S. Venkatachalam, J. Choi, S. Jones, N. Ghebranious, H. Igelmann, X. Lu, et al. 2002. p53 mutant mice that display early ageing-associated phenotypes. *Nature* 415:45–53.

Vaanholt L.M., S. Daan, T. Garland, Jr., and G.H. Visser. 2010. Exercising for life? Energy metabolism, body composition, and longevity in mice exercising at different intensities. *Physiological and Biochemical Zoology* 83:239–251.

Van Damme R., R.S. Wilson, B. Vanhooydonck, and P. Aerts. 2002. Performance constraints in decathletes. *Nature* 415:755–756.

Vanhooydonck B., R.S. James, J. Tallis, P. Aerts, Z. Tadic, K.A. Tolley, G.J. Measey, et al. 2014. Is the whole more than the sum of its parts? Evolutionary trade-offs between burst and sustained locomotion in lacertid lizards. *Proceedings of the Royal Society B: Biological Sciences* 281:20132677.

Vanhooydonck B., R. Van Damme, and P. Aerts. 2001. Speed and stamina trade-off in Lacertid lizards. *Evolution* 55:1040–1048.

Verberk W.C.E.P., P. Calosi, F. Brischoux, J.I. Spicer, T. Garland, Jr., and D.T. Bilton. 2020. Universal metabolic constraints shape the evolutionary ecology of diving in animals. *Proceedings of the Royal Society B* 287:20200488.

Vigil J.M., D.C. Geary, and J. Byrd-Craven. 2006. Trade-offs in low-income women's mate preferences : Within-sex differences in reproductive strategy. *Hum Nat* 17:319–336.

Voje K.L., T.F. Hansen, C.K. Egset, G.H. Bolstad, and C. Pélabon. 2014. Allometric constraints and the evolution of allometry. *Evolution* 68:866–885.

von Oertzen T., A.M. Brandmaier, and S. Tsang. 2015. Structural equation modeling with Onyx. *Structural Equation Modeling: A Multidisciplinary Journal* 22:148–161.

Waddington C.H. 1942. Canalization of development and the inheritance of acquired characters 150:563–565.

Wade M.J. and S.J. Arnold. 1980. The intensity of sexual selection in relation to male sexual behaviour, female choice, and sperm precedence. *Animal Behaviour* 28:446–461.

Walker J.A. and S.P. Caddigan. 2015. Performance trade-offs and individual quality in decathletes. *Journal of Experimental Biology* 218:3647–3657.

Walker J.A., C.K. Ghalambor, O.L. Griset, D. McKenney, and D.N. Reznick. 2005. Do faster starts increase the probability of evading predators? *Functional Ecology* 19:808–815.

Walker R.S., M. Gurven, O. Burger, and M.J. Hamilton. 2008. The trade-off between number and size of offspring in humans and other primates. *Proc R Soc B* 275:827–834.

Wallace I.J. and T. Garland, Jr. 2016. Mobility as an emergent property of biological organization: insights from experimental evolution. *Evolutionary Anthropology* 25:98–104.

Walsh B. and M.W. Blows. 2009. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. *Annual Review of Ecology, Evolution, and Systematics* 40:41–59.

Walsh B. and M. Lynch. 2018. Evolution and selection of quantitative traits. Oxford University Press, New York, NY.

Walsh M.R., F. Cooley, K. Biles, and S.B. Munch. 2015. Predator-induced phenotypic plasticity within- and across-generations: a challenge for theory? *Proc R Soc B* 282:20142205.

Warne R.W. and E.L. Charnov. 2008. Reproductive allometry and the size- number trade- off for lizards. *The American Naturalist* 172:E80–E98.

Waynforth D. 2001. Mate choice trade-offs and women's preference for physically attractive men. *Human Nature* 12:207–219.

Weber K.E. 1990. Selection on wing allometry in *Drosophila melanogaster*. *Genetics* 126:975–989.

Weers P. and R. Ryan. 2006. Apolipoporphin III: Role model apolipoprotein. *Insect Biochemistry and Molecular Biology* 36:231–240.

Weil Z.M. and R.J. Nelson. 2016. Seasonal rhythms in behavior. Pp. 2183–2199 in D.W. Pfaff and N.D. Volkow eds. *Neuroscience in the 21st Century*. Springer New York, New York, NY.

Wells K.D. 2007. *The Ecology and Behavior of Amphibians*. University of Chicago Press, Chicago, IL.

West-Eberhard M.J. 2003. *Developmental plasticity and evolution*. Oxford University Press, New York.

White C.R., D.J. Marshall, L.A. Alton, P.A. Arnold, J.E. Beaman, C.L. Bywater, C. Condon, et al. 2019. The origin and maintenance of metabolic allometry in animals. *Nature Ecology & Evolution* 3:598–603.

Wiens J.J. and E. Tuschhoff. 2020. Songs *versus* colours *versus* horns: what explains the diversity of sexually selected traits? *Biol Rev* brv.12593.

Williams G.C. 1957. Pleiotropy, natural selection, and the evolution of senescence. *Evolution* 11:398–411.

Williams T.D. 2008. Individual variation in endocrine systems: moving beyond the “tyranny of the Golden Mean.” *Philosophical Transactions of the Royal Society B: Biological Sciences* 363:1687–1698.

Wilson A.M., J.C. Lowe, K. Roskilly, P.E. Hudson, K.A. Golabek, and J.W. McNutt. 2013. Locomotion dynamics of hunting in wild cheetahs. *Nature* 498:185–189.

Woods H.A. and J.K. Wilson. 2015. An elephant in the fog: unifying concepts of physiological stasis and change. Pp. 119–135 in L.B. Martin, C.K. Ghalambor, and H.A. Woods eds. *Integrative Organismal Biology*. John Wiley & Sons.

Wright S. 1921. Correlation and causation. *Journal of Agricultural Research* 20:557–585.

_____. 1934. The method of path coefficients. *The Annals of Mathematical Statistics* 5:161–215.

Zaman L., J.R. Meyer, S. Devangam, D.M. Bryson, R.E. Lenski, and C. Ofria. 2014. Coevolution drives the emergence of complex traits and promotes evolvability. *PLoS Biology* 12:e1002023.

Zamer W.E. and S.M. Scheiner. 2014. A conceptual framework for organismal biology: linking theories, models, and data. *Integr Comp Biol* 54:736–756.

Zdybicka-Barabas A. and M. Cytryńska. 2013. Zdybicka-Barabas and Cytryńska (2013).pdf. *Invertebrate Survival Journal* 10:58–68.

Zera A.J. and L.G. Harshman. 2001. The physiology of life history trade-offs in animals. *Annual Review of Ecology and Systematics* 32:95–126.

Zimmerman L.M., R.M. Bowden, and L.A. Vogel. 2014. A vertebrate cytokine primer for eco-immunologists. *Funct Ecol* 28:1061–1073.

Figure 1a

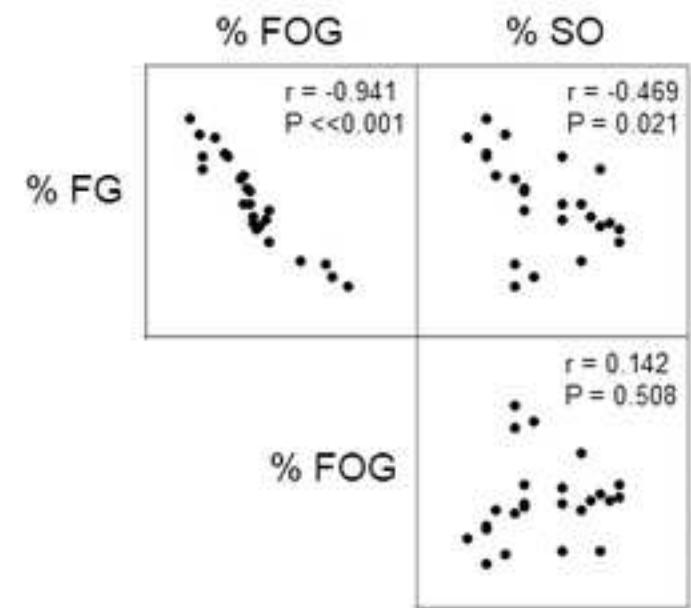
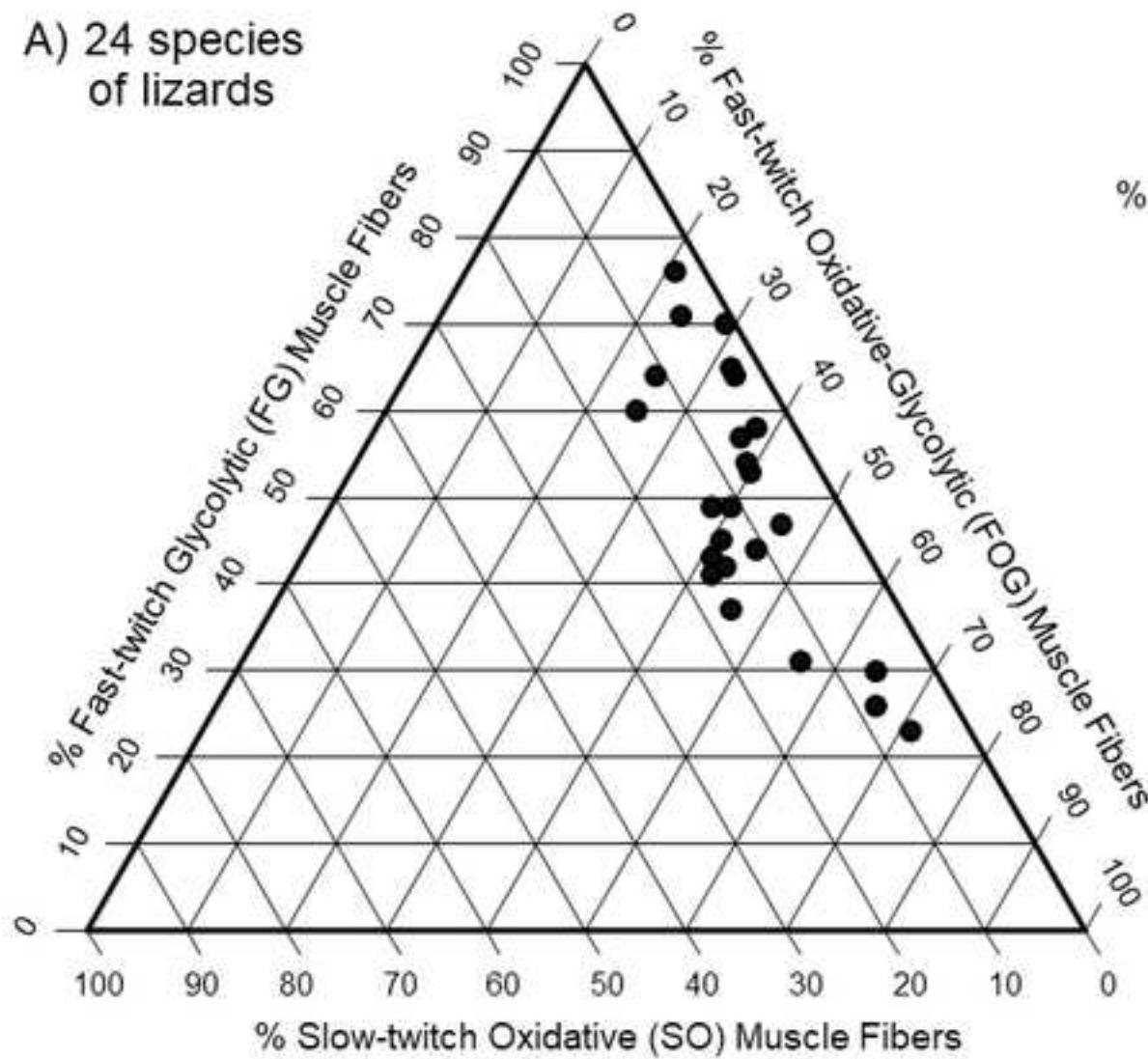


A) 24 species
of lizards

Figure 1b

B) 24 random data points

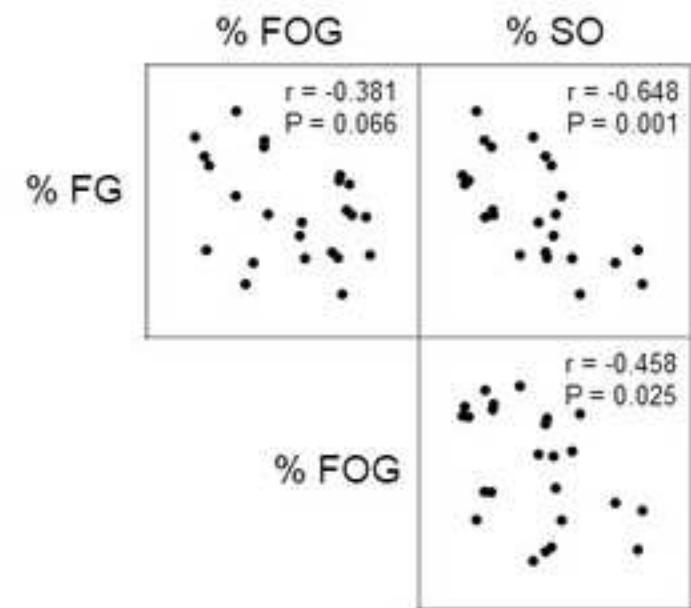
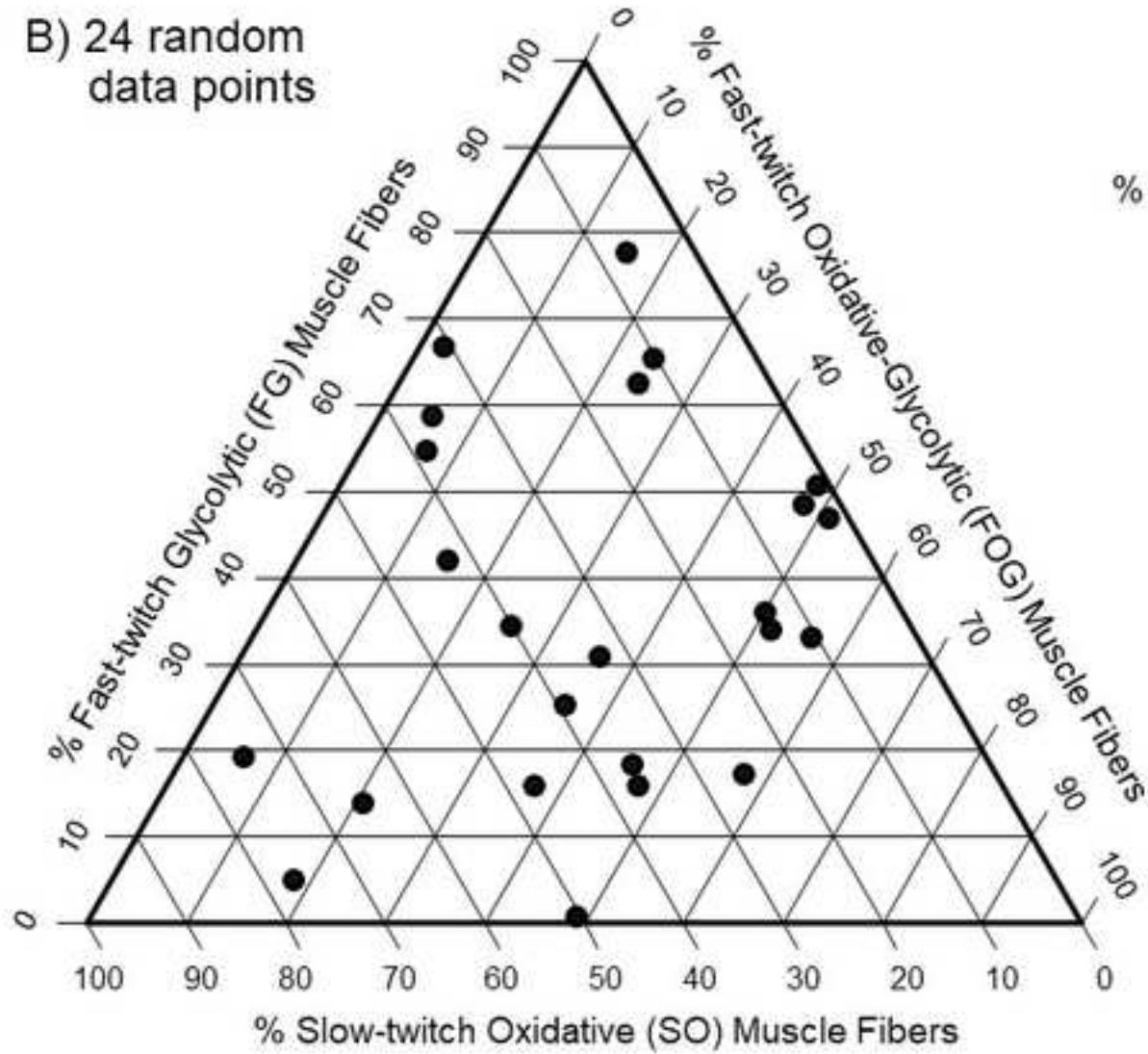



Figure 2

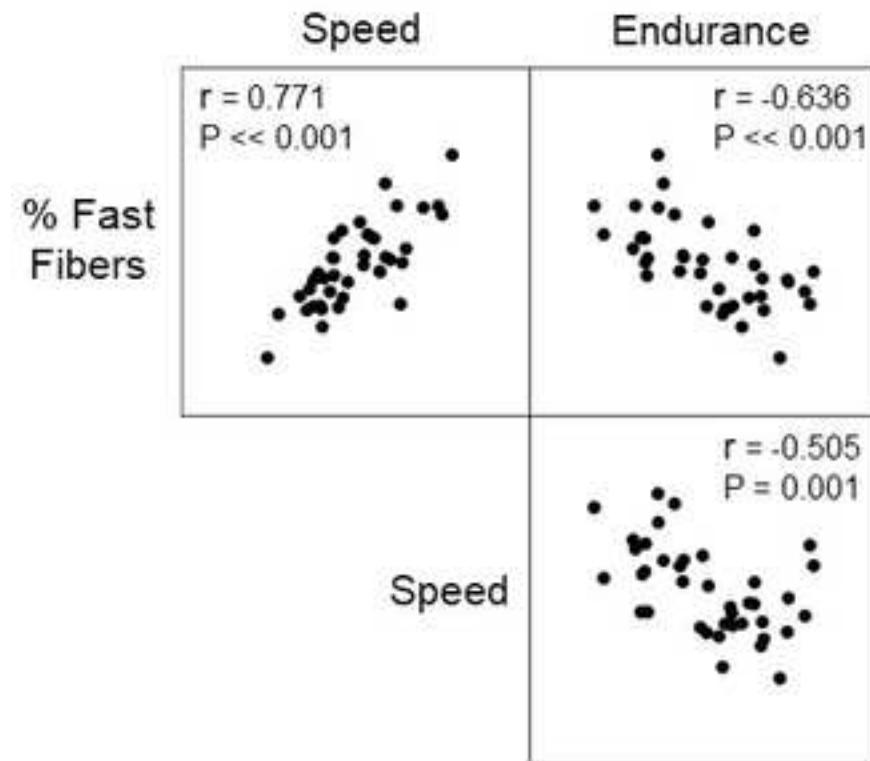
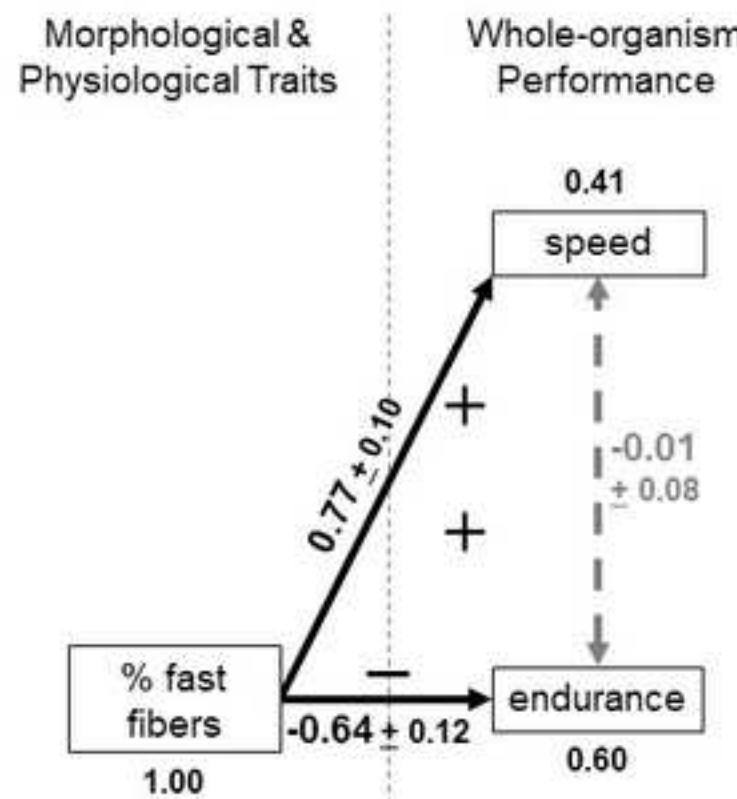



Figure 3

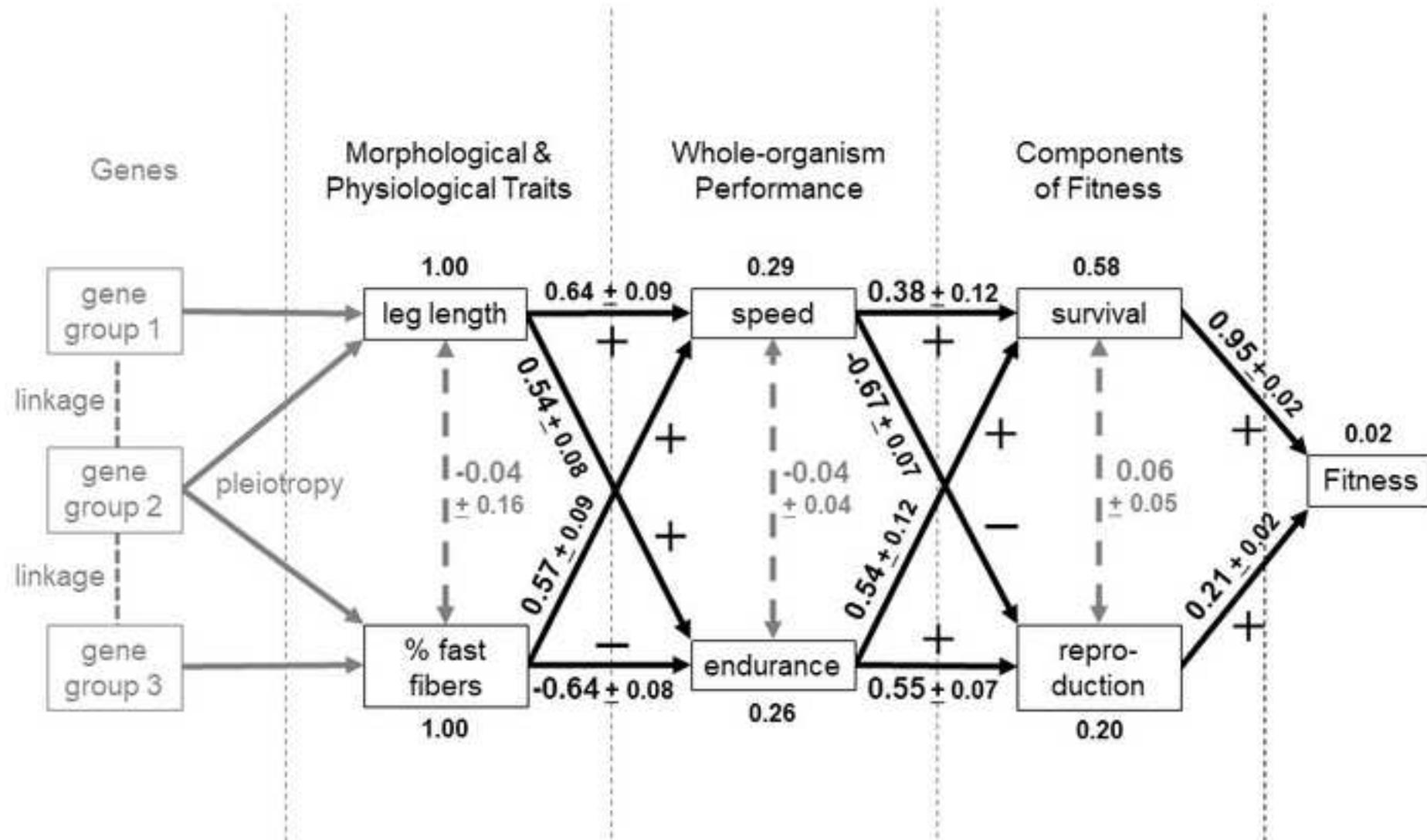


Figure 4

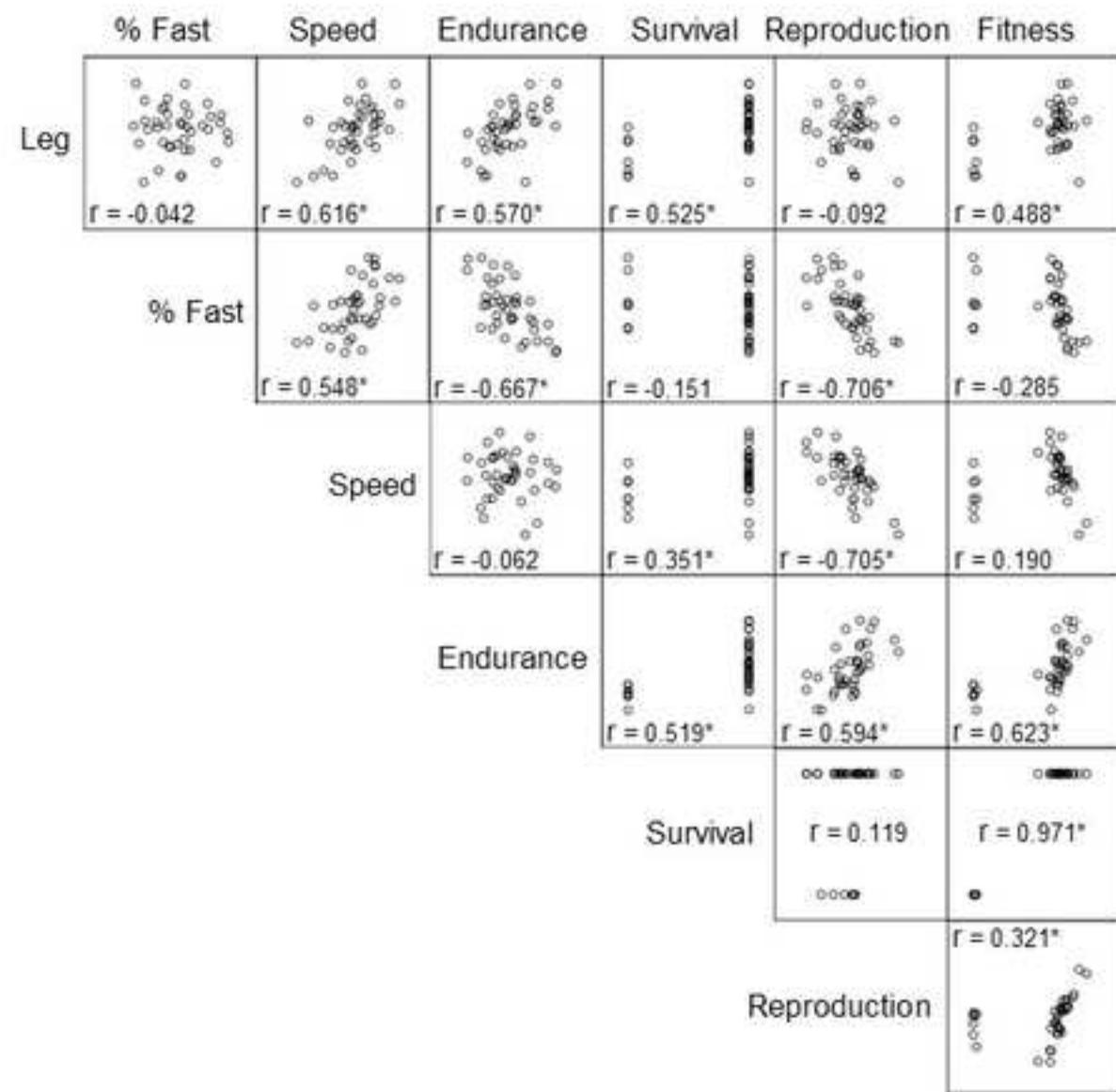
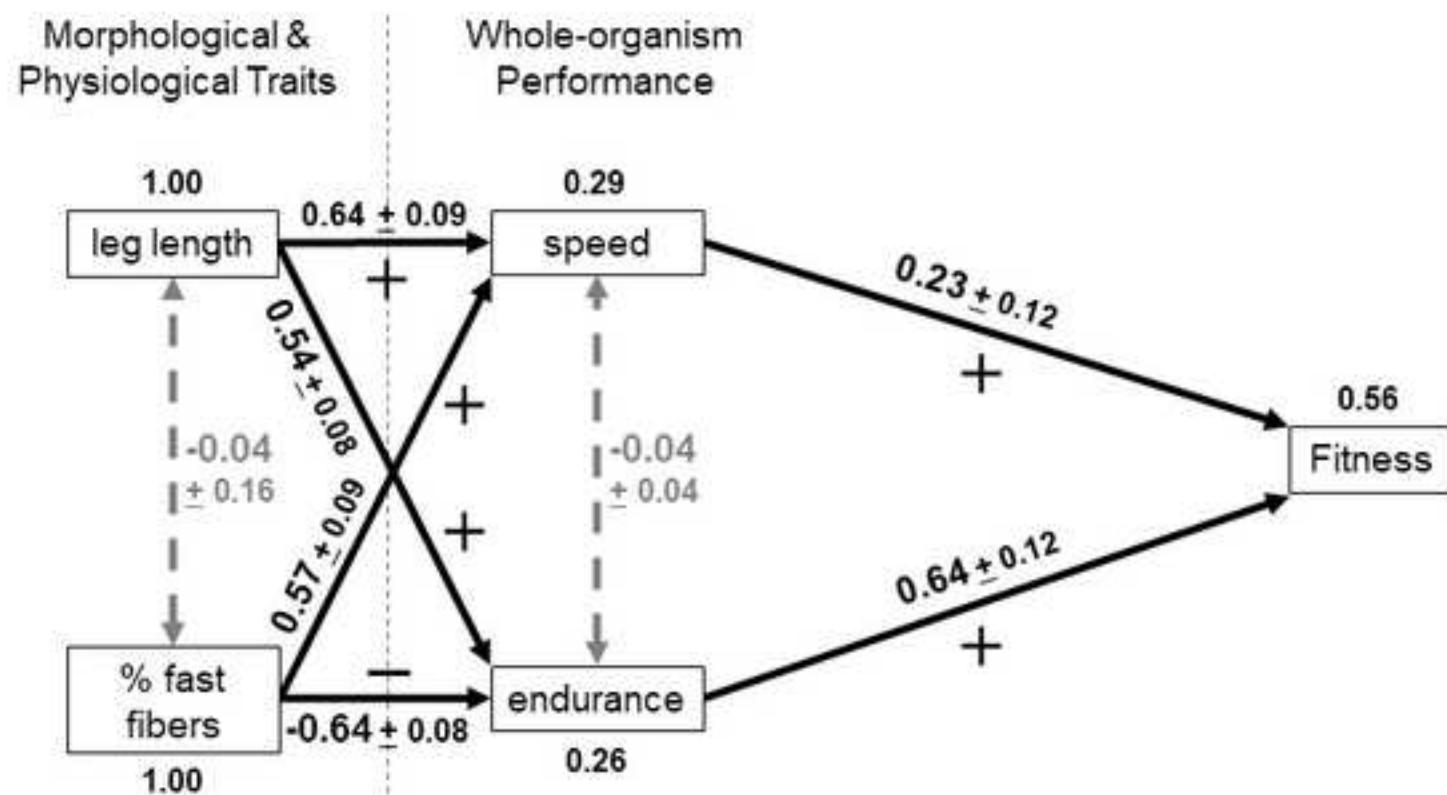



Figure 5

Reviewer 1 Comments

General comments:

The authors have done a nice job with the revision. I look forward to sharing this paper with my mentees and colleagues! I have a few remaining suggestions for clarity.

REVISION: Thank you!

Specific comments:

Lines 273-296: I agree that this example of how the % fiber type in a muscle must result in negative correlations among 2 or 3 fiber types. But I am confused by this section, because these do seem to be lovely examples of allocation trade-offs, even if there is a statistical problem with the analysis of percentage data. It would be good to inform the reader how to "account for correlations that occur by construction". One approach would be to not use % data, but rather counts of fibers of the different types, I think. You later address this issue to some extent in the paragraph beginning on line 941, so perhaps these two sections could be better integrated.

REVISION: We have edited this section and also added a sentence pointing to the use of absolute counts, rather than percentages.

Lines 319-321: I think that this section would be improved by adding some explanation of the examples. For example, high hematocrit increases the amount of oxygen carried per ml of blood, but increases blood viscosity. Enzymes that are highly flexible function well at low temperatures but denature easily at high temperatures.

REVISION: We have added explanation and further discussion of the hematocrit example. (We do not have an enzyme example in this part of the manuscript.)

Lines 340-342: It would be good to give a reference for the varied effects of caffeine on humans.

REVISION: Great idea. References added. Happily, one review concluded that "daily coffee and caffeine intake can be part of a healthy balanced diet; its consumption does not need to be stopped in elderly people" (Nehlig 2016, p. 89).

Line 678: add comma after "within herds"

REVISION: Done.

Line 697: change "driving" to "driven"

REVISION: Done.

Line 784-5: This is a little confusing: "... generates a trade-off of responses to a stressor with both a physiological and behavioral immune defense". I'd suggest, ...with both physiological and behavioral components".

REVISION: We have deleted this whole second half of this paragraph.

Paragraph beginning at line 1169: I think aerodynamic models can be both physical and mathematical, so perhaps this section should be labeled as "organismal modeling approaches to study tradeoffs". Also, such models are not limited to aerodynamics, but can apply to a variety of biomechanical systems, and biochemical networks. Also, this section could use a concluding sentence, along the lines of "modeling approaches have been used to mathematically describe how changes in structure and physiology can alter the capacity of an animal to perform different functions".

REVISION: OK. First, we moved this section to the bottom of the larger section ("Studying Trade-offs (and Constraints)'), so it now follows "Theoretical models." We then added a new introductory sentence.

Line 1271 is confusing: "on days 5 and 6 of a 6-day period of access when young adults and four non-selected control...". I'm not sure what this means.

REVISION: We edited this for clarity.

Line 1312: To distinguish with the organismal modeling section (line 1169), consider calling this section "theoretical evolutionary models".

REVISION: Well, this would not necessarily be restricted

Table 1, row IV, column 3 is missing some words.

REVISION: Fixed.

Reviewer 2 Comments

This article was an enjoyable read on a sunny Sunday afternoon. This is an important topic that needs more coverage and this editorial is very timely. The coverage is comprehensive, and I found the article to be very well written. I do have a few comments.

REVISION: Thanks for the encouragement! Sorry to intrude on your weekend!

This is an editorial, not an interpretation of original data. It is an opinion piece. As such there are going to be statements with which others may disagree. My view is - so much the better. Not only will this open dialogue, it should increase interest in the Journal. This is a round-about way of saying it probably won't please all reviewers either but as long as we are open to accepting opinion pieces, they too can have a kick at the can. The section on Network Perspectives on Trade-offs makes a transition from scholarly review to theoretical model. The article then transitions back to discussion in the following section. In some ways, this disrupts the flow of the article. It might be better presented as an addendum, but I leave this to the authors discretion.

REVISION: We have moved the theoretical model section Network Perspectives on Trade-offs to a couple of different places as we worked on the manuscript and responded to previous reviews. Probably no placement is perfect. We view it as an important part of the manuscript, and so we don't want to move it to an addendum, where it would likely be overlooked.

I would change the title of the last section to simply read "Studying Trade-Offs (and Constraints)". The moment you put "How to" in the title you raise the backs of many readers. It comes across as dictatorial which is not the case.

REVISION: Good idea. Change made.

Finally, when it comes to models, my personal view is that models are only useful if they are predictive of outcomes that can subsequently be tested (If the model is an accurate explanation of the data then this should happen when this occurs....). Making a model that simply explains existing data, to me, is of very little use. I am reminded of a quote from James Watson to the effect "No model can explain all of the data for some of the data is bound to be wrong". I'm not suggesting this be added to the editorial - just taking the opportunity to express my views.

REVISION: Duly noted.

In short, I found this to be an excellent article that definitely belongs in the Journal.

REVISION: Thank you!