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Abstract

Summary: TARDiS is a novel phylogenetic tool for optimal genetic subsampling. It optimizes both genetic diversity
and temporal distribution through a genetic algorithm.

Availability and implementation: TARDiS, along with example datasets and a user manual, is available at https://
github.com/smarini/tardis-phylogenetics

Contact: salemi@pathology.ufl.edu or brittany.rife@epi.ufl.edu

1 Introduction

Viral genetic sequence data can be used to trace viral evolutionary
patterns, as well as spatiotemporal events and dynamics for viral
and bacterial pathogens (Grenfell et al., 2004). Tools such as
NextStrain (Hadfield et al., 2018) are now routinely utilized to
monitor the phylodynamics of epidemics based on real-time de-
position of pathogen sequences in databases (e.g. GenBank,
HIVdatabases, GISAID) (Lednicky et al., 2021; Mavian et al.,
2020a,b,c; Shu and McCauley, 2017; Wilkinson et al., 2019).
Not unlike traditional epidemiological analysis, however, these
methods can be affected significantly by sampling bias (Hall
et al., 2016), and sampling during outbreaks are rarely performed
randomly from a representative, stratified population (Rife et al.,
2017). Not only do the quality and quantity of sequences vary per
country, but even regional sample collection policies tend to be
inconsistent over time, as exemplified by the inherent sampling
bias of SARS-CoV-2 strains, collected through convenience sam-
pling and sequenced during the early pandemic phase (Mavian
et al., 2020a). Moreover, continuous generation of new sequences
can very quickly approach information overload. For example, at
the time of writing, more than a million sequences have been
deposited in GISAID (SARS-CoV-2) database, with a number of
countries either over or under represented compared of their ac-
tual infection prevalence. In such cases, full dataset analyses can-
not be accomplished, as computational tools are not designed to
handle hundreds of thousands of sequences. In order to reduce
computational complexity, subsampling must often be performed
(Hong et al., 2020), typically using an approach that maximizes

genetic diversity among subpopulations (Chernomor et al., 2015),
e.g. countries or regions (Hong et al., 2020), which increases
phylogenetic signal in the dataset, thus improving phylodynamic
inference over convenience sampling. Besides enhancing signal
for statistical phylogenetic inference, reliable estimates of signifi-
cant events in the context of space and time also require suffi-
cient temporal signal in the dataset (Hall et al., 2016), or
distribution of sampling over time, to calibrate reliable molecu-
lar clocks (Rambaut et al., 2016). Despite the fact that sampling
strategies pose a significant threat to conclusions drawn from
phylodynamic inference, this problem has received so far insuffi-
cient attention (Frost et al., 2015). Hall et al. (2016) were able to
demonstrate that sampling sequences uniformly with respect to
both space and time can allow for accurate reconstruction of the
changing demographics of a dynamic, structured population. To
date, however, there currently exists no tool to aid researchers to
optimize subsampling with respect to space, time and genetic di-
versity. In what follows, we introduce TARDiS (Temporal And
diveRsity Distribution Sampler), a machine learning approach
designed to optimize phylogenetic subsampling according to
both genetic diversity and temporal distribution for user-defined
subpopulations.

2 Materials and methods

TARDiS implements a genetic algorithm (GA) (Falcón-Cardona and
Coello, 2020; Kramer, 2017) optimizing genetic diversity and time
sampling distributions criteria for any set of viral or bacterial genomes.
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The output consists of user-defined number n of optimally subsampled
genomes from a complete dataset of N genomes. Briefly, the algorithm
is initialized as a population of random individuals. Each individual is
a solution to the problem, i.e. a subsample of size n genomes. Each in-
dividual is characterized by a fitness score, reflecting how well that par-
ticular individual (solution) performs on the given problem. In our
case, fitness is measured as a combination of genetic diversity (i.e. how
diverse are the genomes represented by the individual), and time distri-
bution (i.e., how evenly distributed are the genomes represented by the
individual along the epidemic timeline).

In the event that whole-genome sequences are not available, we
recommend a test for signal in the dataset (e.g., using likelihood
mapping; Strimmer and von Haeseler, 1997) to ensure optimal
TARDiS performance. In the absence of sufficient signal, or suffi-
cient number of informative sites in the alignment, less variation
will be observed for the calculation of genetic diversity across sub-
samples, rendering TARDiS more reliant on the temporal optimiza-
tion function. While this scenario will ultimately provide a more
uniform distribution of sampling times, downstream phylodynamic
analysis may prove unreliable, as the phylogenetic tree reconstructed
from the sequence data will not be able to provide significant sup-
port for individual relationships among sampled sequences. It is im-
portant to note that testing for phylogenetic signal is often
recommended prior to analysis regardless of genomic fragmentation
(Strimmer and von Haeseler, 1997).

2.1 Genetic algorithm principles
2.1.1 Genetic diversity maximization

We aim to recover a subsample of genomes as genetically diverse as
possible. To do so, we first need to calculate the genetic distance be-
tween all possible genome pairs, represented by a square distance
matrix D, with N rows and columns. Users can provide their own
distance matrix or let TARDiS compute it using the Jukes–Cantor
nucleotide substitution model. We calculate the genetic diversity fit-
ness Fgd of a subset s with a total of n genomes as

FgdðsÞ ¼
PDs

ði;j;i 6¼jÞ distði; jÞ
distmaxðD;nÞ

;

where s is the genome subset representing a single individual (solution);
Ds is the diversity matrix for the n genomes included in s; i and j are a
genome pair 2 s, with i 6¼ j, and a total of ðf ¼ n2 � nð ÞÞ=ð2Þ pairs;
dist(i, j) is the genetic distance of the (i, j) genome pair; and
distmaxðD;nÞ is the sum of the genetic distances of the top f elements of
the distance matrix D, i.e. the sum of the maximum genetic diversities
of the whole distance matrix D. It represents a theoretical upper bound
to force genetic diversity fitness in the ½0;1� interval, with a higher
value representing a better Fgd.

2.1.2 Time distribution optimization

Our objective is to recover a subsample of n genomes that are dis-
tributed as evenly along the considered time interval as possible.
Intuitively, if n¼100 for an infected population that is increasing at
an exponential rate over the course of 10 days (and every case was
represented), we would consider one genome per day beginning
with patient zero at day one. We can thus calculate the ideal time
distribution Itd as a date vector of n elements, starting with the first
available date df, ending with the last available date dl, and having
the remaining n�2 elements distanced with a ðdf � dlÞ=ðn� 1Þ
interval. The worst possible time distribution Wtd, on the other
hand, is a time distribution concentrated into a single specific date
(i.e., all samples collected on the same day). We measure the time
distribution fitness Ftd for a single individual (solution) as

FtdðsÞ ¼ 1�
Pn

i jtimeðgiÞ � tijPn
i jtw � tij

;

where timeðgiÞ is the collection date of the ith genome, with i being
a genome included in s; ti is ith date in Itd; and tw is ith date in Wtd.

In other words, Ftd is bound in the ½0; 1� interval, with a higher value
representing a better Ftd.

The final fitness F of a specific individual s is calculated as

FðsÞ ¼ FgdðsÞ �wgdðsÞ þ FtdðsÞ �wtd;

where wgd and wtd are user-defined weights to set the importance of
genetic diversity and time distribution, respectively.

While all values between 0 and 1 are available to the user for the
wgd and wgd parameters, we have only considered scenarios wherein
genetic diversity is considered in the presence (wgd¼0.5, wtd¼0.5)
or absence (wgd¼1, wtd¼0) of time, with 0.5 being the default
value in TARDiS, owing to the improved performance of the former
over the latter in the described simulation. There are various circum-
stances where the alternative (wgd ¼ 1, wtd ¼ 1) or time-weighted
only (wgd ¼ 0, wtd ¼ 1) parameter settings might be more relevant.
For example, if more emphasis is placed on the evaluation of the
changing level of diversity over the course of an epidemic, a more
representative sampling for each month of the epidemic might be
more appropriate. Alternatively, if sample collection is limited to the
early phase of an epidemic, with very limited temporal spread,
weighting according to sampling time would not necessarily im-
prove significantly the dataset over purely diversity-based weighting.
Deviation of parameter values from 0, 0.5 and 1 have not been
assessed because the impact of this deviation is likely to depend on
the dataset used. Hence, we would be unable to prescribe values out-
side of those reported herein that would be generalizable to all viral
sequence data.

2.1.3 GA operators

Once a population is generated, fitness is calculated for each individ-
ual. Individuals are then chosen and combined to produce a new
population in an iterative fashion. To generate a novel individual,
TARDiS uses three operators: selection, mutation, and crossover.
The selection operator is based on deterministic tournament selec-
tion with k¼5 (Falcón-Cardona and Coello, 2020). Briefly, two sets
of k individuals are randomly chosen, and the individual with the
highest fitness is selected from each set. The crossover operator com-
bines two tournament winners a and b into a new individual c by
keeping all the g genomes 2 ða [ bÞ- i.e., the shared genomes- and
randomly selecting n–g genomes 2 ða \ bÞ � ða [ bÞ- i.e., the
genomes pertaining to a or b, but not both. To help avoid local max-
ima, each newly generated individual c has a 0.08 probability of
mutating (Falcón-Cardona and Coello, 2020; Kramer, 2017). A mu-
tation is defined as swapping a genome of individual c with one ran-
domly chosen from the remaining genome pool- i.e., genomes
62 ða;bÞ. Note also that users define both a fraction of the population
that is randomly created (and thus not evolved) for each generation,
and a fraction of best genomes (ranked by fitness) to be copied with-
out modifications in the next generation (elitism).

2.1.4 Group/spatial subsampling

Whereas subsampling over several groups of genomes can be per-
formed independently, TARDiS is designed to take grouping factors
into consideration (i.e., traits, such as geographical origin assigned
to taxa in a.csv input file), resulting in optimal subsamples for each
prespecified group, which is compiled into a single, ready-to-use
alignment. In the following case study, we show how a geographical
constraint can be added in the subsampling process.

2.2 Case study: subsampling a rising epidemic
We simulated a growing epidemic using a stochastic, agent-based
model (Lequime et al., 2020) with limited migration between 10
subpopulations, or regions (a, . . ., j).

2.2.1 Population dynamics

Each subpopulation was allowed to emerge from the initially
infected population (a) with a mean probability of [initial] infection
of 0.02 (standard deviation [sd] of 0.005). Each infected individual
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within a subpopulation was then allowed to migrate to another sub-
population with a mean probability of 0.01 (sd¼0.005). The num-
ber of contacts for each individual was picked from a normal
distribution with a mean of 4 (sd¼2). The probability of

transmission (when a contact occurs) was provided in the form of a
threshold function: prior to 5 days (sd¼3), the host was not able to
transmit, but after that time, the individual was able transmit with a
mean probability of 0.05 (sd¼0.005), representing an incubation

Fig. 1. (A) True and subsampled trees with representative clades. Eight representative clades were chosen for which the majority of taxa consisted of a single subpopulation, or

state, and were consistent across true and subsampled trees. RMSE was calculated for the true TMRCAs and estimated TMRCAs across the five representative clades for the

subsampled tree with (t1) and without consideration of time (t0). (B) Temporal distribution of samples per subpopulation (summing to 100%) for true and subsampled trees

with (t1) and (t0) without consideration of time. (C) Screenshot of the TARDiS graphical user interface. Note, among the options, the number of individuals per each gener-

ation of the GA; the number of (best) solutions to output (‘subsamples to consider’); the fractions of random, evolved, or elite individuals for each generation; and the options

for genetic diversity optimization—besides the default maximum diversity, users can select to optimize toward the mean or median of the dataset
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period for the simulated virus. Each infected individual was removed
from the simulation (representing death, recovery, etc.) after
14 days. The described parameters resulted in a basic reproductive
number (R0) of �1.6 for the epidemic. The simulated epidemic was
run for 365 days or until a total of 10,000 hosts were infected. For
each of the 10 subpopulations, individuals belonging to that subpo-
pulation were binned according to week of removal (i.e. 7-day inter-
vals) and subsampled according to an exponential distribution
(rate¼5), representing idealistic sampling of a population propor-
tional to the size of the epidemic and resulting in a range [37, 844]
of sampled individuals for each subpopulation (state). The original
transmission tree was pruned, leaving only the remaining sampled
individuals.

A molecular clock, or constant evolutionary rate across all
branches of the tree, was assumed, allowing branches separating
nodes within the tree to be scaled in both time and genetic distance.
Nucleotide (A, C, G, T) sequences were thus simulated along the
tree using a general time reversible evolutionary model, allowing for
unequal nucleotide frequencies and differing rates of substitution for
each pair of nucleotides, such as is commonly observed for RNA
viral genomes edited by APOBEC-mediated deamination (repre-
sented as C–>T) (Mourier et al., 2021). The rate matrix was defined
as (0.32512, 1.07402, 0.26711, 0.25277, 2.89976, 1.00000) and
nucleotide frequencies (0.299, 0.183, 0.196, 0.322). A gamma dis-
tribution of rate variation across sites (alpha¼2.35) was also used,
with a proportion (0.60) of sites considered to be invariable to ac-
commodate for evolutionary variation, such as across codon posi-
tions in a coding sequence. Branch lengths were scaled by a factor of
8E�04 (approximate evolutionary rate in substitutions/site/year),
representing that of RNA viruses such as beta coronaviruses
(Nakagawa and Miyazawa, 2020).

Migration rates for each of the 10 subpopulations were calcu-
lated as a function of the number of transitions between subpopula-
tion states (non-reversible) along each branch within the tree and
the frequency (F) of the initial subpopulation among tree tips- i.e.,
for w branches with transitions between subpopulations- and x
branches with specifically transitions from i (node at earlier time
point) to j (node at more recent time point)

Rij ¼
x� Fi

w
:

We ran TARDiS on a single simulated dataset, subsampling 40
genomes per region (with the exception of region f, with 37 genomes
available) for 50 generations, with a population of 1000 individuals
per generation, of which 85% were evolved, 10% were newly
generated, and 5% were elite. The phytools package (Revell, 2012)
in R (R Core Team, 2020) was used for joint likelihood reconstruc-
tion of discrete ancestral states (Pupko et al., 2000) according to
subpopulation for each internal node of the subsampled trees.
Transition rates among discrete states along tree nodes were
considered to be equal a priori. Migration rates between states were
then re-estimated, as previously described. We compared the results
obtained both with (wgd¼1, wtd¼1) and without considering time
distribution (wgd¼1, wtd¼0). Our simulation indicated that better
results are obtained by considering time distribution: the overall
migration rate root mean squared error (RMSE) decreased by 17%
(0.035–0.029). Eight representative clades were then chosen for
which the majority of taxa consisted of a single subpopulation and
were consistent across true and subsampled trees (Fig. 1A). The
RMSE for the estimated time of the most recent common ancestor
(TMRCA), representing the upper limit of the timing of introduction
into that particular region, decreased by 43.4% [from 25.37
considering only genetic diversity (t0) to 14.36 if we include time
distribution (t1)]. The addition of a temporal weighting component
for an exponentially growing population can act to both increase
and decrease representation of earlier time points (e.g. weeks 15 and
12, respectively; Fig. 1B). However, representation of week 1 of the
epidemic was increased from 0% to 5%. As the early stages of an

epidemic, and time nearing the root of the tree, represent periods of
high epidemiological and phylogenetic uncertainty, sample represen-
tation during this time is critical for reliable phylodynamic inference
and thus contributed to the loss of error in our estimates.

3 Implementation

TARDiS is implemented as a command-line tool based on NextFlow,
suitable for analyzing large datasets in a high-performance computing
environment, and as a graphical user interface based on R/Shiny for
ease-of-use and experimentation (Fig. 1). Along with example datasets
and a user manual, TARDiS is available at https://github.com/smarini/
tardis-phylogenetics
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