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ABSTRACT: A frequent goal of chemical forensic analyses is to select a
panel of diagnostic chemical featurescolloquially termed a chemical
fingerprintthat can predict the presence of a source in a novel sample.
However, most of the developed chemical fingerprinting workflows are
qualitative in nature. Herein, we report on a quantitative machine learning
workflow. Grab samples (n = 51) were collected from five chemical sources,
including agricultural runoff, headwaters, livestock manure, (sub)urban
runoff, and municipal wastewater. Support vector classification was used to
select the top 10, 25, 50, and 100 chemical features that best discriminate
each source from all others. The cross-validation balanced accuracy was 92−
100% for all sources (n = 1,000 iterations). When screening for diagnostic
features from each source in samples collected from four local creeks, presence probabilities were low for all sources, except for
wastewater at two downstream locations in a single creek. Upon closer investigation, a wastewater treatment facility was located ∼3
km upstream of the nearest sample location. In addition, using simulated in silico mixtures, the workflow can distinguish presence
and absence of some sources at 10,000-fold dilutions. These results strongly suggest that this workflow can select diagnostic subsets
of chemical features that can be used to quantitatively predict the presence/absence of various sources at trace levels in the
environment.
KEYWORDS: chemical forensics, chemical fingerprinting, machine learning, high-resolution mass spectrometry, multivariate analysis,
non-target chemical analysis

■ INTRODUCTION

Observations of health declines in humans and wildlife (e.g.,
cancer rates,1−4 metabolic disorders,5−7 reproductive abnor-
malities,8−12 and die-off events13) are increasingly being
reported in the literature. Often, the exact causes of these
maladies are unknown, but uncharacterized anthropogenic
compounds in the environment are hypothesized to drive these
observations.1,14,15 Ecotoxicological research has identified
thousands of toxic substances, yet most chemical forensic
studies fail to identify the causative agents driving health
declines. Those that are successful are laborious, taking years
to decades to solve.13,16−18 A prominent challenge of chemical
forensic studies, which seek to identify the source of a
chemical/mixture of interest,19 is that 10−100 s of thousands
of chemicals exist in the environment. However, state and
federal monitoring programs screen for mere hundreds of
compounds (e.g., see ref 20), which ignore ∼>99.9% of all
chemical features present (i.e., the chemical space), so the
chances of identifying the specific chemicals driving adverse
environmental phenomena are small. Therefore, new chemical
forensic strategies are needed for routine monitoring that
utilize broader swaths of the chemical space.

In recent years, non-target chemical analysis and multivariate
computational techniques have been heralded as critical tools
in chemical forensic analyses.21,22 Using high-resolution mass
spectrometry (HRMS) instrumentation, non-target analyses
seek to collect data on all chemical features that hit an
instrument’s detector. HRMS instruments can detect thou-
sands of features in environmental samples. With so much
data, multivariate tools are necessary for analyzing non-target
data sets because unique patterns emerge when considering
multiple features simultaneously compared to each feature
individually.23 The fundamental hypothesis underlying recent
forensic studies, including this one, is that the holistic chemical
composition of a sample is not random and at least some
fraction therein contains discriminatory information about a
particular source or environmental phenomena. The challenge
of forensic analyses is selecting a subset of chemical features
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that are useful for diagnostic purposes. Such a diagnostic panel
is often referred to as a “chemical fingerprint”. In this study,
our aim is to select a subset of chemical features that are most
predictive of a chemical/pollutant source. We argue that a goal
of chemical fingerprinting should be to develop quantitative
predictive tools. Although several studies have advanced the
chemical forensic literature,17,22,24−29 this goal remains an
open challenge due to limitations of applied multivariate
techniques.
Most statistical tools used to develop chemical fingerprints

are poorly suited for quantitative or probabilistic predictions.
The most popular multivariate tools that have been used in
chemical forensic analyses include co-occurrence analysis (e.g.,
Venn diagrams),17,24 hierarchical cluster analysis,17,25,26

principal component analysis,22,26,27 and multiple machine
learning classification tools.28,29 Venn analyses utilize only
presence/absence information, so all features are weighted
equally, regardless of peak intensity.30 Any discriminatory
information that may come from differences in concentration
or peak areas/intensities is lost. Therefore, sources with very
similar chemical compositions yet distinguishable (e.g., via
ratios of critical features or other approaches) may not be
separable using co-occurrence tools. Clustering also has
limitations for chemical fingerprinting and source apportion-
ment. Clustering relies on the entire chemical signature for
group assignment and provides no information on which
subset of chemical features is important for prediction.17

Furthermore, clustering can only assign samples to a single
group31 and thus provides no insight into how many pollution
sources may be present in a mixed sample. Masia ́ et al.27 and
Scholleé et al.22 used PCA to demonstrate that sources (e.g.,
influent/effluent and wastewater/surface water) were strongly
differentiated by the non-target chemical gradients present in
each sample. Although it is possible to use factor loadings to
interpret the important chemical features most correlated with
each component, the correlation coefficients between the non-
target chemical features and the principal components are
often very weak (e.g., |r| < 0.05),22,32 making it difficult to
select the subset of chemical features that are most responsible
for separating different sources in ordination space. Although
ordination has been used in attempts to select targeted features
that could be used to predict sources (e.g., see ref 26 for the
PFAS example), the purpose of ordination is to summarize the
largest gradients present within a data set instead of selecting a
subset of diagnostic features. Similar to clustering, ordination
may miss source signals that are masked at low concentrations.
The best recent example of source tracking and chemical
fingerprinting with targeted data utilized various machine
learning classification models to predict PFAS sources (AFFF
vs non-AFFF) based on the concentration of 10 measured
PFAS.28 In this study, the authors iterated through all possible
combinations (n = 1023) of PFAS and compared the
classification accuracy of each combination to determine if a
particular PFAS subset was disproportionately capable of
predicting source membership. Although it is possible to
iterate through all possible combinations with data sets that
have few chemical features, this quickly becomes impractical
with even slightly larger data sets. For example, with just 30
compounds, over 1 billion unique chemical combinations exist.
Therefore, manual iteration is impractical for selecting a subset
of chemical features that are diagnostic in many target and all
large non-target chemical data sets.

Chemical fingerprinting workflows have been called for in
the literature;33−35 however, selecting a subset of diagnostic
chemical features (e.g., 10−100) out of the thousands of
candidate features has been an obstacle. Herein, we report on a
chemical forensic workflow that overcomes this limitation.
Based on the non-target chemical data generated from user-
defined sources of interest, our goal was to quantify the
importance of every non-target chemical feature within a data
set based on its ability to discriminate sources. Using the most
diagnostic features of each source, our follow-up goal was to
use this chemical fingerprint to probabilistically predict the
presence or absence of these predefined sources in environ-
mental water samples. This workflow is expected to benefit
water quality monitoring programs, chemical forensic studies,
and studies seeking to extract discriminatory information from
chemical data.

■ METHODS
Source Selection and Site Description. Detailed

descriptions of sampling locations, sampling protocols, and
analytical protocols are included in the Supporting Informa-
tion. Briefly, we collected source-specific samples, which were
used to generate chemical fingerprints. In addition, we
collected water samples from four local riverine systems
surrounding Corvallis, Oregon, which were expected to contain
a mixture of sources. The source samples included runoff from
suburban and urban surfaces [(sub)urban runoff, n = 12],
runoff from agricultural fields (agricultural runoff; n = 6),
livestock manure (manure; n = 8), municipal wastewater
(WWTP, n = 20), and water from lakes and streams with no to
minimal human development upstream (headwaters, n = 5).
Briefly, (sub)urban samples were collected from curbs, gutters,
and parking lots in Corvallis. Agricultural runoff samples were
collected from grazed and ungrazed fields owned by Oregon
State University. Grazed fields were grazed by alpacas, dairy
cows, or horses, and ungrazed fields were used to grow silage.
Both (sub)urban and agricultural runoff samples were collected
following winter rain events. Livestock manure was collected
from dairy, beef, and swine animal facilities operated by
Oregon State University. Wastewater was collected by the
municipal treatment facility in Philomath, Oregon. This facility
consists of a series of stabilization ponds, which were sampled
in spring, summer, and winter. Finally, headwater samples were
collected from high-elevation lakes and streams located within
the Oregon Coast and Oregon Cascade ranges. Detailed
descriptions of the sample locations and source types are
included in the Supporting Information (Table S1). All water
(1 L) and solid samples (100 g) for each source were collected
in triplicate.
In addition to source-specific samples, surface water samples

were collected from four nearby creek systems (Dixon Creek,
Marys River, Oak Creek, and Rickreall Creek). Dixon Creek is
urbanized and located entirely within the Corvallis city limits.
Marys River, Oak Creek, and Rickreall Creek originate in
forested regions and traverse agricultural, rural residential, and
(sub)urban landscapes. Therefore, it was plausible that each
source we selected could contribute to the chemical
composition of these systems. Grab samples were collected
from five longitudinal locations that were approximately evenly
spaced along the length of each water body. Creek samples
were collected during the spring, summer, and winter of 2018/
19.
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Sample Collection and Processing. Non-polar organics
were extracted from manure and water samples according to
Webster et al.36 and Jones et al.37 Briefly, manure samples
(∼20 g wet weight) and methanol (∼15 mL) were added to
each of three 50 mL centrifuge tubes for triplicate analysis.
Each tube was hand-shaken (1 min) and centrifuged (5 min at
4500 rpm). The supernatant was decanted into a 4 L amber
glass bottle. This process was repeated three times total. Each
bottle was filled with DI water to dilute the methanol. This
entire process was repeated without manure as a negative
control. Water samples (both source and creek samples) were
collected in a 4 L amber glass bottle. For each sampling trip, a
DI blank (1 L) was taken into the field and was handled and
processed identically to all samples for a negative control. All
samples and controls were immediately transported to the
laboratory where they were pressure-filtered (0.7 μm glass
microfiber filter, 9 cm, Millipore, Ireland) using ultra-high-
purity nitrogen gas. After filtration, samples were split into
three 1 L bottles for triplicate analysis and spiked with 10
deuterated internal standards (100 ng each; see Table S2).
Non-polar organic compounds were extracted from samples
using C18 solid-phase extraction (SPE) cartridges (6 mL, 1000
mg, Restek, Bellefonte, PA, USA). Samples were eluted using
95:5 (v/v) methanol and water (9 mL), dried in a vacuum
oven, transferred to LC vials, dried to completion, and
resuspended in 1 mL of 90:10 (v/v) water and methanol
before instrument analysis.
Non-target Chemical Analysis. HRMS analysis was

performed at Oregon State University’s Mass Spectrometry
Center using Shimadzu Nexera UHPLC coupled to an AB
Sciex 5600 triple time-of-flight mass spectrometer. Samples
were run in five batches, which corresponded to different
sampling efforts. Samples within each batch were randomized.
Every 15th sample, instrument negative (90:10 v/v DI/
methanol) and positive (100 or 500 ng of mixed standard)

controls were run. Non-target methods were adapted from
Scholleé et al.22 and Schymanski et al.38 All samples were
analyzed in the positive electrospray ionization (ESI+) mode.
Instrument performance was stable across all runs and was
assessed by inspecting peak intensities of instrument positive
controls (Figure S1). Recoveries of all internal standards were
high, but this is potentially confounded by sensitivity
limitations of the instrument (see Supporting Information for
discussion). Only chemical features with an m/z range from
100 to 1000 were included. Sciex MasterView v1.1, PeakView
v2.2, and MarkerView v1.3.1 were used to process all MS1 files
(see Supporting Information for detailed descriptions of all
software settings). Following peak picking and retention time
alignment, feature intensities were imported into Excel and
averaged across triplicate samples. A feature was retained in a
sample only if it was present in all replicates. Regardless of
peak intensity in a sample, all chemical features present in
negative controls (both field and instrument) were removed
from samples collected on the same date. These two criteria
were used to be as conservative as possible in what was
considered a feature. Following blank subtraction, replicate
averaging, and blank subtraction, 7771 features out of 10,000
were retained across all samples. Detailed descriptions of QA/
QC protocols are included in the Supporting Information.

Fingerprinting Workflow. All scripts were written in
Python using Jupyter notebook (version 6.0.2). Scripts are
available at https://github.com/EcoChem-OSU/Chemical-
Fingerprinting, and a detailed description of the fingerprinting
workflow is presented in the Supporting Information. Briefly,
the workflow consists of 11 steps (Figure 1). Step 1: first, the
data are screened to assess classification feasibility using
ordination or clustering. We performed hierarchical clustering
using the Bray−Curtis dissimilarity index as the distance metric
and the average linkage method.39 Euclidean distance has been
used for non-target analysis,17,25 but this method is

Figure 1. Flowchart illustrating the steps used in this study including sample collection and instrument analysis (purple), classification feasibility
(yellow), and the chemical fingerprinting workflow developed herein (blue). Steps developed in this forensic analysis are numbered (1−11).
Critical “go/no-go” checks associated with the fingerprinting workflow are in red. Rectangles and diamonds represent process and decision steps,
respectively.
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inappropriate for sparse (i.e., data sets with a disproportionate
number of 0 s) or high-dimensional (i.e., data sets with
hundreds to thousands of variables) matrices.39 We predict
that as source clusters become more chemically distinct, the
feasibility of classification increases. It is important to note that
no classification algorithm is best suited for all data sets and
that the observed clustering/ordination patterns (e.g., radial vs
linear separation) may provide insight into which classification
algorithm is best suited for a particular data set. We developed
this workflow using support vector classification (SVC) with a
linear kernel, but this algorithm could be replaced with other
machine learning tools (e.g., random forest and gradient
boosting classification) to take advantage of their properties.
Steps 2−5: using the source samples of interest, the SVC

model is tuned to best predict the presence or absence (i.e.,
one-versus-all classification) of each source. The SVC
regularization parameter (C) is varied to maximize the
balanced accuracy of the testing data set. As the number of
sources in a data set grows, the fraction of any one source
decreases, leading to an imbalance in the number of presences
versus absences for each source. This occurs with one-versus-
all classification and is problematic because the overall
classification performance can be skewed by that of the
dominant class (i.e., absence). Balanced accuracy equally
weights the true positive and negative classification rates when
assessing performance, regardless of the number of samples
represented by each class. The C values are rank-sorted based
on the balanced accuracy.
Steps 6−8: using the best C value, the model is rerun to

quantify the coefficient weight of each chemical feature. The
coefficient weight is a quantitative measure of the predictive
power of a feature, and for each source, the top n chemical
features are selected as diagnostic chemical fingerprints.
Steps 9−11: the SVC model is retuned as described in steps

2−5 using only the top n chemical features. If sample mixtures
are present (e.g., receiving bodies of water), the model also
predicts the probability that a source is present in a sample.
The final step of the workflow is to assess the validity of the
results by inspecting critical “go/no-go” checks, which includes
checking the balanced accuracies at each tuning step and
checking final type I and II error rates. These critical thresholds
are data-dependent and subject to the needs of the study.
Although the thresholds may vary, we found two rules of
thumb. First, the balanced accuracy of the initial tuning should
be >50%. Second, sources should be more distinctive when
only the diagnostic features are used, so the balanced accuracy
should increase when using the top n diagnostic features
compared to when using all features.
Fingerprint Performance Limits. Because samples were

collected as close to the source as possible (i.e., “pure” source
samples), a presence probability of 0.5 is appropriate for
distinguishing a pure source from its associated outgroup;
however, this threshold should not be confused with a
presence/absence threshold. We surmise that as a chemical
source is diluted in a receiving body of water, the presence
probability will decrease until it is statistically indistinguishable
compared to when the source is absent (i.e., 0% source). At or
below this critical presence/absence probability threshold
(herein referred to as p0%), the source should be considered
absent. Ideally, p0% could be identified using samples
containing actual mixtures of multiple sources, but we were
unable to perform this analysis herein. Instead, we created in
silico mixtures as a proof of concept. A single source and creek

sample were chosen at random and removed from the data set.
From these samples, the peak intensities of all features in each
sample were multiplied by different ratios (source/creek
0:100, 0.01:99.99, 0.1:99.9, 1:99, 25:75, 50:50, and 100:0) to
approximate dilution, and the resulting intensities were
summed to create an in silico mixture. This approach assumes
a linear response between source proportion and peak
intensity, which is not representative of the true instrument
response; however, we argue that these simulated mixtures
provide general insight into the workflow’s lower performance
limits. The workflow was used to predict the presence
probability of each source in each in silico mixture. At some
ratio, we expect the presence probability to be just distinguish-
able from p0%. This critical point will be considered the
fingerprint’s lower performance limit.

■ RESULTS AND DISCUSSION
Clustering. The cophenetic correlation coefficient of the

clustering dendrogram was 0.97 with Bray−Curtis dissimilarity
and average linkage and was 0.84 when using Euclidean
distance with Ward’s linkage (Figures S2 and S3), suggesting
that Bray−Curtis dissimilarity is a better approach for
clustering this data compared to Euclidean distance.
Furthermore, obvious chaining was present when using
Euclidean distance. Chaining occurs when individual samples
are added sequentially to an existing cluster (i.e., no substantial
differences in chemical composition) and suggests that
Euclidean distance was less able to differentiate sources within
the data.40 Based on the Bray−Curtis dendrogram, the
chemical composition of samples collected from the same
source was more similar to each other compared to samples
collected from different sources. This suggests that the sources
are separable based on the chemical composition and that
chemical fingerprinting is possible. Nevertheless, clustering is
not a prerequisite for fingerprinting as this technique utilizes
the entire chemical composition to identify groupings. It could
be possible to have substantial overlap in chemical
composition (i.e., little to no clustering) but still have a
small subset of features that are diagnostic.

Model Tuning and Fingerprint Development. During
the initial tuning and retuning, model performance was low
(50% balanced accuracy) for all sources when C values were
<∼10−3 and high (≤100% balanced accuracy) when C values
were >∼10−2 (Figures 2a and S4). It is important to note that
overfitting was low in all iterations as balanced accuracy scores
were only retained if the difference in training and testing
accuracy was ≤10% (see Supporting Information for detailed
descriptions on model tuning). When the data were randomly
shuffled, the balanced accuracy was typically 0% but never
exceeded 50%, indicating that high balanced accuracies
observed during the initial tuning were not generated from
random chance alone. Although we did not assess every
instance, balanced accuracies of 0% were due to overfitting
when the difference in the training and testing accuracies was
>10%. Balanced accuracies of 50% occurred when the SVC
model classified a particular source as absent for every sample,
which is more common using one-versus-all classification
schemes given that most samples are absent. Although C values
>10−2 typically resulted in the maximum observed balanced
accuracy (100% correct classification for most sources),
choosing any of these C values did not change downstream
results, although this was not extensively assessed.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c06655
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c06655/suppl_file/es1c06655_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c06655/suppl_file/es1c06655_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c06655/suppl_file/es1c06655_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c06655?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


After C selection, each chemical feature was rank-sorted
based on its coefficient weight. For all sources, the rank-sorted
weights exhibited an S-shaped curve but to various degrees
(Figures 2b and S5). Similar importance diagrams have been
reported in the literature.41 The vast majority of chemical
features had little predictive power (i.e., normalized coefficient
weights near 0), and only a small proportion had coefficient
weight magnitudes >0.5. Compared to when all chemical
features were used for tuning, the SVC model performance
remained equally high or higher when only the top 10, 25, 50,
and 100 most diagnostic features were used (Figure S4).
During the final iterations, cross-validation model performance
was high for all sources. Average balanced accuracies were
≥92% for all sources (averaged across n = 1000 iterations),
regardless of how many chemical features were used (Table
S3). The chemical fingerprints consisting of the top 10 features
are graphically represented in Figure S6. The cross-validation
balanced accuracies were 100% when only 10 chemical features
were used to predict manure, (sub)urban, and WWTP
samples. One hundred percent correct classification was
achieved for agricultural runoff and headwater when ≥25
and 100 diagnostic features were used, respectively. These
findings are noteworthy because they indicate that few features
are needed for chemical fingerprinting. If a relatively small
number of chemical features are needed for a diagnostic
fingerprint, it becomes possible to use this fingerprinting
approach with multiple reaction monitoring methods with
more traditional, and widely available, triple quad instrumen-
tation. If these non-target chemical fingerprints could be
screened for using instruments typically used in targeted
chemical analyses, it would make fingerprinting approaches
more readily available to practitioners. Nevertheless, HRMS
instruments may be required to develop the fingerprints
initially, so fingerprinting advocates with HRMS instrumenta-

tion may have to work with monitoring laboratories to make
these techniques available for broad-scale use.

Workflow Performance Limits. Until this point in the
workflow, all classification predictions have been made using a
probabilistic threshold of 0.5 to distinguish a “pure” source
from its outgroup; however, this threshold is inappropriate for
environmental samples. As the concentration of the source
decreases via dilution, the intensity of the signal, and thus the
probability of detection, also decreases. Using in silico
mixtures, the presence probability when the source percentage
was 0% (i.e., p0%) ranged from 0.03 to 0.1 for all sources except
headwaters, and when the source percentage was 100%, the
presence probability (i.e., p100%) ranged from 0.78−0.99
(Figures 3a and S7). For headwaters, p0% ranged from 0.17

to 0.22, depending on how many diagnostic chemical features
were used, and p100% ranged from 0.56 to 0.64 (Figure S7). We
argue that the difference between p100% and p0% represents
some indication of fingerprint quality. As the range between
these values (i.e., p100%−p0%) narrows, it becomes increasingly
difficult to distinguish presence from absence. Therefore, this
suggests that the best fingerprint is WWTP, followed by
manure, (sub)urban runoff, agricultural runoff, and headwater.
In addition to probability between range p0% and p100%, the

source/creek ratio needed to exceed p0% could also be an
indicator of fingerprint quality. For example, the presence
probability for wastewater when the source fraction was 0.01%
(p ≈ 0.11 for n = 10−100 diagnostic features) was nearly two
times greater than the critical presence/absence threshold
probability (p0% = 0.06; Figure 3a), suggesting that the
machine learning model could potentially detect the presence
of this source following a 10,000-fold dilution (i.e., 1 mL in 10
L; see also manure; Figure S7). It is important to emphasize
that this should be tested against real mixtures instead of in

Figure 2. Altering the C value during the initial SVC tuning resulted
in various balanced accuracies [WWTP results illustrated; (a)].
Normalized coefficient weights were rank-sorted for all chemical
features [WWTP results illustrated; (b)]. Features with positive and
negative weights are predictive of presence and absence, respectively.
The closer the weight is to ±1, the more predictive power a chemical
feature has. Error bars represent standard deviations.

Figure 3. Presence probability distributions were created for in silico
mixtures of a single source and creek sample using n = 10−100
diagnostic chemical features [WWTP illustrated; (a)]. The presence
probability of each source was calculated for each sample using each
source fingerprint [n = 25 diagnostic chemical features; data for
Rickreall Creek illustrated; (b)]. Abbreviations include spring (Sp),
summer (Su), and winter (W). Sample numbers represent
longitudinal locations on the creek. All probabilities were made
during the final step of the workflow. Error bars represent standard
deviations.
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silico mixtures because this approach ignores the real behavior
of chemicals during analytical detection. For agricultural and
(sub)urban runoff, there was virtually no difference in presence
probability between 0 and 0.01% source fractions (Figure S7).
Only when the source percentage increased to 0.1% did the
presence probability increase, suggesting that the SVC model
can readily predict the presence or absence of these sources
when peak intensities of chemical features are decreased by a
factor of 1000. For headwaters, the presence probability was
virtually identical to p0% until the source percentage was 1%,
suggesting that with this data set, headwater samples are only
distinguishable with a dilution factor less than 100. In practice,
we recommend using a suitable mean comparison test (e.g., t-
test and Mann−Whitney U-test) to determine which source
fraction is statistically different from p0%. Because these were
modeled data, the statistical power is inflated with 1000
iterations. Using a t-test, p0.1% and p0% are statistically different
(t = 3.80, df = 1998, and p < 0.001) for headwaters; however,
assuming that the same mean and standard deviation were
achieved but with only 10 samples, statistical difference would
not be observed until a source fraction of 10%. In this instance,
we have an example of statistical significance that does not
equate to environmental significance. Therefore, with this data,
it is hard to estimate an environmentally relevant presence/
absence threshold for headwaters. Again, we emphasize that
critical thresholds should be tested against real mixtures
instead of in silico mixtures.
Of all the chemical features, only 0.2% were unique to

headwaters whereas 37, 20, 4.1, and 2.8% were unique to
WWTP, manure, (sub)urban, and agricultural samples,
respectively (Figure S8). Furthermore, unlike all other sources,
the most diagnostic chemical features for headwaters had
negative coefficient weights (Figure 4), which are predictive of

a source’s absence. Of the top 100 most diagnostic chemical
features, only 22 are positive for headwaters, while 84, 99, 100,
and 100 are positive for agricultural and (sub)urban runoff,
manure, and WWTP samples (Tables S4−S8). In other words,
most diagnostic features for headwaters are absent in
headwater samples and only present in other sources (Figure
4). These observations suggest that the SVC algorithm selects
diagnostic features that are unique and/or disproportionately
abundant for one source compared to another. The lack of
diagnostic features that are abundant for headwater samples
could explain why this is the lowest-quality fingerprint.
Although SVC appeared to cue in on intense features, other
machine learning algorithms may detect other diagnostic
patterns within the data.
As the source percentage increased, the presence probability

increased monotonically (Figures 3a and S7). This finding
suggests that the presence probability could be used to
quantify the source apportionment in a sample; however; this
is fraught with uncertainty. Several factors are likely to
influence peak intensity of a sample (e.g., matrix effects,
instrument performance, and differential in situ attenuation/
transformation), which will likely affect the probability
estimate. Therefore, we encourage further fingerprint develop-
ment and testing, particularly the fate and transport of
chemical fingerprints, before utilizing this workflow to quantify
source apportionment. In addition, we detected no general
trend that increasing the number of diagnostic chemical
features resulted in increased predictive performance (Figures
3a and S7). This is beneficial from a practical perspective: with
fewer chemical fingerprints, this fingerprinting workflow could
be translated for MS/MS instruments. Finally, without
performing actual mixing experiments of different matrices, it
is impossible to assess the lower performance limits of the SVC

Figure 4. Hierarchical clustering heatmap (Bray−Curtis distance, average linkage) using only diagnostic chemical features (n = 25) for each source.
The x and y clustering axes represent sample types and diagnostic chemical features, respectively. The z axis (color scale) represents feature
intensity. The cophenetic correlation coefficient (R) for each cluster analysis is included adjacent to the axis title. The y axis color bars indicate
whether a feature was unique for a single source (black) or present across multiple sources (white; y1), which source the feature was diagnostic of
(see legend inset; y2), and whether the coefficient weight was positive (gray) or negative (white; y3).
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model because this approach assumes a linear response
between instrument response and non-target chemical
concentration. Nevertheless, these results indicate that the
algorithm is capable of predicting source presence even when
chemical features are present at trace levels. Therefore, HRMS
instrumentation is likely the limiting factor for being able to
detect the presence of different sources instead of the
computation limits of the algorithm. Thus, sample processing
optimization may be needed to take full advantage of this
fingerprinting workflow and other forensic tools.
In Situ Screening. In creek samples, the presence

probability for most sources was relatively low except for one
notable exception: the WWTP presence probability was >0.80
in spring, >0.73 in summer, and >0.20 in winter in Rickreall
Creek at sample sites 4 and 5 (Figures 3b and S9). For n = 25
diagnostic features, p0% (i.e., the preliminary probability
threshold for presence) was 0.12, providing strong evidence
that WWTP discharge is present. Upon closer inspection, the
WWTP of Dallas, OR, is located between sites 3 and 4, which
was not known a priori. The lower presence probability in
winter is likely due to dilution from the winter rainy season.
Interestingly, effluent from the Dallas WWTP was not included
in the sampling, which suggests that this fingerprint can be
generally applied to detect WWTP effluent in the environment,
despite differences in chemical composition across facilities. In
addition, the presence probability for wastewater was 0.17 and
0.12 at sites 4 and 5, respectively, in the Marys River during
winter (Figure S9). The Philomath WWTP discharges treated
effluent between sites 3 and 4, but the facility is only permitted
to discharge during the winter rainy season when flows in the
Marys River are higher; therefore, the absence of the WWTP
fingerprint during the spring and summer sampling events is
expected.
Although each system had an urban center within the

sampling area, (sub)urban runoff was not detected above the
critical presence/absence threshold probability in any creek,
even Dixon Creek, which is entirely within the Corvallis city
limits. Winter samples were not collected during rain events;
therefore, it is possible that (sub)urban runoff had passed
through the system prior to sampling. Higher winter base flows
are maintained by shallow groundwater, which rises to the
surface in winter months. Although it is expected that some
portion of shallow groundwater is derived from (sub)urban
runoff, our chemical analysis was constrained to only non-polar
organics that were extractable using SPE cartridges. Therefore,
many of the chemical features we targeted may have been lost
due to sorption processes during transport. It is possible that
broader portions of the chemical space are needed to capture
chemical signatures that are expected to transport overland or
through the subsurface. Finally, headwater signatures were
moderately low throughout all creek samples, but as previously
described, it is difficult to assess whether or not this is above an
environmentally relevant presence/absence threshold.
Although it is expected that headwater signatures should be
present, we are unable to make a meaningful interpretation of
the headwater signature, given the limitations of the workflow
discussed previously.
Practical Considerations. Our data indicate that this

fingerprinting workflow is capable of selecting a subset of
chemical features that can distinguish chemical sources;
however, there are a variety of considerations that may
influence the workflow’s success. As the chemical composition
of a source becomes increasingly unique, it becomes easier to

identify a hyperplane that maximally discriminates sources,
regardless of sample size. As the chemical composition
becomes increasingly similar, the hyperplane that separates
sources becomes less distinct, and it may be necessary to
increase the sample size, use non-linear kernels, and/or use
other classification algorithms to better distinguish sources.
Although decreasing sample size does not necessarily decrease
separability, low sample sizes reduce the heterogeneity of the
chemical composition of a source. In this study, we were able
to detect the presence of a WWTP on Rickreall Creek even
though this facility was not sampled to develop the diagnostic
signature. This result is not too surprising given that both
facilities are located in the Willamette Valley and serve
communities of similar demographics; however, it is unlikely
that this fingerprint is universally applicable to detect the
presence of any municipal wastewater in receiving bodies of
water because we have not captured the variability of chemical
composition of this source. Depending on the goals of the
fingerprint, it may or may not be important to capture the
chemical variability of a specific source.
Although it would be advantageous to develop a universal

chemical fingerprint that is invariant with time, we hypothesize
that societal and ecological systems are continuously evolving;
therefore, we predict that the chemical composition of any
source is naturally dynamic. Even if a fingerprint is developed
from a geographically, temporally, socially, and demographi-
cally diverse sampling campaign, the chemical composition
may change as societies adopt new technologies and change
how we interact with the environment. Therefore, if chemical
forensic technologies are to become widely adopted, it is likely
that routine updating of diagnostic fingerprints will be needed
for at least some sources. Future research should explore the
spatial and temporal limits for which a fingerprint is applicable.
Because this is the first data set analyzed using this approach,

it is difficult to extract general rules of thumb about the
workflow’s performance. Nevertheless, we noticed three
potential differences between successful and unsuccessful
fingerprinting attempts. First, the fingerprinting workflow was
ultimately successful when a majority of the most diagnostic
chemical features were positive (i.e., predictive of source
presence). For agricultural runoff, manure, (sub)urban runoff,
and WWTP samples, 100, 87, 100, and 100% of the top 100
most diagnostic chemical features were positive, respectively,
whereas for headwater samples, only 22% were positive.
Second, the most diagnostic features typically had large peak

intensities that were largely unique to a source. This could
potentially explain why the performance of the headwater
fingerprint was low, given that there were few unique features
present and most peak intensities were low (Figures 4 and S8).
In some instances, two sources may have high chemical
similarity with few, if any, unique features. In such instances,
SVC may not be the most appropriate tool and other
algorithms may need to be applied to this workflow. Similar
to Kibbey et al.,28,29 our recommendation for future studies is
to incorporate multiple algorithms into the workflow. These
algorithms will undoubtedly select other features that are
diagnostic, which could help overcome the limitations
associated with any individual algorithm.
Third, the successful application of this method depends on

appropriate source selection and matching the data to the right
classification algorithm. We developed chemical fingerprints
for two point sources (WWTP and manure), two non-point
sources [agricultural and (sub)urban runoff], and one
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landscape source (headwater streams/lakes). Interestingly, the
point sources generated fingerprints with the lowest critical
presence/absence thresholds, which increased as the sources
became increasingly distributed. It is reasonable to assume that
point sources have increasingly modular matrices (densely
connected subsets of chemical features that do not overlap
with other sources) while distributed sources have increasingly
nested matrices (overlapping subsets of chemical features).
Nestedness is a measure of structures in an ecological system,42

and the structure of chemical matrices could strongly influence
a classification algorithm’s performance. WWTP and manure
samples had the most unique or unnested chemical
composition (Figures 4 and S8) and also the highest-quality
chemical fingerprint. Furthermore, the top 25 diagnostic
features are unnested (i.e., little overlap in chemical
composition; Figure 4). This unnested structure likely makes
it easier to discriminate sources with a linear hyperplane, which
might explain why classification improved after the non-
diagnostic chemical features were removed. As the chemical
composition of a source becomes increasingly nested, we
predict that the discriminating performance of linear
algorithms will decrease. Until non-linear algorithms are
incorporated into this workflow, our recommendation is that
practitioners should select distinct sources that are expected to
have largely unique chemical features. More characterization of
non-target data sets and their structure is needed to
understand what makes a classification algorithm successful.
The chemicals in this analysis were restricted to non-polar

organics and ESI + ionization. Although this segment of the
chemical space generates rich data sets with thousands of
features,17,22,25 it is important to acknowledge that our
processing protocol biases our results. Chemical bias is
unavoidable, and although this is not inherently problematic,
researchers will have to be pragmatic in selecting the portions
of the chemical space that are best suited for a particular
question. As mentioned, non-polar compounds, such as
pharmaceuticals, may be retained in soils in overland flow or
in subsurface discharge;43,44 thus, including polar compounds
that are more mobile in the environment may be more
appropriate when tracking pollution sources in groundwater.
Conversely, when tracking changes in the pollution signatures
in sediments, non-polar features may be more appropriate.
It is unknown which portion of the chemical space is “best”

suited for forensic analysis. Including a broader portion of the
chemical space (e.g., using data from both ESI± modes) may
be advantageous for selecting the most diagnostic features;
however, increasing the chemical space may be met with
diminishing returns as large data sets contain redundant
information.45,46 Redundant features are potentially problem-
atic because each feature adds little novel information about
the source. Within our data set, we find evidence of
redundancy in the cluster analysis (y-axis, Figure 4). Chemical
features with increasingly similar peak intensity patterns have
smaller Bray Curtis distances and thus cluster together.
Without further investigation, we do not know yet why they
are similar, but we predict that chemical features with high
degrees of similarity also have similar fate and transport
characteristics. If all features have the same behavior in the
environment, the fingerprint could be lost as a result of a single
process (e.g., sorption), leading to false negatives during
environmental screening. Therefore, we argue that a robust
chemical fingerprint should consist of non-collinear features.
Information theory could be applied to select features with low

redundancy to maximize the information content contained
within a chemical fingerprint.47 Nevertheless, we recognize that
some chemical clustering is expected, given that features are
from the same source, and we also recognize that in some
situations, having diagnostic features with similar fate and
transport characteristics could be advantageous (e.g., non-
sorptive features that transport well on the subsurface).
Therefore, it is important to have a strong understanding of
both the needs of a diagnostic fingerprint and the limitations of
the chemical processing method used to develop the
fingerprint. Furthermore, work could be carried out to
determine which portions of the chemical space are most
useful for different applications.

■ CONCLUSIONS
Multivariate statistics and machine learning tool algorithms are
becoming increasingly popular for source tracking.17,25,26,48,49

Nevertheless, this workflow is unique because it is capable of
selecting a subset of features (<1%) that are most diagnostic of
a source. For manure and WWTP, the workflow could develop
a highly effective fingerprint with just ∼0.1% of the chemical
features. Kibbey et al.29 identified diagnostic subsets of PFAS
by testing all possible combinations of chemicals (n = 1023
combinations of 10 PFAS components); however, this is not
possible with non-target data sets with thousands of chemical
features. For example, with the 7771 non-target chemical
features that were considered in this study, our data set
contains 2.0 × 102339 possible feature combinations. Therefore,
rank-sorting features based on their coefficient weights is an
improvement over recent attempts to select diagnostic subsets
of features.
Although this workflow could be used to prioritize features

for structure elucidation, source apportionment, or source
tracking,17,18,25 which were part of our original motivation, we
argue that the value of this workflow goes beyond these
applications. Receiving bodies of water are “data loggers” that
collect chemical information from all corners of a watershed.
This information is recorded as tens of thousands of dissolved
organic molecules, which represent the sum of all processes
and activities occurring across a landscape. Therefore, it could
be possible to simultaneously quantify many processes
occurring within a watershed simply by screening a single
water sample for the diagnostic chemical signatures of each
process. Additionally, by quantifying transformations of
diagnostic fingerprints, it may be possible to develop a smart
tracer that could not only detect the presence of a pollution
source within a watershed but also its relative location
upstream from a sampling point. Finally, thousands of
processes occur within ecosystems, yet we surmise that most
cannot be quantified with off-the-shelf sensors. With this
workflow, scientists can begin to quantify these processes, and
we expect that the collective results of this workflow will
provide insights into the natural world that have hitherto been
unreachable.
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