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Supercompactness Can Be Equiconsistent with
Measurability

Nam Trang

Abstract The main result of this paper, built on work of [18] and [15], is the
proof that the theory “ADR +DC + there is an R-complete measure on Θ" is
equiconsistent with “ZF+DC+ADR + there is a supercompact measure on
℘ω1(℘(R)) + Θ is regular." The result and techniques presented here contribute
to the general program of descriptive inner model theory and in particular, to the
general study of compactness phenomena in the context of ZF+DC.

1 Introduction

Throughout the paper, unless stated otherwise, we assume ZF+DC. We begin with
the following definitions. In the following, a measure on some set Y is an ultrafilter
(maximal filter) on Y . If µ is a measure on Y , then for any set A ⊆ Y , we say A is
µ-measure one if A ∈ µ or equivalently µ(A) = 1.

Definition 1.1 (ZF+DC) Suppose X is an uncountable set and µ is a measure on
℘ω1(X) =de f {σ ⊆ X | σ is countable}. We say that

1. µ is fine if whenever x ∈ X , then the set Ax =de f {σ | x ∈ σ} ∈ µ.
2. µ is countably complete if whenever 〈An | n < ω〉 is a sequence of µ-

measure one sets then
⋂

n An ∈ µ .
3. µ is normal if whenever F : ℘ω1(X) →℘ω1(X) is such that the set
{σ | F(σ) ⊆ σ ∧ F(σ) 6= /0} ∈ µ then there is an x ∈ X such that the
set {σ | x ∈ F(σ)} ∈ µ .

If there is a nonprincipal measure µ on℘ω1(X) that satisfies (1)-(3), then we say that
ω1 is X-supercompact. If there is a nonprincipal measure µ on ℘ω1(X) that satisfies
(1) and (2) then we say ω1 is X-strongly compact.

This is a generalization of the notion of supercompactness in the ZFC context.
The definition of strong compactness is unchanged. In particular, in clause (3) of
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Definition 1.1, if we replace “F(σ) ⊆ σ” by “F(σ) ∈ σ", then we get the standard
definition of normality in the ZFC context. Without the full Axiom of Choice, we
seem to have to weaken the requirement on F . If X is a set of ordinals then the two
notions coincide. Definition 1.1 originates from [10]. The following is not hard to
prove (see [16]).

Lemma 1.2 (ZF + DC) Suppose µ is a fine measure on ℘ω1(X). The following are
equivalent.

1. µ is normal.
2. Suppose we have 〈Ax | x∈X∧Ax ∈ µ〉. Then4x∈X Ax =de f {σ | σ ∈

⋂
x∈σ Ax}∈ µ .

From now on, the phrase “µ is a supercompact measure on℘ω1(X)" always means
“µ is a nonprincipal, normal fine, countably complete measure on ℘ω1(X)". We
will also say “ω1 is X-supercompact" to mean “there is a supercompact measure on
℘ω1(X)". When µ is nonprincipal, countably complete, and fine (but not necessarily
normal), we say that µ is a strongly compact measure. We say that ω1 is supercom-
pact if ω1 is X-supercompact for all uncountable X and ω1 is strongly compact if ω1
is X-strongly compact for all uncountable X .

This paper explores aspects of compactness properties of ω1 under ZF+DC. In
particular, we focus on the consistency strength of the theories:

(P) ≡ “ZF + DC + ω1 is supercompact",
(Q) ≡ “ZF + DC + ADR+ω1 is supercompact"

and their variations. From here on, by ADR, we always mean AD+ +ADR. See
Section 2 for basic terminology and facts about AD+.

We note that “ZF+ω1 is supercompact" implies DC (cf. [4]). We choose to be
redundant here since we’ll be using DC in many arguments to come. Also, (Q) is
equivalent to “AD++ω1 is supercompact" by results in [18] and [20].

Woodin (unpublished) has shown that Con(P) and Con(Q) follows from Con(ZFC
+ there is a proper class of Woodin limits of Woodin cardinals). We conjecture that a
(close to optimal) lower-bound consistency strength for the theory (P) is that of (Q)
and is “ZFC + there is a Woodin limit of Woodin cardinals."

In the context of ZF+DC, the papers [15] and [17] study supercompact measures
on ℘ω1(R) and show that the following theories are equiconsistent:

1. ZFC + there are ω2 Woodin cardinals.
2. AD+ + there is a supercompact measure on ℘ω1(R).
3. ZF + DC + Θ > ω2 + there is a supercompact measure on ℘ω1(R).1

It is also well-known that the existence of a supercompact measure on ℘ω1(R) is
equiconsistent with that of a measurable cardinal (see [17]). Recall that the existence
of supercompact measures on ℘ω1(R) was first shown by Solovay [10] from ADR.
Consistency-wise, it is known that ADR is much stronger than (1) (and hence (2) and
(3)).

Surprisingly, [18] shows that having a supercompact measure on ℘ω1(℘(R)) is
much stronger consistency-wise as it implies that there are models of ADR +DC.
Solovay [10] shows that ADR+DC is strictly stronger than ADR consistency-wise.

Theorem 1.3 (Trang-Wilson) Assume ZF+DC. Suppose there is a supercompact
measure on ℘ω1(℘(R)). Then there is a transitive M containing R∪OR⊆M such
that M � ZF+DC+ADR.
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[18] also shows the conclusion of Theorem 1.3 is equiconsistent with “ZF+DC+ω1

is ℘(R)-strongly compact". The main conjecture regarding compactness properties
of ω1 under ZF+DC is.

Conjecture 1.4 The following theories are equiconsistent.
1. (P)
2. “ZF+DC+ω1 is strongly compact"

Conjecture 1.4’s analogue in the ZFC context is perhaps more well-known. How-
ever, the above results (e.g. Theorem 1.3) and recent progress in inner model theory
suggest that Conjecture 1.4 is more tractable.

Definition 1.5 (ZF+DC) Let Θ = sup({α | ∃π : R→ α ∧π is onto}) and µ be a
measure on Θ. We say that µ is uniform if sets of the form (α,Θ), [α,Θ) are in µ

for all α < Θ. We say that µ is R-complete if µ is uniform, and whenever we have
〈Ax | x ∈ R∧Ax ∈ µ〉 then

⋂
x∈R Ax 6= /0.

Let
• (T1) ≡ “ZF + DC + there is a supercompact measure on ℘ω1(℘(R)) + Θ is

regular."
• (T2) ≡ “ ZF + DC + ADR + there is a nonprincipal R-complete measure on

Θ".
• (T3) ≡ “ZF+DC+ADR + there is a supercompact measure on ℘ω1(℘(R))

+ Θ is regular."
We will also say “Θ is measurable" in place of “there is a nonprincipal R-complete

measure on Θ." The main theorem of this paper is the following.

Theorem 1.6 Con(T2)⇔ Con(T3).

The proof that (T2) implies (T3) (and hence (T1)) is given in [16] (note that by a
standard argument, Θ is measurable implies Θ is regular).2 By [16], we know that
(T2) implies the existence of a supercompact measure on ℘ω1(℘(R)), but we do not
know the exact consistency strength of this theory. In this paper, we focus on the
proof of Con(T3) implies Con(T2).

Recent developments in the core model induction techniques suggest that the use
of AD+ in the proof of Theorem 1.6 can be omitted. We conjecture the following.

Conjecture 1.7 Con(T1)⇔Con(T2)(⇔Con(T3)). Furthermore, Con(P) implies
Con(T3).

The outline of the paper is as follows. In Section 2, we summarize some basic
facts about descriptive set theory and the theory of AD+ that we use in this paper.
Section 3 introduces the notion of hod mice that we will construct in this paper.
Section 4 discusses a variation of the Vopenka algebra that is useful in constructing
models of determinacy from hod mice (see Theorem 4.1). Section 5 gives the con-
struction of a proper hod pair, which in turn will generate a model of “ADR+Θ is
measurable" and hence completes the proof of Theorem 1.6.

2 Basic Facts about AD+

We start with the definition of Woodin’s theory of AD+. In this paper, we identify R
with ωω . Recall Θ is the sup of ordinals α such that there is a surjection π : R→ α .
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Under AC, Θ is just the successor cardinal of the continuum. In the context of AD,
Θ is shown to be the supremum of w(A) for A ⊆ R.3 The definition of Θ relativizes
to any determined pointclass4 (with sufficient closure properties). For a pointclass
Γ, we denote Θ for the sup of α such that there is a surjection from R onto α coded
by a set of reals in Γ.

Recall that ADX is determinacy for games in which player I and II take turns to
play elements of X for ω many rounds. If X = ω , then ADX = AD.

Definition 2.1 AD+ is the theory ZF+AD+DCR and
1. for every set of reals A, there are a set of ordinals S and a formula ϕ such that

x ∈ A⇔ L[S,x] � ϕ[S,x]. (S,ϕ) is called an ∞-Borel code for A;
2. for every λ < Θ, for every continuous π : λ ω → ωω , for every A⊆R, the set

π−1[A] is determined.

AD+ is equivalent to “AD + the set of Suslin cardinals is closed". Another, perhaps
more useful, characterization of AD+ is “AD+Σ1 statements reflect into the Suslin
co-Suslin sets” (see [14] for the precise statement). Recall, our convention is ADR is
the principle AD++ADR.

Let A ⊆ R, we let θA be the supremum of all α such that there is an OD(A)
surjection from R onto α . If Γ is a determined (boldface) pointclass, and A ∈ Γ, we
write Γ � A for the set of B ∈ Γ which is Wadge reducible to A. If α < Θ, we write
Γ � α for the set of A∈ Γ with Wadge rank strictly less than α . Occasionally, we will
write Γ for a ω-parameterized (lightface) pointclass and write Γ˜ for its corresponding
boldface pointclass. We write ∆˜Ω˜ for the ambiguous part of the boldface pointclass
Ω˜ , that is ∆˜Ω˜ is the collection of A such that both A and R\A are in Ω˜ .

Definition 2.2 (AD+) The Solovay sequence is the sequence 〈θα | α ≤Ω〉 where
1. θ0 is the supremum of ordinals β such that there is an OD surjection from R

onto β ;
2. θΩ = Θ;
3. if α > 0 is limit, then θα = sup{θβ | β < α};
4. if α = β +1 and θβ < Θ (i.e. β < Ω), fixing a set A⊆ R of Wadge rank θβ ,

θα is the sup of ordinals γ such that there is an OD(A) surjection from R onto
γ , i.e. θα = θA.

Note that the definition of θα for α = β + 1 in Definition 2.2 does not depend
on the choice of A. The Solovay sequence is a club set in Θ. Roughly speaking
the longer the Solovay sequence is, the stronger the associated AD+-theory is. For
instance the theory ADR+DC is strictly stronger than ADR since by [10], DC implies
cof(Θ)> ω while the minimal model of ADR satisfies Θ = θω (ADR implies that the
Solovay sequence has limit length). ADR+Θ is regular is stronger still as it implies
the existence of many models of ADR+DC.

Definition 2.3 “ADR+Θ is measurable" is the theory “ADR+ there is a nonprin-
cipal R-complete measure on Θ".

It’s easy to see that “ADR+Θ is measurable" implies “ADR+Θ is regular"; in
fact, there are unboundedly many θα < Θ such that L(℘(R) � θα ,R) � “ADR+Θ is
regular".

We end this section with a theorem of Woodin, which produces models with
Woodin cardinals in AD+.
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Theorem 2.4 (Woodin, see [6]) Assume AD+. Let 〈θα | α ≤ Ω〉 be the Solovay
sequence. Suppose α = 0 or α = β +1 for some β < Ω. Then HOD � θα is Woodin.

3 A Brief Introduction to Hod Mice

In this paper, a hod premouse P is one defined as in [7] and [9]. The reader is
advised to consult [7] for basic results and notations concerning hod premice and
hod mice at the level of “ADR +Θ is regular" and [9] for hod mice beyond this.5

Let us mention some basic first-order properties of a hod premouse P . There are an
ordinal λP and sequences 〈(P(α),ΣP

α ) | α < λP〉 and 〈δP
α | α ≤ λP〉 such that

1. 〈δP
α | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal

then P � δP
α is Woodin;

2. P(0) = Lpω(P|δ0)
P ; for α < λP , P(α + 1) = (LpΣP

α
ω (P|δα))

P ; for

limit α ≤ λP , P(α) = (Lp
⊕β<α ΣP

β

ω (P|δα))
P ;

3. P � ΣP
α is a (ω,o(P),o(P))6-strategy for P(α) with hull condensation;

4. if α < β < λP then ΣP
β

extends ΣP
α .

We will write δP for δP
λP and ΣP =⊕

β<λP ΣP
β

. Note that P(0) is a pure extender
model. Suppose P and Q are two hod premice. Then P Ehod Q if there is α ≤ λQ

such that P = Q(α). We say then that P is a hod initial segment of Q. (P,Σ) is
a hod pair if P is a hod premouse and Σ is a strategy for P (acting on countable
stacks of countable normal trees) such that ΣP ⊆ Σ and this fact is preserved under
Σ-iterations. Typically, we will construct hod pairs (P,Σ) such that Σ has hull con-
densation, branch condensation, and is Γ-fullness preserving for some pointclass Γ.
As a matter of notation, if (P,Σ) is a hod pair and Q�hod P , then ΣQ is Σ restricted
to stacks on Q. Also, note that when Q = P(α), then ΣQ = ΣP(α) is an extension
of the internal strategy ΣP

α .
Suppose (Q,Σ) is a hod pair such that Σ has hull condensation. P is a (Q,Σ)-

hod premouse if there are ordinal λP and sequences 〈(P(α),ΣP
α ) | α < λP〉 and

〈δP
α | α ≤ λP〉 such that

1. 〈δP
α | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal

then P � δP
α is Woodin;

2. P(0) = LpΣ
ω(P|δ0)

P (so P(0) is a Σ-premouse built over Q); for α < λP ,

P(α+1)= (LpΣ⊕ΣP
α

ω (P|δα))
P ; for limit α ≤ λP , P(α)= (Lp

Σ⊕β<α ΣP
β

ω (P|δα))
P ;

3. P � Σ∩P is a (ω,o(P),o(P))strategy for Q with hull condensation;
4. P � ΣP

α is a (ω,o(P),o(P))strategy for P(α) with hull condensation;
5. if α < β < λP then ΣP

β
extends ΣP

α .

Inside P , the strategies ΣP
α act on stacks above Q and every ΣP

α iterate is a Σ-
premouse. Again, we write δP for δP

λP and ΣP =⊕
β<λP ΣP

β
. (P,Λ) is a (Q,Σ)-

hod pair if P is a (Q,Σ)-hod premouse and Λ is a strategy for P such that ΣP ⊆ Λ

and this fact is preserved under Λ-iterations. The reader should consult [7] for the
definition of B(Q,Σ), and I(Q,Σ). Roughly speaking, B(Q,Σ) is the collection of
all hod pairs which are strict hod initial segments of a Σ-iterate of Q and I(Q,Σ) is
the collection of all Σ-iterates of Σ. In the case λQ is limit, Γ(Q,Σ) is the collection
of A⊆ R such that A is Wadge reducible to some Ψ for which there is some R such
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that (R,Ψ) ∈ B(Q,Σ). See [7] for the definition of Γ(Q,Σ) in the case λQ is a
successor ordinal.

[7] constructs under AD+ and the hypothesis that there are no models of “ADR+Θ

is regular" hod pairs that are fullness preserving, positional, commuting, and have
branch condensation.7 Such hod pairs are particularly important for our computation
as they are points in the direct limit system giving rise to HOD of AD+ models. For
hod pairs (MΣ,Σ), if Σ is a strategy with branch condensation and ~T is a stack on
MΣ with last model N (we will denote this model N T ), ΣN , ~T is independent

of ~T (this property is called positionality). Therefore, later on we will omit the
subscript ~T from ΣN , ~T whenever Σ is a strategy with branch condensation and MΣ

is a hod mouse. We also let α( ~T ) denote the supremum of the generators used in
~T .

Suppose AD+ holds. We fix a simple coding of Hω1 by elements of R. For an
(ω1,ω1) iteration strategy Λ, we let Code(Λ) be the set of reals coding Λ via the
specified coding.8 Suppose (P,Σ) is a hod pair such that Σ has branch condensation
and is Γ-fullness preserving for some pointclass Γ and suppose Code(Σ) is Suslin
co-Suslin, then [7, Corollary 2.44] shows that Σ is positional and commuting. We
can then compute the direct limit M∞(P,Σ) of all Σ-iterates of P .

In practice (in determinacy models where the HOD analysis can be carried out
or in core model induction contexts) we construct hod pairs (P,Σ) such that Σ has
branch condensation and is Γ-fullness preserving for some pointclass Γ (if Γ =℘(R)
then we simply say “fullness preserving"). In core model induction applications, we
construct hod pairs (P,Σ) such that every (R,Λ) ∈ B(P,Σ) belongs to an AD+-
model. We then can show (using our hypothesis) that the hod pair (P,Σ) we con-
struct belongs to an AD+-model.

In this paper, P is a hod premouse if

(i) either P is a hod premouse below “ADR + Θ is measurable", that is, no
hod initial segment Q of P satisfies “δQ is a measurable limit of Woodin
cardinals" (P is called improper in this case),

(ii) or P = (P−,E) where P− is improper hod premouse (or anomalous hod
premouse, cf. [7, Section 3.4]), P � “δP is regular" and E codes (as an
amenable predicate) a normal measure over P with critical point δP (P is
called proper in this case).

Suppose P is a proper hod premouse and suppose Σ is some iteration strategy of
P . Suppose ~T is a stack according to Σ. It’s easy to see that ~T can be decomposed
into a sequence of stacks (Tα ,Nα : α < γ) for some γ , where

1. N0 = P = (N −
0 ,E0), Nα+1 is the last model of Tα , and for limit α , Nα is

the direct limit (under the iteration maps) of the Nβ ’s for β < α;
2. for α < γ − 1 successor, say Nα = (N −

α ,Eα). Then Tα+1 is either a stack
below δNα (if Tα = 〈N −

α−1,Eα−1〉) or else Tα+1 = 〈N −
α ,Eα〉.

3. for α = 0 or limit, Tα is either a stack on Nα below Nα or else Tα = 〈N −
α ,Eα〉;

Such a sequence is called the normal form of ~T . Informally, a stack in normal form
on P consists of stacks below δP and its images and trees of the form 〈F〉 where
F is the predicate coding the normal measure over R with critical point δR . For
instance, if T0 = 〈E0〉, then N1 = Ult(P,E0). In constructing a strategy Σ for P ,
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we need to construct strategies for the “new Woodin cardinals" of N1 (i.e. those
Woodin cardinals between δP and πE0(δ

P)), cf. the proof of Lemma 5.16.

4 A Vopenka Forcing

In this section, we prove a theorem concerning a variation of the Vopenka algebra.
This theorem will play an important role in the next section. Suppose Γ is such that
L(Γ,R) � AD+ + ADR and Γ =℘(R)∩ L(Γ,R). Let H be HODL(Γ,R). Woodin
has shown that H = L[A] for some A ⊆ Θ (see [19]). We write Θ for ΘL(Γ,R). The
following theorem comes from many conversations between H.W. Woodin and the
author and is due to Woodin. We include a proof here for the reader’s convenience.
A similar, but less general theorem and its proof can be found in [1]. We note that the
version in [1] is enough for our applications in this paper. The more general version
as stated in Theorem 4.1 will have applications elsewhere.

Theorem 4.1 Suppose L(Γ,R) � AD+ +ADR and H = HODL(Γ,R). Let H +

be a ZFC model such that A ∈H + and V H
Θ

= V H +

Θ
, where A ⊆ Θ is such that

H = L[A]. There is a forcing P ∈H and a h ⊆ P generic over H + such that in
H +[h]:

℘(R)∩H +(Γ) =℘(R)∩H (Γ) = Γ.9

In particular, H +(Γ) � ADR.

Remark 4.2 H +(Γ) can be realized as a certain kind of symmetric model in
H +[h]; a similar remark applied to H (Γ). The symmetricity is with respect to a
certain class of order-preserving maps from P to P specified in Lemma 4.3.

Proof First, we define a forcing Q ∈ L(Γ,R). Let Z =℘Θ(Θ)L(Γ,R), where ℘Θ(Θ)
is the collection of bounded subsets of Θ. A condition q ∈Q if q : nq→ Z for some
nq < ω . The ordering ≤Q is as follows:

q≤Q r⇔ nr ≤ nq∧∀i < nr q(i) = r(i).

So Q is simply the Levy collapse forcing Col(ω,Z). Now we define

P∗ = {A | ∃n < ω A⊆ Zn∧A ∈ ODL(Γ,R)∧ there is a surjection π : R→ A}.

For A ∈ P∗, we let nA be the unique n < ω such that A ⊆ Zn. The ordering ≤P∗ is
defined as follows:

A≤P∗ B⇔ nB ≤ nA∧∀ t ∈ A t � nB ∈ B.

It’s easy to see that there is a partial order (P,≤P) ∈H isomorphic to (P∗,≤P∗)
and in H , (P,≤P) has size Θ. Let π : (P,≤P)→ (P∗,≤P∗) be the isomorphism and
π is ODL(Γ,R). We will write p∗ for π(p), where p ∈ P. (P,≤P) is the direct limit
of the directed system of complete boolean algebras Pn in H , where P∗n is the “n-
dimensional" Vopenka algebra on Zn and for n ≤ m, the natural maps τn,m from Pn
into Pm defined as: τn,m(p) = {t ∈ Zm : t � n ∈ p} are complete embeddings.

Q is weakly homogeneous in the sense that for any p,q ∈Q, there is an automor-
phism π : Q→ Q such that π(p) is compatible with q. In the following, we show
that P∗ (and hence P) is fairly closed to being weakly homogeneous.
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Lemma 4.3 Let p,q ∈ P∗. Let P∗np,nq = {r ∈ P∗ | nr ≥ np + nq}. Then there is a
map π : P∗→ P∗ such that rng(π) is dense in P∗, π � P∗np,nq is an automorphism of
P∗np,nq , and π(p) is compatible with q.

Proof First, we define a “finite permutation" σ : ω → ω as follows.

σ(n) =


n+nq if n = 0,1, . . . ,np−1
n−np if n = np,np +1, . . . ,np +nq−1
n otherwise

(1)

Now we proceed to define π . For any t ∈ Z<ω , for any n < m < nr, by t � [n,m],
we mean 〈t(n), . . . , t(m)〉; we can define t � [n,m) etc. For any r ∈ P such that
nr < np + nq, let r∗ = {t ∈ Znp+nq : t � nr ∈ r}; for r ∈ P such that nr ≥ np + nq,
let r∗ = r. Now let

π(r) = {t ◦σ : t ∈ r∗},

where

t ◦σ � [0,np +nq) = 〈t(σ(0)), t(σ(1)), . . . , t(σ(np +nq−1))〉
= 〈t(nq), t(nq +1), . . . , t(nq +np−1), t(0), . . . , t(np−1)〉,

and if nt > np +nq, then t ◦σ � [np +nq,nt) = t � [np +nq,nt).
So π permutes the first np+nq coordinates of every t ∈ r∗ for any r ∈ P according

to σ and does not change coordinates > np+nq (this corresponds to σ being identity
above np +nq). It is easy to see that π is ≤P∗ order-preserving, is an automorphism
of P∗np,nq , and rng(π) is dense in P∗.

Now

π(p) = {t ∈ Znp+nq : t � [nq,np +nq) ∈ p}

is compatible with q because r ≤ π(p) and r ≤ q, where

r = {t ∈ Znp+nq : t � [0,nq−1] ∈ q∧ t � [nq,nq +np) ∈ p}.

This completes the proof of the lemma.

Now let g∗ ⊆Q be L(Γ,R)-generic and g =
⋃

g∗. By density, g : ω→ Z is onto. Let
h⊆ P be defined as follows:

p ∈ h⇔ (g � np∗) ∈ p∗. (2)

Also, if p ∈ P, by np, we mean np∗ . The term “symmetric" will be spelled out in
during the course of the proof of Lemma 4.4.

Lemma 4.4 Write hg for the filter h above. Then the following hold.
(a) hg is P-generic over H . In fact, for any condition p ∈ P, there is a P-generic

filter h over H such that p ∈ h and Γ ∈H [h]. Furthermore, H (Γ) is the
symmetric extension of H in H [h].

(b) Suppose g∗ is L(H +,Z)-generic, then for any p ∈ P, there is a P-generic
h over H + such that p ∈ h and Γ ∈H +[h]. Furthermore, H +(Γ) is the
symmetric extension of H + in H +[h].

Proof For part (a), to see hg is generic for P over H , consider a dense set D⊆ P∗
which is OD. Let D′ =

⋃
D. Then D′ is dense in Q. Otherwise there would exist a

condition q ∈Q which does not extend to a condition in D′. Let
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p = {q′ ∈Q : nq′ = nq and q′ does not extend to a condition in D′}

then p ∈ P∗; here p is nonempty as q ∈ p. By density of D we can find some p′ ∈ D
extending p. Then any condition q′′ ∈ p′ is an extension of a condition in p (namely
of q′′ � nq) to a condition in D′, a contradiction. This proves density of D′ in Q. It
is now easy to see that if q∗ ∈ g∩D′ then q∗ ∈ p′ for some p′ ∈ D, witnessing that
p′ ∈ D∩h.10

In fact, we just proved that given an open dense set D⊆ P in H , for any condition
p ∈Q, there is a q≤Q p such that q 
Q ḣ∩ Ď 6= /0.

Given g and hg as above, we also can define g from hg in a simple way. Let b ∈Θ

and n < ω . Let Ab,n ∈ P be such that A∗b,n = {s ∈ Zn+1 : b ∈ s(n)}; it is clear that
A∗b,n ∈ OD. We take the map (b,n) 7→ Ab,n to be in H . Clearly,

b ∈ g(n)⇔ Ab,n ∈ hg. (3)

We then can define P-terms for g(n) and ran(g) by

σn = {〈p, b̌〉 | b < Θ∧ p≤P Ab,n},

and

Ṙ = {〈p,σn〉 | p ∈ P∧n < ω}.

Note that σn ∈H for all n and Ṙ ∈H . The following properties are easy to verify.

Lemma 4.5 1. For any g∗ ⊆ Q generic over L(Γ,R), let g =
⋃

g∗ and hg be
defined as in 2, then σ

hg
n = g(n) for all n and Ṙhg = ran(g) = Z.

2. For any condition p∈ P, there is an H -generic h such that p∈ h and Ṙh = Z.
3. For any finite permutation σ of ω , let π be defined as in Lemma 4.3 from σ .

Then gπ =de f π[g],hπ =de f π[h] are Q-generic and P-generic respectively
and H [h] = H [hπ ] and H [g] = H [gπ ]. Furthermore, letting π∗ be the
canonical extension of π to P-terms Ṙh = π∗(Ṙ)h.11

Remark 4.6 Ṙ is “symmetric" with respect to the maps π as in clause 3 of the
lemma. We call the models H (Γ),H +(Γ) symmetric models because they will be
shown to be H (Ṙh),H +(Ṙh) respectively for appropriate generics h. It is not true
in general that π∗(σn) = σn, but nevertheless, {π∗(σn)

h : n < ω} ⊇ {σh
n : n < ω};

one can see from this that π∗(Ṙ)h = Ṙh.

We can now show that L(Γ,R) can be recovered over H from Z (via the standard
Vopenka forcing). This is because for any A ∈ Γ:

(i) A has an ∞-Borel code S ∈ Z, and
(ii) S is generic over H via a forcing of size < Θ.

Both (i) and (ii) follow from AD++ADR in L(Γ,R). For (ii), the forcing is just the
standard Vopenka forcing. Suppose S⊆ κ for some κ < θα , where θα <Θ is a mem-
ber of the Solovay sequence of L(Γ,R), then by ADR, the standard Vopenka forcing
P0 adding a subset of κ has size at most θα in H . Furthermore, P0 completely
embeds into P and there is P1 such that P= P0 ?P1. 12

So there is a formula ϕ such that given any real x, H [S][x] � ϕ[S,x] if and only
if x ∈ A. 13 This equivalence can be computed in H [h] from H and Ṙh for any
H -generic h such that Ṙh = Z. This shows that Γ ∈H [h] for any h satisfying (2) of
Lemma 4.5. For any such h, we define the symmetric model SH ,h as
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SH ,h = HOD{H [h],H }
{g�n:n<ω} .

Note that g � n is the sequence of 〈σh
0 , . . . ,σ

h
n−1〉 in H [h]. We also define

h � n = {p ∈ h : np ≤ n}.

In the following, by HODx, we mean HODL(Γ,R)
x . Let G(g � n) ⊆ P(g � n) be

the generic for the Vopenka algebra adding g � n over H . Note that H [h � n] and
H [G(g � n)] may differ from H [g � n]14 but we do have

Lemma 4.7 H [h � n] = H [G(g � n)] = HOD{g�n}.

Proof Using the equivalence

p ∈ h � n⇔ g � n ∈ p∗,

we get that h � n is OD{g�n}. Hence H [h � n]⊆HOD{g�n}. A similar argument gives
H [G(g � n)]⊆ HOD{g�n}

Conversely, g � n ∈ HOD[h � n] follows from 3, noting that we just need h � n in
that equivalence to compute g � n. Similarly, g � n ∈ HOD[G(g � n)]. Let X be a set
of ordinals in HOD{g�n}. Say X ⊆ γ . Let T ∈ OD be such that for any β < γ ,

β ∈ X ⇔ T (β ,g � n) holds in L(Γ,R).

Let κ = maxi<nsup[g(i)]. Let τ : OD∩℘([℘(κ)]n)→H be the (OD) natural map.
Let T ∗

β
= {a⊆ κn : T (β ,a)}. Then Y = {(β ,τ(T ∗

β
)) : β < γ} ∈H and it’s easily

checked that

β ∈ X ⇔ g � n ∈ T ∗
β
⇔ (β ,τ(T ∗

β
)) ∈ Y ∧ τ(T ∗

β
) ∈ h � n.

So X ∈H [h � n]. Similarly, X ∈H [G(g � n)]. This completes the proof of Lemma
4.7.

The above calculations show that Γ ∈H (Z) and in fact

SH ,h = H (Z) = H (Γ) = L(Γ,R). (4)

We first verify SH ,h = H (Z). First note that Z = Ṙh ∈SH ,h and H is an inner
model of SH ,h, so the ⊇-direction holds. For the converse, let X ∈SH ,h be a set
of ordinals.

Claim 4.8 X ∈H [h � k] for some k.

Proof Suppose X is defined in H [h] from g � n for some n by a formula ϕ . We
omit the ordinal parameters for brevity. So for any ordinal α ,

α ∈ X ⇔H [h] � ϕ[α,g � n].

By Lemma 4.7, g � n ∈H [h � n].
By the discussion above, the canonical Vopenka algebra for g � n, P(g � n) com-

pletely embeds into P. Let G(g � n)⊂ P(g � n) be the generic that adds g � n and let
P/G(g � n) be the factor forcing induced by G(g � n), then by Lemma 4.7, we have
G(g � n) ∈H [h � n] = HOD{g�n} = H [G(g � n)]. Then

α ∈ X ⇔H [G(g � n)] = H [h � n] � /0 
P/G(g�n) ϕ[α̌,g � n].15
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This gives X ∈H [h � n] as desired.

Since for each n, g � n∈H (Z) and G(g � n)∈H (Z), and H [G(g � n)] =H [h � n],
we get h � n ∈H (Z); therefore, X ∈H (Z). This gives SH ,h ⊆H (Z).

L(Γ,R) ⊆H (Z) follows from the fact that R ⊂ Z and Z contains all ∞-Borel
codes for sets of reals. To see H (Z)⊆ L(Γ,R), let X be a set of ordinals in H (Z).
By Claim 4.8, X ∈ H [h � n] = H [G(g � n)] for some n. Since H ⊆ L(Γ,R),
g � n,G(g � n) are in L(Γ,R), so is X . It’s also easy to see that H (Γ) = L(Γ,R).
This gives 4 and completes the proof of Lemma 4.4 (a).

For part (b) of Lemma 4.4, let g∗ ⊆ Q be generic over L(H +,Z). Let g,h be
defined from g∗ as before.

Lemma 4.9 (i) h is a P-generic over H +.
(ii) Ṙh = Z and H +(Z) = SH +,h.

(iii) H +(Z)∩℘Θ(Θ) = Z and H +(Z)∩℘(R) = Γ.

Proof For part (i), suppose not. Then there is a finite sequence s ∈ Z<ω , s ∈ g∗

and a dense set D in P such that D ∈H + and such that s
 ḣ∩D = /0. As before (cf.
Lemma 4.7), s ∈H +[G(s)], where G(s) is H +-generic for the standard Vopenka
algebra P(s). So D must define a dense set D′ in the factor forcing P/G(s). Choose a
condition q ∈ D′. q must exist. Now q corresponds to q∗, a nonempty ODs subset of
Z<ω of finite sequences which extend s; by Lemma 4.7, q ∈H +[G(s)]. Let t ∈ q∗.
Then t forces that ḣ∩D is not empty. This is a contradiction.

Clause (ii) follows from the proof that SH ,h =H (Z), noting that H +[G(g � n)]=H +[h � n]
for all n. Now we want to verify clause (iii) of the lemma. For the first equality,
it’s clear that the ⊇-direction holds. For the converse, suppose A is a bounded
subset of Θ in H +(Z). By the proof of Claim 4.8, X ∈H +[h � k] for some k.
But H +[h � k] = H +[G(g � k)]. Since X is a bounded subset of Θ and the forc-
ing P(g � k) is Θ-c.c. (since g � k is a finite sequence of elements of Z, by ADR,
P(g � k), the standard Vopenka algebra adding g � k, in fact, has size < Θ), so indeed
X ∈H [G(g � k)] as V H

Θ
=V H +

Θ
.

Now we’re onto the second equality of (iii). The ⊇-direction holds since
H (Z) = L(Γ,R) ⊆ H +(Z). Let A ⊆ RV be in H +(Z). First we assume A is
definable in H +(Z) from an element a ∈H +, via a formula ψ . Let ẋ be a P � ω-
name for a real in H +(Z) (here P∗ � ω is the forcing Vopω defined in [12, Section
3]; P∗ � ω consists of nonempty OD subsets of Rn for some n.). The statement
ψ(ẋ, ǎ) is decided by P � ω by homogeneity of P � ω,P in the sense of Lemma 4.3
(i.e. H + � “ /0 
P�ω /0 
P/P�ω ψ[ẋ, ǎ]∨ /0 
P�ω /0 
P/P�ω ¬ψ[ẋ, ǎ]”). Again, by the
fact that P � ω is Θ-c.c. (in fact R � ω has size < Θ in H by ADR), we get that
A ∈H (Z), and hence A ∈ Γ. 16

Now suppose A is definable in H +(Z) from an a ∈H + and a b ∈ Z. Using the
standard Vopenka algebra and ADR, we can get a < Θ-generic G(b) over H and
H + such that HODb = H [G(b)]⊆H +[G(b)]. Let us use Hb to denote H [G(b)]
and H +

b to denote H +[G(b)]. Now in Hb, we can define the poset Pb the same
way that P defined but we replace OD by OD(b) in L(Γ,R). Now we get a generic
hb over H +

b for Pb as before. A is then definable over H +
b (Z) from parameters in

H +
b . Now, we just have to repeat the argument above. This completes the proof of

Lemma 4.9.
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Lemma 4.9 completes the proof of Lemma 4.4.

Lemmata 4.4, 4.5, and 4.9 together prove Theorem 4.1.

Remark 4.10 If additionally, H + � “Θ is regular", then H +(Z) � “Θ is regular."
See [13, Lemma 1].

5 A Proof of Theorem 1.6

In this section, we assume the hypothesis of Theorem 1.6. We start with some setup
and notations. As in [18], we assume V = L(℘(R),µ), where “ADR + DC + Θ
is regular" holds and µ is a supercompact measure on ℘ω1(℘(R)). Suppose N is
such that there is a surjection π∗ from ℘(R) onto N. Then π∗ induced a surjection
π : ℘ω1(℘(R)) →℘ω1(N), namely π(σ) = π∗[σ ]. Let µπ

N be the supercompact
measure on ℘ω1(N) induced by µ , i.e.

A ∈ µπ
N ⇔ π−1[A] ∈ µ .

µπ
N does not depend on the choice of π . To see this, suppose π1,π2 : ℘(R)→ N are

surjections. Then the set A = {σ : ∃τ ∈℘ω1(℘(R)) σ = π1[τ] = π2[τ]} is a strong
club subset of ℘ω1(N) in the sense of [2, Definition 2.1] and hence by [2, Theorem
2.3], A ∈ µ

π1
N ∩µ

π2
N .17 Futhermore, π

−1
1 [A] = π

−1
2 [A] ∈ µ . From this, it follows that

µ
π1
N = µ

π2
N . We will then denote this measure µN and sometimes suppress mentioning

the surjection π . We write ∀∗µN
σ for “for µN-a.e. σ".

We assume, for contradiction that
(†) : there is no model M containing all reals and
ordinals such that M � “ADR+Θ is measurable".

Under this smallness assumption, the HOD analysis in V can be carried out as in
[7] and [9] to conclude that HOD|Θ is a union of hod premice and in fact is a direct
limit of the directed system F of hod pairs (P,Σ) such that Σ is fullness preserving
and has branch condensation. We then construct a hod premouse H + extending
HOD|Θ and a normal measure ν on Θ over H + and amenable to H +. So we have
a proper hod premouse (H +,ν). Using the Vopenka forcing in the previous section,
we then show that V = L[H +][ν ](℘(R)) � ADR+Θ is measurable. This contra-
dicts (†). So (†) must be false; equivalently, there must be models of “ADR+Θ is
measurable" after all.

We define a model H + extending H =def HOD|Θ as follows: H + is the union
of sound, countably iterable hod premice M such that H �M , ρω(M )≤Θ. Here,
M is said to be countably iterable if whenever M ∗ is countable, transitive, em-
beddable into M via map π , letting H ∗ = π−1(H ), then M ∗�LpΛ(H ∗), where
Λ =⊕

α<λH ∗ΣH ∗(α).
Let N be a transitive structure of a large fragment of ZF+DC such that

℘(R)∪H ⊂ N and such that there is a surjection π : ℘(R)→ N. We call such an
N suitable. We have that ∀∗µN

σ σ ≺ N. For each such σ , let Nσ be the transitive col-
lapse of σ and πσ be the uncollapse map. Let (Γσ ,Hσ ,Θσ ) = π−1

σ (℘(R),H ,Θ).
We let Γ = ℘(R) and (θ σ

α : α < Θσ ) be the Solovay sequence defined in Γσ .
Generally, if x ∈ σ , then let xσ = π−1

σ (x). We also let

H +
σ = LpΣ

−
σ (Hσ ).18

The following gives an alternative characterization of H +.

Lemma 5.1 H += [σ 7→H +
σ ]µΩ

where Ω is the transitive closure of℘(R)∩H .19
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Proof First, let M �H +. Since M is sound and ρω(M )≤Θ, there is an A⊂Θ

coding M . Then
A = [σ 7→ π

−1
σ [A]]µΩ

, (5)

and
∀∗µΩ

σ ,π−1
σ [A] ∈H +

σ . (6)

To see this, let Ω ⊂ N and N is suitable such that A ∈ N. Note any such suitable
N,M, µN∩Ω = µM∩Ω. The main point is for any suitable N: ∀∗µN

σ H +
σ only depends

on σ ∩Ω; in fact, H +
σ = H +

σ∩Ω
∈ HOD{σ∩Ω}. Now

∀∗µN
σ Aσ = π

−1
σ∩Ω

[A]∧Aσ ∈H +
σ∩Ω

.

This follows from the definition of H + and the fact that ∀∗µN
σ σ ∩M ≺M . Finally,

A is represented in the µN-ultrapower by the collection of “Ω-invariant" functions,
i.e.

A∼= { f :℘ω1(N)→∏
σ

Aσ/µN : ∀σ1,σ2(σ1∩Ω = σ2∩Ω⇒ f (σ1) = f (σ2)}.. (7)

The above discussions give us 5 and 6. So M � [σ 7→Hσ ]µΩ
.

Let M � [σ 7→H +
σ ]µΩ

. Let N be suitable such that M ∈ N. Note that by 7,
the function σ 7→Mσ is Ω-invariant and represents M in the µN-ultrapower using
only Ω-invariant functions. For any countable transitive M ∗ embeddable into M
via τ , there is σ ∈℘ω1(N) and an embedding τσ : M ∗→Mσ such that Mσ �H +

σ .
Therefore, M ∗ is iterable. This shows M �H +.

Lemma 5.2 No level M of H + is such that ρω(M )< Θ.

Proof Suppose M �H + is the least such that ρω(M ) < Ω. Let N be suitable
such that M ∈ N. We start with the following.

Claim 5.3 For µN-a.e. σ , for any β < λσ =def λHσ , ΣHσ (β ) is fullness preserving
and has branch condensation.

Proof Fix a σ and a β < λσ . By the HOD analysis in Γσ (which uses (†)), there
is a hod pair (P,Σ) such that

• Σ is Γσ -fullness preserving and has branch condensation;
• Hσ (β ) is an iterate of Σ.

Using πσ , we get that πσ (Σ) is an (ω1,ω1) strategy for P that is fullness preserving
and has branch condensation. Since Σ = πσ (Σ) � Γσ , ΣHσ (β ) is the tail of πσ (Σ) and
hence satisfies the conclusion of the claim.20

Fix a σ as in the claim and recall Mσ = π−1
σ (M ). Let Σσ be the natural strategy of

Mσ defined from πσ (see [8, Section 11]). The important properties of Σσ are:
1. Σσ extends Σ−σ =de f ⊕α<λHσ ΣHσ (α);
2. whenever (~T ,Q) ∈ I(Mσ ,Σσ ), for all α < λQ, ΣT ,Q(α) is the pullback

of a hod pair (R,Λ) such that Λ has branch condensation and is fullness
preserving and hence by [7, Lemma 3.29], ΣT ,Q(α) has branch condensation;

3. Σσ agrees with Σ−σ on stacks below Θσ and for each α < λσ , the direct limit

map π
Σσ

Mσ ,∞
� θ σ

α is the direct limit map π
Σ
−
σ

Hσ (α),∞
� θ σ

α ;
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4. suppose (~T ,Q) ∈ I(Mσ ,Σσ ) and let i = π
~T be the corresponding iteration

map, then there is a map k : Q→M such that k ◦ i = πσ �Mσ . k is defined
as: k(i( f )(a)) = πσ ( f )(πΛ

Q,∞(a)) for f ∈Mσ and a ∈ (δQ)<ω , where Λ is

the ~T -tail of Σ−σ . So Σσ is OD{πσ �Mσ }.

(3) above uses the fact that Θ is regular.
Let δ = δ

Mσ
α < Θσ be a Woodin cardinal of Mσ such that ρω(Mσ ) ≤ δ . Let

A ⊆ δ witness this. So A is a bounded subset of Θσ that is not in Mσ . We aim to
obtain a contradiction from this.

Now we can construe (Mσ ,Σσ ) as a (Hσ (α),ΣHσ (α))-hod pair. We can define a
direct limit system of (Hσ (α),ΣHσ (α)) hod pairs as follows:

F ∗ = {(Q′,Λ′) | (Q′,Λ′)≡DJ (Q,Λ)} 21.

Note that F does not depend on (Q,Λ) and in fact is ODΣHσ (α)
in L(℘(R)). This

easily implies that A is ODΣHσ (α)
in L(℘(R)). By MC(ΣHσ (α))

22 and the fact that
Hσ (α +1) is ΣHσ (α)-full, A ∈Hσ (α +1), so A ∈Mσ . This contradicts the defini-
tion of A.

We define a measure ν on Θ over H + as follows. Let A ∈H + ∩℘(Θ) and N be
suitable such that A ∈ N. Then

A ∈ ν ⇔∀∗µN
σ sup(σ ∩Θ) ∈ A. (8)

First of all, note that for µN-a.e. σ , sup(σ ∩Θ) < Θ as cof(Θ) > ω . Now it
appears that whether A ∈ ν depends on the choice of suitable N, but it does not. Fix
A ⊆ Θ and suitable N1,N2 such that A ∈ N1 ∩N2. For µN1 -a.e. σ , we let Aσ be the
transitive collapse of σ ∩A. Similarly, we define Aσ for µN2 -a.e. σ . We have that

A = [σ 7→ Aσ ]µN1
= [σ 7→ Aσ ]µN2

.

Again, as in the proof of Lemma 5.1, here and everywhere else later in the paper,
we require that the ultrapowers use only Ω-invariant functions. The point is the
transitive collapse of σ ∩A only depends on σ ∩Θ, not all of σ . Furthermore, letting
N = N1∩N2, then N is suitable and H ∪{A} ∈ N. The following equivalences are
easy to verify:

∀∗µN1
σ sup(σ ∩Θ) ∈ A⇔∀∗µN

σ sup(σ ∩Θ) ∈ A

⇔∀∗µN2
σ sup(σ ∩Θ) ∈ A

The main point is: if X ∈ µN1 (or X ∈ µN2 ) then the set {σ ∩N : σ ∈ X} ∈ µN . This
shows ν does not depend on the choice of suitable N.23

It’s clear that ν is a measure. Note also that the above definition makes sense
for all A ∈ V but we only care about those A’s in H + as we can prove the measure
behaves nicely on this collection of sets.

Note that H + is a ZFC− model and |H +| ≤Θ+. Now we show the following.

Lemma 5.4 ν is amenable to H +. In other words, for any M � H +,
ν �M ∈H +.

Proof Let M �H + be sound and ρω(M ) ≤ Θ (note that H + is the union of
such M ’s). Let νM = ν �M . We show νM ∈H +.
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Again, we fix a suitable N such that M ,νM ∈ N. Let ~A = 〈Aα | α < Θ〉 be a
definable-over-M enumeration of ℘(Θ)∩M and let N �H + be least such that
~A ∈N .24 We may choose N so that N ∈ N.

We use the set-up and notations above. Let M = [σ 7→ Mσ ]µN and note
that ∀∗µN

σ Mσ = π−1
σ (M ) . Similarly, νM = [σ 7→ νσ ]µN where for µN-a.e.

σ , νσ = π−1
σ (νM ). Similar notations are introduced for N . We want to show

∀∗µN
σ νσ ∈H +

σ . For a µN-measure set of σ , we have (Mσ ,µσ ,Nσ )= π−1
σ (M ,νM ,N )

and Σ−σ (α) is fullness preserving for each α < λσ . We show the claim holds for all
such σ . Let X denote the aforementioned µN-measure one set.

Let for each σ ∈ X , Rσ = HOD(H +
σ ,Σ−σ ). Note that

℘(Θσ )∩Rσ =℘(Θσ )∩H +
σ

by a similar argument to that used in Lemma 5.2. Let ~Aσ = 〈Aσ
α | α <Θσ 〉= π−1

σ (~A).
We want to show 〈α | Aσ

α ∈ νσ 〉 ∈Rσ which in turns implies 〈α | Aσ
α ∈ νσ 〉 ∈H +

σ .
Let σ ∈ X . Let γσ = sup(πσ [Θσ ]) (note that πσ [Θσ ] = σ ∩Θ coincides with the

iteration embedding via Σ−σ and since cof(Θ)> ω , γσ < Θ). Note that

∀α < Θσ (Aσ
α ∈ νσ ⇔ γσ ∈ πσ (Aσ )∩ (γσ +1)) (9)

and
〈πσ (Aσ

α)∩ (γσ +1) | α < Θσ 〉 ∈Rσ . (10)
9 is true by elementarity and the definition of νM . 10 is true because 〈πσ (Aσ

α)∩(γσ +1) |α <Θσ 〉
is OD from πσ � Θσ ∪ {(Θσ ,γσ )} and ~Aσ . ~Aσ ∈ Nσ ∈ Rσ . Furthermore,

πσ � Θσ ∪ {(Θσ ,γσ )} = iΣ
−
σ

Hσ ,∞
� (Θσ + 1), hence by the definition of Rσ , we

have 10.
By 9 and 10, we have 〈α | Aα ∈ νσ 〉 ∈ Rσ . The lemma follows from the

agreement between Rσ and H +
σ .

Remark 5.5 (i) In the proof of Lemma 5.4, we can’t demand that H + ∈ N
because it may be the case that o(H +) = Θ+ and hence there are no surjec-
tions from ℘(R) onto H +.

(ii) It follows from the fact that Θ is regular and ADR holds that H + � “Θ is
regular limit of Woodin cardinals".

Now we want to show that ν is normal and ℘(Θ)∩L[H +,ν ] =℘(Θ)∩H +. Let
M �H + be sound and ρω(M )≤Θ.

Lemma 5.6 Let M �H +. Then νM =de f ν �M is normal.

Proof Suppose not. Let N be suitable such that M ,νM ∈N. Let M = [σ 7→Mσ ]µN

and note that ∀∗µN
σ Mσ = π−1

σ (M ).
We define a measure νσ on Θσ over Mσ as follows.

A ∈ νσ ⇔ γσ =def sup(πσ [Θσ ]) ∈ πσ (A). (11)

It’s easy to see that
νσ = π

−1
σ (νM )∧Πσ νσ/µN = νM . (12)

By the assumption on νM , we have that ∀∗µN
σ νσ is not normal (in Nσ ). This means

∀∗µN
σ∃ f ∈Mσ πσ ( f )(γσ )< γσ ∧πσ ( f )(γσ ) /∈ σ ∩ γσ . (13)

By normality of µN ,
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∃ f ∈M ∀∗µN
σ f (γσ ) /∈ σ ∩ γσ ∧ f (γσ )< γσ .

Fix such an f ∈M and let

A′ = {σ | f (γσ ) /∈ σ ∩ γσ ∧ f (γσ )< γσ}. (14)

We have A′ ∈ µN . This implies that B ∈ νM where

B = {γ | f (γ)< γ}. (15)

Let M �M ∗�H + be such that νM ∈M ∗. This is possible since νM ∈H +

and H + is a limit of such M ∗’s. Now we can also assume M ∗ ∈ N by expanding
N if necessary. Let then ∀∗µN

σ M ∗
σ = π−1

σ (M ∗).

Claim 5.7 There is an η < Θ such that ∀∗µN
σ f (γσ )≤ η .

Proof ∀∗µN
σ , let Σσ be the πσ -guided strategy for Mσ (as defined in the proof of

Lemma 5.2) and iσ : Mσ →Nσ be the direct limit map, where Nσ is the direct limit
of all Σσ -iterates of Mσ . Note that since Mσ � “Θσ is regular", iσ �Θσ = πσ �Θσ ;
also we may and do assume iσ is cofinal in o(Nσ ). These properties follow from
(1)-(4) in the proof of Lemma 5.2. (1)-(4) in the proof of Lemma 5.2 also imply that
there is a map kσ : Nσ →M such that kσ ◦ iσ = πσ �Mσ and crt(kσ )= iσ (Θσ )= γσ .

Let ν∗σ = iσ [νσ ] and ( fσ ,Bσ )= (π−1
σ ( f ),π−1

σ (B)). We have then that ∀∗µN
σ Bσ ∈ νσ ,

which implies that iσ (Bσ ) ∈ ν∗σ . We note that crt(kσ ) = γσ and therefore, ν∗σ is a
subset of the normal measure ν̄σ induced from kσ , i.e. for A ∈ Nσ , A ∈ ν̄σ iff
γσ ∈ kσ (A).

To prove the lemma, it suffices to show that

∀∗µN
σ M ∗

σ � ∃ησ < Θσ iνσ
( fσ )(Θσ )≤ ησ . (16)

Fix a σ in the first paragraph. Note that we can extend iσ to a map i+σ : M ∗
σ →N ∗

σ

such that i+σ �Θσ = iσ �Θσ = πσ �Θσ and extend kσ to a map k+σ : N ∗
σ →M ∗ such

that crt(k+σ ) = crt(kσ ) = γσ and k+σ �Nσ = iσ .
As mentioned above, the measure ν̄σ ∈N ∗

σ is normal; so there is some η < γσ

such that
N ∗

σ � kσ (iσ ( f ))(γσ ) = η . (17)
By continuity of iσ at Θσ , let ησ least such that iσ (ησ )≥ η , we get 16 from 16 and
the choice of ησ .25 Finally, η = [σ 7→ ησ ]µN satisfies the claim.

Let now

A = {σ ∈ A′ | f (γσ )≤ η}.

By the previous lemma, A ∈ µN .

Definition 5.8 (Becker, [2]) Suppose A ⊆℘ω1(N). We say that A is unbounded
if for all σ ∈℘ω1(N), there is a τ ∈ A such that σ ⊆ τ . We say that A is a strong
club (scub) if A is unbounded and ∀σ ∈℘ω1(N)∀τ ⊆ σ , if whenever τ is finite, then
there is a τ ′ ∈ A such that τ ⊆ τ ′ ⊆ σ , then σ ∈ A. A is a weak club (wcub) if A is
unbounded and whenever 〈σn | n < ω〉 is a ⊆ −increasing sequence of elements of
A then

⋃
n σn ∈ A.

Clearly, a strong club is a weak club.

Lemma 5.9 Suppose E ∈ µN . Then E meets every strong club. In particular, A
meets every strong club.
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Proof Suppose C⊆℘ω1(N) is a strong club and C∩E = /0. Let F be defined as fol-
lows. F(σ)=σ\

⋃
{τ | τ ⊆σ∧τ ∈C}. By our assumption that C is a strong club and

C∩E = /0, ∀∗µN
σ F(σ)⊆ σ ∧F(σ) 6= /0. By normality, ∃x∀∗µN

σ σ ∈ E\C∧x∈ F(σ).
We claim that this is a contradiction. Fix such an x. Since C is a strong club, there

is a σ∗ ∈C such that x ∈ σ∗. By fineness and countable completeness of µN , the set
{σ ∈ E | σ∗ ( σ} ∈ µN . This contradicts the definition of F .

Note also that the above lemma implies that if C is a strong club, then µN(C) = 1.
Now let P be the natural forcing that shoots a weak club through A. Conditions in

P are countable W ⊆ A such that whenever 〈σn | n < ω ∧σn ∈W 〉 is ⊆−increasing
then

⋃
n σn ∈W . ∀C0,C1 ∈ P, C0 ≤P C1 iff C1 ⊆C0.

Lemma 5.10 P is (ω1,∞)−distributive.

Proof Fix a condition C0 ∈ P and a sequence ~D = 〈Di | i < ω〉 of open dense sets
in P. We want to find a condition C ≤P C0 such that C ∈ Di for all i.

Claim 5.11 The set D = {σ | σ ≺ N} contains a strong club.

Proof D is certainly unbounded (by a standard closure argument using DC). Now
let σ ∈℘ω1(N) and suppose for all finite τ ⊆ σ , there is τ ′ ∈D such that τ ⊆ τ ′ ⊆ σ .
We want to show σ ∈ D. We prove by induction that for any n, for any finite τ ⊆ σ ,
whenever τ ⊆ τ ′ ⊆ σ and τ ′ ∈ D then τ ′ ≺Σn σ ≺Σn N.

This clearly holds for n = 0. Now suppose the claim holds for n and let Ψ be a
Πn formula, τ ⊆ σ be finite such that N � ∃x Ψ[x,τ]. By our assumption, there is
a τ ′ ∈ D such that τ ⊆ τ ′ ⊆ σ . By definition of D, τ ′ ≺ N, hence τ ′ � ∃x Ψ[x,τ].
Let x ∈ τ ′ be a witness. We have then τ ′ � Ψ[x,τ]. But x ∈ σ and Ψ is Πn; by the
induction hypothesis, σ �Ψ[x,τ ′]. This proves the claim.

Let N′ be a transitive model of ZF− + DC such that℘(R)�N′ and N,P,~D∈N′. Let
N′′ be a countable elementary submodel of N′ such that P,~D ∈ N′′∩N ∈ D (we may
assume ~D enumerates all open dense sets in N). Such an N′′ exists by the claim. By a
standard argument, we can build a≤P −descending chain of conditions 〈Cn | n < ω〉
such that

1. Cn+1 ∈ Dn;
2. Cn ∈ N′′ for all n;
3.

⋃
n Cn = N′′∩N.

Let C =
⋃

n Cn ∪{N′′ ∩N}. Then C ∈ P and C ≤P Cn for all n. This means C ∈ Dn
for all n. Hence we’re done.

Let G⊆ P be V -generic. In V [G], DC holds and there is a weak club C⊆ A. Let then

C∗ = {γσ | σ ∈C}.

Then C∗ contains an ω−club in V [G].
Now we proceed to derive a contradiction. First, we use an abstract pointclass

argument to generalize Solovay’s proof that ω1 is measurable under AD to show the
following.

Lemma 5.12 In V , there are unboundedly many κ < Θ such that:
1. the ω−club filter on κ is an η+-complete ultrafilter on ℘(κ);
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2. the set {σ ∩℘(R) | σ ∈ A∧ γσ < κ} is unbounded in ℘ω1(℘(R) � κ); in
particular, {γσ | σ ∈ A} is unbounded in κ;

3. ∀ξ < η , the set of σ ∩℘(R) such that σ ∈ A and ξ ∈ σ and γσ < κ is
unbounded in ℘ω1(℘(R) � κ).

Proof Since Solovay’s proof is well-known, we only highlight the necessary
changes needed to run that proof in this situation. Working in V , let η+< ρ1 < ρ2 <Θ

where ρ1,ρ2 are regular Suslin cardinals. Furthermore, we assume that there is a
prewellordering of length η in S(ρ1)

26. Fix a prewellordering ≤ of length η such
that ≤∈ ∆˜S(ρ1) and let f : R� η be the natural function induced from ≤.

We claim that there is a κ which is a limit of Suslin cardinals of cofinality ρ2 (in V )
and κ satisfies clauses (2) and (3) of the lemma. To see such a κ exists, first note that
by Theorem 4.1, H +(℘(R))∩℘(R) =℘(R); as discussed in Remark 5.5, H + �Θ

is regular, H +(℘(R)) � ADR + Θ is regular. Now the set Y of σ ∩Θ such that Σ−σ is
fullness preserving is in H +(℘(R)) (note that γσ is a limit of Suslin cardinals and
cof(γσ ) = ω in H +(℘(R))); also, for each ξ < η , the set Yξ of σ ∈ Y such that
ξ ∈ σ is in H +(℘(R)). From these facts and the regularity of Θ in H +(℘(R)),
we easily get such a κ .

Fix such a κ . We show that κ satisfies (1) as well. Let Ω˜ be the (boldface)
Steel pointclass at κ (see [11] or [5] for the definition of the Steel pointclass). The
properties we need for Ω˜ are:

1. ∃R∆˜Ω˜ ⊆ ∆˜Ω˜ (in fact, ∆˜Ω˜ = {Y | w(Y )< κ});
2. Ω˜ is closed under ∩,∪ with S(ρ1)-sets.
3. (Boundedness) Let Z be an Ω˜ -universal set and π : Z � κ be an Ω˜ -norm.

Then for A ∈ ∆˜Ω˜ , π � A is bounded in κ .

In the following, we fix Z,π as above and a simple coding of ω-sequences of reals
by reals. So a real x codes a sequence of reals (xi)i<ω . For each X ∈℘(κ), we define
the Solovay game GX as follows. Players I and II take turns to play natural numbers.
After ω many moves, say player I plays a real x and player II plays a real y. I wins
the run of GX iff either there is an i such that either xi /∈ Z or yi /∈ Z and letting j be
the least such then y j /∈ Z or sup{π(xi),π(y j) | i, j < ω} ∈ X .

Now we’re ready to prove the ω−club filter at κ , Uκ , is an η+-complete ultrafil-
ter. Note that Uκ is an ultrafilter follows from AD and in fact, X ∈Uκ iff player I has
a winning strategy in the game GX . Fix a sequence 〈Aα | α <η∧Aα ∈Uκ〉. We want
to show

⋂
α Aα ∈Uκ . Since Aα ∈Uκ , player I has a winning strategy for the game

GAα
. Let g : η→℘(R) be such that for all ξ <η , g(ξ )⊆{τ | τ is a winning strategy for player I in GAξ

}
and furthermore Code(g,≤) = {(x,τ) | τ ∈ g( f (x))} ∈ S(ρ1). Such a g exists by the
coding lemma.

For each ξ < κ , let Yξ = {(τ[y])n | n<ω∧∃x(x,τ)∈Code(g,≤)∧∀i(π(yi)< ξ )}.
It’s easy to see from the fact that π is Ω˜ -norm, Ω is closed under intersection with
S(ρ1)−sets that Yξ ∈ ∆˜Ω˜ . By boundedness, g(ξ ) = sup{π(z) | z ∈ Yξ}< κ for all ξ .
This easily implies (as in the standard Solovay’s proof) that I has a winning strategy
in the game G⋂

α Aα
, which in turns implies

⋂
α Aα ∈Uκ .

Let D = {γσ | σ ∈ A} ∈ νM . Fix a κ as in Lemma 5.12 and let Uκ be the ω−club
filter on κ; furthermore, by the choice of κ , D∩κ is unbounded in κ . By the coding
lemma, D∩κ ∈ L(℘(R)).

We claim that D∩κ ∈Uκ . Otherwise, D∩κ is disjoint from an ω−club E. Let
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E ′ = {σ | γσ ∈ E}.

But in V [G], D∩ κ contains an ω−club, namely C∗ ∩ κ . In V [G], E remains an
ω−club, hence has nonempty intersection with C∗∩κ . This is a contradiction.

Finally, since D∩ κ ∈ Uκ and Uκ is η+-complete, there is a ξ ≤ η such that
Dξ = {γ < κ | f (γ) = ξ} ∈Uκ . But then there is a σ ∈C such that γσ < κ , ξ ∈ σ ,
and f (γσ ) = ξ . This contradicts the fact that ∀σ ∈C f (γσ ) /∈ σ . This completes the
proof of Lemma 5.6.

Let H +− =Ult(H +,ν), and πν be the ultrapower map. Let λ = (Θ++)H
+−

and
Eν be the (Θ,λ )-extender derived from πν , i.e.

(a,A) ∈ Eν ⇔ a ∈ [λ ]<ω ∧A ∈℘(Θ)|a|∩H +∧a ∈ πν(A).
Eλ is essentially the measure ν .

Lemma 5.13 H +− is well-founded. Furthermore,℘(Θ)∩H +− =℘(Θ)∩H +.

Proof The well-foundedness of H +− follows from the fact that ν is countably
complete in V . The countable completeness of ν follows from the countable com-
pleteness of µ . The equality of the powersets follows from Θ-completeness and
amenability of ν , cf. Lemmas 5.4 and 5.6.

Remark 5.14 We, as usual, identify H +− with its transitive collapse. As such,
H +− is a hod premouse. By Lemma 5.13 and Lemma 5.4, Eµ coheres H +−. So
(H +−|λ ,Eν) is a hod premouse.

Theorem 5.15 Let H ++=L[H +−|λ ][Eν ].27 Then℘(Θ)∩H ++=℘(Θ)∩H +.

Proof Suppose not. Then there is an M ∗ EH ++ such that ρ(M ∗)≤Θ and M ∗

defines a set not in H +. We may assume M ∗ is minimal and ρ1(M
∗) ≤ Θ (note

that o(M ∗) > o(H +)). Let M be the transitive collapse of HullM
∗

1 (Θ∪ pM ∗
1 ).

One can use an argument similar to that in Lemma 5.2 to see that ρ1(M
∗) = Θ and

therefore, M is the Σ1-core of M ∗. M is sound, transitive and M Σ1-defines a set
not in H +; so M has the form Jα [H ∗][EM ] for some H ∗,EM . It’s easy to see
that EM = Eν �M .

Let N be suitable such that M ,EM ∈ N. ∀∗µN
σ , recall that πσ : Nσ → N be the

uncollapse map. Let

πσ (Mσ ,Hσ ,Θσ ,Eσ ,H ∗
σ ,ασ ) = (M ,H ,Θ,EM ,H ∗,α).

Recall the definition of the strategy Σσ , which is the πσ -realizable strategy for Mσ

defined after Lemma 5.2 for stacks below Θσ (this means Σσ does not act on stacks
that involve applying Eσ and its images). Our goal is to define a strategy Σ+

σ extend-
ing Σσ that acts on all countable stacks of normal form on Mσ .

Lemma 5.16 For µN-almost-all σ , there is an iteration strategy Σ+
σ for Mσ with

the following properties:
1. Σ+

σ is a πσ -realizable strategy that extends Σσ . This means Σσ ⊆ Σ+
σ and

whenever ~T is a (countable) stack of normal form according to Σ+
σ , letting

i : Mσ →P be the iteration embedding, then there is a map k : P →M
such that πσ = k ◦ i.
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2. Whenever (Q,Λ)∈ I(Mσ ,Σ
+
σ ), ∀α < λQ, ΛQ(α) is Γ(Mσ ,Σ

+
σ )-fullness pre-

serving and has branch condensation. Hence Σ+
σ is Γ(Mσ ,Σ

+
σ )-fullness pre-

serving.

Proof We prove (1) (see Figure 1). The proof of (2) is just the proof of [7, Theo-
rem 3.26] so we omit it; we just mention the key point in proving (2) is that ΛQ(α)

for α < λQ is a pullback of a strategy that is fullness preserving and has branch
condensation.

Fix a σ . Suppose i : Mσ → P is the ultrapower map using Eσ . We de-
scribe how to obtain a πσ -realizable strategy ΣP(α) for α < λP . We then let
Σ
−
P = ⊕

α<λP ΣP(α) and ~T be a stack on P according to Σ
−
P with end model

Q. Let j : P → Q be the iteration map and k : Q → R be the ultrapower map
by EQ; here we will write EP ,EQ etc for the image of Eσ under the appropriate
embeddings. We describe how to obtain πσ -realizable strategy ΣQ(α) for all α < λQ

and a πσ -realizable strategy ΣR(α) for all α < λR . The construction of the strategy
for this special case has all the ideas needed to construct the full strategy as for
the general stack (in normal form), we simply repeat the arguments given below
inductively.

Let τ ≺ N be such that σ , ~T ∈ τ .28 µN-allmost-all τ have this property. Let
πσ ,τ = π−1

τ ◦πσ . Working in Nτ , let Fσ ,τ be the direct limit system consisting of all
non-dropping iterates of (Hσ ,Σ

−
σ ∩Nτ), let

γ0 = iΣ
−
σ

Hσ ,∞
(λMσ ),

where iΣ
−
σ

Hσ ,∞
is the corresponding direct limit map.29 Let i∗ : P →Mτ be such that

i∗(i( f )(λMσ )) = πσ ,τ( f )(γ0).

By the definition of νσ , it’s not hard to show i∗ is elementary and πσ ,τ = i∗ ◦ i (so
πσ = πτ ◦ i∗ ◦ i).

Note also that i∗(EP) = Eτ . Now, let (N ,Λ) be a point in the direct limit
system giving rise to Hτ such that ran(i∗ � λP) ⊆ ran(iΛN ,∞). There is some
s : P|λP → N such that iΛN ,∞ ◦ s = i∗ � λP . Then Σ

−
P , the strategy of P for

stacks that do not use EP or its images, is simply the s-pullback of Λ. Note that
by the choice of (N ,Λ), Λ is a fullness preserving strategy with branch condensa-
tion. It’s not hard to show that the definition of Σ

−
P doesn’t depend on the choice

of (N ,Λ) and the choice of τ . We show why Σ
−
P doesn’t depend on the choice

of (N ,Λ). Suppose (N ,Λ), (N ′,Λ′), s : P|λP → N , and s′ : P|λP → N ′

are as in the definition of Σ
−
P , then we can compare (N ,Λ),(N ′,Λ′) and get a

common iterate (S ,Ψ), where Ψ is the common tail of Λ and Λ′; this follows from
positionality of Λ,Λ′. Let iN ,S : N →S and iN ′,S : N ′→S be iteration maps.
Note that iN ,S ◦ s = iN ′,S ◦ s′ =def t and

Λs = (Λ′)s′ = Ψt .

A similar argument shows that Σ
−
P does not depend on the choice of τ . Let P∞ be

the direct limit of Σ
−
P iterates of P|δP and πP : P∞→Hτ be the natural map such

that πP ◦ i
Σ
−
P

P,∞ � (P|δ
P) = i∗ � (P|δP).
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Mσ ,νσ P,νP Q,νQ R,νR

Mτ ,ντ Ult(Mτ ,ντ)

M ,νM

i ~T , j k

πσ ,τ

i∗

h

j∗

πτ

h∗

k∗

Figure 1 The construction of Σ+
σ

Now every element of Q has the form j( f )(a) for some f ∈P and a∈ α(~T )<ω ,
where α( ~T ) is the supremum of the generators used in ~T . We let j∗ : Q→Mτ be

such that j∗( j( f )(a)) = i∗( f )(πP(i
Σ
−
Q

Q,∞(a))). Hence i∗ = j∗ ◦ j and πσ = j∗ ◦ j ◦ i.
Finally, every element of R has the form k( f )(λQ) for some f ∈ Q. Let

h : Mτ →Ult(Mτ ,ντ) be the ultrapower map and h∗ : Ult(Mτ ,ντ)→M be such
that πτ = h∗◦h. Then let k∗ : Q→Ult(Mτ ,ντ) be such that k∗(k( f )(λQ))= h( j∗( f ))(λMτ ).
It’s easy to see that h ◦ j∗ = k∗ ◦ k. We can now derive the strategy Σ

−
R using

h∗ ◦ k∗ � λR the same way we used i∗ � λP to derive the strategy Σ
−
P . Again, it’s

easy to show that Σ
−
R is a πσ -realizable strategy. The definition of Σ

−
R does not

depend on the choice of τ .
In general, suppose ~T = (Tα ,Nβ : α < γ,β ≤ γ) is a countable stack on Mσ

in normal form according to Σ+
σ and Tγ is on Nγ . We want to define Σ+

σ on Tγ .
As part of the definition of Σ+

σ , we have iteration map iMσ ,Nα
: Mσ = N0 →Nα ,

a map i : Nα →Mτ for a sufficiently large τ that contains all relevant objects, i-
pullback strategy Σα for Nα |λNα , here λNα = iMσ ,Nα

(Θσ ). If Tγ = 〈Nα ,Eα〉,
where Eα = iMσ ,Nα

(Eσ ), then we can define maps k∗ : Ult(Nα ,Eα)→Ult(Mτ ,Eτ),
h : Mτ → Ult(Mτ ,Eτ), and h∗ : Ult(Mτ ,Eτ)→M as above and derive a strategy
Σα+1 for Nα+1|λNα+1, where Nα+1 = Ult(Nα ,Eα). We then let Σα+1 ⊂ Σ+

σ . Sup-
pose Tγ is below λNα . Then we use Σα ⊂ Σ+

σ to choose a branch b for Tγ and a map
j∗ : N T ab→Mτ such that j∗ ◦ iTb = iα .

This completes the construction of Σ+
σ and hence the proof of Lemma 5.16. Note

it also follows that Σ+
σ extends Σσ .

By a ZFC-comparison argument ([7, Section 2.7]) and the fact that Σ+
σ is Γ(Mσ ,Σ

+)-
fullness preserving, an iterate of Σ+

σ has branch condensation. Without loss of gen-
erality, we may assume Σ+

σ has branch condensation.
Since ρ1(Mσ ) ≤ Θσ , we let A ⊆ Θσ be a set Σ1 definable over Mσ but not in

H +
σ .30 Say

α ∈ A⇔Mσ � ψ[α,s, pMσ

1 ], (18)
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for some s ∈ Θ<ω
σ . Recall that Mσ � Θσ is measurable as witnessed by Eσ . We

can define a direct limit system F = {(Q,Λ) | (Q,Λ)≡DJ (Mσ ,Σ
+
σ )} 31. Let M∞

be the direct limit of F and let iMσ ,∞ : Mσ →M∞ be the iteration embedding. We
have that HOD|γσ �M∞ ∈HOD and ρ1(M∞)≤ γσ . Let A∞ be defined over M∞ the
same way A is defined over Mσ , i.e.

α ∈ A∞⇔M∞ � ψ[α, iMσ ,∞(s), pM∞

1 ]. (19)

Since A∞ is OD, A is ordinal definable from (Hσ ,Σ
−
σ ). This is because from 18

and 19, α ∈ A if and only if iΣ
−
σ

Hσ ,∞
(α) ∈ A∞. By MC(Σ−σ ) (which follows from our

smallness assumption (†) and the HOD analysis done in [9]), A ∈H +
σ . Contradic-

tion.

Lemma 5.17 H ++(Γ) ∩℘(R) = Γ and H ++(Γ) � ADR+ there is an R-
complete normal measure on Θ.

Proof First note that no H ++|λ �M �H ++ is such that ρω(M ) ≤ Θ. The
equality in the conclusion of the lemma follows from Theorem 4.1 with HODL(Γ,R)

playing the role of H and H ++ playing the role of H +. Note that H ++ � “Θ

is regular" and in fact H ++(Γ) � “Θ is regular" since Θ is regular in V . The R-
complete normal measure on Θ in H ++(Γ) comes from ν from the proof of The-
orem 2.4 in [3]. The proof uses the fact that every A ∈ Γ can be added to H ++

via a forcing of size < Θ. This means every A ⊆ Θ in H ++(Γ) is in some generic
extension of H ++ via a forcing of size < Θ and hence is measured by the canonical
extension of ν . The normality comes from normality of ν . The R-completeness of
the induced measure then follows from [3, Theorem 2.4].

This completes the proof of Theorem 1.6.

Notes

1. The equiconsistency of (1) and (2) is due to H.W. Woodin. The equiconsistency of (2)
and (3) is due independently to H.W. Woodin and the author.

2. Let µ witness Θ is measurable. Suppose Θ is singular. Then it is easy to see that there is
a cofinal map f : R→ Θ. For each x ∈ R, let Ax = 〈α < Θ | α ≥ f (x)〉. Clearly Ax ∈ µ

for all x ∈ R. Let α ∈
⋂

x Ax 6= /0. Then α ≥ f (x) for all x ∈ R. This contradicts the fact
that f is cofinal.

3. w(A) is the Wadge rank of A.

4. See [20] for more backgrounds on descriptive set theory in contexts where determinacy
only holds locally.

5. We will not deal with short-tree strategy mice in this paper. This is because the hod mice
we are constructing is well below the level of lsa hod mice, whose theory is developed
in full detail in [9].

6. This just means ΣP
α acts on all stacks of ω-maximal, normal trees in P .
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7. Branch condensation does not seem to follow from hull condensation and vice versa. By
[7, Theorem 2.42], fullness preserving strategies with branch condensation are positional
and hence commuting. In short, we can just write “hod pairs that are fullness preserving
and have branch condensation".

8. Let π : R→ Hω1 be the coding of elements of Hω1 by elements of R. Then π induces a
surjection Code:℘(R)→℘(Hω1) as mentioned above. To save space, we will generally
not make distinction between Λ and Code(Λ) in this paper.

9. Here H +(Γ) is the minimal, transitive ZF model containing H + and Γ. H (Γ) is
defined similarly.

10. This argument is pointed out by the referee. It is simpler than the author’s original
argument

11. g and gπ only differ on finitely many bits, and similarly for h and hπ . Also, in general,
π∗(Ṙ) 6= Ṙ and π∗(σn) 6= σn for most maps π .

12. See [? ] for a similar observation regarding the ω-dimensional forcing realizing L(R) as
a symmetric model over HODL(R).

13. We in fact can take S to be in Θω ; this is a consequence of AD++ADR.

14. A proof of the equality seems to require that every OD subset of Zn has an OD ∞-Borel
code. See [? ] for the corresponding fact that every OD subset of Rn has OD ∞-Borel
code in L(R).

15. We use the maps πnp,nq as in Lemma 4.3 to get that for any two conditions p,q, it cannot
be the case that p 
P/G(g�n) ϕ[α̌,g � n] and q 
P/G(g�n) ¬ϕ[α̌,g � n] and vice versa.

16. This can be seen by taking a hull X ≺H + such that |X |<Θ in H + and P �ω∪{P �ω,a}⊂X .
Let MX be the transitive collapse of X and τ : MX → X be the uncollapse map, then
MX ∈H . We get that x∈A if and only if H [h]�MX [h � (P �ω)]� /0
τ−1(P)/P�ω ψ[x,τ−1(a)].
This gives A ∈H (Z).

17. The reader can also see Lemma 5.9 and the subsequent discussions for a proof.

18. Note that the Lp-stack is computed in V .

19. Note that Ω is suitable.

20. Note that by positionality of πσ (Σ), which follows from fullness preservation and branch
condensation (cf. [7, Theorem 2.42], ΣHσ (β ) does not depend on any specific iteration
from P to Hσ (β ).

21. This means these (H ∗
σ ,Σσ ) hod pairs are Dodd-Jensen equivalent.

22. This stands for Mouse Capturing with respect to ΣHσ (α), which in turns is the statement
that if x,y ∈ R, and x is ODΣHσ (α)

(y) then x is in a ΣHσ (α)-mouse over y.
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23. Alternatively, one can define A ∈ ν ⇔∀∗µΩ
σ sup(σ ∩Θ) ∈ A.

24. ~A exists because ρω (M )≤Θ and M is sound.

25. We do not know that i+σ (νσ ) = ν̄σ . So from the normality of ν̄σ , we cannot conclude νσ

is normal using elementarity.

26. For a Suslin cardinal ξ , S(ξ ) is the pointclass of ξ−Suslin sets.

27. Note that Eν measures all sets in H +−|λ by Lemma 5.13.

28. Note that σ , ~T are countable in τ .

29. Here λMσ = λHσ = Θσ = δHσ by the regularity of Θσ in Mσ ,Hσ .

30. From the fact that H + = [σ 7→H +
σ ]µΩ

and Los theorem, we can conclude that ∀∗µN
σ

there is A Σ1-definable over Mσ = Mσ∩Ω such that A /∈H +
σ .

31. We take Σ0-ultrapowers for extenders with critical points ≥ the image of Θσ under
iteration embeddings by Σσ and Σ1-ultrapowers otherwise
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