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Supercompactness Can Be Equiconsistent with
Measurability

Nam Trang

Abstract  The main result of this paper, built on work of [18] and [15], is the
proof that the theory “ADg 4+ DC + there is an R-complete measure on ®" is
equiconsistent with “ZF + DC + ADy + there is a supercompact measure on
P, (P(R)) + O is regular." The result and techniques presented here contribute
to the general program of descriptive inner model theory and in particular, to the
general study of compactness phenomena in the context of ZF + DC.

1 Introduction

Throughout the paper, unless stated otherwise, we assume ZF 4+ DC. We begin with
the following definitions. In the following, a measure on some set Y is an ultrafilter
(maximal filter) on Y. If u is a measure on Y, then for any set A C Y, we say A is
W-measure one if A € y or equivalently u(A) = 1.

Definition 1.1 (ZF+DC) Suppose X is an uncountable set and U is a measure on
$0,(X) =4er {0 C X | 0 is countable}. We say that
1. p is fine if whenever x € X, then the set A, =4.r {0 |x € 0} € u.
2. u is countably complete if whenever (4, | n < ®) is a sequence of U-
measure one sets then (), A, € U.
3. u is normal if whenever F : @, (X) — @, (X) is such that the set
{o | F(oc) C o AF(0) # 0} € u then there is an x € X such that the
set{o|x€F(o)} € p.
If there is a nonprincipal measure [ on @, (X) that satisfies (1)-(3), then we say that
o) is X-supercompact. If there is a nonprincipal measure {1 on &, (X) that satisfies
(1) and (2) then we say @ is X-strongly compact.

This is a generalization of the notion of supercompactness in the ZFC context.
The definition of strong compactness is unchanged. In particular, in clause (3) of
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Definition 1.1, if we replace “F (o) C 0” by “F(0) € o", then we get the standard
definition of normality in the ZFC context. Without the full Axiom of Choice, we
seem to have to weaken the requirement on F. If X is a set of ordinals then the two
notions coincide. Definition 1.1 originates from [10]. The following is not hard to
prove (see [16]).

Lemma 1.2 (ZF + DC) Suppose L is a fine measure on @y, (X). The following are
equivalent.

1. u is normal.
2. Suppose we have (A, | x € X NAx € (). Then NyexAx =gef {0 | 0 €NiegAx} € U

From now on, the phrase “ is a supercompact measure on @, (X)" always means
“u is a nonprincipal, normal fine, countably complete measure on @, (X)". We
will also say “@; is X-supercompact" to mean “there is a supercompact measure on
#0,(X)". When u is nonprincipal, countably complete, and fine (but not necessarily
normal), we say that U is a strongly compact measure. We say that @, is supercom-
pact if w; is X-supercompact for all uncountable X and @ is strongly compact if @,
is X-strongly compact for all uncountable X.

This paper explores aspects of compactness properties of @; under ZF + DC. In
particular, we focus on the consistency strength of the theories:

(P) = “ZF + DC + oy is supercompact”,
(Q) = “ZF + DC + ADR + @ is supercompact"

and their variations. From here on, by ADg, we always mean ADT 4+ ADg. See
Section 2 for basic terminology and facts about AD™.

We note that “ZF + @; is supercompact” implies DC (cf. [4]). We choose to be
redundant here since we’ll be using DC in many arguments to come. Also, (Q) is
equivalent to “AD' + @ is supercompact” by results in [18] and [20].

Woodin (unpublished) has shown that Con(P) and Con(Q) follows from Con(ZFC
+ there is a proper class of Woodin limits of Woodin cardinals). We conjecture that a
(close to optimal) lower-bound consistency strength for the theory (P) is that of (Q)
and is “ZFC + there is a Woodin limit of Woodin cardinals."

In the context of ZF 4+ DC, the papers [15] and [17] study supercompact measures
on 2y, (R) and show that the following theories are equiconsistent:

1. ZFC + there are ®> Woodin cardinals.
2. AD" + there is a supercompact measure on g, (R).

3. ZF +DC + ® > @, + there is a supercompact measure on g, (R).!

It is also well-known that the existence of a supercompact measure on @, (R) is
equiconsistent with that of a measurable cardinal (see [17]). Recall that the existence
of supercompact measures on @, (R) was first shown by Solovay [10] from ADp.
Consistency-wise, it is known that ADg is much stronger than (1) (and hence (2) and
3)).

Surprisingly, [18] shows that having a supercompact measure on @, (#(R)) is
much stronger consistency-wise as it implies that there are models of ADg + DC.
Solovay [10] shows that ADg 4+ DC is strictly stronger than ADg consistency-wise.

Theorem 1.3 (Trang-Wilson)  Assume ZF 4+ DC. Suppose there is a supercompact
measure on @y, ((R)). Then there is a transitive M containing RUORC M such
that M F ZF + DC+ ADg.
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[18] also shows the conclusion of Theorem 1.3 is equiconsistent with “ZF + DC+ @y
is (R)-strongly compact". The main conjecture regarding compactness properties
of w; under ZF + DC is.

Conjecture 1.4 The following theories are equiconsistent.
1. (P)
2. “ZF+DC+ wy is strongly compact”

Conjecture 1.4’s analogue in the ZFC context is perhaps more well-known. How-
ever, the above results (e.g. Theorem 1.3) and recent progress in inner model theory
suggest that Conjecture 1.4 is more tractable.

Definition 1.5 (ZF+DC)  Let ® = sup({e¢ | 37 : R — a Amwis onto}) and i be a
measure on ®. We say that y is uniform if sets of the form (o, ®), [, ®) are in u
for all @ < ®. We say that u is R-complete if u is uniform, and whenever we have
(Ax | x e RAA, € u) then N cpAx # 0.

Let
* (T1) = “ZF + DC + there is a supercompact measure on £y, (£(R)) + O is
regular.”
* (T2) = “ ZF + DC + ADg + there is a nonprincipal R-complete measure on
e

* (T3) = “ZF 4+ DC+ ADg + there is a supercompact measure on @, (#(R))
+ ® is regular.”

We will also say “© is measurable" in place of “there is a nonprincipal R-complete
measure on ©." The main theorem of this paper is the following.

Theorem 1.6 Con(T,) & Con(T3).

The proof that (72) implies (73) (and hence (77)) is given in [16] (note that by a
standard argument, ® is measurable implies ® is regular).> By [16], we know that
(T>) implies the existence of a supercompact measure on g, (£(R)), but we do not
know the exact consistency strength of this theory. In this paper, we focus on the
proof of Con(T3) implies Con(73).

Recent developments in the core model induction techniques suggest that the use
of AD™ in the proof of Theorem 1.6 can be omitted. We conjecture the following.

Conjecture 1.7 Con(Ty) < Con(T»)(< Con(T3)). Furthermore, Con(P) implies
Con(T3).

The outline of the paper is as follows. In Section 2, we summarize some basic
facts about descriptive set theory and the theory of AD™ that we use in this paper.
Section 3 introduces the notion of hod mice that we will construct in this paper.
Section 4 discusses a variation of the Vopenka algebra that is useful in constructing
models of determinacy from hod mice (see Theorem 4.1). Section 5 gives the con-
struction of a proper hod pair, which in turn will generate a model of “ADg + © is
measurable" and hence completes the proof of Theorem 1.6.

2 Basic Facts about AD™

We start with the definition of Woodin’s theory of AD™. In this paper, we identify R
with ®®. Recall @ is the sup of ordinals o such that there is a surjection 7 : R — «.
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Under AC, O is just the successor cardinal of the continuum. In the context of AD,
@ is shown to be the supremum of w(A) for A C R.3 The definition of ® relativizes
to any determined pointclass* (with sufficient closure properties). For a pointclass
I, we denote © for the sup of o such that there is a surjection from R onto o coded
by a set of reals in T".

Recall that ADy is determinacy for games in which player I and II take turns to
play elements of X for @ many rounds. If X = w, then ADx = AD.

Definition 2.1  AD™ is the theory ZF + AD+DCg and

1. for every set of reals A, there are a set of ordinals S and a formula ¢ such that
x€A S L[S, x| F @[S,x]. (S, @) is called an c-Borel code for 4;

2. for every A < O, for every continuous 7 : A? — @?, for every A C R, the set
n~'[A] is determined.

AD" is equivalent to “AD + the set of Suslin cardinals is closed". Another, perhaps
more useful, characterization of ADT is “AD+X,; statements reflect into the Suslin
co-Suslin sets” (see [14] for the precise statement). Recall, our convention is ADgp is
the principle AD" + ADg.

Let A C R, we let 64 be the supremum of all o such that there is an OD(A)
surjection from R onto . If I" is a determined (boldface) pointclass, and A € I', we
write I' [ A for the set of B € I" which is Wadge reducible to A. If o < ®, we write
I' | o for the set of A € T with Wadge rank strictly less than ¢. Occasionally, we will
write I" for a w-parameterized (lightface) pointclass and write I for its corresponding
boldface pointclass. We write Ag for the ambiguous part of the boldface pointclass

Q, that is Ag is the collection of A such that both A and R\A are in Q.

Definition 2.2 (AD™) ~ The Solovay sequence is the sequence (0, | &t < Q) where

1. 6y is the supremum of ordinals 8 such that there is an OD surjection from R
onto f3;

2. 0o =0;

3. if & > 0 is limit, then 8, = sup{6p | B < a};

4. ifa=f+1and 6 <O (i.e. B <Q), fixing a set A C R of Wadge rank 6,
0 is the sup of ordinals ¥ such that there is an OD(A) surjection from R onto
Y,i.e. O = O4.

Note that the definition of 8y for & = § + | in Definition 2.2 does not depend
on the choice of A. The Solovay sequence is a club set in ®. Roughly speaking
the longer the Solovay sequence is, the stronger the associated AD*-theory is. For
instance the theory ADR + DC is strictly stronger than ADp since by [10], DC implies
cof(®) > w while the minimal model of ADy, satisfies ® = 8, (ADg implies that the
Solovay sequence has limit length). ADg + @® is regular is stronger still as it implies
the existence of many models of ADg + DC.

Definition 2.3 “ADg + O is measurable"” is the theory “ADg~+ there is a nonprin-
cipal R-complete measure on ®".

It’s easy to see that “ADpg + © is measurable" implies “ADg + © is regular"; in
fact, there are unboundedly many 6, < © such that L(2(R) | 64, R) E “ADg + © is
regular".

We end this section with a theorem of Woodin, which produces models with
Woodin cardinals in AD*.
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Theorem 2.4 (Woodin, see [6])  Assume AD™. Let (6, | a < Q) be the Solovay
sequence. Suppose o, =0 or o =+ 1 for some B < Q. Then HOD E 6y, is Woodin.

3 A Brief Introduction to Hod Mice

In this paper, a hod premouse & is one defined as in [7] and [9]. The reader is
advised to consult [7] for basic results and notations concerning hod premice and
hod mice at the level of “ADg + © is regular" and [9] for hod mice beyond this.’
Let us mention some basic first-order properties of a hod premouse &2. There are an
ordinal A’ and sequences ((Z(a),X) | « < A?) and (57 | &« < A?) such that

1. (87 | « < A7) is increasing and continuous and if « is a successor ordinal
then Z E 5{? is Woodin;
2 2 =y 2
2. Z(0) = Lpp(P)6)”; for o < A7, P(a+1) = (Lpy* (P|6a))”; for

3 Bp<ay 3
limit @ <AZ, 2(a) = (Lpo " P (2|64))7;
3. ZEXY isa(w,0(P),0(P)) -strategy for (o) with hull condensation;
4. if « < B <17 then Zﬁy extends £ .

We will write 8 for 6/1% and 27 = Dp AyZﬁ(ﬂ . Note that #2(0) is a pure extender

model. Suppose 7 and 2 are two hod premice. Then & <,y 2 if there is a@ < A<
such that &2 = 2(a). We say then that & is a hod initial segment of 2. (£,X) is
a hod pair if & is a hod premouse and X is a strategy for & (acting on countable
stacks of countable normal trees) such that ¥ C X and this fact is preserved under
Y-iterations. Typically, we will construct hod pairs (£?,X) such that X has hull con-
densation, branch condensation, and is I"-fullness preserving for some pointclass I".
As a matter of notation, if (%, X) is a hod pair and 2 <1,y &, then X g is X restricted
to stacks on 2. Also, note that when £ = (), then L9 = £ 54 is an extension
of the internal strategy Zf .

Suppose (2,X) is a hod pair such that X has hull condensation. &7 is a (2,X)-
hod premouse if there are ordinal A’ and sequences ((Z(«),27) | &« < A7) and
(87 | @ < A7) such that

1. (87 |a < 7L?> is increasing and continuous and if « is a successor ordinal
then & £ 87 is Woodin;
2. 2(0)=Lp%(2|8)7 (so 2(0)is a Z-premouse built over 2); for o < 17,

7 P
Pla+1) = (LpET (2(8,))7; forlimita < A7, P(a) = (Lpe *F (2(82))7;
3. ZEEXNZisa(0,0(L),0(P))strategy for £ with hull condensation;
4. PEXY isa(w,0(P),0(P))strategy for 2 (a) with hull condensation;
5. if o < B <17 then Zgﬂ extends £ .

Inside 2, the strategies X, act on stacks above 2 and every XF iterate is a -
premouse. Again, we write §7 for 5)‘?} and X7 = @ﬁd,@Eg}. (Z,A)isa(2,%)-
hod pair if & is a (2,X)-hod premouse and A is a strategy for & such that ¥ C A
and this fact is preserved under A-iterations. The reader should consult [7] for the
definition of B(2,Y), and I(2,X). Roughly speaking, B(2,X) is the collection of
all hod pairs which are strict hod initial segments of a X-iterate of 2 and I(2,X) is
the collection of all X-iterates of X. In the case A< is limit, ['(2,X) is the collection
of A C R such that A is Wadge reducible to some ¥ for which there is some Z such
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that (2,¥) € B(2,%). See [7] for the definition of ['(2,X) in the case A< is a
successor ordinal.

[7] constructs under AD™ and the hypothesis that there are no models of “ADp + ©
is regular" hod pairs that are fullness preserving, positional, commuting, and have
branch condensation.” Such hod pairs are particularly important for our computation
as they are points in the direct limit system giving rise to HOD of AD" models. For
hod pairs (#5x,X), if £ is a strategy with branch condensation and  is a stack on
M5 with last model .4 (we will denote this model .4 7), X v.F is independent

of 7 (this property is called positionality). Therefore, later on we will omit the
subscript 7 from £ | » whenever X is a strategy with branch condensation and .#x

is a hod mouse. We also let o (j ) denote the supremum of the generators used in
.

Suppose AD™ holds. We fix a simple coding of Hy, by elements of R. For an
(o, @) iteration strategy A, we let Code(A) be the set of reals coding A via the
specified coding.® Suppose (£, %) is a hod pair such that ¥ has branch condensation
and is ['-fullness preserving for some pointclass I" and suppose Code(X) is Suslin
co-Suslin, then [7, Corollary 2.44] shows that ¥ is positional and commuting. We
can then compute the direct limit .#Z..(%,X) of all Z-iterates of Z.

In practice (in determinacy models where the HOD analysis can be carried out
or in core model induction contexts) we construct hod pairs (&,X) such that X has
branch condensation and is I'-fullness preserving for some pointclass I if I' = @(R)
then we simply say “fullness preserving"). In core model induction applications, we
construct hod pairs (Z,X) such that every (#,A) € B(#,X) belongs to an AD™-
model. We then can show (using our hypothesis) that the hod pair (£?,X) we con-
struct belongs to an AD"-model.

In this paper, & is a hod premouse if

(i) either & is a hod premouse below “ADg + © is measurable”, that is, no
hod initial segment 2 of & satisfies “6< is a measurable limit of Woodin
cardinals" (& is called improper in this case),

(i) or & = (P ,E) where &~ is improper hod premouse (or anomalous hod
premouse, cf. [7, Section 3.4]), Z E “57 is regular" and E codes (as an
amenable predicate) a normal measure over & with critical point §7 (2 is
called proper in this case).

Suppose & is a proper hod premouse and suppose X is some iteration strategy of
. Suppose 7 is a stack according to X. It’s easy to see that 7 can be decomposed
into a sequence of stacks (T, Mg : o < ) for some ¥, where

1. My=P = (A ,Ep), Nay1 is the last model of Ty, and for limit o, Ag is
the direct limit (under the iteration maps) of the .43’s for B<a;

2. for oo < y— 1 successor, say A = (ANy ,Eq). Then Jy is either a stack
below &% (if T, = (A1 Ea1)) orelse Toi1 = (ANy Eq).

3. for oo =0 or limit, F is either a stack on 4 below A orelse Ty = (AN ,Eq);

Such a sequence is called the normal form of 7. Informally, a stack in normal form
on & consists of stacks below 87 and its images and trees of the form (F) where
F is the predicate coding the normal measure over % with critical point §%. For
instance, if 9 = (Ep), then A = Ult(L,Ep). In constructing a strategy X for &,
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we need to construct strategies for the “new Woodin cardinals" of .#] (i.e. those
Woodin cardinals between 87 and ﬂEO(S‘U’Z)), cf. the proof of Lemma 5.16.

4 A Vopenka Forcing

In this section, we prove a theorem concerning a variation of the Vopenka algebra.
This theorem will play an important role in the next section. Suppose I" is such that
L(T,R) £ AD* + ADg and I' = @(R) NL(T,R). Let . be HODX"R). Woodin
has shown that 52" = L[A] for some A C © (see [19]). We write ® for OLTR) | The
following theorem comes from many conversations between H.W. Woodin and the
author and is due to Woodin. We include a proof here for the reader’s convenience.
A similar, but less general theorem and its proof can be found in [1]. We note that the
version in [1] is enough for our applications in this paper. The more general version
as stated in Theorem 4.1 will have applications elsewhere.

Theorem 4.1 Suppose L(T',R) £ AD" + ADg and H# = HODTR) - Let 7+
be a ZFC model such that A € 3T and V(;)%ﬁ = ng+, where A C O is such that
A = L|A]. There is a forcing P € # and a h C P generic over " such that in
HTh):

PR)NAF () = p(R)NA () =T
In particular, '+ (I') E ADg.

Remark 42 77 (T') can be realized as a certain kind of symmetric model in
ST |h]; a similar remark applied to #(I"). The symmetricity is with respect to a
certain class of order-preserving maps from PP to P specified in Lemma 4.3.

Proof  First, we define a forcing Q € L(I',R). Let Z = 9o (0)“T"R), where 96 (0©)
is the collection of bounded subsets of ®. A condition g € Q if g : ny — Z for some
ny < @. The ordering <g is as follows:

q<qgr&n <ngAVi<n,q(i)=r(i).
So Q is simply the Levy collapse forcing Col(®,Z). Now we define
P*={A|3n< wACZ"NA € OD"TR) Athere is a surjection 7 : R — A}.

For A € P*, we let ny be the unique n < ® such that A C Z". The ordering <p- is
defined as follows:

A<p Beng<ngsAVteEAt|ng€B.

It’s easy to see that there is a partial order (P, <p) € ¢ isomorphic to (P*, <p+)
and in .27, (P,<p) has size ®. Let 7 : (P, <p) — (P*, <p+) be the isomorphism and
mis ODHTR) | We will write p* for 7(p), where p € P. (P, <p) is the direct limit
of the directed system of complete boolean algebras P, in .7, where P} is the “n-
dimensional" Vopenka algebra on Z" and for n < m, the natural maps 7, from PP,
into P, defined as: 7, ,,(p) ={t € Z™ : ¢ | n € p} are complete embeddings.

Q is weakly homogeneous in the sense that for any p,g € Q, there is an automor-
phism 7 : Q — Q such that 7(p) is compatible with ¢. In the following, we show
that P* (and hence P) is fairly closed to being weakly homogeneous.
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Lemmad.3  Let p,qg €P*. Let P, , = {r €P* | n, = n,+ny}. Then there is a
map 7t : P* — P* such that rng(7) is dense in P*, m | P, s, is an automorphism of
P ., and w(p) is compatible with q.

np,ng
Proof  First, we define a “finite permutation" o : @ — @ as follows.
n+n, iftn=0,1,...,n,—1
on)=¢n—n, iftn=nyn,+1,....,np+n,—1 (D
n otherwise

Now we proceed to define 7. For any ¢t € Z<®, for any n < m < n,, by ¢ | [n,m],
we mean (¢(n),...,t(m)); we can define ¢ [ [n,m) etc. For any r € P such that
n, < np+ng, let r* = {t € Z"»""a : t | n, € r}; for r € P such that n, > np +ng,
let r* = r. Now let

n(r)={tooc:t€r},
where
106 1 [0,1p+1g) = (1(5(0)),1(5 (1)), .., 1(0(mp+ 1y — 1))
=(t(ng),t(ng+1),...,t(ng+n,—1),1(0),...,t(n,— 1)),
and if n; > np+ng, thentoo [ [n,+ng,n) =t | [np+ng,n).

So 7 permutes the first n, +n, coordinates of every ¢ € r* for any r € IP according
to o and does not change coordinates > n, +ny (this corresponds to ¢ being identity
above n, +ny). It is easy to see that 7 is <p+ order-preserving, is an automorphism
of P, and mg(7) is dense in P*.

Now

n(p)={t€z"t 1| [ng,n,+ny) € p}

is compatible with g because r < (p) and r < ¢, where

r={tezZ" 1t [[0,n;—1] € gAt | [ng,ng+np) € p}.
This completes the proof of the lemma. O
Now let g* C Q be L(I",R)-generic and g = | Jg*. By density, g: ® — Z is onto. Let
h C P be defined as follows:

peEhe (glny)ep’ )

Also, if p € P, by n,, we mean n,«. The term “symmetric" will be spelled out in
during the course of the proof of Lemma 4.4.
Lemma 4.4 Write hyg for the filter h above. Then the following hold.

(a) hg is P-generic over S€. In fact, for any condition p € P, there is a P-generic
filter h over A such that p € h and I" € J[h]. Furthermore, 7€ (T') is the
symmetric extension of F€ in [h].

(b) Suppose g* is L(",Z)-generic, then for any p € P, there is a P-generic
h over " such that p € h and T € A |h|. Furthermore, 7" (L) is the
symmetric extension of 7" in AT [h).

Proof  For part (a), to see A, is generic for [P over .77°, consider a dense set D C P*
which is OD. Let D’ = |JD. Then D’ is dense in Q. Otherwise there would exist a
condition g € Q which does not extend to a condition in D'. Let
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p=1{4 €Q:ny =ny and ¢’ does not extend to a condition in D'}

then p € P*; here p is nonempty as g € p. By density of D we can find some p’ € D
extending p. Then any condition ¢” € p’ is an extension of a condition in p (namely
of ¢ | ny) to a condition in D', a contradiction. This proves density of D’ in Q. It
is now easy to see that if ¢* € gN D’ then g* € p’ for some p’ € D, witnessing that
p eDnh0

In fact, we just proved that given an open dense set D C P in .77, for any condition
p € Q, there is a ¢ < p such that ¢ IFg AN D # 0.

Given g and A, as above, we also can define g from A, in a simple way. Let b € ©
and n < @. Let Ay, € P be such that A}, = {s € Z"" : b € s(n)}; it is clear that
A;n € OD. We take the map (b,n) — Ab’,,' to be in 7. Clearly,

beg(n) <Ay, €h,. 3)
We then can define P-terms for g(n) and ran(g) by
on={(p,b) | b<OAp <pAp,},
and
R={(p,0,) | pe PAn< 0}.
Note that 6, € . for all n and R € .7#. The following properties are easy to verify.

Lemma 4.5 1. For any g* C Q generic over L(I',R), let g =Jg* and hq be

defined as in 2, then one = g(n) for all n and R"s = ran(g) = Z.
2. For any condition p € P, there is an F-generic h such that p € h and R" = Z.
3. For any finite permutation o of @, let T be defined as in Lemma 4.3 from ©.
Then &g =qes T[g),hx =der T[h] are Q-generic and P-generic respectively
and F€h) = H|hg) and F[g) = H|gx). Furthermore, letting n* be the

canonical extension of T to P-terms R" = *(R)".!!

Remark 4.6 R is “symmetric" with respect to the maps 7 as in clause 3 of the
lemma. We call the models 7 (T'), 2+ (") symmetric models because they will be
shown to be J# (R"), 7+ (R") respectively for appropriate generics A. It is not true
in general that 7*(0;,) = 0, but nevertheless, {7*(c,)" : n < @} D {c/: n < 0};
one can see from this that 7*(R)" = R".

We can now show that L(I', R) can be recovered over .7 from Z (via the standard
Vopenka forcing). This is because for any A € I'™:

(i) A has an «-Borel code S € Z, and

(ii) S is generic over .7 via a forcing of size < ©.
Both (i) and (ii) follow from AD" + ADg in L(I',R). For (ii), the forcing is just the
standard Vopenka forcing. Suppose S C k for some k < 6, where 6, < © is a mem-
ber of the Solovay sequence of L(I',R), then by ADg, the standard Vopenka forcing
Py adding a subset of k has size at most 6, in J#. Furthermore, Py completely
embeds into P and there is P; such that P = Py« P;. 12

So there is a formula @ such that given any real x, 5Z[S][x] E ¢[S,x] if and only
if x € A. '3 This equivalence can be computed in .7 [h] from 7 and R" for any
A -generic h such that R" = Z. This shows that I" € .##[h] for any h satisfying (2) of
Lemma 4.5. For any such &, we define the symmetric model .¥ ) as
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(AN, A}

j?f,h = HOD{g[n:n<a)} .

Note that g | n is the sequence of (o,..., 0" ;) in S [h]. We also define
hin={peh:n,<n}.
In the following, by HOD,, we mean HODE™™® | Let G(gn) CP(gln)be

the generic for the Vopenka algebra adding g | n over .. Note that Z’[h | n] and
H[G(g | n)] may differ from 7 [g | n]'* but we do have

Lemmad.?7 [ [ n]=H[G(g | n)] =HODy,.
Proof  Using the equivalence
pEhIn&glnepk,

we get that i [ nis ODygp,y. Hence [ [ n] C HODyg,y. A similar argument gives

Conversely, g [ n € HOD|h | n] follows from 3, noting that we just need 4 | n in
that equivalence to compute g | n. Similarly, g [ n € HOD|G(g | n)]. Let X be a set
of ordinals in HOD g,;. Say X C 7. Let T € OD be such that for any § < 7,

BeX < T(B,g I n)holdsin L(I',R).

Let k¥ = max;<,suplg(i)]. Let T : ODN @([g(x)]") — H be the (OD) natural map.
Let 75 ={a C k" : T(B,a)}. ThenY = {(B, (7)) : B <y} € H andit’s easily
checked that

BEX@g[neTE@(ﬁ,r(Tg))eYAr(Tg)eh [ n.

So X € #[h | n]. Similarly, X € 5#[G(g | n)]. This completes the proof of Lemma
4.7. O

The above calculations show that I' € 57 (Z) and in fact
S wn=H(Z)=()=L(L,R). )
We first verify .7, = 7 (Z). First note that Z = R" € .74, and J is an inner

model of ¥ j, so the D-direction holds. For the converse, let X € .“,» ) be a set
of ordinals.

Claim4.8 X € JZ[h | k| for some k.

Proof Suppose X is defined in S#[h] from g | n for some n by a formula ¢. We
omit the ordinal parameters for brevity. So for any ordinal «,

o eX < HhEola,g | n.

By Lemma 4.7, g | n € J[h | n].

By the discussion above, the canonical Vopenka algebra for g | n, P(g [ n) com-
pletely embeds into P. Let G(g | n) C P(g | n) be the generic that adds g | n and let
P/G(g | n) be the factor forcing induced by G(g | n), then by Lemma 4.7, we have
G(g [ n) € Hh | n] = HODg4,y = H[G(g | n)]. Then

aeX & H[G(gn)=Hh]nE0lpGem Qld,g | ).
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This gives X € [h | n] as desired.
O

Since foreachn, g [ n € S (Z) and G(g | n) € H(Z), and H[G(g [ n)] = H[h | n],
we get h [ n € S (Z); therefore, X € 5 (Z). This gives ., C H(Z).

L(I',R) C s (Z) follows from the fact that R C Z and Z contains all eo-Borel
codes for sets of reals. To see 57 (Z) C L(I',R), let X be a set of ordinals in 57 (Z).
By Claim 4.8, X € JZ[h | n] = S[G(g | n)] for some n. Since 2 C L(I',R),
g I n,G(g [ n) are in L(I',R), so is X. It’s also easy to see that 5#(I') = L(T',R).
This gives 4 and completes the proof of Lemma 4.4 (a).

For part (b) of Lemma 4.4, let g* C Q be generic over L(#",Z). Let g,h be
defined from g* as before.

Lemma 4.9 (i) his a P-generic over 7.
(ii) R"=Z and HF(Z) = S pp+ .
(iii) T (Z)N () =Z and 77 (Z) N @(R) =T.

Proof  For part (i), suppose not. Then there is a finite sequence s € Z<%, s € g*
and a dense set D in IP such that D € " and such that s - AND = 0. As before (cf.
Lemma 4.7), s € 71 [G(s)], where G(s) is # " -generic for the standard Vopenka
algebra IP(s). So D must define a dense set D' in the factor forcing P/G(s). Choose a
condition g € D'. g must exist. Now g corresponds to ¢*, a nonempty OD; subset of
Z=® of finite sequences which extend s; by Lemma 4.7, ¢ € 5 [G(s)]. Let € g*.
Then ¢ forces that 4N D is not empty. This is a contradiction.

Clause (ii) follows from the proof that . , = .#°(Z), noting that 5+ [G(g [ n)] = 7 [h | n]
for all n. Now we want to verify clause (iii) of the lemma. For the first equality,
it’s clear that the D-direction holds. For the converse, suppose A is a bounded
subset of @ in 7" (Z). By the proof of Claim 4.8, X € 2" [h | k| for some k.
But 2" [h | k| = 21 [G(g | k)]. Since X is a bounded subset of ® and the forc-
ing P(g | k) is ®-c.c. (since g | k is a finite sequence of elements of Z, by ADg,
P(g | k), the standard Vopenka algebra adding g | , in fact, has size < ®), so indeed
X e AG(g k)] as Vgl =vg'".

Now we’re onto the second equality of (iii). The D-direction holds since
H(Z) =L(,R) C #"(Z). Let ACRY be in #(Z). First we assume A is
definable in J#"(Z) from an element a € 7, via a formula y. Let X be a P | -
name for a real in 5#*(Z) (here P* | o is the forcing Vop, defined in [12, Section
3]; P* | o consists of nonempty OD subsets of R” for some n.). The statement
y(%,d) is decided by P | @ by homogeneity of P [ @,P in the sense of Lemma 4.3
(ie. AT E“Dlbpio 0lFp/pro WX, VO Ipi 0 lp/pre ~W[i,d]”). Again, by the
fact that P | @ is ®-c.c. (in fact R [ @ has size < ® in J# by ADg), we get that
A€ H#(Z),and hence A € T. 1°

Now suppose A is definable in 57" (Z) from an a € " and a b € Z. Using the
standard Vopenka algebra and ADg, we can get a < ®-generic G(b) over J# and
ST such that HODy, = °[G(b)] C A+ [G(b)]. Let us use 7%, to denote 2 [G(b)]
and J," to denote " [G(b)]. Now in ., we can define the poset I, the same
way that P defined but we replace OD by OD(b) in L(I',R). Now we get a generic
hy over " for P, as before. A is then definable over .#," (Z) from parameters in
Jff. Now, we just have to repeat the argument above. This completes the proof of
Lemma 4.9. O
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Lemma 4.9 completes the proof of Lemma 4.4. O
Lemmata 4.4, 4.5, and 4.9 together prove Theorem 4.1. O

Remark4.10  If additionally, 52" F “© is regular", then 7" (Z) F “© is regular."
See [13, Lemma 1].

5 A Proof of Theorem 1.6

In this section, we assume the hypothesis of Theorem 1.6. We start with some setup
and notations. As in [18], we assume V = L(@(R), 1), where “ADg + DC + ©
is regular" holds and p is a supercompact measure on @, (#(R)). Suppose N is
such that there is a surjection 7* from @(R) onto N. Then 7* induced a surjection
T : 20, (P(R)) = P, (N), namely n(c) = n*[c]. Let uf be the supercompact
measure on @y, (N) induced by p, i.e.

Acul s lA]epn.
uf does not depend on the choice of 7. To see this, suppose 7, 7 : 2(R) — N are
surjections. Then the set A = {0 : 37 € @, (P(R)) 6 = m[1] = M [7]} is a strong
club subset of &, (N) in the sense of [2, Definition 2.1] and hence by [2, Theorem
2.3], A € py' N us?."7 Futhermore, ;' [A] = 7, '[A] € p. From this, it follows that
/,L;\g1 = [,ng. We will then denote this measure (i and sometimes suppress mentioning
the surjection 7. We write V), o for “for py-a.e. ".

We assume, for contradiction that

(f):  there is no model M containing all reals and
ordinals such that M F “ADg + © is measurable".

Under this smallness assumption, the HOD analysis in V can be carried out as in
[7] and [9] to conclude that HOD|® is a union of hod premice and in fact is a direct
limit of the directed system .% of hod pairs (42, %) such that ¥ is fullness preserving
and has branch condensation. We then construct a hod premouse #* extending
HOD|® and a normal measure v on ® over #* and amenable to 7 *. So we have
a proper hod premouse (57, v). Using the Vopenka forcing in the previous section,
we then show that V = L[ T][v](#©(R)) E ADg + © is measurable. This contra-
dicts (). So (T) must be false; equivalently, there must be models of “ADg + © is
measurable” after all.

We define a model 5# 1 extending 57 =4.f HOD|® as follows: J#" is the union
of sound, countably iterable hod premice .# such that ¢ <\.#, pu(.#) < ©. Here,
A is said to be countably iterable if whenever .#* is countable, transitive, em-
beddable into .# via map 7, letting 7#* = =1 (), then .#* <Lp(5#*), where
A= Dy X (a)-

Let N be a transitive structure of a large fragment of ZF+DC such that
H(R)U S C N and such that there is a surjection 7 : (R) — N. We call such an
N suitable. We have that V;NO' o < N. For each such o, let Ny be the transitive col-
lapse of ¢ and 75 be the uncollapse map. Let (I's,.#%,04) = 15 ' (2(R), H#,0).
We let I' = o(R) and (67 : o < @) be the Solovay sequence defined in I's.
Generally, if x € o, then let x5 = 7 ! (x). We also let

%—0— — LpZE (%).18
The following gives an alternative characterization of 7.

Lemma5.1 ¢ = [0 H," |, where Qis the transitive closure of (R)N .1
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Proof  First, let .# <1 " . Since . is sound and pe,(.#) < ©, there is an A C ©
coding .# . Then

A= [0'>—> nc;][A]]Mgv (5)
and

Vi, 0.5 [A] € Ay (6)
To see this, let Q C N and N is suitable such that A € N. Note any such suitable
N,M, Unng = Umng- The main point is for any suitable N: V), & 5" only depends
on 6 NQ; in fact, 5" = A5, € HOD{gnqy. Now

Vi 0 Ag = T3 G [A] NAG € .
This follows from the definition of .7 and the fact that VO 6N < A . Finally,
A is represented in the py-ultrapower by the collection of “Q-invariant" functions,

ie.

A= {f: 2o, (N) = [[Ac/tn :Vo1,02(01NQ = 02NQ = f(01) = f(02)}.. ()

The above discussions give us 5 and 6. So .Z <1[0 — 5], -

Let # < [0 — 4 ]y, Let N be suitable such that .## € N. Note that by 7,
the function ¢ — .#; is Q-invariant and represents .# in the py-ultrapower using
only Q-invariant functions. For any countable transitive .#* embeddable into .#
via 7, there is 0 € 24, (N) and an embedding T : A4 * — M such that #s <1 A5
Therefore, .#* is iterable. This shows .# <17 7.

O

Lemma5.2  Nolevel A of 7" is such that py(H) < O.

Proof  Suppose .# <17/ is the least such that pg,(.#) < Q. Let N be suitable
such that .#Z € N. We start with the following.

Claim5.3  For liy-a.e. G, for any B < Ag =qet A0, L, (p) is fullness preserving
and has branch condensation.

Proof Fixa o and a 8 < As. By the HOD analysis in I's (which uses (7)), there
is a hod pair (£, X) such that

e ¥ is I'¢-fullness preserving and has branch condensation;

o H5(B) is an iterate of X.
Using 75, we get that 75 (X) is an (@;, ) strategy for & that is fullness preserving
and has branch condensation. Since ¥ = 715(Z) | I's, £ () is the tail of 75 (X) and
hence satisfies the conclusion of the claim.?” O

Fix a o as in the claim and recall .#s = 75! (.#). Let £ be the natural strategy of
M defined from 75 (see [8, Section 11]). The important properties of X4 are:

1. Lo extends X5 =gor Dy op o Zeﬁ%(a);

2. whenever (7, 2) € I(Mg,%s), for all o < A2, L7 9(a) is the pullback
of a hod pair (#Z,A) such that A has branch condensation and is fullness
preserving and hence by [7, Lemma 3.29], £ 7 94 has branch condensation;

3. X5 agrees with X5 on stacks below @4 and for each o < Ag, the direct limit
map 72)/:/‘;6 w | 68 is the direct limit map n);go( e | 62,

=



14 N. Trang

4. suppose (7, 2) € I(Ms,Ls) and let i = ©7 be the corresponding iteration
map, then there is a map k: 2 — # such that koi = s | M. k is defined
as: k(i(f)(a)) = 7s(f) (75 ..(a)) for f € My and a € (62)<°, where A is
the .7 -tail of Es. S0 s is ODyry 151

(3) above uses the fact that @ is regular.

Let 6 = 5(‘{//" < @4 be a Woodin cardinal of .#; such that py,(#5) < 6. Let
A C 0 witness this. So A is a bounded subset of @4 that is not in .#Z;. We aim to
obtain a contradiction from this.

Now we can construe (.#s,Ls) as a (H5 (&), Ly, (¢))-hod pair. We can define a
direct limit system of (5 (), (o)) hod pairs as follows:

F*={(2 ,N)| (2 ,N)=p; (2,A)} .

Note that .7 does not depend on (2, A) and in fact is ODy (@ N L(#(R)). This
easily implies that A is ODx , , in L(©(R)). By MC(Z 4, (q)) ** and the fact that

Ho(a+1)is E y (q)-full, A € H5(0+ 1), 50 A € M. This contradicts the defini-
tion of A. O

We define a measure v on © over " as follows. Let A € 2 N »(O) and N be
suitable such that A € N. Then

A6v<:>VZNG sup(cN®) € A. 8)

First of all, note that for uy-a.e. o, sup(cNO) < O as cof(®) > . Now it
appears that whether A € v depends on the choice of suitable N, but it does not. Fix
A C O and suitable Ni,N; such that A € N N N,. For uy,-a.e. o, we let Ag be the
transitive collapse of o NA. Similarly, we define A for iy,-a.e. 6. We have that

A=[0— Acluy, =[0 = Aclpuy,-
Again, as in the proof of Lemma 5.1, here and everywhere else later in the paper,
we require that the ultrapowers use only Q-invariant functions. The point is the
transitive collapse of 0 NA only depends on 6 N®, not all of o. Furthermore, letting

N = N1 NN, then N is suitable and .7# U{A} € N. The following equivalences are
easy to verify:

VZNI osup(cNO®) €AV, osup(cNO) €A
<:>V;N26 sup(cN®) €A

The main point is: if X € py, (or X € uy,) then the set {cNN: 0 € X} € uy. This
shows v does not depend on the choice of suitable N.>

It’s clear that v is a measure. Note also that the above definition makes sense
for all A € V but we only care about those A’s in 1 as we can prove the measure
behaves nicely on this collection of sets.

Note that 5" is a ZFC™ model and |77 "| < ®'. Now we show the following.

Lemma 5.4 Vv is amenable to V. In other words, for any 4 <1 T,
V| ecHT.

Proof Let . <1. " be sound and py(.#) < © (note that 7" is the union of
such .#’s). Let v, =V | .#. We show v 4, € 7.
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Again, we fix a suitable N such that ., v, € N. Let A = (Aq | @ < ©) be a
definable-over-.# enumeration of @(®)N.# and let A4 <1 " be least such that
A € ./ 2* We may choose N so that 4 € N.

We use the set-up and notations above. Let .# = [0 — .#s]yu, and note
that V}, ¢ M5 = n;' () . Similarly, v, = [0 — V], where for uy-ae.
0, Vo = T;'(V.y). Similar notations are introduced for .#". We want to show
VO Vo € . For a py-measure set of o, we have (Mg, U, No) =T (M V.4, N)
and X () is fullness preserving for each o0 < Ags. We show the claim holds for all
such 0. Let X denote the aforementioned py-measure one set.

Let foreach o0 € X, Z5 = HOD(L%?’Z;). Note that

p(e)cr) mﬁd = JO(GG) N %+

by a similar argument to that used in Lemma 5.2. Let A = (AS | o0 < @) = 7, ! (A).
We want to show (¢t | AG € Vs) € Zs which in turns implies (& | AG € Vi) € H,F.

Let 6 € X. Let Y5 = sup(75[®g]) (note that 75[@s] = 0 N O coincides with the
iteration embedding via £ and since cof(®) > o, 75 < 0). Note that

Vo< Og (Ag € Vo < Y5 € 6 (A°) N (Yo + 1)) )
and
(s (AN (Vs +1) | 0 < Og) € Zs. (10)
9 is true by elementarity and the definition of v 4. 10is true because (75(A9)N (Yo +1) | ¢ < Og)
is OD from 75 [ Og U {(@g,Ys)} and As. Ag € Ny € #s. Furthermore,
s | Oc U{(Os,%)} = ii;’dm [ (@ + 1), hence by the definition of Zs, we
have 10.
By 9 and 10, we have (o | Aq € V5) € #5. The lemma follows from the

agreement between % and ;.
O

Remark 5.5 (i) In the proof of Lemma 5.4, we can’t demand that s+ € N
because it may be the case that o(.#") = ®" and hence there are no surjec-
tions from @(R) onto S,
(ii) It follows from the fact that © is regular and ADg holds that J#T F “© is
regular limit of Woodin cardinals".

Now we want to show that v is normal and £(®) NL[#T,v] = @(©) N, Let
A <7 be sound and py (#) < ©.

Lemma5.6  Let 4 <. Then v 4 =qer vV | M is normal.

Proof  Suppose not. Let N be suitable such that .#,v 4 € N. Let 4 = [0 — M5y
and note that Vy & ./ = ;' (M).
We define a measure Vg on @4 over .# as follows.

A € Vo & Y5 =get SUP(T5[Os]) € 75 (A). (11)

It’s easy to see that
Vo :ﬂgl(V%)AH6VG/NN: Vy. (12)
By the assumption on V_;, we have that VZNG Vg 1s not normal (in Ng). This means
Vin03f € Mo 76 (f)(Yo) < Yo Ao (f) (Vo) & 0N Y5 (13)

By normality of iy,
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Af € M Y,0 f(Y6) £ 0N Y ANf(Yo) < Yo-
Fix such an f € . and let

A'={c|f(¥) ¢ NV Af(Ys) < Yo} (14)
We have A’ € uy. This implies that B € v, where
B=A{v|s(r) <} (15)

Let A4 <.#* <177 be such that v, € .#*. This is possible since v, €
and 7 is a limit of such .#*’s. Now we can also assume .#* € N by expanding

N if necessary. Let then V;, & 45 = 15" (M%)

Claim5.7  Thereisann < O such that V}, 6 f(¥s) < 7.

Proof V0, letXs be the m-guided strategy for .#s (as defined in the proof of
Lemma 5.2) and iy : .#s — N5 be the direct limit map, where .45 is the direct limit
of all Xs-iterates of .#. Note that since .#s F “Og is regular”, is | O = 75 | Og;
also we may and do assume i¢ is cofinal in o(.4#5). These properties follow from
(1)-(4) in the proof of Lemma 5.2. (1)-(4) in the proof of Lemma 5.2 also imply that
there is a map kg : A5 — A suchthat kg ois = 7 | M and crt(ks) = ic(Og) = Yo

Let Vi = is[Vo] and (fo,Bs) = (75 (f), @5 ' (B)). We have then that V}, & Bs € Vo,
which implies that is(Bgs) € V. We note that crt(ks) = ¥ and therefore, v} is a
subset of the normal measure Vs induced from kg, i.e. for A € A5, A € Vg iff
Yo € ko(A).

To prove the lemma, it suffices to show that

Vi O My E M < Og ivy(f5)(Oc) < No. (16)

Fix a o in the first paragraph. Note that we can extend ig to a map if : g — N
such that il | @g =is [ Og = g | O and extend kg to a map kJ : AN — .4 * such
that crt(k}) = crt(ks) = Y5 and kt | NG = is.

As mentioned above, the measure Vs € 45" is normal; so there is some 1 < Y5
such that

N Fkolic(f))(Ys) =1 a7
By continuity of is at @g, let 1 least such that i (1) > N, we get 16 from 16 and
the choice of 15.%° Finally, ] = [0+ Ng ]y, satisfies the claim. O

Let now

A={ocA" f(1s) <n}.
By the previous lemma, A € uy.

Definition 5.8 (Becker, [2]) Suppose A C 9, (N). We say that A is unbounded
if for all o € @, (N), there is a T € A such that 6 C 7. We say that A is a strong
club (scub) if A is unbounded and Vo € @, (N)VT C 0, if whenever 7 is finite, then
there is a 7' € A such that T C 7/ C o, then 6 € A. A is a weak club (wcub) if A is
unbounded and whenever (o, | n < ®) is a C —increasing sequence of elements of
A then |, 0, € A.

Clearly, a strong club is a weak club.

Lemma 5.9 Suppose E € uy. Then E meets every strong club. In particular, A
meets every strong club.
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Proof  Suppose C C @, (N) is a strong club and CNE = 0. Let F be defined as fol-
lows. F(0)=0\U{7| 7 C 6 AT eC}. Byour assumption that C is a strong club and
CNE=0,V,, 0 F(c) CoAF(0)#0. By normality, 3xV;, 6 6 € E\CAx € F(0).

We claim that this is a contradiction. Fix such an x. Since C is a strong club, there
isa o € C such that x € *. By fineness and countable completeness of Ly, the set
{0 € E| 0* C 0} € uy. This contradicts the definition of F. O

Note also that the above lemma implies that if C is a strong club, then uy(C) = 1.

Now let IP be the natural forcing that shoots a weak club through A. Conditions in
PP are countable W C A such that whenever (o, | n < ® A 0, € W) is C —increasing
then |, 0, € W. V(Cy,Cy € P, Cy <p C; iff C; C Cp.

Lemma5.10 P is (@;,c0)—distributive.

Proof  Fix a condition Cy € P and a sequence D = (D; | i < ®) of open dense sets
in IP. We want to find a condition C <p C; such that C € D; for all i.

Claim5.11  The set D = {0 | 6 < N} contains a strong club.

Proof D is certainly unbounded (by a standard closure argument using DC). Now
let 0 € @, (N) and suppose for all finite T C o, there is 7 € D such that 7 C 7' C ©.
We want to show o € D. We prove by induction that for any n, for any finite 7 C o,
whenever T C 7' C ¢ and 7 € D then 7’ <5, 0 <5, N.

This clearly holds for n = 0. Now suppose the claim holds for n and let ¥ be a
I1,, formula, 7 C o be finite such that N = 3x W[x, 7]. By our assumption, there is
a v € D such that T C v/ C 0. By definition of D, 7/ < N, hence 7’ F 3x P[x, 7].
Let x € 7’ be a witness. We have then 7/ F ¥[x, 7]. Butx € o and P is I1,,; by the
induction hypothesis, 6 £ ¥[x, 7’]. This proves the claim. O

Let N’ be a transitive model of ZF~ + DC such that g(R) — N’ and N,P,D € N'. Let
N be a countable elementary submodel of N’ such that P,D € N” NN € D (we may
assume D enumerates all open dense sets in N). Such an N” exists by the claim. By a
standard argument, we can build a <p —descending chain of conditions (C, | n < @)
such that

L. Cut1 € Dy;

2. C, € N for all n;

3. U,G.=N"nNN.
Let C =J,C,U{N"NN}. Then C € P and C <p C, for all n. This means C € D,
for all n. Hence we’re done. O

Let G C P be V-generic. In V[G], DC holds and there is a weak club C C A. Let then
C*={ys |0 €C}.

Then C* contains an @—club in V[G].

Now we proceed to derive a contradiction. First, we use an abstract pointclass
argument to generalize Solovay’s proof that m; is measurable under AD to show the
following.

Lemma 5.12 In'V, there are unboundedly many k < ® such that:
1. the w—club filter on x is an N -complete ultrafilter on @(x);
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2. the set {cNPR) | 6 € ANYs < K} is unbounded in @, (£(R) | K); in
particular, {Ys | 6 € A} is unbounded in x;

3. V€ < n, the set of 6N @(R) such that 6 € A and & € 6 and Y5 < K is
unbounded in @y, (P(R) | ).

Proof Since Solovay’s proof is well-known, we only highlight the necessary
changes needed to run that proof in this situation. Workingin V, letn™ < p; < pr < ®
where pp,p; are regular Suslin cardinals. Furthermore, we assume that there is a
prewellordering of length 1 in S(p;)%°. Fix a prewellordering < of length 1 such
that <€ Ag(,,) and let f : R — 1 be the natural function induced from <.

We claim that there is a ¥ which is a limit of Suslin cardinals of cofinality p, (in V)
and x satisfies clauses (2) and (3) of the lemma. To see such a K exists, first note that
by Theorem 4.1, 77" (£(R)) N @(R) = @(R); as discussed in Remark 5.5, 7" = @
is regular, " (#(R)) F ADg + @ is regular. Now the set Y of 6N ® such that X is
fullness preserving is in 52" (@(R)) (note that Y5 is a limit of Suslin cardinals and
cof(¥s) = @ in S (@(R))); also, for each & < 7, the set ¥z of ¢ € Y such that
& eoisin #T((R)). From these facts and the regularity of ® in 21 (o(R)),
we easily get such a k.

Fix such a k. We show that k satisfies (1) as well. Let Q be the (boldface)
Steel pointclass at k (see [11] or [5] for the definition of the Steel pointclass). The
properties we need for Q are:

1. F*Ag C Ag (in fact, Ag = {Y | w(Y) < k});

2. Qs closed under N, U with S(p; )-sets.

3. (Boundedness) Let Z be an Q-universal set and 7 : Z — k be an Q-norm.
Then for A € é@, 7 | A is bounded in k.

In the following, we fix Z, w as above and a simple coding of @-sequences of reals
by reals. So a real x codes a sequence of reals (x;);<q. For each X € g(x), we define
the Solovay game Gy as follows. Players I and II take turns to play natural numbers.
After ® many moves, say player I plays a real x and player II plays a real y. I wins
the run of Gy iff either there is an i such that either x; ¢ Z or y; ¢ Z and letting j be
the least such then y; ¢ Z or sup{7(x;),w(y;) | i,j < @} € X.

Now we’re ready to prove the @—club filter at k, %, is an 1" -complete ultrafil-
ter. Note that % is an ultrafilter follows from AD and in fact, X € % iff player I has
a winning strategy in the game Gy. Fix a sequence (A | 00 < N AAy € %). We want
to show (g Aq € . Since Ay € %, player I has a winning strategy for the game
Ga,- Letg:n — @(R) be such that forall & < n, g(§) C {7 7 is a winning strategy for player [ in Ga, }
and furthermore Code(g,<) = {(x,7) | T € g(f(x))} € S(p1). Such a g exists by the
coding lemma.

Foreach & < x,let Yz = {(t[y])n | n < @AJx(x,7) € Code(g, <) AVi(n(y:) < &)}
It’s easy to see from the fact that 7 is Q-norm, Q is closed under intersection with
S(p1)—sets that Yz € Ag. By boundedness, g(§) = sup{7(z) | z € Y¢} < x forall &.
This easily implies (as in the standard Solovay’s proof) that I has a winning strategy
in the game G a,,, Which in turns implies (o A € % O

Let D={Y | 0 € A} € v 4. Fix a x as in Lemma 5.12 and let % be the w—club
filter on k; furthermore, by the choice of k, DN k is unbounded in x. By the coding
lemma, DNk € L(o(R)).

We claim that DN k € %. Otherwise, DNk is disjoint from an @—club E. Let
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E'={o |y €E}.

But in V[G], DNk contains an ®@—club, namely C* N k. In V[G], E remains an
@—club, hence has nonempty intersection with C* N k. This is a contradiction.
Finally, since DNk € % and % is " -complete, there is a & < 1 such that
Dg ={y<x| f(y) =&} € %. Butthen thereisa 6 € C such that s <k, § € 0,
and f(¥s) = &. This contradicts the fact that Vo € C f(¥s) ¢ o. This completes the
proof of Lemma 5.6.
O

Let /= = Ult(F, V), and 7, be the ultrapower map. Let A = (@) and
E, be the (®, 4)-extender derived from 7y, i.e.

(a,A) €Ey & a € [A]<° AA € (@) N+ Na € my(A).
E), is essentially the measure v.

Lemma5.13 31 iswell-founded. Furthermore, p(®)NA#T~ = p(@)NH#T.

Proof The well-foundedness of 7#~ follows from the fact that v is countably
complete in V. The countable completeness of v follows from the countable com-
pleteness of . The equality of the powersets follows from ®-completeness and
amenability of v, cf. Lemmas 5.4 and 5.6.

O

Remark 5.14 We, as usual, identify .77~ with its transitive collapse. As such,
S+ is a hod premouse. By Lemma 5.13 and Lemma 5.4, E,; coheres 5. So
(A |A,Ey) is a hod premouse.

Theorem5.15  Let s+ = L[~ |A|[Ey].>” Then p(©@)NA T+ = (@) N4,

Proof  Suppose not. Then there is an .Z* < 3+ such that p(.#*) < ® and .#*
defines a set not in .#"". We may assume .#* is minimal and p; (.#Z*) < ® (note
that o(.#*) > o(AF)). Let .4 be the transitive collapse of Hull;” (®@U pi’").
One can use an argument similar to that in Lemma 5.2 to see that p; (.#*) = ® and
therefore, .# is the X-core of .#*. .# is sound, transitive and .# X;-defines a set
not in J#"; so .4 has the form Jo[#*][E 4] for some S E 4. It’s easy to see
thatE y =E, | M.

Let N be suitable such that .# ,E , € N. VLNG, recall that w5 : No — N be the
uncollapse map. Let

”6(%67%780‘7E0‘a%kaa6) = (%7%7®7E///7%*7a)'

Recall the definition of the strategy X5, which is the ms-realizable strategy for .Z
defined after Lemma 5.2 for stacks below @4 (this means X5 does not act on stacks
that involve applying E and its images). Our goal is to define a strategy X extend-
ing s that acts on all countable stacks of normal form on ..

Lemma 5.16 For Uy-almost-all ©, there is an iteration strategy X3 for Mg with
the following properties:
1. E; is a Tg-realizable strategy that extends YXs. This means ¥5 C Z}' and
whenever 7 is a (countable) stack of normal form according to &, letting
i: Ms — P be the iteration embedding, then there is a map k: P — M
such that t1s = koi.
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2. Whenever (2,A) € I(Ms,EE), Yo < A2, Ag(q) is U(Ms,ES)-fullness pre-
serving and has branch condensation. Hence £ is U(M s, X&) -fullness pre-
serving.

Proof We prove (1) (see Figure 1). The proof of (2) is just the proof of [7, Theo-
rem 3.26] so we omit it; we just mention the key point in proving (2) is that A g(q)
for ¢ < A< is a pullback of a strategy that is fullness preserving and has branch
condensation.

Fix a 0. Suppose i : .#s; — & is the ultrapower map using E;. We de-
scribe how to obtain a 7s-realizable strategy X () for a < A7. We then let

L5 = ®ycr?lo(q) and 7 be a stack on 2 according to ¥, with end model
2. Let j: & — 2 be the iteration map and k : 2 — Z be the ultrapower map
by E g; here we will write E 4, E 9 etc for the image of Es under the appropriate
embeddings. We describe how to obtain 7s-realizable strategy X o) for all a < A2
and a mg-realizable strategy X4 (q) for all a < AZ . The construction of the strategy
for this special case has all the ideas needed to construct the full strategy as for
the general stack (in normal form), we simply repeat the arguments given below
inductively.

Let T < N be such that o, T e uy-allmost-all T have this property. Let
Mgz =T; Loms. Working in Nz, let % 1 be the direct limit system consisting of all
non-dropping iterates of (5, L5 NN¢), let

yo
N =105 (A7),
where i’y;g&.w is the corresponding direct limit map.?® Let i* : & — . be such that

i*(i(f) (A7) = o2 () (W)-

By the definition of Vg, it’s not hard to show i* is elementary and 75 ; = i* oi (so
g = Mpoi*oi).

Note also that i*(Es») = E;. Now, let (.#,A) be a point in the direct limit
system giving rise to ##; such that ran(i* | A7 ) C ran(i /)Vw) There is some
s: P27 — A such that i, _os=i* | AZ. Then ¥ 5, the strategy of & for
stacks that do not use E4 or its images, is simply the s-pullback of A. Note that
by the choice of (.#",A), A is a fullness preserving strategy with branch condensa-
tion. It’s not hard to show that the definition of £, doesn’t depend on the choice
of (.#,A) and the choice of 7. We show why X, doesn’t depend on the choice
of (A,A). Suppose (A, A), (N, N),s: PIAY — N, and 5" : P|AT — N
are as in the definition of X,, then we can compare (4", A), (4", A’) and get a
common iterate (-,'¥), where W is the common tail of A and A; this follows from
positionality of A,A". Leti y o : A — . and iy o : A" — .7 be iteration maps.
Note that iy »os=1i 41 05 =gt and

AS — (A/)S’ —

A similar argument shows that £, does not depend on the choice of 7. Let Z., be
the direct hmlt of ¥, iterates of 9|6 ? and 1t : P.. — H; be the natural map such

that T o), [ (2|67) =i | (2[67).
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Figure 1 The construction of £

-,

Now every element of 2 has the form j(f)(a) for some f € & anda € o (7)<,

—

where (.7) is the supremum of the generators used in .7. We let j*: 2 — #; be

such that j*(j(f)(a)) = i*(f)(ny(ifjm(a))). Hence i* = j*o jand 15 = j*o joi.

Finally, every element of % has the form k(f)(A?) for some f € 2. Let
h: My — Ult(Mrz, V) be the ultrapower map and h* : Ult(My,V;) — 4 be such
that 77, = h* oh. Then letk* : @ — Ult(.#y, vz) be such that k* (k(£)(A2)) = h(j* () (A-7).
It’s easy to see that ho j* = k* ok. We can now derive the strategy ¥, using
h* ok* | A7 the same way we used i* | A7 to derive the strategy L, Again, it's
easy to show that X, is a 7s-realizable strategy. The definition of ¥, does not
depend on the choice of 7.

In general, suppose J = (Za, N o < v,B < y) is a countable stack on .#
in normal form according to £ and .7 is on .#5. We want to define £} on 7.
As part of the definition of £}, we have iteration map i 4, s, : Ms = N — Na»
amap i: Ny — M7 for a sufficiently large 7 that contains all relevant objects, i-
pullback strategy Eq for Ay |A7"2, here A% =i 4 4 (Og). If Ty = (Ng,Eq),
where Eq =i 4, 4, (Es), then we can define maps k* : Ult( Ay, Eq) — Ult(A7, Ez),
h: Aty — UlW( M Er), and h* : Ult( A, Er) — A as above and derive a strategy
Yot for Ay 1|A"et! where Ay 41 = Ult(Agy, Eq). We then let oy C ZE. Sup-
pose 7y is below A" Then we use £, C £ to choose a branch b for Ty and a map
J5 i N TP i such that j* oi) = ig.

This completes the construction of £ and hence the proof of Lemma 5.16. Note

it also follows that = extends X.
O

By a ZFC-comparison argument ([7, Section 2.7]) and the fact that zg isT( A, Z*)—
fullness preserving, an iterate of £ has branch condensation. Without loss of gen-
erality, we may assume X has branch condensation.

Since p(As) < Og, we let A C @4 be a set X definable over .#; but not in
%Jr'f')ﬂ Say

O{GA@%G':lll[a,svp(l//lo]’ (18)
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for some s € @5®. Recall that # F @4 is measurable as witnessed by Es. We
can define a direct limit system .7 = {(2,A) | (2,A) =p; (M5,ZE)} 3. Let Moo
be the direct limit of .% and let i 4, o : .#s — .- be the iteration embedding. We
have that HOD| Y <1 .#.. € HOD and p; (.#.) < 5. Let A« be defined over .#.. the
same way A is defined over .#, i.e.

O EAw S Moo= v/[a,i,.fzo,m(s),P'f””l (19)

Since Ao is OD, A is ordinal definable from (J#5,X;). This is because from 18

and 19, o € A if and only if z?& () € Awe. By MC(X;) (which follows from our

smallness assumption (1) and the HOD analysis done in [9]), A € #". Contradic-
tion. O

Lemma 517 ZTT () N@[R) =T and #H() £ ADr+ there is an R-
complete normal measure on ©.

Proof  First note that no /71 |A <.# <" is such that py(#) < ©. The
equality in the conclusion of the lemma follows from Theorem 4.1 with HOD (')
playing the role of # and J# " playing the role of s#*. Note that 77 = “®
is regular" and in fact 57 (T') E “® is regular” since @ is regular in V. The R-
complete normal measure on ® in (') comes from v from the proof of The-
orem 2.4 in [3]. The proof uses the fact that every A € I can be added to 5#
via a forcing of size < @. This means every A C @ in 527" () is in some generic
extension of s# 1 via a forcing of size < ® and hence is measured by the canonical
extension of v. The normality comes from normality of v. The R-completeness of
the induced measure then follows from [3, Theorem 2.4]. O

This completes the proof of Theorem 1.6.
Notes

1. The equiconsistency of (1) and (2) is due to H.W. Woodin. The equiconsistency of (2)
and (3) is due independently to H.W. Woodin and the author.

2. Let u witness ® is measurable. Suppose O is singular. Then it is easy to see that there is
acofinal map f: R — ©. Foreachx € R, let A, = (0 < ® | o > f(x)). Clearly A, € u
forall x € R. Let o € (N, Ay # 0. Then o > f(x) for all x € R. This contradicts the fact
that f is cofinal.

3. w(A) is the Wadge rank of A.

4. See [20] for more backgrounds on descriptive set theory in contexts where determinacy
only holds locally.

5. We will not deal with short-tree strategy mice in this paper. This is because the hod mice
we are constructing is well below the level of 1sa hod mice, whose theory is developed
in full detail in [9].

6. This just means Zl;y acts on all stacks of w-maximal, normal trees in &.



10.

11.

12.

14.

15.

16.

20.

21.

22.

NDJFL Style Guide 23

Branch condensation does not seem to follow from hull condensation and vice versa. By
[7, Theorem 2.42], fullness preserving strategies with branch condensation are positional
and hence commuting. In short, we can just write “hod pairs that are fullness preserving
and have branch condensation".

. Let w: R — Hg, be the coding of elements of Hg, by elements of R. Then 7 induces a

surjection Code: (R) — ¢(Hy, ) as mentioned above. To save space, we will generally
not make distinction between A and Code(A) in this paper.

Here 5#+(T') is the minimal, transitive ZF model containing #* and . 5#(T) is
defined similarly.

This argument is pointed out by the referee. It is simpler than the author’s original
argument

g and g only differ on finitely many bits, and similarly for /# and k. Also, in general,
n*(R) # R and n*(0y) # 0y for most maps 7.

See [? ] for a similar observation regarding the w-dimensional forcing realizing L(R) as
a symmetric model over H ODMR).

. We in fact can take S to be in ®?; this is a consequence of AD" 4+ ADp.

A proof of the equality seems to require that every OD subset of Z" has an OD co-Borel
code. See [? ] for the corresponding fact that every OD subset of R” has OD oo-Borel
code in L(R).

We use the maps Ttn, n, 88 in Lemma 4.3 to get that for any two conditions p, g, it cannot
be the case that p Ibp G (g1n) @[ 8 [ n] and g 1Fp/Ge 1) ~@[&. g [ n] and vice versa.

This can be seen by taking a hull X < #*+ such that |[X| < ®in 57" and Z | 0 U{P | ®,a} C X.

Let My be the transitive collapse of X and 7 : Mx — X be the uncollapse map, then

Mx € A We getthatx € Aif and only if S[h| EMx [h [ (P [ @)]FOI--1(p) /b1 wx, 77 (a)).

This gives A € 7 (Z).

. The reader can also see Lemma 5.9 and the subsequent discussions for a proof.
. Note that the Lp-stack is computed in V.

. Note that Q is suitable.

Note that by positionality of 5 (X), which follows from fullness preservation and branch
condensation (cf. [7, Theorem 2.42], X Hy(B) does not depend on any specific iteration
from & to #5(B).

This means these (7, L) hod pairs are Dodd-Jensen equivalent.

This stands for Mouse Capturing with respect to X - (o), which in turns is the statement
thatif x,y € R, and xis ODy, , (v) then xis in a £ 4, (,-mouse over y.
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N. Trang
Alternatively, one can define A € v <V}, 0 sup(6N®) € A.

A exists because Po () < ® and # is sound.

We do not know that if (Vg ) = V. So from the normality of V5, we cannot conclude Vg
is normal using elementarity.

For a Suslin cardinal &, S(€) is the pointclass of & —Suslin sets.
Note that £y, measures all sets in "~ |1 by Lemma 5.13.

Note that o,  are countable in .
Here A4 = A/ = @45 = 67 by the regularity of O¢ in Ay, 75.

From the fact that " = [0 — "], and Los theorem, we can conclude that Y}, &
there is A X;-definable over A5 = .M 5nq such that A ¢ ",

We take Xy-ultrapowers for extenders with critical points > the image of ®y under
iteration embeddings by X and X-ultrapowers otherwise
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