Synthesizing Data Structure Refinements from
Integrity Constraints

Shankara Pailoor
University of Texas at Austin
Austin, Texas, USA
spailoor@cs.utexas.edu

Xinyu Wang
University of Michigan, Ann Arbor
Ann Arbor, Michigan, USA
xwangsd@umich.edu

Abstract

Implementations of many data structures use several corre-
lated fields to improve their performance; however, incon-
sistencies between these fields can be a source of serious
program errors. To address this problem, we propose a new
technique for automatically refining data structures from in-
tegrity constraints. In particular, consider a data structure D
with fields F and methods M, as well as a new set of auxiliary
fields F’ that should be added to D. Given this input and an
integrity constraint @ relating F and F’, our method automat-
ically generates a refinement of D that satisfies the provided
integrity constraint. Our method is based on a modular in-
stantiation of the CEGIS paradigm and uses a novel inductive
synthesizer that augments top-down search with three key
ideas. First, it computes necessary preconditions of partial
programs to dramatically prune its search space. Second, it
augments the grammar with promising new productions
by leveraging the computed preconditions. Third, it guides
top-down search using a probabilistic context-free grammar
obtained by statically analyzing the integrity checking func-
tion and the original code base. We evaluated our method
on 25 data structures from popular Java projects and show
that our method can successfully refine 23 of them. We also
compare our method against two state-of-the-art synthesis
tools and perform an ablation study to justify our design
choices. Our evaluation shows that (1) our method is suc-
cessful at refining many data structure implementations in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454063

574

Yuepeng Wang
University of Pennsylvania
Philadelphia, Pennsylvania, USA
yuepeng@seas.upenn.edu

Isil Dillig
University of Texas at Austin
Austin, Texas, USA
idillig@cs.utexas.edu

the wild, (2) it advances the state-of-the-art in synthesis, and
(3) our proposed ideas are crucial for making this technique
practical.

CCS Concepts: « Software and its engineering — Gen-
eral programming languages.

Keywords: Programming Languages, Program Synthesis,
Data structure refinement

ACM Reference Format:

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig.
2021. Synthesizing Data Structure Refinements from Integrity Con-
straints. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI °21), June 20-25, 2021, Virtual, Canada. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3453483.3454063

1 Introduction

It is well known that implementations of most data types use
auxiliary fields to improve performance. For example, a pro-
gram that needs to perform frequent bidirectional look-ups
may explicitly store two different mappings M : 71 —
and M™! : 1, — 7; even though one can be derived from
the other. Similarly, programmers may tore the same infor-
mation as both a linked list and a hash map to efficiently
implement different types of functionality. As a final example,
Figure 1 shows a class called SpdySession from the Netty
project [5] that maintains two auxiliary fields called als and
ars. Even though these fields can be derived from the core
data structure called actStream, doing so would hurt the
application’s performance.

While it is quite common to maintain such auxiliary states
for performance reasons, correctly maintaining all related
copies of the same data can be a source of bugs and secu-
rity vulnerabilities. For instance, several prior efforts study
violations of consistency requirements in data structures
and propose techniques for mitigating them [12-15, 27, 28].
In addition, The Common Vulnerabilities and Exposures
(CVE) database reports several security vulnerabilities that

https://doi.org/10.1145/3453483.3454063
https://doi.org/10.1145/3453483.3454063

PLDI 21, June 20-25, 2021, Virtual, Canada

are caused by violations of integrity constraints between
their fields [1-4].

Motivated by this problem, this paper proposes a new
synthesis-based approach for automatically refining imple-
mentations of data types given integrity constraints between
their fields. In particular, given a data structure D consisting
of fields F and methods M as well as a set of new fields F’ to
be added to D, our approach generates a new data structure
D’ with fields F U F” and a set of updated methods M’ such
that (1) D’ is functionally equivalent to D, and (2) the imple-
mentation of D’ satisfies a user-provided integrity constraint
O(F, F’) that expresses consistency requirements between
these fields. Specifically, our method takes as input a Java
class D and an integrity constraint (expressed in Java as a
consistency checking function) and produces a new class D’
that is a refinement of D. Thus, programmers can first focus
on implementing functionally correct software and then use
our approach to automatically refine their implementation
in a way that ensures consistency.

In order to solve this problem, our approach needs to
synthesize code that correctly updates the new fields such
that the integrity constraints are satisfied. However, this
synthesis task is quite challenging for several reasons: First,
since these new fields may be complex user-defined data
structures, the update logic is often non-trivial and requires
synthesizing arbitrary Java code, including loops or introduc-
tion of new program variables. Second, data structures often
contain multiple methods that update the relevant fields;
thus, the synthesis problem is not localized to a single func-
tion. Finally, the update logic may require invoking other
functions from libraries or the surrounding code base; hence,
the synthesizer needs to consider an enormous number of
building blocks from which to generate code.

In this paper, we address these challenges using a mod-
ular instantiation of the counterexample-guided inductive
synthesis (CEGIS) paradigm powered by a novel inductive
synthesis engine. In particular, our method is modular in
the sense that it decomposes the data structure refinement
problem into independent synthesis subproblems over a sin-
gle procedure. For each subproblem, we use an inductive
synthesizer based on top-down enumerative search to find
code snippets that satisfy a given set of (counter-)examples
and then check correctness of the synthesized code using a
verifier. However, to make inductive synthesis tractable in
this setting, we leverage the following three key ideas:

1. PCFG construction via static analysis: Our method
performs static analysis of the integrity checking function
and the surrounding code base to identify important syn-
tactic and semantic clues that are useful for guiding the
underlying search procedure. In particular, our method
leverages the results of static analysis to construct a prob-
abilistic context free grammar (PCFG) and uses this PCFG
to prioritize promising candidates during the search.

575

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

2. Pruning via necessary preconditions: Our approach
dramatically prunes its search space using the notion
of necessary preconditions. In particular, given a partial
program P with missing statements or expressions, our
method computes a formula ¢ that must be satisfied by
every completion of P. Thus, if this formula is falsified by
any of the counterexamples, our method can prune the
partial program without sacrificing completeness.

3. Deduction-guided grammar augmentation: In addi-
tion to pruning the search space, necessary preconditions
are also useful for identifying promising code snippets
that are likely to appear in the desired solution. In particu-
lar, our synthesis procedure augments the grammar with
new productions so that promising code snippets need
not be synthesized from scratch. Our method also updates
probabilities in the PCFG in order to prioritize programs
that use these promising code snippets.

Based on the above ideas, we designed and implemented a
new system called Vort for automatically synthesizing data
structure refinements from integrity constraints. To evaluate
Voit, we identified data structures with correlated fields in
widely-used Java projects and used VoLT to derive the full
data structure from a version without the auxiliary fields.
Our evaluation shows that VoLT can successfully synthesize
92% of these refinements with an average running time of
264.2 seconds per benchmark. We also compare VOLT against
two state-of-the-art synthesis tools for Java and show that
VoLt dramatically outperforms these tools. Finally, we also
evaluate three different ablations of VoLt and show that
our proposed ideas are indeed necessary for making this
approach practical.

In short, this paper makes the following key contributions:

We propose automatically refining data structures from
integrity constraints in order to correctly implement effi-
cient data structures that utilize many correlated fields.
We propose a modular algorithm that decomposes the
overall data structure refinement task into procedure-level
synthesis tasks.

We propose a novel inductive synthesis algorithm that
uses three key ideas, namely (1) PCFG construction using
static analysis, (2) pruning via necessary preconditions,
and (3) dynamic PCFG augmentation and update.

We conduct an experimental evaluation on 25 real-world
Java programs and compare our method against state-of-
the-art synthesis/repair tools as well as against several
ablations of Vorr itself.

2 Overview

In this section we provide a high level overview of our tech-
nique with the aid of the motivating example shown in
Figure 1. The code snippet in Figure 1 belongs to a data
structure called SpdySession used in Netty [5], a frame-
work for developing high-performance protocol servers in

Synthesizing Data Structure Refinements from Integrity Constraints

1 public class SpdySession {

private Map<Integer, StreamState> actStreams;

2

3 private AtomicInteger als, ars; // new fields

4 e

5 public SpdySession() {

6 actStreams = new HashMap<>();

7 // als = new AtomicInteger();

8 // ars = new AtomicInteger();

9 3

10

11 int numActiveStreams(bool remote) {...} //
New

12

13 public void acceptStream(int sId, ...) {

14 StreamState newS = new StreamState(...);

15 StreamState oldS = actStreams.put(sid,

newS) ;

16 // if (o0ldS == null) {

17 // if (this.isRemoteInitiatedId(sId)) {

18 // ars.addAndGet (1);

19 // } else {

20 // als.addAndGet (1);

21 // }

22 /7)

23}

24

25 public void removeStream(int sId, ...) {

26 StreamState state =

removeActiveStream(sId);

27 // if (state != null) {

28 // if (this.isRemoteInitiatedId(sId)) {

29 // ars.subAndGet (1);

30 // } else {

31 // als.subAndGet (1);

32 // }

33 /7)

34

35 3}

36

37 }

Figure 1. SpdySession class from the Netty project. The
auxiliary fields als and ars keep track of the number of
local and remote streams in actStream respectively.

Java. SpdySession tracks active streams using a Concurren-
tHashMap called actStreams (line 2) where keys correspond
to stream identifiers and values are the stream states (encap-
sulated in another data structure called StreamState).

In one of the Github commits, Netty developers added a
new method called numActiveStreams (line 11) to the class
SpdySession. This new method takes as input a boolean
argument called remote and returns the number of remote
or local streams depending on the value of the boolean. A
naive implementation of numActiveStreams would iterate
over the hashmap (actStreams) to count the number of

576

PLDI ’21, June 20-25, 2021, Virtual, Canada

1 public boolean check(SpdySession s) {

2 int remote = @, local = 0;

3 for (Integer id s.actStream) {

4 if (s.isRemotelnitiatedId(id)) remote++;

5 else local++;

6 }

7 if (s.als.get() != local || s.ars.get() !=
remote)

8 return false;

9 return true;
10 3}

Figure 2. Integrity checking function.

remote/local streams; however, this is obviously quite in-
efficient. Thus, Netty developers add two new fields called
als and ars to keep track of the number of local and re-
mote streams respectively and modify the implementation
of SpdySession to correctly update these fields. In particu-
lar, the commented out (green) lines in Figure 1 are the new
code added to the original code.

VoLt usage scenario. Our proposed approach is useful
in a scenario like this for automatically updating the im-
plementation of SpdySession in a correct-by-construction
manner. To use VOLT, the user only needs to provide the orig-
inal implementation of SpdySession, the names of the new
fields (ars and als), and an integrity constraint expressed
as a function called check in Figure 2. This check function
iterates over the actStream hashmap and counts the num-
ber of remote and local streams. If the remote (resp. local)
stream count is equal to ars (resp. als), check returns true;
otherwise, it returns false.

Given this integrity checking function, VorT automatically
generates the refined data structure in under one minute. The
new implementation involves changes to 5 of the 42 methods
in SpdySession and is verified to both preserve existing
functionality and satisfy the provided integrity constraint.

Challenges. We now highlight some of the challenges in-
volved in automating data structure refinement. First, when
adding new fields to a data structure, we may need to syn-
thesize new code in multiple methods. For instance, in the
SpdySession example, 10 of the 42 methods in the original
data structure manipulate streams, and 5 of these 10 need
to be modified in order to correctly maintain the new als
and ars fields. Second, modifications to existing methods are
non-trivial: they require adding several lines of code with
nested conditionals (e.g., see lines 16-22) and calling func-
tions like addAndGet that are implemented elsewhere in the
code base. Finally, observe that modifications to each method
are not identical and cannot be simply “copy-pasted”.

The VoLt solution. We solve these challenges using a
modular application of the CEGIS paradigm coupled with

PLDI 21, June 20-25, 2021, Virtual, Canada

a novel inductive synthesizer. In particular, VorT performs
synthesis in a modular way by independently updating the
implementation of each method using CEGIS. The inductive
synthesizer used in VoLT is based on top-down enumerative
search but takes advantage of three important observations
that allow it to succeed in this setting:

Observation #1: The integrity checker and existing methods in
the code base provide important syntactic clues to the synthe-
sizer. For instance, looking at the implementation of check
from Figure 2, one would expect that isRemoteInitiated
would be useful during synthesis, as the return value of
check depends on that of isRemoteInitiated. In addition,
performing deeper static analysis of existing methods in
the code base can also provide important clues. For example,
addAndGet and subAndGet methods update variables of type
AtomicInteger, and since the new fields als and ars also
have the same type, these two methods may appear as part
of the solution. To leverage such useful clues during synthe-
sis, our method attaches probabilities to productions in the
context-free grammar. Then, our search algorithm expands
non-terminals according to these probabilities, thereby bias-
ing search towards program that use various clues present
in the integrity checker and the surrounding code base.

Observation #2: We can deductively prune away partial pro-
grams using necessary preconditions. To gain some intuition,
suppose that the inductive synthesizer generates the follow-
ing partial implementation of acceptStream during search:

public void acceptStream(int sId, ...) {

new StreamState(...);
actStreams.put(sid, newS);

1

2 StreamState newS =
3 StreamState oldS =
4 s

5 this.als = new AtomicInteger();
6

}

Here, ?7; is a hole that can be filled by any arbitrary state-
ment. This partial program is infeasible because, no matter
how we complete the hole, the resulting program will not
satisfy the integrity constraint. In particular, the code snip-
pet above always sets the value of this.als to 0 (the last
line); however, this will violate the integrity constraint if
acceptStream is ever called with a local stream (as it is
added to actStreams on the second line).

VorT can prune such infeasible partial programs by com-
puting a necessary precondition for correctness. A necessary
precondition ¢ for a partial program P is a constraint on P’s
inputs that must be satisfied by any completion P in order
for P to satisfy the integrity constraint. Thus, if the current
set of counterexamples includes an input that violates ¢, we
can conclude that the partial program is infeasible — i.e., no
completion of the holes can satisfy the specification.

Going back to our example, the necessary precondition
computed by Vorr for the partial program above logically
implies that sid must correspond to a remote (not local)
stream. Thus, if the current counterexamples include a local

577

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

stream, VOLT can immediately reject this partial program.
Since there are approximately 756k completions of ??; (up
to size 5), the computation of necessary preconditions allows
our technique to dramatically reduce the search space.

Observation #3: We can use the feedback from the feasibility
checking engine to dynamically augment the PCFG. Consider
the following partial implementation for acceptStream:

1 public void acceptStream(int sId, ...) {

2 StreamState newS = new StreamState(...);

3 StreamState oldS = actStreams.put(sid,
news) ;

4 if (?2e) {

5 this.ars.addAndGet (??);

6 } else {

7 this.als.addAndGet (??.);

8 }

9 3}

where lines 4-8 correspond to a sketch - i.e., synthesized
code that does not contain any unknown statements or left-
hand-side expressions. Even though this sketch is infeasible,
its necessary precondition is consistent with many (but not
all) of the counterexamples due to a missing edge case. We
refer to such sketches as partially feasible. Our key observa-
tion is that such partially feasible program sketches often
appear as sub-fragments of the desired solution. For exam-
ple, observe that lines 4-8 above actually appear as a code
snippet within the correct implementation of acceptStream
shown in Figure 1 (lines 17-21). Based on this observation,
our method augments the PCFG with new non-terminals
that correspond to partially feasible program sketches. Since
the addition of the new non-terminals is driven by necessary
preconditions, we refer to this method as deduction-guided
grammar augmentation.

3 Problem Formulation

We formulate the data structure refinement problem with re-
spect to a Java-like statically-typed object-oriented language.
A program in this language is a collection of data structures,
and a data structure is of the form D = (F, M) where F is
a set of fields and M is a mapping from method signatures
to their bodies. Without loss of generality, we assume that
every data structure D has a unique method called D, that
corresponds to its initialization method (constructor). Fields
and variables in D are either of type int or Ref(D’) where
int denotes integers and Ref(D’) denotes the address of
some heap-allocated data structure of type D’. The program
heap H : Ref x Field — Value maps reference and field
pairs to values.

Definition 3.1. (State) A state o for a data structure D =
(F, M) is a pair (o, H) where o is an instance of D and heap
H determines the values of 0’s fields.

Synthesizing Data Structure Refinements from Integrity Constraints

We say that a state o is an initial state for data structure
D = (F,M) if it is obtained immediately after calling the
constructor Dy of D.

Definition 3.2. (State equality modulo fields) Given a

pair of data structure states ¢ = (0, H) and ¢’ = (o’, H’),

we say that o and ¢’ are equivalent modulo fields F, written

o =r o, iff for every f € F, we have:

1. H(o, f) =H’(0o’, f) if f has type int

2. If f has type Ref (D) for D = (F’, _), then o1 =p 0, where
o1 =(H(o, f),H) and a2 = (H' (0, f), H’)

In other words, the = relation indicates deep equality
with respect to fields F.

Definition 3.3. (State refinement) Let ¢ and ¢’ be two
states for data structures (F, M) and (F’, M’) respectively
where F C F’. We say ¢’ is a refinement of o, written ¢’ < o,
iff o =F o’.

Intuitively, a data structure state o’ refines another state
o if they are equivalent modulo the fields defined in o.

Definition 3.4. (Action)Let D = (F, M) be a data structure.
An action a on D is a pair (m,x) where m € Domain(M)
and ¥ is a list of arguments for m.

In other words, an action corresponds to invoking a method
of the data structure.

Definition 3.5. (Transition) Let D (F, M) be a data
structure, o a state of D, and « = (m,x) an action on D.
We write o — o to denote that ¢ is the resulting state after
executing method m on state o with arguments x. We refer
to (o, @, 0”) as a transition of D.

Informally, a transition represents a change in the data
structure’s state after calling a method.

Definition 3.6. (State transition system) The state tran-
sition system Tp for a data structure D is a tuple (S, I, A, —)
where S is the set of all possible states of D, I C S are the set
of initial states, A is the set of all possible actions on D, and
— is the transition relation for D (i.e., 0 — o’ iff Ja € A
such that (o, a, 0”) is a transition of D).

We write —* to denote the reflexive transitive closure of
—, and we say that o is a reachable state of D if there exists
a oy € I such that oy —* 0.

Definition 3.7. (Method refinement) Let D = (F, M) and
D’ = (F’,M’) be two data structures with corresponding
transition systems Tp = (S, [, A, =) and Tpy = (§', I, A’, =7).
The implementation of m in D’ refines that of m in D, writ-

ten mp < mp, if, for every action « = (m,v), and reach-
able state o, € S, we have: If O'I: < op and (op, a, 0,) €—,
(07,a,0,) €', then ¢, < 0g.

Intuitively, the implementation of a method in D’ is a re-
finement of the corresponding method in D if it preserves the

578

PLDI ’21, June 20-25, 2021, Virtual, Canada

refinement relation between the states of the data structures
when called with the same arguments.

Definition 3.8. (Data structure refinement) We say a
data structure D’ = (F’, M’) is a refinement of D = (F, M),
written D’ < D, if the following conditions are satisfied: (1)
F C F’ and (2) Domain(M) = Domain(M’) and (3) For every
method m € Domain(M), mp < mp.

In other words, a data structure D’ refines D if the set of
fields of D’ is a superset of those of D and, for every method
m in D and its corresponding method m’ in D’, m’ refines m.

Definition 3.9. (Integrity constraint) Let D be a data struc-
ture with fields F U F’. An integrity constraint ®, for fields
F’ is a function that takes as input a data structure state o of
D and returns a boolean value such that:

Yo, o’ € Reachable(D).
O (o) AN (0')No =0’ =o0=po’

We say the integrity constraint holds on state o, denoted
o | @, if &, returns true on input o.

In other words, the integrity constraint can be used to
check whether the values of auxiliary fields F’ are correct
based on the values of other fields. For instance, the check
function from Figure 2 conforms to our definition: given any
value for field actStream, there is only one possible value
for the fields als and ars for which check returns true.

Definition 3.10. (Integrity constraint satisfaction) We
say that a data structure D satisfies integrity constraint @,
denoted D [@, iff, for every reachable state o of D, we
have o | ®..

Problem statement. Given a data structure definition
D = (F,M) and an integrity constraint ®. , our goal is to
synthesize a new data structure D’ = (F, M’) such that (1)
D’ < Dand(2) D’ E @..

4 Data Structure Refinement Algorithm

In this section we present our algorithm for synthesizing data
structure refinements from integrity constraints. We start by
introducing some terminology and then give an overview of
our modular refinement procedure. Afterwards, we describe
the novel aspects of our inductive synthesis approach in
more detail, including necessary precondition computation
for pruning partial programs as well as deduction-guided
grammar augmentation.

4.1 Preliminaries

Figure 3 shows the context-free grammar (CFG) used by our
synthesis algorithm for generating method bodies. It con-
tains loops, conditionals, assignments, stores, loads, method
calls, etc. Some of the non-terminals N in this CFG (e.g.,
L7, E7) are parametrized by types to prevent enumeration of
ill-typed programs during synthesis.

PLDI 21, June 20-25, 2021, Virtual, Canada

StmtS — A|S1;S2]if(B) Sqelse Sy |while(B) S
AtomA — LT «— E"| ET.m(Lf‘, - EIY | new m(LIT‘, - Em)
LHSLT — L7 .f| LU0 |o”

Index] — EINt|pint

Expr 7 — @T(E], - Ep) | o7 | T | E%f | EFU[I]

Pred B — El| @ (By,-,Bp)

Figure 3. CFG used by the synthesis algorithm. Here, ®"
denotes an n-ary operator that produces a result of type ,
and @ is a boolean connective.

Given grammar G with non-terminals N, terminals 77,
and productions R, we say that a string ¥ € (T UN)*isa
partial program iff S =* P (i.e., can be derived from the
start symbol) and we refer to non-terminals in P as holes.
A string P is said to be a complete program if P does not
contain any non-terminals (i.e., # € 7). In this paper, we
use the term sketch to refer to a partial program that does
not contain non-terminals L” and S. In other words, a sketch
is a left-hand-side complete partial program (modulo array
indices). Finally, we say that P’ is an expansion of P if P’
can be obtained from % by substituting some non-terminal
N in P with « for some production N — « in the grammar.

Example 4.1. We provide a few examples to illustrate our
terminology:

e if (B) L" « ET else S (Partial Program)

o if (B) x'"t « Eint else xI"t « EiMt (Sketch)

e if (@it > 1) xI"t ¢i"t else x!"t « zI"t (Complete)

As mentioned earlier, our synthesis algorithm associates
a probability with each production r in the grammar. Specifi-
cally, for a given productionr = (N — a) € G, P(r) € [0, 1]
corresponds to the probability of expanding non-terminal N
using production r. A context-free grammar G augmented
with such a probability distribution P over the productions
of G is called a probabilistic context free grammar (PCFG).
Also, given a partial program P, we define Pr(#) to be the
probability of obtaining # using productions in the PCFG.
More formally,

Prg(P) = [120

A€Derivs(P,G) relA

where Derivs(#) denotes all derivations for partial program

% and a derivation is a sequence of productions ry, . .., rp.

4.2 Modular Refinement Algorithm

We now describe our modular data structure refinement
procedure (summarized in Algorithms 1 and 2). The REFINE
procedure (Alg. 1) takes as input the original data structure
D = (F, M), anew set of fields F’, and an integrity constraint
®.(F, F’) (encoded as a boolean method), and it returns a

579

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

1: procedure REFINE(D, F/, ®.)
input: Data structure D = (F, M); new fields F’
input: Integrity constraint @,
output: D’ such that D’ < D and D’ &,
22 M «—o
3: for all m € Domain(M) do
4 P « InsertHoles(M[m])
5: S « UppATEMETHOD(M[m], P, D)
6 if S = 1 then return L
7 M — M U{(m,S)}
8: return (FUF',M’)

Algorithm 1. Top-level refinement procedure

1: procedure UPDATEMETHOD(S, P, D)

input: Original body S for some method m in D

input: Partial program # for new body of m in D’

input: Integrity constraint ®

output: New method body mps = S’ such that (1) mps < mp,
and (2) {®.}S’{®.} is a valid Hoare triple.

22 C e« @ > Counterexamples
3: G « INITPCFG(Qq, f);

4: while true do

5: (8’,G’) « SynTHESIZE(P,C, G, S, D¢);

6: if S’ = 1 then return L; > No feasible solution
7: S”” « INSTRUMENT(S, S/, @.);

8: C’ = VErIFY(S”);

9: if C’ = @ then return S’; > Verification successful
10: C—Cul; G«g;

Algorithm 2. CEGIS loop for updating a method

refined data structure D’ = (F U F/, M’) such that D’ < D
and D’ E ®..

At a high level, the REFINE procedure constructs D’ in
a modular way by updating each method m € M indepen-
dently. Specifically, for each method m, REFINE invokes a
procedure called InsertHoles (line 3) which uses lightweight
static analysis to identify code fragments that modify F and
inserts statement holes (i.e., nonterminals S) at all relevant
program points. Hence, the output of InsertHoles is a par-
tial program P which is then refined into a complete pro-
gram using the UPDATEMETHOD procedure at line 5. If Up-
DATEMETHOD is successful (i.e., returns S # L), then the new
implementation mp = S of m in D’ is guaranteed to satisfy
the refinement relation mp < mp as well as the integrity
constraint (i.e., {®.}mp {®.} is a valid Hoare triple).

The UpDATEMETHOD procedure (Alg. 2) synthesizes mpy
using a CEGIS loop but first initializes a PCFG G by assigning
probabilities to each production in the grammar (line 3). We
describe how to initialize the PCFG in more detail in Section
4.4. Then, in each iteration of the CEGIS loop, our algorithm
invokes the SYNTHESIZE method (line 5) to generate a candi-
date implementation S’ that satisfies all counterexamples C

Synthesizing Data Structure Refinements from Integrity Constraints

encountered so far. A key novelty of our inductive synthesis
procedure is that, in addition to producing a candidate im-
plementation, it also produces a new grammar G’ that can
be leveraged in subsequent iterations of the CEGIS loop.

Next, given a candidate implementation S’ for #, Up-
DATEMETHOD checks whether S’ satisfies the conditions (1)
S’ < S and (2) {®.}S’{®.}. To do so, it invokes the INSTRU-
MENT procedure to construct the code snippet shown in
Figure 4 which is then verified using an off-the-shelf asser-
tion checker. Observe that the instrumented code in Figure 4
works as follows: First creates an instance d of the original
data structure D by calling GETINSTANCE (Figure 5), which
simply invokes the constructor of D followed by an invo-
cation of an arbitrary sequence of D’s methods. Then, it
initializes d’ to be an arbitrary object of type D’ and stipu-
lates that (1) d and d’ obey the refinement relation and (2) d’
satisfies the integrity constraint. Next, it invokes the methods
m, m’ for d, d’ with the same arguments, and finally asserts
that d, d’ continue to satisfy the refinement relation and that
d’ obeys the integrity constraint. If the assertions in this
instrumented program can be verified using an off-the-shelf
assertion checker (line 8 of Algorithm 2), UPDATEMETHOD
returns S’ as a valid refinement of S (line 9). Otherwise, it
adds the counterexamples returned by the verifier to C and
continues the CEGIS loop with updated grammar G’ and
additional counterexamples C’.

Remark. Note that the GETINSTANCE call in the instru-
mented code in Figure 4 ensures that d is a reachable state
of data structure D. Furthermore, based on Def. 3.9 of in-
tegrity constraint, this d uniquely determines d’ (modulo
memory addresses). Thus, any counterexample corresponds
to a reachable state of D’ and ensures that we do not reject
valid solutions despite using a modular strategy. Lastly, note
that after calling GETINSTANCE we can safely assume the
integrity constraint holds on d’. This is because if ®. does
not hold prior to m’, then one of the methods invoked in
GETINSTANCE must violate ®.. However, we verify (induc-
tively) that none of the methods are the first to break the
integrity constraint and so it is safe to assume ®. holds. This
is known in the verification literature as circular composi-
tional reasoning [32, 35].

We state and prove the following theorems under the as-
sumption that the verification oracle is sound and complete.

Lemma 4.2. Suppose that UPDATEMETHOD rejects a candi-
date body S’ for method m. Then, there does not exist a solution
D’ to the synthesis problem where M’'[m] = S’.

This lemma is important for the completeness of the end-
to-end approach (Theorem 4.4) because it states that Up-
DATEMETHOD does not reject valid solutions.

Theorem 4.3. (Soundness) Suppose that REFINE(D, F/, @)
returns D'. If D’ # L then D’ < D and D’ |= ®.

580

PLDI ’21, June 20-25, 2021, Virtual, Canada

d = GETINSTANCE(D); d’ = %

assume(d =f d’); assume(d.(d"));

args = x;m(d, args); m’(d’, args);

assert(d =r d’); assert(®.(d"));
Figure 4. Code generated by the INSTRUMENT procedure. %
denotes a random value.

function GETINSTANCE(D)
d =new D()
while x do m = randMethod(D); m(d, %)

return d

Figure 5. Returns reachable instance of data structure D

1: procedure SYNTHESIZE(P, C, G, S, ®;)
input: Partial program #; counterexamples C
input: Original method body S for a method m; PCFG G
input: Integrity constraint @,
output: Candidate implementation S’ and new PCFG G’
w = {P}
while W # 0 do
P’ « SELECTBEST(W, G)
Csat < DEDUCE(P’, S, C, ®¢)
if IsComplete(P’) A |Csar| = |C| then return (P, G)
if |Csat| > 0 A IsSketch(P’) then
for all h € Holes(P) do
P; — Impl(P’, h)
G — AUGMENTGRAMMAR(G, Pi, CsAT)
if |Csar| = |C| then W «— W U Expand(P”)
return (1,G)

W Dok W

Algorithm 3. Inductive synthesis algorithm

Theorem 4.4. (Completeness) LetREFINE(D, F/, @) return
D’. If D' = 1 then there does not exist a D’ = (F’,M’) such
thatD < D’ and D’ E @,.

4.3 Inductive Synthesis Algorithm

In this section, we describe our inductive synthesis procedure
summarized in Algorithm 3. This algorithm uses top-down
enumerative search with deduction-based pruning and gram-
mar augmentation. In particular, it maintains a worklist W of
partial programs (initialized to {#} at line 2) and iteratively
explores partial programs until it finds a complete program
that satisfies all the counterexamples (line 6). In each itera-
tion of the loop, it invokes the SELECTBEST function (line 4)
to identify the most promising partial program in the work-
list according to the PCFG. Here, the best program is defined
as follows:

SelectBest(W,G) = (argmaX PFQ(P))
Pew

Next, given a partial program $’, SYNTHESIZE invokes the
DEebpuce function (line 5) to check whether #’ is infeasible.

PLDI 21, June 20-25, 2021, Virtual, Canada

1: procedure DEDUCE(P, S, C, @)
input: Partial program #
input: Original method body S for method m
input: Counterexamples C; Integrity Constraint @,
output: Set of satisfied counterexamples CsaT
Csar « @
S’ « AprPrOXIMATE(Inline(P), @)
O — WP(S', d,)
forall C € C do
if SAT(®[C]) then CsaT < CsaT U {C}
return Csar

PR AN A R i

Algorithm 4. Checking feasibility of partial programs

In particular, DEDUCE returns a set Csar € C such that £’ is
consistent with the specification for every input C € Csar.
Thus, if Csar # C, this means that all completions of P’
violate the specification for at least one input C € C; hence,
P’ can be pruned from the search space without sacrificing
completeness. Therefore, we only expand a partial program
if Csar = C (see line 12). On the other hand, if Csar = C
and P’ is a complete program, then $’ is a solution to our
inductive synthesis problem and is returned at line 6.

Lines 8-10 of the SYNTHESIZE algorithm perform deduction-
guided grammar augmentation. In particular, if P’ is a sketch
that is consistent with a non-empty subset of the counterex-
amples, it iterates over all the synthesized fragments in ’,
and for each synthesized fragment $;, it invokes the Auc-
MENTGRAMMAR procedure to add a new production A — P;
to the grammar. This is based on the observation that pro-
gram sketches that satisfy some of the counterexamples of-
ten tend to occur as sub-components of the final solution.
Thus, to avoid re-synthesizing these (potentially large) pro-
gram sketches from scratch in future iterations, we directly
add them as productions to the grammar. In essence, such
deduction-guided grammar augmentation allows combining
the benefits of top-down and bottom-up search in a goal
directed way.

In what follows, we explain the DEDUCE and AUGMENT-
GRAMMAR procedures in more detail.

Pruning via necessary preconditions. Our technique
for checking feasibility of partial programs is presented in
Algorithm 4. Given a partial program %, the DEDUCE pro-
cedure returns a subset Csat of C that P is consistent with.
The high level idea is to compute a necessary precondition ®
for correctness that any instantiation of # must satisfy and
test whether @ is satisfied by the counterexamples. If any
C € C violates this necessary precondition, # is guaranteed
to be infeasible.

In more detail, the DEDUCE procedure first inlines the
method calls in the # ! and calls APPROXIMATE to generate

!We inline method calls here to simplify presentation; our implementation
does not perform inlining

581

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

a completion S” of P. Here, S’ contains symbolic variables
that represent “environment choices”, and it is constructed
in such a way that, if there exists a completion of # that
satisfies the specification, then it is possible to find values of
symbolic variables in S’ so that S’ satisfies the specification.

Figure 6 presents the APPROXIMATE procedure as inference
rules deriving judgments of the form + ¢ ~» f where a is a
sequence of symbols in the grammar and S is its correspond-
ing replacement (i.e., over-approximation). If & represents an
expression or predicate, we obtain its replacement by recur-
sively replacing any non-terminals nested inside it with fresh
(unconstrained) variables. For assignments, we replace the
assignment o « f with a’ « p’ where &', f’ are replace-
ments for , f respectively and where o does not contain the
non-terminal L (AsSIGN-1). On the other hand, if & contains
a non-terminal L, we do not know which memory location
is being written to; thus, we model it as a non-deterministic
assignment to any of the new variables (AssiGN-2). Similarly,
we model an unknown statement S as a write to all possible
memory locations that may be modified by S (STATEMENT).

Example 4.5. APPROXIMATE produces the following com-
plete program for Listing 2 in Section 2.
public void acceptStream(int sId, ...) {

StreamState newS =
StreamState oldS =

new StreamState(...);
actStreams.put(sid, newS);

AtomicInteger vi1, v2; // fresh
this.als = v1; this.ars = v2; // added
this.als = new AtomicInteger();

}

Given the output S’ of APPROXIMATE, the DEDUCE proce-
dure computes the weakest pre-condition of S” with respect
to the integrity constraint ®.. > As stated by the following
theorem, the weakest precondition ® of S’ is a necessary
precondition for S (and therefore P):

Theorem 4.6. Let S’ be an over-approximation of code S.
Then, if ¢ is a necessary condition for S’ to be correct, then ¢
is also a necessary precondition for S.

Thus, based on this theorem, if there is a counterexample
that is inconsistent with the computed necessary condition
®, this means that we can prune partial program # from the
search space.

Grammar augmentation. The final piece of our induc-
tive synthesis technique is the AUGMENTGRAMMAR proce-
dure presented in Algorithm 5 for adding new productions
to the PCFG. This algorithm takes as input the current PCFG
G, a sketch P, the current set of counterexamples C, and it
returns an augmented grammar that contains new produc-
tions. In particular, the augmented grammar contains a new

2Since @, is a boolean function, WP(S',®;) can be computed as
WP(S’; ., true). The verifier in our implementation is a bounded model
checker, so we unroll and compute weakest preconditions in a standard
way.

Synthesizing Data Structure Refinements from Integrity Constraints

PLDI ’21, June 20-25, 2021, Virtual, Canada

. {fi,.--, fa} = NewVars
T * i i <i<

Ne{E},\f,B}vfresh aeT Faj~ Bifor1<i<n o; fresh(i € [1,n])

FN~ 0 Fa~ «a Fop(a,...,an) ~ op(Bi,-.., Bn) FS~ fi—on. i fr —on
Expr OPERATION
Le¢a ra~a rp~p Lea p~p {fi,...,fn} = NewVars
Fla e f)~ (af < p) F (a « p) ~ choose((fi — f'),....(fn < ')
Fag~ f1 Faz~ fo a3 — f3 Fap~ 1 Fag~ B Fap~ f1 Faz~ fo

F i'F(O(l) as else a3 ~» if(ﬁl) ﬁg else ﬁ3

Fwhile(a;) az ~> while(By) B2

WHILE

Fag;az ~ Br; fe

SEQUENCE

Figure 6. APPROXIMATE inference rules. choose represents a nondeterministic choice between any of its arguments

1: procedure AUGMENTGRAMMAR(G, P, C)
input: PCFG G = (N, 7, R, P); sketch P
input: Counterexamples C collected so far
output: An updated PCFG G’

2 T« T;P P

3: if S ¢ N then

4: N «— NU{S}

5: R —RU{S - P}U{A - S};
6: InitProbabilities(P, R’)

7: else

8: N « N; R« RU{S - P};
9 Z « ¥ (S—a)er NumSatisfied(a, C)
10 forallr;e{r|r=(S—a)eR'}do
11: n; < NumSatisfied(a, C)

12: P’(rl-) — nl-/Z

13: return (N, 7/,R’,P’)

Algorithm 5. Grammar augmentation procedure.
NumSatisfied(a, C) returns the average number of
counterexamples in C satisfied by previously explored
sketches containing a.

non-terminal S that represents sketches. It also contains two
new productions:

e The production A — S allows using sketches as atomic
building blocks when constructing partial programs. (Re-
call that non-terminal A represents atomic statements.)

e The production S — % adds sketch # as a new building
block in the grammar.

In more detail, if the input grammar G does not contain
the non-terminal symbol S, we add S to the set of non-
terminals and add A — S to the set of productions. We also
call InitProbabilities (discussed in Section 4.4.2) to update the
probabilities of all productions starting with non-terminal
A. If the grammar already contains productions of the form

582

S — a, the probabilities associated with all of these produc-
tions also need to be updated. Thus, the loop in lines 10-12
adjusts the probabilities for each production r; = (S — a;)
to n;/Z where n; is the average number of counterexamples
satisfied by sketches containing «; and Z is a normalization
term. Here, the intuition is to assign higher probabilities
to productions associated with sketches that satisfy more
counterexamples.

4.4 PCFG Initialization

As stated earlier, an important observation underlying our
solution is that the integrity checker and the surrounding
code base contain useful clues that can be used to guide
search. Thus, our technique (1) performs static analysis to
identify features that are likely to be used in the desired
solution, and (2) initializes PCFG probabilities to prioritize
programs that use these features.

4.4.1 Mining Features via Static Analysis. Our static
analysis extracts three types of code elements (namely, func-
tions, types, and operators) for assigning probabilities to
productions. These code elements are extracted by analyzing
the integrity checking function and the surrounding code
base.

Analysis of integrity checking function. Our method
statically analyzes the integrity checker @, to identify (1)
types of expressions used in @, (2) all operators (e.g., bit-
shift, addition, etc.) that syntactically appear in ®., and (3)
functions that are invoked by ®.. Such code elements that
syntactically appear in the integrity checker often also tend
to appear in the synthesized code; thus, our technique as-
signs a higher probability to productions involving these
code elements. (The mechanism for increasing probabilities
is discussed in Section 4.4.2.)

Analysis of existing functions. Recall from Section 2
that existing functions in the code base may be useful for

PLDI 21, June 20-25, 2021, Virtual, Canada

updating the new fields. Thus, our method statically analyzes
all existing functions to identify a subset of methods that
return or update values of type 7, where 7 is also the type
of one of the new fields. In particular, our technique uses an
off-the shelf pointer analysis to identify all memory locations
of type 7 that are updated by some function f. If 7 is also
the type of a new field, then function f is considered to be a
promising candidate and the probability of the corresponding
production is increased.

4.4.2 Initializing Probabilities. Given a set of “interest-
ing” productions R’ identified using static analysis, our method
initializes PCFG probabilities as follows. First, let Ry denote
the set of productions whose left-hand-side is non-terminal
N, and let R}, be Ry NR’. To initialize probabilities for pro-
ductions in Ry, we first define a normalization constant Z
as follows:

Z = IRN\RY| + enlRY |
where cy is a constant strictly greater than 1. Then, we assign
probabilities to productions r € R as follows:

1z ifre (Ry\RY)
P(r)_{cN/Z trery,

Theorem 4.7. For each non-terminal N in the grammar,
P(N) defines a valid probability distribution over Ry.

5 Implementation

We have implemented our proposed approach in a tool called
Vort. The inputs to VoLt include (1) the source code of a Java
data structure D, (2) an integrity constraint implemented as
a Java function, and (3) a set of new fields to be added to
D. In addition, VoLt also takes a time limit ¢ (in seconds)
indicating the maximum time it has to synthesize the desired
function. Vorr itself is implemented in Java and leverages
the Z3 SMT solver [10] to check the feasibility of partial
programs in the DEDUCE procedure and the JBMC assertion
checker [9] for verification in the VERIFY procedure. In what
follows, we discuss some key optimizations for the synthesis
algorithm from Section 4.

Grammar productions. The grammar presented in Fig-
ure 3 is simple but unnecessarily permissive. In our imple-
mentation, we use a more fine-grained grammar that disal-
lows enumerating obviously useless programs. In particular,
our implementation restricts left-hand-side grammar expres-
sions to new fields and fresh (temporary) variables. Second,
it restricts method invocations to those that do not have side
effects on existing fields. Third, it disallows atomic state-
ments that call pure functions (since they are essentially
no-ops). Fourth, it restricts loops to range-based for loops
as arbitrary while loops are fairly uncommon compared to
range-based counterparts. Finally, it restricts the set of local
variables used in right-hand-side expressions to those that
are in scope at the relevant program point. Observe that some

583

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

of these restrictions require source code analysis; therefore
our implementation leverages the Soot program analysis
infrastructure [26] and the SPARK pointer analysis [31] to
perform these optimizations.

Additional pruning strategies. Beyond using a gram-
mar with auxiliary nonterminals, our implementation per-
forms a few other optimizations to reduce search space. First,
since multiple updates of a program variable along the same
execution path are redundant, VoLt disallows enumerating
such partial programs. Second, it disallows loops that do not
use the iterator in the body. Finally, since writing to tem-
porary variables is only useful if there is a read afterwards,
our implementation also avoids enumerating programs that
write to, but do not read from, temporary variables.

6 Evaluation

In this section we describe a series of experiments that are
designed to answer the following research questions:

1. (RQ1) Can Vort be used to refine data structures in real-
world Java applications?

2. (RQ2) How does VoLT compare against other approaches
that could be used for solving the same problem?

3. (RQ3) How important is each of the three design deci-
sions in VorT (i.e., use of PCFGs, necessary precondition
computation, and grammar augmentation)?

Benchmarks. To evaluate VoLT on real-world applica-
tions, we used a Github crawler to identify popular Java
projects that use correlated fields for performance reasons.
The crawler looks for commits with messages that match
certain relevant keywords such as “performance”, “cache”,
“new fields”, etc. We then manually inspected projects re-
turned by the crawler and retained the first 25 classes that
indeed have multiple correlated fields. To evaluate VoLT on
these benchmarks, we manually removed all the declara-
tions and statements involving correlated fields (except for
one field), wrote an integrity checking function, and used
VoLt to automatically derive the original implementation.
To determine which fields to remove we used three criteria.
First, if fields f3, . . ., f, could be derived from f, we removed
each f;. Second, if the fields could be derived from each other
we marked those added in later commits as the auxiliary
fields and removed them. Finally if the fields were added in
the same commit we used syntactic hints e.g. name of the
field to break the tie. For example in our benchmark PErsis-
TENTSEQUENTIALDICTIONARY, one of the correlated fields
was called “cache” and the other was called “reverseCache"
and we marked the latter as auxiliary.

Setup. In our evaluation, we use a time limit of 1 hour
and run all of our experiments on the Google Cloud Engine
(GCE) on an 8 vcpu instance with 128GB of memory.

Synthesizing Data Structure Refinements from Integrity Constraints

PLDI ’21, June 20-25, 2021, Virtual, Canada

Table 1. Main experimental results. L indicates the tool timed out (> 1 hour) when solving the benchmark.

Project Class LoC | #Productions | # Corr. Fields | Total Funcs. | # Updated Funcs. | VoLT
strapdata/elessandra FieldData 102 1822 2 7 3 32.11
watabou/pixeldungeon Level 1023 1044 3 35 3 28.24
netty/netty DefaultChannelPipeline 1049 2150 2 127 6 93.33
netty/netty SpdySession 361 1230 3 42 5 102.44
apache/wicket RequestAdapter 171 1832 2 10 2 82.2
bisq-network/bisq MathUtils 182 1150 2 12 2 125.4
apache/wicket AsynchronousPageStore 397 2734 3 17 3 222.63
wakaleo/game-of-life EndlessGrid 156 944 2 14 3 4443
jenkinsci/gitlab-plugin GitlabWebhook 350 1322 2 23 2 355.3
pravega/pravega StreamSegmentContainerMetadata 314 1732 3 27 3 377.2
spring-cloud/spring-cloud-gep PartTreeDataStoreQuery 432 1655 2 30 3 822.2
apache/falcon OozieWorkflowEngine 85 755 2 104 2 83.2
apache/falcon ConfigurationStore 452 1134 2 30 4 192.2
javaparser/javaparser LexicalPrinter 554 2215 3 122 3 L
jdbi/jdbi ImmutablePropertiesFactory 1023 3255 2 82 3 663.2
jdbi/jdbi RowView 197 1683 2 19 3 613.2
strapdata/elessandra InternallndexingStats 185 1332 3 11 3 344.8
jacoco/jacoco MethodAnalyzer 350 1422 2 31 1 35.4
jetbrains/Xodus PersistentSequentialDictionary 228 1772 3 17 2 143.2
OpenGamma/Strata FxMatrix 557 1933 3 31 4 79.2
osmandapp/Osmand GeocodingLookupService 287 1611 3 14 2 L
graylog2/graylog2-server StreamCacheService 96 1033 3 17 2 99.3
spring-projects/spring-framework DefaultListableBeanFactory 2153 4822 2 116 5 144.4
facebook/buck DaemonicParserState 755 1933 4 33 6 4554
junit-team/junit4 BlockJunit4ClassRunner 377 3255 2 33 2 415.3
Average - 495.3 1830.3 2.56 40.1 2.96 264.2

Table 2. Baseline results. The Avg. Time is the average time
over all the solved benchmarks (ignoring verification time)
so timeouts do not contribute to the average time.

Tool # Solved | Avg. Time

VoLt 23 264.2
FRANGEL 5 160.21
JSKETCH 2 1033.3

6.1 Main Results

To answer our first research question, we evaluated whether
VoLt is able to automatically refine the benchmarks and
how long it takes to do so. The results of this evaluation are
summarized in Table 1. Here, the first two columns show
the name of the class to be refined and the project it is taken
from. The third column indicates the lines of code in the
class and the fourth column shows the average number of
initial productions in our PCFG. The next three columns
provide information about the number of new fields to be
added, the total number of functions defined in the class, and
the number of functions that need to be updated. Finally, the
last column shows the running time of Vorr.

Overall, VorT is able to automatically refine 23 out of the
25 benchmarks (92%) within the provided time limit, and its
average synthesis time is 264.2 seconds. Furthermore, we
manually inspected the synthesized code and compared it
against the human-written version. In all cases, we confirmed
that the synthesized code is correct and matches the human-
written code except for minor variations (e.g., if (b) S1 else
S2vs. if(!b) S2 else S1).

Analysis of failed benchmarks. As shown in Table 1,
there are two benchmarks that Vovt failed to solve within the

584

1 hour time limit. In particular, VoLT is unable to synthesize
the desired update for classes GeocodingLookupService and
DemonicParserState because the required update logic is
very complex for some functions. For instance, a function in
DemonicParserState requires adding 15 lines of code with
over 150 AST nodes.

6.2 Comparison Against Baselines

To put these results in context and answer our second re-
search question, we also evaluated VOLT against existing
tools. While there is no existing technique that addresses ex-
actly our problem, we adapted two program synthesis tools
to our problem setting:

o Frangel: FRANGEL is a component-based synthesis tool
that can synthesize code with loops and conditionals [37].
However, since FRANGEL only handles input-output ex-
amples, we cannot directly use it to solve our problem.
Thus, to adapt FRANGEL to our setting, we used VoLT’s
modular refinement algorithm (Algorithm 2) but replaced
its inductive synthesis engine with FRANGEL instead.

e JSketch: Our third baseline is JSKETCH [23], which is an-
other state-of-the-art synthesizer for Java. Since JSKETCH
can also not be used to directly solve our problem, we also
perform this comparison by replacing Vor1’s inductive
synthesis engine with JSKETCH.

Note that both of these baselines are not quite apples-to-
apples comparisons as they actually utilize VorT’s modu-
lar refinement procedure. Nonetheless, they serve as useful
baselines for evaluating our proposed inductive synthesis
algorithm (Algorithm 3).

As we can see from Table 2, JSKETCH can only solve 2 of
the 25 benchmarks and is more than an order of magnitude

PLDI 21, June 20-25, 2021, Virtual, Canada

—<— VoLT-NODEDUCE
@ 6,000 —m— VorT-NoPCFG
—@— VOLT-NOAUGMENT
—— VoLT

4,000 |-

2,000 -

Cumulative Synthesis Time

0 | |
0 5 10 15 20

Solved Benchmarks

Figure 7. Comparing VOLT to baselines.

slower than Vort for these two benchmarks. FRANGEL solves
5 of the benchmarks but fails to solve the remaining 20 within
the 1 hour time limit. These results indicate that state-of-the-
art synthesis tools are not sufficient for solving our problem
even when leveraging the modular refinement idea proposed
in this paper.

6.3 Ablation Study

In this section, we present the results of an ablation study
for answering our third research question. In this evaluation,
we consider the following three ablations of Vort:

e VorT-NoPCFG: This is a variant of VoLt that uses a CFG
(instead of a PCFG). In particular, VoLT-NoPCFG uses the
integrity constraint to generate an initial CFG without
probabilities, and augments it with new productions with-
out probabilities during synthesis. In addition, it still com-
pute preconditions to prune infeasible programs.

e VorT-NoAUGMENT: This is a variant of VoLt that does not
perform grammar augmentation. That is, VOLT-NOAUGMENT
starts with the same initial PCFG and performs deduction
to prune infeasible programs; however, it does not use
deduction to augment the grammar. In other words, the
PCFG is not changed throughout.

e VoLT-NoDEDUCE: This is a variant of VoLt that does not
compute necessary preconditions. As a result, it cannot
perform pruning or grammar augmentation, and it only
uses the initial PCFG during the entire synthesis process.

The results of this ablation study are summarized in Fig-
ure 7. Here, the x-axis shows the number of solved bench-
marks (sorted in increasing order of synthesis time), and the
y-axis denotes cumulative running time. As we can see, all
variants perform significantly worse than VoL T; however, the
computation of necessary preconditions has the most impact
among the three ablations. Overall, these results demonstrate
that all three ideas used in our inductive synthesis algorithm
are important for making this technique useful in practice.

585

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

7 Related Work

Data structure Repair and Verification. There is an
extensive body of research on runtime detection and repair
of data structures from arbitrary boolean constraints [12-15]
starting from Demsky and Rinard [13]. Our work is similar
to this line of research in that we expect users to provide
integrity constraints over the fields of the data structure.
However, our problem is fundamentally orthogonal as we
want to statically update the data structure so that the in-
tegrity constraint holds whereas these approaches mutate the
state of the data structure at runtime to satisfy the integrity
constraints. There is a parallel line of research [16, 27, 28, 39]
on statically verifying properties of data structures. Our im-
plementation of VoLT uses a bounded model checker instead
of these verifiers since it needs to obtain counterexamples
in the CEGIS loop.

Data Invariants. Our work is also related to prior re-
search on maintaining data invariants [30, 36]. The most
similar work to ours is Spyder [36]. Like VorT, Spdyer re-
quires the developer to specify an invariant over fields of the
data structure and afterwards it automatically synthesizes
a new data structure where the invariants are maintained
after each basic block. Unlike VorT, Spyder requires the in-
variants to be iterator-based and alias-free. In particular, the
correlated fields must be iterator based data structures that
are structurally similar (i.e. all are the same length) and the
contents of the data structures cannot alias each other. The
benefit of such restrictions is that it allows Spdyer to perform
powerful and efficient transformations such as updating an
existing loop header to simultaneously iterate over multiple
structures. VoLT, on the other hand, allows developers to
specify arbitrary invariants so long as they can be encoded as
aboolean function. As such, it can handle a much larger class
of invariants that Spyder cannot. For example, Spdyer cannot
synthesize the desired update in Figure 1 as the correlated
fields are not iterator-based. In addition, the technical details
of synthesis algorithms are completely different. Spdyer’s
technique is based on deductive synthesis whereas VoLt
performs inductive synthesis.

Data representation synthesis. Our work is related to
a line of research on so-called data representation synthesis
[11, 21, 22, 33, 41], where the goal is to synthesize a complete
data structure from a specification. For example, Hawkins
et al. [21] allow developers to specify data structures as a
series of query and update relations, and their synthesis pro-
cedure uses rewrite rules along with deduction to generate
the concrete implementation. Loncaric et al. [33] follow a
similar procedure; however, they use enumerative search to
generate the implementation for update relations. Unlike this
line of research, our work focuses on cases where developers
refine an existing implementation by adding correlated fields.
Thus, developers only need to provide a simple integrity

Synthesizing Data Structure Refinements from Integrity Constraints

checking function as opposed to a complete implementation
in a specification language. Furthermore, our approach can
perform an in-place update as opposed to synthesizing the
complete data structure from scratch.

Synthesis using probabilistic models. There are sev-
eral prior techniques that use probabilistic models to guide
their search [6-8, 25, 29, 38]. Most of these techniques learn
a static PCFG through offline training [6, 29] whereas our
approach uses static analysis to initialize probabilities and
updates them on the fly. Barke et al. [7] also update PCFG
probabilities by identifying programs that satisfy some of
the input-output examples. However, in contrast to Barke
et al. [7], our approach uses deduction to identify promising
program sketches and augments the grammar with those
productions in addition to updating probabilities. In addi-
tion, Concord [8] also combines probabilistic models with
deduction; however, it uses deduction to compute a reward
for reinforcement-learning guided synthesis, whereas our
approach uses deduction to augment the PCFG.

Component-based synthesis. There has been a long line
of research on synthesizing programs from a set of compo-
nents such as library functions [17-20, 24, 34, 37, 40]. Among
these component-based synthesis approaches, the most re-
lated one is FRANGEL [37], which can also synthesize control
flow constructs like conditionals and loops. FRANGEL is par-
ticularly related to our approach in that it learns new compo-
nents at synthesis time by composing existing components.
This is similar to our approach in that we also augment the
grammar with new productions. However, a key difference
from FRANGEL is that VOLT uses program analysis and de-
ductive reasoning to learn these productions; furthermore,
the new “components” VorT learns are program sketches
rather than complete programs. As we show experimentally
in Section 6, our proposed inductive synthesis approach sig-
nificantly outperforms FRANGEL in this context.

8 Conclusion

We have presented VOLT, a tool for refining data structure
implementations from integrity constraints. VoLT is based
on program synthesis and uses a modular instantiation of
the CEGIS paradigm powered by a novel inductive synthe-
sizer that incorporates three key ideas: (1) pruning using
necessary preconditions, (2) deduction-guided grammar aug-
mentation, and (3) PCFG construction using static analysis.
We have evaluated VoLt on 25 real-world Java classes with
correlated fields and show that VoLT can successfully refine
23 out of these 25 (92%) benchmarks. We also compared VoLt
against other state-of-the-art synthesis tools for Java and
showed that our closest competitor can only solve 20% of
the benchmarks (despite already incorporating the modular
aspect of VorT). We also present several ablations of VoLt

586

PLDI ’21, June 20-25, 2021, Virtual, Canada

and show that our main ideas are all crucial for making the
proposed approach feasible in practice.

Acknowledgments

We thank the anonymous reviewers for the helpful feed-
back. This material is based upon work supported by the
National Science Foundation under Grant Nos. CNS-1908304,
CCF-1811865, and CNS-1514435. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the
views of the funding sources.

References

[1] [nd.]. CVE-2005-0034.
0034.
[n.d.]. CVE-2010-1013.
1013.
[n.d.]. CVE-2016-5195.
name=cve-2016-5195.
[n.d.]. CVE-2017-7308.
7308.
[n.d.]. Netty. https://github.com/netty/netty.
Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write
Programs. arXiv:1611.01989 [cs.LG]
[7] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-Time
Learning for Bottom-Up Enumerative Synthesis.
[8] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng.
2020. Program Synthesis Using Deduction-Guided Reinforcement Learn-
ing. 587-610. https://doi.org/10.1007/978-3-030-53291-8_30
Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel,
and Marek Trtik. 2018. JBMC: A bounded model checking tool for
verifying Java bytecode. In International Conference on Computer Aided
Verification. Springer, 183-190.
Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 337-340.
Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam
Chlipala. 2015. Fiat: Deductive Synthesis of Abstract Data Types in a
Proof Assistant. In Proc. of POPL. 689-700.
Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant,
Jeff H. Perkins, and Martin Rinard. 2006. Inference and Enforcement of
Data Structure Consistency Specifications. In Proceedings of the 2006
International Symposium on Software Testing and Analysis (Portland,
Maine). 233-244.
Brian Demsky and Martin C. Rinard. 2003. Automatic Detection and
Repair of Errors in Data Structures. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (Anaheim, California). 78-95.
Brian Demsky and Martin C. Rinard. 2003. Static Specification Anal-
ysis for Termination of Specification-Based Data Structure Repair.
In Proceedings of the 14th IEEE International Symposium on Software
Reliability Engineering (Denver, Colorado). 71-84.
Brian Demsky and Martin C. Rinard. 2005. Data Structure Repair
Using Goal-Directed Reasoning. In Proceedings of the 2005 International
Conference on Software Engineering (St. Louis, Missouri). 176-185.
Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. Precise Reasoning for
Programs Using Containers. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, Texas, USA) (POPL ’11). Association for Computing Machinery,
New York, NY, USA, 187-200. https://doi.org/10.1145/1926385.1926407

https://nvd.nist.gov/vuln/detail/CVE-2005-
[2] https://nvd.nist.gov/vuln/detail/CVE-2010-

[3

—_

https://cve.mitre.org/cgi-bin/cvename.cgi?

https://nvd.nist.gov/vuln/detail/CVE-2017-

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

https://nvd.nist.gov/vuln/detail/CVE-2005-0034
https://nvd.nist.gov/vuln/detail/CVE-2005-0034
https://nvd.nist.gov/vuln/detail/CVE-2010-1013
https://nvd.nist.gov/vuln/detail/CVE-2010-1013
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://github.com/netty/netty
https://arxiv.org/abs/1611.01989
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1145/1926385.1926407

PLDI 21, June 20-25, 2021, Virtual, Canada

(17]

(18]

(23]

[24]

[25]

[26]

[27]

(28]

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program
synthesis using conflict-driven learning. In Proceedings of PLDI. 420—
435.

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-based synthesis of table consolidation
and transformation tasks from examples. In Proceedings of PLDIL 422
436.

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.
Reps. 2017. Component-based synthesis for complex APIs. In Proc. of
POPL. 599-612.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing
data structure transformations from input-output examples. In Proc.
of PLDI. 229-239

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly
Sagiv. 2011. Data Representation Synthesis. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (San Jose, California, USA) (PLDI ’11). Association for
Computing Machinery, New York, NY, USA, 38-49. https://doi.org/
10.1145/1993498.1993504

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and
Mooly Sagiv. 2012. Concurrent Data Representation Synthesis. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (Beijing, China) (PLDI ’12). As-
sociation for Computing Machinery, New York, NY, USA, 417-428.
https://doi.org/10.1145/2254064.2254114

Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-
Lezama. 2015. JSketch: sketching for Java. In Proc. of ESEC/FSE. 934~
937.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.
Oracle-guided component-based program synthesis. In Proc. of ICSE.
215-224.

Manos Koukoutos, Mukund Raghothaman, Etienne Kneuss, and Viktor
Kuncak. 2017. On Repair with Probabilistic Attribute Grammars. (07
2017).

Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. 2011.
The Soot framework for Java program analysis: a retrospective.
Patrick Lam, Viktor Kuncak, and Martin Rinard. 2005. Generalized
Typestate Checking for Data Structure Consistency. In Proceedings of
the 6th International Conference on Verification, Model Checking, and
Abstract Interpretation (Paris, France) (VMCAI'05). Springer-Verlag,
Berlin, Heidelberg, 430-447. https://doi.org/10.1007/978-3-540-30579-
8 28

Patrick Lam, Viktor Kuncak, and Martin Rinard. 2005. Hob: A Tool for
Verifying Data Structure Consistency. https://doi.org/10.1007/978-3-
540-31985-6_16

587

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accel-
erating Search-Based Program Synthesis Using Learned Probabilistic
Models (PLDI 2018). Association for Computing Machinery, New York,
NY, USA, 436-449. https://doi.org/10.1145/3192366.3192410

K. Rustan M. Leino and Peter Miiller. 2004. Object Invariants in Dy-
namic Contexts. In ECOOP 2004 — Object-Oriented Programming, Mar-
tin Odersky (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 491-
515.

Ondrej Lhotak and Laurie Hendren. 2003. Scaling Java points-to anal-
ysis using S park. In International Conference on Compiler Construction.
Springer, 153-169.

Boyang Li, Isil Dillig, Thomas Dillig, K. McMillan, and S. Sagiv. 2013.
Synthesis of Circular Compositional Program Proofs via Abduction.
In TACAS.

Calvin Loncaric, Michael D. Ernst, and Emina Torlak. 2018. General-
ized Data Structure Synthesis. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18).
Association for Computing Machinery, New York, NY, USA, 958-968.

https://doi.org/10.1145/3180155.3180211
Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019.

Trinity: An Extensible Synthesis Framework for Data Science. PVLDB
12, 12 (2019), 1914-1917.

Kenneth L. McMillan. 1999. Circular Compositional Reasoning about
Liveness. In Proceedings of the 10th IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification Meth-
ods (CHARME ’99). Springer-Verlag, Berlin, Heidelberg, 342-345.
John Sarracino, Shraddha Barke, Nadia Polikarpova, and Sorin Lerner.
2019. Targeted Synthesis for Programming with Data Invariants. CoRR
abs/1904.13049 (2019). arXiv:1904.13049 http://arxiv.org/abs/1904.
13049

Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. FrAngel:
component-based synthesis with control structures. Proc. ACM Pro-
gram. Lang. 3, POPL (2019), 73:1-73:29.

Xujie Si, Y. Yang, Hanjun Dai, M. Naik, and L. Song. 2019. Learning a
Meta-Solver for Syntax-Guided Program Synthesis. In ICLR.

Philippe Suter, Mirco Dotta, and Viktor Kuncak. 2010. Decision
Procedures for Algebraic Data Types with Abstractions. In Proceed-
ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (Madrid, Spain) (POPL ’10). Asso-
ciation for Computing Machinery, New York, NY, USA, 199-210.
https://doi.org/10.1145/1706299.1706325

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthe-
sizing highly expressive SQL queries from input-output examples. In
Proceedings of PLDI. 452-466.

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Syn-
thesizing database programs for schema refactoring. In Proceedings of
PLDI. 286-300.

https://doi.org/10.1145/1993498.1993504
https://doi.org/10.1145/1993498.1993504
https://doi.org/10.1145/2254064.2254114
https://doi.org/10.1007/978-3-540-30579-8_28
https://doi.org/10.1007/978-3-540-30579-8_28
https://doi.org/10.1007/978-3-540-31985-6_16
https://doi.org/10.1007/978-3-540-31985-6_16
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3180155.3180211
https://arxiv.org/abs/1904.13049
http://arxiv.org/abs/1904.13049
http://arxiv.org/abs/1904.13049
https://doi.org/10.1145/1706299.1706325

	Abstract
	1 Introduction
	2 Overview
	3 Problem Formulation
	4 Data Structure Refinement Algorithm
	4.1 Preliminaries
	4.2 Modular Refinement Algorithm
	4.3 Inductive Synthesis Algorithm
	4.4 PCFG Initialization

	5 Implementation
	6 Evaluation
	6.1 Main Results
	6.2 Comparison Against Baselines
	6.3 Ablation Study

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

