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Abstract. For strong detonation waves of the inviscid Majda model, spectral stability
was established by Jung and Yao for waves with step-type ignition functions, by a proof
based largely on explicit knowledge of wave profiles. In the present work, we extend
their stability results to strong detonation waves with more general ignition functions
where explicit profiles are unknown. Our proof is based on reduction to a generalized
Sturm-Liouville problem, similar to that used by Sukhtayev, Yang, and Zumbrun to
study spectral stability of hydraulic shock profiles of the Saint-Venant equations.

1. Introduction. In this paper, building on methods of [SYZ,SZ], we study spectral
stability of strong detonation waves [BZ] of inviscid Majda’s model [M]

e (u?> (L1)

kqo(u)z,

—ko(u)z.
Here, u > 0 is a lumped variable modeling the gas-dynamical quantities of density,

momentum, energy and temperature, z > 0 is the mass fraction of the reactant, ¢ > 0
is a fixed coefficient of heat release of the reaction, k > 0 is reaction rate, and ¢(u) is a
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358 SOYEUN JUNG, ZHAO YANG, anp KEVIN ZUMBRUN

“general” ignition function satisfying
o(u) =0 for u < u;, and ¢(u) > 0 for u > u;, (1.2)

where u; > 0 is called the ignition level.
A strong detonation wave of (1.1) is a traveling wave solution of the form

(u, 2)(x,t) = (4, z)(z — st), lim (@,2)(&) = (ux,24) (1.3)

E—+oo

where (@, 2)(€) is the profile function and is smooth except at a single shock discontinuity
at (without loss of generality) £ = 0. At this discontinuity, known as a “Neumann shock”,
@ jumps from u, := @(07) to @(0") as £ crosses zero from left to right and the limiting
states uy, z+ satisfy

z-=0, 2z4=1, upr<wu;<u_, and up <s<u_. (1.4)

At the shock & = 0, the Rankine-Hugoniot condition associated with (1.1) reads

(2= (0) (1.5)

where [-] := -|gp+ — +|o- denotes jump in - across & = 0, which yields
Z07) =24 =1, ux+uy =2s. (1.6)
Moreover, in Section 2, we find by profile equations that u_ = s+ /(s — u4)? — 2gs; so
s and w4 satisfy that
_ 2
0<g< BT
2s

See [BZ,M,Z1,72] for further discussion.

It is shown in [Erl, Erp62, Er3, JLW,Z1,72] that spectral stability of detonation waves
may be determined by examination of the Evans-Lopatinsky determinant A(X) (3.4)
(defined below). The determinant is a stability function which is analytic in the right
half complex plane, and for which absence of roots in the right half plane (save for a single
“translational” zero eigenvalue at the origin) is defined as spectral stability. Thus, the
main purpose of this paper is to seek conditions needed for the general ignition functions
(1.2) such that the following statement holds:

Except for a simple root at A =0, A(X) (3.4) has no roots in {RA > 0}. (D)

For a simple step-type ignition function ¢(u) which is equal to zero for u < u; and one
for u > w;, the above condition (D) has been verified in [JY] by direct calculation of the
Evans-Lopatinsky determinant A(X). Also, in [BZ], the authors have presented a system-
atic numerical investigation of the Evans-Lopatinsky determinant with Arrehenius-type
ignition functions. However, as far as we know, spectral stability has not been verified
analytically for general ignition functions other than step-type. We are motivated by
the recent approach of Sukhtayev, Yang, and Zumbrun [SYZ] for investigating spectral
stability of hydraulic shock profiles. Utilizing that framework here, we obtain the main
result Theorem 4.4.
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STABILITY OF STRONG DETONATION WAVES 359

2. Rescaling and construction of strong detonation waves. We now briefly
review the construction of strong detonation waves in [BZ,JY]. Introducing the change
of coordinates

x

. z - ~ ~ q T~
R e e B . C Y

equations (1.1) become
& (2.2)

where w = == € (0,1]. In the new coordinates, we fix the traveling waves speed s to
be 1 and %4 to be 0. Furthermore, we have

~ ~ - Usx — Uy
S0 BoL andi, =t (2.3)

From now on, we work with (2.2), dropping tildes for ease of writing. Assume that the
profile (@,z)(§) is smooth on £ 2 0 with a single discontinuity at £ = 0. On the £ > 0
part, assume that the system holds at a quiescent (i.e. nonreacting) constant state:

(4,2)(€) = (ug,z4) = (0,1), for £ > 0. (2.4)

At the shock € = 0, our former analysis yields
a(07)=u, =2, 2(07)=1. (2.5)
On the £ < 0 part, plugging the ansatz (1.3) into (2.2) with s = 1, the profile ODE reads

1 /
w (5112 - a) = ¢(u)qz, 7 = ¢(u)z. (2.6)
Subtracting ¢ times the second equation of (2.6) from the first equation of (2.6) yields

/
(%wﬂQ —wi — q2> =0. (2.7)

Hence, for £ < 0, the quantity wii?(£)/2 — wu(€) — qz(€) is equal to a constant

1
§wuz —wu, —q2(07) = —q,
yielding
a(€) = 1+v/1-2¢(1 - 2(¢)/w, £<0. (2.8)
The profile ODE (2.6) thus reduces to the scalar ODE
=6 (1 /1= 2q(1 = 2)/w) z (2.9)

with initial condition zZ(0~) = 1. A sufficient condition for existence of monotone in-
creasing solution to (2.9) is the ignition level condition

u; < U_. (2.10)
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3. The Eigenvalue system and Evans-Lopatinsky determinant. In this sec-
tion, we provide a concise derivation of the Evans-Lopatinsky determinant. For a de-
tailed derivation, see [YZ] and the references therein. Linearizing (2.2) and its Rankine-
Hugoniot condition about a detonation wave and performing Laplace transform to the
linearized equations in “good unknown” [YZ,JLW,Z1,Z2], we obtain the following eigen-

value problem

Oc(Av) = (E — XId)v, £ 20, interior equation,
— — 3.1
n[AW — R(W)] = [Av], boundary condition, (8-1)

where v is the Laplace transform of the perturbation in “good unknown”, the scalar n is
the Laplace transform of shock location, Id is an identity matrix,

A:{W(ﬂ—l) 0 ] E:{qiaﬁu(ﬁ) qd)(ﬁ)]’

0 7—1 —5;5:()@) —¢ (u) (3)
= | u = | qo(u)z
=[] =] 0]
and [-] :=-Jp+ — ‘|o- denotes jump in - across £ = 0. With (&, 2)(&) holding at quiescent

state (0,1) on £ > 0 part, the interior equation of (3.1) readily becomes wdsv1 = Avy,
Ogva = Avg. For RA > 0, the trivial solution v(¢§) = 0 is then the only L?-solution on
& > 0 part. Therefore, we can reduce the eigenvalue problem (3.1) to

Oc(Av) = (B — AId)v, £ <0, interior equation,

n[AW — R(W)] = A(0")v(07), boundary condition. (3:3)

Furthermore, we find the limiting matrix of (3.3)

AN (—00) (B(—00) - AId) = | ~M V& =200 #u-)a/v/w? = 2qw
0

A+ o(u-)

always has a positive real part eigenvalue and a negative real part eigenvalue for R\ > 0.
Hence, there is one decaying mode and one growing mode as £ — —oo of the interior
equation (3.3).

We may reformulate the boundary condition of (3.3) as the following Evans-Lopatinsky
determinant.

DEFINITION 3.1. Corresponding to a strong detonation profile W = (4, 2)”, we define
its Evans-Lopatinsky determinant [Erl, Erp62, Er3, JLW,Z1,72] as
A(X) = det ([ AW — R(W)] A0 )v(07) }) (3.4)

where v is a decaying mode of the interior equation (3.3).
DEFINITION 3.2. We say a strong detonation wave is spectrally stable if there holds
condition (D).

4. Spectral stability of strong detonation waves. In this section, we prove the
condition (D) for ignition functions (1.2) satisfying condition (4.11) below. As we men-
tioned in the introduction, we will perform the reduction scheme established in [SYZ] for
the eigenvalue problem (3.3). We then extend the spectral stability result for step-type
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STABILITY OF STRONG DETONATION WAVES 361

ignition functions in [JY] to the case of ignition functions satisfying (1.2), using a homo-
topy argument. We begin with the following lemma to show that A = 0 is a simple root
of (3.4).

LEMMA 4.1. A = 0 is a simple root of the Evans-Lopatinsky determinant (3.4) if and
only if ¢p(u.) = ¢(2) # 0, in particular under assumptions (1.2) and (2.10).

Proof. Setting A\ = 0, the interior equation becomes (Av)’ = Ev. The eigenvalues of
E(—00)A~1(—00) are 0 and ¢(u_) > 0. Therefore, the decaying manifold as & — —oo is
one dimensional. Taking without loss of generality v = W/, we thus have

A(0) = det (| ROV(07)) AW (0) |) = det ([ ROV(07) R(W(07)) ]) =0.

(4.1)
To check simplicity of the root, it suffices to show Ay (0) # 0. Differentiating (3.4) and
setting A = 0 yields

Ax(0) =det ([ W] R(07) ]
—o ([ 200 }
= 2¢(2) + (¢(A(07)ua(

A simple calculation shows that ©(€) = q(A(f)v,\(f))Q + (A()va(€)), satisfies
v =(—qz—u), for&<DO. (4.3)
Integrating from —oo to € < 0 yields
0(§) = (—¢z —w)(§) — (—g% — w)(—00). (4.4)
Therefore, Ay(0) = 2¢(2) + (—q— 1+ /1 —2q/w)$(2) = (1 — g+ /1 — 2¢/w)$(2) # 0

provided that ¢(2) # 0. However, the condition ¢(2) # 0 is negligible under (1.2), (2.10),
since then ¢(u) > 0 for u > u; and u; < u_ < 2. O

We now prove that A(\) # 0 for a pure imaginary eigenvalue A. Following the
reduction scheme in [SYZ, section 2.2] and choosing

1 0
~w(l-a) 1 ’

q

; I =

q
~-1 9

the new variable u := T4 Ly satisfies
/

0 —q u | AMw(l—1a)-1) —A\q Uy 15
w(l—1a) 0 Us = AMwiy+we () —wup(a)—¢.(a)gz _¢(ﬂ) . ( . )

U
q q 2

Solving for w; by the first equation of (4.5) and plugging it in the second equation of
(4.5) yields a second order scalar ODE

uy + (FIx+ f2)uy + (fsA* + fad)uz = 0 (4.6)
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where
wit—1—w 1
fi= —m, fs= —m7
_ w?e(a) — wia — wP(@) — 2w P(2)a + w?P(a)a* + du()gZ + wP(a)u — Pu(W)wq? + pu(@)wquz
w(@—1)(wa —w+1)
. (@) — we(U) + wia — Pu(B)gZ + wP(4)T + Pu(W)wgZ — Pu(B)wquZz
w(@—1)(wat—w+1) '

fo=

fa=

After a Liouville-type transformation, we have
W\, €) = ed Jo LWLy, () ¢)

which gives
w' (5= 32) 0 (- ghta-3) A= 12— 5 )w=0. (8

Noting, as in [SYZ], that the limiting constant-coefficient equation associated with (4.8)
as £ — —oo has eigenvalues that are negatives of each other, yet at the same time
are constant real shifts of the eigenvalues associated with the limiting version of the
original system in w coordinates, which are known to have real parts of different signs
for RA > 0, we readily find that on £\ > 0, bounded solutions of (4.8) are in one-to-one
correspondence with bounded solutions of the original system, and exponentially decaying
in w coordinates. This confirms that zeros of the Evans-Lopatinsky determinant for the
original system correspond to exponentially decaying eigenfunctions of (4.8), which we
now investigate.
In w coordinate, after substituting

a(0") =0, z(07)=1, ¢(0)=0, a07)=2, 207)=1 ue(07)=0¢(2)q/w,
the Evans-Lopatinsky condition (3.4) 6(A) = 0 gives boundary condition
w+1

w'(07) = — ()\ o

9u(2)q + w(2) — 20(2)q +w?$(2) — ?$(2)q + P (2)wq - M@)q) w(0”)
2w+ 1w .

+

Taking the L? inner product of w with (4.8) on the half line ¢ < 0 yields
w(0) - w'(0) — (w',w')

4.10
(o ((n-3) 2+ (- gom-30)a- 18- gn)wy=0.

Here, w denotes the complex conjugate of w. Equations (4.9) and (4.10) yield the fol-
lowing lemma.

LEMMA 4.2. The system (4.10) has no nonzero pure imaginary eigenvalue for ignition

functions satisfying
d 2w (u—1)

= In(g(w) <

for 1 4+ /1 —2q/w < u<2.

—_— 4.11
wu? — 2wu + 2q° ( )
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STABILITY OF STRONG DETONATION WAVES 363

Proof. Substituting A = ia, a # 0, and (4.9) into equation (4.10), and taking the
imaginary part gives

a (—w(O) -w<o)”2—:1 +(w, <f4 = %f1f2 - %f{) w>> =0, (4.12)

which will only have the trivial solution (ruling out that A = ia is an eigenvalue) provided
that

(f4 - %f1f2 - %ff)(f) <0, for&<0. (4.13)

For, then, (4.12) gives w(0) = 0, hence w’(0) = 0, and so w = 0 by solution of the Cauchy
problem for the second-order interior equation.
We readily find

1 L,  (wo(u) + du(u)gZ — wo(u)u) (Wi —w + 1)

- - —-—fi= . 4.14

fa 2f1fz 2f1 221 — 1) (4.14)
Substituting z = (wa? — 2w + 2q)/(2q) yields

1 1, (wa—w+1)(wa2—2wﬂ+2q) L o wi—w+1

LA W) — LT ). (415

fa 2f1f2 2f1 o217 bu (1) 2w (@—1) o(u). (4.15)

Here, it is easy to see wti? — 2wii + 2q > wii(—o0)? — 2wii(—00) + 2¢ = 0. Hence, the

condition (4.13) is equivalent to (4.11). O

REMARK 4.3. The condition (4.11) says that the rate of change of logarithm of the

2w(u—1)

ignition function cannot be big. Moreover, we find that is decreasing on

wu?2—2wu+2q
u € (14 /1 —2q/w,?2]; hence a sufficient condition for (4.11) is

In(é(u)) < w/q. (4.16)

We are now ready to prove the main theorem of this paper by a homotopy argument.

THEOREM 4.4. The strong detonation waves of (1.1) corresponding to ignition functions

satisfying
4 In(¢p(u)) < 2U = Uy — Uy for all u € (u_, u.] (4.17)
du = (uun) (=) + (o Fup)’ e |

are all spectral stable.

Proof. Tt has been verified in [JY] that strong denotation waves of (2.2) with step
ignition function ¢ (u) are spectrally stable.! Let ¢(u) be an ignition function satisfying
(4.11) and define ¢(r,u) = ¢" (u)dp " (u), for 0 < r < 1. We have

d 2w(u —1)

d d d
T In(@(r,w) = o (§(w)) + (1= 7)o In(o(u)) = r-o- In(@(w) <

wu? —2wu+2q’

(4.18)
for 1 + /1 —2¢/w < u < 2. That is, the family of function ¢(r,u) parameterized
by r always satisfies (4.11). Hence when varying r from 1 to 0, the unstable/stable

eigenvalues cannot cross the imaginary axis by Lemma 4.1 and Lemma 4.2. Because

n version 2 of the paper, the authors corrected a minor issue in their paper published in Quarterly
of Applied Mathematics. They now allow u4 > 0 (not only u4 = 0 in first version). This fix allows us
to get spectral stability of strong detonation of equation (2.2) with w € (0, 1] and step ignition function.
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there is no unstable eigenvalue for r = 0, there must be no unstable eigenvalue for r = 1
also. Writing condition (4.11) back in original coordinates, we get condition (4.17). O

REMARK 4.5. For Arrhenius type ignition functions [LZ]

—&/T(u)
P(u) = {Ce =0 (4.19)

0 <0,

investigated in [BZ], the condition (4.11) becomes

ET(w) _  2w(u—1) _  2u-—1) for 1+ /1= 2q/w <u<2 (4.20)

T2(u) — wu? —2wu+2¢ u?—2u+2q/w’

Specifying to the first choices of T'(u) in the numerical investigation in [BZ]
Ti(u) =1— (u—1.5)2

our criterion (4.20) gives a curve on the (¢/w) — & plane and validates spectral stability
of points to the left of the curve. See Figure 1(a). We also plot the points {¢/w,E} =
{0.01:0.01:0.49} x {0:0.1:5,5.2:0.2: 10,12, 15,20, 30,40} studied in [BZ] on Figure
1(a). We see that most (3963 out of 3969) of the points studied by Barker and Zumbrun
can be validated by criterion (4.20) as being spectrally stable. There are six points
{q/w, &} ={0.49} x {20}, {0.48,0.49} x {30},{0.47,0.48,0.49} x {40} to the right of the
curve, for which stability is not determined by (4.20). The latter were among points
for which Barker and Zumbrun reported numerical difficulties; however, redoing the
computations with Matlab’s stiff ODE solver odelbs appears to resolve these difficulties,
yielding numerically observed stability.
Specifying to the second choices of T'(u) in the numerical investigation in [BZ]

T (u) = u,
our criterion (4.20) gives a curve £ = 4w/q on the (¢/w) — & plane and validates spectral

stability of points to the left of the curve. See Figure 1(b). We also plot the points

50 (b)

40

40
30

20

-
o

0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

w q/w

0 0.

1 0.2
q/

Fig. 1. (a) The first choice of ignition function Ty (u) = 1—(u—1.5)2
in [BZ]. (b) The second choice of ignition function 75 (u) = u in [BZ].
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STABILITY OF STRONG DETONATION WAVES 365

{q/w, €} = {0.01: 0.01 : 0.37,0.375,0.38 : 0.01 : 0.49} x {0: 0.1 : 5,5.2 : 0.2 : 10,12, 15}U
{0.01:0.01:0.37,0.375,0.38 : 0.01 : 0.47} x {20} U {0.01 : 0.01 : 0.37,0.375,0.38 : 0.01 :
0.45} x {25} U{0.01 : 0.01 : 0.37,0.375,0.38 : 0.01 : 0.40} x {30} studied in [BZ] on Figure
1(b). We see that most (3851 out of 4035) of the points studied by Barker and Zumbrun
can be validated by criterion (4.20) as being spectrally stable.

5. Discussion and open problems. In the analyses of both [SYZ] and the more
general [SZ], a strict version of sign condition (4.13) is assumed from the beginning.
Thus, the equivalent condition (4.17) obtained here is the strongest criterion that can
be obtained by the methods of those papers. However, evidently, this condition is not
sharp. For, it is a closed condition, whereas the condition of spectral stability is an open
one, by continuity of spectra under perturbations in wave parameters. Thus, waves close
enough to a wave satisfying (4.17) are stable even though they may not satisfy (4.17)
themselves. This perhaps sheds light on the extent to which one can push Sturm-Liouville
methods in this context. It would be very interesting of course to find alternative methods
counting eigenvalues crossing the imaginary axis as well as the origin, generalizing [SZ]
and extending our results here to more general choices of ignition function.
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