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a b s t r a c t

We study by a combination of analytical and numerical Evans function techniques multi-D viscous and
inviscid stability and associated transverse bifurcation of planar slow Lax MHD shocks in a channel
with periodic boundary conditions. Notably, this includes the first multi-D numerical Evans function
study for viscous MHD. Our results suggest that, rather than a planar shock, a nonplanar traveling wave
with the same normal velocity is the typical mode of propagation in the slow Lax mode. Moreover,
viscous and inviscid stability transitions appear to agree, answering (for this particular model and
setting) an open question of Zumbrun and Serre.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, continuing and extending investigations of [1–6], we study by a combination of analytical and numerical Evans function
echniques multi-D viscous and inviscid stability and associated transverse bifurcation of planar viscous slow Lax magnetohydrodynamic
MHD) shocks in a channel with periodic boundary conditions. Notably, this includes the first multi-D numerical Evans function study
or viscous MHD, a computationally intensive problem representing the current state of the art, and, together with the treatment of
as-dynamical shocks in [7], the first such study for viscous shock profiles of any physical system in multi-D.
We obtain also new details on the inviscid stability problem, while at the same time unifying and somewhat simplifying previously

btained results. In particular, we give a general framework for the treatment of constraints, or involutions [8], such as those that arise
n multi-D MHD or elasticity, recovering and extending to the viscous case the fundamental results obtained by Blokhin et al. (see [3,9]
nd references therein) for inviscid MHD in a way apparently special to that case. The latter result answers in the affirmative the
undamental open problem posed in [10] whether Evans function stability, in the sense defined there, is necessary as well as sufficient
or nonlinear multi-dimensional stability of viscous shocks in the presence of a constraint.

Our main physical conclusions are two. First, we make a mathematical connection between the spectral instability observed for slow
nviscid MHD shocks [3,9] and ‘‘corrugation instabilities’’ observed in the astrophysics community [11,12], via a viscous bifurcation
nalysis as in [4–6]. Namely, we demonstrate transitions from stability to instability satisfying the bifurcation hypotheses proposed
n [4] (parallel magnetic field case) and [6] (nonparallel case), implying bifurcation in a mode transverse to the direction of shock
ropagation, i.e., lying in the direction parallel to the front, the first examples for which these scenarios have been shown to occur. Our
esults suggest that, rather than a planar shock, a nonplanar ‘‘wrinkled’’ or ‘‘corrugated’’ traveling wave with nearby normal velocity is the
ypical mode of propagation in the slow Lax mode.
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Second, continuing 1-D investigations of [1], we show numerically that the transition to instability for viscous multi-D slow Lax
MHD shocks coincides with the transition to instability observed in the inviscid case. As shown in [13–15], for a rather general class
of physical systems generalizing the ‘‘Kawashima class’’ of [16], viscous stability implies inviscid stability: that is, viscous effects may
destabilize, but never stabilize a planar shock wave. The question posed in [13–15] whether and under what circumstances these two
conditions coincide is a fundamental open problem in the theory of shock waves. On the one hand, it is much simpler to determine
inviscid as opposed to viscous stability, so that prior knowledge that they coincide would be a great help in applications; on the other,
destabilization due to viscous effects would be extremely interesting physically. Our results here give the first information in this
direction for multi-D, and (along with [7]) a first set of data for multi-D viscous systems. They are obtained by the introduction of
an algorithm for numerical determination of the ‘‘refined stability condition’’ of [13,15,17,18], detecting concavity at transition of the
associated ‘‘critical’’ spectral curve through the origin, a new tool of general use. Our results, as in the 1-D study [1], suggest that viscous
and inviscid stability transitions coincide.

For simplicity, our investigations here are confined to the 2-D case. However, the methods used apply in general dimensions. In the
parallel case that is our main object of study, by rotational symmetry about the longitudinal axis, or direction of propagation of the
front, multi-D stability – more generally, multi-D spectrum – reduces to the 2-D case, so there is no loss of generality in restricting
to 2-D (cf. discussion of [3]). For the nonparallel case, discussed briefly here, 2-D stability is necessary but not sufficient for multi-D
stability in dimensions d ≥ 3. Likewise, there could conceivably be an earlier bifurcation involving spectral modes associated with the
neglected third dimension. This, and the nonparallel case in general, would be interesting for further study.

1.1. Problem and background

The Navier–Stokes, or viscous, equations for isentropic 2-D MHD are given, in vectorial notation, by

ρt + div(ρu) =0 (1.1a)

(ρu)t + div(ρu⊗ u− h⊗ h)+∇q =µ∆u+ (η + µ)∇div(u) (1.1b)

ht −∇ × (u× h) =ν∆h, (1.1c)

where u = (u1, u2) is the velocity field, h = (h1, h2) is the magnetic field, and q = p +
|h|2
2 , where p = p(ρ) is gas-dynamical

ressure [16,19–22]. Here, (x1, x2) is spatial location and t is time. We take p(ρ) = aργ corresponding to a γ -law, or polytropic equation
of state. The corresponding Euler, or inviscid, equations are given by Eqs. (1.1) with µ = η = ν = 0. In either (viscous or inviscid) case,
the magnetic field must satisfy in addition the constraint

div(h)
⏐⏐⏐
t=0

= 0, (1.2)

which if satisfied at initial time t = 0, may be seen to persist for all t > 0.
Our aim is to study the spectral stability of both viscous and inviscid planar (without loss of generality standing) shock waves

u(x, t) ≡ u(x1) in dimension 2, either as solutions on the whole space, or – which amounts to restricting Fourier modes to a (discrete)
lattice – as solutions on a two-dimensional channel, x1 ∈ R, x2 ∈ [0, 1], with periodic boundary conditions in x2. In the parallel case
u = (u1, 0), h = (h1, 0), Eqs. (1.1) decouple into the equations of nonmagnetic isentropic gas dynamics in (ρ, u) and a heat equation
for h, from which we may readily deduce that the set of parallel planar MHD shocks consists precisely of the set of nonmagnetic gas-
dynamical shocks in (ρ, u), adjoined with h1 ≡ constant (for details, see for instance [2,3,10]). As existence/transversality of traveling
wave profiles for viscous polytropic gas dynamics is well known both in the isentropic [23] and nonisentropic [24,25] case, one obtains
thereby immediately existence/transversality of parallel MHD profiles, and, by perturbation, of near-parallel profiles as well; see [2] for
details.

Shocks in MHD have different types defined by the number of characteristics at plus and minus infinity moving inward toward
the shock.4 For parallel shocks, this is determined by the strength |h1| of the normal magnetic field (h1, 0)T , being ‘‘fast Lax’’ type for
0 ≤ |h1| < H∗, ‘‘intermediate’’ type for H∗ < |h1| < H∗, and ‘‘slow Lax’’ type for H∗ < |h1| [3,10], where

H∗ = u+1
√
ρ+, H∗

= u−1
√
ρ− (1.3)

for 0 < u+1 < u−1 ; see Lemma 3.1(iii)). Fast shocks are somewhat analogous to gas-dynamical shocks, and indeed reduce to this
ase in the zero-magnetic field limit |h| ≡ 0. Intermediate shocks are of nonclassical ‘‘overcompressive’’ type not appearing in gas
ynamics [2,14,15,26]. Slow shocks are of classical Lax type, but separated in parameter space from the fast type and exhibiting
omewhat different properties. The patterns of incoming characteristics at plus and minus infinity for each type are displayed in Table 1
or the case of parallel shocks.

Inviscid numerical studies [27,28] indicate that fast parallel shocks are typically stable, while slow parallel shocks are typically
nstable. Intermediate shocks, since overcompressive, are always inviscid unstable, and will not be discussed here. (Nonetheless, they
ppear to play an important role in viscous behavior [13,17,26] where they have been seen numerically to be at least 1-D stable [2]).
ndeed, it has been shown analytically [29,30] that fast parallel MHD shocks are stable under the gas-dynamical stability condition
f Majda [31], notably for a polytropic equation of state; likewise, it has been shown analytically [3,9,32] that slow MHD shocks are
nstable in the infinite-magnetic field limit |h| → ∞. In particular, in the brief but suggestive paper [3] Freistühler and Trakhinin,
mong other things, showed analytically the inviscid instability of slow Lax shocks for parallel MHD for sufficiently large magnetic
ield, extending to the parallel case (degenerate in this context [3]) the fundamental results of Blokhin et al. [9,32].

The result of Freistühler and Trakhinin [3] corroborates and puts on more solid mathematical ground an earlier study on instability
f slow planar shocks in MHD performed by Stone and Edelman in the setting of astrophysics [12], where it is thought to play a role

4 A standard detail suppressed here is that the equations must first be recast in a form that is hyperbolic and noncharacteristic with respect to shock speed;
ee [10] or Section 2 below.
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or example in the dynamics of accretion disks of binary dwarf stars. According to [12], the loss of stability through oscillations in the
low magnetosonic shock front is known as corrugation instability [12]. Though most of Stone and Edelman’s results rely on formal
linear stability analysis, they also study the phenomena numerically through a time evolution code. The latter experiments suggest
that the observed oscillatory linear instabilities result at nonlinear level in ‘‘fingers’’ that end up destroying the planar structure of the
shock front. That is, the numerical results [12, Section 3.1 and 3.3] of Stone and Edelman indicate, further, that onset of instability is
associated with loss of planar structure of the viscous profile, i.e., appearance of the above-mentioned corrugations.

The possibility of this latter phenomenon has been verified rigorously in the form of a steady transverse bifurcation in a general
O(2)-symmetric strictly parabolic system of conservation laws [4] relevant to the parallel MHD case, under appropriate spectral
bifurcation conditions, namely, that transition to instability occurs through a pair of real eigenvalues corresponding to nonzero
transverse Fourier modes passing through the origin. In the non-O(2) symmetric case, corresponding to nonparallel magnetic field,
a similar Hopf bifurcation result was shown in [6], under the assumption that loss of stability occurs through the passage of a complex
conjugate pair of eigenvalues associated with nonzero transverse modes. Our ultimate goal is to verify these spectral scenarios by a
detailed numerical study of the eigenmodes of the linearized operator about the shock.

1.2. Main results and outline of the paper

The first logical step in this work consists of combining the analytical conclusions of [3] of inviscid instability in the infinite-magnetic
field limit with numerical Evans function results showing that slow Lax shocks can be stable for smaller magnetic fields. Putting these
observations together, one may conclude the existence of a stability transition, associated with which one might hope to observe
bifurcation in wave structure. This is far from obvious at the inviscid level, where such transitions are associated with infinitely many
Fourier modes simultaneously entering the right half of the complex plane (see [33]); nor is it clear a priori that there is a corresponding
stability transition at the viscous level, since viscous and inviscid spectra can differ greatly at mid and high frequencies. Nevertheless,
by the result of Zumbrun and Serre [13, Proposition 5.3] connecting viscous and inviscid spectra in the low frequency regime, one may
conjecture the associated appearance of more standard bifurcations in the better-behaved viscous case, involving finitely many (for a
duct of finite cross-section, or, for the whole space, a finite range of) low-frequency modes; see Section 1.3 or [34] for further discussion.
In the simplest situation that the single (necessarily real) double eigenvalue pair (double by O(2) symmetry) for large magnetic field
moves into the stable half plane as magnetic field is decreased, without meeting any other eigenvalues along the way, this would
necessarily be a ‘‘steady’’ spectral bifurcation, passing through λ = 0. This simple scenario is likewise not a priori guaranteed, but our
numerical investigations confirm that it is indeed what occurs.

To carry out these numerical investigations requires some interesting extensions of the standard Evans function framework
[13–15,17,35] to handle the presence of constraints such as (1.2), similar to what was done for inviscid MHD by Blokhin et al. [3,9],
and (partially) for viscous MHD by Métivier et al. [10]. In the process, we unify and simplify these previous analyses, at the same time
obtaining a new formulation of the MHD equations – the ‘‘β-model –’’ that is particularly convenient for numerics, combining in one
model the desirable properties of noncharacteristicity, hyperbolicity, and conservation form; this is developed in Section 2.

To describe the main issues, a starting point is the observation that, in the presence of constraint (1.2), the equations of MHD are not
prescribed uniquely, but only up to the addition of multiples of the constraint. Indeed, in the study of spectral stability, one could adjoin
the constraint as an additional equation if desired. Thus, one must take care to choose a form of the equations possessing properties
under which the standard Evans function and Lopatinsky determinants used to study viscous and inviscid stability are well defined,
namely noncharacteristicity, hyperbolicity, and conservative form. There is a standard reformulation of the equations in which they
become symmetric hyperbolic–parabolic and noncharacteristic [9,10,21] and another, different, formulation in which they become
conservative; the standard approach has been to use ad hoc combinations of these in the analysis, depending on the need at hand.
Here, we introduce for our single formulation a different analytical framework encompassing both viscous and inviscid cases. This
gives necessity and sufficiency of the Evans condition for viscous MHD stability in the presence of constraint (1.2), answering an open
problem posed in [10], where sufficiency but not necessity was established. In passing, we rederive and further illuminate the inviscid
results of [3,9]. These issues are discussed in Section 2, where the β-model and basic analytic framework are introduced.

In Section 3, we provide a description of the Rankine–Hugoniot conditions and the Lopatinsky determinant condition, giving the
foundations for a careful study of inviscid instabilities. In particular, we (i) recapitulate in the more convenient β-model framework
the large-magnetic field asymptotics of [3] showing instability, at the same time correcting certain computation errors in [3]; and (ii)
carry out a numerical Lopatinsky study both verifying our asymptotics and extending the analysis to the small-magnetic field regime
(see Figs. 3 and 2(b), respectively). Two notable conclusions are that:

(i) the large-magnetic field asymptotics are quite accurate, extending even down to rather small magnetic field strengths (see Fig. 1);
(ii) there do exist inviscid stable slow parallel MHD shocks for sufficiently small magnetic field and sufficiently small amplitude of the

shock.

The latter conclusion has the important implication that a stability transition, with potential for bifurcation, occurs. Moreover, this
transition is seen to correspond precisely to the type of instability identified by the large-magnetic field asymptotics, namely, a double
eigenvalue passing through λ = 0 along the real axis from Re(λ) < 0 to Re(λ) > 0, with all other spectra lying in the strictly stable
alf-space Re(λ) < 0; see Fig. 4. This corresponds to a passage directly from ‘‘uniform’’ or ‘‘strong’’ Lopatinsky stability, with all spectra
trictly stable other than (λ, η) = (0, 0), to ‘‘strong’’ or ‘‘violent’’ instability, with some spectra strictly unstable, Re(λ) > 0. This is
uite different from the case of gas dynamics (or related fast MHD shocks [28]), where there typically intervenes an open intermediate
egion of ‘‘weak stability’’ possessing neutrally stable spectra Re(λ) = 0 but no strictly unstable spectra Re(λ) > 0. See [3, Footnote 1
nd associated discussion]; for further discussion, see [33].
In Fig. 4, we plot |∆(λ)| against Re(λ) and Im(λ) for h1 = 1.3 and h1 = 1.5, where we have normalized ∆(λ) = 1 when Re(λ) = 1.

ote that h1 = 1.5 is very near the stability boundary, and so ∆(0) ≈ 0 as shown in Fig. 4(b), but |∆(λ)| is bounded above zero as
hown in Fig. 4(a) for h1 = 1.3, away from the stability boundary. In particular, these plots show that ∆(iτ ) ̸= 0 where τ ∈ R, except

or the zero at τ = 0 for h = h∗ corresponding to the bifurcation under study.

3
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Fig. 1. Log–log plot of the zero of the Lopatinsky determinant λ against ε :=
1
h1

when γ = 5/3 and u+1 = 0.6. Solid dots correspond to our numerical approximation
f the root, open circles to the prediction given by the asymptotic expansion, and asterisks to the description given in [3, Equation (61)]. The value of λ2 , approximated
ia λ2 = λnum/ε2 , is approximately 0.0836.

Fig. 2. Bifurcation diagram plotting h1 − H∗ against u−1 − u+1 indicating the boundary between stable and unstable waves in the (a) viscous model and (b) the
nviscid model when γ = 5/3. A red dot corresponds to instability while a black plus sign indicates stability. In the viscous case, to examine stability, we considered
ξ ∈ [0.001, 0.004, 0.007, 0.01, 0.04, 0.07, 0.1, 0.14, 0.17, 0.2]. The dashed line in both figures indicates the critical transition parameter for the Lopatinsky determinant.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Log–log plot of the relative error between the numerical and asymptotic descriptions of the zero of the Lopatinsky determinant against ε =
1
h1

when γ = 5/3
nd u+1 = 0.6.

Finally, in Section 3.1.3, we compare our analytical and numerical multi-D results with those in [3] and [12]. Notably, we find that

ur large-magnetic field asymptotics improve by as much as 20% on the accuracy of previous analyses. Specifically, as shown in Fig. 1,

4
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Fig. 4. Behavior of ∆ near the stability transition: plot of |∆(λ)| against Re(λ) and Im(λ) when (a) h1 = 1.3 and (b) h1 = 1.5. Note that ∆ is normalized to be 1
hen Re(λ) = 1. Other independent parameters are Γ = 5/3 and u+1 = 0.8.

Fig. 5. Plot of Re(u1(x)) in the first order approximation of the perturbation of the nonplanar bifurcating wave of (1.1) as constructed by solving for the
igenvalue–eigenfunction pair using the Evans function and then imposing periodicity. The associated parameters are γ = 5/3, u+1 = 0.6, and h1 = 3.

hen compared with results in [3, Equation (61)], the calculation (3.5) of λ2 shows a better agreement with numerical results; see
lso Section 3. This discrepancy is partly explained by the computations of Appendix C, where, among other things, we show that the
ynamic Rankine–Hugoniot conditions of [3, Equation (44)] are incorrectly stated. This error, acknowledged by the authors in [36],
eads to quantitative but not qualitative changes in the asymptotic results obtained in [3]. More important, the corrected version yields
result that is valid for all γ ≥ 1 for isentropic-law, extending the result of [3, §3.4] constrained to γ ∈ [1, 2].
In Section 4, we connect the inviscid analysis with the viscous theory of stability of planar shocks based on the work of [13], through

study of the low-frequency limit (Table 3 and Fig. 6); this gives an additional check on our Lopatinsky computations through their
symptotic agreement with our numerical computations of the Evans function, an object defined in a completely different way.
We go on to carry out a complete numerical Evans function study of viscous stability over all parameters and frequencies (see

ig. 2(a)), verifying that there occurs the same stability transition, at the same parameter values, that were seen in the inviscid case.
e present, further, numerical results verifying the bifurcation conditions assumed in the abstract results in [6] and [4] (see also the

elated [37]), consisting of the absence of other neutrally stable eigenvalues (see Fig. 7) and nonzero speed of crossing of the imaginary
xis as the magnetic field is varied (see Fig. 9). We compute also approximate zero-eigenfunctions at the bifurcation point, yielding the
pproximate shape of the bifurcating nonplanar wave (see Fig. 5).
We finalize the paper with an appendix: in A we briefly explain how numerical winding number computations were carried out; in

, following [3,9], we present an alternative proof by direct computation of Corollary 2.7 in the special case of inviscid MHD, showing
hat the constraint div(h)

⏐⏐⏐
t=0

= 0 persists throughout the dynamics, namely, div (h(t)) ≡ 0, for all t ≥ 0; last, in C we give another
erspective on the dynamic Rankine–Hugoniot condition of [3,9], at the same time correcting details of some related calculations in [3].

.3. Discussion and open problems

Our general results on Evans functions for systems with constraints pave the way for a unified treatment of multi-dimensional
iscous shock stability in MHD, elasticity, and related equations arising in continuum mechanics. Our introduction of the β-model,
hough more special to MHD, by putting the equations into a standard symmetrizable conservative form, has the tremendous advantage
hat it allows computations using existing ‘‘off-the-shelf’’ code in the numerical stability package STABLAB [38]. As discussed in [7,39,40],
uccess or failure of multi-dimensional computations is highly dependent on the specific algorithm used, with a number of catastrophic
ossible pitfalls that must be avoided. Thus, the ability to use existing, already-tested algorithms is of significant practical advantage.
5
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Fig. 6. Plot of λ(ξ ) against ξ , where D(λ(ξ ), ξ ) = 0, when γ = 5/3, u+1 = 0.6 and h1 = 3.

Fig. 7. Viscous stability bifurcation diagram when γ = 7/5, with red open circles corresponding to instability and black plus signs indicating stability of the Fourier
ransformed operator at frequency ξ .

Fig. 8. Diagram indicating the ways in which a subcritical and critical Hopf bifurcation might manifest itself in the bifurcation diagrams when taking into account
the relationship between the Evans function and the Lopatinsky determinant. The purple curve plots λ(ξ ) as ξ varies.

We point out some further background and implications from a more general perspective contrasting viscous and inviscid stability.
s shown in [13], viscous stability is closely related at low frequencies to inviscid stability, hence uniform viscous stability implies
niform inviscid stability. This means that, as shock or magnetic field strength is increased from a stable regime, a transition to inviscid
nstability implies a corresponding transition to viscous instability, occurring in low-frequency modes. The reverse is not true, as it is
ossible that a transition to viscous instability could occur in advance of the transition to inviscid instability due to destabilization of
n intermediate- or high-frequency mode unrelated to the inviscid problem. Indeed, let ξ ∈ R be the Fourier frequency parameter
n the direction x2 transversal to the shock front. Then, as depicted in Fig. 8, there are essentially 3 different scenarios for viscous vs.
nviscid stability transitions in a finite-cross section channel, depending mainly on concavity vs. convexity of the neutral spectral curve
= λ(ξ ) for the viscous case, bifurcating from λ(0) = 0, given by the sign of Re (λ)′′ (ξ ) evaluated near ξ = 0.
Recall from [13] that the curve ξ ↦→ λ(ξ ) = Re(λ)(ξ )+ i Im(λ)(ξ ) is tangent to the corresponding inviscid stability curve at ξ = 0;

he latter curve is given by a ray through the origin due to homogeneity of the Lopatinsky determinant. The viscous spectral curve λ(·)
s depicted in various cases in Fig. 8 along with its tangent inviscid ray. In the first case, λ(·) is concave (Re λ ′′ (·) < 0) and we see that
( )

6
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Fig. 9. Plot of (a) Re(λ(h1)) against h1 and (b) Re((d/dh1)λ(h1)) against h1 where λ(h1) is the zero of the Evans function being tracked as h1 varies, and γ = 5/3,
= 0.05, and u+1 = 0.6. For computational details, see Section 5.

he transition to instability occurs simultaneously in the whole space (for which ξ ∈ R) for viscous and inviscid problems, and slightly
ater for a duct of finite cross-section (for which ξ ∈ Z, hence viscous spectra lags behind inviscid by a fixed finite amount). In the
econd, λ(·) is convex (Re (λ)′′ (·) > 0) and viscous instability occurs slightly before inviscid instability as the bifurcation parameter is
aried, for either the whole space or finite cross-section. In the third, λ(·) is concave, but high-frequency instabilities cause the viscous
roblem to destabilize first. This is consistent with the results of [13] in the whole space, where it is shown that the viscous transition
ccurs not later than the inviscid one. For the whole space problem (ξ ∈ R), our discussion above shows that it occurs simultaneously
recisely in case 1, and strictly sooner in cases 2 and 3.
Our numerical results (see Section 4.5) for typical parameters γ = 5/3, u+1 = 0.86 indicate that the viscous transition occurs at

∗
≈ 2, while the inviscid transition occurs at H∗

≈ 1.995. Likewise, one can see from Fig. 6 that the second derivative of the spectral
arameter λ = λ(ξ ) with respect to ξ is negative. Indeed, we find this to be the case for all parameter values; see Section 4.6 and
articularly Fig. 12(a). That is, we appear to be in the first case depicted in Fig. 8. This has the important consequence that, considered
n the whole space, viscous and inviscid stability transitions coincide for the 2-D transverse instabilities considered here, similarly as
as seen in [1] for the 1-D longitudinal instabilities considered there. Thus, though viscosity can in principle according to the results
f [13] hasten the onset of instability, for the two studies carried out so far (in [1] and here) for gas dynamics and MHD, this possibility
as not in practice observed. It remains a very interesting open problem whether such ‘‘viscosity-enhanced instability’’ can occur for
hysically relevant models of gas dynamics or MHD, both philosophically, and – since inviscid transitions may often be computed
xplicitly, whereas viscous transitions require substantial numerical computation – from a practical point of view. Indeed, we note that
t has been shown in [41] that the neutral inviscid stability curve, where the Lopatinsky condition precisely vanishes for λ = 0, ξ ̸= 0,
ay be determined explicitly, making this a practical condition indeed.
Our numerical study confirms not only stability transition but also that the spectral bifurcation assumptions assumed in [4–6] indeed

old: the loss of stability happens through a double eigenvalue crossing the imaginary axis. For fully parabolic ‘‘artificial viscosity’’
ersions of MHD, the actual nonlinear bifurcation would follow from the results presented in [4–6] restricted to the space of divergence
ree magnetic field functions, provided that the corresponding spectral scenario were verified. Extending this result to the physical,
‘real’’ viscosity case considered here is an important open problem. Presumably, one could expect a similar spectral bifurcation for
he artificial viscosity case (giving the full nonlinear result), but we do not investigate this here. The extension of our investigations to
complete ‘‘all-parameters’’ study of MHD shocks analogous to that done for gas dynamics in [7] is another important direction for

urther study: likewise, spectral stability of small amplitude nonextreme shocks as considered here, both inviscid and viscous.5
Another interesting direction would be to carry out a full, analogous study of slow shock waves in non-isentropic MHD. Results in

hat direction are given in the thesis [44], with plans to extend that work to a journal article. In that study, the β-model we introduce
ere is used, referencing this study. The results of [44] are consistent with the conjecture that viscous and inviscid stability transitions
lso coincide for non-isentropic MHD.
It is worthwhile to emphasize the loss of planar structure observed here (see Section 4), in the numerical experiments of Edelman

nd Stone (cf. [12, Section 3.1 and 3.3]) and in the context of steady bifurcations in a O(2)-symmetric strictly parabolic system of
onservation laws; see [4]. This indicates that the resolution of the 2-D-Riemann problem for slow shocks in MHD is not realized through
lanar shocks, but generically involve nonplanar ‘‘corrugated’’ fronts as component slow waves; see also the recent numerical results
f [45]. Spectral and nonlinear stability of these nonplanar waves is another very interesting open problem for further investigation.
Finally, we mention an interesting related analysis of Freistühler, Kleber, and Schropp [41] for the inviscid isothermal (γ = 1) case, in

hich they find by explicit computation the inviscid stability boundary ∆(0,±1) = 0 (in the notation of Section 3.1) for slow parallel
hocks; a similar computation should be possible for general γ , sharpening our description of the inviscid boundary in Fig. 2-(b).6
reistühler et al. investigate numerically also the fast shock case, showing that parallel isothermal fast shocks are uniformly stable, but
onparallel ones experience a transition to instability across a particular parameter surface. Similarly, for the general isentropic case
γ > 1), Trakhinin [28] has shown that fast nonparallel shocks can be unstable in some regimes. A very interesting further study would
e to carry out the corresponding analysis of viscous stability transition in these cases for fast shocks as we have done here for slow
hocks.

5 For extreme shocks, i.e., 1- or 5-shocks in the artificial viscosity case, see [42,43].
6 Namely, the dashed line in the figure, here computed numerically as described in Section 3.2.1.
7
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.4. Notation

In this paper we denote the real part (resp., imaginary part) of a number z ∈ C by Re(z) (resp., Im(z)). We let u ∈ Rn be a vector
f states assuming values u± across a shock. Given any function u ↦→ f (u) we write [f (u)] = f (u+)− f (u−). The partial derivative of a
ifferentiable mapping (x1, x2, . . . , xn) ↦→ g(x1, x2, . . . , xn) with respect to the variable xi is written as gxi . Given a matrix A ∈ Cn×n, we

write A−1 to denote its inverse, and σ (A) to represent its eigenvalues.

2. The β-model

Focusing our attention without loss of generality (by Galillean invariance of (1.1)) on shocks propagating in the x1 direction, we now
introduce the β-model, obtained by adding a constant multiple of div(h) to Eq. (1.1c) in (1.1), yielding in place of Eqs. (1.1) the system

ρt + div(ρu) = 0, (2.1a)

(ρu)t + div(ρu⊗ u− h⊗ h)+∇q = µ∆u+ (η + µ)∇div(u), (2.1b)

ht −∇ × (u× h)+ βdiv(h)e1 = ν∆h, (2.1c)

where β is a fixed real-valued parameter and e1 = (1, 0)t . Recalling the constraint div(h) = 0 we see that (1.1) and (2.1) are equivalent
or smooth solutions. However, (2.1) has certain practical advantages, as we now explain.

An important reason to modify (1.1) is that, considered without the constraint div(h) = 0, the inviscid version µ = η = ν = 0, of (1.1)
s not hyperbolic. A standard resolution of this problem is to substitute in (1.1) relations ∇(|h|2/2)−div(h⊗h) = h×(∇×h)−hdiv(h) =
× (∇ × h) and

∇ × (h× u) = div(u)h+ (u · ∇)h− (div(h))u− (h · ∇)u = div(u)h+ (u · ∇)h− (h · ∇)u,

hich amounts to adding the nonconstant multiples hdiv(h) and u div(h) of the constraint div(h) to (1.1b) and (1.1c), to obtain the
ymmetrizable hyperbolic system [3,9,10]

ρt + div(ρu) = 0, (ρu)t + div(ρu⊗ u)+ h× (∇ × h)+∇p = 0, ht −∇ × (u× h) = 0. (2.2)

his has the advantage of both recovering hyperbolicity, and providing a symmetrizable system of equations. On the other hand, this
andy device results in loss of conservative form of the equations, as a result of which jump conditions across shocks are not computable
or this version of the equations. Meanwhile, the jump conditions for the conservative version (1.1) are degenerate (not full rank), and
ust be supplemented with that of the constraint in order to obtain the correct number of boundary conditions for the shock problem.
ee [10, §7] for further discussion. We refer elsewhere to this model, used in [3,10,29], as the ‘‘hybrid’’ or ‘‘standard’’ model.
It is clear that the inviscid β-model preserves the conservative structure of the equations; however, it is not symmetrizable.

onetheless, as we will see shortly, it maintains (weak) hyperbolicity, among other useful properties, in particular those needed for
inearized stability analysis by the study of Majda’s Lopatinsky determinant [10,13,31]. Moreover, it may be used ‘‘as is’’ for both interior
quations and jump conditions, without additional modifications, allowing the use of standard numerical schemes for investigation
f Lopatinsky stability. Likewise, the viscous version of the β-model is conservative and, though not of classical symmetrizable
‘Kawashima’’ form [16], exhibits the same favorable type of dispersion relation enjoyed by models of that type, among other properties
eeded for linearized stability analysis by the study of the Evans function [10,13–15,17,35,46].

.1. The inviscid β-model and its properties

To explore the properties of the β-model we find it convenient to work in an abstract setting, following the discussion in [22, §5.4],
fterwards specializing to our model. We start with the more complicated inviscid case, then finish by indicating briefly the treatment
f the viscous case following [37, pp. 2 and 62–64].
System (2.1), in the inviscid case µ = η = ν, may be written in the general form

f0(W)t +
d∑

j=1

fj(W)xj = 0, W ∈ Rn, (2.3)

ith d = 2, n = 5, W = (ρ, u1, u2, h1, h2)T , and

f0 = (ρ, ρu1, ρu2, h1, h2)T ,

f1 = (ρu1, ρu2
1 +

1
2
(h2

2 − h2
1)+ p, ρu1u2 − h1h2, βh1,−h1u2 + h2u1)T ,

f2 = (ρu2, ρu1u2 − h1h2, ρu2
2 +

1
2
(h2

1 − h2
2)+ p, βh2 + h1u2 − h2u1, 0)T .

(2.4)

he linearization of (2.3) about a constant solution W ≡ W̄ is given by

A0Wt +

d∑
j=1

AjWxj = 0, Aj := Dfj(W). (2.5)

Taking V = f0 (W), where f0(·) is assumed to be a (local) diffeomorphism from Rn to itself, we can rewrite (2.3) in the standard form

V + F(V) = 0, (2.6)
t

8
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F(V) :=
d∑

j=1

Fj(V)xj Fj(V) := fj(V(W)) = fj(f −1
0 (W)), (2.7)

with linearization about a constant solution V ≡ V = f0(W) given by

Vt +

d∑
j=1

AjVxj = 0, Aj := DFj(V) = AjA−1
0 (W). (2.8)

Likewise, the divergence-free constraint may be written in the general form

Γ V :=

d∑
j=1

Γj∂xjV ≡ 0, Γj ∈ Rm×n
≡ constant, (2.9)

satisfying Dafermos’ compatibility condition (involution) (cf. [8, Chap. V, Section 5.4]):

Γ F(V) = −MΓ V, (2.10)

where M is first-order constant-coefficient:

M :=

d∑
j=1

Mj∂xj , Mj ∈ Rm×m
≡ constant. (2.11)

and hyperbolic:

σ

⎛⎝ d∑
j=1

kjMj

⎞⎠ real and semisimple, ∀k ∈ Rd. (2.12)

Note that (2.10) implies also the linearized version:

Γ L = −MΓ , (2.13)

here L := −
∑d

j=1 A
±

j ∂xj , x1 ≷ 0, is the linearized operator about a background constant solution.

emark 2.1. For (2.1) we have d = 2, m = 1, n = 5, V = (ρ, ρu1, ρu2, h1, h2), Γ1 = (0, 0, 0, 1, 0), Γ2 = (0, 0, 0, 0, 1), M1 = β , and
2 = 0. Thus, Γ V = div(h) and M = β∂x1 .

.1.1. Hyperbolicity
For a given reference state V and direction vector k ∈ Rd, define

A(k) =
d∑

j=1

kjA±

j , Γ (k) =
d∑

j=1

kjΓj, M(k) =
d∑

j=1

kjMj,

rom (2.13), we have

Γ (k)A(k) = M(k)Γ (k), (2.14)

hence kerΓ (k) is a right invariant subspace and RangeΓ (k)T a left invariant subspace of A(k). Likewise, CokerΓ (k) is a left invariant
ubspace and RangeΓ (k) a right invariant subspace of M(k).
Hyperbolicity of (2.6) with constraint (2.9) is defined as the property that the eigenvalues σ (A(k)|kerΓ (k)) of A(k)|kerΓ (k) be real and

emisimple for all k ∈ Rd, and ‘‘weak hyperbolicity’’ of (2.6) with (2.9) as the property that σ (A(k)|kerΓ (k)) be real for all k ∈ Rd.
yperbolicity of (2.6) without constraint (2.9) is defined as the property that σ (A(k)) be real and semisimple for all k ∈ Rd, and ‘‘weak
yperbolicity’’ without (2.9) as the property that σ (A(k)) be real for all k ∈ Rd.

roposition 2.2. Under assumption (2.10):

(i) System (2.6) is weakly hyperbolic with constraint (2.9) if and only if it is weakly hyperbolic without the constraint. In particular, µ,
r are an eigenvalue, eigenvector pair of L (k) if and only if either (a) Γ (k)r = 0, or (b) γ := Γ (k)r is an eigenvector of M(k) with
eigenvalue µ, 0 ̸= k ∈ Rd, whence

σ (A(k)) = σ (A(k)|kerΓ (k)) ∪ σ (M(k)|RangeΓ (k)). (2.15)

(ii) Eq. (2.6) is hyperbolic with the constraint if it is hyperbolic without the constraint. If (2.6) is hyperbolic with the constraint, then for
every k for which σ (M(k)|RangeΓ (k)) ∩ σ (A(k)|kerΓ (k)) = ∅, σ (A(k)) is imaginary and semisimple.

(iii) If (2.6) is hyperbolic with the constraint, and σ (A(k)) is semisimple for all k ∈ Rd, then (2.6) is hyperbolic without the constraint.
However, in general hyperbolicity with constraint (2.9) does not imply hyperbolicity without the constraint.

roof. Applying (2.14) to (A(k)−µ)r = 0, we obtain (M(k)−µ)γ = 0, with γ = Γ (k)r , and thus the second assertion in (i), dichotomy
a)–(b). In case (a), r ∈ kerΓ (k) and so µ ∈ σ (A(k)| ); in case (b), µ ∈ σ (M(k)| ). Combining, we obtain (2.15). The first
kerΓ (k) RangeΓ (k)

9
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ssertion in (i) then follows by hyperbolicity of M, which implies σ (M(k)) real, hence σ (M(k)S) real on any invariant subspace of
(k).
The first assertion in (ii) follows by the fact that the eigenvalues and eigenvectors of A(k) restricted to an invariant subset are a subset

f the eigenvalues and eigenvectors of A(k). The second assertion in (ii) holds because σ (M(k)|RangeΓ (k))∩σ (A(k)|kerΓ (k)) = ∅ implies that
he number of eigenvectors and eigenvalues of M(k)|RangeΓ (k) and A(k)|kerΓ (k) is then n, together accounting for all eigenvalues of A(k),
long with the fact that (M−µ)Γ S = 0 implies Γ (A−µ)S = 0 and so (A−µ)S ∈ kerΓ — this, along with separation of σ (M(k)|RangeΓ )
nd σ (A(k)|kerΓ ) gives (A− µ)(S + R) = 0 for some R ∈ kerΓ , yielding semisimplicity of eigenvalues lying in σ (M(k)|RangeΓ ).
The first assertion in (iii) follows by the observation that weak hyperbolicity plus semisimplicity of σ (A(k)) for all k ∈ Rd implies

yperbolicity. Finally, the example A1 =

(
0 1
0 0

)
, Γ1 = (0, 1), kerΓ1 = (1, 0)T , M1 = 0 for d = 1, n = 2, and m = 1 satisfies

yperbolicity with constraint (since A|kerΓ1= 0) and hyperbolicity of M, but is not hyperbolic without constraint, demonstrating the
econd assertion in (iii). □

emark 2.3. Assuming hyperbolicity of A with constraint Γ and hyperbolicity of M, consider the generalized eigenvector equation
A(k)−µ)ir = 0. Applying Γ (k) on the left, we obtain (M(k)−µ)iΓ (k)r = 0, giving (M(k)−µ)Γ (k)r = 0 by hyperbolicity of M. But,
his in turn gives 0 = Γ (A(k) − µ)r , or (A(k) − µ)r ∈ kerΓ (k), from which we may determine that r is a generalized eigenvector of
(k) of height 2 over a genuine eigenvector in kerΓ (k). Thus, the counterexample given in the proof is indicative of the general case,
he only obstruction to hyperbolicity being possible appearance of Jordan blocks of height 2.

roposition 2.4. The β-model is weakly hyperbolic without constraint (2.9) and hyperbolic with the constraint. In the parallel case
= (ū1, 0), h = (h̄1, 0), it is not hyperbolic without the constraint if β ̸= ū1.

roof. Hyperbolicity of the MHD equations with constraint (2.9) is well known; see, e.g., [10]. Likewise, M in this case, since scalar
m = 1), is automatically hyperbolic. Thus, we obtain weak hyperbolicity without constraint by Proposition 2.2. On the other hand,
aking without loss of generality ū = 0, by Galillean invariance, direct computation using (2.4), (2.8)(ii) gives A0 = diag{1, ρ, ρ, 1, 1},
nd

A(k) = (k1A1 + k2A2)A−1
0 =

⎛⎜⎜⎜⎜⎜⎝
0 k1 k2 0 0

pρk1 0 0 −h̄1k1 − h̄2k2 h̄2k1 − h̄1k2
pρk2 0 0 h̄2k2 − h̄2k1 −h̄1k1 − h̄2k2
0 −

h̄2
ρ̄
k2

h̄1
ρ̄
k2 βk1 βk2

0 h̄2
ρ̄
k1 −

h̄1
ρ̄
k1 0 0

⎞⎟⎟⎟⎟⎟⎠ , (2.16)

ence, in the parallel case, for k = (0, 1), Γ (k) = (0, 0, 0, 0, 1), M(k) = 0, and

A(k) =

⎛⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 0 −h̄1
pρ 0 0 0 0
0 0 h̄1

ρ̄
0 β

0 0 0 0 0

⎞⎟⎟⎟⎟⎠ , A(k)|kerΓ (k)=

⎛⎜⎜⎝
0 0 1 0
0 0 0 −h̄1

pρ 0 0 h̄1

0 0 h̄1
ρ̄

0

⎞⎟⎟⎠ .

oting that the left kernel Span{(−h̄1, 0, 0, ρ̄)} of A(k)|kerΓ (k) is not orthogonal to the upper right hand block (0, 0, 0, β)T of A(k) unless
= 0, we find that (2.1) is not hyperbolic if β ̸= 0, or, in original coordinates, β ̸= ū1. □

The appearance of Jordan blocks with maximum height 2 suggests that one might establish local existence for (2.6) with loss of one
erivative, as for example in the model (linear) case ut = vx, vt = 0. However, we mention this, and the details of Proposition 2.4 for
eneral interest only; for our purposes (namely, analysis of linear shock stability), weak hyperbolicity is what is needed.

.1.2. Weak involution and persistence of constraints
For C2 solutions V of (2.6), it is easy to see that constraint (2.9) is preserved under the evolution of (2.6). For, applying Γ to (2.6),

e obtain (∂t −M)(Γ V) = 0, whence, by well-posedness (hyperbolicity) of the constant-coefficient equation (∂t −M)V = 0, if Γ V ≡ 0
t time t = 0, then Γ V ≡ 0 for all t ≥ 0 as well. We show now that the same holds true for weak solutions of (2.6); indeed, (2.10)
olds (weakly) also for discontinuous V .
The key to these results is to observe that condition (2.10), relating a nonlinear expression on the left to a linear constant-coefficient

ne on the right, implies substantial structure. Decomposing

Fj(V) = NjV + Qj(V), (2.17)

here Qj(V) = O(|V|2) denotes the nonlinear part of Fj, we have the following algebraic relations.

emma 2.5. With Nj, Qj as above, involution property (2.10) is equivalent to

ΓjNj = MjΓj, ΓjQj = 0,
ΓjNk + ΓkNj = MjΓk +MkΓj, ΓjQk + ΓkQj = 0.

(2.18)
10
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roof. Relations (2.18)(i) may be deduced from (2.13) evaluated at V = 0, comparing coefficients of like derivatives of V . Subtracting
2.18)(i) from (2.10) gives Γ

∑
j ∂xjQ(V) = 0, whence (2.18)(ii) follows by taking V(x) =

∑
wjxj for arbitrary w ∈ Rn to find that

d∑
j,k=1

⟨wj, d2(ΓjQk + ΓkQj)wk⟩ = 0

or all wj, wk, whence each coefficient d2(ΓjQk +ΓkQj) vanishes separately and so d(ΓjQk +ΓkQj) = constant, and (ΓjQk +ΓkQj) must
e linear in V . By Qj(V) = O(|V|2), this implies (ΓjQk + ΓkQj) = 0, or (2.18)(ii). □

orollary 2.6. For V ∈ L∞, (2.10) holds in weak sense; indeed, for φ ∈ C2,
d∑

j,k=1

⟨∂xk∂xjφ,ΓjFk(V)⟩ =
d∑

j,k=1

⟨∂xk∂xjφ,MjΓkV⟩; a.e. (2.19)

roof. Relation (2.19) follows immediately from (2.18), comparing like φ-derivatives term by term. Weak satisfaction of (2.10) then
ollows by integration in x of (2.19) for φ ∈ C∞

0 . □

orollary 2.7. An L∞ weak solution V of (2.6) satisfying (2.9) weakly at time t = 0 satisfies (∂t − M)Γ V = 0 and (2.9) weakly for all
≥ 0.

roof. If V is a weak solution of (2.6), then it is a weak solution of Γ (∂tV + F(V)) = 0, hence, by Corollary 2.6, a weak solution
f (∂t − M)Γ V = 0. Next, we recall that a function U ∈ Lp satisfies a constant-coefficient linear differential equation LU = 0 in
= (z1, z2) ∈ Rm+n weakly if and only if LUε

= 0 for all ε > 0, where Uε
:= U ∗ ηε is the mollification of U in coordinate z1 by

symmetric smoothing kernel ηε(z1) := ε−1/mη(|z1|/ε). For, denoting ⟨g, h⟩∗ =
∫
Rm g∗f (z)dz, the relation ⟨L∗φ,Uε

⟩∗ = ⟨L∗φε,U⟩∗
ogether with Uε

→ U in L1 as ε → 0+ gives the result. Letting Vε(·, t) ∈ C∞ denote mollification in x, we thus have φε
:= Γ V ε

≡ 0
strongly) at t = 0 while (∂t − M)φε

= 0 weakly for t ≥ 0. It follows by hyperbolicity/uniqueness of weak solutions that φε
≡ 0 and

hus Γ Vε
= 0 for all t ≥ 0. Taking ε → 0+, we find that Γ V = 0 weakly for all t ≥ 0. □

orollary 2.8. For any β ∈ R, an L∞ weak solution V of the β-model (2.1) satisfying div(h) = 0 weakly at t = 0 satisfies (2.9) weakly for
ll t ≥ 0.

emark 2.9. Corollary 2.8 includes the case β = 0 for which the β-model coincides with the original, conservative form (1.1) of the
HD equations. For weak solutions with div(h) initially weakly vanishing, this justifies the manipulations used in deriving both the
eneral β-model, and the hybrid symmetrizable hyperbolic/augmented jump condition system of [3,9,10], based on weak satisfaction
f the constraint div(h) = 0. In particular, it shows that weak solutions of all three models coincide, where defined, for weakly divergence-
ree data. We note for the hybrid model that weak solutions are by its nature defined only for piecewise smooth solutions with entropic
hock discontinuities. Within this class, persistence of the constraint is shown, e.g., in [10, Proposition 7.1], via weak satisfaction of

div(h)t + div(udiv(h)) = 0, (2.20)

he associated jump condition [(s − u1)div(h)] = 0 for the constraint at a shock traveling with speed s being obtained from the jump
ondition for shocks of the augmented equation (2.20). For a linearized version of this result, see [3, Remark 3.2]. We offer a second
roof of persistence for the linearized β-model in Appendix B, through an argument like that in [3,10].

emark 2.10. [Smooth vs. weak persistence] It is important to notice that our framework here is rather special, even in situations
hen constraints are preserved for smooth solutions: for example, when the operator M in (2.10) is quasilinear hyperbolic rather than

inear, constant-coefficient. In this case, satisfaction of the constraint may be ‘‘broken’’ by appearance of shock discontinuities; that is,
ersistence of constraints could hold for smooth, but not general weak solutions. A very interesting example pointed out to us by D.
annes is 2-D shallow water flow, for which vorticity can be created in initially irrotational flow through wave breaking/formation of
hock waves [47].

.1.3. Compatibility of constraints I: shock waves
Corollary 2.7 suggests that shock waves of (2.6) associated with characteristics of the constrained model (2.6), (2.9) should be

ompatible with the constraint in the sense that they satisfy Γ V weakly, since such shocks may be expected to form from data that is
nitially smooth and satisfying the constraint. That is, for a shock wave

V(x, t) = V(x · k− st) =
{
V+ x · k− st > 0
V− x · k− st ≤ 0

(2.21)

ropagating in direction k ∈ Sd−1 with speed s, and satisfying Rankine–Hugoniot conditions

s[V] = [F(k)], F(k) :=
d∑

j=1

Fjkj, (2.22)

here [h] := h(V+) − h(V−) denotes jump in h across the shock, whose speed is not associated with the fixed, complementary set
f characteristics σ (M(k)| ) governing propagation of constraints (recall decomposition (2.15)), we expect there to hold also the
RangeΓ

11
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ump conditions

[Γ (k)V] = 0 (2.23)

ssociated with (2.9). We now verify this intuition by direct computation using Lemma 2.5.
Let us first remark that small-amplitude shocks do certainly exist in simple characteristic fields αj(k) ∈ σ (A(k)|kerΓ (k)) of the

onstrained model (2.6), (2.9), by the standard bifurcation analysis of Lax [48,49], with jump [V] in V across the shock front
ying approximately in the associated eigendirection r(k) ∈ kerΓ , hence satisfying (2.23) to first order at least. Likewise, in the
omplementary case of simple characteristic fields αj(k) ∈ σ (M(k)|RangeΓ (k)) associated with propagation of Γ V . However, in the
atter case, it is easy to see that these are contact discontinuities with [V] lying approximately in the associated eigendirection r(k),
hich, moreover, is specifically not annihilated by Γ (k). Hence, for such discontinuities, (2.9) definitely does not hold weakly. For

arge-amplitude shocks, or multiple characteristics, shock existence must be studied on a case-by-case basis. For MHD, global existence
s well known, as recorded for the parallel case in Lemma 3.1.

Recall finally [13] that shocks are classified as different types – e.g., ‘‘Lax’’, ‘‘overcompressive’’, or ‘‘undercompressive’’ – according
o the difference between the numbers of incoming and outgoing characteristics at their endstates V±.

roposition 2.11. Assuming involution property (2.10), a shock solution (2.21) of (2.6) satisfying (2.22) with speed s ̸∈ σ (M(k)|RangeΓ )
utomatically satisfies (2.9) in the weak sense (2.23). Moreover, the type of the shock is the same considered with respect to characteristics
f the system with or without constraint.

roof. Expanding F(k) = N (k) + Q(k), with N(k) :=
∑d

j=1 Njkj and Q(k) :=
∑d

j=1 Qjkj, and using (2.18), we find that 0 =

(k)[F(k) − sV] = Γ (k)(N (k) − s)[V] = (M(k) − s)[Γ (k)V], whence (2.23) follows by the assumed invertibility of M(k) − s on
angeΓ (k). Moreover, by assumption, the additional characteristics σ (M(k)|RangeΓ ) present for the unconstrained system besides the
haracteristics σ (A|kerΓ ) of the constrained one are distinct from s, hence noncharacteristic. Moreover, since M(k) is independent of
±, the number of resulting new characteristics incoming to the shock is equal to the number of new characteristics outgoing from
he shock, each incoming characteristic on one side being matched by an outgoing characteristic of the same sign relative to s on the
ther side. As shock type is defined by the difference between the numbers of incoming and outgoing characteristics [13], it is therefore
naffected by presence or absence of the constraint. □

orollary 2.12. For stationary MHD shocks in the x1 direction W(x, t) = W(x1) = W± for x1 ≷ 0 of the β-model (2.1) and any β ̸= 0,
ivh = 0 holds weakly, i.e., [h1] = 0 across the shock. Moreover, the type of the shock is the same considered with or without the constraint.

roof. For the β-model, we have (see Remark 2.1) M1 = β , M2 = 0, hence σ (M(k)) = β for shock speed s = 0 and direction
= (1, 0), and so s ̸∈ σ (M(k)) precisely when β ̸= 0. □

emark 2.13. In the case β = 0, corresponding to (1.1), the jump condition [h1] = 0 for divh = 0 is consistent with but not implied by
he Rankine–Hugoniot conditions, which are in this case degenerate (not full rank) [3,9,10]. We note that any inviscid shock obtainable
s the limit of smooth viscous shock profiles of (1.1) with µ, η, ν ̸= 0 necessarily satisfies divh = 0, so this assumption is not only
nternally consistent (as just shown), but also consistent with the vanishing viscosity point of view.

.1.4. Compatibility with constraints II: normal modes
For definiteness, restrict now (without loss of generality) to the case of a zero-speed planar shock in direction x1, of standard Lax

type, in particular satisfying

detA1(V±) ̸= 0. (2.24)

Note that (2.24), by (2.15), automatically implies 0 ̸∈ σ (M1|RangeΓ1 ). Recall from, e.g., [13], the normal modes equations after shifting
o a frame (z, x2, . . . , xd) with discontinuity at x1 = 0:

λV̂ + A±

1 V̂z +

d∑
j=2

iξjA±

j V̂ = 0, x1 ≷ 0, (2.25)

(interior equation) and

Y

⎛⎝λ[V ] +

∑
j̸=1

iξj[fj(V )]

⎞⎠− [A1V̂] = 0, (2.26)

(linearized jump conditions), where [·] denotes jump across x1 = 0. Here, V̂ ∈ Cn denotes the Laplace–Fourier transform of the
coordinated-shifted solution V and Y ∈ C the Laplace–Fourier transform of the shift, or front location in the original spatial coordinates,
with ξ = (ξ2, . . . , ξd) ∈ Rd−1 the Fourier frequency in directions (x2, . . . , xd) and λ ∈ C the Laplace frequency in time t . Associated
with each solution V ∈ L2(R) of (2.25)–(2.26) is a normal mode

V(x1, t) = eλt+
∑d

j=2 iξjxj V̂(x1), (2.27)

of the linearized coordinate-shifted equations, with Re(λ) > 0 corresponding to linear instability.
Hereafter, we replace the shifted coordinate z by its original designation x1. Define symbols

Â(ξ ) = A±∂ + Ã(ξ ), Γ̂ (ξ ) = Γ ∂ + Γ̃ (ξ ), and M̂(ξ ) := M ∂ + M̃(ξ ),
1 x1 1 x1 1 x1

12
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here Ã(ξ ) =
∑d

j=2 iξjAj, Γ̃ (ξ ) =
∑d

j=2 iξjΓj, and M̃(ξ ) =
∑d

j=2 iξjMj. Likewise, denote

N̂ (ξ ) =
d∑

j=2

iξjNj, Q̂(ξ ) =
d∑

j=2

iξjQj, and F̂(ξ ) =
d∑

j=2

iξjFj.

emma 2.14. Assuming (2.10), (2.24), for V̂ piecewise smooth and satisfying (2.25)–(2.26):

(i) (λ+ M̂)Γ̂ V̂ = 0 for x1 ≷ 0.
(ii) [M1Γ̂ V̂] = 0 at x1 = 0, hence (λ+ M̂)Γ̂ V̂ = 0 weakly on R.

roof. From (2.13), (2.18), we obtain the corresponding relations

Γ1A1 = M1Γ1, Γ̃ Ã = M̃Γ̃ , Γ̃ A1 + Γ1̃A = M̃Γ1 +M1Γ̃ , (2.28)

Γ̃ Ñ = M̃Γ̃ , Γ̃ Q̃ = 0; Γ1Ñ + Γ̃Ns1 = M1Γ̃ + M̃Γ1, Γ1Q̃+ Γ̃Q1 = 0. (2.29)

Recall the jump condition (2.22) for the shock, specialized to the x1-directional case k = (1, 0, . . . , 0):

[F1] = [N1V + Q1(V)] = 0, (2.30)

and the jump condition (2.23) for the constraint:

[Γ1V] = 0. (2.31)

btained by applying Γ1 to (2.30) and using (2.18) and 0 ̸∈ σ (M1). Similarly, applying Γ̃ to (2.30) and using (2.29), we obtain
0 = Γ̃ [N1V + Q1(V)] = −Γ1[ÑV + Q1(V)] + [M̃Γ1 +M1Γ̃ ], or

Γ1[ÑV + Q1(V)] = (M̃Γ1 +M1Γ̃ )[V]. (2.32)

Applying now Γ1 to (2.26), and using (2.28)–(2.29) and (2.31), give

M1[Γ1V̂] = Γ1[A1V̂] = −YiξΓ1[ÑV + Q̃(V)] = −Yiξ (M̃Γ1 +M1Γ̃ )[V] = −YiξM1Γ̃ [V],

ielding, by invertibility of M1 (a consequence of (2.24), as noted above),

[Γ1V̂] = −Yiξ Γ̃ [V]. (2.33)

Writing (2.25) as (λ+A1∂x1 + Ã)V̂ = 0, applying Γ̂ on the left, and using (2.28), we obtain immediately (λ+ M̂)Γ̂ V̂ , verifying (i).
Using (2.25) to express ∂x1 V̂ = A−1

1 (λ+ Ã)V̂, we obtain

M1[Γ̂ V̂] := M1[(Γ1∂x1 + Γ̃ )V̂] = M1(−Γ − 1A−1
1 (λ+ Ã))[V̂],

or, using M1Γ1 = Γ1A1 to express M1Γ1A−1
1 = Γ1, M1[Γ̂ V̂] =

(
−Γ1(λ + Ã) + M1Γ̃

)
[V̂]. Using (2.28) to express M1Γ̃ − Γ1Ã =

Γ̃A1 − M̃, we obtain finally

M1[Γ̂ V̂] = −(λ+ M̃)[Γ1V̂] + Γ̃ [A1V̂],

or, substituting for [Γ1V̂] using (2.31), and then applying (2.29):

M1[Γ̂ V̂] = Y [(λ+ M̃)Γ̃ V] + Γ̃ [A1V̂] = Γ̃

(
Y (λ[V] + [F̃(V)])+ [A1V̂]

)
,

hich vanishes by (2.26). By invertibility of M1, we thus obtain [Γ̂ V̂] = 0, verifying (ii). □

Corollary 2.15. Assuming (2.10), (2.24), for V̂ ∈ L2 piecewise smooth and satisfying (2.25)–(2.26), we have Γ̂ V̂ ≡ 0. That is, decaying
normal modes automatically satisfy the Laplace–Fourier transformed version of constraint (2.9).

Proof. By Lemma 2.14, ϕ̂ := Γ̂ V̂ is a weak solution of (λ+M̂(ξ ))̂ϕ = 0. Mollifying ϕ̂ by convolution with a standard smoothing kernel
ηε , we obtain a family of C∞

∩ L2 solutions ϕ̂ε
:= ϕ̂ ∗ ηε of (λ − M̂(ξ ))f = 0, converging in L2 to ϕ as ε → 0+. These solutions, if

nontrivial, would represent eigenfunctions of −M̂(ξ ) with eigenvalue λ. However, M, being constant coefficient, has only continuous
spectrum, and so each ϕ̂ε must vanish identically, as therefore does ϕ̂ in the limit as ε → 0. □

Corollary 2.16. For stationary MHD shocks in the x1 direction of the β-model (2.1), β ̸= 0, and V̂ ∈ L2 piecewise smooth and satisfying
(2.25)–(2.26), we have Γ̃ V̂ = β(∂x1 V̂4 + iξ V̂5) ≡ 0. That is, decaying normal modes automatically satisfy the (transformed) divergence-free
constraint.

Remark 2.17. Relation (λ + M̃Γ̃ )Ṽ = 0 may be recognized as the Laplace–Fourier transformed version of (∂t + M)Γ V = 0 of
orollary 2.7. For the hybrid model of [3,10,29], weak satisfaction of the Fourier–Laplace transform analog

(λ+ ∂x1 ū1 + iξ ū2)(∂xh̃1 + iξ h̃2) = 0

of (2.20), Remark 2.9, pointed out in [3, (47)-(48), Remark 3.2], likewise gives the result that decaying normal modes satisfy the
ivergence-free constraint, a fundamental result first noted in [9,29].
13
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emark 2.18. For both the β-model and the standard (hybrid) MHD model of [3,10,29], the fact that the mode of propagation of
the constraint is scalar convection/advection shows that not all decaying modes of (A1∂x1 + (λ + iξA2))Ṽ = 0 satisfy the constraint
Γ̃ Ṽ = 0. For, inverting the dispersion relation λ(k1, ξ ) = ik1ū1 + iξ ū2 to solve for the associated eigenvalue µ := ik = (λ − iξ ū2)/ū1
of A−1

1 (λ + iξA2), we see for ξ = 0 that Re(µ) = Re(λ), and so the mode carrying the constraint is decaying as x → −∞, but does
not satisfy the constraint. Thus, the situation of Corollary 2.16 is more subtle than just checking that the constraint is satisfied for all
relevant modes.

2.1.5. Weak Lopatinsky stability
Gathering information, we are now ready to make conclusions regarding linearized and nonlinear stability with and without

constraints. We first recall the weak stability, or ‘‘weak Lopatinsky’’ condition of Majda [31], that (i) the dimensions of the subspaces E±

of decaying modes of (2.25) on x ≷ 0 sum to n− 1 (consistent splitting [13,46]) and (ii) for Re(λ) > 0, there exist no decaying normal
odes V̂ ∈ L2 piecewise smooth and satisfying (2.25)–(2.26). Condition (i) asserts effectively that essential spectrum of the linearized
volution operator lies in Re(λ) ≤ 0, condition (ii) that point spectrum lies in Re(λ) ≤ 0; see [50] for further discussion. Failure of weak
opatinsky stability, also known as strong instability, implies exponential linear instability.

orollary 2.19. Assuming involution property (2.10), a Lax type shock solution (2.21) of (2.6) in direction x1 with speed s ̸∈ σ (M1|RangeΓ1 )
atisfies the weak Lopatinsky condition with constraint (2.9) if and only if it satisfies the condition without the constraint.

roof. In the one-dimensional case ξ = 0, condition (i) reduces to the requirement that the shock be Lax type. Since, by Proposition 2.11,
he type of the shock is the same with or without constraint, this verifies the result in dimension one. But, by Hersh’s Lemma
cf. [51], or [52, Chap. 4, Lemma 4.1]), satisfaction of this condition in multi-dimensions is equivalent for weakly hyperbolic systems to
atisfaction in dimension one, whence by Proposition 2.2 the result follows also in multi-d.
Namely, one observes that existence of a pure imaginary eigenvalue µ = ik1 of −A−1

1 (λ+ i
∑

j̸=1 ξjAj) with associated eigenvector
, implies −A−1

1 (λ + i
∑

j̸=1 ξjAj)R = ik1R, and thus (ik1A1 +
∑

j̸=1 iξjAj)R = −λR, yielding λ real by weak hyperbolicity, hence
ontradicting Re(λ) > 0. But this implies that no eigenvalues cross the imaginary axis as ξ and λ are varied within ξ ∈ Rd−1, Re(λ) > 0,
nd so the number of positive/negative real part eigenvalues remains constant, in particular equal to that in the dimension one case
= 0. Combining our conclusions in one- and multi-d, we find that condition (i) holds automatically, with or without constraint. But,
y Corollary 2.15, condition (i) holds without constraint if and only if it holds with constraint. □

orollary 2.20. For stationary MHD shocks in the x1 direction of either the β-model (2.1), β ̸= 0, or of the standard (hybrid) model
f [3,10,29], weak Lopatinsky stability holds with the divergence free constraint if and only if it holds without the constraint.

roof. The result for the β-model follows by Corollary 2.19. The result for the hybrid model follows by the same argument, noting
hat all relevant properties hold for the hybrid model as well. □

A convenient way to test for weak Lopatinsky stability is via the Lopatinsky determinant

∆(λ, ξ ) := det(A+1 E +, A−1 E −, λ[f0] +
∑
j̸=2

iξj[fj])
⏐⏐⏐
x1=0

,

efined for all ξ ∈ Rd−2, Re(λ) > 0, where E ±(λ, ξ ) denote manifolds of (spatially) decaying solutions of (2.25) on x1 ≷ 0; see [10,13],
r Section 3.1 and (3.4) for further discussion. Evidently, vanishing of the determinant ∆ is equivalent to existence of a decaying
ormal mode, or solution of (2.25)–(2.26); hence, nonvanishing of the Lopatinsky determinant on Re(λ) > 0 is equivalent to weak
opatinsky stability, a condition that is useful both numerically and analytically. In the present context, by Corollary 2.20, one may test
eak Lopatinsky stability using either the hybrid model of [3,10,29] or, as we do here, the β-model, both without imposition of the
ivergence-free constraint. The advantage of the β model is that it is of a form determined by a single set of equations, so treatable by
xisting, well-tested code: for example, the numerical stability package STABLAB [38], applicable to general models (2.3).

.1.6. Uniform Lopatinsky stability
We next recall the uniform Lopatinsky condition of Majda [31], which requires, further, that for Re(λ) > 0 and |λ, ξ | = 1, the

opatinsky determinant is uniformly bounded, |∆(λ, ξ )| ≥ c > 0. Under various additional structural conditions on (2.6) (cf. [10]), the
ubspaces E± of decaying modes of (2.25) on x ≷ 0, hence also the Lopatinsky determinant ∆, may be extended continuously to the
losure Re(λ) ≥ 0, in which case uniform Lopatinsky stability is equivalent to nonvanishing of ∆ on Re(λ) ≥ 0 except at the origin
λ, ξ ) = (0, 0). Under additional structural conditions on (2.6), one may conclude further, by the symmetrizer method of Kreiss, that
niform Lopatinsky stability implies uniform resolvent bounds on nearby perturbations of the stationary shock, yielding also nonlinear
tability, defined as well-posedness of the associated time-evolution problem [10,31].

For MHD, such conditions were verified for the standard (hybrid) model in [10], yielding the following sufficient condition for
onlinear stability.

roposition 2.21 ([10]). For shock waves of MHD, uniform Lopatinsky stability for the linearization of the hybrid model of [3,10,29], ignoring
he divergence-free constraint, yields nonlinear stability of the perturbation equations about a Lax-type shock, with or without the constraint.

Proposition 2.21 does not assert that uniform Lopatinsky stability with the constraint is equivalent to stability without the constraint.
nd, indeed, Corollary 2.15, though still true for Re(λ) = 0, is not much use, since the continuous extension to Re(λ) = 0 of
ecaying subspaces E± are no longer necessarily decaying, but may contain neutral, oscillatory modes. Thus, vanishing of the Lopatinsky
eterminant implies only a solution of (2.26) belonging to special subspaces at plus and minus spatial infinity, and not existence of a
ecaying normal mode.
14
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However, we can remedy this with a bit of further investigation. Following [10], define (iτ , ξ0), ξ0, τ ∈ R, to be a nonglancing point
for (2.25) if the stable eigenvalues µ±(λ, ξ ) of (2.25) and the unstable eigenvalues ν±(λ, ξ ) have distinct limits as (λ, ξ ) → (iτ , ξ0)
from {Re(λ) > 0}; otherwise, call it a glancing point for (2.25). (This simplified definition may be seen to be equivalent to the notions
of glancing defined in [10] for the cases considered there, including MHD.) Call (iτ , ξ0), ξ0, τ ∈ R, a point of continuity for (2.25) if the
ssociated stable subspaces E± have limits as (λ, ξ ) → (iτ , ξ0) from {Re(λ) > 0}. At a point of continuity, call V̂ , piecewise smooth, an
xtended normal mode if it satisfies (2.25)–(2.26), and approaches lim(λ,ξ )→(iτ+0+,ξ ) E± as x1 → ±∞.

roposition 2.22. Let (iτ , ξ0), τ , ξ0 ∈ R, be a point of continuity for (2.25), and a nonglancing point for

λφ̂ +M±

1 φ̂z +

d∑
j=2

iξjM±

j φ̂ = 0, x1 ≷ 0. (2.34)

hen, assuming (2.10), (2.24), for an extended normal mode V̂ , we have Γ̂ V̂ ≡ 0. That is, extended normal modes automatically satisfy the
aplace–Fourier transformed version of constraint (2.9).

roof. Let e± and f± denote the subspaces of decaying and growing solutions of (2.34) as x1 → ±∞ for Re(λ) > 0, and their continuous
xtensions to Re(λ) ≥ 0 (well-defined, by the nonglancing assumption for (2.34)).
For Re(λ) > 0, subspaces E± correspond to decaying modes V̂± at x1 → ±∞ of

∂x1 V̂
±
= −A−1

1 (λ+

∑
j̸=2

iξjAj)V̂±
=: G±(λ, ξ )V̂±, (2.35)

hence, by Lemma 2.14, φ̂±
:= Γ̂ V̂±

= (Γ1G±
+
∑

j̸=2 iξjΓj)V̂± is a decaying weak solution of (2.34), hence lies in the decaying
ubspaces e± of −M1(λj +

∑
j̸=2 iξjMj) as x1 → ±∞, with jump condition [M1φ̂] = M1φ̂ = 0, or, by invertibility of M1 (recall: a

onsequence of (2.24)), [φ̂] = 0.
By the assumed continuity of E±, we have at (iτ , ξ0) that normal modes V̂ may be realized as limits of decaying normal modes

n Re(λ) > 0 in the limit as (λ, ξ ) → (iτ , ξ0), hence φ̂ = Γ̂ V̂ (piecewise continuous) is the limit of decaying solutions of (2.34),
.e., vectors lying in e± for x1 ≷ 0. By the assumed nonglancing of (iτ , ξ0) with respect to (2.34) – specifically, the implied continuity of
± as (λ, ξ ) → (iτ , ξ0) from Re(λ) > 0 – φ̂ must thus lie in e± for all x1, with [φ̂] = 0 forcing φ̂(0+) = φ̂(0−) at x1=0. Noting, since Mj
re constant, that e± = f ∓, and applying the nonglancing assumption as second time — specifically, the fact that e± and f ± converge
o transverse limiting subspaces, or e+ ∩ f + = ∅ and e− ∩ f − = ∅, we find that φ̂(0) must lie in (e ∩ f )± = {0}, and thus φ̂ = Γ̂ V̂ ≡ 0
s claimed. □

Before discussing continuity of subspaces, we establish a preliminary result of interest in its own right, comprising the Laplace–
ourier transform analog of (2.13).

emma 2.23. Assuming (2.10), (2.24), let G±(λ, ξ ) as in (2.35) be defined as −A−1
1 (λ +

∑
j̸=2 iξjAj)±, and H±(λ, ξ ) and L± as

M−1
1 (λ+

∑
j̸=2 iξjMj)± and (Γ1G+

∑
j̸=2 iξjΓj)±. Then,

(LG)± = (HL)±. (2.36)

roof. Using (2.28) to express

ΓjAj = MjΓj; Γ1A−1
1 = M−1

1 Γ1; Γ1Aj = MjΓ1 +M1Γj − ΓjA1, (2.37)

e may represent L alternatively (dropping ± for ease of writing) as

−Γ1A−1
1 (λ+

n∑
j=2

iξjAj)+ i
n∑

j=2

iξjΛj = −M−1
1 Γ1(λ+

n∑
j=2

iξjAj)+ i
n∑

j=2

iξjΛj,

r, expanding and recombining using (2.37),

L = HΓ1 +M−1
1

n∑
j=2

ΓjA1. (2.38)

hus,

LG = HΓ1G+M−1
1

n∑
j=2

ΓjA1G,

hich is equal to H(Γ1G+
∑n

j=2 iξjΓj) if and only if M−1
1 (
∑n

j=2 ΓjA1G) = H(
∑n

j=2 iξjΓj), or

−M−1
1

n∑
j=2

Γj(λ+

n∑
j=2

iξjAj) = −M−1
1 (λ+

n∑
j=2

iξjMj)(
n∑

j=2

iξjΓj),

s follows by inspection using (2.37) and comparing coefficients of λ, ξ , and ξ 2 terms. □
15
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orollary 2.24. Assuming (2.10), (2.24), ker L± is a right invariant subspace and RangeL∗
±

a left invariant subspace of G±. Assuming
±(λ, ξ ) is full rank ℓ for all λ, ξ , then we have the decomposition C = ker L± ⊕ RangeL∗

±
, with ker L an n − ℓ dimensional analytically

varying invariant subspace of G±, consisting precisely of those normal modes V̂ satisfying the constraint Γ̂ V̂ = 0, while RangeLT gives a
complementary antiholomorphic space.

For both the hybrid MHD system and the β-model, it is clear by inspection that L± is full rank one, hence the Corollary applies.
Corollary 2.24 has the interesting interpretation as defining a ‘‘reduced’’ interior system in the Laplace–Fourier transform setting
analogous to that of the Fourier settings, pertaining precisely to those modes satisfying the constraint Γ . Moreover, coordinatizing
via the splitting ker L⊕ RangeL∗, we may convert G by a C∞ transformation (G, L holomorphic in λ, ξ , and L∗ anti-holomorphic) to the
canonical upper block triangular form(

G|ker L(λ, ξ ) b(λ, ξ )
0 H(λ, ξ )

)
, H = −M−1

1 (λ+

n∑
j=2

iξjMj), L = (Γ1G+

n∑
j=2

iξjΓj)(λ, ξ ), (2.39)

where the lower right-hand block is obtained from (2.36), via the computation (LL∗)−1LGL∗ = (LL∗)−1HLL∗ = H .
Defining nonglancing and points of continuity for the reduced systems G|ker L and H in the obvious way, we may at a point of

continuity for Gker L, by a further continuous (not necessarily C∞) transformation, reduce to form(g+ c+ b+
0 g− b−
0 0 H

)
(λ, ξ ), (2.40)

where g+ is the reduction of Gker L to its stable subspace, and, at a nonglancing point of H , still further to⎛⎜⎝g+ c+ b+ d+
0 g− b− d−
0 0 h+ 0
0 0 0 h−

⎞⎟⎠ (λ, ξ ), (2.41)

where h± are the reductions of H to its stable and unstable subspaces.
We connect continuity of the full and reduced systems in two important cases.

Proposition 2.25. Assume (2.10), (2.24), and L± is full rank for all λ, ξ .

(i) If, local to (iτ , ξ0), τ , ξ0 ∈ R, there is a continuous right invariant space Span{R1, . . . , Rℓ} of G such that LR is invertible for R defined
as R(λ, ξ ) = (R1, . . . , Rℓ), then (iτ , ξ0) is a point of continuity for (2.25) if and only if it is a point of continuity of both the associated
reduced system and the complementary system ∂xz = Hz.

(ii) A point (iτ , ξ0), τ , ξ0 ∈ R that is a nonglancing point for (2.34) is a point of continuity for (2.25) if it is a point of continuity of the
associated reduced system G|ker L.

Proof. (i) In this case, coordinatizing via the splitting ker L ⊕ Range(R) reduces G to block-diagonal form G = blockdiag{G|ker L,H},
whence the result follows trivially. (ii) Using the canonical coordinatization (2.41), we find, for Re(λ) > 0 and local to (iτ , ξ0), that
+ =

(
Id 0 0 0

)
⊕ r+, where r is of form r+(λ, ξ ) =

(
∗ 0 Id 0

)
; equivalently, that there exists r+ of this form with range a

ight-invariant subspace of G modulo e+, where e+ denotes the continuous extension of the stable subspace of H . (Here, we are using
n an important way the fact that σ (g−) and σ (h+) are separated for Re(λ) > 0, in eliminating the second row of r±.) But this evidently
is equivalent to

E+ =

⎛⎜⎝Id
0
0
0

⎞⎟⎠⊕

⎛⎜⎝0
0
Id
0

⎞⎟⎠ ≡ constant,

yielding continuity as a trivial consequence. □

Corollary 2.26. For stationary MHD shocks in the x1 direction of either the β-model (2.1), β ̸= 0, or of the standard (hybrid) model
of [3,10,29], all (iτ , ξ0) are points of continuity for the associated interior equation (2.25), for both reduced and full models, so long as

(|h̄|
2
/p′(ρ̄))± ̸= 1. (2.42)

roof. (hybrid model) It was shown in [10] that, assuming (2.42), all points (iτ , ξ0) are points of continuity for the hybrid model without
onstraint, a consequence of [10, Lemma 7.2] specialized to the 2D case (that is, ignoring middle, Alfven modes λ±2 ), together with [10,
heorem 5.2]. Moreover, the hyperbolic characteristic λ0(k) = ū1k1+ū2k2 carrying nonzero divergence of h, with associated eigenvector
0(k) = (0, 0, 0, k1, k2), may be directly inverted to obtain an analytic eigenvalue µ0(λ, ξ ) = ū−1

1 (λ + ū2iξ ) of G = −A−1
1 (λ + iξ0A2)

ith associated eigenvector S0 = (0, 0, 0, µ/i, ξ ); see [10, (A.4)]. For µ0(iτ , ξ0) = ik1 pure imaginary, and (λ, ξ ) → (iτ , ξ0), this is not
nnihilated by the constraint, since

(Γ1µ0 + Γ1iξ )S0 = µ0

(µ0

i

)
+ iξ (ξ ) = i

((µ0

i

)2
+ ξ 2

)
→ i(k21 + ξ 2) ̸= 0

as µ0 → ik1.
But, this implies also LS0 ̸= 0, since LS0 = (Γ1µ+ iξΓ2)S0. Such points are therefore points of continuity for the reduced system by

Proposition 2.25(i). If µ is not pure imaginary, on the other hand, then for (λ, ξ ) near (iτ , ξ ), λ is strictly stable, and so, along with
0 0 0
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ther strictly stable modes, continues analytically and transversally to the space ker(L), so that continuity for the full system reduces
lso in this case to continuity of the stable subspace for the reduced problem. Thus, we conclude from continuity for the full system
ontinuity for the reduced system as well.
(β-model) For both models, the complementary system associated with H , being scalar, is necessarily nonglancing. Since we have

lready shown continuity for the reduced system via our treatment of the hybrid model, we thus obtain continuity for the full β-model
y Proposition 2.25(ii). □

We define reduced weak Lopatinsky stability as nonexistence of solutions of (2.25)–(2.26) lying in E± for x1 ≷ ∞. By Corollary 2.19,
his is equivalent to weak Lopatinsky stability for the full system, without constraint.

When the decaying subspaces E±

0 of the reduced system extend continuously for all λ = iτ , we may define a notion of reduced
niform Lopatinsky stability as nonexistence of solutions of (2.25)–(2.26) lying in the limiting spaces E±

0 for x1 ≷ 0. When the subspaces
± of the full system extend continuously as well, we have by Proposition 2.22 that full and reduced uniform Lopatinsky stabilities are
quivalent.
Combining results, we have as an immediate consequence of Corollary 2.26 the following definitive conclusion, elucidating and

ignificantly extending the fundamental observation of Blokhin–Trakhinin [3,29] that weak stability for constrained MHD is equivalent
o weak stability without constraint. In particular, this shows for the first time that the nonlinear stability condition of Proposition 2.21
s sharp.

roposition 2.27. For stationary MHD shocks in the x1 direction of either the β-model (2.1), β ̸= 0, or of the standard (hybrid) model
f [3,10,29], uniform Lopatinsky stability holds with the divergence free constraint if and only if it holds without the constraint, if and only if
t holds for the reduced model defined by G|ker L.

.2. The viscous case

We conclude this section by a brief treatment of the analogous but simpler viscous case, generalizing and expanding on the approach
sed in [37, pp. 2 and 62-64] for the equations of viscoelasticity (there introduced somewhat implicitly and without particular emphasis
n the course of other computations).

System (2.1), in the viscous case µ, η, ν > 0, may be expressed in the general form

Vt + F(V) =
d∑

j,k=1

(Bj,k(V)Vxj )xk (2.43)

ugmenting the inviscid system (2.6), with linearization about a constant solution V ≡ V0 given by

Vt = LV := −

d∑
j=1

AjVxj +

d∑
i,j=1

Bi,jVxi,xj ,

here Aj = DFj(V0) and Bj,k = Bj,k(V0). Likewise, Dafermos’ involution condition (2.10) is replaced by a viscous counterpart

Γ F(V) = −MΓ V, (2.44)

here M is now second-order constant-coefficient:

M :=

d∑
j=1

M1
j ∂xj +

d∑
i,j=1

M2
i,j∂xi∂xj , (2.45)

nd (strictly) parabolic:

Reσ

⎛⎝ d∑
j=1

kjM1
j +

d∑
i,j=1

M2
i,jkikj

⎞⎠ ≤ −θ |k|2, some θ > 0. (2.46)

s in the inviscid case, (2.44) induces the linearized version

Γ L = −MΓ . (2.47)

.2.1. Dissipativity
At a constant state V0, the viscous condition analogous to weak hyperbolicity in the inviscid case is weak dissipativity:

Re σ (L(k)) := Re σ

⎛⎝−

d∑
j=1

kjAj +

d∑
i,j=1

Bi,jkikj

⎞⎠ ≤ −θ
|k|2

1+ |k|2
, some θ > 0, (2.48)

a condition on the dispersion relation for L related to the genuine coupling condition of Kawashima [14–16,53]. From (2.46)–(2.47), we
find, applying Γ (k) to the eigenvalue equation (L(k)− λ)V = 0 that (−M(k)− λ)Γ (k)V = 0 for M(k) :=

∑d
j=1 M

1
j kj +

∑d
i,j=1 M

2
i,jkikj,

whence Γ (k)V = 0 or else λ ∈ σ (−M(k)) verifying the weak dissipativity condition by (2.46). Thus, similarly as in Proposition 2.2 of
the inviscid case, weak dissipativity holds with constraint Γ (k)V = 0 if and only if it holds without the constraint.

It was verified in [10] that (2.48) holds for the hybrid MHD model with and without constraint, whence it holds for the β-model as
ell.
17
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.2.2. Persistence of constraints
From (2.45)–(2.46), we obtain immediately persistence of the constraint Γ V = 0 for smooth solutions of (2.43), similarly as in

orollary 2.7 for the inviscid case. For, applying Γ to (2.43) gives

(∂t −M)Γ V = 0, (2.49)

with initial data V ≡ 0, whence we obtain Γ V = 0 for all t ≥ 0 by well-posedness of (2.49). Recall that the standard viscous
existence/stability theory concerns smooth (Hs) solutions [14].

Remark 2.28. In the case of the MHD β-model, Mz = −β∂x1z+ ν∆z, and MΓ V = −β∂x1 (divh)+ ν∆(divh), so that solutions of (2.43)
satisfy

0 = (∂t −M)Γ V = ∂t (divh)++β∂x1 (divh)+ ν∆(divh).

For the hybrid model of [3,10,29], solutions satisfy 0 = ∂t (divh)+∇ · (u(divh))+ ν∆(divh), giving persistence by a similar argument to
the above [10].

2.2.3. Compatibility of shock profiles
Likewise, similarly as in Proposition 2.11, we find for smooth viscous shock profiles

V(x, t) = V(x · k− st), lim
z→±∞

V(z) = V±, (2.50)

k| = 1, that shock profiles of the unconstrained system automatically satisfy the constraint. For, applying Γ to the traveling-wave ODE
sk · ∇V + F(V) = 0, rearranging, and integrating from −∞ to z gives

γ ′
= N (k)γ

here γ = Γ V = Γ (k)V ′ and N (k) = (M2(k))−1(M1(k)−s) is constant-coefficient. (Here, M2(k)(k) is invertible by parabolicity.) Noting
that γ (z) → 0 as z → ±∞ by convergence of the shock profile to endstates V±, we find that γ ≡ 0, since there are no nontrivial
solutions of a constant-coefficient ODE decaying at both ±∞.

2.2.4. Compatibility of normal modes
Restricting without loss of generality to the case of a zero-speed planar shock in direction x1, V = V(x1), linearizing, and taking the

ourier transform in transverse directions x2, . . . , xd, we obtain [13–15] the generalized eigenvalue, or normal modes equation

0 = (λ− L(ξ ))V̂ = λV̂ + (A±

1 V̂)z +
d∑

j=2

iξjA±

j V̂

= (B1,1V̂z)z +
d∑

j=2

iξjB1,jV̂z +

d∑
i=2

iξi(Bi,1V̂)z +
d∑

i,j=2

−ξiξjBi,jkikjV̂,

(2.51)

ith (ξ2, . . . , ξd) ∈ Rd−1 corresponding to Fourier frequencies, and existence of decaying solutions V̂ for Re(λ) > 0 corresponding to
xponential linear instability.
Denoting by M̂(ξ ) the Fourier transform in directions x2, . . . , xd of M, we have from (2.44), evidently, Γ̂ L̂ = −M̂Γ̂ , whence normal

odes, similarly as in the inviscid case, satisfy also the constant-coefficient ODE

(λ+ M̂)(Γ̂ V̂) = 0.

y the absence of nontrivial solutions of constant-coefficient ODE that decay at both ±∞, we find immediately as in Corollary 2.15 for
he inviscid case, that decaying normal modes automatically satisfy the constraint, i.e., Γ̂ V̂ = 0.

.2.5. Weak and strong Evans–Lopatinsky stability
In general, (2.48) is assumed to hold at the endstates V± of a shock, whence, by a standard Hersch-type lemma [13–15], one obtains

‘consistent splitting’’ of the eigenvalue equations (2.51) on {(ξ, λ) : Re(λ) ≥ 0} \ {0, 0}, that is, the property that the dimensions of the
subspaces of decaying solutions at +∞ and −∞ of (2.51) sums to the total dimension N of the solution space, as do the dimensions
of the subspaces of exponentially growing solutions at +∞ and −∞. It follows that one may define an Evans function D consisting of
the Wronskian of N solutions comprising bases of the decaying solutions at ±∞, with vanishing of D(ξ, λ) corresponding to existence
of a decaying normal mode for ξ, λ. Following [13–15,53], we define strong Evans–Lopatinsky stability [13–15,53] as the absence of
decaying normal modes — or, equivalently, zeros of the Evans function D- on {(ξ, λ) : Re(λ) ≥ 0} \ {0}, and weak Evans–Lopatinsky
stability as the absence of zeros of the Evans function on {(ξ, λ) : Re(λ) > 0}. Failure of weak Evans–Lopatinsky stability is also called
strong Evans–Lopatinsky instability, implying exponential instability of the background shock.

From the definition, and the observations in Section 2.2.4, we obtain immediately the viscous analogs of Corollaries 2.19 and 2.20,
showing that both weak and strong Evans–Lopatinsky stability hold for the β- or hybrid model of MHD with constraint if and only if they
hold without constraint.

2.2.6. Uniform Evans–Lopatinsky stability and nonlinear stability
The uniform Evans–Lopatinsky condition, analogous to the uniform Lopatinsky condition of the inviscid case, is a uniform lower

bound |D(ξ, λ)| ≥ θ/|(ξ, λ)|, θ > 0, on {(ξ, λ) : Re(λ) ≥ 0}\{0}. In nice cases, in particular, for fast Lax shocks in MHD, this is equivalent
18
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o strong Evans–Lopatinsky stability plus transversality of the shock profile as a solution of the traveling-wave ODE, plus satisfaction
f the uniform Lopatinsky condition for the associated inviscid shock; moreover, uniform Evans–Lopatinsky stability is equivalent to
onlinear stability of the underlying planar shock both with respect to large time and small viscosity asymptotics [14,15,53].
In these favorable cases, uniform Evans–Lopatinsky stability with constraint is evidently (from our previously remarked observations,

bove) equivalent to uniform Evans–Lopatinsky stability without constraint. On the other hand, the relation between uniform Evans–
opatinsky stability and uniform stability of the associated inviscid shock has not been shown for slow MHD shocks; whether or not
his holds has been cited in [53] as an important open problem in the nonlinear stability theory for MHD shocks. Thus, in the present
etting, issues pertaining to uniform Evans–Lopatinsky, nonlinear stability, and their relations, remain unclear. As our main object is
nstability, far from the origin (ξ, λ) = (0, 0), this is no obstruction in the present study. However, we mention it as an important aspect
f the theory for further development.

. Inviscid stability analysis: the Lopatinsky determinant

The main goal in this section is to introduce the Lopatinsky determinant, which will be the main tool used in the study of
nviscid stability. Initially we derive some properties of the shock type. Recall that shocks are categorized as Lax, undercompressive,
r overcompressive, depending on the number of characteristics entering the shock. Lax shocks are further categorized by their
haracteristic field: the unique family entering on both sides. To begin with, we obtain a useful parametrization of the shocks we
tudy.
Recall that the Rankine–Hugoniot conditions (2.22) specialized to a stationary shock W(x, t) = W(x1) = W± in the x1 direction of

the MHD equations (1.1) are

[f1(W)] =

⎡⎢⎢⎢⎢⎣
ρ u1

ρ u2
1 −

h21
2 + aργ

ρ u1u2 − h1h2

βh1

u1h2 − u2h1

⎤⎥⎥⎥⎥⎦ = 0, (3.1)

where [f1(W)] := f1(W
+)− f1(W

−). Then:

emma 3.1 (Parametrization of MHD Planar Shocks with Zero Speed). Let

W(x1, x2, t) = W±(x1) = (ρ±, u±1 , u
±

2 , h
±

1 , h
±

2 )(x1),

x1 ≷ 0, be a planar shock solution satisfying the Rankine–Hugoniot conditions in (3.1). Assume that the shock is parallel, i.e., u+2 = 0 and
h+2 = 0.

(i) One can parametrize the slow shocks connecting to the state (ρ+, u+1 , 0, h
+

1 , 0) to the right (i.e., x1 > 0) using variables R and M,
defined as

R =
ρ+

ρ−
=

u−1
u+1

and M2
=

Rγ − 1
γ Rγ (R− 1)

, (3.2)

where M2
=

(u+1 )2

pρ (ρ+) (M is also known as the downstream Mach number), and u−2 = 0, h−2 = 0, h+1 = h−1 ;

(ii) For large magnetic field, slow shocks, i.e., 2-shocks, are characterized by R > 1 and M < 1;
(iii) There exist two numbers

H∗ = u+1
√
ρ+, H∗

= u−1
√
ρ−,

according to which three scenarios are possible: fast Lax shocks (i.e., extreme, or gas-dynamical type) for 0 ≤ |h1| ≤ H∗, intermediate
shocks for H∗ ≤ |h1| ≤ H∗ and slow shocks for H∗

≤ |h1| (in particular |h1| → ∞).

We remark that in the context of 3D MHD, the 2-D slow shocks seen here become 3-shocks.

Proof. Considering the jump conditions in (3.1) we readily observe that the ratios ρ+

ρ−
and u−1

u+1
are in fact equal, so that one can define

he variable R as in (3.2). Both properties u−2 = 0, h−2 = 0 follow from solving the third and fifth rows of the jump conditions in (3.1);

he fourth equation in (3.1) implies that h+1 = h−1 . Setting M :=
u+1√
pρ (ρ+)

, we obtain the rightmost condition in (3.2) from the second

relation in the jump condition (3.1). This establishes (i).
With regard to (ii), classical compressibility conditions in gas dynamics, namely pρ(·) > 0, gives that R > 1; by inspection of (3.2),

ne can see that this condition implies that 0 ≤ M < 1, for γ ≥ 1.
Last, we prove (iii). The type of the shock is determined by the number of incoming characteristics, or eigenvalues of A−1

0 A1, in the
1 direction on either side of the shock, where Aj are as in (2.5). Computing A−1

0 A1 and its spectrum on both sides of the shock, we
ave:

A−1
0 A1 =

⎛⎜⎜⎜⎜⎝
u1 ρ 0 0 0
pρ
ρ

u1 0 0 0
0 0 u1 0 −

h1
ρ

0 0 0 β 0

⎞⎟⎟⎟⎟⎠ , σ
(
(A−1

0 A1)±
)
=

{
u±1 ±

√
p±ρ , β, u

±

1 ±
h1

√
ρ
±

}
.

0 0 −h1 0 u1

19
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Table 1
Shock types in 2-D MHD.
Parameter range No. of positive e-vals (Left, Right) Shock type

h1 > H∗
:= u−1

√
ρ− (4, 3) Lax 2-shock (Slow)

h1 < H∗ := u+1
√
ρ+ (5, 4) Lax 1-shock (Fast)

H∗ < h1 < H∗ (5, 3) Doubly overcompressive

In the large magnetic field scenario h1 → ∞, β > 0 and a zero speed shock we count 2 negative/3 positive (resp. 1 negative/4 positive)
igenvalues for x1 > 0 (resp., x1 < 0) whenever u±1 ±

√
p±ρ ≶ 0. Using the definitions in (3.2) we conclude that this is equivalent

to M < 1 when we use the constraints for x1 > 0; similarly, we derive that R > 1 using the constraints for x1 < 0. Therefore, the
discussion above says that we just need to analyze the signs of 1− h1

u+1
√

ρ+
and 1− h1

u−1
√

ρ−
= 1− h1

u+1
√

Rρ+
. As R > 1 we have

1−
h1

u+1
√
ρ+

< 1−
h1

u−1
√
ρ−

= 1−
h1

u+1
√
R ρ+

.

hus, the shock types are classified according to the values of h1, as displayed in Table 1.

Notice that whenever β > 0 the β-model preserves slow shocks, but this property can also be verified whenever a positive multiple
f div(h) is added to any upstream/downstream side of the propagating shock. In particular, one may add different multiples to upstream
nd downstream sides, as for example in [3,10], allowing one to symmetrize the equations while preserving 2-shock structure.7| Last,
e remark that the case β = 0 is degenerate, for the matrix A1 is not invertible in this case; the invertibility of A1 is necessary in the
onstruction of the Lopatinsky determinant, which we discuss next.

.1. Lopatinsky determinant: construction and asymptotic analysis

In this section we study the Lopatinsky determinant associated with inviscid parallel shocks and the onset of instability. Initially,
e study the behavior of the system (2.5) by taking its Laplace–Fourier transform (in t and x2, respectively). We obtain

λA±0 v + A±1 vx1 + iξA±2 v = 0 H⇒ vx1 = −(A±1 )
−1 (λA±0 + iξA±2

)
v, (3.3)

here v is the Laplace–Fourier transform of u and

−(A±1 )
−1 (λA±0 + iξA±2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
λu1

u21−pρ
λρ

u21−pρ
−

i ρu1ξ
u21−pρ

0 0

λpρ(
u21−pρ

)
ρ

−
λu1

u21−pρ

i pρξ
u21−pρ

0 0

−
i pρu1ξ
ρu21−h21

0 −
λρu1

ρu21−h21
−

i h1u1ξ
ρu21−h21

−
h1λ

ρu21−h21

0 0 −
i h1ξ
β

−
λ
β

−
(iβ−i u1)ξ

β

−
i h1pρξ
ρu21−h21

0 −
h1λρ

ρu21−h21
−

i h21ξ

ρu21−h21
−

λρu1
ρu21−h21

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the variables (u1, ρ, pρ) should be read (u+1 , ρ
+, pρ+ ) (resp., (u

−

1 , ρ
−, pρ− )) whenever x1 > 0 (resp. x1 < 0). Eq. (3.3) consists of

wo systems of ODEs in the interior: one in x1 > 0, one in x1 < 0, coupled through Rankine–Hugoniot conditions at x1 = 0 (Appendix C;
see also [13] for further discussion on the technique). The Lopatinsky determinant is defined as

∆(λ, ξ ) = det(A+1 E +, A−1 E −, λ[f0] + iξ [f2])
⏐⏐⏐
x1=0

. (3.4)

The parameter λ is a spectral parameter indicating solutions to the system (2.5) with growth ∼ eλt (thus, Re(λ) > 0 corresponding to
instability); E ±(λ, ξ ) denote manifolds of (spatial) decaying solutions in x1 ≷ 0. In the rest of the paper we omit the dependence of
these spaces on λ and ξ , simply writing E ±.

3.1.1. Large-h1 asymptotics

Following [3,9] we now study the large magnetic field h1 asymptotics. It is convenient to define the quantity ε :=
1

h1
, which

arametrizes the underlying viscous profile V = V (ε). Our analysis consists of Taylor expanding the roots of the Lopatinsky determinant
efined in (3.4) considered as a function in ε with ξ held fix at 1, i.e., ε ↦→ λ(ε). It is shown that

λ(ε) = λ2ε
2
+ O(ε3) (3.5)

where λ2 > 0. One can conclude that an unstable regime occurs in the large magnetic field scenario, as verified in [3].
The study of the spaces E ± is equivalent to analyzing the eigenvalues of −(A±1 )

−1(λA±0 + iξA±2 ) and their associated eigenspaces. The
approach we adopt relies on careful analytical estimates allied with the use of symbolic computations (carried out in SAGE [54,55]).
The main idea is the following: assume that the spectral parameter λ can be expanded as

λ = λ0 + λ1ε + λ2ε
2
+ · · · (3.6)

7 Nonconstant β is inconvenient however for the viscous case, destroying conservative structure.
20
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hus each element µ ∈ σ (−(A±1 )
−1
(
λA±0 + iξA±2

)
) can be expanded as

µ = µ(λ) = µ0(λ0)+ εµ1(λ0, λ1)+ ε2µ2(λ0, λ1, λ2)+ O(ε3), (3.7)

fterwards we find a set of eigenvectors of −(A±1 )
−1
(
λA±0 + iξA±2

)
spanning the spaces E ±; namely, a mapping

µ ↦→ X±(µ) : σ
(
−(A±1 )

−1 (λA±0 + iξA±2
))

→ E ±.

or the sake of convenience we drop the indexes ‘‘±’’ for now, since these formulas work for both cases if one use the notation in (3.2).
f we also expand the eigenvector X(µ) in (3.8) in ε terms we have

X(µ) = X (0)(µ0)+ εX (1)(µ0, µ1)+ ε2X (2)(µ0, µ1, µ2)+ · · · . (3.8)

bservation 3.2. With regard to the symbolic computations, a few remarks are in order:

(i) In order to find the expansion in (3.7) we find the characteristic polynomial p(·) of the matrix−(A±1 )
−1
(
λA±0 + iξA±2

)
when (3.6) holds;

we conclude by matching coefficients. The characteristic polynomial p(µ) can be shown to expand as p(µ) = p(µ0, µ1, µ2, . . .) =

p0(µ0)+ εp1(µ0, µ1)+ ε2p2(µ0, µ1, µ2)+ · · ·, with pj computed explicitly using SAGE;
(ii) Higher order terms in the expansion (3.7) in terms of ε can be easily obtained using SAGE, because once we have µ0 . . . µi the problem

of finding µi+1 is linear; these terms will not be written explicitly here though;
(iii) It is not hard to show that − λ

β
is an eigenvalue of −(A±1 )

−1
(
λA±0 + iξA±2

)
. This also holds true in the nonparallel case, as we will show

later;
(iv) Notice that, upon scaling, we can take ξ = 1 (redefine λ → λξ );
(v) Let Xi denote the ith column of a square matrix A = [X1, X2, . . . , Xn] and Xi(ε) = X (0)

i + εX (1)
i + ε2(X (2)

i )+ O(ε3). Then

det(A) = A0 + εA1 + ε2A2 + O(ε3),

where Ak =
∑

a1+···+an=k
det(X (a1)

1 , . . . , X (an)
n ).

Taking into account these observations, we plug (3.6), (3.7) and (3.8) into (3.4), to obtain

∆(ε)(λ, 1) = ∆0 + ε∆1 + ε2∆2 + O(ε3). (3.9)

In what follows we shall exploit the multi-linearity of the determinant function in order to find the terms in this expansion; each term
∆i is a function of (λi)i∈N, but this dependence will be most of the time omitted and made explicit as we carry out our computations. We
make use of (3.9) to verify the condition ∆(ε)(λ, 1) ≡ 0: we look for (λi)i∈N that gives ∆i(λ) = 0 for all i ∈ N. An important step in the
analysis consists of an explicit representation of the manifolds E ± referred to in (3.4), an investigation that we reformulate as the study
of the eigenvalues of the matrices in (3.3). Indeed, one can observe by inspection that − λ

β
is an eigenvalue of −(A±1 )

−1
(
λA±0 + iA±2

)
,

while an expansion of the eigenvalues of the form (3.7) readily shows that their zeroth order terms µ0 for x1 ≷ 0 are

±1+ O(ε2)  
≷0

, −
1

u1 +
√pρ

(λ0 + ελ1)+ O(ε2)  
<0

, −
1

u1 −
√pρ

(λ0 + ελ1)+ O(ε2)  
>0

, −
λ

β
<0

,

here all the variables (u1, ρ, pρ) should be read (u+1 , ρ
+, pρ+ ) (resp., (u

−

1 , ρ
−, pρ− )) whenever x1 > 0 (resp. x1 < 0). Therefore, since

we are looking for ‘‘decaying’’ manifolds we must have, for x1 > 0, eigenspaces associated to the following eigenvalues:

− 1+ O(ε2), −
1

u+1 +
√pρ+

(λ0 + ελ1)+ O(ε2), and −
λ

β
.

nalogously, ‘‘decaying’’ manifolds in x1 < 0 must be eigenspaces associated to the eigenvalue 1+ O(ε2). Notice that the number of
igenvalues in each interior x1 ≷ 0 is consistent with the analysis derived from Hersh’s Lemma, hence it suffices to analyze the number
f positive and negative eigenvalues of −A−1

1 A0.

.1.2. Asymptotic instability
Choosing an appropriate parametrization of the decaying manifolds E ± one can show that ∆0 = ∆1 = 0 in Eq. (3.9). A careful

omputation shows then that ∆2 = ∆2(λ0, µ0) = det(X (1)
1 , X (0)

2 , X (0)
3 , X (1)

4 , X (0)
5 ). We have

(X (1)
1 , X (0)

2 , X (0)
3 , X (1)

4 , X (0)
5 ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 E∗ 0 0 −
2 λ0u

+

1 (ρ−−ρ+)

(u+1 )2−pρ+

0 i λ30(
u+1 +

√
pρ+

)2
ρ+

−
i λ0
ρ+

0 0 λ0(ρ−−ρ+)
ρ+

−(λ0 − u+1 )
2 0 0 −

u−1 (λ0+u+1 )

u+1
(λ0 + u−1 ) 0

iu+1 (λ0 − u+1 ) 0 −λ0 iu−1 (λ0 + u−1 ) 0

λ0(λ0 − u+1 ) 0 i u+1
λ0u

−

1
u+1

(λ0 + u−1 ) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

here E∗ =
i λ0(u+1 )

2(
u+1 +

√pρ+
)
pρ+

+
i λ3

0u
+

1(
u+1 +

√pρ+
)2pρ+ −

i λ3
0(u

+

1 )
2(

u+1 +
√pρ+

)3pρ+ −
i λ0u+1
pρ+

. The block structure of this matrix allow us to see

ight away that ∆ = O(λ3) and ∆ = o(λ ). There exists a λ = O(1) satisfying ∆ = 0 at which, however, the parametrization of
2 0 2 0 0 2
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able 2
omparison of exact coefficient with numerical coefficient. Parameters u−1 = 1, ρ−

= 1 are fixed; recall that u+1 = u−1 /R. For each value of γ and R we record the
xact answer, the numerical estimate (est), and the relative error (err) between the two. Numerical estimates of the coefficient were determined by computing the
oots λ(h1) of the Lopatinsky determinant for several values of h1 ⊂ [2, 16] and then using curve fitting of log(λ) and log(1/h1). The maximum relative error is
.70e−1 and the average relative error is 4.83e−2.
γ \R 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

γ = 5/4, exact 7.40e−2 1.01e−1 1.13e−1 1.18e−1 1.20e−1 1.20e−1 1.19e−1 1.18e−1 1.16e−1 14e−1

γ = 5/4, est 6.65e−2 9.76e−2 1.10e−1 1.18e−1 1.16e−1 1.16e−1 1.16e−1 1.18e−1 1.13e−1 1.10e−1

γ = 5/4, err 1.01e−1 3.64e−2 2.98e−2 2.54e−4 2.64e−2 2.72e−2 2.16e−2 2.26e−3 2.29e−2 3.52e−2

γ = 7/5, exact 7.33e−2 0.100 1.11e−1 1.15e−1 1.17e−1 1.17e−1 1.16e−1 1.14e−1 1.13e−1 1.11e−1

γ = 7/5, est 6.65e−2 9.97e−2 1.10e−1 1.15e−1 1.16e−1 1.16e−1 1.14e−1 1.15e−1 1.10e−1 1.10e−1

γ = 7/5, err 9.44e−2 2.32e−3 8.06e−3 6.05e−3 4.70e−1 3.36e−3 1.51e−2 4.11e−3 2.02e−2 6.98e−3

γ = 5/3 exact 7.24e−2 9.77e−2 1.08e−1 1.11 1.12e−1 1.12e−1 1.11e−1 1.09e−1 1.07e−1 1.05e−1

γ = 5/3 est 6.92e−2 9.84e−2 1.09e−1 1.12 1.16e−1 1.11e−1 1.12e−1 112e−1 1.08e−1 1.05e−1

γ = 5/3 err 4.37e−2 7.23e−3 7.70e−3 1.73e−3 3.43e−2 3.02e−3 1.01e−2 2.54e−2 4.65e−3 1.88e−3

γ = 3 exact 6.78e−2 8.77e−2 9.40e−2 9.53e−2 9.47e−2 9.32e−2 9.13e−2 8.93e−2 8.73e−2 8.54e−2

γ = 3 est 7.11e−2 9.41e−2 9.98e−2 1.02e−1 1.02e−1 1.05e−1 1.01e−1 9.60e−2 9.84e−2 9.29e−2

γ = 3 err 4.89e−2 7.30e−2 6.17e−2 7.26e−2 7.98e−2 1.23e−1 1.10e−1 7.50e−2 1.26e−1 8.86e−2

the manifolds E ± through their eigenvectors is lost because two of those eigenvectors coincide. These points are called glancing modes;
his issue was also pointed out in [3, §3.4]. Resorting to generalized eigenvectors one can show that the Lopatinsky determinant does
ot vanish for this value of λ0, hence the only solution to ∆2 = 0 is λ0 = 0; see also [55].
In the search for roots of ∆3 = 0 the now look for λ1. Thanks to the multilinearity of the determinant function, we readily obtain

hat ∆3 = 0. We go to the next term in (3.9): thanks to Observation 3.2 it is not hard to see that ∆4 = det(X (1)
1 , X (1)

2 , X (0)
3 , X (1)

4 , X (1)
5 ).

computation shows that the latter determinant has order O(λ2
1), but not order o(λ2

1), which implies that λ1 = 0. A similar analysis
eads to the expression of the next term, that is,

∆5 = det(X (1)
1 , X (2)

2 , X (0)
3 , X (1)

4 , X (1)
5 ).

ince the first two rows are linearly dependent, we can see that the determinant of the latter matrix is zero. A more involved analysis
s necessary in dealing with the ε6-order term in (3.9): ∆6 can be written as

∆6 = det(X (2)
1 , X (2)

2 , X (0)
3 , X (1)

4 , X (1)
5 )+ det(X (1)

1 , X (2)
2 , X (0)

3 , X (2)
4 , X (1)

5 )+

det(X (1)
1 , X (2)

2 , X (0)
3 , X (1)

4 , X (2)
5 )+ det(X (1)

1 , X (3)
2 , X (0)

3 , X (1)
4 , X (1)

5 ).

simple analysis shows that the last determinant is zero due to the structure of columns 1, 3, 4 and 5. We end up with

∆6 =
i (R− 1)2M3R3λ2ρ

−(u+1 )
7

M2 − 1
−

2 (i R− i)M2Rλ2
2(u

+

1 )
4

M − 1
.

Setting ∆6 = 0 and solving for λ2, we obtain

λ2 =
MR3ρ−(u+1 )

3
−MR2ρ−(u+1 )

3

2 (M + 1)
=

(R− 1)MR2ρ−(u+1 )
3

2 (M + 1)
. (3.10)

his function is clearly positive for all R > 1, from where we readily conclude inviscid instability for all values of γ ≥ 1, a result
hat extends and improves the results of [3, Page 3036], which were limited to the case γ ∈ [1, 2]. Furthermore, our result shows a
igher level of accuracy when compared to the results of [3] (see also Appendix C) and those of [12]; this improvement is clear once
e compare the predicted analytically determined value for the instability of the Lopatinsky determinant with those values observed
umerically, as discussed in Section 4.

.1.3. Comparison with previous results: parallel case
We investigate the Lopatinsky determinant and its roots numerically for different values of γ , corresponding to monoatomic gas

γ = 5/3) and diatomic gas (γ = 7/5; for instance, O2), γ = 3 (artificial gas) and compare those values to the analytically predicted
esult in Eq. (3.10); the comparison is shown in Table 2. Another representative description of the good agreement between the
nalytical result and the numerical study can be also seen in Figs. 3 and 1. In particular, Fig. 1 points out the accuracy of our results
hen compared to those presented in [3]. However, it is worthwhile to stress that the analysis in the latter paper gives the correct
rder for the root of the Lopatinsky determinant, i.e., λ = O(ε2); apparently, this result was known at a formal level in the Astrophysics
ommunity since the late 80s; see for example [12, §2.1].

.2. Full inviscid stability diagram

In this section, following the scaling of [2], we fix u−1 = 1, ρ−
= 1 so that ρ−u−1 = ρ+u+1 = 1, where the latter is due to the

ankine–Hugoniot conditions (3.1). With regard to the parametrization of Lemma 3.1, it consists of R =
1
u+1

. Note for this choice of
arameters that the slow shock classification of (1.3) simplifies to

h > H∗
= 1.
1

22



B. Barker, R. Monteiro and K. Zumbrun Physica D 420 (2021) 132857

l

m
p

3

t

w
i
s
n
s
r
H
i

r
a

4

p

a

W

We complete our study of parallel inviscid shock stability by a numerical stability analysis over all parameters, complementing the
asymptotic study of the previous subsections. Recall [3] that 1-D stability, or nonvanishing of ∆(λ, 1), has previously been verified.
Thus, without loss of generality, we may fix ξ = 1 by homogeneity (see Observation 3.2–(iv)), reducing the question of stability to
nonvanishing of ∆(λ, 1) on Re (λ) ≥ 0. Noting that ∆(λ, 1) is analytic in λ, this can be done by a winding number computation. Indeed,
if we evaluate ∆(λ, 1) along a contour in the complex plane that encloses any possible unstable roots of ∆(λ, 1), and if the resulting
image contour has winding number 0, then the associated shock is stable, and if the winding number is positive, then the shock is
unstable. We numerically evaluate ∆(λ, 1) along the contour ∂({z ∈ C : Re(z) ≥ 0} ∩ {z ∈ C : |z| ≤ R}) where R > 0 is sufficiently
arge. In practice, we took r = 10, which appears to be amply large. When Re(λ) = 0, the real part of the eigenvalues of collapse to
zero making it difficult numerically to detect the correct bases for evaluating ∆(λ, 1). To get around this technical difficulty, we simply
in practice shift to the right of the contour on which we compute ∆(λ, 1) by 1e − 4. As displayed in Fig. 2 (b), we examine inviscid
stability for u+1 ∈ {0.05, 0.1, . . . , 0.9, 0.95} and h1 ∈ {1.1, 1.2, . . . , 3.9, 4}.

The results displayed in Fig. 2-(b) indicate a single stability transition for each fixed u+1 sufficiently close to u−1 = 1 as h1 is increased
from H∗

= 1 (stability) to∞ (instability). For smaller u+1 , corresponding to larger-amplitude waves, all slow shocks appear to be multi-d
unstable independent of the strength of the magnetic field h1, hence there is no stability transition. Similarly as in the large-h1 case, we
observe through a winding number computation of the Evans function that in the unstable case the instability corresponds to a double
real root, so that the stability transition as described in the introduction corresponds to passage of a double root through the origin.

3.2.1. The critical destabilization parameter
Based on the above observations, to pinpoint the location of the stability transition h1 for a given fixed u+1 , we have only to

numerically solve ∆(0, 1) = 0, considered as an equation in h1. (Note that, as a consequence of reflection symmetry, ∆(λ, ξ ) may
be normalized to be real valued for λ ∈ R). Again, to avoid technical difficulties to do with pure imaginary λ, we solve the approximate
equation ∆(λ0, 1) = 0 where λ0 = 1e − 5 via the bisection method, where ∆(λ, 1) is normalized by ∆(0.1, 1) = 1. The result is
displayed in Fig. 2(a)(b) together with the results of our more complete coarse-mesh computations. The thick dashed line in Fig. 2
arks the critical destabilization parameter. Apparently the stability region is exclusively determined by this critical destabilization
arameter curve.

.3. Remarks on the nonparallel case

Our approach to the nonparallel case relies on numerical winding number computations, using similar techniques to those used in
he parallel case: we first compute an eigenbasis associated to decaying manifolds on both x1 ≷ 0 sides, and later expand their entries
in ε in order to obtain an expression for the Lopatinsky determinant ∆ in terms of ε as in (3.9). One obtains an expansion of the type

∆(ε)(λ, 1) =
1
ε6

∆−6 +
1
ε5

∆−5 +
1
ε4

∆−4 + · · · (3.11)

ith λ = λ0 +λ1ε+O(ε2). It is not hard to see that ∆−6 = ∆−5 = 0, since both corresponding matrices have rows of zeros. As before,
n order to find instability we need to show that there exists a solution to ∆−4 = ∆−4(λ0) = 0 such that Re(λ0) > 0. The analytical
tudy of this determinant is very complicated, even if we use symbolic computations, so we approach this part numerically: we verify
umerically using a winding number computations that the Lopatinsky determinant (3.11) has a simple root λ = λ0 + λ1ε + O(ε2)
uch that λ0 has a positive real part, so we do have instability. This result confirms and elucidates the assertions in [3, Remark 3.5]
egarding the nonparallel case. In particular, that the critical eigenvalue is order O(1) rather than order O(ε2) as in the parallel case.
owever, the root we found does not agree with the explicit formula given in [3, Remark 3.5]; as the proof of this formula is not given
n [3] we are unable to determine the reason for this discrepancy.

Besides these asymptotics, for some specific shocks we also carried out a numerical Lopatinsky analysis, as one can see from the
esults displayed in Fig. 10 that in the nonparallel case the roots are not real valued. This appearance of complex roots corresponds to
break of O(2) symmetry upon linearization (see also [4,37,41]).

. Viscous stability analysis: Evans function

We also study the viscous linear stability analysis using Evans function techniques. Roughly speaking, the study of the Evans function
roceeds as follows: consider the system,

f0(u)t +
d∑

j=1

Aj(u)∂xju =

d∑
j,k=1

(Bjk(u)uxk )xj ,

nd make the change of coordinates x1 → x1 − st to obtain,

f0(u)t − sf0(u)x1 +
d∑

j=1

Aj(u)∂xju =

d∑
j,k=1

(Bjk(u)uxk )xj .

e linearize about a planar traveling wave solution ū, traveling in the direction x1 to obtain,

(Ā0u)t − s(Ā0u)x1 + C̄u+
d∑

Āj∂xju =

d∑
B̄jkuxkxj +

d∑
(dBj1(ū)(u, ∂̄x1u))xj ,
j=1 j,k=1 j=1
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Fig. 10. Plot of the root of the non-parallel MHD Lopatinsky determinant as a function of u+2 when u+1 = 0.9, ρ+
= 1.1, u−1 = 1, ρ−

= 1, γ = 5/3, h1 = 5,
+

2 = u+3 = h+3 = 0, and we vary u+2 . The root is approximately r = 9× 10−4
− iu+2 .

here Āj := Aj(ū) and the linearization of A1(u)∂x1u is C̄u+ Ā1∂x1u. Next we take the Fourier transform in the variables ξ2, . . . , ξd, and
he Laplace transform in t to obtain the eigenvalue problem,

λĀ0u− (Ā1)′u+ C̄u+
d∑

j=2

iξj̃Aju+
d∑

j,k=2

ξjξkB̄jku =

⎛⎝B̄11u′ +
d∑

j=2

iξjB̄ju− Â1u

⎞⎠′

, (4.1)

here Ãj := Âj + (B̄j1)′, B̄j
:= B̄j1 + B̄1j, Â1u := Ā1u− sĀ0u− dB11(ū)(u, ∂̄x1u), and Âju := Āju− dBj1(ū)(u, ∂̄x1u) for j ≥ 2. We obtain our

vans function coefficient matrix by using the flux form, only wherever we see Ãξ :=
∑d

j=2 ξj̃Aj, we instead use i(Ā1)′ − iC̄ +
∑d

j=2 ξj̃Aj
for further discussion, see [39]).

The Evans function (λ, ξ ) ↦→ D(λ, ξ ) consists of a measurement at x1 = 0 of the transversality between the decaying manifolds of
he ODE (4.1) when restricted to the spaces x1 ≷ 0. It is an analytic function of both its parameters whenever λ is in the domain of
onsistent splitting (see Section 2.2.5), which in the present case includes {(ξ, λ) : Re(λ) ≥ 0} \ {(0, 0)}. For our study of stability in a
hannel the relevant values of ξ are ξ ∈

2π
L Z, L being the width of the channel we are studying.

According to the results in [13], the Lopatinsky determinant is (in most cases) a first order approximation of the Evans function in
he low frequency regime; consequently, inviscid instability implies viscous instability.8 The latter implication is our main motivation
in the search for zeros of the Evans function, i.e., values of the spectral parameter λ such that D(λ, ξ ) = 0 for some ξ ∈

2π
L Z.

Apart from constraint issues, substantial new difficulties in going from 1-D to multi-D Evans function computations arise:

(i) Number of equations/parameters: we deal with 5 × 5 system of equations with downstream/upstream shock conditions. The
complexity, both mathematical and numerical, is enormous. Symbolic computations are necessary to create the code without
risk of human error. Fortunately, the β-model allows use of previously tested code (STABLAB; see more in [38]);

(ii) Unexpected issues with Evans function asymptotics related to Eulerian vs Lagrangian coordinates make computation of the multi-
D numerical Evans function practically impossible; issues were only recently resolved in this project and, to knowledge of the
authors, in only one other project [7].

4.1. Computing the profile

To solve for the viscous profile numerically, we cut the domain in half and use a coordinate change to reflect the interval (−∞, 0]
to [0,∞). We use matching conditions at x = 0 and projective boundary conditions at x = ∞ that select the decaying solution. To
solve the resulting three point boundary value problem, we use MATLAB’s bvp5c solver with relative and absolute error tolerances set
respectively to 10−6 and 10−8.

4.2. Computation of decaying manifolds and eigenfunctions

We recall that the Evans function takes the form

D(λ; ξ ) = det
(
[W−∞

1 (0; λ, ξ ), . . . ,W−∞

k (0; λ, ξ ),W+∞

k+1 (0; λ, ξ ), . . . ,W
+∞

n (0; λ, ξ )]
)
,

where
d
dx

W±∞

j (x; λ, ξ ) = A(x; λ, ξ )W±∞

j (x; λ, ξ ) (4.2)

and W−∞

1 , . . . ,W−∞

k and W+∞

k+1 , . . . ,W
+∞
n form a basis for the solution space of (4.2) that decays as x → −∞ and as x → +∞,

espectively. If (λ0, ξ0, v0) is an eigenvalue, Fourier mode, eigenfunction triple, then D(λ0, ξ0) = 0 and v0 can be expressed as a linear

8 Indeed this implication holds also in cases such as slow MHD shocks for which the approximation property is not known; see [53, Theorem 2.30] and [53,
emma 8.3 and Prop. 83]. We note that even for slow MHD shocks, the first-order approximation property holds for generic frequency angles (ξ, λ) [53, Lemma 8.3].
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1 , . . . ,W−∞

k when x ∈ (−∞, 0] and as a linear combination of W+∞

k+1 , . . . ,W
+∞
n when x ∈ [0,+∞). Hence, to solve

for an eigenvalue λ0 and eigenfunction v0 corresponding to a fixed ξ0, we may do as in [56], and solve (4.2) as a boundary value problem
ith λ as a free parameter. At x = ±∞, we use projective boundary conditions, P±∞v0(±∞) = 0, which force the projection of v0 onto
he unstable and stable manifolds at x = ±∞, respectively, to be zero. The projective boundary conditions at x = ±∞ provide k and
− k boundary conditions, which leaves one additional boundary condition corresponding to the free parameter. We provide a phase
ondition, such as ∥v0(0)∥ = 1 or a component of v0(0) is unity, which selects an eigenfunction from the family {cv0 : c ∈ C, c ̸= 0}. In
ractice, to numerically approximate v0 we divide the domain into two parts, (−∞, 0] and [0,+∞), and then perform the change of
oordinates x → −x on (−∞, 0], thus doubling the dimension of the system (4.2) now posed on [0,+∞). We then pose the boundary
value problem on the finite interval [0, L] where L is the truncation value approximating infinity as determined in solving the traveling
wave profile. In the end, there is one phase condition given at x = 0 and n projective boundary conditions given at x = L.

To obtain an initial guess for the boundary value problem, we apply STABLAB’s built in root finding capabilities, such as the method
of moments or a two-dimensional bisection method using squares in the complex plane, to the Evans function to find a λ̃0 which
approximates the eigenvalue λ0 of interest. To approximate the eigenfunction v0, we set

W L(x) := [W−∞

1 (x; λ̃0, ξ0), . . . ,W−∞

k (x; λ̃0, ξ0)]

and W R(x) := [W+∞

k+1 (x; λ̃0, ξ0), . . . ,W+∞
n (x; λ̃0, ξ0)] and then find C = (cL, cR)T that minimizes ∥[W L(0),−W R(0)]C∥ in the least squares

sense subject to ∥C∥ = 1.
In practice, solving for W L(x) and W R(x) is difficult because of competing modes of A(x; λ, ξ ) as x → ±∞. Thus, we compute W L(x)

and W R(x) using the method of continuous orthogonalization of [57]. In this method, we set W L
= ΩLαL and W R

= ΩRαR where ΩL and
ΩR are orthonormal bases of W L and W R respectively. In particular, as detailed in [57], ΩL and αL satisfy the well-conditioned ODEs

Ω ′
= (I −ΩΩ∗)AΩ

α′
= (Ω∗AΩ)α.

Thus, we can solve the ODE for ΩL and ΩR and then minimize ∥[ΩL(0),−ΩR(0)]C∥ subject to ∥C∥ = 1, then afterward solve for αL and
αR by initializing the associated ODE at x = 0. We note that solving for αL from x = 0 to x = −L, or for αR from x = 0 to x = L, is
numerically well posed as error decays in this direction of integration. We then recover W L and W R, which provides an initial guess
for the boundary value problem described previously.

Fig. 5 exemplifies the applicability of the numerical construction here described: it shows a graph of the real part of the variable u1
of the eigenfunction associated to the bifurcating eigenvalue. Notice the loss in the planar structure, which is also pointed out in [4] in
the strictly parabolic case for O(2) steady bifurcations.

4.3. Viscous stability diagram

To determine stability of the viscous shock waves, we compute the Evans function, similar to the Lopatinsky determinant, on a
contour ΩR := ∂({z ∈ C : Re(z) ≥ 0} ∩ {z ∈ C : |z| ≤ R}), where R is now chosen by curve fitting the Evans function to within 0.2
relative tolerance of its asymptotic behavior D(λ) ∼ C1eC2

√
λ, indicating that any zeros of the Evans function that may exist lie within

ΩR; see Appendix A for more details. However, we do limit R ≤ 128 for practical reasons since the time to compute D(λ) becomes
unreasonable for |λ| too large. To compute the Evans function, we use the method of continuous orthogonalization [58] described in
Section 4.2, computed in pseudo-Lagrangian coordinates for better conditioning as described in [40]. We initialize the Evans ODE with
a basis that varies analytically in λ via the method of Kato [59] as described in [60]. All of these methods are built into the STABLAB
platform with which we perform our computations [38].

When γ = 5/3, we sample the winding number for the Fourier coefficient ξ ∈ [0.001, 0.004, 0.007, 0.01, 0.04, 0.07, 0.1, 0.14,
0.17, 0.2] for various values of u+1 and h1 and plot the resulting stability diagram in Fig. 2-(a). When γ = 7/5, we obtain the
orresponding stability diagram plotted in Fig. 7. We note that the z-axis in Fig. 7 indicates the value of ξ to give a sense of which
odes are unstable. In Table 3 we indicate for various parameters the radius needed to enclose any potentially unstable eigenvalues

and we indicate the unstable root when it exists.

4.4. On the symmetry of eigenfunctions and equivariance of the Evans function

It is not possible to conclude from our analytical results that the bifurcating eigenvalues have associated dimension 2 rather than
2n, n ∈ {2, 3, . . .}. On the other hand, as we discuss next, an interesting conclusion can be derived with regard to the symmetry of the
decaying manifolds discussed in this section.

By definition, in O(2) symmetric systems, if v(x, y) is a solution then Rv(x,−y) is also a solution, for R an orthogonal matrix.
Fourier transforming in the y-direction, we observe that any real eigenvalue λ has an eigenfunction eikyw(x) and also an eigenfunction
e−ikyRw(x). However, by complex symmetry so is eikyw(x). Likewise, eikyRw(x). This suggests that an eigenvalue λ = 0 associated with
k∗ ̸= 0 should have total multiplicity 4, 2 for each of ±k∗, unless the apparently non-generic situation occurs that Rw and w are
onstant multiples of one another.
The analogy to complex conjugation is apparent: given any eigenfunction w, form (w +Rw), the real part, and (1/i)(w −Rw), the

maginary part of the eigenfunction w. It is easily seen that both of these are invariant under

T : f → Rf̄ ,

nd span the space span{w,Rw} contained in the eigenspace of Lk∗ . The same reasoning gives a symmetric basis of the subspaces of
ecaying solutions of (λ−L )w = 0 at ±∞. So, we can construct an Evans function from these eigenfunctions, and whenever there is a
ero, we can find an eigenfunction given by a real linear combination of them, which is thus itself symmetric under the mapping T , that
is, invariance under T is in fact generic. For there to be non-symmetric eigenfunctions, there would have to be a higher multiplicity of
linear dependence. Moreover, MHD gives an explicit example where the multiplicity is in fact 2. Indeed, if there are only 2 eigenvalues,
25



B. Barker, R. Monteiro and K. Zumbrun Physica D 420 (2021) 132857

w

t
s
w
w
a
d
t
L

f
t

4

t
a

Table 3
Table providing computational details of the viscous stability study. The fifth through ninth columns respectively show the winding
number of the computation, the location of the root (if applicable) computed with absolute tolerance of 5× 10−7 , the outer radius
of the contour on which the Evans function was computed, the number of points on the contour, and the time in seconds the
computation took to run. The Evans function was computed on a semi-annulus with inner radius 10−5 and outer radius as stated.
γ u1+ h1 ξ WND Root Radius No. of Points Run time

5/3 0.0001 1.1 0.001 0 NA 128 539 197

5/3 0.0001 1.1 0.1 1 1.2280e−04 128 491 162

5/3 0.0001 1.5 0.05 1 7.0364e−05 128 517 171

5/3 0.0001 8 0.2 0 NA 128 543 381

7/5 0.0001 1.5 0.005 0 NA 128 577 182

7/5 0.0001 4 0.05 1 1.1829e−05 128a 599 282

7/5 0.0001 16 0.1 0 NA 128 527 747

5/3 0.01 1.1 0.001 1 2.8902e−05 128a 341 161

5/3 0.01 1.1 0.1 1 0.0024 128 297 128

5/3 0.01 1.5 0.05 1 7.5206e−04 64a 281 128

5/3 0.01 8 0.2 0 NA 128 361 295

7/5 0.01 1.1 0.8 1 0.0050 128a 287 139

7/5 0.01 2 1.6 0 NA 64a 237 132

7/5 0.01 8 1.6 0 NA 8a 133 163

5/3 0.2 1.1 0.005 1 4.7035e−04 16a 137 93.2

5/3 0.2 1.1 0.2 1 0.0137 4a 141 84.2

5/3 0.2 1.5 0.1 1 0.0044 32a 159 112

5/3 0.2 8 0.8 0 NA 8a 171 203

7/5 0.2 1.5 0.05 1 0.0024 32a 165 113

7/5 0.2 4 0.1 1 3.7694e−04 4a 221 138

7/5 0.2 16 0.1 0 NA 8a 251 521

aIndicates that the radius was taken large enough that curve fitting the Evans function with its asymptotic behavior yields a relative
error no greater than 0.2.

then, choosing the representatives of eigenfunctions having symmetry, we see that this uses up all the dimensions and there cannot
be more. Consequently, eigenfunctions may always be chosen with O(2) symmetry. Furthermore, one can build an Evans function
ith O(2) symmetry and this detects ‘‘nice’’ eigenfunctions having the desired symmetry; there may well be others, but this would be

‘‘extra’’, and there is no reason they would need to be there, that is, they are not generic.

4.5. Finding the critical destabilization parameter h1

In the following discussion we assume γ = 5/3 and u+1 = 0.86. Determining exactly where the stability transition occurs in h1 for
he Evans function is a little difficult because the contour on which we compute the Evans function comes close to a root near the
tability transition. A closer approximation was tried, but we could only confirm that, for ξ = 0.005, the Evans function has a root
hen h1 = 2, but it does not when h1 = 1.999. Several values of ξ were tested when h1 = 1.999, and no zeros of the Evans function
ere found; on the other hand, a root is found when h1 = 2, being approximately 2.86× 10−7. The Lopatinsky determinant for h1 = 2
nd ξ = 1 has a root at λ0 = 4.26× 10−4, which for ξ = 0.005, corresponds to λ0 = 2.13× 10−6. It was verified that the Lopatinsky
eterminant has no root to the right of the vertical line λ = 10−4 for h1 = 1.995, but it does for h1 = 1.996. The contour cannot be
aken much closer to the imaginary axis than 10−4 because of the essential spectrum. See Fig. 11 for a plot of the (real) root of the
opatinsky determinant for different values of h1.
In summary, we can estimate that the stability transition for the Lopatinsky determinant occurs at h1 ≈ 1.995 and for the Evans

unction at approximately h1 = 2. As discussed in the introduction, this is due to discretization of Fourier modes. The whole-space
ransition values agree, as a consequence of concavity of the associated spectral curves, illustrated in Fig. 6.

.6. Verifying concavity

In the previous subsection, we have verified concavity of the critical spectral curve/agreement of (whole space) viscous and inviscid
ransition values for one (typical) choice of parameters, essentially by force, by computing the critical spectral curve λ∗(ξ ) and
pproximating the second derivative. In this subsection, we check concavity more efficiently using the implicit function theorem.
To verify concavity of the spectral curves λ(ξ ) = 0 at the critical transition, we approximate the quantity

σ := −
D̃ρ

D̃λ0

|(ρ,λ0,ξ0)=(ε,0,1)

using finite difference quotients, where D̃(ρ, λ0, ξ0) = D(ρξ0, ρλ0) is the Evans function in polar coordinates. This may be recognized
as the negative of the ‘‘effective viscosity coefficient’’ of [13,15,17,18], with λ(ξ ) = σξ 2

+ O(ξ 3). Negativity of σ corresponds to the
‘‘refined stability condition’’ of the references.
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Fig. 11. Plot of the roots of the Lopatinsky determinant against h1 for ξ = 1 when γ = 5/3 and u+1 = 0.86.

Fig. 12. (a) Plot of σ against u−1 − u+1 . (b) Plot of interpolation (red curve) of points ξn for which λ(ξn) = 0. (c) A plot of the Mach number against u−1 − u+1 at the
neutral stability curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To approximate σ , we obtain an initial basis for the Evans function ODE by finding a basis B± at (λ, ξ ) = (0, ε), and then multiplying
B± on the left by an analytic projection onto the desired subspace, thus creating a locally analytically varying basis determining D. We
then compute the difference quotient approximation

σ ≈
D(0, ε)− D(0, 2ε)
D(ε2, ε)− D(0, ε)

(4.3)

or various values of ε > 0. We perform a convergence study to verify the correctness of our approximation of σ , using five evenly
paced values of ε between 1e-3 and 1e-6. We plot σ against u−1 −u+1 in Fig. 12(a), demonstrating that σ is always negative. Recall that
> 0 indicates that instability may occur in the viscous system before it does in the inviscid system as the bifurcation parameter h1 is

ncreased. We also did a spot check to verify that we get the same value for σ when we interpolate the curves λ(ξ ) = 0 with quadratic
olynomials for various values of h1, and then interpolate the second derivative of these quadratic polynomials in the variable h1 with a
uartic polynomial, which we evaluate at h1 = H∗. In Fig. 12(b), we demonstrate the quadratic interpolation of a typical curve λ(ξ ) = 0.
e note that we compute σ only for u+1 as small as 0.7005 ≈ U∗, where U∗ is the value of u+1 at which shocks become inviscid stable

t the minimum h1 = H∗ value for which they are 3-shocks.
The clear conclusion from Fig. 12(a) is that the spectral curve is indeed concave at transition to instability, for all relevant values of

hysical parameters, in the case of a monatomic gas γ = 5/3.

.6.1. Finer points: analyticity and glancing
The implicit function computation σ = −D̃ρ/D̃λ0 of the second-order coefficient in λ(ξ ) = σξ 2

+ . . . , or, equivalently

λ0(ξ ) = σρ + . . . ,

efined by D̃(ρ, λ0(ρ), 1) = 0, presupposes analyticity of D̃ in (ρ, λ0). As pointed out in [13,14], analyticity holds away from ‘‘glancing
oints’’, defined as frequencies λ0 for which A−1

1 (λ0A0+ iξ0A2) has neutral (i.e., zero real part) eigenvalues possessing a nontrivial Jordan
lock.
However, for the parallel MHD equations, [10, Lemma 7.2(ii)] specialized to the 2-D case considered here yields for (λ0, ξ0) = (0, 1)

hat there is always a Jordan block of dimension 2, hence an associated square-root singularity in the initializing decaying eigenspaces at
oth x → ±∞, inherited by the manifolds of decaying solutions. This is readily verified by direct computation of the zero-eigenspace of
A−1
1 A2, which may be seen to have geometric multiplicity 2 but algebraic multiplicity 3. Thus, we cannot simply appeal to nonglancing

o conclude analyticity: there is always glancing! On the other hand, the fact that both decaying manifolds at ±∞ have a square-root
ingularity at λ = 0 implies that the Evans determinant obtained as their exterior product, by a monodromy argument, or simply
y composing the two square roots to obtain a linear factor, is analytic, despite the presence of glancing modes. This justifies our
omputations above.
27
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Fig. 13. Winding number computations for the viscous and inviscid system. A red plus sign marks the origin. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

. Additional description of numerics

To create Fig. 9(a), we used the method of moments described in [61] to determine the roots of the Evans function (with ξ = 0.05
ixed). The moments were computed on the contour ∂(({z ∈ C : Re(z) ≥ 0} ∩ {z ∈ C : |z| ≤ 0.01})/{z ∈ C : |z| ≥ 10−4

}). To create
ig. 9(b), we used a forward finite difference scheme to approximate the derivative using the data given in Fig. 9(a).
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ppendix A. On winding number computations

The study of unstable modes reduces to studying an eigenvalue equation: at the inviscid level through Lopatinsky determinant,
(λlop, ξ ); at the viscous level through an Evans function, D(λev, ξ ). Due to analyticity of these two objects in their parameters, the
earch for growing modes corresponds to verifying if, for a fixed ξ ∗ there exist a root λlop of the Lopatinsky determinant and a root
ev of the Evans function in the half space Re(z) > 0 of the complex space C. This computation relies then on winding number
omputations, based upon the argument principle. An example of these computations can be seen in Figs. 13(a) and 13(b).

ppendix B. Guide to [3] and [9] # 1: persistence of constraint condition, a second proof

We give here a second proof of Corollary 2.7 for the linearized MHD β-model,9 following [3, Remark 3.2]. In what follows, we write
Q1)xi or Q1,xi to denote the partial derivative ∂xi (Q1) of a quantity Q1 with respect to xi. To begin with, we linearize (1.1c) about a
hock profile V = (ρ, u1, 0, h1, 0) (thus, u2 = 0, h2 = 0), obtaining
9 Inherited from the nonlinear version, by linearity of the constraint.
28
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(h1)t + (h1u2 − h2u1)x2 + β(h1,x1 + h2,x2 ) = 0; (B.1a)

(h2)t − (h1u2 − h2u1)x1 = 0. (B.1b)

n this section we will only make use of the first of these equations.

(‘‘+" case) (h+1 )t + (h
+

1 u
+

2 − h+2 u+1 )x2 + β(h+1,x1 + h+2,x2 ) = 0; (B.2)

(‘‘-" case) (h−1 )t + (h
−

1 u
−

2 − h−2 u−1 )x2 + β(h−1,x1 + h−2,x2 ) = 0. (B.3)

he linearized Rankine–Hugoniot conditions across a shock at x1 = 0 yield

h+1 = h−1 ; (B.4a)

h1(u+2 − u−2 ) = u+1

(
h+2 −

ρ+

ρ−
h−2

)
= u+1

(
h+2 − Rh−2

)
. (B.4b)

e subtract Eqs. (B.2) and (B.3),

(h+1 − h−1 )t +
(
h1(u+2 − u−2 )− h+2 u+1 + h−2 u−1

)
x2
+ β(h+1,x1 + h+2,x2 )− β(h−1,x1 + h−2,x2 ) = 0, (B.5)

nd we differentiate Eq. (B.4a) (respectively, (B.4b)) with respect to t (respectively, x2), which is legitimate since we are not
ifferentiating in any direction perpendicular to the shock front. We end up with(

u+1 (h
+

2 − Rh−2 )− h+2 u+1 + h−2 u−1
)
x2
+ β(h+1,x1 + h+2,x2 )− β(h−1,x1 + h−2,x2 ) = 0, (B.6)

here
(
u+1 (h

+

2 − Rh−2 )− h+2 u+1 + h−2 u−1
)
x2
= 0; thus,

div(h+) = div(h−) at x1 = 0. (B.7)

ow we differentiate Eq. (B.1a) (respectively, (B.1b)) with respect to x1 (respectively, x2), obtaining

∂tdiv(h)+ β∂x1div(h) = 0.

Using that div(h)
⏐⏐⏐
t=0

= 0 and the jump condition at x1 = 0 provided by the Rankine–Hugoniot condition (B.7), we see by the
characteristic method that the only possible solution is div(h) = 0 for t > 0.

Appendix C. Guide to [3] and [9] # 2: a different approach towards the derivation of Rankine–Hugoniot conditions

In this appendix we consider a different way to derive the Rankine–Hugoniot conditions upon linearization about a planar shock
wave. There are several ways to do that, and in the context of MHD equations we refer to [3] and [10]. As pointed out by Majda in [31],
the study of stability of planar shocks reduces to a free boundary problem, in which a parameter measuring the deformation of the
planar structure of the shock is introduced. The main point of the analysis is to ‘‘trade’’ the latter unknown deformation by introducing
a dynamic boundary condition at the linearized shock front. Now that we have given the rough idea we can put this heuristic on solid
mathematical ground: assume initially that we are in a 2-D spatial domain. Throughout this section, the usual l2(Rn) inner product is
ritten ⟨·, ·⟩; a subindex (·)a denotes the partial derivative with respect to the variable a, for a ∈ {t, x1, x2}. Let u(·) be a planar traveling

wave with speed s solving the following system of equations

(f0(u))t +
2∑

i=1

[fi(u)]xi = 0,

where u(x1 − st) = u± (u± are constants) whenever x1 − st ≷ 0 and f0, f1, f2 ∈ C∞(R;Rn). The Rankine–Hugoniot conditions are given
by

−s[f0(u)] + [f1(u)] = 0,

where [·] denotes the jump across the shock. We consider a perturbation of this system given by a function u(·) + v(·), taking into
account also perturbations in the shock front of the form x1−φ(x2, t) = 0 for φ sufficiently smooth. In this case the Rankine–Hugoniot
conditions are:

−φt [f0(u+ v)] − φx2 [f2(u+ v)] + [f1(u+ v)] = 0.

As pointed out in Section 3, we can take s=0. Linearizing the Rankine–Hugoniot conditions about the shock profile u(·) and the shock
x1 − st = 0 we have

− φt [f0(u)] − φx2 [f2(u)] + [Df1(u)v] = 0, (C.1)

where Df1(·) denotes the Jacobian of the mapping f1. We start with a trivial linear algebra result:

Claim C.1. We can choose n− 2 vectors {v1, . . . , vn−2} in Rn so that

⟨vi, (−φt [f0(u)] − φx2 [f2(u)])⟩ = 0,

for all i ∈ 1, . . . , n− 2. Further, thanks to (C.1), we must have that ⟨v , [Df (u)v]⟩ = 0.
i 1
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Each one of these vectors provides a ‘‘static’’ constraint. It turns out that we can actually find another vector w̃ – independent of
v1, . . . , vn−2 – that is also orthogonal to−φt [f0(u)]−φx2 [f2(u)]. In this case, however, since φt and φx2 have a dynamic behavior (i.e., time
dependence), we must expect the same for w̃. The idea consists of looking for a vector of the form w̃ = r∂t + s∂x2 , where r, s ∈ Rn are
unknowns still to be found. Recall that [f0(u)] and [f1(u)] are constant vectors, since u is constant on both sides of the shock. Our aim
s to satisfy ⟨r∂t + s∂x2 ,−φt [f0(u)] − φx2 [f2(u)]⟩ = 0; expanding the latter, we obtain the equivalent expression

φtt⟨r, [f0(u)]⟩ + φx2x2⟨s, [f2(u)]⟩ + φtx2 (⟨s, [f0(u)]⟩ + ⟨r, [f2(u)]⟩) = 0.

In order to verify this formula, it suffices to find r and s in Rn such that
⟨s, [f0(u)]⟩ + ⟨r, [f2(u)]⟩ = 0;

⟨r, [f0(u)]⟩ = 0;
⟨s, [f2(u)]⟩ = 0.

(C.2)

Our next step consists of defining a projection u ↦→ Pv(u) that projects the vector u ∈ Rn in the space spanned by the space v ∈ Rn.
The following properties of this operator, whose proofs we omit, are standard results in linear algebra:

Claim C.2. Given a vector v ∈ Rn, v ̸= 0 and defining the operator Rn
∋ u ↦→ Pv(u), then the following properties are satisfied:

i. Pv(0) = 0;
ii. Pv(v) = v;
iii. Pv(w) = 0 ⇔ v ⊥ w ⇔ Pw(v) = 0.

Let [f0]⊥ ∈ Rn (respectively, [f1]⊥ ∈ Rn) be defined so that {[f0]⊥, [f0], v1, . . . , vn−2} (respectively, {[f1]⊥, [f1], v1, . . . , vn−2}) spans
Rn. Define

r = P[f0]⊥ ([f2]) and s = µ̃P[f2]⊥ ([f0]), (C.3)

where µ̃ ∈ R will be defined later. Without loss of generality, we assume that P[f0]⊥ ([f2]) ̸= 0 and P[f2]⊥ ([f0]) ̸= 0; indeed, using
Claim C.2(iii) and the fact that {v1, . . . , vn−2} ⊥ span{[f0], [f1]}, if one of these projections vanishes then the [f0] and [f1] are linearly
dependent, thus the choice of a (n− 1)th orthogonal vector is reduced to a trivial problem. On the other hand, it is easy to see that the
last two equations in (C.2) are satisfied. So we proceed as follows: we plug r and s as defined in (C.3) in the first equation of (C.2) to
find that µ̃ should be

µ̃ = −
⟨P[f0]⊥ ([f2]), [f2(u)]⟩
⟨P[f2]⊥ ([f0]), [f0(u)]⟩

.

pplying the result to (C.1) we see that ⟨r∂t + s∂x2 ,−φt [f0(u)] − φx2 [f2(u)]⟩ = 0, which implies that

⟨r∂t + s∂x2 , [Df1(u)v]]⟩ = 0. (C.4)

he latter equation is called a dynamic Rankine–Hugoniot condition; notice that it is independent of the perturbation φ of the shock
ront.

emark C.3. A generalization of the results in this appendix to cases with a higher number of vectors is a bit tricky. Indeed, one needs
o find more vectors rj,k, 1 ≤ j ≤ d − 1, 1 ≤ k ≤ d − 1, corresponding to d − 1 dynamic conditions (this in the generic case that
[f0], [f2], . . . , [fd] are independent, so that there are n− d static conditions and in total there will be the needed n− 1 total conditions
for extreme shock). These must have similar properties to those in (C.2), that is: a) rk(λ, η) := λr1,i + iηr2,k+... iηdrd,k, 1 ≤ k ≤ d − 1
be independent for each (λ, η) ̸= 0, and b) ⟨rk(λ, η), λ[f0] + η2[f2] + · · ·⟩ = 0. Now, the case d = 2 is easy, because we only need find
ne of these vectors, and there are d + d(d − 1)/2 homogeneous constraints, so we can always find a nontrivial solution; to see that
t is non-vanishing for all (λ, η) one just looks and sees a contradiction if one entry but not the other is vanishing. However, when
d ≥ 3, this is not a simple task. Furthermore, there are degenerate cases where [f0], [f2], . . . , [fd] are not independent, which need to
e treated slightly differently also it seems. In conclusion: the method works for the current purposes. In spite of its limitations, it
llustrates a case where one can find Rankine–Hugoniot conditions explicitly, even when the shock front is an unknown.

.1. The dynamic jump condition of [3]

Recall that u±2 = 0, h±2 = 0. We make use of Eqs. (1.1) in order to derive the vectors f0, f1 and f2.

f0 =

⎛⎜⎜⎜⎜⎜⎝
ρ

ρu1

ρu2

h1

h2

⎞⎟⎟⎟⎟⎟⎠ , f1 =

⎛⎜⎜⎜⎜⎜⎜⎝

ρu1

ρu2
1 −

h21
2 +

h22
2 + aργ

ρu1u2 − h1h2

0
u1h2 − h1u2

⎞⎟⎟⎟⎟⎟⎟⎠ , f2 =

⎛⎜⎜⎜⎜⎜⎜⎝

ρu2

ρu1u2 − h1h2

ρu2
2 + aργ

+
h21
2 −

h22
2

u2h1 − h2u1

0

⎞⎟⎟⎟⎟⎟⎟⎠ .

he jumps across the shock are:

[f0] =

⎛⎜⎜⎜⎜⎜⎝
ρ+

− ρ−

0
0
0

⎞⎟⎟⎟⎟⎟⎠ , [f2] =

⎛⎜⎜⎜⎜⎜⎝
0
0

a
{
(ρ+)γ − (ρ−)γ

}
0

⎞⎟⎟⎟⎟⎟⎠ .
0 0
30
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t is easy to find the vectors mentioned in Claim C.1: v1 = e2, v2 = e4 and v3 = e5. To calculate the static Rankine–Hugoniot conditions
we need the Jacobian of f1, Df1((ρ, u1, 0, h1, 0)):

Df1(ρ, u1, 0, h1, 0) =

⎛⎜⎜⎜⎝
u1 ρ 0 0 0

u2
1 + aγ ργ−1 2ρ u1 0 −h1 0

0 0 ρ u1 0 −h1
0 0 0 0 0
0 0 −h1 0 u1

⎞⎟⎟⎟⎠ .

Using the notation in [3, §3.2], the result in C.1 provides the static Rankine–Hugoniot conditions. The persistence of the divergence free
condition (Section 2 and Appendix B) implies that[

h1
]
= 0. (C.5)

et V = (ρ, u1, u2, h1, h2). We use ⟨v1, [Df1(ρ, u1, 0, h1, 0)V]⟩ = 0 to get

u+1

(
1+

1
M2

)
ρ+

− u+1 R
2
(
1+

1
M2Rγ+1

)
ρ−

+ 2ρ+(u+1 − u−1 )−
h1

(u+1 )
(h+1 − h−1 ) = 0. (C.6)

he condition

⟨v2, [Df1(ρ, u1, 0, h1, 0)V]⟩ = 0 (C.7)

oes not provide anything relevant (since the 4th row of Df1 is zero), whereas the last static condition, ⟨v3, [Df1(ρ, u1, 0, h1, 0)V]⟩ = 0
gives

− h1(u+2 − u−2 )+ u+1 h
+

2 − u−1 h
−

2 = 0. (C.8)

emark C.4. If we use the preserved constraint and appropriate normalization (see [3, §3.1]), Eq. (C.6) yields the first Rankine–Hugoniot
ondition in [3, Equation (44)], while Eq. (C.8) corresponds to the last equation in [3, Equation (44)].

Now we derive the dynamic Rankine–Hugoniot condition. We begin by calculating the projections mentioned at Claim C.2:

P[f0]⊥([f2]) = [f2] −
⟨[f0], [f2]⟩
⟨[f2], [f2]⟩

[f0]⊥[f2]
= [f2], P[f2]⊥([f0]) = [f0] −

⟨[f2], [f0]⟩
⟨[f0], [f0]⟩

[f0]⊥[f2]
= [f0].

et r = [f2] and s = λ[f0], where λ is defined by λ = −
⟨[f2], [f2]⟩
⟨[f0], [f0]⟩

. The dynamic Rankine–Hugoniot condition will be given by Eq. (C.4),

⟨[f2]∂t + λ[f0]∂x2 , [Df1(ρ, u1, 0, h1, 0)V]⟩ = 0, i.e.,

⟨[f2], [Df1(ρ, u1, 0, h1, 0)∂tV]⟩ + λ⟨[f0], [Df1(ρ, u1, 0, h1, 0)∂x2V]⟩ = 0.

efine the scalars A1 and A3 so that [f0] = A1e1, [f2] = A3e3; it follows that A1 = ρ+( R−1
R ) and, by Eq. (3.1), A3 = −ρ+(u+1 )

2(1− R).
Clearly, λ = −(A3/A1)2. After some computations, the above equation is reduced to

A1

{
(u+2 − u−2 )−

q
M2 (h

+

2 − h−2 )
}
t
−

A3

u+1

{
(ρ+

− Rρ−)+ (u+1 −
u−1
R

)
}

x2

= 0.

ollowing [3, §3.2], we use the normalization t̃ ≃ tu+1 to rewrite the previous equation as

A1

{
(u+2 − u−2 )−

q
M2 (h

+

2 − h−2 )
}̃
t
−

A3

(u+1 )2

{
(ρ+

− Rρ−)+ (u+1 −
u−1
R

)
}

x2

= 0,

r, equivalently,

(R− 1)
R

{
(u+2 − u−2 )−

q
M2 (h

+

2 − h−2 )
}̃
t
− (R− 1)

{
(ρ+

− Rρ−)+ (u+1 −
u−1
R

)
}

x2

= 0. (C.9)

t this point we make some substitutions. First, we solve the Rankine–Hugoniot condition (C.8) for (u+2 − u−2 ) and substitute the result
n the first term of (C.9). Then we solve (C.6) for u+1 , giving

u+1 = u−1 −
u+1
2ρ+

(
1+

1
M2

)
ρ+

+
u+1
2ρ+

R2
(
1+

1
M2Rγ+1

)
ρ−

+ G(M, R, γ , u+1 , ρ
±, h±1 ),

nd plug the result in the second term of (C.9); note that G is independent of u±1 and ρ±. This gives{
1
q
(h+2 − Rh−2 )−

q
M2 (h

+

2 − h−2 )
}

−
{
R(1− b1)ρ+

+ R(b2 − R)ρ−
+ (R− 1)u−1

}
x2
= 0,
t̃
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here b1 =
u+1
2ρ+

(
1+

1
M2

)
and b2 =

u+1
2ρ+

R2
(
1+

1
M2Rγ+1

)
. Multiplying by

M2

M2 − q2
, we obtain the dynamic Rankine–Hugoniot

ondition{
1
q
(h+2 )+

q2 − RM2

q(M2 − q2)
(h−2 )

}
t̃
+
{
b3ρ+

+ b4ρ−
+ b5u−1

}
x2
= 0, (C.10)

here b3 = −R
(M2

− 1)
(M2

− q2)
ρ+, b4 = −

RM2

(M2
− q2)

(b2 − R), and b5 = −
M2(R− 1)
M2

− q2
.

This final equation does not agree with the dynamic Rankine–Hugoniot condition [3, Equation (44)(ii)] of Freistühler & Trakhinin. For,
ccording to their calculations,{

u+2 − u−2
}̃
t +

{
b3ρ+

+ b4ρ−
+ b5u−1

}
x2
= 0 and h+2 − Rh−2 − qu+2 + qu−2 = 0 at x1 = 0

hich implies that{
1
q
(h+2 − Rh−2 )

}
t̃
+
{
b3ρ+

+ b4ρ−
+ b5u−1

}
x2
= 0 at x1 = 0. (C.11)

A more careful analysis shows that Eq. (C.11) is not a linear combination of (C.10) and the other jump conditions in (C.5)–(C.8) and
the interior equations evaluated on x1 = 0. Indeed, if that were the case then ∂̃t{h

−

2 } = 0. However there is no way of obtaining h−2
as a linear combination of the jump conditions (because it would introduce a linear term in h+2 ) or interior equations evaluated on
1 = 0 (because it would introduce variables that are spatial derivatives in x1). One can conclude that the dynamic Rankine–Hugoniot
ondition in [3, Equation (44)] is incorrect.
This small error did not do much harm to the main calculations of Freistühler & Trakhinin. In particular they obtained the correct

rder for the root of the Lopatinsky determinant (see [3, Equation (61)]), since in the large magnetic field we have q → ∞ and the
oefficients of (C.10) and (C.11) only differ by an O(ε3) term.

emark C.5. In the β-model the derivation of the Rankine–Hugoniot conditions using the reasoning presented in this section follows
imilar lines; the main differences are that

f0 =

⎛⎜⎜⎜⎝
ρ

ρu1
ρu2
h1
h2

⎞⎟⎟⎟⎠ , f1 =

⎛⎜⎜⎜⎜⎝
ρu1

ρu2
1 −

h21
2 +

h22
2 + aργ

ρu1u2 − h1h2
βh1

u1h2 − h1u2

⎞⎟⎟⎟⎟⎠ , f2 =

⎛⎜⎜⎜⎜⎝
ρu2

ρu1u2 − h1h2

ρu2
2 + aργ

+
h21
2 −

h22
2

u2h1 − h2u1 + βh2
0

⎞⎟⎟⎟⎟⎠ .

he jump across the shock is:

[f0] =

⎛⎜⎜⎜⎝
ρ+

− ρ−

0
0
0
0

⎞⎟⎟⎟⎠ , [f2] =

⎛⎜⎜⎜⎝
0
0

a
{
(ρ+)γ − (ρ−)γ

}
0
0

⎞⎟⎟⎟⎠ ,

and finally,

Df1((ρ, u1, 0, h1, 0)) =

⎛⎜⎜⎜⎜⎜⎜⎝
u1 ρ 0 0 0

u2
1 + aγ ργ−1 2ρ u1 0 −h1 0

0 0 ρ u1 0 −h1

0 0 0 β 0

0 0 −h1 0 u1

⎞⎟⎟⎟⎟⎟⎟⎠ .

urthermore, unlike the case presented before, in Eq. (C.7) we would obtain h+1 = h−1 , which we already know for MHD due to
ersistence of the constraint (1.2) (see Section 2.1.2).
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