

The integral Hodge conjecture for 3-folds of Kodaira dimension zero

Burt Totaro

The Hodge conjecture is true for all smooth complex projective 3-folds, by the Lefschetz (1, 1) theorem and the hard Lefschetz theorem [15, p. 164]. The integral Hodge conjecture is a stronger statement which fails for some 3-folds, in fact for some smooth hypersurfaces in \mathbf{P}^4 , by Kollar [22]. Voisin made a dramatic advance by proving the integral Hodge conjecture for all uniruled 3-folds (or, equivalently, all 3-folds with Kodaira dimension $-\infty$) and all 3-folds X with trivial canonical bundle K_X and first Betti number zero [39]. Also, Grabowski proved the integral Hodge conjecture for abelian 3-folds [13, Corollary 3.1.9].

In this paper, we prove the integral Hodge conjecture for all smooth projective 3-folds X of Kodaira dimension zero with $h^0(X, K_X) > 0$ (hence equal to 1). This generalizes the results of Voisin and Grabowski in two directions. First, it includes all smooth projective 3-folds with trivial canonical bundle, not necessarily with first Betti number zero. For example, the integral Hodge conjecture holds for quotients of an abelian 3-fold by a free action of a finite group preserving a volume form, and for volume-preserving quotients of a K3 surface times an elliptic curve. Second, our result includes any smooth projective 3-fold whose minimal model is a possibly singular variety with trivial canonical bundle; this extends work of Höring-Voisin on singular 3-folds of this type [19, Proposition 3.18].

In contrast, Benoist and Ottem showed that the integral Hodge conjecture can fail for 3-folds of any Kodaira dimension ≥ 0 . In particular, it can fail for an Enriques surface times an elliptic curve; in that case, X has Kodaira dimension zero, and in fact the canonical bundle is torsion of order 2 [4]. So our positive result is sharp in a strong sense.

The proof here covers all cases (including abelian 3-folds) in a unified way, building on the arguments of Voisin and Höring-Voisin. In order to show that a given homology class is represented by an algebraic 1-cycle on X , we consider a family of surfaces of high degree in a minimal model of X . The 1-cycle we want cannot be found on most surfaces in the family, but it will appear on some surface in the family. This uses an analysis of Noether-Lefschetz loci, which depends on the assumption that $h^0(X, K_X) > 0$.

As an application of what we know about the integral Hodge conjecture, we prove the integral Tate conjecture for all rationally connected 3-folds and all 3-folds of Kodaira dimension zero with $h^0(X, K_X) > 0$ in characteristic zero (Theorem 6.1). Finally, we prove the integral Tate conjecture for abelian 3-folds in any characteristic (Theorem 7.1).

I thank Olivier Benoist and Yuri Tschinkel for their suggestions. This work was supported by National Science Foundation grant DMS-1701237, and by grant DMS-1440140 while the author was in residence at the Mathematical Sciences Research

Institute in Berkeley, California, during the Spring 2019 semester.

1 Notation

The *integral Hodge conjecture* for a smooth complex projective variety X asserts that every element of $H^{2i}(X, \mathbf{Z})$ whose image in $H^{2i}(X, \mathbf{C})$ is of type (i, i) is the class of an algebraic cycle of codimension i , that is, a \mathbf{Z} -linear combination of subvarieties of X . The *Hodge conjecture* is the analogous statement for rational cohomology and algebraic cycles with rational coefficients. The *integral Tate conjecture* for a smooth projective variety X over the separable closure F of a finitely generated field says: for k a finitely generated field of definition of X whose separable closure is F and l a prime number invertible in k , every element of $H^{2i}(X_F, \mathbf{Z}_l(i))$ fixed by some open subgroup of $\text{Gal}(F/k)$ is the class of an algebraic cycle over F with \mathbf{Z}_l coefficients. Although it does not hold for all varieties, this version of the integral Tate conjecture holds in more cases than the analogous statement over the finitely generated field k [37, section 1]. The *Tate conjecture* is the analogous statement with \mathbf{Q}_l coefficients.

On a normal variety Y , we use a natural generalization of the vector bundle of differential forms on a smooth variety, the sheaf $\Omega_Y^{[j]}$ of *reflexive differentials*:

$$\Omega_Y^{[j]} := (\Omega_Y^j)^{**} = i_* \Omega_U^j,$$

where $i: U \rightarrow Y$ is the inclusion of the smooth locus.

For a vector space V , $P(V)$ denotes the space of hyperplanes in V .

2 Examples

In this section, we discuss some examples of 3-folds satisfying our assumptions, and how our proof works in various cases. One interesting point is the following dichotomy among 3-folds satisfying our assumptions. This dichotomy will not be used in the rest of the paper, but the proof of Proposition 2.1 develops some basic properties of these 3-folds that will be used.

Proposition 2.1. *Let X be a smooth projective complex 3-fold of Kodaira dimension zero with $h^0(X, K_X) > 0$ (hence equal to 1). Let Y be a minimal model of X . (Here Y is a terminal 3-fold with K_Y trivial.) Then either $H^1(X, O) = H^1(Y, O)$ is zero or Y is smooth (or both).*

Note that the integral Hodge conjecture for smooth projective 3-folds is a birationally invariant property [40, Lemma 15]. Therefore, to prove Theorem 4.1 (the integral Hodge conjecture for X as above), we could assume that $H^1(X, O) = 0$ or else that K_X is trivial (although we will not in fact divide up the proof of Theorem 4.1 that way). The case with $H^1(X, O) = 0$ follows from work of Höring and Voisin [19, Proposition 3.18] together with a relatively easy analysis of singularities below (Lemma 3.1). (To give examples of such 3-folds: there are many terminal hypersurface singularities in dimension 3, such as any isolated singularity of the form $xy + f(z, w) = 0$ for some power series f [30, Definition 3.1, Corollary 3.12], and X could be any resolution of a terminal quintic 3-fold in \mathbf{P}^4 .)

The case of smooth projective 3-folds X with K_X trivial (but $H^1(X, \mathcal{O})$ typically not zero) is harder, and requires a thorough reworking of Höring and Voisin's arguments. We discuss examples of such varieties after the following proof.

Proof. (Proposition 2.1) By Mori, there is a minimal model Y of X [24, 2.14]. That is, Y is a terminal projective 3-fold whose canonical divisor K_Y is nef, with a birational map from X to Y . Terminal varieties are smooth in codimension 2, and so Y is smooth outside finitely many points. Since X has Kodaira dimension zero, the Weil divisor class K_Y is torsion by the abundance theorem for 3-folds, proved by Kawamata and Miyaoka [21]. Since $h^0(Y, K_Y) = h^0(X, K_X) > 0$, K_Y is trivial (and hence $h^0(X, K_X) = h^0(Y, K_Y) = 1$).

Since K_Y is linearly equivalent to zero, K_Y is in particular a Cartier divisor. Also, since Y is terminal, it has rational singularities [30, 3.8]; therefore, Y is Cohen-Macaulay. So the line bundle K_Y is the dualizing sheaf of Y . Since Y is a terminal 3-fold with K_Y Cartier, it has only hypersurface (hence lci) singularities, by Reid [30, Theorem 3.2]. Let S be a smooth ample Cartier divisor in Y ; then S is contained in the smooth locus of Y . Write $i: S \rightarrow X$ for the inclusion. By Goresky and MacPherson, $i_*: H_2(S, \mathbf{Z}) \rightarrow H_2(Y, \mathbf{Z})$ is surjective, using that Y has only lci singularities [11, p. 24].

For any scheme Y of finite type over the complex numbers, du Bois constructed a canonical object $\underline{\Omega}_Y^*$ in the filtered derived category of Y , isomorphic to the constant sheaf \mathbf{C}_Y in the usual derived category $D(Y_{\text{an}})$ [9]. For Y smooth, this is simply the de Rham complex. Write $\underline{\Omega}_Y^j$ in $D(Y)$ for the j th graded piece of $\underline{\Omega}_Y^*$ with respect to the given filtration, shifted j steps to the left; for Y smooth, this is the sheaf Ω_Y^j in degree zero. For Y proper over \mathbf{C} , the resulting spectral sequence

$$E_1^{pq} = H^q(Y, \underline{\Omega}_Y^p) \Rightarrow H^{p+q}(Y, \mathbf{C})$$

degenerates at E_1 [9, Theorem 4.5]. The associated filtration on $H^*(Y, \mathbf{C})$ is the Hodge filtration defined by Deligne.

The objects $\underline{\Omega}_Y^j$ need not be sheaves, even in our very special situation, where Y has terminal 3-fold hypersurface singularities. In particular, Steenbrink showed that $\underline{\Omega}_Y^1$ has nonzero cohomology in degree 1 (not just degree 0) for any isolated rational complete intersection 3-fold singularity other than a node or a smooth point [33, p. 1374].

In our case, because $H_2(S, \mathbf{Z}) \rightarrow H_2(Y, \mathbf{Z})$ is surjective, the pullback $H^2(Y, \mathbf{Q}) \rightarrow H^2(S, \mathbf{Q})$ is injective. By strict compatibility of pullback maps with the weight filtration, it follows that the mixed Hodge structure on $H^2(Y, \mathbf{Q})$ is pure of weight 2 [7]. By the discussion above, the graded pieces of the Hodge filtration on $H^2(Y, \mathbf{C})$ are $H^2(Y, \underline{\Omega}_Y^0)$, $H^1(Y, \underline{\Omega}_Y^1)$, and $H^0(Y, \underline{\Omega}_Y^2)$. Since Y is terminal (log canonical would be enough), it is du Bois, which means that $\underline{\Omega}_Y^0 \cong \mathcal{O}_Y$ [23].

Let $TY = (\Omega_Y^1)^*$, which is a reflexive sheaf on Y . The Lie algebra of the automorphism group of Y is $H^0(Y, TY)$. We have $TY \cong \Omega_Y^{[2]} \otimes K_Y^* \cong \Omega_Y^{[2]}$, the sheaf of reflexive 2-forms, since K_Y is trivial. So $H^0(Y, TY) \cong H^0(Y, \Omega^{[2]})$. Du Bois's object $\underline{\Omega}_Y^2$ in the derived category of Y has $\mathcal{H}^0(\underline{\Omega}_Y^2) \cong \Omega^{[2]}$ since Y is klt [20, Theorems 5.4 and 7.12]. Since the cohomology sheaves of $\underline{\Omega}_Y^2$ are concentrated in degrees ≥ 0 , it follows that $H^0(Y, \Omega_Y^{[2]}) \cong H^0(Y, \underline{\Omega}_Y^2)$.

The polarization of $H^2(S_{t_0}, \mathbf{Q})$ by the intersection form gives a canonical direct-sum decomposition of Hodge structures [38, Lemma 7.36]:

$$H^2(S_{t_0}, \mathbf{Q}) = H^2(Y, \mathbf{Q}) \oplus H^2(Y, \mathbf{Q})^\perp.$$

The restriction of this polarization gives a polarization of the Hodge structure $H^2(Y, \mathbf{Q})$; this can be described as the polarization of $H^2(Y, \mathbf{Q})$ given by the ample line bundle $H = \mathcal{O}(S)$ on Y .

In particular, the polarization of $H^2(Y, \mathbf{Q})$ gives an isomorphism $H^0(Y, \underline{\Omega}_Y^2) \cong H^2(Y, \underline{\Omega}_Y^0)^* \cong H^2(Y, \mathcal{O})^*$. By Serre duality and the triviality of K_Y , we have $H^2(Y, \mathcal{O})^* \cong H^1(Y, K_Y) \cong H^1(Y, \mathcal{O})$. Putting this all together, we have $H^0(Y, TY) \cong H^1(Y, \mathcal{O})$.

Thus, if $H^1(X, \mathcal{O})$ is not zero, then the identity component $\text{Aut}^0(Y)$ of $\text{Aut}(Y)$ has positive dimension. By the Barsotti-Chevalley theorem, $\text{Aut}^0(Y)$ is an extension of an abelian variety by a connected linear algebraic group [25, Theorem 8.27]. Any connected linear algebraic group over \mathbf{C} is unirational [25, Theorem 17.93]. Since Y has Kodaira dimension 0, it is not uniruled, and so it has no nontrivial action of a connected linear algebraic group. We conclude that $A := \text{Aut}^0(Y)$ is an abelian variety of positive dimension.

By Brion, extending work of Nishi and Matsumura, any faithful action of an abelian variety on a normal quasi-projective variety has finite stabilizer groups [6, Theorem 2]. In our case, A preserves the singular locus of Y , which has dimension at most 0 because Y is a terminal 3-fold. Since A has positive dimension, the singular locus of Y must be empty. QED

We conclude the section by giving examples of smooth projective 3-folds X with K_X trivial and $H^1(X, \mathcal{O}_X) \neq 0$, beyond the obvious examples: a K3 surface times an elliptic curve, or an abelian 3-fold. The Beauville-Bogomolov structure theorem implies that X is a quotient of a variety Z of one of those special types by a free action of a finite group [3]. Knowing the integral Hodge conjecture for Z does not obviously imply it for X , which helps to motivate this paper.

Example 2.2. An action of a finite group G on a complex K3 surface S is said to be *symplectic* if G acts as the identity on $H^0(S, K_S) \cong \mathbf{C}$. Mukai (completing earlier work of Nikulin) classified the finite groups that can act faithfully and symplectically on some K3 surface. In particular, the abelian groups that can occur are: \mathbf{Z}/a for $1 \leq a \leq 8$, $(\mathbf{Z}/2)^2$, $(\mathbf{Z}/2)^3$, $(\mathbf{Z}/2)^4$, $(\mathbf{Z}/3)^2$, $(\mathbf{Z}/4)^2$, $\mathbf{Z}/2 \times \mathbf{Z}/4$, and $\mathbf{Z}/2 \times \mathbf{Z}/6$ [29, Theorem 4.5(b) and note added in proof], [27, Theorem 0.6].

Let G be a nontrivial group on this list other than $(\mathbf{Z}/2)^3$ or $(\mathbf{Z}/2)^4$, and let G act symplectically on a K3 surface S . Let E be any complex elliptic curve. We can choose an embedding of G as a subgroup of E . Let $X = (S \times E)/G$, where G acts in the given way on S and by translations on E . Then X is a smooth projective 3-fold with K_X trivial. Moreover, $H^1(X, \mathcal{O})$ is not zero, because X maps onto the elliptic curve E/G . Finally, X is not the product of a K3 surface with an elliptic curve. So it is a new case for which Theorem 4.1 proves the integral Hodge conjecture.

Example 2.3. Theorem 4.1 also applies to some quotients of abelian 3-folds. For example, let S be a complex abelian surface, and let G be a finite abelian group with at most 2 generators which acts faithfully and symplectically on S as an abelian

surface. Let E be any elliptic curve. Choose an embedding of G as a subgroup of E . Let $X = (S \times E)/G$, where G acts in the given way on S and by translations on E . Then X is a smooth projective 3-fold, K_X is trivial, and $H^1(X, \mathcal{O})$ is not zero, because X maps onto the elliptic curve E/G . Here X is not an abelian 3-fold, and so it is a new case for which this paper proves the integral Hodge conjecture. The simplest case is $G = \mathbf{Z}/2$, acting on any abelian surface S by ± 1 .

3 Terminal 3-folds

We here analyze the homology of the exceptional divisor of a resolution of an isolated rational 3-fold singularity (Lemma 3.1). This will be used in proving the integral Hodge conjecture for certain 3-folds whose minimal model is singular (Theorem 4.1). Benoist and Wittenberg used a similar argument in their work on the integral Hodge conjecture for real varieties, while studying a 3-fold fibered over a curve [5, proof of Proposition 8.6].

Lemma 3.1. *Let Y be a complex 3-fold with isolated rational singularities. Let $\pi: X \rightarrow Y$ be a projective birational morphism with X smooth such that π is an isomorphism over the smooth locus of Y and the inverse image of the singular locus of Y is a divisor D in X with simple normal crossings. Then $H_2(D, \mathbf{Z})$ is generated by classes of algebraic 1-cycles on D .*

Here a complex projective curve C (possibly singular) has a fundamental class in $H_2(C, \mathbf{Z})$, which pushes forward to a class in $H_2(D, \mathbf{Z})$ when C is contained in a complex scheme D .

Proof. We start with the following result by Steenbrink [32, Lemma 2.14].

Lemma 3.2. *Let $\pi: X \rightarrow Y$ be a log resolution of an isolated rational singularity, with exceptional divisor D . Then $H^i(D, \mathcal{O}) = 0$ for all $i > 0$.*

We continue the proof of Lemma 3.1. Let D_1, \dots, D_r be the irreducible components of D , which are smooth projective surfaces. Write $D_{i_0 \dots i_l}$ for an intersection $D_{i_0} \cap \dots \cap D_{i_l}$. We have an exact sequence of coherent sheaves on D :

$$0 \rightarrow \mathcal{O}_D \rightarrow \bigoplus_i \mathcal{O}_{D_i} \rightarrow \bigoplus_{i < j} \mathcal{O}_{D_{ij}} \rightarrow \bigoplus_{i < j < k} \mathcal{O}_{D_{ijk}} \rightarrow 0.$$

Taking cohomology gives a Mayer-Vietoris spectral sequence

$$E_1^{p,q} = \bigoplus_{i_0 < \dots < i_p} H^q(D_{i_0 \dots i_p}, \mathcal{O}) \Rightarrow H^{p+q}(D, \mathcal{O}).$$

$$\begin{array}{ccccccc} \bigoplus H^2(D_i, \mathcal{O}) & \longrightarrow & 0 & & & & 0 \\ & & & & & & \\ \bigoplus H^1(D_i, \mathcal{O}) & \longrightarrow & \bigoplus H^1(D_{ij}, \mathcal{O}) & \longrightarrow & 0 & & 0 \\ & & \searrow & & & & \\ & & \bigoplus H^0(D_i, \mathcal{O}) & \longrightarrow & \bigoplus H^0(D_{ij}, \mathcal{O}) & \longrightarrow & \bigoplus H^0(D_{ijk}, \mathcal{O}) \longrightarrow 0 \end{array}$$

We have $H^2(D, \mathcal{O}) = 0$ by Lemma 3.2. It follows from the spectral sequence that each irreducible component D_i of D has $H^2(D_i, \mathcal{O}) = 0$.

There is also a Mayer-Vietoris spectral sequence for the integral homology of D :

$$E_{p,q}^1 = \bigoplus_{i_0 < \dots < i_p} H_q(D_{i_0 \dots i_p}, \mathbf{Z}) \Rightarrow H_{p+q}(D, \mathbf{Z}).$$

$$\begin{array}{ccccccc} \oplus H_2(D_i, \mathbf{Z}) & \longleftarrow & \oplus H_2(D_{ij}, \mathbf{Z}) & \longleftarrow & 0 & & \\ & & \downarrow & & & & \\ \oplus H_1(D_i, \mathbf{Z}) & \longleftarrow & \oplus H_1(D_{ij}, \mathbf{Z}) & \longleftarrow & 0 & & \\ & & \searrow & & & & \\ & & \oplus H_0(D_i, \mathbf{Z}) & \longleftarrow & \oplus H_0(D_{ij}, \mathbf{Z}) & \longleftarrow & \oplus H_0(D_{ijk}, \mathbf{Z}) \longleftarrow 0 \end{array}$$

Finally, we have a Mayer-Vietoris spectral sequence converging to $H^*(D, \mathbf{C})$, which can be obtained from the integral homology spectral sequence by applying $\text{Hom}(\cdot, \mathbf{C})$. We have a map of spectral sequences from the one converging to $H^*(D, \mathbf{C})$ to the one converging to $H^*(D, O)$. Since $H^2(D, O) = 0$, we know that the groups $E_\infty^{1,1}$ and $E_\infty^{2,0}$ are zero in the spectral sequence converging to $H^*(D, O)$. That is, the d_1 and d_2 differentials together map onto $\oplus H^1(D_{ij}, O)$ and $\oplus H^0(D_{ijk}, O)$. We will deduce that the d_1 and d_2 differentials together map onto $\oplus H^1(D_{ij}, \mathbf{C})$ and $\oplus H^0(D_{ijk}, \mathbf{C})$. In the first case, we are given that $d_1: \oplus H^1(D_i, O) \rightarrow \oplus H^1(D_{ij}, O)$ is surjective, and we want to deduce that $d_1: \oplus H^1(D_i, \mathbf{C}) \rightarrow \oplus H^1(D_{ij}, \mathbf{C})$ is surjective. That follows from $d_1: \oplus H^1(D_i, \mathbf{C}) \rightarrow \oplus H^1(D_{ij}, \mathbf{C})$ being a morphism of Hodge structures of weight 1, so that $H^1(D_i, \mathbf{C}) = H^1(D_i, O) \oplus \overline{H^1(D_i, O)}$ and this grading is compatible with the differential.

A similar argument applies to H^0 . First, the differential $d_1: \oplus H^0(D_{ij}, \mathbf{C}) \rightarrow \oplus H^0(D_{ijk}, \mathbf{C})$ maps isomorphically to $d_1: \oplus H^0(D_{ij}, O) \rightarrow \oplus H^0(D_{ijk}, O)$. Also, by the comment about Hodge structures of weight 1, $E_2^{0,1}(\mathbf{C}) = \ker(\oplus H^1(D_i, \mathbf{C}) \rightarrow \oplus H^1(D_{ij}, \mathbf{C}))$ is the direct sum of $E_2^{0,1}(O) = \ker(\oplus H^1(D_i, O) \rightarrow \oplus H^1(D_{ij}, O))$ and its conjugate, and so $E_2^{0,1}(\mathbf{C}) \rightarrow E_2^{0,1}(O)$ is surjective. Since $d_2: E_2^{0,1}(O) \rightarrow E_2^{2,0}(O)$ is onto and $E_2^{0,1}(\mathbf{C}) \rightarrow E_2^{0,1}(O)$ is onto, it follows that $d_2: E_2^{0,1}(\mathbf{C}) \rightarrow E_2^{2,0}(\mathbf{C}) (= E_2^{2,0}(O))$ is onto. That is, $E_\infty^{2,0}(\mathbf{C})$ as well as $E_\infty^{1,1}(\mathbf{C})$ are zero. Therefore $H^2(D, \mathbf{C}) \rightarrow \oplus H^2(D_i, \mathbf{C})$ is injective. (In particular, the mixed Hodge structure on $H^2(D, \mathbf{Q})$ is pure of weight 2 [7].) By the universal coefficient theorem, it follows that $\oplus H_2(D_i, \mathbf{Q}) \rightarrow H_2(D, \mathbf{Q})$ is surjective.

The groups $H_0(D_{ijk}, \mathbf{Z})$ and $H_1(D_{ij}, \mathbf{Z})$ are torsion-free, since D_{ijk} is a point or empty and D_{ij} is a smooth projective curve or empty. It follows that the subgroups $E_{2,0}^\infty(\mathbf{Z})$ and $E_{1,1}^\infty(\mathbf{Z})$ of these groups are also torsion-free. Since $\oplus H_2(D_i, \mathbf{Q}) \rightarrow H_2(D, \mathbf{Q})$ is surjective, those two E^∞ groups are zero after tensoring with the rationals, and so they are zero. Therefore, $\oplus H_2(D_i, \mathbf{Z}) \rightarrow H_2(D, \mathbf{Z})$ is surjective. Since $H^2(D_i, O) = 0$, the Lefschetz (1,1) theorem gives that the smooth projective surface D_i has $H_2(D_i, \mathbf{Z})$ spanned by algebraic cycles. We deduce that $H_2(D, \mathbf{Z})$ is spanned by algebraic cycles. QED

4 3-folds of Kodaira dimension zero

In this section, we begin the proof of our main result on the integral Hodge conjecture, Theorem 4.1. We reduce the problem to a statement on the variation of Hodge

structure associated to a family of surfaces of high degree in a minimal model of the 3-fold, to be proved in the next section (Proposition 5.3).

Theorem 4.1. *Let X be a smooth projective complex 3-fold of Kodaira dimension zero such that $h^0(X, K_X) > 0$. Then X satisfies the integral Hodge conjecture.*

Proof. Let Y be a minimal model of X . Then Y is terminal and hence has singular set of dimension at most zero. As in the proof of Proposition 2.1, K_Y is trivial (and hence $h^0(X, K_X) = h^0(Y, K_Y) = 1$).

For codimension-1 cycles, the integral Hodge conjecture always holds, by the Lefschetz (1, 1) theorem. It remains to prove the integral Hodge conjecture for codimension-2 cycles on X . This is a birationally invariant property for smooth projective varieties X [40, Lemma 15]. Therefore, we can assume that the birational map $X \dashrightarrow Y$ is a morphism, and that X is whatever resolution of Y we like. Explicitly, we can assume that $X \rightarrow Y$ is an isomorphism over the smooth locus and that the fiber over each of the (finitely many) singular points of Y is a divisor with simple normal crossings. (We do this in order to apply Lemma 3.1.)

Let H be a very ample line bundle on Y , and S a smooth surface in the linear system $|H|$. As shown in the proof of Proposition 2.1, the pushforward homomorphism $H_2(S, \mathbf{Z}) \rightarrow H_2(Y, \mathbf{Z})$ is surjective.

We assume that the Hilbert scheme \mathcal{H} of smooth surfaces in Y in the homology class of S is smooth, which holds if H is sufficiently ample. We are free to replace H by a large multiple in the course of the argument.

The following lemma was suggested by Schoen's argument on the integral Tate conjecture [31, Theorem 0.5], combined with Voisin's paper [39].

Lemma 4.2. *Let Y be a terminal projective complex 3-fold. Write S_{t_0} for the surface in Y corresponding to a point t_0 in \mathcal{H} , with inclusion $i: S_{t_0} \rightarrow Y$. Write $H_2(S_{t_0}, \mathbf{Z})_{\text{van}} = \ker(i_*: H_2(S_{t_0}, \mathbf{Z}) \rightarrow H_2(Y, \mathbf{Z}))$. By Poincaré duality, identify $H^2(S_{t_0}, \mathbf{Z})$ with $H_2(S_{t_0}, \mathbf{Z})$. Let C be a nonempty open cone in $H^2(S_{t_0}, \mathbf{R})_{\text{van}}$. Suppose that there is a contractible open neighborhood U of t_0 in \mathcal{H} such that every element of $H^2(S_{t_0}, \mathbf{Z})_{\text{van}} \cap C$ becomes a Hodge class on S_t for some t in U . Then every element of $H_2(Y, \mathbf{Z})$ whose image in $H_2(Y, \mathbf{C})$ is in $H_{1,1}(Y)$ is algebraic.*

Proof. By the proof of Proposition 2.1, the pushforward $H_2(S_{t_0}, \mathbf{Z}) \rightarrow H_2(Y, \mathbf{Z})$ is surjective, and so the pullback $H^2(Y, \mathbf{Q}) \rightarrow H^2(S_{t_0}, \mathbf{Q})$ is injective. Therefore, the Hodge structure on $H^2(S_{t_0}, \mathbf{Q})$ is pure of weight 2. Still following the proof of Proposition 2.1, the polarization of $H^2(S_{t_0}, \mathbf{Q})$ by the intersection form gives a canonical direct-sum decomposition of Hodge structures

$$H^2(S_{t_0}, \mathbf{Q}) = H^2(Y, \mathbf{Q}) \oplus H^2(Y, \mathbf{Q})^\perp.$$

In fact, this argument shows that the surjection $i_*: H_2(S_t, \mathbf{Q}) \rightarrow H_2(Y, \mathbf{Q})$ is split as a map of variations of \mathbf{Q} -Hodge structures over the space \mathcal{H} of smooth surfaces S . In particular, any element of $H_2(Y, \mathbf{Q}) \cap H_{1,1}(Y) \subset H_2(Y, \mathbf{C})$ is the image of some element in $H_2(S_{t_0}, \mathbf{Q})$ whose translate to every surface S_t is in $H_{1,1}(S_t)$. Therefore, for any element α of $H_2(Y, \mathbf{Z})$ that maps into $H_{1,1}(Y) \subset H_2(Y, \mathbf{C})$, there is a positive integer N and an element β of $H_2(S_{t_0}, \mathbf{Z})$ that lies in $H_{1,1}(S_t) \subset H_2(S_t, \mathbf{C})$ for every surface S_t such that $i_*\beta = N\alpha$.

Also, because $i_*: H_2(S_{t_0}, \mathbf{Z}) \rightarrow H_2(X, \mathbf{Z})$ is surjective, there is an element $v \in H_2(S_{t_0}, \mathbf{Z})$ (not necessarily a Hodge class) with $i_*v = \alpha$.

Let $u_0 = \beta - Nv$ in $H_2(S_{t_0}, \mathbf{Z})$. Then $i_*u_0 = 0$; that is, u_0 is in $H_2(S_{t_0}, \mathbf{Z})_{\text{van}}$. Let $T = u_0 + N \cdot H_2(S_{t_0}, \mathbf{Z})_{\text{van}} \subset H_2(S_{t_0}, \mathbf{Z})_{\text{van}}$. Since T is a translate of a subgroup of finite index in $H_2(S_{t_0}, \mathbf{Z})_{\text{van}}$, T has nonempty intersection with the open cone C in $H_2(S_{t_0}, \mathbf{R})_{\text{van}}$. Let u be an element of $C \cap T$. Because U is contractible, we can canonically identify $H_2(S_t, \mathbf{Z})$ with $H_2(S_{t_0}, \mathbf{Z})$ for all t in U . By our assumption on C , u becomes a Hodge class on $H_2(S_t, \mathbf{Z})$ for some t in U . By definition of T , we can write $u = u_0 + Nw$ for some w in $H_2(S_{t_0}, \mathbf{Z})_{\text{van}}$. We know that β in $H_2(S_{t_0}, \mathbf{Z})$ is a Hodge class in $H^2(S_t, \mathbf{Z})$ for all nearby surfaces S_t . Since u becomes a Hodge class in $H^2(S_t, \mathbf{Z})$, $\beta - u$ is a Hodge class in $H_2(S_t, \mathbf{Z})$, and $\beta - u = \beta - (u_0 + Nw) = \beta - (\beta - Nv + Nw) = N(v - w)$. So $v - w$ is a Hodge class in $H_2(S_t, \mathbf{Z})$. By the Lefschetz (1, 1) theorem, $v - w$ is algebraic on S_t . And we have $i_*(v - w) = i_*v = \alpha$. So α in $H_2(Y, \mathbf{Z})$ is algebraic. QED

We will prove the hypothesis of Lemma 4.2 as Proposition 5.3. Given that, we now finish the proof of Theorem 4.1.

Let u be an element of $H_2(X, \mathbf{Z}) \cap H_{1,1}(X)$. Topologically, Y is obtained from Y by identifying the fibers E_1, \dots, E_r over singular points of Y to points. So we have an exact sequence

$$H_3(Y, \mathbf{Z}) \rightarrow \bigoplus_i H_2(E_i, \mathbf{Z}) \rightarrow H_2(X, \mathbf{Z}) \rightarrow H_2(Y, \mathbf{Z}) \rightarrow \bigoplus_i H_1(E_i, \mathbf{Z}).$$

By Lemma 3.1, $H_2(E_i, \mathbf{Z})$ is spanned by algebraic curves on E_i , for each i . The image of u in $H_2(Y, \mathbf{Z})$ is in $H_{1,1}(Y)$, and hence is in the image of the Chow group $CH_1(Y)$ by Lemma 4.2 and Proposition 5.3. (We use here that the integral Hodge conjecture holds on every smooth projective surface, by the Lefschetz (1, 1) theorem.) Since $X \rightarrow Y$ is an isomorphism outside a 0-dimensional subset of Y , it is clear that $CH_1(X) \rightarrow CH_1(Y)$ is surjective. Therefore there is a 1-cycle α on X whose image in $H_2(X, \mathbf{Z})$ has the same image in $H_2(Y, \mathbf{Z})$ as u does. By the exact sequence above, $\alpha - u$ in $H_2(X, \mathbf{Z})$ is the image of some element of $\bigoplus_i H_2(E_i, \mathbf{Z})$. But $\bigoplus_i H_2(E_i, \mathbf{Z})$ is spanned by algebraic cycles on $\bigcup_i E_i$ by Lemma 3.1. Therefore u is algebraic. QED

5 The variation of Hodge structure associated to a family of surfaces

To complete the proof of Theorem 4.1, we need to show that the variation of Hodge structures on the family of surfaces in the 3-fold is as nontrivial as possible (Proposition 5.3). The first step is to rephrase the conclusion we want in terms of a cup product on a general surface in the family (Corollary 5.1), generalizing Proposition 1 in Voisin [39].

Let Y be a terminal complex projective 3-fold. (We will eventually assume that K_Y is trivial, but it seems clearer to formulate the basic arguments in greater generality.) Let H be a very ample line bundle on Y , and S a smooth surface in the linear system $|H|$. (It follows that S is contained in the smooth locus of Y .) We are free to replace H by a large multiple in the course of the argument.

By the proof of Proposition 2.1, the Hodge structure on $H^2(Y, \mathbf{Q})$ is pure of weight 2, and the graded pieces of the Hodge filtration on $H^2(Y, \mathbf{C})$ are $H^2(Y, \mathcal{O})$, $H^1(Y, \underline{\Omega}_Y^1)$, and $H^0(Y, \underline{\Omega}_Y^2)$.

Define the vanishing cohomology $H^2(S, \mathbf{Z})_{\text{van}}$ to be the kernel of the pushforward homomorphism $i_*: H^2(S, \mathbf{Z}) \cong H_2(S, \mathbf{Z}) \rightarrow H_2(Y, \mathbf{Z})$. Likewise, write

$$\begin{aligned} H^2(S, O)_{\text{van}} &= \ker(H^2(S, O) \rightarrow H^0(Y, \underline{\Omega}_Y^2)^*) \\ H^1(S, \Omega_S^1)_{\text{van}} &= \ker(H^1(S, \Omega^1) \rightarrow H^1(Y, \underline{\Omega}_Y^1)^*) \\ H^0(S, \Omega_S^2)_{\text{van}} &= \ker(H^0(S, \Omega^2) \rightarrow H^2(Y, \underline{\Omega}_Y^0)^*). \end{aligned}$$

These maps are Hodge-graded pieces of the surjection $H_2(S, \mathbf{C}) \rightarrow H_2(Y, \mathbf{C})$ (dual to the pullback $H^2(Y, \mathbf{C}) \rightarrow H^2(S, \mathbf{C})$), and so they are also surjective. By Serre duality, $H^2(Y, \underline{\Omega}_Y^0)^* = H^2(Y, O)^* \cong H^1(Y, K_Y)$. So we can also describe $H^0(S, \Omega_S^2)_{\text{van}}$ as the kernel of the pushforward $H^0(S, K_S) \rightarrow H^1(Y, K_Y)$.

The cohomology sheaves of $\underline{\Omega}_Y^j$ are in degrees ≥ 0 , and the 0th cohomology sheaf is the sheaf $\Omega_Y^{[j]}$ of reflexive differentials, because Y is klt [20, Theorems 5.4 and 7.12]. Also, $\underline{\Omega}_Y^j$ is concentrated in degrees from 0 to $3 - j$, since Y has dimension 3 [16, Théorème V.6.2]. It follows that $\underline{\Omega}_Y^3$ is the canonical sheaf K_Y .

We assume that the Hilbert scheme \mathcal{H} of smooth surfaces in Y in the homology class of S is smooth, which holds if H is sufficiently ample. Then $H^0(S, N_{S/Y})$ is the tangent space to \mathcal{H} at S . Let δ be the class of the extension $0 \rightarrow TS \rightarrow TY|_S \rightarrow N_{S/Y} \rightarrow 0$ in $H^1(S, N_{S/Y}^* \otimes TS)$. Then the product with δ is the Kodaira-Spencer map $H^0(S, N_{S/Y}) \rightarrow H^1(S, TS)$, which describes how the isomorphism class of S changes as S moves in Y .

For u in $H^1(S, TS)$, the product with u is a linear map

$$u \cdot: H^1(S, \Omega^1) \rightarrow H^2(S, O),$$

The dual map

$$u \cdot: H^0(S, K_S) \rightarrow H^1(S, \Omega^1)$$

can also be described as the product with u . For λ in $H^1(S, \Omega^1)$, define

$$\mu_\lambda: H^0(S, N_{S/Y}) \rightarrow H^2(S, O)$$

by $\mu_\lambda(n) = (\delta n)\lambda$. This map describes the failure of $\lambda \in H^2(S, \mathbf{C})$ to remain a $(1, 1)$ class when the surface S is deformed in X . For λ in $H^1(S, \Omega^1)_{\text{van}}$, the map μ_λ lands in the vanishing subspace $H^2(S, O)_{\text{van}}$, because $H^2(S, \mathbf{Q}) = H^2(Y, \mathbf{Q}) \oplus H^2(S, \mathbf{Q})_{\text{van}}$ as Hodge structures, where the Hodge structure on $H^2(Y, \mathbf{Q})$ is unchanged as S is deformed.

Corollary 5.1. *Let Y be a terminal projective complex 3-fold. Let H be a very ample line bundle on Y , and S a smooth surface in the linear system $|H|$. Suppose that there is an element λ in $H^1(S, \Omega^1)_{\text{van}}$ such that the linear map*

$$\mu_\lambda: H^0(S, N_{S/Y}) \rightarrow H^2(S, O)_{\text{van}}$$

is surjective. Then there is a nonempty open cone C in $H^2(S_{t_0}, \mathbf{R})_{\text{van}}$ and a contractible open neighborhood U of t_0 in \mathcal{H} such that every element of $H^2(S_{t_0}, \mathbf{Z})_{\text{van}} \cap C$ becomes a Hodge class on S_t for some t in U .

For Y smooth and $H^2(Y, O) = 0$ (which implies that every element of $H_2(Y, \mathbf{Z})$ is a Hodge class), this was proved by Voisin [39, Proposition 1]. Voisin also formulated a statement similar to Corollary 5.1 in the case of uniruled 3-folds Y with $H^2(Y, O) \neq 0$ [39, Proposition 4].

Proof. The groups $H^2(S_t, \mathbf{Z})$ form a weight-2 variation of Hodge structures on the Hilbert scheme \mathcal{H} of smooth surfaces $S_t \subset Y$. Let U be a contractible open neighborhood of the given point t_0 in \mathcal{H} . We can canonically identify $H^2(S_t, \mathbf{C})$ with $H^2(S_{t_0}, \mathbf{C})$ for all $t \in U$. The surjectivity of μ_λ implies that the map from $\cup_{t \in U} H^{1,1}(S_t, \mathbf{R})_{\text{van}}$ to $H^2(S_{t_0}, \mathbf{R})_{\text{van}}$ is a submersion at λ , I claim.

To prove that this map is a submersion, we follow the argument of [39, Proposition 1], modified so as not to assume that $H^2(Y, \mathcal{O})$ is zero. Let $\pi: S_U \rightarrow U$ be the universal family of surfaces S_t , restricted to $t \in U$. Write H_{van}^2 for the total space of the vector bundle $(R^2\pi_* \mathbf{C})_{\text{van}}$ over U , with fibers $H^2(S_t, \mathbf{C})_{\text{van}}$. The Gauss-Manin connection gives a trivialization of this bundle, and hence a projection map from the total space to one fiber, $\tau: H_{\text{van}}^2 \rightarrow H^2(S_{t_0}, \mathbf{C})_{\text{van}}$. Let $F^1 H_{\text{van}}^2$ be the submanifold of H^2 whose fiber over each point $t \in U$ is the Hodge filtration

$$F^1 H^2(S_t, \mathbf{C})_{\text{van}} = H^{2,0}(S_t)_{\text{van}} \oplus H^{1,1}(S_t)_{\text{van}} \subset H^2(S_t, \mathbf{C})_{\text{van}}.$$

Let $\tau_1: F^1 H_{\text{van}}^2 \rightarrow H^2(S_{t_0}, \mathbf{C})_{\text{van}}$ be the restriction of τ to $F^1 H_{\text{van}}^2$. Let λ be an element of $H^1(S_{t_0}, \Omega^1)_{\text{van}}$, and $\tilde{\lambda}$ any lift of λ to $F^1 H^2(S_{t_0}, \mathbf{C})_{\text{van}}$. By the proof of Voisin [39, Lemma 2] (modified since we are allowing $H^2(Y, \mathcal{O})$ to be nonzero), we have the following equivalence:

Lemma 5.2. *The map*

$$\mu_\lambda: H^0(S_{t_0}, N_{S_{t_0}/Y}) \rightarrow H^2(S_{t_0}, \mathcal{O})_{\text{van}}$$

is surjective if and only if τ_1 is a submersion at $\tilde{\lambda}$.

To relate Lemma 5.2 to cohomology with real coefficients, note that surjectivity of μ_λ is a Zariski open condition on λ in $H^1(S_{t_0}, \Omega^1)_{\text{van}}$. The vector space $H^1(S_{t_0}, \Omega^1)_{\text{van}}$ has a real structure, given by

$$H^{1,1}(S_{t_0})_{\mathbf{R}, \text{van}} = H^1(S_{t_0}, \Omega^1)_{\text{van}} \cap H^2(S_{t_0}, \mathbf{R})_{\text{van}} \subset H^2(S_{t_0}, \mathbf{C})_{\text{van}}.$$

Since we assume in this Corollary that μ_λ is surjective for one λ in $H^1(S_{t_0}, \Omega^1)_{\text{van}}$, it is surjective for some λ in $H^{1,1}(S_{t_0})_{\mathbf{R}, \text{van}}$.

In Lemma 5.2, take the lifting $\tilde{\lambda}$ to be λ itself. Then $\tilde{\lambda}$ is real, and so is $\tau_1(\tilde{\lambda})$. By our assumption on λ , Lemma 5.2 gives that τ_1 is a submersion at $\tilde{\lambda}$, and so the restriction

$$\tau_{1, \mathbf{R}}: H_{\mathbf{R}, \text{van}}^{1,1} \rightarrow H^2(S_{t_0}, \mathbf{R})_{\text{van}}$$

of τ_1 to $\tau_1^{-1}(H^2(S_{t_0}, \mathbf{R})_{\text{van}})$ is also a submersion. Here $\tau_1^{-1}(H^2(S_{t_0}, \mathbf{R})_{\text{van}})$ is identified with

$$\cup_{t \in U} F^1 H^2(S_t, \mathbf{C})_{\text{van}} \cap H^2(S_t, \mathbf{R})_{\text{van}} = \cup_{t \in U} H^{1,1}(S_t, \mathbf{R})_{\text{van}} =: H_{\mathbf{R}, \text{van}}^{1,1}.$$

Since $\tau_{1, \mathbf{R}}$ is a submersion at $\tilde{\lambda}$ on the real manifold $H_{\mathbf{R}, \text{van}}^{1,1}$ (a real vector bundle over U), the image of $\tau_{1, \mathbf{R}}$ contains a nonempty open subset of $H^2(S_{t_0}, \mathbf{R})_{\text{van}}$, as we wanted.

The image of $\tau_{1, \mathbf{R}}$ is a cone, and so it contains an open cone C in $H^2(S_{t_0}, \mathbf{R})_{\text{van}}$. Therefore, all elements of $H^2(S_{t_0}, \mathbf{Z})_{\text{van}}$ in the open cone C become Hodge classes on S_t for some t in U . Corollary 5.1 is proved. QED

Proposition 5.3. *Let Y be a terminal projective complex 3-fold with trivial canonical bundle. Write S_{t_0} for the surface in Y corresponding to a point t_0 in \mathcal{H} , with inclusion $i: S_{t_0} \rightarrow Y$. Write $H_2(S_{t_0}, \mathbf{Z})_{\text{van}} = \ker(i_*: H_2(S_{t_0}, \mathbf{Z}) \rightarrow H_2(Y, \mathbf{Z}))$. Then there is a nonempty open cone C in $H^2(S_{t_0}, \mathbf{R})_{\text{van}}$ and a contractible open neighborhood U of t_0 in \mathcal{H} such that every element of $H^2(S_{t_0}, \mathbf{Z})_{\text{van}} \cap C$ becomes a Hodge class on S_t for some t in U .*

Proof. Let H be a very ample line bundle on Y and let S be a smooth surface in $|nH|$ for a positive integer n . (We will eventually take n big enough and S general in $|nH|$.) Let $V = H^0(S, K_S)_{\text{van}}$ and $V' = H^0(Y, O(S))/H^0(Y, O)$. By the exact sequence of sheaves on Y

$$0 \rightarrow O_Y \rightarrow O(S) \rightarrow O(S)|_S \rightarrow 0,$$

we can view V' as a subspace of $H^0(S, O(S)|_S) = H^0(S, N_{S/Y})$. For n sufficiently large, the long exact sequence of cohomology gives an exact sequence

$$0 \rightarrow V' \rightarrow H^0(S, N_{S/Y}) \rightarrow H^1(Y, O) \rightarrow 0.$$

Likewise, by definition of V , we have an exact sequence

$$0 \rightarrow V \rightarrow H^0(S, K_S) \rightarrow H^1(Y, K_Y) \rightarrow 0,$$

where the pushforward map shown is the boundary map from the exact sequence of sheaves on Y :

$$0 \rightarrow K_Y \rightarrow K_Y(S) \rightarrow K_S \rightarrow 0.$$

We will only need to move S in its linear system (although $H^1(Y, O)$ need not be zero). That is, we will show that for a general $\lambda \in H^1(S, \Omega_S^1)_{\text{van}}$ the restriction of μ_λ to $V' \subset H^0(S, N_{S/Y})$ maps onto $H^2(S, O)_{\text{van}} = V^*$; by Corollary 5.1, that will finish the proof of Proposition 5.3. We will see that these two vector spaces have the same dimension, using that K_Y is trivial, and so the argument just barely works. (For K_Y more positive, it would not work at all.)

Fix a trivialization of the canonical bundle K_Y . This gives an isomorphism between the two short exact sequences of sheaves above, in particular an isomorphism $K_S \cong N_{S/Y}$ of line bundles on S . So we have an isomorphism between the two exact sequences of cohomology, including an isomorphism $V \cong V'$. In terms of this identification, μ_λ for λ in $H^1(S, \Omega_S^1)_{\text{van}}$ is a linear map $V' \rightarrow V^*$. For varying λ , this is equivalent to the pairing

$$\begin{aligned} \mu: V \times V' &\rightarrow H^1(S, \Omega_S^1)_{\text{van}} \\ \mu(v, v') &= v(v' \delta), \end{aligned}$$

which is symmetric. (Recall that δ is the class of the extension $0 \rightarrow TS \rightarrow TY|_S \rightarrow N_{S/Y} \rightarrow 0$ in $H^1(S, N_{S/Y}^* \otimes TS)$.) (Proof: this pairing is the restriction of a symmetric pairing $H^0(S, N_{S/Y}) \otimes H^0(S, N_{S/Y}) \rightarrow H^1(S, \Omega_S^1)$, given by $u \otimes v \mapsto uv\gamma\delta$, where $u, v \in H^0(S, N_{S/Y})$, and $\gamma \in H^0(S, N_{S/Y}^* \otimes (TS)^* \otimes \Omega_S^1)$ is the natural map $N_{S/Y} \otimes TS \cong \Omega_S^2 \otimes TS \rightarrow \Omega_S^1$ of bundles on S .) Serre duality $H^1(S, \Omega_S^1)^*_{\text{van}} \cong H^1(S, \Omega_S^1)_{\text{van}}$ gives a dual map

$$q = \mu^*: H^1(S, \Omega_S^1)_{\text{van}} \rightarrow S^2 V^*.$$

We can think of q as a linear system of quadrics in the projective space $P(V^*)$ of lines in V . The condition that μ_λ from $V' \subset H^0(S, N_{S/Y})$ to $V^* = H^2(S, O)_{\text{van}}$ is surjective for generic $\lambda \in H^1(S, \Omega^1)_{\text{van}}$ is equivalent to the condition that the quadric defined by $q(\lambda)$ is smooth for generic λ . Thus, by Corollary 5.1, Proposition 5.3 will follow if we can show that the quadric $q(\lambda)$ is smooth for generic λ .

Note that we lose nothing by restricting the pairing μ to the subspaces $V \subset H^0(S, K_S)$ and $V' \subset H^0(S, N_{S/Y})$. Indeed, as discussed in the proof of Proposition 2.1, the Hodge structure $H^2(S, \mathbf{Q})$ is polarized by the intersection form, and the restriction $H^2(Y, \mathbf{Q}) \rightarrow H^2(S, \mathbf{Q})$ is injective, with image a sub-Hodge structure. Therefore $H^2(S, \mathbf{Q})$ is the orthogonal direct sum of $H^2(Y, \mathbf{Q})$ and its orthogonal complement. This gives a splitting of each Hodge-graded piece of $H^2(S, \mathbf{C})$. For example, for $H^0(S, K_S)$, this gives the decomposition

$$H^0(S, K_S) \cong H^0(Y, \Omega_Y^2) \oplus H^0(S, K_S)_{\text{van}}.$$

Therefore, we also have a canonical decomposition of the isomorphic vector space $H^0(S, N_{S/Y})$. This is the decomposition

$$H^0(S, N_{S/Y}) \cong H^0(Y, TY) \oplus H^0(Y, O(S))/H^0(Y, O).$$

Thinking of $H^0(S, N_{S/Y})$ as the first-order deformation space of S in Y , these two subspaces correspond to: moving S by automorphisms of Y , and moving S in its linear system. The first type of move does not change the Hodge structure of S , and so it is irrelevant to our purpose (trying to make a given integral cohomology class on S into a Hodge class).

We use the following consequence of Bertini's theorem from Voisin [39, Lemma 15], which we apply to our space V (identified with V') and $W = H^1(S, \Omega^1)$. (Note that we follow the numbering of statements in the published version of [39], not the preprint.)

Lemma 5.4. *Let $\mu: V \otimes V \rightarrow W$ be symmetric and let $q: W^* \rightarrow S^2 V^*$ be its dual. For v in V , write $\mu_v: V \rightarrow W$ for the corresponding linear map. Think of q as a linear system of quadrics in $\mathbf{P}(V^*)$. Then the generic quadric in $\text{im}(q)$ is smooth if the following condition holds. There is no closed subvariety $Z \subset \mathbf{P}(V^*)$ contained in the base locus of $\text{im}(q)$ and satisfying:*

$$\text{rank}(\mu_v) \leq \dim(Z)$$

for all $v \in Z$.

We have to show that such a subvariety Z does not exist for a general surface $S \in |nH|$ with n sufficiently divisible. We follow the outline of Höring and Voisin's argument ([19, after Lemma 3.35], extending [39, after Lemma 7] in the smooth case). After replacing the very ample line bundle H by a multiple if necessary, we can assume that $H^i(Y, O(lH)) = 0$ for $i > 0$ and $l > 0$. We degenerate the general surface S to a surface with many nodes, as follows. Consider a general symmetric $n \times n$ matrix A with entries in $H^0(Y, O(H))$. Let S_0 be the surface in Y defined by the determinant of A in $H^0(Y, O(nH))$. By the assumption of generality, S_0 is contained in the smooth locus of Y . By Barth [1], the singular set of S_0 consists of N nodes, where

$$N = \binom{n+1}{3} H^3.$$

Let $\mathcal{S} \rightarrow \Delta$ be a Lefschetz degeneration of surfaces $S_t \in |nH|$ over the unit disc Δ such that the central fiber S_0 has nodes x_1, \dots, x_N as singularities. The map q above makes sense for any smooth surface S in a 3-fold. Voisin showed that the limiting space

$$\lim_{t \rightarrow 0} \text{im}(q_t: H^1(S_t, \Omega_{S_t}^1) \rightarrow (H^0(S_t, K_{S_t}) \otimes H^0(S_t, \mathcal{O}(nH)))^*),$$

which is a linear subspace of $(H^0(S_0, K_{S_0}) \otimes H^0(S_0, \mathcal{O}(nH)))^*$, contains for each $1 \leq i \leq N$ the multiplication-evaluation map which is the composite

$$H^0(S_0, K_{S_0}) \otimes H^0(S_0, \mathcal{O}(nH)) \rightarrow H^0(S_0, K_{S_0}(nH)) \rightarrow K_{S_0}(nH)|_{x_i}$$

[39, Lemma 7].

Recall that we have identified $V = H^0(S, K_S)_{\text{van}}$ with $V' = H^0(Y, \mathcal{O}(S))/H^0(Y, \mathcal{O})$. When we degenerate a general surface S to the nodal surface S_0 , the base locus $B \subset P(V^*)$ of $\text{im}(q)$ specializes to a subspace of the base locus B_0 of $\text{im}(q_0) \subset P(V_0^*)$, where

$$V_0 = H^0(S_0, K_{S_0}) \cong V'_0 = H^0(S_0, \mathcal{O}_{S_0}(nH)).$$

Let W be the set of nodes of S_0 . By Voisin's lemma just mentioned, B_0 is contained in

$$C_0 := \{v \in P(V_0^*) : v^2|_W = 0\}.$$

As a set, C_0 is a linear subspace:

$$\begin{aligned} C_0 &= \{v \in P(V_0^*) : v|_W = 0\} \\ &= P(H^0(S_0, K_{S_0} \otimes I_W)^*). \end{aligned}$$

By [19, eq. 3.36], extending [39, Corollary 3] in the smooth case (using only that $H^i(Y, \mathcal{O}(lH)) = 0$ for $i > 0$ and $l > 0$), we have $h^0(Y, K_Y(nH) \otimes I_W) \leq cn^2$ for some constant c independent of n . Thus the base locus B_0 of $\text{im}(q_0)$ has dimension at most cn^2 , for some constant c independent of n . By specializing, the base locus B of $\text{im}(q)$ also has dimension at most cn^2 for general surfaces S in $|nH|$.

By our assumption on the subvariety Z of B , for $v \in Z$ we have

$$\begin{aligned} \text{rank}(\mu_v: V \rightarrow H^1(S, \Omega^1)) &\leq \dim(Z) \\ &\leq cn^2. \end{aligned}$$

By the following lemma, it follows that $\dim(Z) \leq A$ for some constant A independent of n . This is Höring-Voisin's [19, Lemma 3.37], extending [39, Lemma 12] in the smooth case. (As before, we follow the numbering from the published version of [39]. In our case, $H^2(Y, \mathcal{O})$ need not be zero, but that is not used in these proofs.)

Lemma 5.5. *Let Y be a Gorenstein projective 3-fold with isolated canonical singularities, H as above. For each positive integer n , let S be a general surface in $|nH|$, and define V, V', μ associated to S as above. Let c be any positive constant. Then there is a constant A such that the sets*

$$\Gamma = \{v \in V : \text{rank}(\mu_v) \leq cn^2\}$$

and

$$\Gamma' = \{v' \in V' : \text{rank}(\mu_{v'}) \leq cn^2\}$$

both have dimension bounded by A , independent of n .

By our assumption on the subvariety Z of B again, for $v \in Z$ we have

$$\begin{aligned} \text{rank}(\mu_v: V \rightarrow H^1(S, \Omega^1)) &\leq \dim(Z) \\ &\leq A. \end{aligned}$$

This implies that Z is empty by Lemma 5.6, to be proved next. But Z is a variety, so we have a contradiction. This completes the proof that the generic quadric in the linear system $\text{im}(q)$ is smooth. Proposition 5.3 is proved. QED

To complete the proof of Proposition 5.3 and hence Theorem 4.1, it remains to prove the following lemma.

Lemma 5.6. *Let Y be a terminal projective 3-fold with K_Y trivial, H as above. Let A be a positive integer. Let $S \in |nH|$ be general, with n large enough (depending on A). Let $V = H^0(S, K_S)_{\text{van}}$ and $\mu_v: V' \rightarrow H^1(S, \Omega^1)$ the product with an element $v \in V$, as defined above. Then the set*

$$W = \{v \in V : \text{rank}(\mu_v) < A\}$$

is equal to 0.

Proof. We have to modify the proof of Voisin's Lemma 13 [39] to allow Y to be singular and also to have $H^2(Y, O)$ not zero. We use Höring and Voisin's ideas on how to deal with Y being singular, by working on the smooth surface S as far as possible [19, proof of Proposition 3.22].

Let S be a smooth surface in $|nH|$. Consider the following exact sequences of vector bundles on S , constructed from the normal bundle sequence of S in Y :

$$0 \rightarrow \Omega_S^1(nH) \rightarrow \Omega_Y^2|_S(2nH) \rightarrow K_S(2nH) \rightarrow 0$$

and

$$0 \rightarrow \mathcal{O}_S \rightarrow \Omega_Y^1|_S(nH) \rightarrow \Omega_S^1(nH) \rightarrow 0.$$

Let δ_1 and δ_2 be the resulting boundary maps:

$$\delta_1: H^0(S, K_S(2nH)) \rightarrow H^1(S, \Omega_S^1(nH))$$

and

$$\delta_2: H^1(S, \Omega_S^1(nH)) \rightarrow H^2(S, O).$$

Let $\delta = \delta_2 \circ \delta_1: H^0(S, K_S(2nH)) \rightarrow H^2(S, O)$.

Lemma 5.7. *The image of δ is $H^2(S, O)_{\text{van}}$, for large enough n and any S as above.*

Proof. We first show that δ_1 is surjective. By the long exact sequence of cohomology associated to the first exact sequence above, it suffices to show that $H^1(S, \Omega_Y^2|_S(2nH))$ is zero. In terms of the sheaf $\Omega_Y^{[2]}$ of reflexive differentials, we have an exact sequence of sheaves on Y :

$$0 \rightarrow \Omega_Y^{[2]}(nH) \rightarrow \Omega_Y^{[2]}(2nH) \rightarrow \Omega_Y^2|_S(2nH) \rightarrow 0.$$

By Serre vanishing on Y , both $H^1(Y, \Omega_Y^{[2]}(2nH))$ and $H^2(Y, \Omega_Y^{[2]}(nH))$ vanish for large n , and so $H^1(S, \Omega_Y^2|_S(2nH)) = 0$ for all smooth S in $|nH|$ with n large.

Next, the long exact sequence involving δ_2 shows that the cokernel of δ_2 is contained in $H^2(S, \Omega_Y^1|_S(nH))$. Since $K_S = nH|_S$ by the adjunction formula, the dual of that H^2 space is $H^0(S, TY|_S) = H^0(S, \Omega_Y^2|_S)$.

By the exact sequence

$$0 \rightarrow \Omega_Y^{[2]}(-nH) \rightarrow \Omega_Y^{[2]} \rightarrow \Omega_Y^2|_S \rightarrow 0$$

of sheaves on Y , we have an exact sequence

$$H^0(X, \Omega_Y^{[2]}(-nH)) \rightarrow H^0(Y, \Omega_X^{[2]}) \rightarrow H^0(S, \Omega_Y^{[2]}|_S) \rightarrow H^1(Y, \Omega_Y^{[2]}(-nH)).$$

Since Y is normal, the sheaf $\Omega_Y^{[2]}$ is reflexive, and $\dim(Y) > 1$, the groups on the left and right are zero for n large. (Consider an embedding of Y into some \mathbf{P}^N and use Serre vanishing and Serre duality on \mathbf{P}^N , as in [17, proof of Corollary III.7.8].) So the map $H^0(X, \Omega^{[2]}) \rightarrow H^0(S, \Omega_Y^2|_S)$ is an isomorphism. By the results above on δ_1 and δ_2 , this gives an exact sequence

$$H^0(S, K_S(2nH)) \xrightarrow{\delta} H^2(S, O) \rightarrow H^0(Y, \Omega^{[2]})^*.$$

Finally, we need to rephrase this in terms of du Bois's object $\underline{\Omega}_Y^2$ in the derived category of Y . The cohomology sheaves of $\underline{\Omega}_Y^j$ are in degrees ≥ 0 , and the 0th cohomology sheaf is $\Omega_Y^{[j]}$ because Y is klt [20, Theorems 5.4 and 7.12]. So there is a natural map $\Omega_Y^{[2]} \rightarrow \underline{\Omega}_Y^2$ in $D(Y)$. Because the other cohomology sheaves of $\underline{\Omega}_Y^2$ are in degrees > 0 , it is immediate that the map $H^0(Y, \Omega^{[2]}) \rightarrow H^0(Y, \underline{\Omega}_Y^2)$ is an isomorphism. So the previous paragraph yields an exact sequence:

$$H^0(S, K_S(2nH)) \xrightarrow{\delta} H^2(S, O) \rightarrow H^0(Y, \underline{\Omega}_Y^2)^*.$$

Equivalently, the image of δ is $H^2(S, O)_{\text{van}}$. QED

Assume that $v \in V$ satisfies the condition that $\text{rank}(\mu_v) < A$. Using that n is sufficiently large, Höring and Voisin show that $\delta(H^0(S, O_S(3nH)))$ is orthogonal to v with respect to Serre duality [19, after Proposition 3.40]. By Lemma 5.7, $H^2(S, O)_{\text{van}}$ is orthogonal to v . Since $V = H^0(S, K_S)_{\text{van}}$ is dual to $H^2(S, O)_{\text{van}}$, it follows that $v = 0$. Lemma 5.6 is proved. This also completes the proofs of Proposition 5.3 and Theorem 4.1. QED

6 The integral Tate conjecture for 3-folds

We now prove the integral Tate conjecture for 3-folds in characteristic zero that are rationally connected or have Kodaira dimension zero with $h^0(X, K_X) > 0$ (Theorem 6.1). In any characteristic, we will prove the integral Tate conjecture for abelian 3-folds (Theorem 7.1).

Theorem 6.1. *Let X be a smooth projective 3-fold over the algebraic closure of a finitely generated field of characteristic zero. If X is rationally connected or it has Kodaira dimension zero with $h^0(X, K_X) > 0$ (hence equal to 1), then X satisfies the integral Tate conjecture.*

Proof. We start by proving the following known lemma.

Lemma 6.2. *Let X be a smooth projective variety over the separable closure k_s of a finitely generated field k . For codimension-1 cycles on X , the Tate conjecture implies the integral Tate conjecture.*

Proof. For a prime number l invertible in k and a positive integer r , the Kummer sequence

$$0 \rightarrow \mu_{l^r} \rightarrow G_m \xrightarrow{l^r} G_m \rightarrow 0$$

of étale sheaves on X gives a long exact sequence of cohomology, and hence an exact sequence involving the Picard and Brauer groups:

$$0 \rightarrow \text{Pic}(X)/l^r \rightarrow H_{\text{ét}}^2(X, \mu_{l^r}) \rightarrow \text{Hom}(\mathbf{Z}/l^r, \text{Br}(X)) \rightarrow 0.$$

Writing $NS(X)$ for the group of divisors modulo algebraic equivalence, we have $\text{Pic}(X)/l^r = NS(X)/l^r$, because the group of k_s -points of an abelian variety is l -divisible. Since $NS(X)$ is finitely generated, taking inverse limits gives an exact sequence:

$$0 \rightarrow NS(X) \otimes \mathbf{Z}_l \rightarrow H^2(X, \mathbf{Z}_l(1)) \rightarrow \text{Hom}(\mathbf{Q}_l/\mathbf{Z}_l, \text{Br}(X)) \rightarrow 0.$$

The last group is automatically torsion-free. It follows that the Tate conjecture implies the integral Tate conjecture in the case of codimension-1 cycles. QED

Lemma 6.3. *Let X be a smooth projective 3-fold over the algebraic closure \bar{k} of a finitely generated field k of characteristic zero. Suppose that the Tate conjecture holds for codimension-1 cycles on X , and that the integral Hodge conjecture holds on $X_{\mathbf{C}}$ for some embedding $\bar{k} \hookrightarrow \mathbf{C}$. Then the integral Tate conjecture holds for X (over \bar{k}).*

Proof. By Lemma 6.2, the integral Tate conjecture holds for codimension-1 cycles on X . It remains to prove integral Tate for 1-cycles on X . Let $u \in H^4(X, \mathbf{Z}_l(2))$ be a Tate class; that is, u is fixed by $\text{Gal}(\bar{k}/l)$ for some finite extension l of k . Let H be an ample line bundle on X . Multiplication by the class of H is an isomorphism from $H^2(X, \mathbf{Q}_l(1))$ to $H^4(X, \mathbf{Q}_l(2))$, by the hard Lefschetz theorem. So there is a positive integer N with $Nu = Hv$ for some $v \in H^2(X, \mathbf{Z}_l(1))$. Because the isomorphism from $H^2(X, \mathbf{Q}_l(1))$ to $H^4(X, \mathbf{Q}_l(2))$ is Galois-equivariant, v is a Tate class (this works even if there is torsion in $H^2(X, \mathbf{Z}_l(1))$, because we are considering Tate classes over \bar{k}). By our assumptions, v is algebraic, that is, a \mathbf{Z}_l -linear combination of classes of subvarieties of X . So $Hv = Nu$ is algebraic and thus a \mathbf{Z}_l -linear combination of classes of curves on X .

In particular, Nu is a \mathbf{Z}_l -linear combination of Hodge classes in $H^4(X_{\mathbf{C}}, \mathbf{Z})$. Since the subgroup of Hodge classes is a summand in $H^4(X_{\mathbf{C}}, \mathbf{Z})$, it follows that u is a \mathbf{Z}_l -linear combination of Hodge classes in $H^4(X_{\mathbf{C}}, \mathbf{Z})$. Since the integral Hodge conjecture holds for $X_{\mathbf{C}}$, u is a \mathbf{Z}_l -linear combination of classes of curves on X . QED

We prove Theorem 6.1 using Lemma 6.3. The integral Hodge conjecture holds for rationally connected 3-folds by Voisin [39, Theorem 2] and for 3-folds X with Kodaira dimension zero and $h^0(X, K_X) = 1$ by Theorem 4.1, generalizing Voisin

[39, Theorem 2]. It remains to check the Tate conjecture in codimension 1 for X over \bar{k} . That is clear if $h^{0,2}(X) = 0$; then all of $H^2(X_{\mathbf{C}}, \mathbf{Z})$ is algebraic by the Lefschetz (1, 1) theorem, and so all of $H^2(X, \mathbf{Z}_l(1))$ is algebraic. That covers the case where X is rationally connected.

It remains to prove the Tate conjecture in codimension 1 for a 3-fold X over \bar{k} of Kodaira dimension zero with $h^{0,2}(X) > 0$. Let Y be a minimal model of X ; then Y is terminal and has torsion canonical bundle. By Höring and Peternell, generalizing the Beauville-Bogomolov structure theorem to singular varieties, there is a projective variety Z with canonical singularities and a finite morphism $Z \rightarrow Y$, étale in codimension one, such that Z is a product of an abelian variety, (singular) irreducible symplectic varieties, and (singular) Calabi-Yau varieties in a strict sense [18, Theorem 1.5]. Their theorem is stated over \mathbf{C} , but that implies the statement over \bar{k} . Höring and Peternell build on earlier work by Druel and Greb-Guenancia-Kebekus [8, 14].

Since Y has dimension 3 and $h^0(Z, \Omega^{[2]}) \geq h^0(Y, \Omega^{[2]}) = h^0(X, \Omega^2) > 0$, the only possibilities are: Z is an abelian 3-fold or the product of an elliptic curve and a K3 surface with canonical singularities. (A strict Calabi-Yau 3-fold Z has $h^0(Z, \Omega^{[2]}) = 0$, by definition.) So there is a resolution of singularities Z_1 of Z which is either an abelian 3-fold or the product of an elliptic curve and a smooth K3 surface. Since we have a dominant rational map $Z_1 \dashrightarrow X$, the Tate conjecture in codimension 1 for X will follow from the same statement for Z_1 [36, Theorem 5.2].

It remains to prove the Tate conjecture in codimension 1 for Z_1 , which is either an abelian 3-fold or the product of a K3 surface and an elliptic curve over \bar{k} . Faltings proved the Tate conjecture in codimension 1 for all abelian varieties over number fields [10], extended to all finitely generated fields of characteristic zero by Zarhin. Finally, the Tate conjecture holds for K3 surfaces in characteristic zero, by Tankeev [34]. Since $H^2(S \times E, \mathbf{Q}_l) \cong H^2(S, \mathbf{Q}_l) \oplus H^2(E, \mathbf{Q}_l)$ for a K3 surface S and an elliptic curve E , the Tate conjecture in codimension 1 holds for $S \times E$. QED

7 The integral Tate conjecture for abelian 3-folds in any characteristic

We now prove the integral Tate conjecture for abelian 3-folds in any characteristic. In characteristic zero, we have already shown this in Theorem 6.1. However, it turns out that a more elementary proof works in any characteristic, modeled on Grabowski's proof of the integral Hodge conjecture for complex abelian 3-folds [13, Corollary 3.1.9]. More generally, we show that the integral Tate conjecture holds for 1-cycles on all abelian varieties of dimension g if the “minimal class” $\theta^{g-1}/(g-1)!$ is algebraic on every principally polarized abelian variety (X, θ) of dimension g (Proposition 7.2).

Theorem 7.1. *Let X be an abelian 3-fold over the separable closure of a finitely generated field. Then the integral Tate conjecture holds for X .*

Proof. The argument is based on Beauville's Fourier transform for Chow groups of abelian varieties, inspired by Mukai's Fourier transform for derived categories. Write $CH^*(X)_{\mathbf{Q}}$ for $CH^*(X) \otimes \mathbf{Q}$. Let X be an abelian variety of dimension g

over a field k , with dual abelian variety $\widehat{X} := \text{Pic}^0(X)$, and let $f: X \times \widehat{X} \rightarrow X$ and $g: X \times \widehat{X} \rightarrow \widehat{X}$ be the projections. The *Fourier transform* $F_X: CH^*(X)_{\mathbf{Q}} \rightarrow CH^*(\widehat{X})_{\mathbf{Q}}$ is the linear map

$$F_X(u) = g_*(f^*(u) \cdot e^{c_1(L)}),$$

where L is the Poincaré line bundle on $X \times \widehat{X}$ and $e^{c_1(L)} = \sum_{j=0}^{2g} c_1(L)^j / j!$. For k separably closed, define the Fourier transform $H^*(X, \mathbf{Q}_l(*)) \rightarrow H^*(\widehat{X}, \mathbf{Q}_l(*))$ by the same formula.

By Beauville, the Fourier transform sends $H^j(X, \mathbf{Z}_l(a))$ to $H^{2g-j}(X, \mathbf{Z}_l(a+g-j))$, and this map is an isomorphism [2, Proposition 1]. By contrast, it is not clear whether the Fourier transform can be defined integrally on Chow groups; that actually fails over a general field, by Esnault [26, section 3.1]. Beauville's proof (for complex abelian varieties) uses that the integral cohomology of an abelian variety is an exterior algebra over \mathbf{Z} , and the same argument works for the \mathbf{Z}_l -cohomology of an abelian variety over any separably closed field.

Next, let $\theta \in H^2(X, \mathbf{Z}_l(1))$ be the first Chern class of a principal polarization on an abelian variety X . Then we can identify \widehat{X} with X , and the Fourier transform satisfies

$$F_X(\theta^j / j!) = (-1)^{g-j} \theta^{g-j} / (g-j)!$$

[2, Lemme 1]. Here $\theta^j / j!$ lies in $H^{2j}(X, \mathbf{Z}_l(j))$ (although it is not obviously algebraic, meaning the class of an algebraic cycle with \mathbf{Z}_l coefficients). Finally, let $h: X \rightarrow Y$ be an isogeny, and write $\widehat{h}: \widehat{Y} \rightarrow \widehat{X}$ for the dual isogeny. Then the Fourier transform switches pullback and pushforward, in the sense that for $u \in CH^*(Y)_{\mathbf{Q}}$,

$$F_X(h^*(u)) = \widehat{h}_*(F_Y(u))$$

[2, Proposition 3(iii)].

The following is the analog for the integral Tate conjecture of Grabowski's argument on the integral Hodge conjecture [13, Proposition 3.1.8].

Proposition 7.2. *Let k be the separable closure of a finitely generated field. Suppose that for every principally polarized abelian variety (Y, θ) of dimension g over k , the minimal class $\theta^{g-1} / (g-1)! \in H^{2g-2}(Y, \mathbf{Z}_l(g-1))$ is algebraic. Then the integral Tate conjecture for 1-cycles holds for all abelian varieties of dimension g over k .*

Proof. Let X be an abelian variety of dimension g over k , and let u be a Tate class in $H^2(X, \mathbf{Z}_l(1))$ (meaning that u is fixed by some open subgroup of the Galois group). The Tate conjecture holds for codimension-1 cycles on abelian varieties over k , by Tate [35], Faltings [10], and Zarhin. This implies the integral Tate conjecture for codimension-1 cycles on X , by Lemma 6.2. So u is a \mathbf{Z}_l -linear combination of classes of line bundles, hence of ample line bundles.

For each ample line bundle L on X , there is a principally polarized abelian variety (Y, θ) and an isogeny $h: X \rightarrow Y$ with $c_1(L) = h^*\theta$ [28, Corollary 1, p. 234]. Then the Fourier transform of $c_1(L)$ is given by:

$$\begin{aligned} F_X(c_1(L)) &= F_X(h^*\theta) \\ &= \widehat{h}_*(F_Y(\theta)) \\ &= (-1)^{g-1} \widehat{h}_*(\theta^{g-1} / (g-1)!). \end{aligned}$$

By assumption, $\theta^{g-1}/(g-1)!$ in $H^{2g-2}(Y, \mathbf{Z}_l(g-1))$ is algebraic (with \mathbf{Z}_l coefficients). Since the pushforward preserves algebraic classes, the equality above shows that $F_X(c_1(L))$ is algebraic. By the previous paragraph, it follows that the Fourier transform of any Tate class in $H^2(X, \mathbf{Z}_l(1))$ is algebraic in $H^{2g-2}(\widehat{X}, \mathbf{Z}_l(g-1))$.

Since the Fourier transform is Galois-equivariant and is an isomorphism from $H^2(X, \mathbf{Z}_l(1))$ to $H^{2g-2}(\widehat{X}, \mathbf{Z}_l(g-1))$, it sends Tate classes bijectively to Tate classes. This proves the integral Tate conjecture for 1-cycles on \widehat{X} , hence for 1-cycles on every abelian variety of dimension g over k . QED

We now return to the proof of Theorem 7.1. Let k be the separable closure of a finitely generated field, and let X be an abelian 3-fold over k . We want to prove the integral Tate conjecture for X .

By Proposition 7.2, it suffices to show that for every principally polarized abelian 3-fold (X, θ) over k , the class $\theta^2/2$ in $H^4(X, \mathbf{Z}_l(2))$ is algebraic. (This is clear for $l \neq 2$.) A general principally polarized abelian 3-fold X over k is the Jacobian of a curve C of genus 3. In that case, choosing a k -point of C determines an embedding of C into X , and the cohomology class of C on X is $\theta^2/2$ by Poincaré's formula [15, p. 350]. (Poincaré proved this for Jacobian varieties over \mathbf{C} , but that implies the same formula in l -adic cohomology for Jacobians in any characteristic.) By the specialization homomorphism on Chow groups [12, Proposition 2.6, Example 20.3.5], it follows that $\theta^2/2$ is algebraic for every principally polarized abelian 3-fold over k . Theorem 7.1 is proved. QED

References

- [1] W. Barth. Counting singularities of quadratic forms on vector bundles. *Vector bundles and differential equations* (Nice, 1979), ed. A. Hirschowitz, 1–19. Birkhäuser (1980).
- [2] A. Beauville. Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne. *Algebraic geometry* (Tokyo/Kyoto, 1982). Lecture Notes in Mathematics 1016, Springer (1983), 238–260.
- [3] A. Beauville. Variétés Kähleriennes dont la première classe de Chern est nulle. *J. Diff. Geom.* **18** (1984), 755–782.
- [4] O. Benoist and J. Ottem. Failure of the integral Hodge conjecture for threefolds of Kodaira dimension zero. *Comment. Math. Helv.*, to appear.
- [5] O. Benoist and O. Wittenberg. On the integral Hodge conjecture for real varieties, II. *J. de l'École Polytechnique*, to appear.
- [6] M. Brion. Some basic results on actions of non-affine algebraic groups. *Symmetry and spaces*, ed. H. Campbell, A. Helminck, H. Kraft, and D. Wehlau, 1–20. Birkhäuser (2010).
- [7] P. Deligne. Poids dans la cohomologie des variétés algébriques. *Actes ICM Vancouver 1974*, I, 79–85.
- [8] S. Druel. A decomposition theorem for singular spaces with trivial canonical class of dimension at most five. *Invent. Math.* **211** (2018), 245–296.

- [9] P. du Bois. Complexe de de Rham filtré d'une variété singulière. *Bull. SMF* **109** (1981), 41–81.
- [10] G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. *Invent. Math.* **73** (1983), 349–366.
- [11] W. Fulton. On the topology of algebraic varieties. *Algebraic geometry* (Bowdoin, 1985), 15–46. Proc. Symp. Pure Math. 46, Part 1, Amer. Math. Soc. (1987).
- [12] W. Fulton. *Intersection theory*. Springer (1998).
- [13] C. Grabowski. On the integral Hodge conjecture for 3-folds. Ph.D. Thesis, Duke University (2004).
- [14] D. Greb, H. Guenancia, and S. Kebekus. Klt varieties with trivial canonical class – holonomy, differential forms, and fundamental groups. *Geom. Topol.* **23** (2019), 2051–2124.
- [15] P. Griffiths and J. Harris. *Principles of algebraic geometry*. Wiley (1978).
- [16] F. Guillen, V. Navarro Aznar, P. Pascual Gainza, F. Puerta. *Hyperrésolutions cubiques et descente cohomologique*. Lecture Notes in Mathematics 1335, Springer (1988).
- [17] R. Hartshorne. *Algebraic geometry*. Springer (1977).
- [18] A. Höring and T. Peternell. Algebraic integrability of foliations with numerically trivial canonical bundle. *Invent. Math.* **216** (2019), 395–419.
- [19] A. Höring and C. Voisin. Anticanonical divisors and curve classes on Fano manifolds. *Pure Appl. Math. Q.* **7** (2011), 1371–1393.
- [20] A. Huber and C. Jörder. Differential forms in the h -topology. *Algebraic Geometry* **1** (2014), 449–478.
- [21] Y. Kawamata. Abundance theorem for minimal threefolds. *Invent. Math.* **108** (1992), 229–246.
- [22] J. Kollar. Trento examples. *Classification of irregular varieties* (Trento, 1990), 134–135. Lecture Notes in Mathematics 1515, Springer (1992).
- [23] J. Kollar and S. Kovács. Log canonical singularities are Du Bois. *J. Amer. Math. Soc.* **23** (2010), 791–813.
- [24] J. Kollar and S. Mori. *Birational geometry of algebraic varieties*. Cambridge (1998).
- [25] J. S. Milne. *Algebraic groups*. Cambridge (2017).
- [26] B. Moonen and A. Polishchuk. Divided powers in Chow rings and integral Fourier transforms. *Adv. Math.* **224** (2010), 2216–2236.
- [27] S. Mukai. Finite groups of automorphisms of K3 surfaces and the Mathieu group. *Invent. Math.* **94** (1988), 183–221.

- [28] D. Mumford. *Abelian varieties*. Tata Institute of Fundamental Research (2012).
- [29] V. Nikulin. Finite groups of automorphisms of Kählerian K3 surfaces. *Trudy Mosk. Mat. Obsch.* **38** (1979), 75–137; *Trans. Moscow Math. Soc.* **38** (1980), 71–135.
- [30] M. Reid. Young person’s guide to canonical singularities. *Algebraic geometry* (Bowdoin, 1985), v. 1, 345–414. Amer. Math. Soc. (1987).
- [31] C. Schoen. An integral analog of the Tate conjecture for one-dimensional cycles on varieties over finite fields. *Math. Ann.* **311** (1998), 493–500.
- [32] J. Steenbrink. Mixed Hodge structures associated with isolated singularities. *Singularities, Part 2* (Arcata, 1981), 513–536. Proc. Symp. Pure Math. 40, Amer. Math. Soc. (1981).
- [33] J. Steenbrink. Du Bois invariants of isolated complete intersection singularities. *Ann. Inst. Fourier* **47** (1997), 1367–1377.
- [34] S. G. Tankeev. Surfaces of type K3 over number fields, and l -adic representations. *Izv. Akad. Nauk SSSR* **52** (1988), 1252–1271, 1328; translation in *Math. USSR Izv.* **33** (1989), 575–595.
- [35] J. Tate. Endomorphisms of abelian varieties over finite fields. *Invent. Math.* **2** (1966), 134–144.
- [36] J. Tate. Conjectures on algebraic cycles in l -adic cohomology. *Motives*, Proc. Sympos. Pure Math. 55, Part 1, 71–83. Amer. Math. Soc. (1994).
- [37] B. Totaro. On the integral Hodge and Tate conjectures over a number field. *Forum Math. Sigma* **1** (2013), e4 (13 pages).
- [38] C. Voisin. *Hodge theory and complex algebraic geometry I*. Cambridge (2002).
- [39] C. Voisin. On integral Hodge classes on uniruled or Calabi-Yau threefolds. *Moduli spaces and arithmetic geometry*, 43–73. Adv. Stud. Pure Math. 45, Math. Soc. Japan (2006).
- [40] C. Voisin. Some aspects of the Hodge conjecture. *Japanese J. Math.* **2** (2007), 261–296.

UCLA MATHEMATICS DEPARTMENT, Box 951555, LOS ANGELES, CA 90095-1555
 TOTARO@MATH.UCLA.EDU