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The Hodge conjecture is true for all smooth complex projective 3-folds, by the
Lefschetz (1,1) theorem and the hard Lefschetz theorem [15, p. 164]. The integral
Hodge conjecture is a stronger statement which fails for some 3-folds, in fact for
some smooth hypersurfaces in P*, by Kollar [22]. Voisin made a dramatic advance
by proving the integral Hodge conjecture for all uniruled 3-folds (or, equivalently,
all 3-folds with Kodaira dimension —oc) and all 3-folds X with trivial canonical
bundle Kx and first Betti number zero [39]. Also, Grabowski proved the integral
Hodge conjecture for abelian 3-folds [13, Corollary 3.1.9].

In this paper, we prove the integral Hodge conjecture for all smooth projective
3-folds X of Kodaira dimension zero with h%(X, Kx) > 0 (hence equal to 1). This
generalizes the results of Voisin and Grabowski in two directions. First, it includes
all smooth projective 3-folds with trivial canonical bundle, not necessarily with first
Betti number zero. For example, the integral Hodge conjecture holds for quotients
of an abelian 3-fold by a free action of a finite group preserving a volume form,
and for volume-preserving quotients of a K3 surface times an elliptic curve. Second,
our result includes any smooth projective 3-fold whose minimal model is a possibly
singular variety with trivial canonical bundle; this extends work of Horing-Voisin
on singular 3-folds of this type [19, Proposition 3.18].

In contrast, Benoist and Ottem showed that the integral Hodge conjecture can
fail for 3-folds of any Kodaira dimension > 0. In particular, it can fail for an
FEnriques surface times an elliptic curve; in that case, X has Kodaira dimension
zero, and in fact the canonical bundle is torsion of order 2 [4]. So our positive result
is sharp in a strong sense.

The proof here covers all cases (including abelian 3-folds) in a unified way,
building on the arguments of Voisin and Horing-Voisin. In order to show that a
given homology class is represented by an algebraic 1-cycle on X, we consider a
family of surfaces of high degree in a minimal model of X. The 1-cycle we want
cannot be found on most surfaces in the family, but it will appear on some surface
in the family. This uses an analysis of Noether-Lefschetz loci, which depends on the
assumption that h°(X, Kx) > 0.

As an application of what we know about the integral Hodge conjecture, we
prove the integral Tate conjecture for all rationally connected 3-folds and all 3-folds
of Kodaira dimension zero with h®(X, Kx) > 0 in characteristic zero (Theorem 6.1).
Finally, we prove the integral Tate conjecture for abelian 3-folds in any characteristic
(Theorem 7.1).
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1 Notation

The integral Hodge conjecture for a smooth complex projective variety X asserts that
every element of H?(X,Z) whose image in H* (X, C) is of type (i,1) is the class of
an algebraic cycle of codimension ¢, that is, a Z-linear combination of subvarieties
of X. The Hodge conjecture is the analogous statement for rational cohomology
and algebraic cycles with rational coefficients. The integral Tate conjecture for a
smooth projective variety X over the separable closure F' of a finitely generated
field says: for k a finitely generated field of definition of X whose separable closure
is I and [ a prime number invertible in k, every element of H?(Xf, Z;(i)) fixed by
some open subgroup of Gal(F'/k) is the class of an algebraic cycle over F' with Z;
coefficients. Although it does not hold for all varieties, this version of the integral
Tate conjecture holds in more cases than the analogous statement over the finitely
generated field k [37, section 1]. The Tate conjecture is the analogous statement
with Q; coefficients.

On a normal variety Y, we use a natural generalization of the vector bundle of

differential forms on a smooth variety, the sheaf Qg] of reflexive differentials:
bl .= () = i,9,

where i: U — Y is the inclusion of the smooth locus.
For a vector space V, P(V') denotes the space of hyperplanes in V.

2 Examples

In this section, we discuss some examples of 3-folds satisfying our assumptions,
and how our proof works in various cases. One interesting point is the following
dichotomy among 3-folds satisfying our assumptions. This dichotomy will not be
used in the rest of the paper, but the proof of Proposition 2.1 develops some basic
properties of these 3-folds that will be used.

Proposition 2.1. Let X be a smooth projective complex 3-fold of Kodaira dimen-
sion zero with h°(X, Kx) > 0 (hence equal to 1). Let Y be a minimal model of X.
(Here Y is a terminal 3-fold with Ky trivial.) Then either H(X,0) = H(Y,0)
is zero or'Y is smooth (or both).

Note that the integral Hodge conjecture for smooth projective 3-folds is a bira-
tionally invariant property [40, Lemma 15]. Therefore, to prove Theorem 4.1 (the
integral Hodge conjecture for X as above), we could assume that H'(X,0) = 0 or
else that Kx is trivial (although we will not in fact divide up the proof of Theorem
4.1 that way). The case with H'(X,0) = 0 follows from work of Horing and Voisin
[19, Proposition 3.18] together with a relatively easy analysis of singularities below
(Lemma 3.1). (To give examples of such 3-folds: there are many terminal hyper-
surface singularities in dimension 3, such as any isolated singularity of the form
xy + f(z,w) = 0 for some power series f [30, Definition 3.1, Corollary 3.12], and X
could be any resolution of a terminal quintic 3-fold in P%.)



The case of smooth projective 3-folds X with Kx trivial (but H'(X,O) typi-
cally not zero) is harder, and requires a thorough reworking of Horing and Voisin’s
arguments. We discuss examples of such varieties after the following proof.

Proof. (Proposition 2.1) By Mori, there is a minimal model Y of X [24, 2.14].
That is, Y is a terminal projective 3-fold whose canonical divisor Ky is nef, with a
birational map from X to Y. Terminal varieties are smooth in codimension 2, and
so Y is smooth outside finitely many points. Since X has Kodaira dimension zero,
the Weil divisor class Ky is torsion by the abundance theorem for 3-folds, proved
by Kawamata and Miyaoka [21]. Since h%(Y, Ky) = h%(X, Kx) > 0, Ky is trivial
(and hence h(X, Kx) = h°(Y, Ky) = 1).

Since Ky is linearly equivalent to zero, Ky is in particular a Cartier divisor.
Also, since Y is terminal, it has rational singularities [30, 3.8|; therefore, Y is
Cohen-Macaulay. So the line bundle Ky is the dualizing sheaf of Y. Since Y is a
terminal 3-fold with Ky Cartier, it has only hypersurface (hence lci) singularities,
by Reid [30, Theorem 3.2]. Let S be a smooth ample Cartier divisor in Y; then S is
contained in the smooth locus of Y. Write ¢: S — X for the inclusion. By Goresky
and MacPherson, i,: Ho(S,Z) — Hy(Y,Z) is surjective, using that Y has only lci
singularities [11, p. 24].

For any scheme Y of finite type over the complex numbers, du Bois constructed a
canonical object Q3 in the filtered derived category of Y, isomorphic to the constant
sheaf Cy in the usual derived category D(Yan) [9]. For Y smooth, this is simply the
de Rham complex. Write Qf, in D(Y") for the jth graded piece of Q5 with respect
to the given filtration, shifted j steps to the left; for Y smooth, this is the sheaf Q{,
in degree zero. For Y proper over C, the resulting spectral sequence

EP = HY(Y, Q) = H"(Y,C)

degenerates at E; [9, Theorem 4.5]. The associated filtration on H*(Y, C) is the
Hodge filtration defined by Deligne.

The objects Q{, need not be sheaves, even in our very special situation, where
Y has terminal 3-fold hypersurface singularities. In particular, Steenbrink showed
that Q%/ has nonzero cohomology in degree 1 (not just degree 0) for any isolated
rational complete intersection 3-fold singularity other than a node or a smooth point
33, p. 1374].

In our case, because Hy(S,Z) — Ha(Y, Z) is surjective, the pullback H2(Y, Q) —
H?2(S,Q) is injective. By strict compatibility of pullback maps with the weight
filtration, it follows that the mixed Hodge structure on H?(Y, Q) is pure of weight 2
[7]. By the discussion above, the graded pieces of the Hodge filtration on H?(Y, C)
are H2(Y,QY), H (Y, Q}), and HO(Y,Q3). Since Y is terminal (log canonical would
be enough), it is du Bois, which means that Q) = Oy [23].

Let TY = (Q})*, which is a reflexive sheaf on Y. The Lie algebra of the
automorphism group of Y is H°(Y,7Y). We have TY = Qg] ® Ky = QE], the
sheaf of reflexive 2-forms, since Ky is trivial. So HO(Y,TY) = HO(Y,QP). Du
Bois’s object Q2 in the derived category of Y has #%(Q2.) = QP since Y is klt [20,
Theorems 5.4 and 7.12]. Since the cohomology sheaves of Q% are concentrated in
degrees > 0, it follows that H°(Y, ng]) ~ 7Y, 0%).



The polarization of H2(S;,, Q) by the intersection form gives a canonical direct-
sum decomposition of Hodge structures [38, Lemma 7.36]:

H%(S4,,Q) = H*(Y,Q) & H*(Y,Q)™.

The restriction of this polarization gives a polarization of the Hodge structure
H?(Y,Q); this can be described as the polarization of H?(Y, Q) given by the ample
line bundle H = O(S) on Y.

In particular, the polarization of H?(Y, Q) gives an isomorphism HO(Y, Q%) =
H?2(Y, Q) = H%*(Y,0)*. By Serre duality and the triviality of Ky, we have
H2(Y,0)* 2 H\(Y,Ky) = H'(Y,0). Putting this all together, we have H*(Y, TY) =
H(Y,0).

Thus, if H'(X, O) is not zero, then the identity component Aut’(Y") of Aut(Y)
has positive dimension. By the Barsotti-Chevalley theorem, Aut’(Y) is an extension
of an abelian variety by a connected linear algebraic group [25, Theorem 8.27]. Any
connected linear algebraic group over C is unirational [25, Theorem 17.93]. Since
Y has Kodaira dimension 0, it is not uniruled, and so it has no nontrivial action of
a connected linear algebraic group. We conclude that A := Aut(Y) is an abelian
variety of positive dimension.

By Brion, extending work of Nishi and Matsumura, any faithful action of an
abelian variety on a normal quasi-projective variety has finite stabilizer groups [6,
Theorem 2]. In our case, A preserves the singular locus of Y, which has dimension at
most 0 because Y is a terminal 3-fold. Since A has positive dimension, the singular
locus of Y must be empty. QED

We conclude the section by giving examples of smooth projective 3-folds X with
Kx trivial and H'(X,Ox) # 0, beyond the obvious examples: a K3 surface times
an elliptic curve, or an abelian 3-fold. The Beauville-Bogomolov structure theorem
implies that X is a quotient of a variety Z of one of those special types by a free
action of a finite group [3]. Knowing the integral Hodge conjecture for Z does not
obviously imply it for X, which helps to motivate this paper.

Example 2.2. An action of a finite group G on a complex K3 surface S is said to
be symplectic if G acts as the identity on HY(S, Kg) = C. Mukai (completing earlier
work of Nikulin) classified the finite groups that can act faithfully and symplectically
on some K3 surface. In particular, the abelian groups that can occur are: Z/a for
1<a<8, (Z/2)? (Z/2)3, (Z)2)*, (Z/3)%, (Z/4), Z)2 x Z /4, and Z/2 x Z/6 [29,
Theorem 4.5(b) and note added in proof], [27, Theorem 0.6].

Let G be a nontrivial group on this list other than (Z/2)3 or (Z/2)*, and let G
act symplectically on a K3 surface S. Let E be any complex elliptic curve. We can
choose an embedding of G as a subgroup of E. Let X = (S X E)/G, where G acts in
the given way on S and by translations on E. Then X is a smooth projective 3-fold
with Ky trivial. Moreover, H'(X, O) is not zero, because X maps onto the elliptic
curve F/G. Finally, X is not the product of a K3 surface with an elliptic curve. So
it is a new case for which Theorem 4.1 proves the integral Hodge conjecture.

Example 2.3. Theorem 4.1 also applies to some quotients of abelian 3-folds. For
example, let S be a complex abelian surface, and let G be a finite abelian group with
at most 2 generators which acts faithfully and symplectically on S as an abelian



surface. Let E be any elliptic curve. Choose an embedding of G as a subgroup of
E. Let X = (S x E)/G, where G acts in the given way on S and by translations on
E. Then X is a smooth projective 3-fold, Kx is trivial, and H!(X,O) is not zero,
because X maps onto the elliptic curve E/G. Here X is not an abelian 3-fold, and
so it is a new case for which this paper proves the integral Hodge conjecture. The
simplest case is G = Z/2, acting on any abelian surface S by +1.

3 Terminal 3-folds

We here analyze the homology of the exceptional divisor of a resolution of an isolated
rational 3-fold singularity (Lemma 3.1). This will be used in proving the integral
Hodge conjecture for certain 3-folds whose minimal model is singular (Theorem
4.1). Benoist and Wittenberg used a similar argument in their work on the integral
Hodge conjecture for real varieties, while studying a 3-fold fibered over a curve [5,
proof of Proposition 8.6].

Lemma 3.1. Let Y be a complex 3-fold with isolated rational singularities. Let
m: X — Y be a projective birational morphism with X smooth such that © is an
isomorphism over the smooth locus of Y and the inverse image of the singular locus
of Y is a divisor D in X with simple normal crossings. Then Ha(D,Z) is generated
by classes of algebraic 1-cycles on D.

Here a complex projective curve C' (possibly singular) has a fundamental class
in H2(C,Z), which pushes forward to a class in Ha(D,Z) when C is contained in a
complex scheme D.

Proof. We start with the following result by Steenbrink [32, Lemma 2.14].

Lemma 3.2. Let w: X — Y be a log resolution of an isolated rational singularity,
with exceptional divisor D. Then HY(D,0) =0 for all i > 0.

We continue the proof of Lemma 3.1. Let D1,..., D, be the irreducible compo-
nents of D, which are smooth projective surfaces. Write Dj...;, for an intersection
D;, N ---ND;,. We have an exact sequence of coherent sheaves on D:

0 — Op — ®;0p, = ®i<;O0p,; = ®i<j<kOp,;,, — 0.

Taking cohomology gives a Mayer-Vietoris spectral sequence

E}fﬂ] = 69720<-~~<’L’p]{CI(‘DZ'O“'Z}?’ O) = HP+‘1(D’ O)

&H?(D;,0) —— 0 0 0

@HI(D“O)*)@HI(DW,O>—>O 0

—
—
—
—

T
@HO(DZ', O) — @HO(DZ']‘, O) — @HO(DUk, O) —0

We have H?(D,0) = 0 by Lemma 3.2. It follows from the spectral sequence that
each irreducible component D; of D has H%(D;,0) = 0.



There is also a Mayer-Vietoris spectral sequence for the integral homology of D:
E;,q = Big<--<ip Ho(Dig-iyy, L) = Hpyq(D, Z).

EBHQ(D,‘,Z)%@HQ(D@}Z)(*O 0

@Hl(Di,Z)ﬁEBHﬂDZ‘j,Z)(iO 0

—
—
—

EBH()(DZ', Z) — @Ho(DZ’j, Z) — @HO(Dijk; Z) «—0

Finally, we have a Mayer-Vietoris spectral sequence converging to H*(D, C),
which can be obtained from the integral homology spectral sequence by apply-
ing Hom(-,C). We have a map of spectral sequences from the one converging to
H*(D, C) to the one converging to H*(D, O). Since H?(D, ) = 0, we know that the
groups ELY and EZ° are zero in the spectral sequence converging to H*(D, O). That
is, the di and dy differentials together map onto @H'(D;;,0) and &@H° (D, O).
We will deduce that the d; and ds differentials together map onto @Hl(Dij, C) and
®H(D;jx, C). In the first case, we are given that di: & H'(D;,0) — ®@H'(D;;,0)
is surjective, and we want to deduce that di: ® H'(D;,C) — @H'(D;;,C) is sur-
jective. That follows from dy: & H'(D;,C) — @H'(D;;,C) being a morphism of
Hodge structures of weight 1, so that H*(D;, C) = H'(D;,0)® H(D;, O) and this
grading is compatible with the differential.

A similar argument applies to HY. First, the differential di: @& H°(D;j,C) —
®H(D;jx, C) maps isomorphically to di: & H%(D;;,0) — &@H®(D;;x, O). Also, by
the comment about Hodge structures of weight 1, Eg’l(C) = ker(@H'(D;,C) —
®H'(D;;,C)) is the direct sum of ES’I(O) = ker(®H'(D;,0) — ®H'(D;;,0)) and
its conjugate, and so ES’I(C) — Eg’l(O) is surjective. Since dy: Eg’l(O) — E22’0(O)
is onto and Eg’l(C) — Eg’l(O) is onto, it follows that ds: Eg’l(C) — E22’0(C)
(= E3°(0)) is onto. That is, Ex’(C) as well as EL (C) are zero. Therefore
H?(D,C) — @H?(D;, C) is injective. (In particular, the mixed Hodge structure on
H?(D, Q) is pure of weight 2 [7].) By the universal coefficient theorem, it follows
that ©@Hy(D;, Q) — Ha(D, Q) is surjective.

The groups Ho(D;ji, Z) and Hy(D;j;,Z) are torsion-free, since D;j, is a point or
empty and D;; is a smooth projective curve or empty. It follows that the subgroups
ES%(Z) and ET9(Z) of these groups are also torsion-free. Since ©H2(D;, Q) —
Hy(D, Q) is surjective, those two E° groups are zero after tensoring with the
rationals, and so they are zero. Therefore, ®Hy(D;,Z) — Hs(D,Z) is surjective.
Since H%(D;,O) = 0, the Lefschetz (1,1) theorem gives that the smooth projective
surface D; has Ho(D;,Z) spanned by algebraic cycles. We deduce that Ha(D, Z) is
spanned by algebraic cycles. QED

4 3-folds of Kodaira dimension zero

In this section, we begin the proof of our main result on the integral Hodge conjec-
ture, Theorem 4.1. We reduce the problem to a statement on the variation of Hodge



structure associated to a family of surfaces of high degree in a minimal model of
the 3-fold, to be proved in the next section (Proposition 5.3).

Theorem 4.1. Let X be a smooth projective complex 3-fold of Kodaira dimension
zero such that h°(X, Kx) > 0. Then X satisfies the integral Hodge conjecture.

Proof. Let Y be a minimal model of X. Then Y is terminal and hence has singular
set of dimension at most zero. As in the proof of Proposition 2.1, Ky is trivial (and
hence h?(X, Kx) = h%(Y, Ky) = 1).

For codimension-1 cycles, the integral Hodge conjecture always holds, by the
Lefschetz (1,1) theorem. It remains to prove the integral Hodge conjecture for
codimension-2 cycles on X. This is a birationally invariant property for smooth
projective varieties X [40, Lemma 15]. Therefore, we can assume that the birational
map X --» Y is a morphism, and that X is whatever resolution of Y we like.
Explicitly, we can assume that X — Y is an isomorphism over the smooth locus
and that the fiber over each of the (finitely many) singular points of Y is a divisor
with simple normal crossings. (We do this in order to apply Lemma 3.1.)

Let H be a very ample line bundle on Y, and S a smooth surface in the linear
system |H|. As shown in the proof of Proposition 2.1, the pushforward homomor-
phism H>(S,Z) — Ha(Y,Z) is surjective.

We assume that the Hilbert scheme H of smooth surfaces in Y in the homology
class of S is smooth, which holds if H is sufficiently ample. We are free to replace
H by a large multiple in the course of the argument.

The following lemma was suggested by Schoen’s argument on the integral Tate
conjecture [31, Theorem 0.5], combined with Voisin’s paper [39].

Lemma 4.2. Let Y be a terminal projective complex 3-fold. Write Sy, for the sur-
face in'Y corresponding to a point to in H, with inclusion i: Sy, — Y. Write
Hy(Sty, Z)van = ker(in: Ho(Sy,Z) — H2(Y,Z)). By Poincaré duality, identify
H?(Sy,,Z) with Hy(Sy,,Z). Let C be a nonempty open cone in H?(Sy,, R)van. Sup-
pose that there is a contractible open neighborhood U of ty in H such that every
element of HQ(StO, Z)yan N C becomes a Hodge class on Sy for some t in U. Then
every element of Ha(Y,Z) whose image in Hy(Y,C) is in Hy1(Y) is algebraic.

Proof. By the proof of Proposition 2.1, the pushforward Ha(Sy,,Z) — H2(Y,Z)
is surjective, and so the pullback H?(Y,Q) — H 2(5t07 Q) is injective. Therefore,
the Hodge structure on H?(S,, Q) is pure of weight 2. Still following the proof
of Proposition 2.1, the polarization of H?(S;,, Q) by the intersection form gives a
canonical direct-sum decomposition of Hodge structures

H%(S4,,Q) = H*(Y,Q) & H*(Y,Q)™.

In fact, this argument shows that the surjection i.: Hy(Sy, Q) — Ha(Y, Q) is split
as a map of variations of Q-Hodge structures over the space H of smooth surfaces S.
In particular, any element of Ho(Y,Q) N H11(Y) C Ha(Y,C) is the image of some
element in Hy(Sy,, Q) whose translate to every surface Sy is in Hy 1(S¢). Therefore,
for any element o of Hy(Y, Z) that maps into Hy1(Y') C Ha(Y, C), there is a positive
integer NV and an element § of Ha(Sy,, Z) that lies in Hy 1(S;) C Ha(S¢, C) for every
surface S; such that i, = Na.



Also, because i, : Ho(Sy,,Z) — Ho(X,Z) is surjective, there is an element v €
H>(St,,Z) (not necessarily a Hodge class) with i,v = a.

Let ug = 8 — Nv in H(Sy,,Z). Then i,ug = 0; that is, ug is in Ha(St,, Z)van-
Let T'= ug+ N - H2(Sty, Z)van C H2(Sty, Z)van- Since T' is a translate of a subgroup
of finite index in Ha(Sty, Z)van, 7' has nonempty intersection with the open cone C
in Hy(St,, R)van- Let u be an element of C N'T. Because U is contractible, we can
canonically identify Hs(S;, Z) with Ha(Sy,,Z) for all ¢t in U. By our assumption
on C, u becomes a Hodge class on H3(St, Z) for some ¢t in U. By definition of
T, we can write u = up + Nw for some w in Ha(Sy,Z)van. We know that g
in Hy(S:,,Z) is a Hodge class in H?(S;,Z) for all nearby surfaces S;. Since u
becomes a Hodge class in H?(S;,Z), B — u is a Hodge class in Hy(S;,Z), and
B—u=p0—-(u+Nw)=p0—-(8—Nv+Nw)=N(v—w). Sov—w is a Hodge
class in Hy(St, Z). By the Lefschetz (1,1) theorem, v — w is algebraic on S;. And
we have i, (v —w) = i,v = a. So a in Hy(Y,Z) is algebraic. QED

We will prove the hypothesis of Lemma 4.2 as Proposition 5.3. Given that, we
now finish the proof of Theorem 4.1.

Let w be an element of Hy(X,Z) N Hy 1(X). Topologically, Y is obtained from
Y by identifying the fibers F1, ..., E, over singular points of Y to points. So we
have an exact sequence

Hg(Y, Z) — @ZHQ(E“ Z) — HQ(X, Z) — HQ(Y, Z) — @zHl(Eu Z)

By Lemma 3.1, Ho(E;, Z) is spanned by algebraic curves on E;, for each i. The image
of win Hy(Y,Z) is in Hy 1(Y’), and hence is in the image of the Chow group CH;(Y)
by Lemma 4.2 and Proposition 5.3. (We use here that the integral Hodge conjecture
holds on every smooth projective surface, by the Lefschetz (1,1) theorem.) Since
X — Y is an isomorphism outside a O-dimensional subset of Y, it is clear that
CH,(X) — CH,(Y) is surjective. Therefore there is a 1-cycle & on X whose image
in Ho(X,Z) has the same image in Hy(Y, Z) as u does. By the exact sequence above,
a —u in Hyo(X,Z) is the image of some element of ®Hy(E;,Z). But @Ha(E;, Z) is
spanned by algebraic cycles on U; E; by Lemma 3.1. Therefore u is algebraic. QED

5 The variation of Hodge structure associated to a fam-
ily of surfaces

To complete the proof of Theorem 4.1, we need to show that the variation of Hodge
structures on the family of surfaces in the 3-fold is as nontrivial as possible (Propo-
sition 5.3). The first step is to rephrase the conclusion we want in terms of a cup
product on a general surface in the family (Corollary 5.1), generalizing Proposition
1 in Voisin [39].

Let Y be a terminal complex projective 3-fold. (We will eventually assume
that Ky is trivial, but it seems clearer to formulate the basic arguments in greater
generality.) Let H be a very ample line bundle on Y, and S a smooth surface in the
linear system |H|. (It follows that S is contained in the smooth locus of Y.) We
are free to replace H by a large multiple in the course of the argument.

By the proof of Proposition 2.1, the Hodge structure on H2(Y, Q) is pure of
weight 2, and the graded pieces of the Hodge filtration on H?(Y, C) are H*(Y,O),
H'(Y,Qy), and H(Y, QF).



Define the vanishing cohomology H?(S, Z)yan to be the kernel of the pushforward
homomorphism i, : H?(S,Z) = Hy(S,Z) — Ho(Y,Z). Likewise, write

H?(S, O)van = ker(H?*(S,0) — H(Y, Q%)%
HY(S, Q%) van = ker(H(S, Q") — HY(Y,2},)%)
HO(S, Q%) van = ker(H(S, Q%) — H*(Y,Q))*).

These maps are Hodge-graded pieces of the surjection Hy(S,C) — Ha(Y,C) (dual
to the pullback H?(Y, C) — H?(S,C)), and so they are also surjective. By Serre du-
ality, H2(Y,Q9)* = HX(Y,0)* = HY(Y, Ky). So we can also describe H(S, 2% )van
as the kernel of the pushforward H°(S, Kg) — H'(Y, Ky).

The cohomology sheaves of Qf, are in degrees > 0, and the 0th cohomology sheaf
is the sheaf Q[f,] of reflexive differentials, because Y is klt [20, Theorems 5.4 and
7.12]. Also, Qg/ is concentrated in degrees from 0 to 3 — 7, since Y has dimension 3
[16, Théoreme V.6.2]. It follows that Q3 is the canonical sheaf Ky .

We assume that the Hilbert scheme H of smooth surfaces in Y in the homology
class of S is smooth, which holds if H is sufficiently ample. Then H°(S, N s/y) is
the tangent space to H at S. Let ¢ be the class of the extension 0 — T'S — TY |g —
Ng/y — 0 in H(S, Ng/y ® T'S). Then the product with ¢ is the Kodaira-Spencer
map HY(S, N syy) — H L(S,TS), which describes how the isomorphism class of S
changes as S moves in Y.

For u in H(S,TS), the product with u is a linear map

u-: HY(S, Q') — H?(S,0),
The dual map
u: HY(S,Kg) — H(S,Q')
can also be described as the product with u. For A in H!(S,Q!), define
px: HY(S, Ngjy) — H?(S,0)

by pa(n) = (dn)A. This map describes the failure of A € H2(S, C) to remain a (1, 1)
class when the surface S is deformed in X. For A in Hl(S’, Ql)van, the map p) lands
in the vanishing subspace H2(S, O)yan, because H2(S, Q) = H?(Y, Q)@ H?(S, Q)van
as Hodge structures, where the Hodge structure on H?(Y, Q) is unchanged as S is
deformed.

Corollary 5.1. Let Y be a terminal projective complex 3-fold. Let H be a very
ample line bundle on' Y, and S a smooth surface in the linear system |H|. Suppose
that there is an element X in H'(S, Q') van such that the linear map

3% HO(S, NS/Y) — H2<S, O)van

is surjective. Then there is a nonempty open cone C in H*(Sy,, R)van and a con-
tractible open neighborhood U of to in H such that every element of H?(Sy,, Z)yanNC
becomes a Hodge class on Sy for somet in U.

For Y smooth and H?(Y,0) = 0 (which implies that every element of Hy(Y,Z)
is a Hodge class), this was proved by Voisin [39, Proposition 1]. Voisin also for-
mulated a statement similar to Corollary 5.1 in the case of uniruled 3-folds Y with
H2(Y,0) # 0 [39, Proposition 4].



Proof. The groups H?(S;,Z) form a weight-2 variation of Hodge structures on the
Hilbert scheme H of smooth surfaces S; C Y. Let U be a contractible open
neighborhood of the given point tg in . We can canonically identify H?(S;, C)
with H?2(Sy,,C) for all t € U. The surjectivity of u implies that the map from
Urer HYH(Sg, R)van to H?(Si,, R)yan is a submersion at A, I claim.

To prove that this map is a submersion, we follow the argument of [39, Proposi-
tion 1], modified so as not to assume that H2(Y,0) is zero. Let w: Sy — U be the
universal family of surfaces Sy, restricted to t € U. Write H2,,, for the total space of
the vector bundle (R?7,C)yan over U, with fibers H?(S;, C)yan. The Gauss-Manin
connection gives a trivialization of this bundle, and hence a projection map from the
total space to one fiber, 7: H2, — H?(S;,, C)yan. Let FLHZ2  be the submanifold

van van

of H? whose fiber over each point ¢ € U is the Hodge filtration
F1H2(St7 C)Van = H27O(St)van @ Hl’l(St)Van C Hz(Sta C)van-

Let 71 : FHZ, — H?(Sy, C)van be the restriction of 7 to F'HZ, . Let X be an
element of H'(S;,, 2')van, and X any lift of A to F1H?(S;,, C)yan. By the proof of
Voisin [39, Lemma 2] (modified since we are allowing H?(Y, ) to be nonzero), we

have the following equivalence:

Lemma 5.2. The map
pa: HO(Stg, Ng, v) = H?(St, O)van

18 surjective if and only if T is a submersion at \.

To relate Lemma 5.2 to cohomology with real coefficients, note that surjectiv-
ity of uy is a Zariski open condition on A in H'(Sy,2')van. The vector space
H 1(St0, Ql)van has a real structure, given by

HLl(StO)R,Van = Hl (Stoa Ql)Vam N H2(St07 R)van C HQ(Stoa C)van-

Since we assume in this Corollary that u) is surjective for one A in H 1(Sto, OYvan,
it is surjective for some A in H171(StO)R’Van.

In Lemma 5.2, take the lifting X to be X itself. Then X is real, and so is 71 ).
By our assumption on A\, Lemma 5.2 gives that 71 is a submersion at A, and so the
restriction

TR HE an = H (St R)van

of 71 to 71 "(H?(Sty, R)van) is also a submersion. Here 77 ' (H?(Ss,, R)van) is iden-
tified with

172 2 11 1,1

UtGUF H (Sta C)van NH (St7 R)van = UtGUH ’ (St7R)van = R,van

Since 7 r is a submersion at X on the real manifold Hll,ilvan (a real vector bundle

over U), the image of 71 g contains a nonempty open subset of H?(Sy,, R)yan, as we

wanted.
The image of 71 g is a cone, and so it contains an open cone C' in H?(St,, R)van-

Therefore, all elements of H 2(Slto, Z)yan in the open cone C' become Hodge classes
on Sy for some t in U. Corollary 5.1 is proved. QED
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Proposition 5.3. Let Y be a terminal projective complex 3-fold with trivial canon-
ical bundle. Write Sy, for the surface in'Y corresponding to a point to in H, with
inclusion i: Sy, — Y. Write Ha(Sty, Z)van = ker(ix: Ha(Sy,,Z) — Ha(Y,Z)). Then
there is a nonempty open cone C in H%(Sy,, R)yvan and a contractible open neigh-
borhood U of to in H such that every element of H?(Syy, Z)yan N C becomes a Hodge
class on Sy for some t in U.

Proof. Let H be a very ample line bundle on Y and let S be a smooth surface in
|[nH| for a positive integer n. (We will eventually take n big enough and S general
in [nH|.) Let V = H°(S,Ks)van and V' = H°(Y,0(S))/H°(Y,0). By the exact
sequence of sheaves on Y

0— Oy — O(S) = O(9)|s — 0,

we can view V' as a subspace of H°(S,0(S)|s) = H°(S, Ng/y). For n sufficiently
large, the long exact sequence of cohomology gives an exact sequence

0— V' — HS,Ngjy) — H'(Y,0) = 0.
Likewise, by definition of V', we have an exact sequence
0V = HS Ks) —» H(Y,Ky) = 0,

where the pushforward map shown is the boundary map from the exact sequence
of sheaves on Y':
0— Ky — Ky(S) - Kg — 0.

We will only need to move S in its linear system (although H'(Y, O) need not
be zero). That is, we will show that for a general A € H(S, Q}g)van the restriction
of uy to V! c HO(S, Ng/y) maps onto H?(S,0)yan = V*; by Corollary 5.1, that
will finish the proof of Proposition 5.3. We will see that these two vector spaces
have the same dimension, using that Ky is trivial, and so the argument just barely
works. (For Ky more positive, it would not work at all.)

Fix a trivialization of the canonical bundle Ky . This gives an isomorphism be-
tween the two short exact sequences of sheaves above, in particular an isomorphism
Kgs = Ng/y of line bundles on S. So we have an isomorphism between the two
exact sequences of cohomology, including an isomorphism V =2 V', In terms of this
identification, uy for A in H(S, Q')yan is a linear map V' — V*. For varying A,
this is equivalent to the pairing

I VxV — HI(S, Ql)van
p(v,v') = v(v'§),
which is symmetric. (Recall that ¢ is the class of the extension 0 — T'S — TY|s —
Ngjy — 0 in HY(S, Ng;y ® TS).) (Proof: this pairing is the restriction of a
symmetric pairing H°(S, NS/Y)®HO(S, Ngy) — H'(S,QY), given by u®uv ~— uv~yd,
where u,v € H°(S, Ng/y), and v € H(S, Ngy ® (T'S)* ® Q) is the natural map
Ngjy @ TS = Q% ® TS — Qg of bundles on S.) Serre duality H'(S,Q')5,, =
H' (S, Q) van gives a dual map

q=p*: H(S,Q")van — SV,

11



We can think of ¢ as a linear system of quadrics in the projective space P(V*) of
lines in V. The condition that ) from V' € H%(S, Ng/y) to V* = H*(S,0)yan is
surjective for generic A € H' (S, Q') yan is equivalent to the condition that the quadric
defined by ¢(\) is smooth for generic A. Thus, by Corollary 5.1, Proposition 5.3 will
follow if we can show that the quadric ¢(\) is smooth for generic .

Note that we lose nothing by restricting the pairing p to the subspaces V' C
H°(S,Kg) and V' C HY(S, Ng/y). Indeed, as discussed in the proof of Proposition
2.1, the Hodge structure H?(S,Q) is polarized by the intersection form, and the
restriction H?(Y,Q) — H?(S,Q) is injective, with image a sub-Hodge structure.
Therefore H%(S, Q) is the orthogonal direct sum of H?(Y,Q) and its orthogonal
complement. This gives a splitting of each Hodge-graded piece of H?(S,C). For
example, for H°(S, Kg), this gives the decomposition

H°(S,Kg) = H(Y,0}) @ H(S, Ks)van-

Therefore, we also have a canonical decomposition of the isomorphic vector space
H(S, Ngy). This is the decomposition

H°(S,Ng/y) = HY(Y,TY) ® H°(Y,0(S))/H°(Y,0).

Thinking of H°(S, N S/Y) as the first-order deformation space of S in Y, these two
subspaces correspond to: moving S by automorphisms of Y, and moving S in its
linear system. The first type of move does not change the Hodge structure of S,
and so it is irrelevant to our purpose (trying to make a given integral cohomology
class on S into a Hodge class).

We use the following consequence of Bertini’s theorem from Voisin [39, Lemma
15], which we apply to our space V (identified with V') and W = H'(S,Q'). (Note
that we follow the numbering of statements in the published version of [39], not the
preprint.)

Lemma 5.4. Let ji: V@V — W be symmetric and let g: W* — S2V* be its dual.
Forv in 'V, write p,: V. — W for the corresponding linear map. Think of q as a
linear system of quadrics in P(V*). Then the generic quadric in im(q) is smooth if
the following condition holds. There is no closed subvariety Z C P(V*) contained
in the base locus of im(q) and satisfying:

rank(u,) < dim(2)
for allv e Z.

We have to show that such a subvariety Z does not exist for a general surface
S € |nH| with n sufficiently divisible. We follow the outline of Héring and Voisin’s
argument ([19, after Lemma 3.35], extending [39, after Lemma 7] in the smooth
case). After replacing the very ample line bundle H by a multiple if necessary, we
can assume that H*(Y,O(IH)) = 0 for i > 0 and [ > 0. We degenerate the general
surface S to a surface with many nodes, as follows. Consider a general symmetric
n x n matrix A with entries in H°(Y,O(H)). Let Sy be the surface in Y defined
by the determinant of A in H°(Y,O(nH)). By the assumption of generality, Sy is
contained in the smooth locus of Y. By Barth [1], the singular set of Sy consists of

N nodes, where
N = <” ;L 1)1{3.
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Let S — A be a Lefschetz degeneration of surfaces Sy € [nH| over the unit disc
A such that the central fiber Sy has nodes x1,...,zn as singularities. The map ¢
above makes sense for any smooth surface S in a 3-fold. Voisin showed that the
limiting space

%in(l)im(qt: H'(S,, ) — (H(St, Ks,) ® H°(S;, O(nH)))*),
1

which is a linear subspace of (H"(Sy, Ks,) ® H"(So, O(nH)))*, contains for each
1 <4 < N the multiplication-evaluation map which is the composite

H(Sy, Ks,) ® H°(Sp, O(nH)) — H°(Sy, Ks,(nH)) — Kg,(nH)|q,

[39, Lemma 7.

Recall that we have identified V = HY(S, Kg)van with V' = H°(Y,0(S))/H(Y, O).
When we degenerate a general surface S to the nodal surface Sy, the base locus B C
P(V*) of im(q) specializes to a subspace of the base locus By of im(qp) C P(V{),
where

Vo = H°(So, Ks,) = V§ = H°(Sp, Og, (nH)).
Let W be the set of nodes of Sy. By Voisin’s lemma just mentioned, By is contained
in
Co:= {’U S P(VO*) : U2’W = O}.
As a set, Cj is a linear subspace:

Co={veP(Vy):vlw =0}
= P(H(So, K5, ® Iy)").

By [19, eq. 3.36], extending [39, Corollary 3] in the smooth case (using only that
HY(Y,O(IH)) = 0 for i > 0 and | > 0), we have h’(Y, Ky(nH) ® Iyy) < cn? for
some constant ¢ independent of n. Thus the base locus By of im(qp) has dimension
at most cn?, for some constant ¢ independent of n. By specializing, the base locus
B of im(q) also has dimension at most cn? for general surfaces S in |nH|.

By our assumption on the subvariety Z of B, for v € Z we have

rank(p,: V — H'(S,Q")) < dim(2)

< en?.

By the following lemma, it follows that dim(Z) < A for some constant A indepen-
dent of n. This is Horing-Voisin’s [19, Lemma 3.37], extending [39, Lemma 12] in
the smooth case. (As before, we follow the numbering from the published version of
[39]. In our case, H2(Y,O) need not be zero, but that is not used in these proofs.)

Lemma 5.5. Let Y be a Gorenstein projective 3-fold with isolated canonical singu-
larities, H as above. For each positive integer n, let S be a general surface in |nH|,
and define V,V' n associated to S as above. Let ¢ be any positive constant. Then
there is a constant A such that the sets

I'={veV:rank(u,) < cn’}

and
' ={v e V' rank(u) < cn?}

both have dimension bounded by A, independent of n.
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By our assumption on the subvariety Z of B again, for v € Z we have

rank(p,: V — H(S,Q")) < dim(2)
< A.

This implies that Z is empty by Lemma 5.6, to be proved next. But Z is a variety,
so we have a contradiction. This completes the proof that the generic quadric in
the linear system im(q) is smooth. Proposition 5.3 is proved. QED

To complete the proof of Proposition 5.3 and hence Theorem 4.1, it remains to
prove the following lemma.

Lemma 5.6. Let Y be a terminal projective 3-fold with Ky trivial, H as above. Let
A be a positive integer. Let S € [nH| be general, with n large enough (depending on
A). Let V.= HS, Kg)yan and p,: V' — HY(S, Q) the product with an element
v €V, as defined above. Then the set

W ={veV:rank(u,) < A}

1s equal to 0.

Proof. We have to modify the proof of Voisin’s Lemma 13 [39] to allow Y to be
singular and also to have H?(Y, O) not zero. We use Horing and Voisin’s ideas on
how to deal with Y being singular, by working on the smooth surface S as far as
possible [19, proof of Proposition 3.22].

Let S be a smooth surface in |[nH|. Consider the following exact sequences of
vector bundles on S, constructed from the normal bundle sequence of S in Y:

0— Q4(nH) — Q¥ |s(2nH) — Kg(2nH) — 0

and
0— Os — U |s(nH) = QL(nH) — 0.

Let 01 and do be the resulting boundary maps:
61: HY(S, Kg(2nH)) — H(S,Q%(nH))

and
5o HY(S,QL(nH)) — H?(S,0).
Let 6 = 9 06,: H(S, Ks(2nH)) — H?(S,0).

Lemma 5.7. The image of 6 is H?(S,0)van, for large enough n and any S as
above.

Proof. We first show that §; is surjective. By the long exact sequence of co-
homology associated to the first exact sequence above, it suffices to show that
HY(S,0%|s(2nH)) is zero. In terms of the sheaf Qg] of reflexive differentials, we
have an exact sequence of sheaves on Y:

0 — Q¥ (nH) - Q (2nH) - O%|s(2nH) — 0.

14



By Serre vanishing on Y, both H(Y, Q[)z}(QnH)) and H2(Y, Q[é} (nH)) vanish for
large n, and so H'(S,Q2.|s(2nH)) = 0 for all smooth S in [nH| with n large.
Next, the long exact sequence involving do shows that the cokernel of Jo is
contained in H?(S,Q|s(nH)). Since Kg = nH|g by the adjunction formula, the
dual of that H? space is H(S,TY|s) = H°(S, 0% |s).
By the exact sequence

0o 0 (—nH) = ol 5 0%s >0
of sheaves on Y, we have an exact sequence
HO(X, QP (—nH)) - H(Y,QF) - H(5,0%)5) » H' (v, QP (—nH)).

Since Y is normal, the sheaf Qg] is reflexive, and dim(Y) > 1, the groups on the
left and right are zero for n large. (Consider an embedding of Y into some PY and
use Serre vanishing and Serre duality on PV, as in [17, proof of Corollary I11.7.8].)
So the map H°(X,QP) — H(S,02|s) is an isomorphism. By the results above
on d1 and d9, this gives an exact sequence

HO(S, Kg(2nH)) = H?(S,0) — H(Y, Q).

Finally, we need to rephrase this in terms of du Bois’s object Q%/ in the derived
category of Y. The cohomology sheaves of Qg/ are in degrees > 0, and the Oth
cohomology sheaf is ng,] because Y is klt [20, Theorems 5.4 and 7.12]. So there is
a natural map Qg] — 92 in D(Y). Because the other cohomology sheaves of 0%
are in degrees > 0, it is immediate that the map HO(Y, Q) — HO(Y, Q%) is an
isomorphism. So the previous paragraph yields an exact sequence:

HO(S, Ks(2nH)) — H3(S,0) — HO(Y, 93"

Equivalently, the image of ¢ is H2(S, O)van. QED

Assume that v € V satisfies the condition that rank(u,) < A. Using that n
is sufficiently large, Horing and Voisin show that §(H°(S,Os(3nH))) is orthogonal
to v with respect to Serre duality [19, after Proposition 3.40]. By Lemma 5.7,
H?(S,0)yan is orthogonal to v. Since V = HY(S, Kg)yan is dual to H%(S, O)van,
it follows that v = 0. Lemma 5.6 is proved. This also completes the proofs of
Proposition 5.3 and Theorem 4.1. QED

6 The integral Tate conjecture for 3-folds

We now prove the integral Tate conjecture for 3-folds in characteristic zero that are
rationally connected or have Kodaira dimension zero with h°(X, Kx) > 0 (Theorem
6.1). In any characteristic, we will prove the integral Tate conjecture for abelian
3-folds (Theorem 7.1).

Theorem 6.1. Let X be a smooth projective 3-fold over the algebraic closure of a
finitely generated field of characteristic zero. If X 1is rationally connected or it has
Kodaira dimension zero with h°(X,Kx) > 0 (hence equal to 1), then X satisfies
the integral Tate conjecture.
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Proof. We start by proving the following known lemma.

Lemma 6.2. Let X be a smooth projective variety over the separable closure kg
of a finitely generated field k. For codimension-1 cycles on X, the Tate conjecture
implies the integral Tate conjecture.

Proof. For a prime number [ invertible in k£ and a positive integer r, the Kummer
sequence
0—>uzr—>Gml—,>Gm—>0

of étale sheaves on X gives a long exact sequence of cohomology, and hence an exact
sequence involving the Picard and Brauer groups:

0 — Pic(X)/l" — H2(X, ) — Hom(Z /1", Br(X)) — 0.

Writing NS(X) for the group of divisors modulo algebraic equivalence, we have
Pic(X)/I" = NS(X)/I", because the group of ks-points of an abelian variety is I-
divisible. Since NS(X) is finitely generated, taking inverse limits gives an exact
sequence:

0— NS(X)®Z; — H*(X,Z(1)) — Hom(Q,/Z;, Br(X)) — 0.

The last group is automatically torsion-free. It follows that the Tate conjecture
implies the integral Tate conjecture in the case of codimension-1 cycles. QED

Lemma 6.3. Let X be a smooth projective 3-fold over the algebraic closure k of
a finitely generated field k of characteristic zero. Suppose that the Tate conjecture
holds for codimension-1 cycles on X, and that the integral Hodge conjecture holds
on X¢ for some embedding k — C. Then the integral Tate conjecture holds for X
(over k).

Proof. By Lemma 6.2, the integral Tate conjecture holds for codimension-1 cycles
on X. It remains to prove integral Tate for 1-cycles on X. Let u € H*(X,Z;(2)) be
a Tate class; that is, u is fixed by Gal(k/l) for some finite extension [ of k. Let H be
an ample line bundle on X. Multiplication by the class of H is an isomorphism from
H?(X,Q,(1)) to H*(X,Q,(2)), by the hard Lefschetz theorem. So there is a positive
integer N with Nu = Hv for some v € H?(X,Z;(1)). Because the isomorphism from
H?(X,Q;(1)) to H*(X,Q,(2)) is Galois-equivariant, v is a Tate class (this works
even if there is torsion in H?(X,Z;(1)), because we are considering Tate classes over
k). By our assumptions, v is algebraic, that is, a Z;-linear combination of classes
of subvarieties of X. So Hv = Nu is algebraic and thus a Z;-linear combination of
classes of curves on X.

In particular, Nu is a Z;-linear combination of Hodge classes in H4(XC,Z).
Since the subgroup of Hodge classes is a summand in H*(Xcg, Z), it follows that u
is a Z;-linear combination of Hodge classes in H*(X¢, Z). Since the integral Hodge
conjecture holds for X, u is a Z;-linear combination of classes of curves on X.
QED

We prove Theorem 6.1 using Lemma 6.3. The integral Hodge conjecture holds
for rationally connected 3-folds by Voisin [39, Theorem 2] and for 3-folds X with
Kodaira dimension zero and h°(X, Ky) = 1 by Theorem 4.1, generalizing Voisin
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[39, Theorem 2|. It remains to check the Tate conjecture in codimension 1 for X
over k. That is clear if h%2(X) = 0; then all of H?(X¢,Z) is algebraic by the
Lefschetz (1,1) theorem, and so all of H?(X,Z;(1)) is algebraic. That covers the
case where X is rationally connected.

It remains to prove the Tate conjecture in codimension 1 for a 3-fold X over
k of Kodaira dimension zero with h%2(X) > 0. Let Y be a minimal model of X;
then Y is terminal and has torsion canonical bundle. By Horing and Peternell,
generalizing the Beauville-Bogomolov structure theorem to singular varieties, there
is a projective variety Z with canonical singularities and a finite morphism Z — Y,
étale in codimension one, such that Z is a product of an abelian variety, (singular)
irreducible symplectic varieties, and (singular) Calabi-Yau varieties in a strict sense
[18, Theorem 1.5]. Their theorem is stated over C, but that implies the statement
over k. Horing and Peternell build on earlier work by Druel and Greb-Guenancia-
Kebekus [8, 14].

Since Y has dimension 3 and h°(Z,QP) > rO(y,QPR) = r0(X, Q%) > 0, the
only possibilities are: Z is an abelian 3-fold or the product of an elliptic curve
and a K3 surface with canonical singularities. (A strict Calabi-Yau 3-fold Z has
hO(Z,0P)) = 0, by definition.) So there is a resolution of singularities Z; of Z
which is either an abelian 3-fold or the product of an elliptic curve and a smooth
K3 surface. Since we have a dominant rational map Z; --» X, the Tate conjecture
in codimension 1 for X will follow from the same statement for Z; [36, Theorem
5.2].

It remains to prove the Tate conjecture in codimension 1 for Z;, which is either
an abelian 3-fold or the product of a K3 surface and an elliptic curve over k. Faltings
proved the Tate conjecture in codimension 1 for all abelian varieties over number
fields [10], extended to all finitely generated fields of characteristic zero by Zarhin.
Finally, the Tate conjecture holds for K3 surfaces in characteristic zero, by Tankeev
[34]. Since H*(S x E,Q;) = H*(S,Q;) ® H*(E,Q,) for a K3 surface S and an
elliptic curve F, the Tate conjecture in codimension 1 holds for S x E. QED

7 The integral Tate conjecture for abelian 3-folds in any
characteristic

We now prove the integral Tate conjecture for abelian 3-folds in any characteristic.
In characteristic zero, we have already shown this in Theorem 6.1. However, it
turns out that a more elementary proof works in any characteristic, modeled on
Grabowski’s proof of the integral Hodge conjecture for complex abelian 3-folds [13,
Corollary 3.1.9]. More generally, we show that the integral Tate conjecture holds for
I-cycles on all abelian varieties of dimension g if the “minimal class” §9=1/(g — 1)!
is algebraic on every principally polarized abelian variety (X,6) of dimension g
(Proposition 7.2).

Theorem 7.1. Let X be an abelian 3-fold over the separable closure of a finitely
generated field. Then the integral Tate conjecture holds for X.

Proof. The argument is based on Beauville’s Fourier transform for Chow groups
of abelian varieties, inspired by Mukai’s Fourier transform for derived categories.
Write CH*(X)q for CH*(X) ® Q. Let X be an abelian variety of dimension g
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over a field k, with dual abelian variety X = Pic®(X), and let f: X x X — X
and g: X x X — X be the projections. The Fourier transform Fx: CH*(X)q —
CH*(X)q is the linear map

Fx(u) = gu(f*(u) - 1),
where L is the Poincaré line bundle on X x X and e“(5) = ?920 c1(L)?/j!. For

k separably closed, define the Fourier transform H*(X,Q,(x)) — H*(X,Q;(x)) by
the same formula.

By Beauville, the Fourier transform sends H’ (X, Z;(a)) to H?97/(X,Z;(a+ g —
j)), and this map is an isomorphism [2, Proposition 1]. By contrast, it is not
clear whether the Fourier transform can be defined integrally on Chow groups; that
actually fails over a general field, by Esnault [26, section 3.1]. Beauville’s proof (for
complex abelian varieties) uses that the integral cohomology of an abelian variety
is an exterior algebra over Z, and the same argument works for the Z;-cohomology
of an abelian variety over any separably closed field.

Next, let # € H?(X,Z;(1)) be the first Chern class of a principal polarization on
an abelian variety X. Then we can identify X with X , and the Fourier transform
satisfies

Fx(07/51) = (=1)777 6977 /(g - j)!
[2, Lemme 1]. Here 67 /5! lies in H* (X, Z;(7)) (although it is not obviously algebraic,
meaning the class of an algebraic cycle with Z coefficients). Finally, let h: X — Y
be an isogeny, and write h: Y — X for the dual isogeny. Then the Fourier transform
switches pullback and pushforward, in the sense that for v € CH*(Y)q,

Fx (h*(u)) = hu(Fy (u))

[2, Proposition 3(iii)].
The following is the analog for the integral Tate conjecture of Grabowski’s ar-
gument on the integral Hodge conjecture [13, Proposition 3.1.8].

Proposition 7.2. Let k be the separable closure of a finitely generated field. Suppose
that for every principally polarized abelian variety (Y,0) of dimension g over k, the
minimal class 09=1/(g — 1)! € H*72(Y,Z;(g — 1)) is algebraic. Then the integral
Tate conjecture for 1-cycles holds for all abelian varieties of dimension g over k.

Proof. Let X be an abelian variety of dimension g over k, and let u be a Tate
class in H%(X,Z;(1)) (meaning that u is fixed by some open subgroup of the Galois
group). The Tate conjecture holds for codimension-1 cycles on abelian varieties over
k, by Tate [35], Faltings [10], and Zarhin. This implies the integral Tate conjecture
for codimension-1 cycles on X, by Lemma 6.2. So u is a Z;-linear combination of
classes of line bundles, hence of ample line bundles.

For each ample line bundle L on X, there is a principally polarized abelian
variety (Y,0) and an isogeny h: X — Y with ¢;(L) = h*6 [28, Corollary 1, p. 234].
Then the Fourier transform of ¢;(L) is given by:

Fx(e(L))

Fx(h*0)
(=19 R (097 /(g — 1))).

I
)
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By assumption, §9~1/(g—1)!in H2972(Y, Z;(g—1)) is algebraic (with Z; coefficients).
Since the pushforward preserves algebraic classes, the equality above shows that
Fx(ci(L)) is algebraic. By the previous paragraph, it follows that the Fourier
transform of any Tate class in H2(X, Z;(1)) is algebraic in H2~2(X,Z;(g — 1)).

Since the Fourier transform is Galois-equivariant and is an isomorphism from
H2(X,Z;(1)) to H*972(X, Z;(g—1)), it sends Tate classes bijectively to Tate classes.
This proves the integral Tate conjecture for 1-cycles on X , hence for 1-cycles on
every abelian variety of dimension g over k. QED

We now return to the proof of Theorem 7.1. Let k be the separable closure of
a finitely generated field, and let X be an abelian 3-fold over k. We want to prove
the integral Tate conjecture for X.

By Proposition 7.2, it suffices to show that for every principally polarized abelian
3-fold (X, 0) over k, the class #%/2 in H*(X,Z;(2)) is algebraic. (This is clear for
[ # 2.) A general principally polarized abelian 3-fold X over k is the Jacobian of a
curve C of genus 3. In that case, choosing a k-point of C determines an embedding
of C into X, and the cohomology class of C on X is #?/2 by Poincaré’s formula
[15, p. 350]. (Poincaré proved this for Jacobian varieties over C, but that implies
the same formula in l-adic cohomology for Jacobians in any characteristic.) By
the specialization homomorphism on Chow groups [12, Proposition 2.6, Example
20.3.5], it follows that 62 /2 is algebraic for every principally polarized abelian 3-fold
over k. Theorem 7.1 is proved. QED
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