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Abstract

With the increasing interest in low-resource
languages, unsupervised morphological seg-
mentation has become an active area of re-
search, where approaches based on Adap-
tor Grammars achieve state-of-the-art results.
We demonstrate the power of harnessing lin-
guistic knowledge as priors within Adaptor
Grammars in a minimally-supervised learning
fashion. We introduce two types of priors:
1) grammar definition, where we design
language-specific grammars; and 2) linguist-
provided affixes, collected by an expert in the
language and seeded into the grammars. We
use Japanese and Georgian as respective case
studies for the two types of priors and intro-
duce new datasets for these languages, with
gold morphological segmentation for evalua-
tion. We show that the use of priors results in
error reductions of 8.9 % and 34.2 %, respecti-
vely, over the equivalent state-of-the-art unsu-
pervised system.

1. Introduction

Morphological segmentation is an essential sub-
task in many natural language processing (NLP)
applications, especially in the case of morphologi-
cally complex languages. With the need to develop
NLP tools for low-resource languages, unsupervi-
sed morphological segmentation has been recei-
ving increasing interest over the last two decades
(Goldsmith, 2001; Creutz and Lagus, 2007a; Poon
et al., 2009; Sirts and Goldwater, 2013; Botha and
Blunsom, 2013; Narasimhan et al., 2014; Eskander
etal., 2016, 2018, 2019).

In this work, we show how linguistic priors ef-
fectively boost morphological-segmentation perfor-
mance in a minimally-supervised manner that does
not require segmented words for training. We inte-
grate our priors within Adaptor Grammars (John-
son et al., 2007), a type of nonparametric Bayesian
models that generalize Probabilistic Context-Free

Grammars (PCFGs). Adaptor Grammars have pro-
ved successful for unsupervised morphological seg-
mentation, achieving state-of-the-art results across
a variety of typologically diverse languages (Es-
kander et al., 2020).

We introduce two types of linguistic priors: 1)
grammar definition, where we design a language-
specific grammar that is tailored for the language
of interest by modeling specific morphological phe-
nomena, and 2) linguist-provided affixes, where an
expert in the underlying language compiles a list
of carefully selected affixes and seeds it into the
grammars prior to training the segmentation model.
We use Japanese and Georgian as case studies for
priors 1 and 2, respectively. As our goal is to de-
velop a robust approach that benefits low-resource
and/or endangered languages of high morphologi-
cal complexity, we use Japanese and Georgian in a
low-resource setting where we do not have access
to morphologically segmented data for training but
have access to linguistic information such as word
structure and affixes.

We show that using linguistic priors in a
minimally-supervised setting leads to a significant
improvement in performance over the equivalent
state-of-the-art unsupervised system. We also pre-
sent two morphologically segmented datasets for
Japanese and Georgian that we use as our gold stan-
dard and that can be utilized in other morphology
tasks.!

2. Linguistic Priors

We utilize MorphAGram (Eskander et al.,
2020)2, an  open-source  morphological-
segmentation framework that is based on
Adaptor Grammars (AGs) (Johnson et al., 2007).
AGs have proved successful for unsupervised and

"The training and evaluation datasets, linguistic priors
and models for both Japanese and Georgian are available at
https://github.com/rnd2110/MorphAGram/data.

*https://github.com/rnd2110/MorphAGram

3969

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3969-3974
August 1-6, 2021. ©2021 Association for Computational Linguistics


{rnd2110,sk4746,ffc2108,smara}@columbia.edu
clowry@gradcenter.cuny.edu
{jklavans,polinsky}@umd.edu

Japanese PrStSu+SM

Language-Independent PrStSu+SM
Word  —  Prefix Stem Suffix Word
Prefix - DA Prefix
Prefix — 7~~~ PrefixMorphs Prefix
PrefixMorphs ~ —  PrefixMorph PrefixMorphs PrefixMorph
PrefixMorphs ~ —  PrefixMorph PrefixMorph

PrefixMorph =  SubMorphs

Stem —  SubMorphs Stem
StemMorphs
StemMorphs
StemMorph
Suffix — SSS Suffix
Suffix — SuffixMorphs $$$ Suffix
SuffixMorphs = SuffixMorph SuffixMorphs SuffixMorphs
SuffixMorphs = SuffixMorph SuffixMorphs
SuffixMorph ~ —  SubMorphs SuffixMorph
SubMorphs ~ —  SubMorph SubMorphs SubMorphs
SubMorphs —  SubMorph SubMorphs
SubMorp  —  Chars SubMorphs
SubMorphs
Kana_SubMorph
Kanji_SubMorph
Chars —  Char Chars Char
Chars —  Char Char
Kana_Chars
Kana_Chars
Kanji_Chars
Kanji_Chars

Ll oLl Lidd 1l

Llildd

L1l ldl

Prefix Stem Suffix

~~ PrefixMorph
Char
Char Char

StemMorphs

StemMorph StemMorphs
StemMorph

SubMorphs

$8S

SuffixMorphs $$$
SuffixMorph SuffixMorphs
SuffixMorph

SubMorphs

Kana_SubMorph SubMorphs
Kana_SubMorph
Kanji_SubMorph SubMorphs
Kanji_SubMorph
Kana_Chars

Kanji_Chars

Kana_Char
Kanji_Char
Kana_Char Kana_ Chars
Kana_Char
Kanji_Char Kanji_Chars
Kanji_Char

One prefix morpheme
of length 1 or 2

Recursively defined
stems for compounding

A submorpheme is
either in Kana or Kaniji.

Separate Kana and
Kaniji character sets

Figure 1: Language-independent PrStSu+SM grammar (left side) vs. its Japanese cognate (right side)

minimally-supervised morphological segmenta-
tion, outperforming the competing discriminative
models (Sirts and Goldwater, 2013; Eskander et al.,
2019, 2020).

Adaptor Grammars are non-parametric Bayesian
models that are composed of two main components:
1) a Probabilistic Context-Free Grammar (PCFG)
whose definition relies on the underlying task (in
the case of morphological segmentation, a PCFG
models word structure); and 2) an adaptor that is ba-
sed on the Pitman-Yor process (Pitman, 1995). The
adaptor keeps the posterior probability of a subtree
proportional to the number of times that subtree
is utilized to parse the input data and manages the
caching of the subtrees. The learning process is
Markov Chain Monte Carlo sampling (MCMC)
(Andrieu et al., 2003) that does the inference of the
PCFG probabilities and the hyperparameters of the
model.

Eskander et al. (2016) define a set of language-
independent grammars and three learning settings
for Adaptor Grammars: 1) Standard, fully unsuper-
vised; 2) Scholar-Seeded, minimally-supervised by
manually seeding affixes into the grammar prior to
training the segmentation model, and 3) Cascaded,
fully unsupervised by approximating the Scholar-
Seeded setting using automatically generated af-

fixes from an initial round of learning. We next
present two ways of including linguistic priors in
Adaptor Grammars: 1) defining a language-specific
grammar; and 2) using linguist-provided affixes in
the Scholar-Seeded learning setup.

2.1. Linguistic Priors as Grammar Definition

Eskander et al. (2016) define language-
independent grammars that model the word as a
sequence of generic morphemes or as a sequence
of prefixes, stem and suffixes. We consider their
PrStSu+SM grammar in the current study as it is
the grammar that performed best on average across
different languages. This language-independent de-
finition of the grammar is depicted on the left side
of Figure 1, where the word is modeled as a prefix
Pr, a stem St and a suffix Su, and both the pre-
fix and suffix are recursively defined in order to
model compounding in affixes, while a morpheme
is composed of smaller units, submorphemes SM,
representing sequences of characters.

While this grammar is intended to be generic
and to describe word structure in any language, we
hypothesize that a definition that imposes language-
specific constraints would be more efficient. The-
refore, we define a grammar for Japanese, where
we use characteristics that are specific to Japane-
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se word structure as language priors. Our tailored
grammar definition for Japanese is shown on the
right side of Figure 1, where we impose the follo-
wing specifications:

= A word has a maximum of one one-character
or two-character prefix morphemes.

= A stem is recursively defined as a sequence
of morphemes in order to allow for stem com-
pounding.

= Characters are separated into two groups, Ka-
na (Japanese syllabaries) and Kanji (adapted
Chinese characters).

= A submorpheme represents a sequence of cha-
racters that is either in Kana or Kanji.

2.2. Linguistic Priors as Linguist-Provided
Affixes

Similar to the Scholar-Seeded setting, we compi-
le a list of affixes and seed it into the grammar trees
before learning the segmentation model. However,
unlike Eskander et al. (2016), where the affixes are
collected from online resources by someone who
may have never studied the language of interest, in
this study we use affixes that are carefully compiled
by an expert linguist who specializes in Georgian,
resulting in more accurate linguistic priors. With
that goal in mind, a total of 119 affixes are co-
llected from the leading reference grammar book
(Aronson, 1990).

3. Evaluation Data

We annotate two datasets with morphological
segmentation that we use as the gold standard to
evaluate our segmentation models for Japanese and
Georgian. Both datasets are composed of 1,000
words that are randomly sampled from the most
frequent 50,000 words in Wikipedia and segmented
into their basic morphemes3, similar to the data of
the Morpho Challenge shared task #. Table 1 lists
segmentation examples for both languages.

The Japanese gold segmentation was created by
a native-speaker linguist. For Georgian, which has
highly complex morphology, we started with the
gold-standard dataset of 1000 words introduced
by Eskander et al. (2020), which was built by an
untrained native speaker and contained only one

3The Georgian dataset contains five non-words and three
phonetic spellings of English character names.
*http://morpho.aalto.fi/events/morphochallenge/

Japanese
Word Segmentation
WXL W+ E+ L7
S L C Ak + L+ ¢
MOONERLA D+ o5N+ £+ A
Georgian
Category Word Segmentation
0+P+P+s+m
Verb 0Jp7dsm of6 3% o
030 + 01 + QA0 + 33 +0
Noun oo GoBigo 0130030683 +0
Numeral plaalepicilogly g ; o:;%?;: +8 %m o
30 +b+0
Other 30@0 30b +0

Table 1: Japanese and Georgian segmentation examples

possible segmentation per word. An expert in Geor-
gian then corrected 193 examples in the data and
further annotated 116 words for two possible alter-
native segmentations. In addition, the expert coded
each word based on its syntactic category: verbs
(359), nouns (475), numerals (44) and other (122).

4. Evaluation and Results

4.1. Experimental Setup

We evaluate our morphological-segmentation
models for Japanese in the Standard (STD) and
Cascaded (CAS)> settings, both with generic
and language-specific (LS) grammar definitions.
For Georgian, we evaluate our morphological-
segmentation models in the Standard (STD), Cas-
caded (CAS) and Scholar-Seeded (SS) settings, in
addition to the proposed Scholar-Seeded setting
with linguist-provided affixes (SS-Ling).

We perform the evaluation in a transductive man-
ner, where the unsegmented words in the gold stan-
dard are part of the training sets; this is common in
evaluating unsupervised and minimally-supervised
morphological segmentation (Poon et al., 2009;
Sirts and Goldwater, 2013; Narasimhan et al., 2014,
Eskander et al., 2016, 2019, 2020). For the metrics,
we use Boundary Precision and Recall (BPR) and
EMMA-2 (Virpioja et al., 2011). BPR is the clas-
sical metric for evaluating morphological segmen-
tation; it compares the boundaries in the proposed
segmentation to those in the reference. EMMA-2

SFor the Cascaded setup, we use the high-precision gram-
mar PrStSu2a+SM defined by Eskander et al. (2016) as the
base grammar.
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Language  Setting BPR EMMA-2
Prec. Recall FI1-Score \ Prec. Recall FI1-Score

Morfessor 81.4 77.2 79.3 91.5 80.1 85.4

Japanese AG STD 81.7 77.4 79.5 91.0 81.8 86.1
AG CAS 80.9 78.2 79.5 90.8 82.0 86.2
AG STD-LS | 83.5 79.3 81.3 92.0 82.5 87.0
AG CAS-LS | 828 79.3 81.0 91.1 82.6 86.6
Morfessor 79.2 54.6 64.6 88.5 56.1 68.7
AG STD 81.8 69.0 74.9 87.8 65.5 75.0

Georgian  AG CAS 83.5 70.4 76.4 88.6 67.2 76.4
AG SS 84.5 69.1 76.0 89.3 65.2 75.4
AG SS-Ling | 84.6 82.4 83.5 87.6 78.2 82.6

Table 2: Morphological-segmentation performance for Japanese and Georgian using the BPR and EMMA-2 me-
trics. The best Fl-score per language-metric pair is in bold. AG = Adaptor Grammars. STD = Standard. CAS =
Cascaded. STD-LS = Standard with a language-specific grammar. CAS-LS = Cascaded with a language-specific
grammar. SS = Scholar-Seeded. SS-Ling = Scholar-Seeded with linguist-provided affixes

BPR EMMA-2
Category AG SS AG SS-Ling AG SS AG SS-Ling
Prec. Recall F1-Score Prec. Recall F1-Score |Prec. Recall F1-Score Prec. Recall F1-Score
Noun 744 79.6 769 746 904 81.8 87.4 78.7 82.8 84.4 86.8 85.6
Verb 95.8 50.5 66.1 96.6 68.9 80.4 96.4 49.2 65.1 96.1 69.6 80.7
Numeral | 93.9 74.1 82.8 879 84.8 86.3 873 655 74.8 81.6 66.0 73.0
Other 87.0 81.6 842 867 90.3 88.4 924 79.0 852 92.0 85.8 88.8

Table 3: Category-wise morphological-segmentation performance for Georgian using the BPR and EMMA-2 me-
trics. AG = Adaptor Grammars. SS = Scholar-Seeded. SS-Ling = Scholar-Seeded with linguist-provided affixes.

is based on matching the morphemes in the pro-
posed segmentation to those in the reference in a
many-to-one assignment setup.

We evaluate our system versus two state-of-the-
art unsupervised baselines: MorphAGram without
the use of linguistic priors and Morfessor (Virpioja
et al., 2013) 6. Morfessor is a commonly-used fra-
mework for unsupervised morphological segmenta-
tion. It is based on an HMM model that relies on the
Minimum Description Length (MDL) concept for
deriving the optimal segmentation (Creutz and La-
gus, 2007b). Since our approach does not assume
access to manually annotated segmentation, it is not
directly comparable to semi-supervised approaches
that rely on such annotations (Ruokolainen et al.,
2014; Kann et al., 2018). Finally, we report all the
Adaptor-Grammar results as the average over three
runs of different randomization parameters.

4.2. System Performance

Table 2 reports the overall performance of our
models for both Japanese and Georgian, while Ta-
ble 3 shows the results per part-of-speech category
for Georgian.

For Japanese, the use of a language-specific

Shttps://morfessor.readthedocs.io/en/latest/

grammar definition improves both precision and re-
call, resulting in BPR F1-score error reductions of
8.9 % and 7.1 % over the generic Standard and Cas-
caded settings, respectively, and a BPR F1-score
error reduction of 9.8 % over Morfessor.

For Georgian, the use of linguist-provided see-
ded affixes improves both precision and recall, whe-
re the recall significantly increases by absolute
13.3 % over using an affix list of lower quality. In
addition, the proposed linguistic priors result in
BPR F1-score error reductions of 34.2 %, 30.0 %
and 31.1 % over the Standard, Cascaded and re-
gular Scholar-Seeded settings, respectively, and a
BPR Fl-score error reduction of 53.3 % over Mor-
fessor. Analysing results per category, verbs and
nouns receive the biggest F1-score improvements
of absolute 14.3 % and 4.9 %, respectively, with the
use of linguist-provided affixes.

A similar pattern of results is found with EMMA -
2. Finally, all the improvements due to the use of
linguistic priors are statistically significant (P <
0.01) on both metrics.

4.3. Error Analysis

Table 4 lists some examples of correctly and in-
correctly segmented words by our Japanese and
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Word Gold Segmentation

STD Segmentation

STD-LS Segmentation

B, B+ i B+ @ik B+ i
Japanese ZHLE 4+ B+ C+ B+ 4+ B+
EoNEHE E+oN+F+HA EH+N+FEHA B+on+ FHA

ozt K+ B+ ozt RN+ A5+ N+ L5+ 5

Word Gold Segmentation STD Segmentation SS Segmentation SS-Ling Segmentation

S QoG+ 0 QUG+ 0 QoG+ 0 QUG+ 0
Georgian Aob @3+ ob ﬁf b @3+ ob A3+ ob

33039 go M 39 300Mm 3 8 go Om 39 383 o

Bsmn Wé+ 0 B+ Ao B+ B+ 0 W@+ 0

Table 4: Examples of output segmentations for Japanese and Georgian. STD = Standard. STD-LS = Standard
with a language-specific grammar. SS = Scholar-Seeded. SS-Ling = Scholar-Seeded with linguist-provided affixes.

Incorrect morphemes are marked in red.

Georgian segmentation models. We discuss the
most prominent observations below.

Japanese: Both the STD and STD-LS models
perform well on prefix segmentation, achieving
F1-scores of more than 90 % in the detection of
several one-character prefixes, such as 3 and
Z. However, STD-LS outperforms its language-
independent counterpart in the detection of stems,
where compounding is explicitly modeled. For
instance, STD and STD-LS achieve Fl-scores of
15.8 % and 98.6 %, respectively, in the detection
of the common stem © A1 (be). On the other hand,
when either model consistently fails to detect a spe-
cific morpheme, the other model fails as well. For
example, neither model can detect the morphemes

A and H>» 7.

Georgian: SS-Ling outperforms both STD and
SS§ at discovering the top most frequent one-letter
morphemes, suchas o, s, b, 9, 9, mand 3, achie-
ving an average F1-score of 76.0 %, compared to
57.7% and 57.3 % by STD and SS, respectively. In
addition, SS and STD suffer lower precision as they
tend to oversegment the morphemes represented
by a single letter. Similarly, SS-Ling can recognize
the most frequent two-letter morphemes, namely
70 and s, with absolute increases in precision
of 59.0 % and 62.0 % over STD and SS, respecti-
vely; both morphemes are explicitly seeded into
the SS-Ling grammar prior to training the model.

5. Conclusion and Future Work

We proposed two types of linguistic priors for
minimally-supervised morphological segmentation
using Adaptor Grammars. The first prior is in the
form of defining a language-specific grammar, whi-

le the second relies on compiling a list of linguist-
provided affixes and seeding it into the grammars.
Our approaches result in error reductions of 8.9 %,
for Japanese, and 34.2 %, for Georgian, as compa-
red to the state-of-the-art system. In future work,
we plan to explore the use of linguistic priors that
apply to a group of morphologically similar low-
resource languages.
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