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Abstract

In the absence of the Axiom of Choice, the “small” cardinal ω1 can exhibit prop-

erties more usually associated with large cardinals, such as strong compactness and

supercompactness. For a local version of strong compactness, we say that ω1 is X-

strongly compact (where X is any set) if there is a fine, countably complete measure

on ℘ω1(X). Working in ZF + DC, we prove that the ℘(ω1)-strong compactness and

℘(R)-strong compactness of ω1 are equiconsistent with AD and ADR +DC respectively,

where AD denotes the Axiom of Determinacy and ADR denotes the Axiom of Real

Determinacy. The ℘(R)-supercompactness of ω1 is shown to be slightly stronger than

ADR +DC, but its consistency strength is not computed precisely. An equiconsistency

result at the level of ADR without DC is also obtained.
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1 Introduction

We assume ZF + DC as our background theory unless otherwise stated. (However, we will

sometimes weaken our choice principle to a fragment of DC.) In this setting, it is possible

for ω1 to exhibit “large cardinal” properties such as strong compactness. The appropriate

definition of strong compactness is made in terms of measures (ultrafilters) on sets of the

form ℘ω1(X).

Definition 1.1. Let X be an uncountable set. A measure µ on ℘ω1(X) is countably complete

if it is closed under countable intersections and fine if it contains the set {σ ∈ ℘ω1(X) : x ∈
σ} for all x ∈ X. We say that ω1 is X-strongly compact if there is a countably complete

fine measure on ℘ω1(X).

For uncountable sets X and Y , we will often use the elementary fact that if ω1 is X-

strongly compact and there is a surjection from X to Y , then ω1 is Y -strongly compact as

witnessed by a push-forward measure.

In the absence of AC, it may become necessary to consider degrees X of strong compact-

ness that are not wellordered. The first and most important example is X = R. The theory

ZFC + “there is a measurable cardinal” is equiconsistent with the theory ZF + DC + “ω1 is

R-strongly compact.” (For a proof of the forward direction, see Trang [19]. The reverse direc-

tion is proved by noting that ω1 is ω1-strongly compact, hence measurable, and considering

an inner model L(µ) where µ is a measure on ω1.)

Another way to obtain R-strong compactness of ω1 that is more relevant to this paper

is by the Axiom of Determinacy. If AD holds then by Martin’s cone theorem, for every set

A ∈ ℘ω1(R) the property {x ∈ R : x ≤T d} ∈ A either holds for a cone of Turing degrees d

or fails for a cone of Turing degrees d, giving a countably complete fine measure on ℘ω1(R).

Besides R, another relevant degree of strong compactness is the cardinal Θ, which is

defined as the least ordinal that is not a surjective image of R. In other words, Θ is the

successor of the continuum in the sense of surjections. If the continuum can be wellordered

then this is the same as the successor in the sense of injections (that is, c+.) However in

general it can be much larger. For example, if AD holds then Θ is strongly inaccessible by

Moschovakis’s coding lemma, but on the other hand there is no injection from ω1 into R.

If ω1 is R-strongly compact, then pushing forward a measure witnessing this by surjec-

tions, we see that ω1 is λ-strongly compact for every uncountable cardinal λ < Θ. In general

all we can say is Θ ≥ ω2 and so this does not give anything beyond measurability of ω1. How-

ever, it does suggest two marginal strengthenings of the hypothesis “ω1 is R-strongly com-

pact” with the potential to increase the consistency strength beyond measurability. Namely,

we may add the hypothesis “ω1 is ω2-strongly compact” or the hypothesis “ω1 is Θ-strongly



compact.” We will consider both strengthenings and obtain equiconsistency results in both

cases.

In order to state and obtain sharper results, we first recall some combinatorial conse-

quences of strong compactness. Let λ be an infinite cardinal and let ~C = (Cα : α ∈ lim(λ))

be a sequence such that each set Cα is a club subset of α. The sequence ~C is coherent if for

all β ∈ lim(λ) and all α ∈ lim(Cβ) we have Cα = Cβ ∩α. A thread for a coherent sequence ~C

is a club subset D ⊂ λ such that for all α ∈ lim(D) we have Cα = D∩α. An infinite cardinal

λ is called threadable if every coherent sequence of length λ has a thread. Threadability of

λ is also known as ¬�(λ).

The following result is a well-known consequence of the “discontinuous ultrapower” char-

acterization of strong compactness. However, without AC  Loś’s theorem may fail for ul-

trapowers of V , so we must verify that the argument can be done using ultrapowers of

appropriate inner models instead.

Lemma 1.2. Assume ZF + DC + “ω1 is λ-strongly compact” where λ is a cardinal of un-

countable cofinality. Then λ is threadable.

Proof. Let ~C = (Cα : α ∈ lim(λ)) be a coherent sequence such that each set Cα is a

club in α. Consider the ZFC model L[{(α, β) : α ∈ Cβ}], which we abbreviate as L[~C].

Let µ be a countably complete fine measure on ℘ω1(λ) and let j : L[~C] → Ult(L[~C], µ)

be the corresponding ultrapower map, where the ultrapower is defined using all functions

℘ω1(λ)→ L[~C] in V . The ultrapower is wellfounded by countable completeness and DC, so

it has the form L[j(~C)]. Note that j is discontinuous at λ: for any ordinal α < λ, we have

j(α) ≤ [σ 7→ supσ]µ < j(λ) where the first inequality holds because µ is fine and the second

inequality holds because λ has uncountable cofinality.

Now the argument continues as usual. We define the ordinal γ = sup j[λ] and note that

γ < j(λ) and that j[λ] is an ω-club in γ. Therefore the set j[λ]∩ lim(j(~C)γ) is unbounded in

γ, so its preimage S = j−1[lim(j(~C)γ)] is unbounded in λ. Note that the club Cα is an initial

segment of Cβ whenever α, β ∈ S and α < β; this is easy to check using the elementarity

of j and the coherence of j(~C). Therefore the union of clubs
⋃
α∈S Cα threads the sequence

~C.

If λ < Θ then DCR suffices in place of DC:

Lemma 1.3. Assume ZF + DCR + “ω1 is R-strongly compact.” Let λ < Θ be a cardinal of

uncountable cofinality. Then λ is threadable.

Proof. Let ~C be a coherent sequence of length λ. First, note that we may pass to an

inner model containing ~C where DC holds in addition to our other hypotheses. Namely,
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let f : R → λ be a surjection, let µ be a fine, countably complete measure on ℘ω1(R),

let C = {(α, β) : α ∈ Cβ}, and consider the model M = L(R)[f, µ, C], where the square

brackets indicate that we are constructing from f , µ and C as predicates. (In the case of µ,

this distinction is important: we are not putting all elements of µ into the model.)

It can be easily verified that all of our hypotheses are downward absolute to the model

M , and that our desired conclusion that ~C has a thread is upward absolute from M to V .

In the model M every set is a surjective image of R × α for some ordinal α, so DC follows

from DCR by a standard argument. Moreover, ω1 is λ-strongly compact in M by pushing

forward the measure µ (restricted to M) by the surjection f , so the desired result follows

from Lemma 1.2.

A further combinatorial consequence of strong compactness of ω1 is the failure of Jensen’s

square principle �ω1 . In fact ¬�ω1 follows from the assumption that ω2 is threadable or

singular (note that successor cardinals may be singular in the absence of AC.)

Lemma 1.4. Assume ZF. If ω2 is singular or threadable, then ¬�ω1.

Proof. Suppose toward a contradiction that ω2 is singular or threadable and we have a �ω1-

sequence (Cα : α ∈ lim(ω2)). If ω2 is singular, we do not need coherence of the sequence to

reach a contradiction. Take any cofinal set Cω2 in ω2 of order type ≤ ω1 and recursively define

a sequence of functions (fα : α ∈ [ω1, ω2]) such that each function fα is a surjection from ω1

onto α, using our small cofinal sets Cα at limit stages. Then the function fω2 is a surjection

from ω1 onto ω2, a contradiction. On the other hand, if ω2 is regular and threadable, take a

thread Cω2 through the square sequence. Then by the usual argument the order type of Cω2

is at most ω1 + ω, contradicting the regularity of ω2.

Now we can state our equiconsistency results and prove their easier directions.

Theorem 1.5. The following theories are equiconsistent:

1. ZF + DC + AD.

2. ZF + DC + “ω1 is ℘(ω1)-strongly compact.”

3. ZF + DC + “ω1 is R-strongly compact and ω2-strongly compact.”

4. ZF + DC + “ω1 is R-strongly compact and ¬�ω1.”

Proof. (1) =⇒ (2): Under AD, Martin’s cone theorem implies that ω1 is R-strongly compact.

There is a surjection from R onto ℘(ω1) by Moschovakis’s coding lemma, so ω1 is ℘(ω1)-

strongly compact as well.
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(2) =⇒ (3): This follows from the existence of surjections from ℘(ω1) onto R and ω2.

(3) =⇒ (4): This follows from Lemmas 1.2 and 1.4.

Con (4) =⇒ Con (1): In Sections 3 and 4, we will show that statement (4) implies

ADL(R).

Moving up the consistency strength hierarchy, the next natural target for an equiconsis-

tency result is the theory ZF + ADR. Here ADR denotes the Axiom of Determinacy for real

games, which has higher consistency strength than AD and cannot hold in L(R). To get

a model of ADR we will need to augment our strong compactness hypothesis somehow, for

example with a hypothesis on Θ or ℘(R). For any set X, we write DCX for the fragment of

DC that allows us to choose ω-sequences of subsets of X.

Theorem 1.6. The following theories are equiconsistent:

1. ZF + ADR.

2. ZF + DC℘(ω1) + “ω1 is R-strongly compact and Θ is singular.”

Proof. Con (1) =⇒ Con (2): By Solovay [11], if ZF + ADR is consistent then so is ZF +

ADR + “Θ is singular.” (In particular Solovay showed that the cofinality of Θ can be count-

able, which implies the failure of DC.) Under ADR we have that ω1 is R-strongly compact

by Martin’s measure (this just follows from AD) and we have DCR (this follows from uni-

formization for total relations on R.) Moreover there is a surjection from R to ℘(ω1) by the

coding lemma, so DCR can be strengthened to DC℘(ω1).

Con (2) =⇒ Con (1): In Sections 5 and 6, we will show that if statement (2) holds,

then statement (1) holds in an inner model of the form L(Ω∗,R) where Ω∗ ⊂ ℘(R). Note

that statement (2) implies that ω2 is either singular (if ω2 = Θ) or threadable (if ω2 < Θ, by

Lemma 1.3) so in either case we have ¬�ω1 by Lemma 1.4. Therefore we can make some use

of the argument for Con (4) =⇒ Con (1) of Theorem 1.5 here, once we check that DC℘(ω1)

suffices in place of DC for this argument.

Finally, we will obtain an equiconsistency result at the level of ZF+DC+ADR. Note that

this theory has stricly higher consistency strength than ZF+ADR. (By contrast, ZF+DC+AD

and ZF + AD are equiconsistent by a theorem of Kechris.)

Theorem 1.7. The following theories are equiconsistent:

1. ZF + DC + ADR.

2. ZF + DC + “ω1 is ℘(R)-strongly compact.”
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3. ZF + DC + “ω1 is R-strongly compact and Θ-strongly compact.”

4. ZF + DC + “ω1 is R-strongly compact and Θ is singular.”

Proof. Con (1) =⇒ Con (2): By Solovay [11], under ZF + ADR we have DC if and only if

Θ has uncountable cofinality, and in a minimal model of ZF + DC + ADR we have that Θ is

singular of cofinality ω1. Assume that we are in such a minimal model of ZF + DC + ADR

and take a cofinal increasing function π : ω1 → Θ.

We can express ℘(R) as an increasing union
⋃
α<ω1

Γα where the pointclass Γα consists

of all sets of reals of Wadge rank at most π(α). For each α < ω1 there is a surjection from R
onto Γα, so ω1 is Γα-strongly compact. Moreover, ADR implies that there is a uniform way

to choose, for each α < ω1, a countably complete fine measure µα on ℘ω1(Γα) witnessing this

fact (namely the unique normal fine measure; see Woodin [23, Theorem 4].)

Using a countably complete nonprincipal measure ν on ω1 (which exists because ω1 is

ω1-strongly compact) we can assemble these measures µα into a countably complete fine

measure µ∗ on ℘ω1(℘(R)) as follows: for A ⊆ ℘ω1(℘(R)), we say

A ∈ µ∗ ⇐⇒ ∀∗ναA ∩ ℘ω1(Γα) ∈ µα.

It’s easy to verify that µ∗ is countably complete because ν and the µα’s are countably

complete. Likewise, it’s easy to verify that µ∗ is fine because ν is uniform and the µα’s are

fine. Therefore the measure µ∗ witnesses that ω1 is ℘(R)-strongly compact, so statement (2)

holds (in our minimal model of ZF + DC + ADR.)

(2) =⇒ (3): This follows from the existence of surjections from ℘(R) onto R and Θ.

Con (1) =⇒ Con (4): This follows by the aforementioned result of Solovay that in a

minimal model of ZF + DC + ADR the cardinal Θ is singular of cofinality ω1 (and of course

ω1 is R-strongly compact by Martin’s measure.)

Con(3)∨Con(4) =⇒ Con(1): We will show in Sections 5 and 6 that if either statement

(3) or statement (4) holds, then statement (1) holds in an inner model of the form L(Ω∗,R)

where Ω∗ ⊂ ℘(R). The proof of Con(4) =⇒ Con(1) is similar to the proof of Con (2) =⇒
Con (1) in Theorem 1.7, although one should note that the inner model L(Ω∗,R) does not

simply absorb DC from V ; a bit more argument is required.

The authors would like to thank the referee for a careful reading of this article and for

pointing out several minor errors. The first author would like to thank the NSF for its

generous support through grant DMS-1849295.

7



2 Framework for the core model induction

This section is an adaptation of the framework for the core model induction developed in

[10] and [9], which in turn build on earlier formulations in [7]. For more detailed discussions

on the notions defined below as well as results concerning them, see [10] and [9]. The first

subsection imports some terminology from the theory of hybrid mice developed in [10] and

[9]. The terminology in this subsection will be used in Subsection 2.3 to define core model

induction operators and will be needed in many other places in the paper. The reader may

skip them on the first read and come back when needed. Subsection 2.2 summarizes the

theory of hod mice developed in [3]. Subsection 2.3 defines core model induction operators

which are the operators we will construct in this paper.

2.1 Ω-premice, strategy premice, and g-organized Ω-premice

For a complete theory of F -premice for operators F , the reader is advised to read [9]; for a

detailed treatment of strategy mice, the reader is advised to read [10, Sections 2,3]. We will

use the terminology from these sources from now on.1

The definition below is essentially [10, Definition 3.8]. For explanations about the nota-

tions, see [10, Sections 2,3]. In the following definition, the objects Ω, ϕ,X,A, κ are defined

as in [10, Section 3]. Roughly, Ω is either a κ-strategy or a mouse operator with nice con-

densation properties defined on a cone of Hκ above A ∈ HC, ϕ is a formula in the language

of strategy premice, and X codes the pair (Ω, ϕ).

Definition 2.1. Let t = (Ω, ϕ,X,A, κ) be suitable and M = MX,#
1 (A). We say that M

generically interprets Ω2 iff there are formulas Φ,Ψ in L+ and some γ > δM such that

M|γ � Φ and for any non-dropping ΛX,κ
M -iterate N of M via a countable tree T based on

M|δM,3 any N -cardinal δ, any γ ∈ Ord such that N|γ � Φ & “δ is Woodin”, and any g

which is set-generic over N|γ (with g ∈ V ), we have that R =def (N|γ)[g] is closed under

Ω, and Ω � R is defined over R by Ψ. We say such a pair (Φ,Ψ) generically determines t

(or just Ω).

Let A ∈ HC and let Ω be either an operator or an iteration strategy. We say that (Ω, A)

(or just Ω) is nice iff (Ω, A) is suitable and (tΩ,A)2 generically interprets Ω.4 We say that

1The theory of strategy mice can be developed as a special case of the general theory of operator mice
in [9] but the authors of the papers decided to define strategy mice as J -structures as this approach seems
more convenient and gave the right notation for proving strong condensation properties of strategy mice like
[10, Lemma 4.1].

2In [10, Definition 3.8], the terminology is: t determines itself on generic extensions. We will later define
a notion of generic determination which is slightly different.

3δM is the Woodin cardinal of M and ΛX,κM denotes the unique X-(0, κ)-iteration strategy for M.
4tΩ,A is a 5-tuple defined [10, page 27] and (tΩ,A)2 is the third component of tΩ,A.
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(Φ,Ψ) generically determines (Ω, A) iff (Φ,Ψ) generically determines tΩ,A.

We fix a nice (Ω, A) (or just nice Ω; we will at times ignore A), X = (tΩ,A)2, M, ΛM = Λ,

and (Φ,Ψ) for the rest of the section. We define MX
1 (A) from M in the standard way.

See [10, Section 3] for a proof that if Ω = Σ is a strategy (of a hod mouse or suitable

mouse) with branch condensation and is fullness preserving with respect to mice in some

sufficiently closed, determined pointclass Γ or if Σ is the unique strategy of a sound Y -mouse

for some operator Y ,MY,]
1 generically interprets Y , and Y condenses finely (see [9, Definition

3.18]) then M generically interprets Ω.

Definition 2.2 (Sargsyan, [3]). Let M be a transitive structure. Let Ġ be the name for the

generic G ⊆ Col(ω,M) and let ẋĠ be the canonical name for the real coding {(n,m) | G(n) ∈
G(m)}, where we identify G with

⋃
G. The tree TM for making M generically generic is the

iteration tree T on M of maximal length such that:

1. T is via Λ and is everywhere non-dropping.

2. T � o(M) + 1 is the tree given by linearly iterating the first total measure of M and its

images.

3. Suppose lh(T ) ≥ o(M) + 2 and let α + 1 ∈ (o(M), lh(T )). Let δ = δ(MT
α ) and let

B = B(MT
α ) be the extender algebra of MT

α at δ. Then ETα is the extender E with least

index in MT
α such that for some condition p ∈ Col(ω,M), p 
“There is a B-axiom

induced by E which fails for ẋĠ”.

Assuming that M is sufficiently iterable, then TM exists and has successor length.

The operator gΩ, defined in [10, Definition 3.42], and used in building g-organized Ω-

premice, feeds in branches for such TM’s for various M C N , where N is a g-organized

Ω-premouse. We will also ensure that being such a structure is first-order — other than

wellfoundedness and the correctness of the branches — by allowing sufficient spacing between

these branches (see [10, Remark 3.37]).

[10] also defines the notion Θ-g-organized Ω-premouse. The difference between the two

hierarchies is very minor (see the remark 2.5). The main difference is that in the latter

hierarchy, say N is a Θ-g-organized Ω-premouse, and M C N is an “activation level”, i.e.

branch information of TM is to be fed into the branch predicate of N , if there is a level

M E R E N such that R = (M|o(M) + γ,EM|o(M)+γ, [0, γ)TM), where γ < lh(TM) and

R � “Θ doesn’t exist”, then we stop feeding in further branch information of TM beyond

the least such R. The reader can again see [10, Section 3] for a more extensive treatment of

these notions.
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If x is a transitive set, then o(x) is defined to be x∩Ord. IfM is a (hybrid) premouse over

a transitive set x, then ρk(M) is the least ordinal ρ such that there is some set A ⊆ [x×ρ]<ω

such that A is rΣk(M) but A /∈M.

Suppose (Ω, A) is nice (Ω can be a mouse operator or an iteration strategy).5 Suppose Γ

is an inductive-like pointclass that is determined. Let M = MX,]
1 (A) where X = (t(Ω,A))2;

later on in the paper, we occasionally writeMΩ,]
1 (A) for M. Lp

gΩ(x) is defined as the stack of
gΩ-premiceM over x such thatM is x-sound, there is some n such that ρn+1(M) ≤ o(x) <

ρn(M) and every countable, transitiveM∗ embeddable intoM has an gΩ-(n, ω1+1)-iteration

strategy6 ∆ for a transitive x. We define Lp
gΩ,Γ(x) similarly but demand additionally that

∆ ∈ Γ. For N a gΩ-premouse, let Lp
gΩ
+ (N ) denotes the stack of all g-organized Ω-premice

M such that either M = N , or N CM, N is a strong cutpoint of M, M is o(N )-sound,

and there is n < ω such that ρn+1(M) ≤ o(N ) < ρn(M) andM is countably gΩ-(n, ω1 + 1)-

iterable above o(N ). We define Lp
gΩ,Γ
+ (N ) similarly. These notions can be generalized to

GΩ or any other operator in an obvious way (cf. [10, Definition 2.43]). We define LpGΩ(x)

etc similarly. Θ-g-organized Ω-mice over R are important in the scales analysis generalizing

Steel’s work in Lp(R) (see the remark below).

Definition 2.3. Let Y ⊆ R. We say that Y is self-scaled iff there are scales on Y and R\Y
which are projective (i.e., Σ1

n for some n < ω) in Y .

Definition 2.4. Suppose Ω is nice and Y ⊆ R is self-scaled. We define Lp
gΩ(R, Y ) as the

stack of all g-organized Ω-mice N over (Hω1 , Y ) (with parameter M). We similarly define

Lp
GΩ(R, Y ) as the stack of all Θ-g-organized Ω-mice N over (Hω1 , Y ) (with parameter M).

We also say (Θ-g-organized) Ω-premouse over (R,Y) to in fact mean over (Hω1 , Y ).

Remark 2.5. Switching from the g-organized hierarchy to the Θ-g-organized hierarchy was

for a purely technical purpose, so that various proofs concerning the scales analyses work out

(it is not known to work for the g-organized hierarchy). The two hierarchies are very closely

related. In fact, for Ω and Y as in Definition 2.4, ℘(R)∩ Lp
gΩ(R, Y ) = ℘(R)∩ Lp

GΩ(R, Y ).

SupposeM is an initial segment of the first hierarchy andM is E-active. Note thatM � “Θ

exists” and M|Θ is Ω-closed. By induction below ΘM, M|ΘM can be rearranged into an

initial segment N ′ of the second hierarchy. Above ΘM, we simply copy the E-sequence and

B-sequence7 from M over to obtain an N C Lp
GΩ(R, X) extending N ′. The converse is

5From now on, we typically say “let Ω be a nice operator” in place of this. So Ω is either a mouse operator
in the sense of [9] or an iteration strategy as in [10].

6This implies, among other things, that iterates of M∗ according to the strategy are g-organized Ω-
premice.

7The E-sequence is the extender sequence of M and the B-sequence codes fragments of the strategy of
M.
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similar. Similarly, if Ω is such that LpΩ(R, Y ) is well-defined and Ω relativizes well, then

℘(R) ∩ Lp
gΩ(R, Y ) = ℘(R) ∩ LpΩ(R, Y ). See [10, Remark 4.11].

Let Ω = Σ, where Σ is a nice iteration strategy that appears in core model induction

applications, A ∈ HC transitive such that P ∈ J1(A), X be defined from (Ω, A) as above,

and suppose M = MX,]
1 (A) exists. We have that M generically interprets (Ω, A). Also,

the core model induction will give us that the code of Ω, Code(Ω) (under a natural coding

of subsets of HC by subsets of R) is self-scaled. Thus, we can define Lp
GΩ(R,Code(Ω)) as

above (assuming sufficient iterability of M). A core model induction is then used to prove

that there is a maximal constructibly closed initial segment M of Lp
GΩ(R,Code(Ω)) that

satisfies AD+. What’s needed to prove this is the scales analysis of Lp
GΩ(R,Code(Ω)) from

the optimal hypothesis (similar to those used by Steel; see [15] and [14]). This is carried out

in [10]; we will not go into details here.

2.2 A very brief tale of hod mice

In this paper, a hod premouse P is one defined as in [3]. The reader is advised to consult

[3] for basic results and notations concerning hod premice and mice. Let us mention some

basic first-order properties of a hod premouse P . There is an ordinal λP and sequences

〈(P(α),ΣPα ) | α < λP〉 and 〈δPα | α ≤ λP〉 such that

1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α = 0 or is a successor ordinal then

P � δPα is Woodin; no other P-cardinals are Woodin cardinals of P ;

2. P(0) = Lpω(P|δ0)P ; for α < λP , P(α + 1) = (Lp
gΣPα
ω (P|δα))P ; for limit α ≤ λP ,

P(α) = (Lp
g⊕β<αΣPβ
ω (P|δα))P ;

3. P � ΣPα is a (ω, o(P), o(P))8-strategy for P(α) with hull condensation;

4. if α < β < λP then ΣPβ extends ΣPα .

Hod mice in this paper are g-organized; this is so that S-constructions work out smoothly

as in the pure L[E]-case. We will write δP for δPλP and ΣP = ⊕β<λPΣPβ . Note that P(0) is

a pure extender model. Suppose P and Q are two hod premice. Then P Ehod Q if there

is α ≤ λQ such that P = Q(α). We say then that P is a hod initial segment of Q. (P ,Σ)

is a hod pair if P is a hod premouse and Σ is a strategy for P (acting on countable stacks

of countable normal trees) such that ΣP ⊆ Σ and this fact is preserved under Σ-iterations.

Typically, we will construct hod pairs (P ,Σ) such that Σ has hull condensation, branch

condensation, and is Γ-fullness preserving for some pointclass Γ.

8This just means ΣPα acts on all stacks of ω-maximal, normal trees in P.
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The reader should consult [3] for the definition of B(Q,Σ), and I(Q,Σ). Roughly speak-

ing, B(Q,Σ) is the collection of all hod pairs which are strict hod initial segments of a

Σ-iterate of Q and I(Q,Σ) is the collection of all Σ-iterates of Σ. In the case λQ is limit,

Γ(Q,Σ) is the collection of A ⊆ R such that A is Wadge reducible to some Ψ for which there

is some R such that (R,Ψ) ∈ B(Q,Σ). See [3] for the definition of Γ(Q,Σ) in the case λQ

is a successor ordinal.

[3] constructs under AD+ and the hypothesis that there are no models of “ADR + Θ

is regular” hod pairs that are fullness preserving, positional, commuting, and have branch

condensation. Such hod pairs are particularly important for our computation as they are

points in the direct limit system giving rise to HOD of AD+ models. Under AD+, for hod

pairs (MΣ,Σ), if Σ is a strategy with branch condensation and ~T is a stack onMΣ with last

model N , ΣN ,~T is independent of ~T . Therefore, later on we will omit the subscript ~T from

ΣN,~T whenever Σ is a strategy with branch condensation andMΣ is a hod mouse. In a core

model induction, we don’t quite have, at the moment (MΣ,Σ) is constructed, an AD+-model

M such that (MΣ,Σ) ∈M but we do know that every (R,Λ) ∈ B(MΣ,Σ) belongs to such

a model. We then can show (using our hypothesis) that (MΣ,Σ) belongs to an AD+-model.

2.3 Core model induction operators

Let

Ω∗ = {A ⊆ R | L(A,R) � AD+}.

We assume

(†): There is no model M containing all reals and ordinals such that M �

ADR + “Θ is regular”.

Under this smallness assumption, by work of G. Sargsyan in [3], Ω∗ is a Wadge hierarchy

and furthermore, if M is a model of AD+ then M is a model of Strong Mouse Capturing

(SMC). Operators that we construct in the core model induction will also have the following

additional properties (besides being nice).

In the following, a transitive structure N is closed under an operator Ω if whenever

x ∈ dom(Ω) ∩N , then Ω(x) ∈ N .

Definition 2.6 (relativizes well). Let Ω be an a Y -mouse operator for some operator Y .9

We say that Ω relativizes well if there is a formula φ(x, y, z) such that for any a, b ∈ dom(Ω)

such that a ∈ L1(b), whenever N is a transitive model of ZFC− such that N is closed under

Y and a, b,Ω(b) ∈ N , then Ω(a) ∈ N and is the unique x ∈ N such that N � φ[x, a,Ω(b)].
9Y may be the rud operator, in which case Ω is just a mouse operator in the usual sense.
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Definition 2.7 (determines itself on generic extensions). Suppose Ω is an operator. We say

that Ω determines itself on generic extensions if there is a formula φ(x, y, z) and a parameter

c ∈ HC such that for any countable transitive structure N of ZFC− such that N contains c

and is closed under Ω, for any generic extension N [g] of N in V , Ω ∩ N [g] ∈ N [g] and is

definable over N [g] via (φ, c), i.e. for any e ∈ N [g] ∩ dom(Ω), Ω(e) = d if and only if d is

the unique d′ ∈ N [g] such that N [g] � φ[c, d′, e].

We are now in a position to introduce the core model induction operators that we will

need in this paper. These are particular kinds of mouse operators (in the sense of [9, 3.43])

that are constructed during the course of the core model induction. These operators can be

shown to satisfy the sort of condensation described in [9, Section 3] (e.g. condense finely),

relativize well, and determine themselves on generic extensions.

Definition 2.8. Let Γ be an inductive-like pointclass. For x ∈ R, CΓ(x) denotes the set of

all y ∈ R such that for some ordinal γ < ω1, y (as a subset of ω) is ∆Γ({γ, x}).

Let x ∈ HC be transitive and let f : ω → x be a surjection. Then cf ∈ R denotes the

code for (x,∈) determined by f . And CΓ(x) denotes the set of all y ∈ HC ∩ ℘(x) such that

for all surjections f : ω → x we have f−1(y) ∈ CΓ(cf ).

Definition 2.9. Let (Ω, A) be as above, t ∈ HC with M ∈ J1(t). Let 1 ≤ k < ω. A premouse

N over t is Ω-Γ-k-suitable (or just k-suitable if Γ and Ω are clear from the context) iff there

is a strictly increasing sequence 〈δi〉i<k such that

1. ∀δ ∈ N , N �“δ is Woodin” if and only if ∃i < k (δ = δi).

2. o(N ) = supi<ω(δ+i
k−1)N .

3. If N|η is a strong cutpoint of N then N|(η+)N = Lp
gΩ,Γ
+ (N|η).

4. Let ξ < o(N ), where N �“ξ is not Woodin”. Then CΓ(N|ξ) �“ξ is not Woodin”.

We write δNi = δi; also let δN−1 = 0 and δNk = o(N ).10

Let N be 1-suitable and let ξ ∈ o(N ) be a limit ordinal, such that N �“ξ isn’t Woodin”.

Let Q / N be the Q-structure for ξ. If ξ is a strong cutpoint of N then Q / Lp
gΩ,Γ
+ (N|ξ)

by 3. Assume now that N is reasonably iterable. If ξ is a strong cutpoint of Q, our mouse

capturing hypothesis combined with 4 gives that Q/Lp
gΩ,Γ
+ (N|ξ). If ξ is an N -cardinal then

indeed ξ is a strong cutpoint of Q, since N has only finitely many Woodins. If ξ is not a

strong cutpoint of Q, then by definition, we do not have Q / Lp
gΩ,Γ
+ (N|ξ). However, using

10We could also define a suitable premouse N as a Θ-g-organized F-premouse and all the results that
follow in this paper will be unaffected.
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∗-translation (see [13]), one can find a level of Lp
gΩ,Γ
+ (N|ξ) which corresponds to Q (and this

level is in CΓ(N|ξ)).
If Ω is a nice operator and Σ is an iteration strategy for a Ω-Γ-1-suitable premouse P

such that Σ has branch condensation and is Γ-fullness preserving (for some pointclass Γ),

then we say that (P ,Σ) is a Ω-Γ-suitable pair or just Γ-suitable pair or just suitable pair if

the pointclass and/or the operator Ω is clear from the context (this notion of suitability is

not related to the one mentioned in Definition 2.1).

Definition 2.10 (Core model induction operators). Suppose (P ,Σ) is a G-Ω∗-suitable pair

for some nice operator G or a hod pair such that Σ has branch condensation and is Ω∗-fullness

preserving. Let Ω = Σ (note that Ω is suitable). Assume Code(Ω) is self-scaled. We say J

is a Σ-core model induction operator or just a Σ-cmi operator if one of the following holds:

1. J is a nice Ω-mouse operator (or g-organized Ω-mouse operator) defined on a cone

of Hω1 above some a ∈ Hω1. Furthermore, J condenses finely, relativizes well and

determines itself on generic extensions.

2. For some α ∈ OR such that α ends either a weak or a strong gap in the sense of [15]

and [10], letting M = Lp
GΩ(R,Code(Ω))||α and Γ = (Σ1)M , M � AD+ +MC(Σ).11 For

some transitive b ∈ Hω1 and some 1-suitable (or more fully Ω-Γ-1-suitable) Ω-premouse

Q over b, J = Λ, where Λ is an (ω1, ω1)-iteration strategy for Q which is Γ-fullness

preserving, has branch condensation and is guided by some self-justifying-system (sjs)
~A = (Ai : i < ω) such that for some real x, for each i, Ai ∈ ODM

b,Σ,x and ~A seals the

gap that ends at α.12

3 From Ω to M],Ω
1

Suppose (P ,Σ) is a G-Ω∗-suitable pair for some nice operator G such that Σ has branch

condensation and is Ω∗-fullness preserving. (Recall that Ω∗ is the pointclass of all sets of

reals A such that L(A,R) � AD+.) As a special case we also allow (P ,Σ) = (∅, ∅); the

analysis of this special case is enough to prove Theorem 1.5. In this section we assume the

strong hypothesis

ZF + DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1 .”

11MC(Σ) stands for Mouse Capturing relative to Σ which says that for x, y ∈ R, x is OD(Σ, y) (or
equivalently x is OD(Ω, y)) iff x is in some g-organized Ω-mouse over y. SMC is the statement that for every
hod pair (P,Σ) such that Σ is fullness preserving and has branch condensation, MC(Σ) holds.

12This implies that ~A is Wadge cofinal in Env(Γ), where Γ = ΣM1 . Note that Env(Γ) = ℘(R)M if α ends

a weak gap and Env(Γ) = ℘(R)LpΣ(R)|(α+1) if α ends a strong gap.
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Note that this follows from any of the hypotheses of Theorems 1.5, 1.6, and 1.7.

Let Ω be a Σ-CMI operator. (If (P ,Σ) = (∅, ∅) then Ω is an ordinary CMI operator of

the kind typically used in proving ADL(R).) We will use our strong hypothesis to obtain the

MΩ,]
1 operator, which is the relativization of the M]

1 operator to a fine-structural hierarchy

where the levels are obtained by repeated applications of the Ω operator (rather than the rud

operator, as in ordinary mice. Basically, for each x in dom(Ω), if Ω is a strategy, MΩ,]
1 (x)

isMX,]
1 (x), where X = (Ω, ϕmin) and ϕmin is defined as in [10, Definition 3.2] and otherwise

MΩ,]
1 (x) is defined as in [9].)

The argument is similar to that used to obtain the ordinaryM]
1 operator from the failure

of square at a measurable cardinal in ZFC. The relativization of the standard arguments

from M]
1 to MΩ,]

1 presents no special problems, but working without the Axiom of Choice

requires a bit of care because ultrapowers of V may fail to satisfy  Loś’s theorem. However,

 Loś’s theorem does hold for ultrapowers of wellordered inner models of V , and more generally

for ultraproducts of families of inner models that are uniformly wellordered in the sense that

there is a function associating to each model a wellordering of that model.

The relevance of Jensen’s square principle �κ here is that it holds for all infinite cardinals

κ in all Mitchell–Steel extender models (mice) by Schimmerling and Zeman [6, Theorem 2].

The proof of this result is sufficiently abstract that it relativizes from mice to Ω-mice in a

straightforward manner. Therefore if �κ fails in V , we get a failure of covering: the successor

of κ cannot be computed correctly by any Ω-mouse.

Because we are not assuming the Axiom of Choice, we will not construct the core model

in V but rather in an inner model H of V satisfying ZFC. This model H will be obtained as

a kind of HOD. A method used by Schimmerling and Steel [5] to prove covering results for

the core model of V can be adapted to the core model of H, provided that we can show that

H is close enough to V in the relevant sense. We show this closeness by using Vopěnka’s

theorem, similar to Schindler [8].

The following lemma is the main result of this section. It will form the “successor step”

in the proofs of the main theorems.

Lemma 3.1. Assume ZF+DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1.” Let (P ,Σ) be a

G-Ω∗-suitable pair for some nice operator G, a hod pair such that Σ has branch condensation

and is Ω∗-fullness preserving, or (∅, ∅). Let Ω be a Σ-CMI operator defined on a cone in

H(ω1) over some element a ∈ H(ω1). Then for every element x of this cone, MΩ,]
1 (x) exists.

Proof. First, note that we may assume without loss of generality that full DC holds, by

passing to the inner model L(℘(ω1),Σ,Ω)[µ] where we are constructing relative to a predicate

µ for a fine countable complete measure on ℘ω1(R). The hypothesis and conclusion are
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absolute to this inner model. In particular the model satisfies ¬�ω1 because it computes ω2

correctly, and it satisfies DC℘(ω1) because it contains all countable sequences from ℘(ω1). In

the inner model, this fragment of DC implies full DC by a standard argument using the fact

that every set is the surjective image of ℘(ω1)×α for some ordinal α. Therefore we may use

DC in the argument that follows.

Note that because ω1 is measurable, the operators Ω] and Ω]] are also defined on the

cone in H(ω1) over a. Let x ∈ H(ω1) be in the cone over a. Take a countably complete fine

measure µ on ℘ω1(R). Because µ-almost every set σ contains a real coding x, for such σ we

can define the inner model

Hσ = HOD
LΩ] (σ)
{Ω,x} .

A few remarks on notation: The model LΩ](σ) is the proper class model that is obtained

by iterating the top measure of Ω]](σ) out of the universe. It is closed under its version of

Ω even above the point ωV1 up to which Ω was originally defined; however, we will only ever

use the Ω operator of the model LΩ](σ) up to the least indiscernible of that model, which

is the critical point of the top measure of Ω]](σ) and is countable in V . By the parameter

Ω in the definition of Hσ, we really mean the restriction of Ω to the model LΩ](σ), which

is amenable to that model because Ω relativizes well. There will not be any incompatibility

between the various restrictions and extensions of Ω that we use, so we denote them all by

“Ω”.

Let ξσ denote the least indiscernible of LΩ](σ). Note that in the model Hσ we can do

core model theory below ξσ: it is well-known that the existence of an external measure can

substitute for measurability of ξσ in this regard. The operator Ω is amenable to Hσ (again

because it relativizes well) and we can attempt the Kc,Ω(x) construction in Hσ up to the

cardinal ξσ. This is like the ordinary Kc construction, except relativized to Ω and built over

the set x (see [9, Definition 3.28] and [10, Definition 2.46]). By the KΩ existence dichotomy

(see Schindler and Steel [7]) applied in the various models Hσ, one of the following two cases

holds:

1. For µ-almost every set σ ∈ ℘ω1(R), the model Hσ satisfies the statement thatMΩ,]
1 (x)

exists and is ξσ-iterable by the (unique) Ω]-guided strategy.

2. For µ-almost every set σ ∈ ℘ω1(R), the model Kσ, defined as the core model (KΩ(x))Hσ

built up to ξσ, exists and has no Woodin cardinals.

Claim 3.2. If case (1) of the KΩ existence dichotomy holds, then MΩ,]
1 (x) exists in V .

Proof. For µ-almost every set σ ∈ ℘ω1(R), the premouse (MΩ,]
1 (x))Hσ exists by the case

hypothesis. It is sound and projects to x, so it codes itself as a subset of x, which is
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countable. Therefore by the countable completeness of µ we can fix a single Ω-premouse

M over x such that M = (MΩ,]
1 (x))Hσ for µ-almost every set σ. We will show that M is

ω1-iterable in V by the (unique) Ω]-guided iteration strategy. Then (ω1 + 1)-iterablity will

follow by the measurability of ω1.

Let T be a countable Ω]-guided putative iteration tree onM in V , where by “putative”

we mean that its last model, if it has one, may fail to be an Ω-premouse. (Note that an

Ω-premouse is required in particular to be wellfounded, and this is the only requirement

if Ω = rud.) We want to show that if T has successor length, then its last model is an

Ω-premouse, and if it has limit length, then it has a cofinal branch b such that MT
b is an

Ω-premouse and Q(b, T )E Ω](M(T )).

Take a real t that codes T . Then for µ-almost every set σ we have t ∈ σ by the fineness

of µ. Fix a set σ such that Hσ satisfies the statement “MΩ,]
1 (x) exists and is ξσ-iterable,”

(MΩ,]
1 (x))Hσ =M, and t ∈ σ. By Vopěnka’s theorem applied in the model LΩ](σ), the real

t is contained in a generic extension Hσ[g] of Hσ. In fact because ξσ is inaccessible in LΩ](σ)

the poset from the proof of Vopěnka’s theorem (see, for example, Jech [2, Theorem 15.46])

is in (Vξσ)Hσ .

In Hσ the Ω-premouse M is ξσ-iterable by the Ω]-guided strategy, by our assumptions.

Because the Ω] operator condenses finely (cf. [9, Section 3])13 and determines itself on generic

extensions,14 a standard argument (see Schindler and Steel [7, Lemma 2.7.2]) shows thatM
is still ξσ-iterable in Hσ[g] by the Ω]-guided iteration strategy there. We note here that since

ξσ is countable, we really apply generic interpretability of Ω] to a countable submodel of Hσ,

namely V Hσ
ξσ

.

The model Hσ[g] sees that the tree T is Ω]-guided. Therefore in Hσ[g], if T has successor

length, then the last model of T is a wellfounded Ω-premouse, and if T has limit length,

then it has a cofinal branch b such thatMT
b is an Ω-premouse and Q(b, T )EΩ](M(T )). In

either case this fact about T is absolute to V , giving the desired iterability.

Claim 3.3. Case (2) of the KΩ existence dichotomy cannot hold.

Proof. This case is where the hypothesis ¬�ω1 is used. BecauseHσ is defined as the HOD{Ω,x}

of LΩ](σ), we can define the Vopěnka poset Pσ ∈ Hσ to make every countable set of countable

ordinals in LΩ](σ) generic over Hσ. For a countable set of countable ordinals a of LΩ](σ),

let gσ,a denote the Hσ-generic filter over Pσ induced by a, which has the property that

13This is a more detailed version of “condenses well” in the literature.
14In the “gap in scales” case, the proof that the Ω] operator determines itself on generic extensions is

given by Schindler and Steel [7, Section 5.6, proof of Claim 1 in case n = 0]. The proof in the other cases is
a straightforward induction.
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a ∈ Hσ[gσ,a].
15 Note that Pσ ∈ (Vξσ)Hσ because ξσ is inaccessible in LΩ](σ).

Define the ultraproducts

H = [σ 7→ Hσ]µ Ξ = [σ 7→ ξσ]µ

K = [σ 7→ Kσ]µ P = [σ 7→ Pσ]µ.

Every countable set of countable ordinals a in V is seen as a countable set of countable

ordinals in LΩ](σ) for µ-almost every σ (by fineness applied to a real coding a) so we can

define the ultraproduct

ga = [σ 7→ gσ,a]µ.

Then applying  Loś’s theorem to uniformly wellordered families of structures is enough to

establish the following facts.16

• H is an inner model of ZFC with a cardinal Ξ > ωV1 that is large enough to do core

model theory below it.

• K is the core model of H built up to Ξ, and it has no Woodin cardinals.

• P ∈ (VΞ)H is a poset.

• To each countable set of countable ordinals a in V we have assigned an H-generic filter

ga ⊂ P such that a ∈ H[ga].

Now let κ = ωV1 and define the µ-ultrapower map

j : V → Ult(V, µ), crit(j) = κ.

Recall that j itself is not elementary, but its restrictions to wellordered inner models are

elementary. (We remark that one could use any ultrapower map with critical point κ here;

the measurability of ωV1 suffices for the following argument in place of R-strong compactness

of ωV1 , although it is not clear that it would suffice for the previous argument.)

Note that to every set A ⊂ κ in V we can assign a j(H)-generic filter gA ⊂ j(P) such

that A ∈ j(H)[gA]. To see this, consider the sequence of generic filters ~gA = (gA∩α : α < κ),

use the elementarity of the map j � L[H,A,~g], and define gA = j(~gA)κ.

15Unlike in case (1), it is important here that the Vopěnka generic filter gσ,a is induced by a itself and
does not depend on the choice of a real coding a.

16If the measure µ were normal, then  Loś’s theorem could be applied to the models LΩ](σ) themselves to

yield a model LΩ](R) in which H, K, Ξ, and P could then be defined. But this is not possible in general, for
example under AD+V = L(R), where the hypothesis of the lemma holds for Ω = rud but R] does not exist.
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Because �κ fails in V , we have

(κ+)j(K) < (κ+)V

by a result of Schimmerling and Zeman [6, Theorem 2] relativized to the operator j(Ω) and

applied to the model j(K), which is the core model of j(H).

Take a set A ⊂ κ in V coding a wellordering of κ of order type (κ+)j(K) and define g = gA.

Because A ∈ j(H)[g] we get

j(H)[g] � (κ+)j(K) < κ+.

Because g was added by a small forcing below the large cardinal j(Ξ) where j(K) was

constructed, we have that j(K) is still the core model of j(H)[g].17 Therefore (and this is

the crucial point) the model j(H)[g] sees the failure of covering for its own core model at

κ, so we can apply the map j once more to get a contradiction by a standard argument,

outlined below.

Consider the restriction

j � j(H)[g] : j(H)[g]→ j(j(H))[j(g)],

which is an elementary embedding. Because the domain j(H)[g] satisfies (κ+)j(K) < κ+, the

further restriction j � ℘(κ)j(K) is in the codomain j(j(H))[j(g)] by a standard argument due

to Kunen. Therefore we have

F ∈ j(j(H))[j(g)]

where F is the (κ, j(κ))-extender over j(K) derived from the map j � ℘(κ)j(K). Note that

K|κ = j(K)|κ, and κ is an inaccessible cardinal in both ZFC models K and j(K) because it is

a measurable cardinal in V . Therefore j(K)|j(κ) = j(j(K))|j(κ), and j(κ) is an inaccessible

cardinal in both models j(K) and j(j(K)), so we have

(κ+)j(K) = (κ+)j(j(K)) < j(κ) and

℘(κ)j(K) = ℘(κ)j(j(K)).

Therefore the extender F can also be considered as an extender over j(j(K)), and it coheres

with j(j(K)). Note that j(j(K)) is the core model of j(j(H))[j(g)]

This extender F has superstrong type, and we can apply the maximality property of the

17To make sense of the core model of j(H)[g] we are using the fact that j(H)’s version of the operator Ω
determines itself on generic extensions. Any failure of this gets reflected to a countable substructure N . By
fine condensation, the version of Ω in N is in fact Ω∩N . Now we apply the fact that Ω determines itself on
generic extensions of N to get a contradiction.
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core model [5, Theorem 2.3] in the model j(j(H))[j(g)] to show that every proper initial

segment F � ν of F , where ν < j(κ), is on the sequence of the core model j(j(K)). Then in

the core model j(j(K)), these initial segments will witness that κ is a Shelah cardinal. This

will contradict our case hypothesis, which says that there are no Woodin cardinals in K.

Let M = j(j(K)) and let F � ν, where ν < j(κ), be a proper initial segment of F . We

want to see that the extender F � ν is on theM-sequence. Without loss of generality we may

assume that ν is at least the common κ+ of the models j(K) andM. It suffices to show that

the pair (M, F � ν) is weakly countably certified [5, Definition 2.2]. Working in the model

j(H)[g], take a transitive, power admissible set N such that Nω ⊂ N , Vκ ∪ j(K)|((κ+)j(K) +

1) ⊂ N , and |N | = κ. Stepping out to V for a moment and applying Kunen’s argument

again, we have

G ∈ j(j(H))[j(g)]

where G is the (κ, j(κ))-extender over N derived from j � ℘(κ)N . Now in the model

j(j(H))[j(g)] it is easy to verify that the pair (N,G) is a weak A-certificate [5, Defini-

tion 2.1] for (M, F � ν) whenever A is a countable subset of
⋃
n<ω ℘([κ]n) ∩M|ν,18 noting

thatM|ν,M, and j(K) all have the same subsets of [κ]n (because ν is greater than or equal

to the common κ+ of j(K) and M.)

We have shown that if case (1) of the KΩ existence dichotomy holds, then the conclusion

of the lemma holds, and we have shown that case (2) contradicts the hypothesis of the

lemma, so the proof of the lemma is complete.

We remark that because Ω is a Σ-CMI operator, the operator MΩ,]
1 given by the lemma

is also a Σ-CMI operator.

Corollary 3.4. Assume ZF + DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1.” Then PD

holds.

Proof. We show by induction on n < ω that the M]
n operator is total on H(ω1). The base

case is the M]
0 operator, meaning the ordinary sharp operator, which is total on H(ω1)

because ω1 is measurable. For the induction step we apply Lemma 3.1 to go from the

operator Ω =M]
n to the operator MΩ,]

1 , which is stronger than M]
n+1. It follows from the

existence of M]
n(x) for every n < ω and x ∈ R that Projective Determinacy holds.

In the next section we will strengthen this conclusion to ADL(R) and thereby obtain an

equiconsistency result (Theorem 1.5.)

18Or indeed if A is equal to
⋃
n<ω ℘([κ]n) ∩M|ν itself; we don’t need countability, and we don’t need to

choose the certificate (N,G) differently depending on A (or on ν, for that matter.)
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4 The maximal model of AD+ + Θ = θΣ

Throughout this section, we assume the hypothesis of Lemma 3.1, namely we assume

ZF + DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1 .”

Suppose (P ,Σ) is a G-Ω∗-suitable pair for some nice operator G such that Σ has branch

condensation and is Ω∗-fullness preserving. As a special case we also allow (P ,Σ) = (∅, ∅);
the analysis of this special case is enough to prove Theorem 1.5. We first define the “maximal

pointclass of AD+ + Θ = θΣ”.

Definition 4.1. Let (P ,Σ) be as above. Let

ΩΣ =
⋃
{℘(R) ∩ L(A,R) | A ⊆ R and L(A,R) � AD+ + Θ = θΣ + MC(Σ)}.

We note that by (†), ΩΣ is a Wadge hierarchy. In the case (P ,Σ) = (∅, ∅), substitute θ0

for θΣ and ordinary mouse capturing MC for MC(Σ). In this section, we will prove that

L(ΩΣ,R) ∩ ℘(R) = ΩΣ. (4.1)

This has the consequence that L(ΩΣ,R) � AD+ + Θ = θΣ. The model L(ΩΣ,R) is called the

“maximal model of AD+ + Θ = θΣ”.

Let Ω = Σ. The proof of (4.1) depends on understanding models of ZF + AD+ + V =

L(℘(R)) + Θ = θΣ + MC(Σ) as hybrid mice over R, Θ-g-organized as in Section 2.1. (In the

case (P ,Σ) = (∅, ∅), we consider ordinary mice over R, namely levels of Lp(R), and we do

not need Θ-g-organization by Remark 2.5. To keep the notations uniform in this section, we

will use the notation Lp
GΩ(R,Code(Ω)) to denote Lp(R) in the case (P ,Σ) = (∅, ∅).)

Ω is suitable andMΩ,]
1 generically interprets Ω.19 Let Λ be the unique (ω1+1)-Ω-iteration

strategy for MΩ,]
1 . It can be shown to follow from the hypotheses of Theorems 1.6 and 1.7

(in particular using the fact that every uncountable regular cardinal ≤ Θ is threadable) that

the iteration strategy Λ can be extended to a unique (Θ + 1)-iteration strategy with branch

condensation, which we will also call Λ. (This “strategy extension” step is not necessary for

the case (P ,Σ) = (∅, ∅), so we postpone its proof until Section 5.)

As in [10], we use Λ to define Lp
GΩ(R,Code(Ω)). The only thing to check is that (Θ +

1)-iterability is sufficient to run the definition of Lp
GΩ(R,Code(Ω)) in [10]. Suppose by

induction, we have defined a levelMCLp
GΩ(R,Code(Ω)) (in general, the following argument

19By results of [10],MΩ,]
1 generically interprets Ω for (P,Σ) being a G-Ω-suitable pair or a hod pair where

Σ has branch condensation and is Ω-fullness preserving.
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works for any transitive structure M containing R such that there is a surjection from R
onto M) and without loss of generality, we assume M is a tree activation level Nα+1 and

we are trying to define the level Mα+1 (in the notation of [10, Definition 3.38]); this just

means that Mα+1 is the first level above M by which we have fed in all necessary branch

information about TM. It comes down to defining TM as in Definition 2.2. Working in the

model N = L(M,R, f)[Σ],20 where f is a surjection from R onto M, we need to see that

the genericity iteration that defines TM terminates in less than Θ many steps. Suppose not,

letting T ∈ N be the corresponding tree of length Θ + 1. In N , letting γ be a large regular

cardinal > Θ, we can construct some X ≺ Lγ(M,R, f)[Σ] that contains all relevant objects

(in particular, R ∪M∪ {M} ⊂ X) and such that there is a surjection from R onto X. Let

π : MX → X be the uncollapse map and let ξ = crit(π); then ξ < Θ and π(ξ) ≤ Θ. We

note that π can be canonically extended to a map π+ : MX [G]→ Lγ(M,R, f)[Σ][G], where

G ⊆ Col(ω,R) is L(M,R, f)[Σ]-generic. We also note that sinceM∪{M} ⊂ X, ξ > o(M).

We can then use standard arguments (cf. [16, Theorem 3.11]), where X[G] plays the role of

the countable hull X there, to conclude that lh(T ) < Θ. Contradiction. So TM is defined

and has length < Θ.

To prove (4.1), we need the following definition.

Definition 4.2. We define sLp
GΩ(R,Code(Ω)) to be the union of thoseMCLp

GΩ(R,Code(Ω))

such that whenever π : M∗ → M is elementary, P ∈ π−1(HC), and M∗ is countable and

transitive, then M∗ is GΩ-(ω1 + 1)-iterable with unique strategy Λ such that Λ � HC ∈M.

We note that sLp
GΩ(R,Code(Ω)) is an initial segment of Lp

GΩ(R,Code(Ω))21 and it is

trivially constructibly closed. Also, sLp
GΩ(R,Code(Ω)) � Θ = θΣ and the extender sequence

of sLp
GΩ(R,Code(Ω)) is definable over sLp

GΩ(R,Code(Ω)) from Ω, which in turn is defin-

able from Σ. In this section, we outline the core model induction up to the “last gap” of

sLp
GΩ(R,Code(Ω)). This will show that

sLp
GΩ(R,Code(Ω)) � AD+ + MC(Σ).22 (4.2)

From [13, Theorem 17.1] and [4], we know that ifM � V = L(℘(R))+AD++MC(Σ)+Θ = θΣ,

then M � V = L(sLp
GΩ(R,Code(Ω))). This and equation 4.2 imply equation 4.1. It then

suffices to prove equation 4.2.23 The rest of the section is devoted to this task.

20By “Σ”, we mean the set {(T , β) : β ∈ Σ(T )}.
21The initial segment may be strict.
22Ordinal definability from Σ in the definition of MC(Σ) is in the language of set theory, not in the language

of sLp
GΩ(R,Code(Ω)), but by the paragraph above 4.2, this will not make a difference.

23Note that the statement “N C sLp
GΩ(R,Code(Ω))” is absolute between models containing R,N and

closed under Ω.
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The following definitions are obvious generalizations of those defined in [7].

Definition 4.3. We say that the coarse mouse witness condition W ∗,gΩ
γ holds if, whenever

U ⊆ R and both U and its complement have scales in Lp
GΩ(R,Code(Ω))|γ, then for all

k < ω and x ∈ R there is a coarse (k, U)-Woodin-mouse M containing x, closed under

the strategy Λ of MΩ,]
1 with an (ω1 + 1)-iteration strategy whose restriction to Hω1 is in

Lp
GΩ(R,Code(Ω))|γ.24

Remark 4.4. By the proof of [7, Lemma 3.3.5], W ∗,gΩ
γ implies Lp

GΩ(R,Code(Ω))|γ � AD+.

Definition 4.5. An ordinal γ is a critical ordinal in Lp
GΩ(R,Code(Ω)) if there is some U ⊆

R such that U and R\U have scales in Lp
GΩ(R,Code(Ω))|(γ+1) but not in Lp

GΩ(R,Code(Ω))|γ.

In other words, γ is critical in Lp
GΩ(R,Code(Ω)) just in case W ∗,gΩ

γ+1 does not follow trivially

from W ∗,gΩ
γ .

To any Σ1 formula θ(v) in the language of Lp
GΩ(R,Code(Ω)) we associate formulae θk(v)

for k ∈ ω, such that θk is Σk, and for any γ and any real x,

Lp
GΩ(R,Code(Ω))|(γ + 1) � θ[x] ⇐⇒ ∃k < ω Lp

GΩ(R,Code(Ω))|γ � θk[x].

Definition 4.6. Suppose θ(v) is a Σ1 formula (in the language of set theory expanded by a

name for R and a predicate for GΩ), and z is a real; then a 〈θ, z〉-prewitness is an ω-sound

g-organized Ω-premouse N over z in which there are δ0 < · · · < δ9, S, and T such that N

satisfies the formulae expressing

(a) ZFC,

(b) δ0, . . . , δ9 are Woodin,

(c) S and T are trees on some ω × η which are absolutely complementing in V Col(ω,δ9), and

(d) For some k < ω, p[T ] is the Σk+3-theory (in the language with names for each real and

predicate for GΩ) of Lp
GΩ(R,Code(Ω))|γ, where γ is least such that Lp

GΩ(R,Code(Ω))|γ �
θk[z].

If N is also (ω, ω1, ω1+1)-iterable (as a g-organized Ω-mouse), then we call it a 〈θ, z〉-witness.

Definition 4.7. We say that the fine mouse witness condition W
gΩ
γ holds if whenever θ(v)

is a Σ1 formula (in the language L+ of g-organized Ω-premice (cf. [10])), z is a real, and

Lp
GΩ(R,Code(Ω))|γ � θ[z], then there is a 〈θ, z〉-witness N whose

g
Ω-iteration strategy,

when restricted to countable trees on N , is in Lp
GΩ(R,Code(Ω))|γ.

24We demand the strategy has the property that iterates of M according to the strategy are closed under
Λ.
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Lemma 4.8. W ∗,gΩ
γ → W

gΩ
γ for limit γ.

The proof of the above lemma is a straightforward adaptation of that of [7, Lemma 3.5.4].

One main point is the use of the g-organization: g-organized Ω-mice behave well with respect

to generic extensions in the sense that if P is a g-organized Ω-mouse and h is set generic

over P then P [h] can be rearranged to a g-organized Ω-mouse over h.

The induction is guided by the pattern of scales in Lp
GΩ(R,Code(Ω)) as analyzed in

[10]. To show AD+ + MC(Σ) holds in sLp
GΩ(R,Code(Ω)), we show sLp

GΩ(R,Code(Ω)) �

∀α (α is critical→ W ∗,gΩ
α ). Our plan is to show W ∗,gΩ

α+1 assuming W ∗,gΩ
α for α critical. Lemma

3.1 and the subsequent corollary provide the base case for our induction. For α > 0, we have

three cases:

1. α is a successor of a critical ordinal, or α is a limit of critical ordinals and cf(α) = ω.

2. α is an inadmissible limit of critical ordinals and cf(α) > ω.

3. α ends a weak gap or is the successor of an ordinal that ends a strong gap. Say the

gap is [γ, α∗], where α∗ = α if the gap is weak and α∗ + 1 = α if the gap is strong.

Furthermore, sLp
GΩ(R,Code(Ω))|α � MC(Σ) + AD+ + Θ = θΣ.

We deal with the easy case (1) first. In this case, let Γ = Σ
sLp

GΩ(R,Code(Ω))|α
1 . Then CΓ =⋃

n<ω CΓn for some increasing sequence of scaled pointclasses 〈Γn | n < ω〉. By W ∗,gΩ
α , for

each n, we have Σ-cmi operators 〈Km | m < ω〉 that collectively witness Det(
⋃
n Γn). Say

each Km is defined on a cone above some fixed a ∈ HC. The desired mouse operator K0 is

defined as follows: For each transitive and self-wellordered A ∈ HC coding a, J0(A) is the

shortest initial segment M / Lp
gΩ(A) such that M � ZFC− and M is closed under Km for

all m. J0 is total and trivially relativizes well and determines itself on generic extensions

because the Km’s have these properties. We then use Lemma 3.1 to get that J1 =M],J0

1 is

defined on the cone above a by arguments in the previous section. Inductively, we get that

Jn+1 =M],Jn
1 is defined on the cone above a for all n and one easily gets that these operators

are Σ-cmi operators. By Lemma 4.1.3 of [7], this implies W ∗,gΩ
α+1 .

Now we’re on to the case where α is inadmissible and cf(α) > ω. Let φ(v0, v1) be a Σ1

formula and x ∈ R be such that

∀y ∈ R ∃β < α sLp
GΩ(R,Code(Ω))|β � φ[x, y],

and letting β(x, y) be the least such β,

α = sup{β(x, y) | y ∈ R}.

We first define J0 on transitive and self-wellordered A ∈ HC coding x. For n < ω, let
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φ∗n ≡ ∃γ (Lp
GΩ(R,Code(Ω))|γ � ∀i ∈ ω (i > 0⇒ φ((v)0, (v)i) ∧ (γ + ωn) exists)).

For such an A as above, let M be an A-premouse and let G be a Col(ω,A)-generic filter

overM. ThenM[G] can be regarded as a g-organized Ω-mouse over z(G,A) where z(G,A)

is a real coding G,A and is obtained from G,A in some simple fashion.25 Also, let σA be a

term defined uniformly (in M) from A, x such that

(σGA)0 = x

and

{(σGA)i | i > 0} = {ρG | ρ ∈ L1(A) ∧ ρG ∈ R}.

Let ϕ be a sentence in the language of A-premice such that for any A-premouseM,M � ϕ
iff whenever G is M-generic for Col(ω,A), then for any n there is a γ < o(M) such that

M[z(G,A)]|γ is a 〈φ∗n, σGA〉-prewitness.

Then J0(A) is the shortest initial segment of Lp
gΩ(A) which satisfies ϕ, if it exists, and is

undefined otherwise. Using the fact that W
gΩ
α holds, we get that J0(A) exists for all A ∈ HC

coding x because α has uncountable cofinality and there are only countably many 〈φ∗n, ρGA〉.
Also we can then define Jn as before. It’s easy to show again that the Jn’s relativize well

and determine themselves on generic extensions, so they are Σ-cmi operators. This implies

W ∗,gΩ
α+1 .

Lastly, we consider the gap case. Using the notations as in case 3 above, let Γ =

Σ
sLp

GΩ(R,Code(Ω))|γ
1 . If [γ, α∗] is a weak gap, then by the scales analysis at the end of a

weak gap from [14] and [10], we can construct a self-justifying system (sjs) A Wadge-cofinal

in ℘(R) ∩ sLp
GΩ(R,Code(Ω))|α∗.26 If [γ, α∗] is a strong gap, then by the Kechris–Woodin

theorem, AD+ holds in sLp
GΩ(R,Code(Ω))|α, and again by results of [14], [10], and [21],

we also get a self-justifying system A Wadge-cofinal in sLp
GΩ(R,Code(Ω))|α ∩ ℘(R). From

A and arguments in [7, Section 5], there is a pair (Q,Λ) such that Q is Γ-suitable and Λ

is the (ω1, ω1)-strategy for Q guided by A (see the next section for more details on self-

justifying systems). Let J0 = Λ. We assume that A contains the universal Γ-set and hence

the universal Γ̌-set.

Claim 4.9. J0 determines itself on generic extensions.

25This is one of the main reasons that we consider gΩ-mice; this is so that generic extensions of gΩ-mice
can be rearranged to gΩ-mice.

26This means A is a countable collection containing a universal Σ
sLp

GΩ(R,Code(Ω))|γ
1 set, closed under com-

plements and whenever A ∈ A, then there is a scale whose individual norms are coded by sets in A.
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Proof. Let N be a countable transitive structure of ZFC− such that N is closed under J0 (and

hence under Λ). We simply describe a procedure that determines Λ on generic extensions of

N ; the reader may gladly verify that this is enough to prove the claim. Let g ∈ V be generic

over N ; we assume without loss of generality that g ⊆ Col(ω, κ) for some N -cardinal κ and N

has a Col(ω, κ)-name Ȧ for A. The existence of Ȧ follows from [7, Lemma 3.7.5] and the fact

that CΓ(HN
κ+) ⊂ N . The latter follows from a simple genericity iteration argument using the

fact that N is closed under Λ. Let i : Q → R be a HN
κ+-genericity iteration in N according to

Λ. Since R is Γ-suitable, CΓ(HN
κ+) ⊂ R[HN

κ+ ]. Since R[HN
κ+ ] ⊂ N , CΓ(HN

κ+) ⊂ N as claimed.

Let T be a tree according to Λ of limit length in N [g] (the argument for stacks is similar).

If T is short, we can find the Q-structure Q(T ) for T and this in turn determines the branch

b = Λ(T ) ∈ N [g]. The Q-structure Q(M(T )) belongs to CΓ(M(T )) and can be computed

using Ȧg; the point is the universal Γ̌-set belongs to A, so N [g] can use Ȧg to compute the

CΓ-operator correctly.

Suppose T is maximal. By boolean comparison (cf. [7, Section 5.4]), we can find a tree

U ∈ N according to Λ such that

(i) U is non-dropping with last model MU and branch embedding πU ;

(ii) Λ(T ) = b is the unique branch in N [g] with last modelMT and branch embedding πT

such that there is an elementary embedding τ :MT →MU with πU = τ ◦ πT .27

Furthermore, J0 is suitable (we can constructMJ0,]
1 by arguments in the previous section)

andMJ0,]
1 generically interprets J0 by [10, Lemma 4.8]. Note that J0 and A are projectively

equivalent in any reasonable coding. We can use Lemma 3.1 to show W ∗,gΩ
α+1 by constructing

a sequence of operators (Jn : n < ω), where Jn+1 = MJn,]
1 for all n.28 This concludes the

outline of the proof of 4.2 and 4.1.

It now follows easily that we can strengthen the conclusion of Projective Determinacy in

Corollary 3.4 to obtain the following result.

Corollary 4.10. Assume ZF + DC℘(ω1) + “ω1 is R-strongly compact and ¬�ω1.” Then AD

holds in L(R).

This corollary completes the proof of Theorem 1.5. It also forms a significant first step

in the proofs of Theorems 1.6 and 1.7.

27The map τ is a fine-structural embedding. Typically, it is a k-embedding in the sense of [16] where k is
the degree of the tree T .

28These operators, again, can be shown to be Σ-cmi operators. Here and elsewhere, we suppress the formula
ϕmin defined in [10, Definition 3.2] from the definition of J1 = MJ0,]

1 ; to be entirely correct, according to

[10], J1 should be M(J0,ϕmin),]
1 .
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5 A model of AD+ + Θ > θΣ

Suppose (P ,Σ) is a G-Ω∗-suitable pair for some nice operator G such that Σ has branch

condensation and is Ω∗-fullness preserving. As a special case we also allow (P ,Σ) = (∅, ∅).
In the previous section we showed (under our strong hypotheses plus a smallness assumption)

that there is a maximal model of AD+ + V = L(℘(R)) + Θ = θΣ containing all reals and

ordinals. This model has the form L(ΩΣ,R) where L(ΩΣ,R) ∩ ℘(R) = ΩΣ. In this section,

we will go just beyond this model to obtain a model of AD+ + Θ > θΣ containing all reals

and ordinals.

Define the pointclass

Γ = (Σ2
1(Code(Σ))Ω∗ .

Note that we have Γ = (Σ2
1(Code(Σ))ΩΣ ; this is because if a set of reals A ∈ Ω∗ witnesses

a Σ2
1(Code(Σ)) fact about a real x, then there is a set of reals in ∆2

1(Code(Σ), x)L(A,R)

witnessing the same fact about x by Woodin’s ∆2
1 basis theorem relativized to x and Code(Σ)

and applied in the model L(A,R), and such a set of reals can be shown to be in ΩΣ.

Recall from Section 4 that (under our smallness assumption) the maximal model L(ΩΣ,R)

of AD+ +Θ = θΣ is, up to its Θ, a hybrid mouse over R of the form sLp
GΩ(R,Code(Ω)) where

we have defined the operator Ω = Σ. We remind the reader that Code(Ω) is self-scaled.

In particular we have

ΩΣ = ℘(R) ∩ sLp
GΩ(R,Code(Ω)),

so we can reformulate our pointclass as

Γ = (Σ2
1)sLp

GΩ(R,Code(Ω)) = (Σ2
1)sLp

GΩ(R,Code(Ω))|α

where α = (δ2
1)sLp

GΩ(R,Code(Ω)) is the ordinal beginning the last gap of sLp
GΩ(R,Code(Ω)).

(Recall that by Σ2
1 we mean to include Ω, or equivalently Σ, as a parameter. By self-iterability

it makes no difference whether we also include the extender sequence as a parameter.)

Like the pointclass considered in the “gap in scales” case of the core model induction

in Section 4, the pointclass Γ is an inductive-like pointclass with the scale property. Our

next task is to find the next scaled pointclass, or (what is roughly equivalent) to build

a scale on a complete Γ̌ set. Unlike in Section 4, this next scaled pointclass cannot be

found within sLp
GΩ(R,Code(Ω)). The reason is that the complete Γ̌ set

{
(x, y) ∈ R × R :

y /∈ ODsLp
GΩ(R,Code(Ω))

x

}
cannot have any uniformization in sLp

GΩ(R,Code(Ω)), and therefore

cannot have any scale in sLp
GΩ(R,Code(Ω)), by a standard argument.
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We will use our strong hypotheses (as in Theorems 1.6 and 1.7) to build a scale on a

complete Γ̌ set. Each prewellordering of this scale will be in L(ΩΣ,R), or equivalently in

sLp
GΩ(R,Code(Ω)), although the sequence of prewellorderings cannot be, as we just saw.

More directly, what we will show is that the prewellorderings are in a pointclass Env(Γ),

the envelope of Γ. The notion of envelope was used by Martin to identify the next scaled

pointclass after an inductive-like scaled pointclass in the AD context; see Jackson [1]. We

will need its adaptation to the partial determinacy context as defined in the second author’s

thesis [20] (see also the subsequent article [21].)

It turns out that Env(Γ) ⊂ L(ΩΣ,R), and in fact Env(Γ) consists exactly of the sets of

reals that are ordinal-definable from Σ in the model L(ΩΣ,R), but we will not be able to

see this until later. For now we must use the following “local” definition of the envelope

in terms of the ambiguous pointclass ∆Γ = Γ ∩ Γ̌ and in terms of the notion of “∆Γ in an

ordinal parameter.” This notion can be defined in general, but here we can take the following

characterization as a definition: a set of reals is ∆Γ in an ordinal parameter if and only if it

is ∆1-definable over sLp
GΩ(R,Code(Ω))|α from ordinals (and Ω, or equivalently Σ.)

Definition 5.1. The envelope of Γ, denoted by Env(Γ), is the pointclass consisting of all

pointsets A such that, for every countable σ ⊂ R, there is a pointset A′ that is ∆Γ in an

ordinal parameter and satisfies A ∩ σ = A′ ∩ σ.

The boldface pointclass Env(Γ) is defined similarly but allowing a real parameter. That

is, A ∈ Env(Γ) if there is a real x such that for every countable σ ⊂ R there is a pointset

A′ that is ∆Γ(x) in an ordinal parameter and satisfies A ∩ σ = A′ ∩ σ.

The following fact about envelopes is crucial for our argument. It is essentially proved in

the thesis [20] (which deals with generic large cardinal properties of ω1 in ZFC rather than

with large cardinal properties of ω1 in ZF+DC, but the argument carries over to the present

context.) An easier version with “scale” replaced by “semiscale” is proved in the article [21],

and a special case of the scale construction appears in another article [22].

Lemma 5.2 (Wilson). Assume ZF+DC. Let Γ be an inductive-like pointclass with the scale

property. Suppose that ω1 is Env(Γ)-strongly compact. Then there is a scale on a universal

Γ̌ set, each of whose prewellorderings is in Env(Γ).

We will also need the fact that if ZF + DCR holds and the boldface ambiguous part ∆Γ

of the pointclass Γ is determined, as it is here, then Env(Γ) is determined and projectively

closed (Wilson [20, 21]; based on work of Kechris, Woodin, and Martin.) Therefore Wadge’s

lemma applies to it, as one can easily verify that the relevant games are determined. More-

over, the Wadge preordering of Env(Γ)29 is a prewellordering: otherwise by DCR we could

29Really a preordering of pairs {B,¬B} where B ∈ Env(Γ).
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choose a sequence of pointsets in Env(Γ) that was strictly decreasing in the Wadge ordering,

but then by the proof of the Martin–Monk theorem we get a contradiction. (Again one can

easily verify that the relevant games are determined.)

Note that the prewellorderings of a scale as in Lemma 5.2 must be Wadge-cofinal in

Env(Γ); otherwise the sequence of prewellorderings itself would be coded by a set of reals

in Env(Γ), which is impossible as mentioned above. From such a scale, it then follows by

a general argument (see Jackson [1] and the straightforward adaptation [20, Section 4.3] to

the partial determinacy context) that we can obtain a self-justifying system contained in

Env(Γ):30

Lemma 5.3. Assume ZF+DC. Let Γ be an inductive-like pointclass with the scale property

such that ∆Γ is determined. Suppose that ω1 is Env(Γ)-strongly compact. Then there is a

self-justifying system A ⊂ Env(Γ) containing a universal Γ set.

We will use this lemma together with the hypotheses of Theorems 1.6 or 1.7 to obtain

a self-justifying system A ⊂ Env(Γ) containing a universal Γ set. We begin with the

observation that the length of the Wadge prewellordering of Env(Γ) is at most Θ by the

usual argument: the initial segment corresponding to a set B ∈ Env(Γ) is the image of R
under the function y 7→ g−1

y [B], where gy denotes the continuous function coded by the real

y. Moreover, the lightface envelope Env(Γ) admits a wellordering (essentially an ultrapower

of the canonical wellordering of the ∆Γ-in-an-ordinal sets by Martin’s cone measure, which

measures the relevant sets by Env(Γ)-determinacy.)

Lemma 5.4. Let Γ be an inductive-like pointclass with the scale property such that ∆Γ is

determined. Assume ZF + DC + “ω1 is Θ-strongly compact.” Then there is a self-justifying

system A ⊂ Env(Γ) containing a universal Γ set.

Proof. Consider the restriction of the Wadge prewellordering of Env(Γ) to the lightface

envelope Env(Γ). We can refine this prewellordering to a wellordering by taking its lexico-

graphical product with a wellordering of Env(Γ), which exists, as mentioned above. This

refinement has the property that its length is at most Θ, because its initial segment below

any set A ∈ Env(Γ) is contained in the Wadge-initial segment {B ∈ Env(Γ) : B ≤W A}.
(It’s not clear whether the original wellordering of Env(Γ) described above has this prop-

erty.) Therefore our hypothesis implies that ω1 is Env(Γ)-strongly compact, and the desired

conclusion follows by Lemma 5.3.

30We don’t know if it is possible to obtain a self-justifying system contained in the lightface envelope, but
this will not matter for our application.

29



Lemma 5.5. Let Γ be an inductive-like pointclass with the scale property such that ∆Γ is

determined. Assume ZF + DCR + “ω1 is R-strongly compact and Θ is singular.” Then there

is a self-justifying system A ⊂ Env(Γ) containing a universal Γ set.

Proof. Let < be a wellordering of Env(Γ) that refines the Wadge prewellordering (as in the

previous proof) and therefore has length at most Θ. Using the hypothesis that Θ is singular

to deal with the apparent possibility that < has length equal to Θ, we can obtain a function

f : R → Env(Γ) that is cofinal with respect to < and therefore also cofinal with respect to

the Wadge prewellordering of Env(Γ). Then we can define a partial surjection from R × R
onto Env(Γ) by mapping (x, y) ∈ R×R to the preimage of the set f(x) under the continuous

function coded by the real y, whenever this preimage happens to be in Env(Γ).

Therefore there is a surjection from R onto Env(Γ), and by our hypothesis that ω1 is

R-strongly compact, it follows that ω1 is Env(Γ)-strongly compact. We could now apply

Lemma 5.3 to obtain the desired conclusion, except for the problem that we only have DCR

in place of DC. This problem can be solved by passing to an inner model.

Take a fine, countably complete measure µ on ℘ω1(Env(Γ)) and consider the model

L(X)[µ] where X = Env(Γ)ω ∪ R. In V we have DCR and we have a surjection from R
to X, so we have DCX . Because an ω-sequence of elements of X can be coded by a single

element of X, we have DCX in L(X)[µ] as well. In L(X)[µ] every set is a surjective image

of X × ξ for some ordinal ξ, so DC follows from DCX by a standard argument. Then we can

apply Lemma 5.3 in L(X)[µ] and note that the conclusion is upward absolute to V .

Now that we have obtained a self-justifying system A = (Ai : i < ω) sealing the envelope

of Γ, we may proceed as in the “gap in scales” case of Section 4 to get a pair (Q,Λ) such

that Q is a Γ-suitable g-organized Ω-premouse and Λ is the (ω1, ω1)-iteration strategy for Q
guided by A. A slight difference from Section 4 is caused by the fact that, at this stage in

the argument, we do not know how to rule out the possibility that the pointclass Env(Γ) is

strictly larger than the pointclass ΩΣ = ℘(R) ∩ sLp
GΩ(R,Code(Ω)).

However, this difference does not create any problem because the important thing is

that every set A ∈ Env(Γ) (and in particular every set Ai in our self-justifying system A)

has the property that, for a cone of b ∈ HC, the hybrid lower part mouse Lp
gΩ,Γ(b) has a

Col(ω, b)-term for a set of reals that locally captures A. (If A is in the lightface envelope

then the base of the cone is ∅ and this holds for all b ∈ HC.) For a proof, see Wilson [20,

Section 4.2]. This local term-capturing property is sufficient to make sense of the notion of

A-iterability, to prove the existence of A-iterable g-organized and Θ-g-organized Ω-premice,

and to get an iteration strategy Λ guided by the self-justifying system A. The adaptation

of existing proofs to this context is straightforward.
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Defining the Σ-CMI operator F = Λ, we can then use Lemma 3.1 to construct a sequence

of Σ-CMI operators (Jn : n < ω), where J0 = F and Jn+1 =M],Jn
1 for all n > 0. Because A

and F are projectively equivalent (in any reasonable coding) this shows the existence of a

determined projective-like hierarchy just beyond Env(Γ), and therefore beyond the maximal

model of AD+ + Θ = θΣ.

To continue further and get a model of ZF + AD+ + Θ > θΣ, we proceed along the lines

of Section 4. The difference is that now the operator F is here to stay: we must consider

F -hybrid mice from this point on, and never return to considering Ω-hybrid mice because

they cannot give us anything new.

Our model of AD+ +Θ > θΣ will be obtained as the maximal model of AD+ +Θ = θΛ and

θΣ will be the penultimate member of its Solovay sequence. The existence of this maximal

model is established by the results of Section 4 with the suitable pair (Q,Λ) and its associated

operator F in place of the hod pair (or suitable pair, or empty pair) (P ,Σ) and its associated

operator Ω. (For this reason it is important that we allowed suitable pairs as well as hod

pairs and empty pairs in Sections 3 and 4.)

To obtain the maximal model of AD+ + Θ = θΛ, it remains only to show that Λ can be

extended to a (Θ + 1)-iteration strategy with branch condensation. (In fact, we will show

that it can be extended to a Θ+-iteration strategy with branch condensation.) As remarked

in Section 4, this strategy extension is necessary to define the model sLp
GF(R,Code(F)) via

g-organization, which in turn is necessary to analyze the pattern of scales in this model.

Note that because the iteration strategy Λ is guided by a self-justifying system, it has

branch condensation and hull condensation and the set of reals coding it is Suslin. Accord-

ingly, we can use the following lemma to extend Λ. Our argument is based on Schindler and

Steel [7, Lemmas 2.1.11 and 2.1.12], but some adaptations are necessary in the absence of

AC. A similar argument is also found in Steel [12].

Before proving the lemma (which will take the remainder of this section) let us note

that the hypothesis that every uncountable regular cardinal ≤ Θ is threadable follows from

the hypotheses of Theorems 1.6 and 1.7. In particular, it follows from the hypothesis ZF +

DC+ “ω1 is Θ-strongly compact” and also from the hypothesis ZF+DCR + “ω1 is R-strongly

compact and Θ is singular.” Note also that the conclusion that the extension of Λ has hull

condensation, together with the fact that the original ω1-iteration strategy Λ has branch

condensation, implies that the extended strategy also has branch condensation by an easy

Skolem hull argument. (We can take the Skolem hull in an inner model of ZFC, so that no

choice is required.)

Lemma 5.6. Assume that ZF holds and let Λ be an ω1-iteration strategy with hull con-
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densation for a premouse31 Q. Assume that Code(Λ) is Suslin. Let η be an uncountable

cardinal and assume that every uncountable regular cardinal ≤ η is threadable. Then Λ has

a (necessarily unique) extension to an η+-iteration strategy with hull condensation.

Proof. Let T be a putative iteration tree on Q of length less than η+ and such that every

countable hull of T is by Λ. (A putative iteration tree is like an iteration tree except that

its last model, if it has one, is allowed to be illfounded.) What we want to show is that if T
has a last model, then this last model is wellfounded, and if T has limit length, then it has

a unique cofinal wellfounded branch b such that every countable hull T̄ _b̄ of T _b is also by

Λ (in which case our extension of Λ can and must choose this branch.)

In the case that T has a last model, it is easy to see that the last model must be

wellfounded; otherwise by taking a Skolem hull (of Lη+ [Q, T ], say, so that no choice is

required) we may obtain a countable hull of T whose last model is illfounded, but the last

model of the hull must be wellfounded because the hull is by the iteration strategy Λ.

Now suppose that T has limit length. This case will require a bit more work. First we

note that it suffices to find some cofinal branch b of T such that every countable hull T̄ _b̄
of T _b is by Λ; then a Skolem hull argument shows that there can be at most one such

branch and that any such branch is wellfounded. Let q be a real coding the premouse Q.

We consider two subcases.

1. lh(T ) has uncountable cofinality.

In this subcase, we use the general fact about iteration trees that the sequence of branches

[0, α)T for limit ordinals α < lh(T ) is a coherent sequence of clubs. Here lh(T ) is threadable

(equivalently, has threadable cofinality,) so the tree T has a unique cofinal branch b obtained

by threading this coherent sequence. Let T̄ _b̄ be a countable hull of T _b. We want to show

that T̄ _b̄ is by Λ.

Let x be a real coding T̄ _b̄. The model N = L[q, T , b,Λ, x]32 satisfies AC and therefore

�ω, whereas V satisfies “ω1 is threadable” and therefore ¬�ω, so ωN1 < ω1. Note that the

model N sees that T̄ _b̄ is a hull of T _b by the absoluteness of wellfoundedness for the tree

of attempts to build a map lh(T̄ )→ lh(T ) witnessing this (or we could just put such a map

into the model.) The model N also sees, of course, that lh(T ) has uncountable cofinality.

Working in N , by a Skolem hull argument we can take a hull T ∗_b∗ of T _b such that

lh(T ∗) has cardinalilty and cofinality ω1 and T̄ _b̄ is a hull of T ∗_b∗. Because the tree T ∗

31By a premouse here we mean an F-premouse where F is an operator that condenses finely (such as the
core model induction operators that we consider in this paper.) Alternatively we could use coarse mice here,
because we will only need the extended strategy for genericity iterations.

32We are abusing notation here. For example, instead of Λ itself as a predicate we mean {(U , ξ) : ξ ∈ Λ(U)}.
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is countable in V the branch Λ(T ∗) is defined, and the model N can see it. In N the tree

T ∗ can have at most one cofinal branch because its length has uncountable cofinality, so

Λ(T ∗) = b∗. Therefore the hull T ∗_b∗ is by Λ, and by hull condensation its hull T̄ _b̄ is also

by Λ, as desired.

2. lh(T ) has countable cofinality.

In this subcase, we define an elementary substructure X ≺ Lη+ [Q, T ] in V to be appropri-

ate if Q∪{Q, T } ⊂ X, X is countable, and X∩ lh(T ) is cofinal in lh(T ). For an appropriate

elementary substructure X ≺ Lη+ [Q, T ], let σX : MX → X denote the uncollapse map of

X, define the tree TX = σ−1
X (T ) on Q, and note that TX is a hull of T as witnessed by the

map σX � lh(TX).

Furthermore, for any two appropriate elementary substructures X, Y ≺ Lη+ [Q, T ] such

that X ⊂ Y , let σXY : MX → MY denote the factor map σ−1
Y ◦ σX and note that TX is a

hull of TY as witnessed by the map σXY � lh(TX).

We say that an elementary substructure X ≺ Lη+ [Q, T ] is stable if it is appropriate and

for every appropriate elementary substructure Y ≺ Lη+ [Q, T ] such that X ⊂ Y we have

Λ(TX) = σ−1
XY [Λ(TY )].

Note that an equivalent condition would be σX [Λ(TX)] ⊂ σY [Λ(TY )] because distinct cofinal

branches are eventually disjoint.

Assume for the moment that there is a stable elementary substructure X ≺ Lη+ [Q, T ].

Then we can define the branch b of T to be the downward closure of the set σX [Λ(TX)] in

the T -ordering. For every appropriate elementary substructure Y ≺ Lη+ [Q, T ] such that

X ⊂ Y , we have σ−1
Y [b] = Λ(TY ). Moreover, the tree T _Y σ−1

Y [b] is a hull of T _b.33 Therefore

club many countable hulls of T _b are by Λ and we can argue as in subcase (1) that every

countable hull of T _b is by Λ.

So assume toward a contradiction that there is no stable X. Let S be a tree on ω×Ord

that projects to Code(Λ), let f : ω → lh(T ) be a cofinal map, and define the model N ′ =

L[q, T , S, f ]. (Recall that q is a real coding the premouseQ.) Note that the model N ′ satisfies

the statement “there is no stable X” as well as V does: for any appropriate elementary

substructure X ≺ Lη+ [Q, T ] in N ′, we may use the absoluteness of wellfoundedness of the

tree of attempts to find an appropriate elementary substructure Y ≺ Lη+ [Q, T ] such that

X ⊂ Y but Λ(TX) 6= σ−1
XY [Λ(TY )]. (We may use the tree S to witness values of Λ.)

33In general if Ū is a hull of an iteration tree U as witnessed by a map σ : lh(Ū) → lh(U), c is a cofinal
branch of U , and c ∩ range(σ) is cofinal in lh(U), then Ū_σ−1[c] is a hull of U_c.
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Define γ = ωN
′

1 and note that γ < ω1, just as for the modelN in the uncountable cofinality

case. In the model N ′ we can build a continuous, ⊂-increasing sequence (Xα : α ≤ γ) of

appropriate elementary substructures of Lη+ [Q, T ] such that

Λ(Tα) 6= σ−1
α,α+1[Λ(Tα+1)]

for all α < γ, where we define Tα = TXα , σα = σXα , etc.

Define the cofinal branch b = Λ(Tγ) of Tγ and note that this branch is in the model N ′

because it can be computed using the tree S ∈ N ′. For all sufficiently large α < γ the

intersection b∩σα,γ[lh(Tα)] is cofinal in lh(Tγ), which implies that the tree T _α σ−1
α,γ[b] is a hull

of T _γ b. So by hull condensation we have σ−1
α,γ[b] = Λ(Tα) for all such α, and by considering

such an α and its successor we get Λ(Tα) = σ−1
α,α+1[Λ(Tα+1)], a contradiction.

Remark 5.7. The proof above is given in the case Q is a coarse premouse. In the case

Q is a (fine-structural) F-premouse for some F , one only needs slight modifications. In

particular, one needs to require that the last model of the tree T in the proof is a well-founded

F-premouse.

6 Ω∗ is constructibly closed

The main theorem of this section is the following.

Theorem 6.1 (ZF + DCR). Assume there is no transitive AD+ model M containing R∪OR

such that there is a pointclass Γ ( ℘(R)M with L(Γ) ∩ ℘(R) = Γ and L(Γ) � ADR + DC.

Then L(Ω∗) ∩ ℘(R) = Ω∗.

Remark 6.2. We note that the smallness assumption in Theorem 6.1 is stronger than (†).

It allows for the existence of a minimal model of “ADR + DC” but not much more. The

Solovay sequence of the minimal model of “ADR + DC” has length ω1. We will use (†+) to

denote this hypothesis.

We assume (†+) throughout this section. Suppose the Solovay sequence of Ω∗ is of

successor length.34 Then by Section 4, Ω∗ = ℘(R) ∩M , where for some operator F ,

34The Solovay sequence (θα : α < γ) of a pointclass Ω∗ with the property that if A ∈ Ω∗, then L(A,R) �
AD+ and ℘(R)∩L(A,R) ⊆ Ω∗ is defined as follows. θ0 is the supremum of α such that there is some A ∈ Ω∗

and some ODL(A,R) surjection π : R→ α. If λ < γ is limit, then θγ = supα<λθα. If θα has been defined and
α + 1 < γ, then letting A ∈ Ω∗ be of Wadge rank θα, θα+1 is the supremum of β such that there is some
B ∈ Ω∗ and some OD(A)L(B,R) surjection π : R→ β.

34



M =
⋃
{MC Lp

GF(R,Code(F)) | M � AD+ ∧M is self-iterable},35

and furthermore, Section 4 also shows that

℘(R) ∩M = ℘(R) ∩ L(M).

Clearly, this then shows that Ω∗ = ℘(R) ∩ L(Ω∗).

Suppose now the Solovay sequence of Ω∗ is of limit length. Let H be the direct limit of

all hod pairs (Q,Λ) ∈ Ω∗ such that Λ has branch condensation and is Ω∗-fullness preserving.

H is a union of hod premice and by (†) and [3], H has ordinal height ΘΩ∗ .36 Let λ be the

length of the Solovay sequence of Ω∗, so λ is a limit ordinal. By the smallness assumption of

the theorem, λ ≤ ω1. From now on, we write Θ∗ for ΘΩ∗ and θ∗α for each θΩ∗
α on the Solovay

sequence of Ω∗.

The following is the main lemma.

Lemma 6.3 (ZF + DCR). There is no ME L[H] such that H ∈M and ρω(M) < Θ∗.

Proof. Suppose not. Let N EL[H] be least such that ρω(N ) < Θ∗. Let B ∈ Ω∗ be of Wadge

rank θ∗n+1 where n < λ is such that ρω(N ) ≤ θ∗n and θ∗n ≥ υ, where υ is the N -cofinality of

λ. Suppose k is the least such that ρk+1(N ) < Θ∗; we may assume ρk+1(N ) ≤ θ∗n. Let M =

Lγ(R, B,N ), where γ is some sufficiently large cardinal so that Lγ(R, B,N ) � ZF− + DC.

For countable σ ≺M containing all relevant objects, let πσ : Mσ →M be the transitive

uncollapse map whose range is σ. Such a σ exists by DC in L(R, B,N ). For each such σ,

let πσ(Hσ,Θσ, λσ,Nσ, Bσ, υσ) = (H,Θ∗, λ,N , B, υ). Let Σ−σ = ⊕α<λσΣHσ(α). Note that for

each α < λσ, ΣHσ(α) acts on all countable stacks as it is the pullback of some hod pair (R,Λ)

with the property that M∞(R,Λ) = H(πσ(α)).

Let σ ≺ M be such that ωMσ
1 > n; this is possible since n < λ ≤ ω1. ΣHσ(n+1) is Ω∗-

fullness preserving and has branch condensation. This follows from the choice of B, which

gives that (Hσ(n+1),ΣHσ(n+1)) is a tail of some hod pair (Q,Λ) ∈Mσ such that Q has n+1

Woodin cardinals and Λ has branch condensation and is Ω∗-fullness preserving. We let Σn
σ

be the fragment of Σ−σ for stacks on Nσ above δNσn . Note that Σn
σ is an iteration strategy of

Nσ above δNσn since Σn
σ-iterations are above υσ, which may be measurable in Nσ, and hence

does not create new Woodin cardinals. Σn
σ has branch condensation. We then have that

Σn
σ ∈ Ω∗; otherwise, by results in the previous sections, we can show L(Σn

σ,R) � AD+ and

35This means whenever M∗ is countable and transitive and there is an elementary embedding from M∗
into M, then M∗ is (ω, ω1 + 1)-F-iterable in M.

36In fact, the universe of H is precisely the set of all bounded subsets A of ΘΩ∗
such that A is OD in

L(B,R) for some B ∈ Ω∗.
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this contradicts the definition of Ω∗.37 Also, by [3, Theorem 3.26], Σn
σ is Γ-fullness preserving

where Γ =def Γ(Nσ,Σn
σ).

We then consider the directed system F of tuples (Q,Λ) where Q agrees with Nσ up to

δNσn , and (Q,Λ) is Dodd–Jensen equivalent to (Hσ,Σ
n
σ), that is (Q,Λ) and (Hσ,Σ

n
σ) coiterate

(above δNσn ) to a hod pair (R,Ψ). F can be characterized as the directed system of hod

pairs (Q,Λ) extending (Nσ(n),ΣNσ(n)) such that Γ(Q,Λ) = Γ, Λ has branch condensation

and is Γ-fullness preserving. We note that F is ODΣHσ(n)
in L(C,R) for some C ∈ Ω∗. We

fix such a C; so L(C,R) � AD+ + SMC. Let A ⊆ δNσn witness ρk+1(Nσ) ≤ δNσn . Then

A is ODΣHσ(n)
in L(C,R). By SMC in L(C,R) and the fact that Nσ(n + 1) is Ω∗-full,

A ∈ LpΣHσ(n)(Nσ|δNσn ) ∈ Nσ. This contradicts the definition of A.

For α < λ, let us write ℘θα(R) for (℘θα(R))Ω∗ and Σα for ΣHα . We also need the following

notation: let (P ,Σ) ∈ Ω∗ be a hod pair, let M]
P,Σ =MΣ,]

ω be the minimal P-sound, active

Σ-mouse with ω many Woodin cardinals δ
MP,Σ
0 < δ

MP,Σ
1 < . . . , and let δ

MP,Σ
ω = supi δ

MP,Σ
i .38

Finally, we let MP,Σ =MΣ
ω be the corresponding proper class mouse obtained from M]

P,Σ

by iterating the top extender OR many times. We remind the reader that at this point, we

assume that λ is a limit ordinal.

Lemma 6.4 (ZF + DCR). Fix s ∈ (Θ∗)<ω and let α < λ be such that s ∈ (θ∗α)<ω. Then

for any formula ψ and any hod pair (Q,Λ) ∈ Ω∗ such that Λ is Ω∗-fullness preserving, has

branch condensation, and Γ(Q,Λ) = ℘θα(R),

L(Λ,R) � ψ[s] ⇐⇒ Mα,∞ � “the derived model satisfies ψ[iΣαH(α),∞(s)]” (∗)

where Mα,∞ is the direct limit of all iterates of MQ,Λ below δ
MQ,Λ
0 via its canonical strategy

and the derived model is computed at δ
Mα,∞
ω .

Proof. Fix s, ψ, α, and (Q,Λ) as in the statement of the lemma. First we note that Σα is a

tail of Λ. Let P =MQ,Λ and let Σ be the canonical strategy of P extending Λ. Note that

for any Σ-iterate P∗ of P , we can iterate P∗ using Σ to some P ′ such that L(Λ,R) is the

derived model of P ′ at δP
′

ω .39 We may assume also that s is in the range of the direct limit

map from P into Mα,∞.

Suppose the left hand side of the equivalence fails, that is

L(Λ,R) � ¬ψ[s].

37We also have that Σnσ is the join of countably many sets of reals, each of which is in Ω∗ and hence is
Suslin co-Suslin. This implies that Σnσ is self-scaled.

38Sections 3 and 4 show that M]
P,Σ exists and its canonical strategy is in Ω∗.

39This is analogous to the fact that L(R) is the derived model of an iterate of Mω.
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Work in V Col(ω,R) and let {(Pn,Σn) | n < ω ∧ (Pn,Σn) ∈ I(P ,Σ)} be cofinal in the directed

system of Σ-iterates below δP0 ; here we take (P0,Σ0) = (P ,Σ).40 For m ≤ n < ω, let

in : Pn → Pn+1 be the iteration map and let im,n : Pm → Pn and im,∞ : Pm → Mα,∞

be the natural maps. Set s0 = i−1
0,∞(s) and let sn = i0,n(s0). Let (Pωk : k < ω) and

(πk,l : Pωk → Pωl : k ≤ l < ω) come from the simultaneous R-genericity iteration construction

described in [17, Lemma 6.50]. We also let ji : Pi → Pωi be the iteration map; here the

iterations are above the si’s, i.e.

ji(si) = si.

By properties of the construction, for k ≤ l < ω

jl ◦ ik,l = πk,l ◦ jk.

Let Pωω be the direct limit of Pωk under the embeddings πk,l and let πi,ω : Pωi → Pωω and

jω :Mα,∞ → Pωω be the natural maps. Note that jω(s) = s.

By our assumptions, for each i,

Pωi � 1 
 “the derived model satisfies ¬ψ[s] and s = iPωi ,∞(si)”.

Let k be such that for all l ≥ k, πl,l+1(s) = s (k exists because Pωω is well-founded), and let

s∗ = πk,ω(s). By elementarity,

Pωω � 1 
 “the derived model satisfies ¬ψ[s∗] and s∗ = iPωω ,∞(s)”.

By elementarity of jω and the fact that jω(s) = s, we get

Mα,∞ � 1 
 “the derived model satisfies ¬ψ[iΣαH(α),∞(s)]”.

Contradiction. The other direction is proved similarly.

Remark 6.5. The right hand side of (∗) can be defined in H from Σα uniformly in Σα.

This is because the right hand side of (∗) is equivalent to the statement: in the derived

model of L[H] at the supremum of its Woodin cardinals ψ[iΣαH(α),∞(s)] holds, where R∗ is the

Col(ω,<Θ)-symmetric reals over L[H] induced by some g ⊆ Col(ω,< Θ). This is because

Mα,∞ ∈ H and in L[H][g], we can naturally embed the direct limit of Σα-iterates of H(α) in

the derived model of Mα,∞ into the direct limit of Σα-iterates of H(α) in the derived model

of L[H].

40There is an awkward point here. We don’t know that (P,Σ) is iterable in V Col(ω,R), but we can run
the argument below inside an L[T, x] where T is a tree projecting to some universal Γ set A and Γ is an
inductive-like, scaled pointclass beyond ℘θα(R) and x ∈ R codes P as well as the reduction of A to Code(Σ).
We may also assume (∗) is absolute between Ω and the model L[T, x]’s version of Ω. Since R ∩ L[T, x] is
countable, we can proceed with the argument below pretending that V is L[T, x], with appropriate definitions
of objects Mα,∞,Λ etc.
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Recall from [18] the following version of the Vopěnka algebra. For each α < λ, let P∗α be

the boolean algebra ({A ⊆ ℘(ξ)n | n < ω ∧ ξ < θα ∧ ∃B ∈ Ω∗A ∈ ODL(B,R)},⊆) and let

Pα ∈ H ∩ ℘(θα) be the isomorphic copy of P∗α. It’s clear that for each α, P∗α and Pα are OD

in L(℘θβ(R)) for any β > α and the definition is uniform in α. Furthermore, for α < β, there

is a natural embedding of P∗α into P∗β (and hence from Pα into Pβ) and these embeddings are

also OD in L(℘θγ (R)) for any γ > β and again, the definition is uniform in α and β. Let

P be the direct limit of the Pα’s under the natural embeddings. The following corollary of

Lemma 6.4 shows that P ∈ L[H]. We note that in the corollary below, the language of the

structure L[H] has the predicate for the sequence of strategies {Σα | α < λ}.

Corollary 6.6. For each α < λ, Pα is definable in L[H] from {θα+1,Σα+1}, uniformly in

α. Similarly, for α < β, the natural embedding from Pα into Pβ is definable in L[H] from

{θα+1, θβ+1,Σα+1,Σβ+1}, uniformly in α and β. Consequently, P ∈ L[H].

Proof. We just prove the first clause; the proof of the second clause is similar. Fix any β > α

and let (Q,Λ), (P ,Σ), andMβ,∞ be defined as in the proof of Lemma 6.4 but for Σβ. Note

that Pα ∈ H(β).41 By Lemma 6.4 and the subsequent remark,

L[H] � 1 
 in the derived model, L(Σβ,R∗) satisfies “iH(β),∞(Pα) is the Vopěnka algebra at

iH(β),∞(θα)”.

The above gives a uniform definition of Pα from {θβ,Σβ} inside L[H] for any β > α.

Clearly, the third clause follows from the first two clauses.

Using Corollary 6.6 and [18, Theorem 4.3.19], we can conclude that

• L[H](Ω∗) is a symmetric extension of L[H] via P.

• ℘(R) ∩ L[H](Ω∗) = Ω∗.

These, in particular, imply L(Ω∗) ∩ ℘(R) = Ω∗. This completes the proof of Theorem 6.1.

Lemma 6.3 shows that VΘΩ ∩ L[H] = |H|. In the case L[H] � “the set of Woodin

cardinals has limit order type”, let M be the derived model of L[H] (at the supremum of

L[H]’s Woodin cardinals). Then M � ADR (cf. [3, Section 3.3]). This, combined with the

result of the previous section, proves Theorem 1.6; Theorem 6.1 proves something stronger,

namely, Ω∗ is constructibly closed.

Lemma 6.7. If DC holds and the order type of the Woodin cardinals of H is a limit ordinal,

then cf(Θ∗) > ω and L[H](Ω∗) � ADR + DC.

41Pα need not be in H(α).
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Proof. Suppose cf(Θ∗) = ω. Let M be a transitive structure containing H+ ∪ Ω∗ for H+ =

L[H]|γ, where γ > Θ∗ is a regular cardinal in L[H]. Let σ ≺M be countable such that σ is

cofinal in Θ∗; the existence of such a σ follows from DC. Now the πσ-realizable strategy Σσ

defined in the proof of Lemma 6.3 acts on π−1
σ (H+). Σσ on stacks below Θσ is simply Σ−σ in

this case; by replacing (Nσ,Σσ) by an iterate, we may assume Σσ has branch condensation.

We can show then that Σσ ∈ Ω∗ as before. Furthermore, letting i be the direct limit map

from π−1
σ (H+) into the direct limit M∞ of all of its Σσ-iterates in Ω∗, then by elementarity

πσ � Θσ = i � Θσ.

So i is cofinal in Θ∗ and H is the direct limit of hod initial segments of π−1
σ (H) via Σσ. Let

Ω = Σσ. By a core model induction through sLp
GΩ(R,Code(Ω)) like in the previous sections,

we get a hod pair (Q,Λ) ∈ Ω∗ such that letting Q∞ be the direct limit of all Λ-iterates of

Q, HCQ∞. This contradicts the definition of H.

The second clause follows immediately from the first clause and [11].

We have completed the proof of the following theorems.

Theorem 6.8 (ZF + DCR). Suppose Ω∗ = {A ⊆ R | L(A,R) � AD+} and (†+) holds.

Suppose Ω∗ 6= ∅ and for every suitable pair (P ,Σ) or hod pair (P ,Σ) such that Σ has branch

condensation and is Ω∗-fullness preserving, Σ ∈ Ω∗. If the Solovay sequence of Ω∗ has limit

length, then Ω∗ = L(Ω∗,R) ∩ ℘(R) and L(Ω∗,R) � ADR.

Theorem 6.9 (ZF + DC). Suppose Ω∗ = {A ⊆ R | L(A,R) � AD+} and (†+) holds. Sup-

pose Ω∗ 6= ∅ and for every suitable pair (P ,Σ) or hod pair (P ,Σ) such that Σ has branch

condensation and is Ω∗-fullness preserving, Σ ∈ Ω∗. If the Solovay sequence of Ω∗ has limit

length, then L(Ω∗,R) ∩ ℘(R) = Ω∗ and L(Ω∗,R) � ADR + DC.

Together with the results of the previous section, the above theorems complete the proof

of Theorems 1.6 and 1.7.

7 Further results, questions, and open problems

We first mention a few natural questions regarding possible weakenings of the hypotheses of

Theorems 1.5 and 1.7. (In some cases one could also formulate versions with fragments of

DC along the lines of 1.6.)

Question 7.1. What are the consistency strengths of the following theories:

1. ZF + DC + “ω1 is ω2-strongly compact”?

39



2. ZF + DC + “ω1 is Θ-strongly compact”?

Are they equiconsistent with ZF + DC + AD and ZF + DC + ADR respectively?

One could try to weaken the compactness hypotheses further:

Question 7.2. What are the consistency strengths of the following theories:

1. ZF + DC + “ω1 is threadable and ¬�ω1”?

2. ZF + DC + “every uncountable regular cardinal ≤ Θ is threadable”?

Are they equiconsistent with ZF + DC + AD and ZF + DC + ADR respectively?

However, it may be overly ambitious at present to seek a positive answer especially in

case 2; one could try to answer the following question first:

Question 7.3. What is the consistency strength of the theory ZF + DC + “ω1 is R-strongly

compact and Θ is threadable”? Is it equiconsistent with ZF + DC + ADR?

We mention a corollary of the proof of Theorem 1.5.

Theorem 7.4. The following theories are equiconsistent:

1. ZF + DC + AD

2. ZF + DC + “ω1 is R-strongly compact and Θ > ω2.”

Proof. (1) =⇒ (2): As mentioned in Section 1, the statement “ω1 is R-strongly compact”

is a consequence of the existence of the Turing cone measure, which follows from AD, and

the statement Θ > ω2 follows from the Moschovakis coding lemma.

(2) =⇒ (1): Using a push-forward measure, it’s easy to see that statement (2) above

implies statement (3) of Theorem 1.5.

If we strengthen statement (2) above to “ω1 is R-supercompact and Θ > ω2”,42 then

we obtain an equiconsistency with “there are ω2 many Woodin cardinals”, which is strictly

stronger than AD. This is a result of Woodin (see [19]). Similarly, if we strengthen statement

(2) of Theorem 1.7 to ZF + DC+ “ω1 is ℘(R)-supercompact” then we obtain the sharp for a

model of ADR + DC. To see this, note that from the result of Theorem 1.7, we get a model

L(Ω∗,R) � ADR + DC, where Ω∗ ⊆ ℘(R). Fix a countably complete, fine, normal measure µ

on ℘ω1(℘(R)). Then note that by normality,

42We say that ω1 is X-supercompact if there is a countably complete, fine, normal measure µ on ℘ω1(X).
µ is normal on ℘ω1

(X) if whenever F : ℘ω1
(X)→ ℘ω1

(X) is such that {σ | F (σ) ⊆ σ ∧ F (σ) 6= ∅} ∈ µ then
there is some x ∈ X such that the set {σ | x ∈ F (σ)} ∈ µ.
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∀∗µσ L(Ω∗σ,Rσ) � ADR + DC,

where we have that Ω∗ = [σ 7→ Ω∗σ]µ and R = [σ 7→ Rσ]µ. Now, ∀∗µσ (Ω∗σ,Rσ)] exists; by

normality again, the sharp for L(Ω∗,R) exists. This demonstrates that the theory ZF + DC+

“ω1 is ℘(R)-supercompact” is strictly stronger than ZF + DC+“ω1 is ℘(R)-strongly compact.”

However, we don’t know its exact consistency strength.

Question 7.5. What is the exact consistency strength of ZF + DC+“ω1 is ℘(R)-supercompact”?

We end with the following set of questions.

Question 7.6. What are the consistency strengths of the following theories:

1. “ZF + DC + “ω1 is ℘(℘(R))-strongly compact”?

2. “ZF + DC + “ω1 is ℘(℘(R))-supercompact”?

3. “ZF + DC + ω1 is strongly compact”?

4. “ZF + DC + ω1 is supercompact”?

In particular, are the theories (3) and (4) equiconsistent?

It’s worth noting that Woodin (unpublished) has shown the theory “ZF + DC + ω1 is

supercompact” is consistent relative to a proper class of Woodin limits of Woodin cardinals.

We hope the techniques in this paper when combined with the theory of hod mice would

allow us to make significant progress in answering these questions.
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