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Abstract

In the absence of the Axiom of Choice, the “small” cardinal wy can exhibit prop-
erties more usually associated with large cardinals, such as strong compactness and
supercompactness. For a local version of strong compactness, we say that w; is X-
strongly compact (where X is any set) if there is a fine, countably complete measure
on @, (X). Working in ZF 4+ DC, we prove that the p(w;)-strong compactness and
p(R)-strong compactness of w; are equiconsistent with AD and ADg + DC respectively,
where AD denotes the Axiom of Determinacy and ADgr denotes the Axiom of Real
Determinacy. The p(R)-supercompactness of wj is shown to be slightly stronger than
ADg + DC, but its consistency strength is not computed precisely. An equiconsistency
result at the level of ADr without DC is also obtained.
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1 Introduction

We assume ZF + DC as our background theory unless otherwise stated. (However, we will
sometimes weaken our choice principle to a fragment of DC.) In this setting, it is possible
for wy to exhibit “large cardinal” properties such as strong compactness. The appropriate
definition of strong compactness is made in terms of measures (ultrafilters) on sets of the

form g, (X).

Definition 1.1. Let X be an uncountable set. A measure i on p,,(X) is countably complete
if it is closed under countable intersections and fine if it contains the set {o € p,,(X):x €
o} for all x € X. We say that wy is X-strongly compact if there is a countably complete

fine measure on p,, (X).

For uncountable sets X and Y, we will often use the elementary fact that if w; is X-
strongly compact and there is a surjection from X to Y, then w; is Y-strongly compact as
witnessed by a push-forward measure.

In the absence of AC, it may become necessary to consider degrees X of strong compact-
ness that are not wellordered. The first and most important example is X = R. The theory
ZFC + “there is a measurable cardinal” is equiconsistent with the theory ZF 4+ DC + “w; is
R-strongly compact.” (For a proof of the forward direction, see Trang [19]. The reverse direc-
tion is proved by noting that w, is w;-strongly compact, hence measurable, and considering
an inner model L(u) where u is a measure on wy.)

Another way to obtain R-strong compactness of w; that is more relevant to this paper
is by the Axiom of Determinacy. If AD holds then by Martin’s cone theorem, for every set
A € g, (R) the property {z € R: z <p d} € A either holds for a cone of Turing degrees d
or fails for a cone of Turing degrees d, giving a countably complete fine measure on g, (R).

Besides R, another relevant degree of strong compactness is the cardinal ©, which is
defined as the least ordinal that is not a surjective image of R. In other words, © is the
successor of the continuum in the sense of surjections. If the continuum can be wellordered
then this is the same as the successor in the sense of injections (that is, ¢*.) However in
general it can be much larger. For example, if AD holds then © is strongly inaccessible by
Moschovakis’s coding lemma, but on the other hand there is no injection from w; into R.

If wy is R-strongly compact, then pushing forward a measure witnessing this by surjec-
tions, we see that wy is A-strongly compact for every uncountable cardinal A < ©. In general
all we can say is © > w, and so this does not give anything beyond measurability of w;. How-
ever, it does suggest two marginal strengthenings of the hypothesis “w; is R-strongly com-
pact” with the potential to increase the consistency strength beyond measurability. Namely,

we may add the hypothesis “w; is wo-strongly compact” or the hypothesis “w; is ©-strongly



compact.” We will consider both strengthenings and obtain equiconsistency results in both
cases.

In order to state and obtain sharper results, we first recall some combinatorial conse-
quences of strong compactness. Let A be an infinite cardinal and let C = (Cy v € lim(N))
be a sequence such that each set C,, is a club subset of . The sequence C' is coherent if for
all 4 € lim()\) and all & € lim(Cj) we have C,, = C3Na. A thread for a coherent sequence C
is a club subset D C A such that for all @ € lim(D) we have C,, = DNa. An infinite cardinal
A is called threadable if every coherent sequence of length A has a thread. Threadability of
A is also known as —J()).

The following result is a well-known consequence of the “discontinuous ultrapower” char-
acterization of strong compactness. However, without AC Lo§’s theorem may fail for ul-
trapowers of V', so we must verify that the argument can be done using ultrapowers of

appropriate inner models instead.

Lemma 1.2. Assume ZF + DC + ‘“wy is A-strongly compact” where X is a cardinal of un-
countable cofinality. Then X\ is threadable.

Proof. Let C = (C, : o € lim(\)) be a coherent sequence such that each set C, is a
club in . Consider the ZFC model L{{(a, ) : @ € Cj}], which we abbreviate as L[C].
Let 1 be a countably complete fine measure on g, (A) and let j : L[C] — U(L[C], p)
be the corresponding ultrapower map, where the ultrapower is defined using all functions
0w (\) = L[C] in V. The ultrapower is wellfounded by countable completeness and DC, so
it has the form L[j(C)]. Note that j is discontinuous at A: for any ordinal a < A, we have
Jj(a) <o+ supol, < j(A) where the first inequality holds because y is fine and the second
inequality holds because A has uncountable cofinality.

Now the argument continues as usual. We define the ordinal v = sup j[\] and note that
v < j(A) and that j[A] is an w-club in 7. Therefore the set j[\] ﬂlim(j(Cﬁ),y) is unbounded in
7, so its preimage S = jfl[lim(j(é‘)v)] is unbounded in A. Note that the club C, is an initial
segment of Cz whenever o, 8 € S and a < f3; this is easy to check using the elementarity

—

of j and the coherence of j(C'). Therefore the union of clubs J, .4 C, threads the sequence

C. O
If A < © then DCy suffices in place of DC:

Lemma 1.3. Assume ZF + DCgr + ‘wy is R-strongly compact.” Let A < © be a cardinal of

uncountable cofinality. Then X is threadable.

Proof. Let C be a coherent sequence of length A. First, note that we may pass to an

inner model containing C where DC holds in addition to our other hypotheses. Namely,
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let f: R — X be a surjection, let u be a fine, countably complete measure on g, (R),
let C = {(a,8) : @ € Cs}, and consider the model M = L(R)[f, u, C], where the square
brackets indicate that we are constructing from f, u and C' as predicates. (In the case of p,
this distinction is important: we are not putting all elements of 4 into the model.)

It can be easily verified that all of our hypotheses are downward absolute to the model
M, and that our desired conclusion that C has a thread is upward absolute from M to V.
In the model M every set is a surjective image of R x a for some ordinal «, so DC follows
from DCg by a standard argument. Moreover, w; is A-strongly compact in M by pushing
forward the measure p (restricted to M) by the surjection f, so the desired result follows

from Lemma 1.2. ]

A further combinatorial consequence of strong compactness of wy is the failure of Jensen’s
square principle U,,. In fact =0, follows from the assumption that ws is threadable or

singular (note that successor cardinals may be singular in the absence of AC.)
Lemma 1.4. Assume ZF. If wy is singular or threadable, then -1, .

Proof. Suppose toward a contradiction that ws is singular or threadable and we have a [, -
sequence (Cy : a € lim(wy)). If wy is singular, we do not need coherence of the sequence to
reach a contradiction. Take any cofinal set C,,, in w, of order type < w; and recursively define
a sequence of functions (f, : o € [wy,ws]) such that each function f, is a surjection from w,
onto «, using our small cofinal sets C, at limit stages. Then the function f,, is a surjection
from w; onto wsy, a contradiction. On the other hand, if wy is regular and threadable, take a
thread C,,, through the square sequence. Then by the usual argument the order type of C,,

is at most w; + w, contradicting the regularity of ws. O]
Now we can state our equiconsistency results and prove their easier directions.
Theorem 1.5. The following theories are equiconsistent:
1. ZF +DC+ AD.
2. ZF + DC + ‘W is p(wq)-strongly compact.”
3. ZF + DC + ‘wy 1s R-strongly compact and wy-strongly compact.”
4. ZF + DC+ “wy is R-strongly compact and -, .”

Proof. (1) = (2): Under AD, Martin’s cone theorem implies that w; is R-strongly compact.
There is a surjection from R onto p(w;) by Moschovakis’s coding lemma, so w; is p(w)-

strongly compact as well.



(2) = (3):
(3) = (4): This follows from Lemmas 1.2 and 1.4.

Con(4) = Con(1l): In Sections 3 and 4, we will show that statement (4) implies
AD"®), O

This follows from the existence of surjections from p(w;) onto R and ws.

Moving up the consistency strength hierarchy, the next natural target for an equiconsis-
tency result is the theory ZF + ADg. Here ADg denotes the Axiom of Determinacy for real
games, which has higher consistency strength than AD and cannot hold in L(R). To get
a model of ADg we will need to augment our strong compactness hypothesis somehow, for
example with a hypothesis on © or p(R). For any set X, we write DCx for the fragment of

DC that allows us to choose w-sequences of subsets of X.
Theorem 1.6. The following theories are equiconsistent:

1. ZF + ADg.

2. ZF + DCy,,) + “wy is R-strongly compact and © is singular.”

Proof. Con (1) = Con (2): By Solovay [l1], if ZF + ADg is consistent then so is ZF +
ADg + “O is singular.” (In particular Solovay showed that the cofinality of © can be count-
able, which implies the failure of DC.) Under ADg we have that w; is R-strongly compact
by Martin’s measure (this just follows from AD) and we have DCg (this follows from uni-
formization for total relations on R.) Moreover there is a surjection from R to p(w;) by the
coding lemma, so DCg can be strengthened to DC,,).

Con(2) = Con(1): In Sections 5 and 6, we will show that if statement (2) holds,
then statement (1) holds in an inner model of the form L(2*,R) where Q* C p(R). Note
that statement (2) implies that wy is either singular (if wy = ©) or threadable (if wy < O, by
Lemma 1.3) so in either case we have =[J,, by Lemma 1.4. Therefore we can make some use
of the argument for Con (4) = Con (1) of Theorem 1.5 here, once we check that DC,,)

suffices in place of DC for this argument. O

Finally, we will obtain an equiconsistency result at the level of ZF +DC+ ADg. Note that
this theory has stricly higher consistency strength than ZF4+ADg. (By contrast, ZF+DC+AD
and ZF + AD are equiconsistent by a theorem of Kechris.)

Theorem 1.7. The following theories are equiconsistent:
1. ZF + DC+ ADg.

2. ZF + DC + “w; is p(R)-strongly compact.”



3. ZF + DC + ‘wy 1s R-strongly compact and ©-strongly compact.”
4. ZF + DC+ ‘wy 1s R-strongly compact and © is singular.”

Proof. Con (1) = Con(2): By Solovay [!1], under ZF + ADg we have DC if and only if
© has uncountable cofinality, and in a minimal model of ZF 4+ DC 4+ ADg we have that © is
singular of cofinality w;. Assume that we are in such a minimal model of ZF + DC + ADg
and take a cofinal increasing function 7 : w; — ©.

We can express p(R) as an increasing union | J I', where the pointclass I',, consists

a<w
of all sets of reals of Wadge rank at most 7(«). For eaclh a < w; there is a surjection from R
onto 'y, so wy is [',-strongly compact. Moreover, ADr implies that there is a uniform way
to choose, for each o < wy, a countably complete fine measure p,, on g, (I'y) witnessing this
fact (namely the unique normal fine measure; see Woodin [23, Theorem 4].)

Using a countably complete nonprincipal measure v on w; (which exists because w; is
wi-strongly compact) we can assemble these measures f, into a countably complete fine

measure p* on g, (p(R)) as follows: for A C g, (p(R)), we say
Aecp = YiaAN ., (La) € ta.

It’s easy to verify that p* is countably complete because v and the u,’s are countably
complete. Likewise, it’s easy to verify that p* is fine because v is uniform and the p,’s are
fine. Therefore the measure p* witnesses that w; is p(IR)-strongly compact, so statement (2)
holds (in our minimal model of ZF + DC + ADg.)

(2) = (3): This follows from the existence of surjections from p(R) onto R and ©.

Con (1) = Con (4): This follows by the aforementioned result of Solovay that in a
minimal model of ZF 4+ DC + ADg the cardinal © is singular of cofinality w; (and of course
wy is R-strongly compact by Martin’s measure.)

Con(3) vV Con(4) = Con(1): We will show in Sections 5 and 6 that if either statement
(3) or statement (4) holds, then statement (1) holds in an inner model of the form L(Q* R)
where Q* C p(R). The proof of Con(4) = Con(1) is similar to the proof of Con (2) =
Con (1) in Theorem 1.7, although one should note that the inner model L(2*,R) does not

simply absorb DC from V'; a bit more argument is required. m

The authors would like to thank the referee for a careful reading of this article and for
pointing out several minor errors. The first author would like to thank the NSF for its

generous support through grant DMS-1849295.



2 Framework for the core model induction

This section is an adaptation of the framework for the core model induction developed in
[10] and [9], which in turn build on earlier formulations in [7]. For more detailed discussions
on the notions defined below as well as results concerning them, see [10] and [9]. The first
subsection imports some terminology from the theory of hybrid mice developed in [10] and
[9]. The terminology in this subsection will be used in Subsection 2.3 to define core model
induction operators and will be needed in many other places in the paper. The reader may
skip them on the first read and come back when needed. Subsection 2.2 summarizes the
theory of hod mice developed in [3]. Subsection 2.3 defines core model induction operators

which are the operators we will construct in this paper.

2.1 Q-premice, strategy premice, and g-organized {)-premice

For a complete theory of F-premice for operators F, the reader is advised to read [9]; for a
detailed treatment of strategy mice, the reader is advised to read [10, Sections 2,3]. We will
use the terminology from these sources from now on.!

The definition below is essentially [10, Definition 3.8]. For explanations about the nota-
tions, see [10, Sections 2,3]|. In the following definition, the objects 2, ¢, X, A, k are defined
as in [10, Section 3]. Roughly, €2 is either a k-strategy or a mouse operator with nice con-
densation properties defined on a cone of H,, above A € HC, ¢ is a formula in the language

of strategy premice, and X codes the pair (€2, ¢).
Definition 2.1. Let t = (Q, ¢, X, A, k) be suitable and 9 = M; "7 (A). We say that M

generically interprets Q2 iff there are formulas ®,¥ in Lt and some v > 0™ such that
M|y E & and for any non-dropping A;g”-z'temte N of M via a countable tree T based on
MM 2 any N -cardinal 5, any v € Ord such that N'|y & ® & “§ is Woodin”, and any g
which is set-generic over N|y (with g € V'), we have that R =aet (N|7)[g] is closed under
Q, and Q | R is defined over R by V. We say such a pair (P, V) generically determines ¢
(or just Q).

Let A € HC and let Q be either an operator or an iteration strateqy. We say that (€2, A)
(or just ) is nice iff (Q, A) is suitable and (tq.a)2 generically interprets Q.* We say that

!The theory of strategy mice can be developed as a special case of the general theory of operator mice
in [9] but the authors of the papers decided to define strategy mice as J-structures as this approach seems
more convenient and gave the right notation for proving strong condensation properties of strategy mice like
[10, Lemma 4.1].

2In [10, Definition 3.8], the terminology is: ¢ determines itself on generic extensions. We will later define
a notion of generic determination which is slightly different.

36™ is the Woodin cardinal of 9t and Agg“ denotes the unique X-(0, k)-iteration strategy for 9.

4tQ,A is a 5-tuple defined [10, page 27] and (tn 4)2 is the third component of tq 4.
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(®, V) generically determines (€2, A) iff (®, V) generically determines tq a.

We fix a nice (£2, A) (or just nice ©; we will at times ignore A), X = (tq.4)2, M, A = A,
and (®, V) for the rest of the section. We define M3 (A) from 9 in the standard way.

See [10, Section 3] for a proof that if 2 = 3 is a strategy (of a hod mouse or suitable
mouse) with branch condensation and is fullness preserving with respect to mice in some
sufficiently closed, determined pointclass I' or if X is the unique strategy of a sound Y-mouse
for some operator Y, ./\/li/’jj generically interprets Y, and Y condenses finely (see [9, Definition
3.18]) then 9 generically interprets €2.

Definition 2.2 (Sargsyan, [3]). Let M be a transitive structure. Let G be the name for the
generic G C Col(w, M) and let &, be the canonical name for the real coding {(n,m) | G(n) €
G(m)}, where we identify G with |JG. The tree Ty for making M generically generic is the

iteration tree T on M of mazximal length such that:
1. T is via A and is everywhere non-dropping.

2. T | o(M)+1 is the tree given by linearly iterating the first total measure of M and its

1mages.

3. Suppose Ih(T) > o(M) + 2 and let a +1 € (o(M),1h(T)). Let 6 = §(MT) and let
B = B(M]) be the extender algebra of M at 6. Then E! is the extender E with least

index in M such that for some condition p € Col(w, M), p IF“There is a B-aziom
induced by E which fails for 7.

Assuming that I is sufficiently iterable, then Ty exists and has successor length.

The operator 2, defined in [10, Definition 3.42], and used in building g-organized -
premice, feeds in branches for such Tu’s for various M < N, where N is a g-organized
Q-premouse. We will also ensure that being such a structure is first-order — other than
wellfoundedness and the correctness of the branches — by allowing sufficient spacing between
these branches (see [10, Remark 3.37]).

[10] also defines the notion ©-g-organized 2-premouse. The difference between the two
hierarchies is very minor (see the remark 2.5). The main difference is that in the latter
hierarchy, say N is a ©-g-organized Q-premouse, and M <1 N is an “activation level”, i.e.
branch information of Ty is to be fed into the branch predicate of N, if there is a level
M <R <N such that R = (M|o(M) + ~, EMM+Y 10 1)1 ), where v < 1h(T) and
R E “O doesn’t exist”, then we stop feeding in further branch information of 7, beyond
the least such R. The reader can again see [10, Section 3] for a more extensive treatment of

these notions.



If z is a transitive set, then o(z) is defined to be xNOrd. If M is a (hybrid) premouse over
a transitive set x, then py(M) is the least ordinal p such that there is some set A C [z X p]<¥
such that A is r¥;(M) but A ¢ M.

Suppose (€, A) is nice (€ can be a mouse operator or an iteration strategy).” Suppose I'
is an inductive-like pointclass that is determined. Let 9 = M #(A) where X = (t(,4))2;
later on in the paper, we occasionally write M?’u(A) for M. Lp*?(z) is defined as the stack of
gQ)-premice M over x such that M is z-sound, there is some n such that p,,1(M) < o(z) <
pn(M) and every countable, transitive M* embeddable into M has an 8Q-(n, w; +1)-iteration
strategy® A for a transitive z. We define Lp*®"(z) similarly but demand additionally that
A € T'. For N a &Q-premouse, let LpiQ (N') denotes the stack of all g-organized Q-premice
M such that either M = N, or N' <1 M, N is a strong cutpoint of M, M is o(N)-sound,
and there is n < w such that p,+1(M) < o(N) < p,(M) and M is countably 8Q-(n,w; +1)-
iterable above o(N). We define Lp " (N) similarly. These notions can be generalized to
¢Q) or any other operator in an obvious way (cf. [10, Definition 2.43]). We define Lp®Q(z)
etc similarly. ©-g-organized (2-mice over R are important in the scales analysis generalizing

Steel’s work in Lp(R) (see the remark below).

Definition 2.3. Let Y C R. We say that Y is self-scaled iff there are scales on'Y and R\Y

which are projective (i.e., XL for somen < w) in'Y.

Definition 2.4. Suppose ) is nice and Y C R is self-scaled. We define Lng(R,Y) as the
stack of all g-organized Q-mice N over (H,,,Y) (with parameter MM ). We similarly define
Lp *(R,Y) as the stack of all ©-g-organized Q-mice N over (H,,,Y) (with parameter ).
We also say (©-g-organized) Q-premouse over (R,Y) to in fact mean over (H,,,Y ).

Remark 2.5. Switching from the g-organized hierarchy to the ©-g-organized hierarchy was
for a purely technical purpose, so that various proofs concerning the scales analyses work out
(it is not known to work for the g-organized hierarchy). The two hierarchies are very closely
related. In fact, for  and 'Y as in Definition 2.4, p(R) NLp (R, Y) = p(R) NLp (R, Y).
Suppose M is an initial segment of the first hierarchy and M is E-active. Note that M E “©O
exists” and M|O is Q-closed. By induction below OM, M|OM can be rearranged into an
initial segment N of the second hierarchy. Above ©M, we simply copy the E-sequence and
B-sequence” from M over to obtain an N < LpGQ(R, X) extending N'. The converse is

SFrom now on, we typically say “let © be a nice operator” in place of this. So € is either a mouse operator
in the sense of [9] or an iteration strategy as in [10].

6This implies, among other things, that iterates of M* according to the strategy are g-organized Q-
premice.

"The E-sequence is the extender sequence of M and the B-sequence codes fragments of the strategy of

m.
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similar. Similarly, if Q) is such that LpQ(R,Y) 15 well-defined and ) relativizes well, then
o(R)NLp**(R,Y) = p(R) NLp*(R,Y). See [10, Remark 4.11].

Let 2 = X, where ¥ is a nice iteration strategy that appears in core model induction
applications, A € HC transitive such that P € [J;(A), X be defined from (2, A) as above,
and suppose I = Mf’u(A) exists. We have that 90U generically interprets (2, A). Also,
the core model induction will give us that the code of 2, Code(2) (under a natural coding
of subsets of HC by subsets of R) is self-scaled. Thus, we can define LpGQ(]R, Code(?)) as
above (assuming sufficient iterability of 9t). A core model induction is then used to prove
that there is a maximal constructibly closed initial segment M of Lp ?(R, Code(€2)) that
satisfies AD*. What’s needed to prove this is the scales analysis of LpGQ(R, Code(2)) from
the optimal hypothesis (similar to those used by Steel; see [15] and [14]). This is carried out

in [10]; we will not go into details here.

2.2 A very brief tale of hod mice

In this paper, a hod premouse P is one defined as in [3]. The reader is advised to consult
[3] for basic results and notations concerning hod premice and mice. Let us mention some
basic first-order properties of a hod premouse P. There is an ordinal A¥ and sequences

(P(a),Z7) | @ < A7) and (67 | a < AP) such that

1. {07 | @ < AP) is increasing and continuous and if o = 0 or is a successor ordinal then
P & 67 is Woodin; no other P-cardinals are Woodin cardinals of P;
2. P(0) = Lp,(P|6)"; for a < AP, Pla+ 1) = (Lp_=* (P|64))7; for limit a < A,

P
B

I <a2
P(a) = (Lpw "7 (Pl6a))
3. PEX" is a (w,0(P),o(P))s-strategy for P(a) with hull condensation;

4. if a < # < A7 then X% extends X7

Hod mice in this paper are g-organized; this is so that S-constructions work out smoothly
as in the pure L[E]-case. We will write §” for 67 and X7 = @5.,»X5. Note that P(0) is
a pure extender model. Suppose P and Q are two hod premice. Then P <4 Q if there
is o < A< such that P = Q(a). We say then that P is a hod initial segment of Q. (P, %)
is a hod pair if P is a hod premouse and ¥ is a strategy for P (acting on countable stacks
of countable normal trees) such that Y7 C ¥ and this fact is preserved under Y-iterations.
Typically, we will construct hod pairs (P,Y) such that ¥ has hull condensation, branch

condensation, and is ['-fullness preserving for some pointclass I'.

8This just means X7 acts on all stacks of w-maximal, normal trees in P.
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The reader should consult [3] for the definition of B(Q, ), and I(Q, ¥). Roughly speak-
ing, B(Q,Y) is the collection of all hod pairs which are strict hod initial segments of a
Y-iterate of Q and I(Q, ) is the collection of all Y-iterates of X. In the case A2 is limit,
['(Q, Y) is the collection of A C R such that A is Wadge reducible to some ¥ for which there
is some R such that (R, ¥) € B(Q,%). See [3] for the definition of I'(Q, ) in the case A<
is a successor ordinal.

[3] constructs under ADT and the hypothesis that there are no models of “ADg + ©
is regular” hod pairs that are fullness preserving, positional, commuting, and have branch
condensation. Such hod pairs are particularly important for our computation as they are
points in the direct limit system giving rise to HOD of AD™ models. Under AD™, for hod
pairs (My, X)), if ¥ is a strategy with branch condensation and 7T is a stack on My, with last
model NV, ¥ w7 18 independent of T. Therefore, later on we will omit the subscript T from
Y y,7 whenever ¥ is a strategy with branch condensation and My is a hod mouse. In a core
model induction, we don’t quite have, at the moment (My;, ¥) is constructed, an AD"-model
M such that (My,¥) € M but we do know that every (R,A) € B(Mg, ¥) belongs to such
a model. We then can show (using our hypothesis) that (Ms, 3) belongs to an AD"-model.

2.3 Core model induction operators

Let
O={ACR| L(AR) = AD"}.
We assume
(t): There is no model M containing all reals and ordinals such that M F
ADg + “© is regular”.
Under this smallness assumption, by work of G. Sargsyan in [3], Q* is a Wadge hierarchy

and furthermore, if M is a model of ADT then M is a model of Strong Mouse Capturing
(SMC). Operators that we construct in the core model induction will also have the following
additional properties (besides being nice).

In the following, a transitive structure N is closed under an operator €2 if whenever

x € dom(2) N N, then Q(z) € N.

Definition 2.6 (relativizes well). Let Q be an a Y-mouse operator for some operator Y .?
We say that Q relativizes well if there is a formula ¢(x,y, z) such that for any a,b € dom(2)
such that a € Ly(b), whenever N is a transitive model of ZFC™ such that N is closed under
Y and a,b,Q(b) € N, then Q(a) € N and is the unique x € N such that N F ¢|x,a, Q(b)].

9Y may be the rud operator, in which case ) is just a mouse operator in the usual sense.
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Definition 2.7 (determines itself on generic extensions). Suppose 2 is an operator. We say
that Q0 determines itself on generic extensions if there is a formula ¢(x,y, z) and a parameter
c € HC such that for any countable transitive structure N of ZFC™ such that N contains c
and is closed under Q, for any generic extension N[g] of N in V, QN Nlg] € N[g] and is
definable over Nlg] via (¢, c), i.e. for any e € N[g] N dom(R2), Q(e) = d if and only if d is
the unique d'" € N|g| such that N|g| E ¢[c,d ,e].

We are now in a position to introduce the core model induction operators that we will
need in this paper. These are particular kinds of mouse operators (in the sense of [9, 3.43])
that are constructed during the course of the core model induction. These operators can be
shown to satisfy the sort of condensation described in [9, Section 3] (e.g. condense finely),

relativize well, and determine themselves on generic extensions.

Definition 2.8. Let I' be an inductive-like pointclass. For x € R, Cr(x) denotes the set of
all y € R such that for some ordinal v < wy, y (as a subset of w) is Ap({7,x}).

Let x € HC be transitive and let f : w — x be a surjection. Then cy € R denotes the
code for (x,€) determined by f. And Cr(x) denotes the set of all y € HC N p(x) such that
for all surjections f : w — x we have f~'(y) € Cr(cy).

Definition 2.9. Let (2, A) be as above, t € HC with M € J1(t). Let1 < k < w. A premouse
N overt is Q-T'-k-suitable (or just k-suitable if T' and Q2 are clear from the context) iff there

is a strictly increasing sequence (0;),_, such that

1. Y6 e N, N E“ is Woodin” if and only if Fi < k(6 = 0;).

2. o(N) = supyco (67T

3. If N'n is a strong cutpoint of N then N|(nt)N = Lp ™" (N ).

4. Let & < o(N), where N E “¢ is not Woodin”. Then Cr(N|§) E € is not Woodin”.
We write 6V = 6;; also let &, = 0 and §) = o(N).1°

Let N be 1-suitable and let £ € o(N') be a limit ordinal, such that A" E“¢ isn’t Woodin”.
Let Q <N be the Q-structure for £. If £ is a strong cutpoint of A" then @ < Lp; " (NV]€)
by 3. Assume now that N is reasonably iterable. If £ is a strong cutpoint of @), our mouse
capturing hypothesis combined with 4 gives that Qdeiﬂ’F(./\/' |€). If £ is an N-cardinal then
indeed £ is a strong cutpoint of @, since N has only finitely many Woodins. If £ is not a
strong cutpoint of (), then by definition, we do not have ) < LpiQ’F(./\/' |€). However, using

0We could also define a suitable premouse N as a ©-g-organized F-premouse and all the results that
follow in this paper will be unaffected.
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s-translation (see [13]), one can find a level of Lp " (A|€) which corresponds to @ (and this
level is in Cr(N€)).

If 2 is a nice operator and ¥ is an iteration strategy for a 2-I'-1-suitable premouse P
such that ¥ has branch condensation and is I-fullness preserving (for some pointclass I'),
then we say that (P,Y) is a Q-I'-suitable pair or just I'-suitable pair or just suitable pair if
the pointclass and/or the operator € is clear from the context (this notion of suitability is

not related to the one mentioned in Definition 2.1).

Definition 2.10 (Core model induction operators). Suppose (P, %) is a G-Q2*-suitable pair
for some nice operator G or a hod pair such that 3 has branch condensation and is Q2*-fullness
preserving. Let Q@ = 3 (note that § is suitable). Assume Code(S?) is self-scaled. We say J

15 a X-core model induction operator or just a Y-cmi operator if one of the following holds:

1. J is a nice Q-mouse operator (or g-organized Q-mouse operator) defined on a cone
of H,, above some a € H,, . Furthermore, J condenses finely, relativizes well and

determines itself on generic extensions.

2. For some a € OR such that « ends either a weak or a strong gap in the sense of [15]
and [10], letting M = Lp (R, Code(Q))||a and T = ()™, M £ AD* +MC(X).!! For
some transitive b € H,,, and some 1-suitable (or more fully Q-I'-1-suitable) Q2 -premouse
Q over b, J = A, where A is an (wy,ws)-iteration strateqy for Q which is T'-fullness
preserving, has branch condensation and is guided by some self-justifying-system (sjs)
A= (A; 1 i < w) such that for some real z, for each i, A; € OD{KEJ and A seals the
gap that ends at a.'?

3  From () to M’"

Suppose (P, Y) is a G-Q*-suitable pair for some nice operator G such that ¥ has branch
condensation and is Q*-fullness preserving. (Recall that * is the pointclass of all sets of
reals A such that L(A,R) E AD'.) As a special case we also allow (P,X) = (0,0); the
analysis of this special case is enough to prove Theorem 1.5. In this section we assume the

strong hypothesis

ZF + DCy ) + “w; is R-strongly compact and =[], .”

HMC(E) stands for Mouse Capturing relative to ¥ which says that for z,y € R, z is OD(Z,y) (or
equivalently x is OD(,y)) iff = is in some g-organized Q-mouse over y. SMC is the statement that for every
hod pair (P, X) such that ¥ is fullness preserving and has branch condensation, MC(X) holds.

12This implies that A is Wadge cofinal in Env(T"), where I' = 2. Note that Env(I") = p(R)™ if a ends

a weak gap and Env(T") = p(R)LpE(R)KQH) if @ ends a strong gap.
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Note that this follows from any of the hypotheses of Theorems 1.5, 1.6, and 1.7.

Let Q be a 3-CMI operator. (If (P,X) = (0,0) then € is an ordinary CMI operator of
the kind typically used in proving ADL(R).) We will use our strong hypothesis to obtain the
M?’ﬁ operator, which is the relativization of the Mﬁ operator to a fine-structural hierarchy
where the levels are obtained by repeated applications of the € operator (rather than the rud
operator, as in ordinary mice. Basically, for each z in dom(f), if Q is a strategy, M?ﬁ(x)
is M} (z), where X = (Q, omin) and @ui, is defined as in [10, Definition 3.2] and otherwise
M (z) is defined as in [0].)

The argument is similar to that used to obtain the ordinary M’i operator from the failure
of square at a measurable cardinal in ZFC. The relativization of the standard arguments
from M’i to M?’ﬁ presents no special problems, but working without the Axiom of Choice
requires a bit of care because ultrapowers of V' may fail to satisfy Lo$’s theorem. However,
Log$’s theorem does hold for ultrapowers of wellordered inner models of V', and more generally
for ultraproducts of families of inner models that are uniformly wellordered in the sense that
there is a function associating to each model a wellordering of that model.

The relevance of Jensen’s square principle [J,; here is that it holds for all infinite cardinals
r in all Mitchell-Steel extender models (mice) by Schimmerling and Zeman [0, Theorem 2.
The proof of this result is sufficiently abstract that it relativizes from mice to {2-mice in a
straightforward manner. Therefore if [, fails in V', we get a failure of covering: the successor
of k cannot be computed correctly by any 2-mouse.

Because we are not assuming the Axiom of Choice, we will not construct the core model
in V' but rather in an inner model H of V satisfying ZFC. This model H will be obtained as
a kind of HOD. A method used by Schimmerling and Steel [5] to prove covering results for
the core model of V' can be adapted to the core model of H, provided that we can show that
H is close enough to V' in the relevant sense. We show this closeness by using Vopénka’s
theorem, similar to Schindler [3].

The following lemma is the main result of this section. It will form the “successor step”

in the proofs of the main theorems.

Lemma 3.1. Assume ZF +DC,) + ‘w; is R-strongly compact and —0,,,.” Let (P,X) be a
G-Q*-suitable pair for some nice operator G, a hod pair such that ¥ has branch condensation
and is Q*-fullness preserving, or (0,0). Let Q be a X-CMI operator defined on a cone in

H(w:) over some element a € H(w;). Then for every element x of this cone, M (x) exists.

Proof. First, note that we may assume without loss of generality that full DC holds, by
passing to the inner model L(p(w1), X, Q)] where we are constructing relative to a predicate

p for a fine countable complete measure on g, (R). The hypothesis and conclusion are
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absolute to this inner model. In particular the model satisfies —[],,, because it computes w,
correctly, and it satisfies DC.,) because it contains all countable sequences from @(w;). In
the inner model, this fragment of DC implies full DC by a standard argument using the fact
that every set is the surjective image of p(w;) X a for some ordinal a. Therefore we may use
DC in the argument that follows.

Note that because w; is measurable, the operators Qf and 0¥ are also defined on the
cone in H(wy) over a. Let x € H(wy) be in the cone over a. Take a countably complete fine
measure i on g, (R). Because p-almost every set o contains a real coding x, for such o we

can define the inner model

_ L% (o)
H, = HOD, 7.

A few remarks on notation: The model Lm(a) is the proper class model that is obtained
by iterating the top measure of Qﬁﬁ(a) out of the universe. It is closed under its version of
Q even above the point w} up to which  was originally defined; however, we will only ever
use the  operator of the model L% () up to the least indiscernible of that model, which
is the critical point of the top measure of Qﬂu(a) and is countable in V. By the parameter
Q in the definition of H,, we really mean the restriction of Q to the model L% (), which
is amenable to that model because €2 relativizes well. There will not be any incompatibility
between the various restrictions and extensions of {2 that we use, so we denote them all by
“Q.

Let &, denote the least indiscernible of L% (o). Note that in the model H, we can do
core model theory below &,: it is well-known that the existence of an external measure can
substitute for measurability of &, in this regard. The operator (2 is amenable to H, (again
because it relativizes well) and we can attempt the K“(x) construction in H, up to the
cardinal &,. This is like the ordinary K¢ construction, except relativized to € and built over
the set = (see [0, Definition 3.28] and [10, Definition 2.46]). By the K existence dichotomy
(see Schindler and Steel [7]) applied in the various models H,, one of the following two cases
holds:

1. For p-almost every set o € g, (R), the model H, satisfies the statement that M (z)
exists and is &,-iterable by the (unique) Q-guided strategy.

2. For p-almost every set o € @, (R), the model K,, defined as the core model (K*(z))

built up to &,, exists and has no Woodin cardinals.

Claim 3.2. If case (1) of the K® existence dichotomy holds, then M?ﬁ(x) exists in V.

H

Proof. For p-almost every set o € @, (R), the premouse (MP*(x))#e exists by the case

hypothesis. It is sound and projects to z, so it codes itself as a subset of z, which is
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countable. Therefore by the countable completeness of ;1 we can fix a single {2-premouse
M over z such that M = (MP*(x))He for p-almost every set 0. We will show that M is
wy-iterable in V' by the (unique) Qf-guided iteration strategy. Then (w; + 1)-iterablity will
follow by the measurability of wy.

Let 7 be a countable Qf-guided putative iteration tree on M in V, where by “putative”
we mean that its last model, if it has one, may fail to be an Q-premouse. (Note that an
()-premouse is required in particular to be wellfounded, and this is the only requirement
if @ = rud.) We want to show that if 7 has successor length, then its last model is an
Q-premouse, and if it has limit length, then it has a cofinal branch b such that M] is an
Q-premouse and Q(b, T) < Q*(M(T)).

Take a real ¢t that codes 7. Then for p-almost every set ¢ we have t € o by the fineness
of u. Fix a set o such that H, satisfies the statement “M$(z) exists and is &,-iterable,”
(MP*(x))He = M, and t € 0. By Vopénka’s theorem applied in the model L% (o), the real
t is contained in a generic extension H,[g] of H,. In fact because &, is inaccessible in LY (o)
the poset from the proof of Vopénka’s theorem (see, for example, Jech [2, Theorem 15.46])
is in (Vg )He.

In H, the Q-premouse M is &,-iterable by the Qf-guided strategy, by our assumptions.
Because the f operator condenses finely (cf. [9, Section 3])'* and determines itself on generic
extensions,'? a standard argument (see Schindler and Steel [7, Lemma 2.7.2]) shows that M
is still &,-iterable in H,[g] by the Qf-guided iteration strategy there. We note here that since
&, is countable, we really apply generic interpretability of 2 to a countable submodel of H,,
namely Vg"

The model H,[g] sees that the tree T is Qf-guided. Therefore in H,|g], if 7 has successor
length, then the last model of 7 is a wellfounded Q-premouse, and if 7 has limit length,
then it has a cofinal branch b such that MJ is an Q-premouse and Q(b, T) < Q*(M(T)). In
either case this fact about 7 is absolute to V/, giving the desired iterability. O

Claim 3.3. Case (2) of the K® existence dichotomy cannot hold.

Proof. This case is where the hypothesis =[], is used. Because H, is defined as the HODq .
of LY (o), we can define the Vopénka poset P, € H, to make every countable set of countable
ordinals in L% (o) generic over H,. For a countable set of countable ordinals a of L% (o),

let g,, denote the H,-generic filter over P, induced by a, which has the property that

13This is a more detailed version of “condenses well” in the literature.

141 the “gap in scales” case, the proof that the QFf operator determines itself on generic extensions is
given by Schindler and Steel [7, Section 5.6, proof of Claim 1 in case n = 0]. The proof in the other cases is
a straightforward induction.
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a € Hy[gya)-'® Note that Py € (Ve, )" because &, is inaccessible in L% (o).
Define the ultraproducts

[0 = fa]u

[0 = Py,

H=[o— H,], =
K=o~

= [ KU]M P

Every countable set of countable ordinals a in V' is seen as a countable set of countable
ordinals in L% (o) for p-almost every o (by fineness applied to a real coding a) so we can

define the ultraproduct

Ga = [O = ga,a]px

Then applying Lo$’s theorem to uniformly wellordered families of structures is enough to

establish the following facts.'6

e H is an inner model of ZFC with a cardinal = > w} that is large enough to do core

model theory below it.
e K is the core model of H built up to =, and it has no Woodin cardinals.
o P (V=) is a poset.

e To each countable set of countable ordinals a in V' we have assigned an H-generic filter
ga C P such that a € H|g,].

Now let x = w} and define the p-ultrapower map
Jj:V = Ul(V, ), crit(j) = k.

Recall that j itself is not elementary, but its restrictions to wellordered inner models are
elementary. (We remark that one could use any ultrapower map with critical point x here;
the measurability of wy” suffices for the following argument in place of R-strong compactness
of w}’, although it is not clear that it would suffice for the previous argument.)

Note that to every set A C x in V we can assign a j(H)-generic filter g4 C j(IP) such
that A € j(H)[ga]. To see this, consider the sequence of generic filters g4 = (gana : @ < K),
use the elementarity of the map j | L[H, A, g], and define g4 = j(ga)s-

15Unlike in case (1), it is important here that the Vopénka generic filter g, , is induced by a itself and
does not depend on the choice of a real coding a.

16Tf the measure p were normal, then Lo$’s theorem could be applied to the models L (o) themselves to

yield a model s (R) in which H, K, Z, and P could then be defined. But this is not possible in general, for
example under AD +V = L(R), where the hypothesis of the lemma holds for Q2 = rud but R* does not exist.
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Because [, fails in V', we have
(ﬁ+)j(K) < (K+>V

by a result of Schimmerling and Zeman [0, Theorem 2] relativized to the operator j(€2) and
applied to the model j(K'), which is the core model of j(H).
Take a set A C k in V coding a wellordering of  of order type (k%)) and define g = ga.
Because A € j(H)[g] we get
JH)[g) = (5T < st

Because g was added by a small forcing below the large cardinal j(Z) where j(K) was
constructed, we have that j(K) is still the core model of j(H)[g].'" Therefore (and this is
the crucial point) the model j(H)[g] sees the failure of covering for its own core model at
k, so we can apply the map j once more to get a contradiction by a standard argument,
outlined below.

Consider the restriction

3 1iH)g] = 5(H)lgl = (G (H))i(9)];

which is an elementary embedding. Because the domain j(H)[g] satisfies (k7)) < x*, the
further restriction j | p(x)7%) is in the codomain j(j(H))[j(g)] by a standard argument due

to Kunen. Therefore we have
Fej(i(H))[i(g)]

where F is the (k,j(k))-extender over j(K) derived from the map j | o(k)?®). Note that
K|k = j(K)|k, and k is an inaccessible cardinal in both ZFC models K and j(K) because it is
a measurable cardinal in V. Therefore j(K)|j(k) = j(j(K))|j(k), and j(x) is an inaccessible
cardinal in both models j(K) and j(j(K)), so we have

(H+)j(K)

p(r) )

(K+)j(j(K)) < j(k) and

p(ﬁ.)j(j(K))_

Therefore the extender F' can also be considered as an extender over j(j(K)), and it coheres
with j(j(K)). Note that j(j(K)) is the core model of j(j(H))[j(g)]
This extender F' has superstrong type, and we can apply the maximality property of the

17To make sense of the core model of j(H)[g] we are using the fact that j(H)’s version of the operator
determines itself on generic extensions. Any failure of this gets reflected to a countable substructure N. By
fine condensation, the version of 2 in IV is in fact 2N N. Now we apply the fact that 2 determines itself on
generic extensions of N to get a contradiction.
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core model [5, Theorem 2.3] in the model j(j(H))[j(g)] to show that every proper initial
segment [ [ v of F', where v < j(k), is on the sequence of the core model j(j(K)). Then in
the core model j(j(K)), these initial segments will witness that « is a Shelah cardinal. This
will contradict our case hypothesis, which says that there are no Woodin cardinals in K.

Let M = j(j(K)) and let F' | v, where v < j(k), be a proper initial segment of F'. We
want to see that the extender F' | v is on the M-sequence. Without loss of generality we may
assume that v is at least the common £ of the models j(K) and M. Tt suffices to show that
the pair (M, F' | v) is weakly countably certified [5, Definition 2.2]. Working in the model
§(H)[g], take a transitive, power admissible set N such that N C N, Vi, U j(K)|((x*)7) +
1) C N, and |N| = k. Stepping out to V for a moment and applying Kunen’s argument
again, we have

G e j(H))9)]

where G is the (k,j(k))-extender over N derived from j | p(k)
J(F(H))[j(g)] it is easy to verify that the pair (N,G) is a weak A-certificate [5, Defini-
tion 2.1] for (M, F' | v) whenever A is a countable subset of | J ([<]™) N M|v,'® noting
that M|v, M, and j(K) all have the same subsets of [x]" (because v is greater than or equal
to the common k™ of j(K) and M.) O

N Now in the model

n<w ©

We have shown that if case (1) of the K** existence dichotomy holds, then the conclusion
of the lemma holds, and we have shown that case (2) contradicts the hypothesis of the

lemma, so the proof of the lemma is complete. O

We remark that because €2 is a X-CMI operator, the operator M?’ﬁ given by the lemma
is also a X-CMI operator.

Corollary 3.4. Assume ZF + DCy,,) + ‘w; is R-strongly compact and =U,,.” Then PD
holds.

Proof. We show by induction on n < w that the M# operator is total on H(w;). The base
case is the M% operator, meaning the ordinary sharp operator, which is total on H(w;)
because w; is measurable. For the induction step we apply Lemma 3.1 to go from the
operator Q = M? to the operator M, which is stronger than M?Hl. It follows from the

existence of M? (z) for every n < w and z € R that Projective Determinacy holds. O

In the next section we will strengthen this conclusion to AD*® and thereby obtain an

equiconsistency result (Theorem 1.5.)

80r indeed if A is equal to {J,, ., p([x]") N M|v itself; we don’t need countability, and we don’t need to
choose the certificate (N, G) differently depending on A (or on v, for that matter.)
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4 The maximal model of AD" + 60 = 0y,

Throughout this section, we assume the hypothesis of Lemma 3.1, namely we assume
ZF + DCy ) + “wy is R-strongly compact and —L],,.”

Suppose (P,Y) is a G-Q*-suitable pair for some nice operator G such that ¥ has branch
condensation and is Q*-fullness preserving. As a special case we also allow (P, %) = (0, 0);
the analysis of this special case is enough to prove Theorem 1.5. We first define the “maximal
pointclass of ADT +© = 6y,

Definition 4.1. Let (P, ) be as above. Let
Qs = J{p(R)NL(A,R) | A C R and L(A,R) £ AD* + © = 6y, + MC(S)}.

We note that by (1), Qs is a Wadge hierarchy. In the case (P,X) = (0, 0), substitute 6,

for Ay, and ordinary mouse capturing MC for MC(X). In this section, we will prove that
L(Qs,R) N p(R) = Q. (4.1)

This has the consequence that L(2x,R) F ADT 4+ © = fx,. The model L(Qs, R) is called the
“maximal model of ADT + O = fy”.

Let Q = 3. The proof of (4.1) depends on understanding models of ZF + AD" +V =
L(p(R)) + © = 0y, + MC(X) as hybrid mice over R, ©-g-organized as in Section 2.1. (In the
case (P,X) = (0,0), we consider ordinary mice over R, namely levels of Lp(R), and we do
not need ©-g-organization by Remark 2.5. To keep the notations uniform in this section, we
will use the notation Lp*?(R, Code(€)) to denote Lp(R) in the case (P, %) = (0, 0).)

Q is suitable and M generically interprets .'9 Let A be the unique (w; +1)-Q-iteration
strategy for ./\/l?’ﬁ. It can be shown to follow from the hypotheses of Theorems 1.6 and 1.7
(in particular using the fact that every uncountable regular cardinal < © is threadable) that
the iteration strategy A can be extended to a unique (O + 1)-iteration strategy with branch
condensation, which we will also call A. (This “strategy extension” step is not necessary for
the case (P,X) = (0,0), so we postpone its proof until Section 5.)

As in [10], we use A to define Lp°?(R, Code(€2)). The only thing to check is that (© +
1)-iterability is sufficient to run the definition of Lp %(R,Code(€2)) in [10]. Suppose by
induction, we have defined a level M <leGQ(R, Code(€?)) (in general, the following argument

9By results of [10], M?’ﬁ generically interprets €2 for (P, X) being a G-Q-suitable pair or a hod pair where
3 has branch condensation and is Q-fullness preserving.
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works for any transitive structure M containing R such that there is a surjection from R
onto M) and without loss of generality, we assume M is a tree activation level NV, ; and
we are trying to define the level M, (in the notation of [10, Definition 3.38]); this just
means that M, is the first level above M by which we have fed in all necessary branch
information about Tyr,. It comes down to defining Ty as in Definition 2.2. Working in the
model N = L(M,R, f)[X],*° where f is a surjection from R onto M, we need to see that
the genericity iteration that defines Ty, terminates in less than © many steps. Suppose not,
letting 7 € N be the corresponding tree of length © + 1. In N, letting v be a large regular
cardinal > ©, we can construct some X < L,(M,R, f)[X] that contains all relevant objects
(in particular, RUM U {M} C X) and such that there is a surjection from R onto X. Let
7 : Mx — X be the uncollapse map and let £ = crit(7); then £ < © and 7(§) < ©. We
note that 7 can be canonically extended to a map 7 : Mx[G] — L,(M,R, f)[X][G], where
G C Col(w,R) is L(M, R, f)[X]-generic. We also note that since MU{M} C X, £ > o(M).
We can then use standard arguments (cf. [16, Theorem 3.11]), where X[G] plays the role of
the countable hull X there, to conclude that 1h(7) < ©. Contradiction. So Ty is defined
and has length < ©.
To prove (4.1), we need the following definition.

Definition 4.2. We define stGQ(R, Code(2)) to be the union of those MQLpGQ(R, Code(2))
such that whenever m : M* — M is elementary, P € 7~ '(HC), and M* is countable and
transitive, then M* is Q-(w; + 1)-iterable with unique strategy A such that A | HC € M.

We note that sLp ®(R, Code(Q)) is an initial segment of Lp (R, Code(2))? and it is
trivially constructibly closed. Also, stGQ(]R, Code(£2)) E © = Oy, and the extender sequence
of stGQ(]R, Code(£)) is definable over stGQ(R, Code(Q?)) from €, which in turn is defin-

able from 3. In this section, we outline the core model induction up to the “last gap” of
stGQ(R, Code(€2)). This will show that

sLp (R, Code(Q2)) E AD* 4+ MC(X).22 (4.2)

From [13, Theorem 17.1] and [1], we know that if M F V = L(p(R))+AD"+MC(X)+06 = b,
then M FV = L(stGQ(]R7 Code(£?))). This and equation 4.2 imply equation 4.1. It then

suffices to prove equation 4.2.23 The rest of the section is devoted to this task.

20By “¥”, we mean the set {(7,3): 8 € %(T)}.
21The initial segment may be strict.
22(Qrdinal definability from X in the definition of MC(X) is in the language of set theory, not in the language

of stGQ(R, Code(R2)), but by the paragraph above 4.2, this will not make a difference.

2Note that the statement “N < stGQ(R, Code(9))” is absolute between models containing R, N and
closed under €.
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The following definitions are obvious generalizations of those defined in [7].

Definition 4.3. We say that the coarse mouse witness condition Wj’gQ holds if, whenever
U C R and both U and its complement have scales in LpGQ(R, Code(2)) |y, then for all
k < w and x € R there is a coarse (k,U)-Woodin-mouse M containing x, closed under

the strategy A of M?’ﬂ with an (wy + 1)-iteration strategy whose restriction to H,, 1is in
Lp (R, Code(92))]7.2*

Remark 4.4. By the proof of [7, Lemma 3.3.5], W>** implies LpGQ(R, Code(Q2))|y E AD*.

Definition 4.5. An ordinal 7y is a critical ordinal in LpGQ(R, Code(Q)) if there is some U C
R such that U and R\U have scales in LpGQ(R, Code(2))|(y+1) but not in LpGQ(R, Code(2))].

In other words, v is critical in LpGQ(R, Code(R2)) just in case W;flﬂ does not follow trivially

from W59,

To any %, formula 6(v) in the language of Lp (R, Code(£2)) we associate formulae 6 (v)

for k € w, such that 6y is ¥, and for any v and any real x,
Lp (R, Code(Q))|(y + 1) E 0[z] <= Tk < w Lp (R, Code(Q))|y E Ok [z].

Definition 4.6. Suppose 0(v) is a X1 formula (in the language of set theory expanded by a
name for R and a predicate for °Q), and z is a real; then a (0, z)-prewitness is an w-sound
g-organized 2-premouse N over z in which there are o9 < --- < dg, S, and T such that N

satisfies the formulae expressing

(a) ZFC,

(b) do,...,09 are Woodin,

(c) S and T are trees on some w X n which are absolutely complementing in VCelw:99) - g

(d) For some k < w, p[T| is the Xy 3-theory (in the language with names for each real and
predicate for ©Q)) oprGQ(]R, Code(R2))|y, where vy is least such that LpGQ(R, Code(Q))|y E
Qk[z]

If N is also (w,wy, w;+1)-iterable (as a g-organized 2-mouse), then we call it a (0, z)-witness.

Definition 4.7. We say that the fine mouse witness condition WjQ holds if whenever 6(v)
is a X1 formula (in the language Lt of g-organized Q-premice (cf. [10])), z is a real, and
LpGQ(R, Code(Q))|y E 0[z], then there is a (0, z)-witness N' whose *Q-iteration strategy,
when restricted to countable trees on N, is in LpGQ(R, Code(£2))].

24We demand the strategy has the property that iterates of M according to the strategy are closed under
A.
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Lemma 4.8. W' — W for limit .

The proof of the above lemma is a straightforward adaptation of that of [7, Lemma 3.5.4].
One main point is the use of the g-organization: g-organized {2-mice behave well with respect
to generic extensions in the sense that if P is a g-organized (2-mouse and h is set generic
over P then P[h] can be rearranged to a g-organized Q2-mouse over h.

The induction is guided by the pattern of scales in Lp ?(R, Code(f)) as analyzed in
[10]. To show AD* + MC(Z) holds in sLp (R, Code(R2)), we show sLp (R, Code(1)) &
Vo (o is critical — W), Our plan is to show W;j? assuming W**? for « critical. Lemma
3.1 and the subsequent corollary provide the base case for our induction. For o > 0, we have

three cases:

1. « is a successor of a critical ordinal, or « is a limit of critical ordinals and cf(a) = w.
2. «a is an inadmissible limit of critical ordinals and cf(«a) > w.

3. a ends a weak gap or is the successor of an ordinal that ends a strong gap. Say the
gap is [, a*|, where a* = « if the gap is weak and o* + 1 = « if the gap is strong.
Furthermore, sLp (R, Code(£2))|a E MC(X) + AD* + © = ..

We deal with the easy case (1) first. In this case, let I' = EinGQ(R’COde(Q))‘a. Then Cr =
U, Cr,. for some increasing sequence of scaled pointclasses (I, | n < w). By W2’¢, for
each n, we have ¥-cmi operators (K, | m < w) that collectively witness Det(|J, ;). Say
each K, is defined on a cone above some fixed a € HC. The desired mouse operator K is
defined as follows: For each transitive and self-wellordered A € HC coding a, Jo(A) is the
shortest initial segment M < Lp*?(A) such that M £ ZFC™ and M is closed under K,, for
all m. Jp is total and trivially relativizes well and determines itself on generic extensions
because the K,,’s have these properties. We then use Lemma 3.1 to get that J; = /\/lﬁ"]o is
defined on the cone above a by arguments in the previous section. Inductively, we get that
Jni1 = M%’J" is defined on the cone above a for all n and one easily gets that these operators
are L-cmi operators. By Lemma 4.1.3 of [7], this implies W;j?

Now we’re on to the case where « is inadmissible and cf(«) > w. Let ¢(vg,v1) be a ¥y
formula and € R be such that

Vy e RIB < astGQ(R, Code(Q2))|8 E ¢z, y],

and letting 5(z,y) be the least such g,

a =sup{f(z,y) |y € R}.
We first define Jy on transitive and self-wellordered A € HC coding z. For n < w, let
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¢r = Ty (Lp AR, Code(Q)) |y E Vi € w (i > 0= ¢((v)o, (v):) A (7 + wn) exists)).

n

For such an A as above, let M be an A-premouse and let G be a Col(w, A)-generic filter
over M. Then M[G] can be regarded as a g-organized {2-mouse over z(G, A) where z(G, A)
is a real coding G, A and is obtained from G, A in some simple fashion.?> Also, let o4 be a

term defined uniformly (in M) from A,z such that

(Uf)o =T

and
{(09)i 11> 0} ={p% | p € Li(A) A p” € R}.

Let ¢ be a sentence in the language of A-premice such that for any A-premouse M, M FE ¢
iff whenever G is M-generic for Col(w, A), then for any n there is a 7 < o(M) such that

Mz(G, A)|y is a (¢F, 0F)-prewitness.

Then Jo(A) is the shortest initial segment of Lp“?(A) which satisfies ¢, if it exists, and is
undefined otherwise. Using the fact that W.® holds, we get that Jo(A) exists for all A € HC
coding z because a has uncountable cofinality and there are only countably many (¢%, p5).
Also we can then define J, as before. It’s easy to show again that the J,’s relativize well
and determine themselves on generic extensions, so they are >-cmi operators. This implies
W

Lastly, we consider the gap case. Using the notations as in case 3 above, let I' =
ZiLPGQ(R’COde(Q))W. If [y,a*] is a weak gap, then by the scales analysis at the end of a
weak gap from [11] and [10], we can construct a self-justifying system (sjs) .A Wadge-cofinal
in p(R)N SLpGQ(R, Code(2))|a*.?% If [y,a*] is a strong gap, then by the Kechris-Woodin
theorem, AD" holds in stGQ(R, Code(f2))|a, and again by results of [11], [L0], and [21],
we also get a self-justifying system .4 Wadge-cofinal in stGQ(R, Code(Q2))|a N p(R). From
A and arguments in [7, Section 5], there is a pair (Q,A) such that Q is [-suitable and A
is the (wq,w)-strategy for Q guided by A (see the next section for more details on self-
justifying systems). Let Jo = A. We assume that .4 contains the universal I'-set and hence

the universal I'-set.

Claim 4.9. J, determines itself on generic extensions.

25This is one of the main reasons that we consider 9{)-mice; this is so that generic extensions of 9Q-mice
can be rearranged to 9(2-mice.

G
. . . .. . Lp *(R,Code(£
26This means A is a countable collection containing a universal %] (R, Code(2))ly set, closed under com-

plements and whenever A € A, then there is a scale whose individual norms are coded by sets in A.
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Proof. Let N be a countable transitive structure of ZFC™ such that N is closed under J, (and
hence under A). We simply describe a procedure that determines A on generic extensions of
N; the reader may gladly verify that this is enough to prove the claim. Let g € V' be generic
over N; we assume without loss of generality that ¢ C Col(w, ) for some N-cardinal k and N
has a Col(w, )-name A for A. The existence of A follows from [7, Lemma 3.7.5] and the fact
that Cr(HY,) C N. The latter follows from a simple genericity iteration argument using the
fact that N is closed under A. Leti: Q — R bea H ,ﬁ—genericity iteration in NV according to
A. Since R is I-suitable, Cr(HY,) € R[HY]. Since R[HY.] C N, Cr(HY,) C N as claimed.

Let 7 be a tree according to A of limit length in N[g] (the argument for stacks is similar).
If T is short, we can find the Q-structure Q(7) for 7 and this in turn determines the branch
b= A(T) € Nlg]. The Q-structure Q(M(T)) belongs to Cr(M(T)) and can be computed
using ./lg; the point is the universal I-set belongs to A, so N [g] can use /lg to compute the
Cr-operator correctly.

Suppose T is maximal. By boolean comparison (cf. [7, Section 5.4]), we can find a tree
U € N according to A such that

(i) U is non-dropping with last model M¥ and branch embedding 7%;

(ii) A(T) = b is the unique branch in N[g] with last model M7 and branch embedding =

such that there is an elementary embedding 7 : M7 — MY with 7¥ = 7o 77 .27

]

Furthermore, Jy is suitable (we can construct /\/lfo’ﬁ by arguments in the previous section)
and M:** generically interprets Jy by [10, Lemma 4.8]. Note that J, and A are projectively
equivalent in any reasonable coding. We can use Lemma 3.1 to show W;j? by constructing
a sequence of operators (J, : n < w), where J,, ;1 = M‘{"’ﬁ for all n.?® This concludes the
outline of the proof of 4.2 and 4.1.

It now follows easily that we can strengthen the conclusion of Projective Determinacy in

Corollary 3.4 to obtain the following result.

Corollary 4.10. Assume ZF + DC,,) + ‘Wi is R-strongly compact and =0, .” Then AD
holds in L(R).

This corollary completes the proof of Theorem 1.5. It also forms a significant first step

in the proofs of Theorems 1.6 and 1.7.

2"The map 7 is a fine-structural embedding. Typically, it is a k-embedding in the sense of [16] where k is
the degree of the tree 7.

28 These operators, again, can be shown to be ¥-cmi operators. Here and elsewhere, we suppress the formula
©min defined in [10, Definition 3.2] from the definition of J; = /\/lljo’ﬁ; to be entirely correct, according to

[ ]7 Jl should be MgJOv‘Pmiu),ﬁ.
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5 A model of AD" + 6O > 0y

Suppose (P, X)) is a G-Q*-suitable pair for some nice operator G such that ¥ has branch
condensation and is Q*-fullness preserving. As a special case we also allow (P, %) = (0,0).
In the previous section we showed (under our strong hypotheses plus a smallness assumption)
that there is a maximal model of AD" +V = L(p(R)) + © = 05 containing all reals and
ordinals. This model has the form L(€Qy, R) where L(2g,R) N p(R) = Q. In this section,
we will go just beyond this model to obtain a model of AD" + © > fy, containing all reals
and ordinals.
Define the pointclass
I' = (22(Code(X))?.

Note that we have I' = (X2(Code(X))?s; this is because if a set of reals A € Q* witnesses
a Y?(Code(X)) fact about a real x, then there is a set of reals in A?(Code(X), x) AR
witnessing the same fact about 2 by Woodin’s A? basis theorem relativized to z and Code(X)
and applied in the model L(A,R), and such a set of reals can be shown to be in Q.

Recall from Section 4 that (under our smallness assumption) the maximal model L(€2y, R)
of ADT+0 = 0y is, up to its ©, a hybrid mouse over R of the form stGQ(R, Code(f2)) where
we have defined the operator 2 = 3. We remind the reader that Code(£2) is self-scaled.

In particular we have
Oy = p(R) NsLp (R, Code(€2)),

so we can reformulate our pointclass as

r— (E%)stGQ(R,code(Q)) _ (Ef)stGQ(R,Code(Q)ﬂa

where a = (5%)SLPGQ(R’C°de(Q)) is the ordinal beginning the last gap of stGQ(]R, Code(2)).
(Recall that by X2 we mean to include Q, or equivalently ¥, as a parameter. By self-iterability
it makes no difference whether we also include the extender sequence as a parameter.)

Like the pointclass considered in the “gap in scales” case of the core model induction
in Section 4, the pointclass I' is an inductive-like pointclass with the scale property. Our
next task is to find the next scaled pointclass, or (what is roughly equivalent) to build
a scale on a complete I' set. Unlike in Section 4, this next scaled pointclass cannot be
found within stGQ(R, Code(£2)). The reason is that the complete I' set {(z,y) € R x R :
y ¢ OD;LPGQ(R’COde(Q))} cannot have any uniformization in stGQ(R, Code(£2)), and therefore

cannot have any scale in stGQ(R, Code(€2)), by a standard argument.
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We will use our strong hypotheses (as in Theorems 1.6 and 1.7) to build a scale on a
complete I' set. Each prewellordering of this scale will be in L(Qs,R), or equivalently in
stGQ(R, Code(€2)), although the sequence of prewellorderings cannot be, as we just saw.

More directly, what we will show is that the prewellorderings are in a pointclass Env(T),
the envelope of I'. The notion of envelope was used by Martin to identify the next scaled
pointclass after an inductive-like scaled pointclass in the AD context; see Jackson [1]. We
will need its adaptation to the partial determinacy context as defined in the second author’s
thesis [20] (see also the subsequent article [21].)

It turns out that Env(I') C L(Q2g,R), and in fact Env(I") consists exactly of the sets of
reals that are ordinal-definable from 3 in the model L({2s,R), but we will not be able to
see this until later. For now we must use the following “local” definition of the envelope
in terms of the ambiguous pointclass Ar = I'N [" and in terms of the notion of “Ar in an
ordinal parameter.” This notion can be defined in general, but here we can take the following
characterization as a definition: a set of reals is Ar in an ordinal parameter if and only if it
is Aj-definable over stGQ(R, Code(f2))|a from ordinals (and €, or equivalently X.)

Definition 5.1. The envelope of T, denoted by Env(I), is the pointclass consisting of all
pointsets A such that, for every countable o C R, there is a pointset A’ that is Ar in an
ordinal parameter and satisfies ANo=A"No.

The boldface pointclass Env(I') is defined similarly but allowing a real parameter. That
is, A € Env(T') if there is a real x such that for every countable o C R there is a pointset

A" that is Ar(x) in an ordinal parameter and satisfies ANo=ANo.

The following fact about envelopes is crucial for our argument. It is essentially proved in
the thesis [20] (which deals with generic large cardinal properties of wy in ZFC rather than
with large cardinal properties of w; in ZF 4+ DC, but the argument carries over to the present
context.) An easier version with “scale” replaced by “semiscale” is proved in the article [21],

and a special case of the scale construction appears in another article [22].

Lemma 5.2 (Wilson). Assume ZF+DC. Let I' be an inductive-like pointclass with the scale
property. Suppose that wy is Env(T')-strongly compact. Then there is a scale on a universal

I set, each of whose prewellorderings is in Env(T).

We will also need the fact that if ZF + DCg holds and the boldface ambiguous part Ar
of the pointclass I' is determined, as it is here, then Env(I") is determined and projectively
closed (Wilson [20, 21]; based on work of Kechris, Woodin, and Martin.) Therefore Wadge’s
lemma applies to it, as one can easily verify that the relevant games are determined. More-

over, the Wadge preordering of Env(I")?° is a prewellordering: otherwise by DCg we could

29Really a preordering of pairs { B, =B} where B € Env(T).
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choose a sequence of pointsets in Env(I") that was strictly decreasing in the Wadge ordering,
but then by the proof of the Martin—-Monk theorem we get a contradiction. (Again one can
easily verify that the relevant games are determined.)

Note that the prewellorderings of a scale as in Lemma 5.2 must be Wadge-cofinal in
Env(T'); otherwise the sequence of prewellorderings itself would be coded by a set of reals
in Env(I"), which is impossible as mentioned above. From such a scale, it then follows by
a general argument (see Jackson [1] and the straightforward adaptation [20, Section 4.3] to

the partial determinacy context) that we can obtain a self-justifying system contained in
Env(T):*

Lemma 5.3. Assume ZF +DC. Let I' be an inductive-like pointclass with the scale property
such that Ar is determined. Suppose that wy is Env(D)-strongly compact. Then there is a

self-justifying system A C Env(I') containing a universal I set.

We will use this lemma together with the hypotheses of Theorems 1.6 or 1.7 to obtain
a self-justifying system A C Env(I') containing a universal I' set. We begin with the
observation that the length of the Wadge prewellordering of Env(T") is at most © by the
usual argument: the initial segment corresponding to a set B € Env(I") is the image of R
under the function y +— g, [B], where g, denotes the continuous function coded by the real
y. Moreover, the lightface envelope Env(I") admits a wellordering (essentially an ultrapower
of the canonical wellordering of the Ar-in-an-ordinal sets by Martin’s cone measure, which

measures the relevant sets by Env(I')-determinacy.)

Lemma 5.4. Let I' be an inductive-like pointclass with the scale property such that Ar is
determined. Assume ZF + DC + “wy is ©-strongly compact.” Then there is a self-justifying

system A C Env(I') containing a universal I" set.

Proof. Consider the restriction of the Wadge prewellordering of Env(I") to the lightface
envelope Env(T"). We can refine this prewellordering to a wellordering by taking its lexico-
graphical product with a wellordering of Env(I'), which exists, as mentioned above. This
refinement has the property that its length is at most ©, because its initial segment below
any set A € Env(I") is contained in the Wadge-initial segment {B € Env(I') : B <w A}.
(It’s not clear whether the original wellordering of Env(I") described above has this prop-
erty.) Therefore our hypothesis implies that w; is Env(I')-strongly compact, and the desired

conclusion follows by Lemma 5.3. [

30We don’t know if it is possible to obtain a self-justifying system contained in the lightface envelope, but
this will not matter for our application.
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Lemma 5.5. Let I' be an inductive-like pointclass with the scale property such that Ar s
determined. Assume ZF + DCg + ‘wy is R-strongly compact and © s singular.” Then there

is a self-justifying system A C Env (') containing a universal I' set.

Proof. Let < be a wellordering of Env(I") that refines the Wadge prewellordering (as in the
previous proof) and therefore has length at most ©. Using the hypothesis that © is singular
to deal with the apparent possibility that < has length equal to ©, we can obtain a function
f R — Env(I') that is cofinal with respect to < and therefore also cofinal with respect to
the Wadge prewellordering of Env(I"). Then we can define a partial surjection from R x R
onto Env(I") by mapping (x,y) € R xR to the preimage of the set f(z) under the continuous
function coded by the real y, whenever this preimage happens to be in Env(T").

Therefore there is a surjection from R onto Env(I"), and by our hypothesis that w; is
R-strongly compact, it follows that w; is Env(I')-strongly compact. We could now apply
Lemma 5.3 to obtain the desired conclusion, except for the problem that we only have DCg
in place of DC. This problem can be solved by passing to an inner model.

Take a fine, countably complete measure p on g, (Env(I')) and consider the model
L(X)[u] where X = Env(I')* UR. In V we have DCg and we have a surjection from R
to X, so we have DCx. Because an w-sequence of elements of X can be coded by a single
element of X, we have DCx in L(X)[u] as well. In L(X)[u] every set is a surjective image
of X x & for some ordinal &, so DC follows from DCyx by a standard argument. Then we can

apply Lemma 5.3 in L(X)[u] and note that the conclusion is upward absolute to V. O

Now that we have obtained a self-justifying system A = (A; : i < w) sealing the envelope
of I, we may proceed as in the “gap in scales” case of Section 4 to get a pair (Q,A) such
that Q is a I'-suitable g-organized {2-premouse and A is the (w1, w;)-iteration strategy for Q
guided by A. A slight difference from Section 4 is caused by the fact that, at this stage in
the argument, we do not know how to rule out the possibility that the pointclass Env(I") is
strictly larger than the pointclass Qs = p(R) N stGQ(R, Code(€2)).

However, this difference does not create any problem because the important thing is
that every set A € Env(I') (and in particular every set A; in our self-justifying system .A)
has the property that, for a cone of b € HC, the hybrid lower part mouse Lp ' (b) has a
Col(w, b)-term for a set of reals that locally captures A. (If A is in the lightface envelope
then the base of the cone is () and this holds for all b € HC.) For a proof, see Wilson [20),
Section 4.2]. This local term-capturing property is sufficient to make sense of the notion of
A-iterability, to prove the existence of A-iterable g-organized and ©-g-organized (2-premice,
and to get an iteration strategy A guided by the self-justifying system A. The adaptation

of existing proofs to this context is straightforward.
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Defining the X-CMI operator F = A, we can then use Lemma 3.1 to construct a sequence
of 3-CMI operators (J, : n < w), where Jy = F and J,4; = M*” for all n > 0. Because A
and F are projectively equivalent (in any reasonable coding) this shows the existence of a
determined projective-like hierarchy just beyond Env(I"), and therefore beyond the maximal
model of ADT + O = by,

To continue further and get a model of ZF + AD" + © > #5,, we proceed along the lines
of Section 4. The difference is that now the operator F is here to stay: we must consider
F-hybrid mice from this point on, and never return to considering (2-hybrid mice because
they cannot give us anything new.

Our model of ADT +0© > 6y, will be obtained as the maximal model of ADT +© = 0, and
Oy, will be the penultimate member of its Solovay sequence. The existence of this maximal
model is established by the results of Section 4 with the suitable pair (Q, A) and its associated
operator F in place of the hod pair (or suitable pair, or empty pair) (P, X) and its associated
operator 2. (For this reason it is important that we allowed suitable pairs as well as hod
pairs and empty pairs in Sections 3 and 4.)

To obtain the maximal model of AD" + © = #,, it remains only to show that A can be
extended to a (O + 1)-iteration strategy with branch condensation. (In fact, we will show
that it can be extended to a ©T-iteration strategy with branch condensation.) As remarked
in Section 4, this strategy extension is necessary to define the model sLp " (R, Code(F)) via
g-organization, which in turn is necessary to analyze the pattern of scales in this model.

Note that because the iteration strategy A is guided by a self-justifying system, it has
branch condensation and hull condensation and the set of reals coding it is Suslin. Accord-
ingly, we can use the following lemma to extend A. Our argument is based on Schindler and
Steel [7, Lemmas 2.1.11 and 2.1.12], but some adaptations are necessary in the absence of
AC. A similar argument is also found in Steel [12].

Before proving the lemma (which will take the remainder of this section) let us note
that the hypothesis that every uncountable regular cardinal < © is threadable follows from
the hypotheses of Theorems 1.6 and 1.7. In particular, it follows from the hypothesis ZF +
DC+ “w; is ©-strongly compact” and also from the hypothesis ZF + DCg + “w; is R-strongly
compact and © is singular.” Note also that the conclusion that the extension of A has hull
condensation, together with the fact that the original ws-iteration strategy A has branch
condensation, implies that the extended strategy also has branch condensation by an easy
Skolem hull argument. (We can take the Skolem hull in an inner model of ZFC, so that no

choice is required.)

Lemma 5.6. Assume that ZF holds and let A be an wi-iteration strategy with hull con-
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densation for a premouse®® Q. Assume that Code(A) is Suslin. Let n be an uncountable
cardinal and assume that every uncountable reqular cardinal < n is threadable. Then A has

a (necessarily unique) extension to an n*-iteration strategy with hull condensation.

Proof. Let T be a putative iteration tree on Q of length less than n* and such that every
countable hull of 7 is by A. (A putative iteration tree is like an iteration tree except that
its last model, if it has one, is allowed to be illfounded.) What we want to show is that if T
has a last model, then this last model is wellfounded, and if 7 has limit length, then it has
a unique cofinal wellfounded branch b such that every countable hull 77b of 7b is also by
A (in which case our extension of A can and must choose this branch.)

In the case that 7 has a last model, it is easy to see that the last model must be
wellfounded; otherwise by taking a Skolem hull (of L,+[Q,T], say, so that no choice is
required) we may obtain a countable hull of 7 whose last model is illfounded, but the last
model of the hull must be wellfounded because the hull is by the iteration strategy A.

Now suppose that 7 has limit length. This case will require a bit more work. First we
note that it suffices to find some cofinal branch b of 7 such that every countable hull 7™b
of T7b is by A; then a Skolem hull argument shows that there can be at most one such
branch and that any such branch is wellfounded. Let ¢ be a real coding the premouse Q.

We consider two subcases.
1. 1h(7) has uncountable cofinality.

In this subcase, we use the general fact about iteration trees that the sequence of branches
[0, )7 for limit ordinals o < 1h(7) is a coherent sequence of clubs. Here 1h(7) is threadable
(equivalently, has threadable cofinality,) so the tree 7 has a unique cofinal branch b obtained
by threading this coherent sequence. Let 7 b be a countable hull of 7™b. We want to show
that 7 b is by A.

Let = be a real coding 7~b. The model N = L[q, T, b, A, z]*? satisfies AC and therefore
[l,, whereas V satisfies “w; is threadable” and therefore =[], so w{v < wi. Note that the
model N sees that 7 b is a hull of 77b by the absoluteness of wellfoundedness for the tree
of attempts to build a map 1h(7T) — 1h(7) witnessing this (or we could just put such a map
into the model.) The model N also sees, of course, that Ih(7") has uncountable cofinality.

Working in N, by a Skolem hull argument we can take a hull 7*7b* of 7 b such that

Ih(7™) has cardinalilty and cofinality w; and 77b is a hull of T*7b*. Because the tree T*

31By a premouse here we mean an F-premouse where F is an operator that condenses finely (such as the
core model induction operators that we consider in this paper.) Alternatively we could use coarse mice here,
because we will only need the extended strategy for genericity iterations.

32We are abusing notation here. For example, instead of A itself as a predicate we mean {(U, &) : € € A(U)}.
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is countable in V' the branch A(7™) is defined, and the model N can see it. In N the tree
T* can have at most one cofinal branch because its length has uncountable cofinality, so
A(T*) = b*. Therefore the hull 7*~b* is by A, and by hull condensation its hull 77b is also
by A, as desired.

2. 1h(T) has countable cofinality.

In this subcase, we define an elementary substructure X < L,+[Q, 7] in V to be appropri-
ate if QU{Q, T} C X, X is countable, and X N1h(7) is cofinal in Ih(7). For an appropriate
elementary substructure X < L,+[Q,T], let ox : My — X denote the uncollapse map of
X, define the tree Tx = o' (T) on Q, and note that Tx is a hull of 7 as witnessed by the
map ox [ lh(7x).

Furthermore, for any two appropriate elementary substructures X,Y < L,+[Q, T] such
that X C Y, let oxy : Mx — My denote the factor map a;l o ox and note that Tx is a
hull of 7y as witnessed by the map oxy [ 1h(7x).

We say that an elementary substructure X < L,+[Q, T] is stable if it is appropriate and
for every appropriate elementary substructure Y < L, +[Q, T such that X C Y we have

A(Tx) = oxy [A(Ty))-

Note that an equivalent condition would be ox[A(7x)] C oy [A(Ty)] because distinct cofinal
branches are eventually disjoint.

Assume for the moment that there is a stable elementary substructure X < L,+[Q, T].
Then we can define the branch b of T to be the downward closure of the set ox[A(7x)] in
the T-ordering. For every appropriate elementary substructure Y < L,+[Q, 7] such that
X C Y, we have ;' [b] = A(Ty). Moreover, the tree Ty o' [b] is a hull of 77633 Therefore
club many countable hulls of 70 are by A and we can argue as in subcase (1) that every
countable hull of 77b is by A.

So assume toward a contradiction that there is no stable X. Let .S be a tree on w x Ord
that projects to Code(A), let f : w — 1h(7) be a cofinal map, and define the model N’ =
Llq,T,S, f]. (Recall that ¢ is a real coding the premouse Q.) Note that the model N’ satisfies
the statement “there is no stable X7 as well as V does: for any appropriate elementary
substructure X < L,+[Q, 7] in N’, we may use the absoluteness of wellfoundedness of the
tree of attempts to find an appropriate elementary substructure ¥ < L,+[Q, 7| such that
X CY but A(Tx) # oxy [AM(Ty)]. (We may use the tree S to witness values of A.)

33In general if U is a hull of an iteration tree U as witnessed by a map o : Ih(U) — Th(U), c is a cofinal
branch of U, and ¢ Nrange(o) is cofinal in Th(i), then U "o~ [c] is a hull of U " c.
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Define v = w¥" and note that v < w;, just as for the model N in the uncountable cofinality
case. In the model N’ we can build a continuous, C-increasing sequence (X, : a < ) of

appropriate elementary substructures of L,+[Q, T| such that

MTa) # Oania[MTas)]

for all a < v, where we define T, = Tx,, 0o = 0x,, €tc.

Define the cofinal branch b = A(7,) of 7, and note that this branch is in the model N’
because it can be computed using the tree S € N’. For all sufficiently large o <  the
intersection bNog 4 [1h(75)] is cofinal in 1h(7;), which implies that the tree 7,0} [0] is a hull

of 7,7b. So by hull condensation we have o} [b] = A(7) for all such a, and by considering

such an a and its successor we get A(75) = o 4 1[A(Ta41)], a contradiction. O

Remark 5.7. The proof above is given in the case Q is a coarse premouse. In the case
Q is a (fine-structural) F-premouse for some F, one only needs slight modifications. In
particular, one needs to require that the last model of the tree T in the proof is a well-founded

F-premouse.

6 ) is constructibly closed

The main theorem of this section is the following.

Theorem 6.1 (ZF + DCg). Assume there is no transitive AD™ model M containing RUOR
such that there is a pointclass T C o(R)M with L(T) N p(R) =T and L(T') E ADg + DC.
Then L(Q2*) N p(R) = Q*.

Remark 6.2. We note that the smallness assumption in Theorem 6.1 is stronger than ().
It allows for the existence of a minimal model of “ADgr + DC” but not much more. The
Solovay sequence of the minimal model of “ADg + DC” has length w,. We will use (11) to
denote this hypothesis.

We assume (1) throughout this section. Suppose the Solovay sequence of Q* is of

successor length.>* Then by Section 4, 2* = p(R) N M, where for some operator F,

34The Solovay sequence (6, : a < ) of a pointclass Q* with the property that if A € Q*, then L(A,R) F
ADT and p(R)NL(A,R) C Q* is defined as follows. 6 is the supremum of « such that there is some A € Q*
and some OD*(A®) surjection 7 : R — «. If A <~ is limit, then 6, = sup,,0o. If 6, has been defined and
a+ 1 < v, then letting A € Q* be of Wadge rank 6, 6,41 is the supremum of 3 such that there is some
B € Q* and some OD(A)*(BR) surjection 7 : R — 3.
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M = J{M < Lp 7 (R, Code(F)) | M E AD* A M is self-iterable},*
and furthermore, Section 4 also shows that
o(R) N M = p(R) N L(M).

Clearly, this then shows that Q* = p(R) N L(Q2%).

Suppose now the Solovay sequence of 2* is of limit length. Let H be the direct limit of
all hod pairs (Q, A) € Q* such that A has branch condensation and is 2*-fullness preserving.
H is a union of hod premice and by (1) and [3], H has ordinal height ©% .36 Let X be the
length of the Solovay sequence of 2*; so A is a limit ordinal. By the smallness assumption of
the theorem, A < w;. From now on, we write ©* for ©" and 6}, for each 6" on the Solovay
sequence of 2%,

The following is the main lemma.
Lemma 6.3 (ZF 4+ DCg). There is no M < L[H] such that H € M and p,(M) < O*.

Proof. Suppose not. Let N'<I L[H] be least such that p,(N) < ©*. Let B € Q* be of Wadge
rank 67, where n < X is such that p,(N) < 60 and 6} > v, where v is the N-cofinality of
A. Suppose k is the least such that pg1(N) < ©*; we may assume pg1(N) < 0%, Let M =
L. (R, B,N), where v is some sufficiently large cardinal so that L. (R, B,N') E ZF~ + DC.

For countable ¢ < M containing all relevant objects, let 7, : M, — M be the transitive
uncollapse map whose range is 0. Such a o exists by DC in L(R, B,N'). For each such o,
let 7o (Hoy Ony Ary Noy By, Ug) = (H, 0%, A\, N, B,v). Let ¥ = @acr, X, (). Note that for
each o < Ay, ¥y, () acts on all countable stacks as it is the pullback of some hod pair (R, A)
with the property that M (R, A) = H(m,(c)).

Let 0 < M be such that w{”" > n; this is possible since n < A < wy. My, (ny1) Is QF-
fullness preserving and has branch condensation. This follows from the choice of B, which
gives that (Ho,(n+1), Xy, (n11)) is a tail of some hod pair (Q, A) € M, such that Q has n+1
Woodin cardinals and A has branch condensation and is 2*-fullness preserving. We let X7
be the fragment of ¥ for stacks on A, above 6\=. Note that X7 is an iteration strategy of
N, above 5ﬁf ° gince Y-iterations are above v,, which may be measurable in N, , and hence
does not create new Woodin cardinals. X7 has branch condensation. We then have that

¥ € OF; otherwise, by results in the previous sections, we can show L(X7? R) = AD" and

35This means whenever M* is countable and transitive and there is an elementary embedding from M*
into M, then M* is (w,w; + 1)-F-iterable in M.

36Tn fact, the universe of  is precisely the set of all bounded subsets A of ©2" such that A is OD in
L(B,R) for some B € Q*.
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this contradicts the definition of Q*.37 Also, by [3, Theorem 3.26], " is I-fullness preserving
where T' =4¢¢ T'(N,, 27).

We then consider the directed system F of tuples (Q, A) where Q agrees with A, up to
§Ne and (Q, A) is Dodd-Jensen equivalent to (H,, ), that is (Q, A) and (H,, £7) coiterate
(above &) to a hod pair (R, ¥). F can be characterized as the directed system of hod
pairs (Q, A) extending (N, (n), Xa; ) such that T'(Q,A) = T', A has branch condensation
and is I'-fullness preserving. We note that F is ODy, = in L(C,R) for some C' € Q. We
fix such a C; so L(C,R) E ADT + SMC. Let A C 6o witness pp1(Ny) < 6. Then
Ais ODy,,_, in L(C,R). By SMC in L(C,R) and the fact that N, (n + 1) is Q*-full,
A € LpZne® (N,|6N7) € N,. This contradicts the definition of A. O

For o < ), let us write gy, (R) for (pg, (R))®" and X, for X*. We also need the following
notation: let (P,>) € Q* be a hod pair, let M%Z = MZ# be the minimal P-sound, active
S-mouse with w many Woodin cardinals 6, ™" < 67 < .. and let 05" = sup, 6,7 3
Finally, we let Mp s = MZ be the corresponding proper class mouse obtained from M?D,E
by iterating the top extender OR many times. We remind the reader that at this point, we

assume that A is a limit ordinal.

Lemma 6.4 (ZF + DCg). Fiz s € (0*)< and let o < X be such that s € (0%)<“. Then
for any formula ¢ and any hod pair (Q,A) € Q* such that A is Q*-fullness preserving, has
branch condensation, and I'(Q, A) = g (R),

L(AR) EYls] <= Mao E “the derived model satisfies w[ii‘za)m(s)] 7 (%)

where M,  is the direct limit of all iterates of Mg s below 5é\AQ’A via its canonical strategy

and the derived model is computed at 5o

Proof. Fix s, ¥, a, and (Q, A) as in the statement of the lemma. First we note that >, is a
tail of A. Let P = Mg, and let £ be the canonical strategy of P extending A. Note that
for any Y-iterate P* of P, we can iterate P* using ¥ to some P’ such that L(A,R) is the
derived model of P’ at 673 We may assume also that s is in the range of the direct limit
map from P into M, .

Suppose the left hand side of the equivalence fails, that is
L(A,R) & —¢[s].

3TWe also have that X7 is the join of countably many sets of reals, each of which is in 2* and hence is
Suslin co-Suslin. This implies that X7 is self-scaled.

38Sections 3 and 4 show that M%Z exists and its canonical strategy is in 2*.

39This is analogous to the fact that L(R) is the derived model of an iterate of M,,.
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Work in VR and let {(Pn,X,) [ n < wA (P, B,) € I(P,X)} be cofinal in the directed
system of Y-iterates below 0); here we take (Py,%y) = (P, %)% For m < n < w, let
in © Pn — Pni1 be the iteration map and let i, @ Pp, = P and ipoo @ P = Moo
be the natural maps. Set sy = i (s) and let s, = ign(so). Let (P : k < w) and
(Mg = PP — P+ k <1 < w) come from the simultaneous R-genericity iteration construction
described in [17, Lemma 6.50]. We also let j; : P; — P¢ be the iteration map; here the

iterations are above the s;’s, i.e.
Ji(s:) = ;.
By properties of the construction, for k£ <1 < w
Ji O Uk = Tk © Jk-
Let P2 be the direct limit of P under the embeddings 7, and let m;,, : P — P and

Juw : Moo = P2 be the natural maps. Note that j,(s) = s.

By our assumptions, for each i,
Py F 11 “the derived model satisfies —t)[s] and s = ipw oo (5i)”.

Let k be such that for all | > k, m;11(s) = s (k exists because P2 is well-founded), and let

s* = Tku(s). By elementarity,
P E 11F “the derived model satisfies —t)[s*] and s* = ipw 0 (5)”.
By elementarity of j,, and the fact that j,(s) = s, we get
M. F 1IF “the derived model satisfies ﬁw[ii?a)voo(s)]”.

Contradiction. The other direction is proved similarly. O]

Remark 6.5. The right hand side of (x) can be defined in H from ¥, uniformly in %,.
This is because the right hand side of (x) is equivalent to the statement: in the derived
model of L[H] at the supremum of its Woodin cardinals 1/1[ii°(“a)7oo(s)] holds, where R* is the
Col(w, <©)-symmetric reals over L[H] induced by some g C Col(w,< ©). This is because
Moo € H and in L[H][g], we can naturally embed the direct limit of ¥, -iterates of H(c) in
the derived model of M, ~ into the direct limit of ¥, -iterates of H(«) in the derived model

of L[H].

40There is an awkward point here. We don’t know that (P, ) is iterable in V! (“R) but we can run
the argument below inside an L[T,x] where T is a tree projecting to some universal I set A and T is an
inductive-like, scaled pointclass beyond pg, (R) and x € R codes P as well as the reduction of A to Code(X).
We may also assume (x) is absolute between €2 and the model L[T,z]’s version of . Since R N L[T, z] is
countable, we can proceed with the argument below pretending that V' is L[T, |, with appropriate definitions
of objects Mg, o0, A ete.
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Recall from [18] the following version of the Vopénka algebra. For each a < A, let P¥ be
the boolean algebra ({A C p(6)" | n < wA € < 0, AIB € Q* A € ODFBRY C) and let
P, € H N p(f,) be the isomorphic copy of P%. It’s clear that for each «, P¥ and P, are OD
in L(gg,(R)) for any 3 > o and the definition is uniform in o. Furthermore, for a < 3, there
is a natural embedding of IP}, into Py (and hence from PP, into P3) and these embeddings are
also OD in L(gpy (R)) for any v > 3 and again, the definition is uniform in o and 3. Let
P be the direct limit of the P,’s under the natural embeddings. The following corollary of
Lemma 6.4 shows that P € L[H]. We note that in the corollary below, the language of the
structure L[] has the predicate for the sequence of strategies {3, | @ < A}.

Corollary 6.6. For each o < A, P, is definable in L[H] from {0,11, %011}, uniformly in
a. Similarly, for o < 8, the natural embedding from P, into Pg is definable in L[H] from
{00+1,0841, Xat1, X1}, uniformly in o and B. Consequently, P € L[H].

Proof. We just prove the first clause; the proof of the second clause is similar. Fix any f > «
and let (Q,A), (P,X), and Mg o, be defined as in the proof of Lemma 6.4 but for ¥3. Note
that P, € H(B).*' By Lemma 6.4 and the subsequent remark,

L[H] E 1k in the derived model, L(¥X3, R*) satisfies “iz;(g)00(Pa) is the Vopénka algebra at

2

124(8),00(0a)” -

The above gives a uniform definition of P, from {63,33} inside L[H] for any § > a.

Clearly, the third clause follows from the first two clauses. m
Using Corollary 6.6 and [18, Theorem 4.3.19], we can conclude that

o L[H](£2*) is a symmetric extension of L[H] via P.

e o(R)N L[H](Q*) = Q*.

These, in particular, imply L(Q*) N p(R) = Q*. This completes the proof of Theorem 6.1.
Lemma 6.3 shows that Vge N L[H] = |H|. In the case L[H] E “the set of Woodin
cardinals has limit order type”, let M be the derived model of L[H] (at the supremum of
L[H]’s Woodin cardinals). Then M F ADg (cf. [3, Section 3.3]). This, combined with the
result of the previous section, proves Theorem 1.6; Theorem 6.1 proves something stronger,

namely, 2* is constructibly closed.

Lemma 6.7. If DC holds and the order type of the Woodin cardinals of H is a limit ordinal,
then cf(©*) > w and L[H](2*) F ADg + DC.
4P, need not be in H(a).
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Proof. Suppose cf(0*) = w. Let M be a transitive structure containing H*™ U Q* for HT =
L[H]|v, where v > ©* is a regular cardinal in L[#]. Let 0 < M be countable such that o is
cofinal in ©*; the existence of such a o follows from DC. Now the m,-realizable strategy X,
defined in the proof of Lemma 6.3 acts on 7, '(H"). X, on stacks below O, is simply ¥ in
this case; by replacing (N, X,) by an iterate, we may assume Y, has branch condensation.
We can show then that >, € Q* as before. Furthermore, letting ¢ be the direct limit map
from 7' (H™) into the direct limit M, of all of its 3, -iterates in *, then by elementarity

Ty | Oy =i [ O.

So i is cofinal in ©* and H is the direct limit of hod initial segments of 7, '(H) via ©,. Let
2 = 3,. By a core model induction through SLpGQ(]R7 Code(£2)) like in the previous sections,
we get a hod pair (Q,A) € Q* such that letting Q.. be the direct limit of all A-iterates of
9, H <1 Q. This contradicts the definition of H.

The second clause follows immediately from the first clause and [11]. O
We have completed the proof of the following theorems.

Theorem 6.8 (ZF + DCg). Suppose Q* = {A C R | L(A,R) E AD*} and (1) holds.
Suppose Q* # O and for every suitable pair (P, %) or hod pair (P,X) such that X has branch

condensation and is (2 -fullness preserving, > € Q*. If the Solovay sequence of )* has limat

length, then 0 = L(Q2*,R) N p(R) and L(Q2*,R) E ADg.

Theorem 6.9 (ZF + DC). Suppose Q* = {A C R | L(A,R) E AD"} and (1) holds. Sup-
pose O # 0 and for every suitable pair (P,%) or hod pair (P,X) such that ¥ has branch

condensation and is Q2*-fullness preserving, > € Q*. If the Solovay sequence of )* has limat

length, then L(Q*,R) N p(R) = Q* and L(Q*,R) F ADg + DC.

Together with the results of the previous section, the above theorems complete the proof
of Theorems 1.6 and 1.7.

7 Further results, questions, and open problems

We first mention a few natural questions regarding possible weakenings of the hypotheses of
Theorems 1.5 and 1.7. (In some cases one could also formulate versions with fragments of
DC along the lines of 1.6.)

Question 7.1. What are the consistency strengths of the following theories:

1. ZF + DC + “wq is wy-strongly compact”?
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2. ZF + DC + “wq is ©-strongly compact™?

Are they equiconsistent with ZF + DC + AD and ZF + DC + ADg respectively?
One could try to weaken the compactness hypotheses further:

Question 7.2. What are the consistency strengths of the following theories:
1. ZF + DC + ‘wy is threadable and -1, 7%
2. ZF + DC + “every uncountable reqular cardinal < © is threadable”?

Are they equiconsistent with ZF + DC + AD and ZF + DC + ADg respectively?

However, it may be overly ambitious at present to seek a positive answer especially in

case 2; one could try to answer the following question first:

Question 7.3. What is the consistency strength of the theory ZF + DC + “wy is R-strongly
compact and © 1is threadable”? Is it equiconsistent with ZF + DC + ADg ¢

We mention a corollary of the proof of Theorem 1.5.
Theorem 7.4. The following theories are equiconsistent:

1. ZF+DC+ AD

2. ZF + DC + ‘wy 1s R-strongly compact and © > wy.”

Proof. (1) = (2): As mentioned in Section 1, the statement “w; is R-strongly compact”
is a consequence of the existence of the Turing cone measure, which follows from AD, and
the statement © > wy follows from the Moschovakis coding lemma.

(2) = (1): Using a push-forward measure, it’s easy to see that statement (2) above

implies statement (3) of Theorem 1.5. O

If we strengthen statement (2) above to “w; is R-supercompact and © > w,”,*? then
we obtain an equiconsistency with “there are w? many Woodin cardinals”, which is strictly
stronger than AD. This is a result of Woodin (see [19]). Similarly, if we strengthen statement
(2) of Theorem 1.7 to ZF + DC + “w; is p(R)-supercompact” then we obtain the sharp for a
model of ADg 4+ DC. To see this, note that from the result of Theorem 1.7, we get a model
L(Q2*,R) E ADg + DC, where Q* C p(R). Fix a countably complete, fine, normal measure p
on @, (p(R)). Then note that by normality,

42We say that w; is X-supercompact if there is a countably complete, fine, normal measure y on g, (X).
p is normal on g, (X) if whenever F : p,, (X) — 9w, (X) is such that {o | F(0) C o A F(c) # 0} € p then
there is some « € X such that the set {o | x € F(0)} € p.
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V%o L(2;, R,) E ADs + DC,

where we have that Q* = [0 — Q}], and R = [0 — R,],. Now, Vio (Q,R,)* exists; by
normality again, the sharp for L(Q* R) exists. This demonstrates that the theory ZF + DC+
“wy is p(R)-supercompact” is strictly stronger than ZF + DC+ “w; is p(R)-strongly compact.”

However, we don’t know its exact consistency strength.
Question 7.5. What is the exact consistency strength of ZF + DC+“w; is p(R)-supercompact”?
We end with the following set of questions.
Question 7.6. What are the consistency strengths of the following theories:
1. “ZF 4+ DC + “wy is p(p(R))-strongly compact”?
2. “ZF + DC + “wy is p(p(R))-supercompact”?
3. “ZF + DC + wy is strongly compact”?
4. “ZF 4+ DC + wq is supercompact”?
In particular, are the theories (3) and (4) equiconsistent?

It’s worth noting that Woodin (unpublished) has shown the theory “ZF + DC + w; is
supercompact” is consistent relative to a proper class of Woodin limits of Woodin cardinals.
We hope the techniques in this paper when combined with the theory of hod mice would

allow us to make significant progress in answering these questions.
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