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Abstract. We consider the conjugate gradient algorithm applied to a general class

of spiked sample covariance matrices. The main result of the paper is that the norms

of the error and residual vectors at any finite step concentrate on deterministic values

determined by orthogonal polynomials with respect to a deformed Marchenko–Pastur

law. The first-order limits and fluctuations are shown to be universal. Additionally, for

the case where the bulk eigenvalues lie in a single interval we show a stronger universality

result in that the asymptotic rate of convergence of the conjugate gradient algorithm

only depends on the support of the bulk, provided the spikes are well-separated from

the bulk. In particular, this shows that the classical condition number bound for the

conjugate gradient algorithm is pessimistic for spiked matrices.

1. Introduction. Large-dimensional covariance matrices are fundamental objects

in high-dimensional statistics and applied mathematics. For example, many statisti-

cal methodologies, including principal component analysis (PCA), clustering analysis,

and regression analysis, require the knowledge of the covariance structure. Moreover, in

applied mathematics, especially manifold learning, the kernel affinity matrix and graph

Laplacian matrix are closely related to covariance matrices. We refer the readers to

[19, 26, 32, 61] for more details.
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100 XIUCAI DING AND THOMAS TROGDON

Sample covariance matrices play important roles in estimating and inferring popu-

lation covariance matrices. Even though high-dimensional sample covariance matrices

themselves cannot be applied directly, one can construct consistent estimators and use-

ful statistics for inference based on them. In particular, researchers are often interested

in understanding the asymptotics of the following random matrix

W = Σ1/2XX∗Σ1/2, (1.1)

where Σ is the population covariance matrix and X is an N × M random matrix with

centered independent and identically distributed (iid) entries. In the literature, a popular,

and quite delicate, model is the spiked covariance matrix model [16, 35], where a finite

number of spikes (i.e., eigenvalues detached from the bulk of the spectrum) are added to

the spectrum of Σ; for a precise definition, we refer the readers to Section 2.2. Significant

efforts have been made to understand the statistical properties of W in (1.1) in the high-

dimensional setting when N is comparably large to M . For a comprehensive review, we

refer the readers to [3, 6, 16, 35, 46, 47, 61].

Despite the wide applications of sample covariance matrices within data science, most

of the existing literature focuses on the study of the asymptotic statistical properties

of W , and less is known on the algorithmic properties. More specifically, substantially

less is known about how algorithms from numerical linear algebra and optimization act

on sample covariance matrices. For the numerical solution of linear systems involving

W, when both N and M are large, Gaussian elimination is computationally expensive,

and supposing exact arithmetic, the accuracy of the result may be entirely unnecessary.

Instead, iterative methods are often preferred.

Before proceeding to our main focus, we pause to discuss some of the history of the

analysis of algorithms on random matrices. The first such analysis that we are aware

of was that of Goldstine and von Neumann [29] when they studied the conditioning of

random matrices (see [55] and [52] for more recent developments). Subsequently, many

authors (see, for example, [22,24,51,57]) analyzed the way in which classical factorization

algorithms act on Gaussian matrices. The analysis of fundamentally iterative methods

applied to random matrices began with the work of Pfrang et al. [49] and continued

in [15]. Rigorous results were first obtained in [11, 12] for eigenvalue algorithms. For

example, in [11], the authors analyzed the numerical performance of power iteration

methods applied to calculate the largest eigenvalue of W when Σ = I. They prove that

the halting time, i.e., the minimal number of iterations before the power method satisfies

a given stopping rule, is universal and its distributional limit can be expressed in terms

of functionals of the limiting distribution of the largest eigenvalues of W. The iteration

errors and residuals can be analyzed similarly.

The main focus of the current work is towards the understanding of the solution of

Wx = b, (1.2)

where W is given in (1.1). In the applied mathematics literature, there exist many useful

iterative algorithms for positive definite matrices (of which (1.1) is one such random
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THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 101

model). One such algorithm is the conjugate gradient algorithm (CGA, cf. Algorithm 1

below), which is one of the most important Krylov subspace methods [54]. The CGA

[33] is an iterative method designed to solve (1.2). We highlight that when b is random,

solving (1.2) can be related to high-dimensional regression via the normal equations

[32, Section 2.3]. More specifically, consider a = (a1, · · · , aM ), and set

ai = x∗yi + εi, 1 ≤ i ≤ M, (1.3)

where εi, 1 ≤ i ≤ M, are iid random noise and yi = Σ1/2Xi ∈ RN . Here Xi refers to the

ith column of X. Then to obtain the ordinary least square estimator of x is equivalent

to solving the normal equations

Wx = Y a,

where Y collects the samples yi andW is the design matrix as in (1.1). In [13] the authors

presented rigorous results for the halting time of the CGA for solving (1.2), when Σ = I

and X has iid centered Gaussian entries. The main result concerns the first-order limit

of the norms of the error and residual vectors as N → ∞. This analysis was expanded

in [45], removing the Gaussian assumption, and providing the same results, i.e., proving

universality, and determining the structure of the fluctuations. These probabilistic results

have strong connection to the deterministic results of [4]. We remark that since the

methods employed in both [13,45] rely on the Golub-Kahan bidiagonalization procedure

as given in [22], they cannot be applied to W in (1.1) when Σ is not a scalar multiple of

the identity matrix.

Motivated by the above applications and challenges, in the current paper, we develop

a new strategy to analyze the first-order limits (including rates) of the residuals and

errors in the CGA when W is of the form (1.1); see Figure 1 for an illustration. By using

deterministic formulas (cf. Proposition 5.6 and Lemma B.1), the residuals and errors

of the CGA can be characterized using the entries of the Cholesky factorization of an

associated semi-infinite Jacobi matrix (cf. (3.17)). It turns out that this Jacobi matrix

coincides with the one produced from the well-known Lanczos iteration (cf. Algorithm

2). Moreover, we point out that the entries of the Jacobi matrix can be described as the

three-term recurrence coefficients of the orthogonal polynomials generated by a spectral

measure which is the eigenvector empirical spectral distribution (VESD)[1] (cf. (5.2)),

which played a crucial role in [10–12,45].

Remark 1.1. The classical Chebyshev error bound for the CGA applied to Wx = b

[33] is

‖x− xk‖W ≤ 2

(√
λmax −

√
λmin√

λmax +
√
λmin

)k

‖x− x0‖W ,

where ‖ · ‖W is the W -norm; see (2.1). The results of [10, 45] give that as N → ∞

‖x− xk‖W =

(√
λmax −

√
λmin√

λmax +
√
λmin

)k

‖x− x0‖W + o(1) = (0.5477 . . .)k‖x− x0‖W + o(1),
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102 XIUCAI DING AND THOMAS TROGDON

Fig. 1. Top row: A demonstration of the results in [13,45]. Shaded
region consists of sampling 5000 matrices from the Wishart distri-
bution (with Σ = I) and plotting the 2-norm of the residual versus
k, the number of iterations in the CGA. The dashed red line gives
the asymptotic prediction from [13, 45]. The blue histogram tallies
the relative frequency of the halting time with ε = 10−4, i.e., the
statistics of the number of iterations required to realize a residual
with norm less than ε. Bottom row: The same calculations as the
top row but with Σ1/2 = diag(4, 4, 4, 3.5, 3.5, 1, 1, . . . , 1). While the
spikes induce a transient disturbance to the iteration, the asymptotic
rate of convergence, for k in a scaling region, is the same as when
Σ = I. The dashed red curve in the second row is the same as in the
first, for comparison.

when Σ = I in (1.1) demonstrating that the classical bound is quite good. But this is

no longer true in the presence of spikes as in the bottom row of Figure 1. The classical

bound gives

‖x− xk‖W � 2(0.8)k‖x− x0‖W ,

since λmin(W ) = (1−√
cN )2 + o(1) and λmax(W ) = 16.32+ o(1) (see Lemma 6.3), all as

N → ∞. Our estimates, see Theorem 3.6, give a better estimate

‖x− xk‖W = (0.5477 . . .)‖x− xk−1‖W + o(1),
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THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 103

for sufficiently large k, i.e., after a transient period induced by the presence of spikes.

This should also be compared with the discussion in [40, Section 5.6.4] where it is shown

how the classical error bounds can be applied in the presence of outliers.

When Σ has no spikes, the concentration and convergence of the VESD can be estab-

lished using the so-called anisotropic local laws [37] from random matrix theory. Based

on those results, we establish the concentration of the VESD for the spiked model (cf.

Lemma 6.4). Finally, as is well known and as was observed in [45], since orthogonal

polynomials can be fully constructed by their associated Hankel moment matrix of the

VESD (cf. Section 5.1 and [8] for more detail), we can obtain our main results by only

analyzing the convergence of the moments of the VESD.

We emphasize that the aforementioned strategy can handle general spiked covariance

matrices W in (1.1). However, when Σ in (1.1) does not contain spikes or when b satisfies

certain conditions (cf. (3.25)), we simplify the procedure and obtain simple asymptotic

expressions: (1) The simplification first utilizes the asymptotic relation of the three-term

recurrence coefficients that is most simply derived using the Riemann-Hilbert approach

as in [39]. It turns out that asymptotically, the associated Jacobi semi-infinite matrix

has a very simple structure that can be described by the edges of the limiting VESD (cf.

Theorem 5.2). (2) Then a straightforward calculation for the Cholesky factorization will

result in simple expressions (cf. Theorem 3.3). (3) The edges of the limiting VESD can

be calculated using the critical points of an analytic function as in (3.3).

Finally, we mention that the main focus of this manuscript is to develop a new strategy

and novel formulas for the first order limits and rates of the CGA. However, we also

establish the second order universality on the distributions of the residuals and errors.

More specifically, we show that they only depend on the first four moments of the entries

of X in (1.1). The universality indicates that we can construct useful statistics based on

the algorithms to infer the population covariance matrix Σ in (1.1). This opens a new

door for high-dimensional statistical inference; see Remark 3.12 for more details. To have

a complete description of the performance of the CGA applied to (1.1), we still need to

consider the second order asymptotics, i.e. the limiting distribution of the residuals and

errors. This will be included in our future works; for example, see [18].

This paper is organized as follows. In Section 2, we introduce the conjugate gradient

algorithm and the general spiked covariance matrix model. In Section 3, we state our

main results. In Section 4, we provide some examples and conduct some numerical

simulations for illustration. In Section 5, we provide the theory of orthogonal polynomials

and prove some essential asymptotics of the three-term recurrence relations. In Section

6, we provide and prove the key ingredients regarding eigenvector empirical spectral

distribution. The main technical proofs are summarized in Section 7. Some formulas,

additional technical proofs and auxiliary lemmas are collected in Appendices A, B, C

and D.

Conventions. We denote by {fk}k≥1 ⊂ RN the standard Euclidean basis of RN . We

denote C+ := {z = E + iη ∈ C : η > 0}. The fundamental large parameter is M and we

always assume that N is comparable to and depends on M . All quantities that are not

explicitly constant may depend on M , and we usually omit M from our notations. We
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104 XIUCAI DING AND THOMAS TROGDON

use C to denote a generic large positive constant, whose value may change from one line

to the next. Similarly, we use ε, τ , c, etc. to denote generic small positive constants.

If a constant depends on a quantity a, we use C(a) or Ca to indicate this dependence.

For two quantities aN and bN depending on N , the notation aN = O(bN ) means that

|aN | ≤ C|bN | for some constant C > 0, and aN = o(bN ) means that |aN | ≤ cN |bN | for
some positive sequence cN ↓ 0 as N → ∞. We use capital letters to refer to matrices and

boldface to refer to vectors. Lower-case letter will be used to refer to individual entries

of a matrix, for example, xij denotes the (i, j) entry of a matrix X. We use Xi:j,�:k

to denote the subblock of a matrix X consisting of all entries in rows i through j and

columns � through k. If either j or k are absent then this notation refers to all entries in

rows ≥ i or columns ≥ �, respectively.

Disclaimer. All of our results concern running algorithms with exact arithmetic. It

is well-known that the Lanczos iteration and the CGA suffer from instabilities due to

finite-precision arithmetic [31, 42]. So, in the current paper, to simulate full precision

arithmetic, we, when necessary, use an appropriately modified Householder reflection-

based tridiagonalization because of its superior numerical stability. In general, we notice

that for spiked random matrices, the Lanczos iteration, and hence the CGA, loses accu-

racy. When no spikes are present and there is only bulk spectrum, the Lanczos iteration

closely tracks the Householder-based algorithm.

2. The conjugate gradient algorithm and the model. This section is devoted

to introducing the necessary background. In Section 2.1, the CGA is stated and its

connection with Lanczos iteration is discussed. In Section 2.2, we introduce the spiked

covariance matrix model that will be used throughout the current paper.

2.1. The conjugate gradient algorithm and Lanczos iteration. In this subsection, we

provide the background on the CGA. The actual CGA is given by Algorithm 1. The

CGA can also be characterized in its variational form. Define the Krylov space

Kk = span
{
b,Wb, · · · ,W k−1b

}
. (2.1)

Starting with x0 = 0, the kth iterate, xk, of the CGA satisfies (see [30, Chapter 11] or

[54, Lecture 38])

xk = argminy∈Kk
‖x− y‖W . (2.2)

Here we use the notation that for any vector z and positive definite matrix A,

‖z‖2A = z∗Az.
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THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 105

Algorithm 1: Conjugate Gradient Algorithm (CGA)

(1) x0 is the initial guess.

(2) Set r0 = b−Wx0, p0 = r0.

(3) For k = 1, 2, . . . , n, n ≤ N is the maximum steps of iterations

(a) Compute ak−1 =
r∗k−1rk−1

r∗k−1Wpk−1
.

(b) Set xk = xk−1 + ak−1pk−1.

(c) Set rk = rk−1 − ak−1Wpk−1.

(d) Compute bk−1 = −
r∗k−1rk−1

r∗k−1rk−1
.

(e) Set pk = rk − bk−1pk−1.

The primary goal of the analysis of the CGA is to analyze the residual and error

vectors, denoted by rk(W, b) and ek(W, b), respectively, and defined as

rk(W, b) := b−Wxk, ek(W, b) := x− xk.

It can be seen from (2.2) that the Krylov subspace plays a central role in the analysis

of the CGA. It is well-known that the Lanczos iteration [54, Lecture 36] can be used to

produce an orthonormal basis for the Krylov subspace. As a result, the CGA is closely

related to Lanczos iteration [30, Section 11.3.5]. In fact, as discussed in Lemma B.1

(reproduced from [45] for the reader’s convenience), the residuals and errors can be rep-

resented based on the outputs of Lanczos iteration. The Lanczos iteration can be applied

to any symmetric or Hermitian matrix W and it takes the following form:

Algorithm 2: Lanczos Iteration

(1) q1 is the initial vector. Suppose ‖q1‖22 = q∗
1q1 = 1.

(2) Set b−1 = 1, q0 = 0.

(3) For k = 1, 2, . . . , n, n ≤ N .

(a) Compute ak−1 = (Wqk − bk−2qk−1)
∗qk.

(b) Set vk = Wqk − ak−1qk − bk−2qk−1.

(c) Compute bk−1 = ‖vk‖2 and if bk−1 �= 0, set qk+1 = vk/bk−1.

(4) Return a0, . . . , an−1, b0, . . . , bn−2.

The Lanczos algorithm at step k ≤ N produces a Jacobi matrix Tk and vectors

q1, . . . , qk, denoted as

Qk =
[
q1 q2 · · · qk

]
, Tk = Tk(W, q1) =

⎡⎢⎢⎢⎢⎣
a0 b0

b0 a1
. . .

. . .
. . . bk−2

bk−2 ak−1

⎤⎥⎥⎥⎥⎦ , aj ∈ R, bj > 0,

such that

WQk = QkTk + bk−1qk+1f
∗
k . (2.3)
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106 XIUCAI DING AND THOMAS TROGDON

We use the notation T = T (W, q1) = Tn(W, q1) for the matrix produced when the

Lanczos iteration runs for its maximum of n steps. We point out that the columns of

Qk provide an orthonormal basis for the Krylov subspace span{q1,Wq1, · · · ,W k−1q1}
[54, Lecture 36].

Remark 2.1. In this paper, we focus on the analysis of the CGA. However, the

arguments can be easily generalized to many other numerical algorithms involving large

dimensional random matrices. For example, in Section 3.6, we provide the results for

another iteration algorithm MINRES. Additionally, our results provide the existence of

first-order limits for the algorithms discussed in [44].

2.2. General spiked covariance matrix model. In this paper, we are interested in the

setting when W is random and the high dimensional scenario when M is comparably

large to N such that for some small constant 0 < τ < 1,

τ ≤ cN :=
N

M
≤ τ−1. (2.4)

In this subsection, we introduce the model for W as in (1.1) . Moreover, we assume

that X = (xij) is an N ×M random matrix whose entries xij , 1 ≤ i ≤ N, 1 ≤ j ≤ M,

are real or random variables satisfying

Exij = 0, Ex2
ij =

1

M
. (2.5)

For definiteness, in this paper, we focus on the real case, i.e., the random variables xij are

real. However, we remark that our proof can be applied to the complex case after minor

modifications if we assume in addition that Re xij and Imxij are independent centered

random variables with variance (2M)−1. We also assume that the random variables xij

have arbitrarily high moments, in the sense that for any fixed k ∈ N, there is a constant

Ck > 0 such that

max
i,j

(
E|xij |k

)1/k ≤ CkM
−1/2. (2.6)

The assumption that (2.6) holds for all k ∈ N may be easily relaxed. For instance, it

is easy to check that our results and their proofs remain valid, after minor adjustments

using some suitable truncation and comparison techniques, if we only require that (2.6)

holds for all k ≤ C for some finite constant C. As this is not the main focus of our

current paper, we do not pursue such generalizations.

For the population covariance matrix, we consider the spiked covariance matrix model

following the setting of [16]. Let Σ be a spiked population covariance matrix that admits

the following spectral decomposition

Σ =

N∑
i=1

σ̃iviv
∗
i , σ̃i = (1 + di)σi, (2.7)

where σ1 ≥ σ2 ≥ · · · ≥ σN > 0 and for some fixed integer r ≥ 0,

di > 0, i ≤ r; di = 0, i > r.

The first r eigenvalues of Σ are the spikes which may result in outlying eigenvalues of

W . Throughout the paper, we will call (1.1) the spiked covariance matrix model. Except
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THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 107

for a few outliers, the limiting empirical spectral distribution of W coincides with the

associated non-spiked covariance matrix model, which is defined as follows

W0 = Σ
1/2
0 XX∗Σ

1/2
0 , (2.8)

where Σ0 has the following spectral decomposition

Σ0 =
N∑
i=1

σiviv
∗
i . (2.9)

Note that Σ0 is the non-spiked version of Σ in (2.7) with r = 0.

Remark 2.2. We distinguish Σ0 from Σ because if a limit is desired for certain spectral

statistics of (1.1), then Σ0 will require some additional assumptions to be placed on it.

Specifically, one might want to take the σi’s to be the quantiles of some sufficiently

regular distribution. This aspect is discussed further in (3.11) and (3.12).

When σi ≡ 1, 1 ≤ i ≤ N, it is well-known that the eigenvalues of W0 obey the

Marchenko-Pastur (MP) law [41] and for general Σ0, they are governed by the deformed

Marchenko-Pastur law [1, 37]. When r > 0 and di, i ≤ r, in (2.7) are above some critical

values, the corresponding eigenvalues of W will detach from the bulk (or the support of

the deformed MP law) and become outliers; see Lemma 6.3 for a more precise statement.

In this paper, we consider both the non-spiked and spiked covariance matrix models.

As we will see later, the discussion of the spiked model W is based on that of the non-

spiked model W0.

Remark 2.3. In [45], the authors studied the CGA for the non-spiked model under a

specific setting when Σ0 = I in (2.9). Their arguments are based on (2.3), which implies

that

Q∗
kWQk = Tk. (2.10)

Since Qk is orthonormal, when X is invariant (e.g. X is a Gaussian matrix), the spectral

distribution of W can be studied via those of Tk. However, when Σ0 �= I, even when X

is Gaussian, this method fails.

While we focus on the covariance type random matrix model (1.1) we note that our

framework and results can be generalized to other types of random matrix models, for

example, the separable covariance matrix model in [21] when W = A1/2XBX∗A1/2 for

two positive definite matrices A and B. We will consider such generalizations in the

future works.

3. Main results. In this section, we state our main results. We first provide an

overview of this section. Section 3.1 is devoted to introducing some notations and the

technical assumptions. In Section 3.2, we analyze the Lanczos algorithm. In Section 3.3,

we conduct the error analysis for the CGA when b is deterministic. First, we propose a

general algorithm, Estimation Algorithm 2, to calculate some essential quantities. Armed

with these quantities, we establish the first-order limits and rates for norms of ek and

rk. Second, under additional regularity assumptions, we can push the calculation further

and obtain simple formulas; see, for example, Theorem 3.3.

In Section 3.4, we give results when b is random such that the linear system becomes

the normal equations Y Y ∗x = Y ∗a, Y = Σ1/2X for the spiked model and Y = Σ
1/2
0 X for
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108 XIUCAI DING AND THOMAS TROGDON

the non-spiked model. It turns out that the residuals and errors for the normal equation

have the same asymptotics regardless of whether Σ is spiked or not; see Theorem 3.5

for more details. In Section 3.5, we study the second-order fluctuations and prove that

the results are universal — they depend only on the first four moments of xij . Finally,

in Section 3.6, we discuss implications of the results and apply the results to another

iterative Krylov subspace algorithm, the minimal residual method (MINRES) [43], to

illustrate the generality of our proposed error analysis framework.

3.1. Notations and assumptions. We provide some necessary notation and assump-

tions in this subsection. For any N×N Hermitian matrix Z, denote its empirical spectral

distribution (ESD) as

μZ =
1

N

N∑
i=1

δλi(Z). (3.1)

Denote by mμZ
(z) the Stieltjes transform of μZ , i.e.,

mμZ
(z) =

∫
1

x− z
μZ(dx), z ∈ C+.

We then denote the companion of W0 in (2.8) as

W0 = X∗Σ0X.

Note that W0 and W0 have the same non-zero eigenvalues.

It is well known that [1], in general, the asymptotic density function of the ESD of

W0 follows the deformed Marchenko–Pastur law, denoted as 	. The deformed MP law

is best characterized by its Stieltjes transform. Let z ∈ C+; the Stieltjes transform

m(z) ≡ m�(z) of 	 can be characterized as the unique solution of the following equation

[37, Lemma 2.2]

z = f(m), Imm(z) ≥ 0, (3.2)

where f(x) is defined as

f(x) = − 1

x
+

1

M

N∑
k=1

1

x+ σ−1
k

. (3.3)

Based on 	, we denote the density function 	b as

	b(x) =
	(x)

x
b∗Σ0

[
I + 2Rem(x+ i0+)Σ0 + |m(x+ i0+)|2Σ2

0

]−1
b. (3.4)

Moreover, we define the moments of 	b as

mk,b :=

∫
R

λk	b(λ)dλ. (3.5)

For any integer n ≤ N, denote the Hankel moment matrix of 	b by

Dn = detMn, (Mn)ij = mi+j−2,b, n ≥ 0, 1 ≤ i, j ≤ n+ 1, D−1 = 1, (3.6)

and, since 	b does not vanish identically if b �= 0, define the associated quantities

�n =

√
Dn−1

Dn
, sn = − det Mn√

DnDn−1

, (3.7)
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where Mn is the matrix formed by removing the last row and second-to-last column of

Mn. Similarly, we define the relevant quantities for the spiked model. Specifically, we set

D̃n = det M̃n, (M̃n)ij = m̃i+j−2,b, 1 ≤ i, j ≤ n+ 1, (3.8)

where m̃k,b is defined by

m̃k,b :=

N∑
i=1

b2i
1 + di

(
mk,vi

+ 1(i ≤ r)
f ′(−σ̃−1

i )
(
f(−σ̃−1

i )
)k−1

σi

)
, (3.9)

with the convention that

bi = 〈b,vi〉 , 1 ≤ i ≤ N. (3.10)

We analogously define M̃n, �̃n and s̃n using m̃k,b.

For the ease of the statement of our results, we use the following notion of stochastic

domination which provides precise meaning to a statement of the form “xN is bounded

by yN up to a small power of N with high probability”.

Definition 1.

(i) Let

ξ =
(
ξ(N)(u) : N ∈ N, u ∈ U (N)

)
, ζ =

(
ζ(N)(u) : N ∈ N, u ∈ U (N)

)
be two families of nonnegative random variables defined on the same probability space,

where U (N) is a possibly n-dependent parameter set. We say ξ is stochastically dominated

by ζ, uniformly in u, if for any fixed (small) ε > 0 and (large) D > 0,

sup
u∈U(N)

P

(
ξ(N)(u) > N εζ(N)(u)

)
≤ n−D

for large enough N ≥ N0(ε,D), and we shall use the notation ξ ≺ ζ. Throughout this

paper, the stochastic domination will always be uniform in all parameters that are not

explicitly fixed (such as matrix indices, and z that takes values in some compact set).

Note that N0(ε,D) may depend on quantities that are explicitly constant, such as τ in

Assumption 1. If for some complex family ξ we have |ξ| ≺ ζ, then we will also write

ξ ≺ ζ or ξ = O≺(ζ).

(ii) We say an event Ξ holds with high probability if for any constant D > 0, P(Ξ) ≥
1−N−D for sufficiently large N .

Then we summarize the main technical assumptions which will be used throughout

this paper.

Assumption 1. We assume that the following assumptions hold:

(1) On dimensionality. We consider the high-dimensional regime and assume that

(2.4) holds.

(2) On X in (1.1). For X = (xij), we assume that xij , 1 ≤ i ≤ N, 1 ≤ j ≤ M, are

iid real random variables such that (2.5) and (2.6) hold.

(3) On Σ0 in (2.9). We assume that for some small constant 0 < τ1 < 1, the

following holds

τ1 ≤ σN ≤ σN−1 ≤ · · · ≤ σ1 ≤ τ−1
1 . (3.11)

For definiteness, we also assume that 	 is supported on a single bulk component

such that supp 	 = [γ−, γ+] and that there exists τ2 > 0 such that, for a choice
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of the sign ±, w(x) := 	(x)(γ+ − x)−1/2(x − γ−)
±1/2 and 1/w(x) have analytic

extensions to {z ∈ C : minx∈[γ+,γ−] |x− z| < τ2}. Moreover, we assume that

γ+ ≥ τ1, |σ−1
1 +m(γ±)| ≥ τ1, (3.12)

where, as above, m(·) is the Stieltjes transform of 	.

(4) On the spikes in (2.7). For some fixed integer r and i ≤ r, we assume that

there exists some constant 
 such that

σ̃i > − 1

m(γ+)
+
, i ≤ r. (3.13)

We also assume that σ̃i, 1 ≤ i ≤ r, are bounded.

The assumption (1) states that we consider the high dimensional regime which is

commonly used in the random matrix theory literature. The assumption (2) imposes

some conditions for the random matrix X. We refer the readers to the discussion below

(2.6) for more details. The assumption (3) is relatively standard in random matrix theory

literature. These conditions rule out the existence of spikes in Σ0 so that all the possible

spikes are generated by those of Σ, and also guarantee that 	 has a regular square root

behavior near the edges γ±. These conditions are satisfied by many commonly used

examples. We refer the readers to [37, Definition 2.7] for more details and Section 4 for

examples. Moreover, we mention that γ± can be fully calculated via f(x) defined in (3.3)

as follows. Let x− < x+ be the critical points of f(x). Then we have that γ± = f(x±).

Finally, assumption (4) imposes the condition that σ̃i, 1 ≤ i ≤ r, are the spikes (cf.

(3.13)) which are well-separated from the upper edge with O(1) distance. We remark

that we can replace 
 with O(M−1/3) and allow σ̃i ≡ σ̃i(M) to diverge with M . Since

these technical generalizations are not the main focus of the current paper, we do not

pursue these generalizations here and leave it as future work. For more details on this

aspect, we refer the readers to [3, 6, 16, 21].

Remark 3.1. In this paper, for definiteness and convenience of statement, we assume

that the support of 	 is a single interval. On one hand, a general class of Σ0 satisfies

this requirement. For example, this condition will be satisfied when the limiting spectral

distribution of Σ0 is supported on some interval [a, b] ⊂ (0,∞) and its density function is

bounded from both above and below; see [37, Example 2.9] or [25, Corollary 3] for more

details. One the other hand, this constraint is expected to be removed in the future. In

fact, as stated in [20, Lemma 2.4], in general, the support of 	 is a union of connected

components on R+, i.e., supp 	 =
⋃q

k=1[a2k, a2k−1] ⊂ (0,∞), where q depends on the

ESD of Σ0. As we will see later (cf. Section 5), our arguments rely on the asymptotics

of three-term recurrence relation of the orthogonal polynomials associated with 	. These

asymptotic formulae can only be established for 	 supported on a single interval (see

[39]) and do not hold more generally. The generalization to multiple bulk components

requires a substantial treatment using the Riemann-Hilbert approach [8,9,14,38,48,62],

which is out of the scope of the current paper. We will pursue this direction in the future;

for example see [18].
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3.2. Lanczos for high-dimensional matrices: Deterministic b. We begin with our most

critical result concerning the leading-order behavior of the matrix that results from the

Lanczos iteration. The results are summarized in Estimation Algorithm 1 and Theorem

3.1.

Theorem 3.1. Fix some small constant τ1 > 0. and suppose Assumption 1 holds, γ− ≥
τ1, N ≤ M , and ‖b‖2 = 1. Let Tk(W, b) and Tk denote the upper-left k × k subblocks

the matrices calculated from Steps (1) and (3) of Estimation Algorithm 1, respectively.

Then there exists some constant Cl,k > 0 such that

Tk(W, b) = Tk +O≺(Cl,kM
−1/2), (3.14)

where the approximation is in the sense of operator norm. Additionally,

b∗W−1b = m+O≺(M
−1/2),

where m = m−1,b for the non-spiked model and m = m̃−1,b for the spiked model.

Estimation Algorithm 1: Analysis of the Lanczos iteration

(1) Suppose that the Lanczos iteration Algorithm 2 applied to the pair (W, b) runs

until step n ≤ N in the sense that bn−1 = 0. Set ak = 1, bk = 0 for k ≥ n. Let

T (W, b) denote the associated Jacobi matrix.

(2) (a) If W is a spiked model as in (1.1), construct the sequence of ak and bk

following

bk =
�̃k

�̃k+1

, ak =
s̃k

�̃k
− s̃k+1

�̃k+1

, k = 0, 1, . . . . (3.15)

(b) Otherwise, if W ≡ W0 is a non-spiked model as in (2.8), construct the

sequence of ak and bk following

bk =
�k

�k+1
, ak =

sk
�k

− sk+1

�k+1
, k = 0, 1, . . . . (3.16)

(3) Build the Jacobi matrix

T :=

⎡⎢⎢⎢⎢⎣
a0 b0

b0 a1 b1

b1 a2
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎦ . (3.17)

3.3. The CGA for high-dimensional linear systems: Deterministic b in (1.2). In this

subsection, we provide a framework to analyze the residuals and errors of the CGA when

applied to (1.2) for some deterministic vector b for both spiked and non-spiked covariance

matrices.

The framework contains three steps. First, we build up a tridiagonal Jacobi matrix

T (cf. (3.17)) utilizing the Hankel moment matrix as in (3.6). Second, we apply the
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Jacobi matrix Cholesky factorization algorithm, Algorithm 3, to obtain the Cholesky

factorization of T , denoted L (cf. (3.18)). Third, we provide the limits and rates based

on the entries of L. We summarize the above procedure in Estimation Algorithm 2.

Estimation Algorithm 2: Error analysis of the CGA

(1) Suppose that the Lanczos iteration Algorithm 2 applied to the pair (W, b) runs

until step n ≤ N and rn = 0. Set rk = 0 for k > n.

(2) (a) If W is a spiked model as in (1.1), construct the sequence of ak and bk

following (3.15), for k = 0, 1, · · · , n− 1.

(b) Otherwise, if W ≡ W0 is a non-spiked model as in (2.8), construct the

sequence of ak and bk following (3.16).

(3) Build the Jacobi matrix following (3.17).

(4) Apply the Jacobi matrix Cholesky factorization (cf. Algorithm 3) to T to obtain

L =

⎡⎢⎢⎢⎣
α0

β0 α1

β1 α2

. . .
. . .

⎤⎥⎥⎥⎦ . (3.18)

(5) Based on L from Step (4), employ Theorem 3.2 to obtain estimates of the errors

encountered in the CGA.

Based on Algorithm 2, we prove the first order convergence limits and rates for the

residuals and errors of the CGA in Theorem 3.2. Denote

Sk = Lk+1:,k+1:. (3.19)

Theorem 3.2. Fix some small constant τ1 > 0 and suppose Assumption 1 holds, γ− ≥ τ1,

N ≤ M , and ‖b‖2 = 1. Let {αi} and {βj} be the outputs calculated from Step (4) of

Algorithm 2. Then we have that with x0 = 0, for k < n, there exists some constant

Cr,k > 0 such that

‖rk‖2 =
k−1∏
j=0

βj

αj
+O≺(Cr,kM

−1/2). (3.20)

Recall (3.19). Moreover, for some constant Ce,k > 0, we have that

‖ek‖W = ‖rk‖2
√
f∗
1 (SkS∗

k)
−1f1 +O≺(Ce,kM

−1/2). (3.21)

Recall (3.5). Equivalently, we have

‖ek‖2W = m− 1

α2
0

k−1∑
�=0

�∏
j=1

β2
j−1

α2
j

+O≺(Ce,kM
−1/2), (3.22)

where m = m−1,b for the non-spiked model and m = m̃−1,b for the spiked model.
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Remark 3.2. Employing Proposition 5.7 to (3.22) gives the following expression

m− 1

α2
0

k−1∑
�=0

�∏
j=1

β2
j−1

α2
j

=

⎛⎝k−1∏
j=0

βj

αj

⎞⎠2

1

α2
k

k−1∑
�=0

�∏
j=1

β2
j+k−1

α2
j+k

,

which is then used to derive (3.21) by computing f∗
1 (SkS∗

k)
−1f1 using forward substitu-

tion.

Remark 3.3. Theorem 3.2 provides a first order description for the CGA applied to

the linear system with deterministic b. The assumption that b is a unit vector is just

to ease the statement of the results and can be removed by minor modification. The

constants Ce,k and Cr,k crucially depend on k. As we can see in the proof of Theorem 3.2,

these constants can be trivially bounded by ak, for some constant a > 1. In this sense,

the error becomes negligible for k ≤ C logN where C > 0 is some universal constant.

The discussion of the optimal choices of these constants is out of the scope of the current

paper. We will pursue this direction in the future work; for example, see [18].

Theorem 3.2 provides us the general error analysis for CGA with a general covariance

matrix. As we can see from Steps (1)–(3) of Algorithm 2, it requires a large amount of

non-trivial computations in order to obtain the Jacobi matrix. However, under certain

conditions of W and b, we can simplify Algorithm 2 and provide a simpler but less exact

estimate. We find closed-form estimates for {αi}, {βj}, ‖rk‖2 and ‖ek‖W in the rest of

this subsection. The framework is summarized in Estimation Algorithm 3.

Estimation Algorithm 3: Asymptotic analysis of the CGA for general model

(1) Calculate the support of 	 using f in (3.3). More specifically, calculate the critical

points of f as x± and the corresponding edges γ± = f(x±).

(2) Based on (1), set

a =
γ+ + γ−

2
, b =

γ+ − γ−
4

. (3.23)

Build the Jacobi matrix T as in (3.17) by setting

ak ≡ a, bk ≡ b, k ≥ 0. (3.24)

(3) Apply Jacobi matrix Cholesky factorization (cf. Algorithm 3) to T obtained from

Step (2) and get the Cholesky factorization L as in (3.18).

(4) Based on L from Step (3), employ Theorem 3.3 to obtain estimates of the errors

encountered in the CGA.

Compared to Estimation Algorithm 2, the simplified algorithm, Estimation Algorithm

3 does not require the calculations of Hankel moment matrices and the related quantities.

Instead, it only relies on the edges of the support of the deformed MP law, which can

be easily calculated using the function in (3.3). The calculation workload is significantly

reduced. Based on Estimation Algorithm 3, we can establish Theorem 3.3 for the non-

spiked covariance matrix or the spiked covariance matrix with certain choices of b, which

gives an asymptotic convergence rate for both the residual and error vectors.
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Theorem 3.3. Fix some small constant τ1 > 0. Suppose Assumption 1(1)–(3) holds,

γ− ≥ τ1, N ≤ M and ‖b‖2 = 1. Let {αi} and {βj} be the outputs calculated from Step

(3) of Algorithm 3. Then we have that with x0 = 0, for 1 ≤ k:

(1) For some constants Cr,k > 0, c > 0

‖rk(W0, b)‖2
‖rk−1(W0, b)‖2

=

√
γ+ −√

γ−√
γ+ +

√
γ−

+O≺(Cr,kM
−1/2) + O(e−ck).

(2) For some constants Ce,k > 0, c > 0

‖ek(W0, b)‖W
‖ek−1(W0, b)‖W

=

√
γ+ −√

γ−√
γ+ +

√
γ−

+O≺(Ce,kM
−1/2) + O(e−ck).

In addition, suppose Assumption 1(4) holds and suppose for each i = 1, 2, . . . , r that

either

〈b,vi〉 = 0 or |〈b,vi〉| ≥ τ1. (3.25)

Then:

(3) For some constants Cr,k > 0, c > 0

‖rk(W, b)‖2
‖rk−1(W, b)‖2

=

√
γ+ −√

γ−√
γ+ +

√
γ−

+O≺(Cr,kM
−1/2) + O(e−ck).

(4) For some constants Ce,k > 0, c > 0

‖ek(W, b)‖W
‖ek−1(W, b)‖W

=

√
γ+ −√

γ−√
γ+ +

√
γ−

+O≺(Ce,kM
−1/2) + O(e−ck).

Remark 3.4. In the case that b ∈ span{v1, . . . ,vr} the calculations can be made

more explicit in the sense that the Jacobi matrix T determined by W and b (3.17) can

be written explicitly in terms of quantities used in the analysis of the CGA applied to

W0x = b.

Remark 3.5. The formulas in Theorem 3.3 are explicit and only need the edges of

the support of 	. In fact, in many examples, the edges also have known formulas. For

example, when Σ0 = I, we have that γ± = (1 ± √
cN )2. Moreover, when the limiting

spectral distribution of Σ0 follows Marchenko–Pastur law with the same parameter cN ,

we have that (cf. Lemma D.4)

γ± =
−1 + 20c−1

N + 8c−2
N ± (1 + 8c−1

N )3/2

8c−2
N

. (3.26)

For more general settings, we employ f in (3.3) to calculate the support using Newton’s

method. We refer the readers to Section 4 for more examples.

Remark 3.6. In the statement of Theorem 3.3 the potential vanishing of rk−1 appears

to be ignored. But, indeed, Theorem 3.2 establishes that it does not vanish with high

probability.
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Based on the formulas in Theorems 3.2 and 3.3 we can derive expressions for the

halting times of the CGA for the non-spiked model. Similar results hold for spiked

model when b satisfies (3.25). Define two CGA halting times as

te(W0, b, ε) = min{k : ‖ek(W0, b)‖W0
< ε}, tr(W0, b, ε) = min{k : ‖rk(W0, b)‖2 < ε}.

We summarize the results in the following theorem. Define deterministic halting times

τe(L, ε) = min {k : ek(L) < ε} , ek(L) :=

⎛⎝k−1∏
j=0

βj

αj

⎞⎠ 1

αk

k−1∑
�=0

�∏
j=1

βj+k−1

αj+k
,

τr(L, ε) = min {k : rk(L) < ε} , rk(L) :=
k−1∏
j=0

βj

αj
.

Theorem 3.4. Suppose the assumptions of Theorem 3.3 hold. Let L be as in (3.18).

(1) If rk(L) �= ε for all k then

lim
M→∞

P (tr(W0, b, ε) = τr(L, ε)) = 1.

(2) If ek(L) �= ε for all k then

lim
M→∞

P (te(W0, b, ε) = τe(L, ε)) = 1.

Since ek(L) is strictly decreasing, if eK(L) = ε for some K then as M → ∞

P (te(W0, b, ε) = τe(L, ε)) = pM + o(1),

P (te(W0, b, ε) = τe(L, ε) + 1) = 1− pM + o(1).

We note that it is conjectured that one can take pM = 1
2 in the above theorem. This

will be established in a future work.

Remark 3.7. Often, in our numerical experiments, the estimate in Theorem 3.3 ap-

pears to set in almost immediately in the sense that the finite-size matrix effects dominate

the deviation from the first-order limit. Thus one might expect that

‖rk(W0, b)‖2 =
k−1∏
j=0

[√
γ+ −√

γ−√
γ+ +

√
γ−

(1 + Ej)

]
,

where Mk :=
∏k−1

j=0 (1 + Ej) converges rapidly, or may even be nearly one. Set J =
√
γ+−√

γ−√
γ++

√
γ−

and then following is a very good first approximation to the halting time

tr(W0, b, ε) ≈
⌈
log ε− log(limk→∞ Mk)

log J

⌉
.

And even dropping log limk→∞ Mk contribution entirely often only affects the halting time

estimate by an iteration or two, or maybe not at all.
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3.4. The CGA for high-dimensional regression: Random b in (1.2). In this subsection,

we consider the scenario for the CGA when applied to (1.2) for a specific random vector

b, which concerns the high dimensional linear regression via the normal equation. More

specifically, denote Y = Σ
1/2
0 X or Σ1/2X, for some deterministic vector a ∈ RM , and

consider

Y Y ∗x = b, b = Y a. (3.27)

As we will see in Theorem 3.5, the main difference between this random scenario and

the deterministic case in Section 3.3 is that the spikes of Σ will not affect the errors and

residuals generated by the CGA. We first propose an algorithm analogous to Algorithm

2. Denote

mk =
1√
w

∫
R

λk+1	(λ)dλ, (3.28)

where we recall that 	 is the asymptotic density function of the deformed MP law and

w =
1

M

N∑
i=1

σi. (3.29)

Similar to (3.6) and (3.7), we can define analogous quantities ln and sn using mk as in

(3.28). The CGA for high-dimensional linear regression is summarized in the following

algorithm.

Estimation Algorithm 4: Analysis of the CGA for high-dimensional linear regression

(1) Calculate the sequence {an} and {bn} following

bn =
ln

ln+1
, an =

sn
ln

− sn+1

ln+1
.

(2) Follow Steps (3)–(4) of Estimation Algorithm 2 to obtain the matrix L in (3.18).

(3) Apply Theorem 3.5 to obtain estimates.

Remark 3.8. Compared to Estimation Algorithm 2, Estimation Algorithm 4 has two

major differences. First, the Hankel moment matrices are constructed using the deformed

MP law directly (cf. (3.28)) whereas Algorithm 2 utilizes the density (3.4). It can be seen

that 	b depends on the explicit form of b in (3.4) but 	 is independent of the choice of a

as in (3.27). Second, in Estimation Algorithm 2, we need to use different Hankel moment

matrices for the spiked and non-spiked models. In contrast, when the CGA is applied

to the normal equations, we always use the same moment regardless of the spikes. For a

more precise statement, see (3.31) and (3.32).

Based on Estimation Algorithm 4, we establish the theoretical results in Theorem 3.5.

Theorem 3.5. Fix some small constant τ1 > 0. Suppose Assumption 1 holds, γ− ≥ τ1
and ‖a‖2 = 1. Let {αi} and {βj} be the outputs calculated from Step (2) of Algorithm

4. Denote Y = Σ1/2X and Y0 = Σ
1/2
0 X. Then for the non-spiked model, there exist some

constants Cr,k, Ce,k > 0 such that

‖rk(W0, Y0a)‖2 =
√
w

k−1∏
j=0

βj

αj
+O≺(Cr,kM

−1/2),
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and for Sk = Sk() defined in (3.19)

‖ek(W0, Y0a)‖W0
= ‖rk(W0, Y0a)‖2

√
f∗
1 (SkS∗

k)
−1f1 +O≺(Ce,kM

−1/2),

or equivalently

‖ek(W0, Y0a)‖2W0
= w

⎛⎝1− 1

α2
0

k−1∑
�=0

�∏
j=1

β2
j−1

α2
j

⎞⎠+O≺(Ce,kM
−1/2), (3.30)

where w is defined in (3.29).

Additionally, for the spiked model, we have that

‖rk(W,Y a)‖2 = ‖rk(W0, Y0a)‖2 +O≺(Cr,kM
−1/2), (3.31)

and

‖ek(W,Y a)‖W = ‖ek(W0, Y0a)‖W0
+O≺(Ce,kM

−1/2). (3.32)

Remark 3.9. We remark that compared to Theorem 3.2, where the CGA is applied for

a deterministic b, Theorem 3.5 exhibits several differences. First, an extra normalization

constant w is used. In fact, w = E‖Y0a‖2 is used to scale Y0a such that the Lanczos

Iteration, Algorithm 2 can be applied properly. Second, compared to (3.22), (3.30) has a

simpler form due to (3.27). Third, (3.32) implies that if we examine the performance of

the CGA using the error norm ‖ · ‖W , the spikes will be ignored. Therefore, even though

this measurement is standard in numerical analysis, for statisticians who are interested

in understanding the performance of the estimation of high dimensional ordinary least

square (OLS) coefficients, a better norm (i.e., loss function) should be considered and

studied. We will pursue this direction in the future works.

We point out that when Σ0 = I, [45] used another approach to obtain a weak con-

vergence formula. Their method relies on exploring the structure of the error. However,

this method was not extended to give expressions for quantities beyond the W -norm of

the error. Our methods amount to a combination of the generality of the distributions

considered in [45] with the generality of the norms considered in [10] while extending

it to general spiked covariance matrices. Additionally, we can construct similar results

based on asymptotic relations of the orthogonal polynomials as in Algorithm 3 and The-

orem 3.3 as the Jacobi matrix T that is used to construct L in step (2) of Estimation

Algorithm 4 is just the Jacobi matrix associated to the modified density λ√
w
	(λ). We

omit the details here.

Remark 3.10. We have now demonstrated a guiding principle. We know that for

‖b‖2 = 1

b∗W kb =

∫
R

λk	b(λ)dλ+O≺(CkM
−1/2),

and hence the performance of the CGA on Wx = b will be, up to some error, determined

by the three-term recurrence for the orthogonal polynomials for 	b(λ)dλ.

Theorem 3.5 relies on the fact that for ‖a‖2 = 1

a∗Y ∗W kY a = a∗Wk+1a =

∫
R

λk λ	(λ)√
w

dλ+O≺(CkM
−1/2), W = Y ∗Y.
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Combining these two facts allows one to analyze the classical regression problem (1.3).

With

b = Y (Y ∗z + ε), ‖z‖2 = 1, ‖ε‖2 = 1 +O≺(M
−1/2),

one sees

b∗W kb = z∗W k+2x+ ε∗Wk+1ε+ 2x∗W k+1Y ε.

Supposing ε is isotropic and independent of W , the last term has expectation zero and

the asymptotic performance of the CGA on this regression problem will be determined

by the three-term recurrence for the orthogonal polynomials for(
λ2	b(λ) +

λ	(λ)√
w

)
dλ.

This observation was previously made in [44]. And by Theorem 5.2 the asymptotics of

this three-term recurrence is determined by the support of the measure alone when the

supports of 	b and 	 coincide

3.5. Universality. In this subsection, we establish the universality of the fluctuations

of the norms of the error and residual vectors for the CGA. It demonstrates that the

second order fluctuations of the residuals and errors of the CGA depend only on the first

four moments of the entries (xij) for both spiked and non-spiked models.

Theorem 3.6. Suppose Assumption 1 holds. Let W be as in (2.8) and let W̃Y be defined

similarly by replacing X with another random matrix Y = (yij) which satisfies (2) of

Assumption 1. Moreover, assume that

Exl
ij = Eylij , 1 ≤ l ≤ 4, 1 ≤ i ≤ N, 1 ≤ j ≤ M. (3.33)

Then we have that for all si1, si2 ∈ R, 1 ≤ i ≤ k,

lim
N→∞

[
P
X

((
M1/2 [‖ri(W, b)‖2 − ri(L)] ≤ si1,M

1/2 [‖ei(W, b)‖W − ei(L)] ≤ si2
)
1≤i≤k

)

− P
Y

((
M1/2

[
‖ri(W

Y , b)‖2 − ri(L)
]
≤ si1,M

1/2
[
‖ei(W

Y , b)‖WY − ei(L)
]
≤ si2

)
1≤i≤k

)]

= 0

where PX and PY denote the laws of (xij) and (yij), respectively, and L is defined in

(3.18).

Remark 3.11. Theorem 3.6 proves the universality for the distributions of the errors

and residuals. We point out that the exact distributions for the residuals and errors are

generally unknown even when X is Gaussian. To our best knowledge, these results are

only established in the null case when Σ = I in [45]. For general covariance matrix and

spiked model, it requires more careful treatment and is beyond the scope of the current

paper. We will consider this problem in the future work (cf. [18]).

Remark 3.12. We remark that Theorem 3.6 can be used to conduct statistical in-

ference on the structure of population covariance matrix. For example, in the literature

[61], researchers are particularly interested in testing

H0 : Σ = Λ0,
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where Λ0 is some given positive definite matrix. We focus on our explanation on the

non-spiked model. Many statistics can be constructed based on Theorems 3.2 and 3.3, or

Theorem 3.4. Even though the distributions of the halting times are unknown, according

to Theorem 3.6, when the fourth moment is assumed to be 3, we can always simulate their

distributions using Gaussian random variables. In this sense, Theorems 3.2 and 3.6 can be

combined to provide new statistics for high-dimensional inference. This opens a new door

for high-dimensional statistics and demonstrates that in contrast to the standard testing

procedure where testing statistics are mostly based on the estimation procedure, we can

also propose useful statistics based on the computational and algorithmic viewpoint. We

will pursue this direction in the future works.

3.6. Some extensions and discussion. We employ the error analysis framework estab-

lished in Section 3.3 to analyze the minimal residual algorithm (MINRES) [43]. The

actual algorithm is recorded in Algorithm 4 in Appendix B.2. Similar to the CGA, MIN-

RES is applied to solve linear systems of the form Wx = b, W ∈ R
N×N but for MINRES

W need not be definite. MINRES can also be described in its variational form. Recalling

(2.1), MINRES, at iteration k, gives the solution of

xk = argminy∈Kk
‖b−Wy‖2.

For simplicity, we focus on analyzing the residuals of MINRES using Estimation Algo-

rithm 2. The results are collected in Theorem 3.7.

Theorem 3.7. Fix some small constant τ1 > 0. Suppose Assumption 1 holds, γ− ≥ τ1
and ‖b‖2 = 1. Let {αi} and {βj} be the outputs calculated from Step (4) of Algorithm

2. Then we have that with x0 = 0, for k < n, there exists some constant Cr,k > 0 such

that

‖rk‖2 =

⎛⎝ k∑
j=0

j−1∏
�=0

α2
�

β2
�

⎞⎠−1/2

+O≺(Cr,kM
−1/2).

We point out that even though Estimation Algorithm 2 is designed for the error

analysis for the CGA, it can also be used to analyze the residuals of MINRES because

MINRES is also closely connected to the Lanczos iteration. Compared to (3.20) for the

CGA, the main difference lies in the leading order expression. These expressions are

derived deterministically using the variational forms of these algorithms. In this sense,

any numerical algorithm which is based on the Krylov space Kk and has errors that

depend only on the matrix L constructed in (3.18) can be analyzed using our proposed

framework.

4. Examples and numerical simulations. In what follows, we provide a few ex-

amples satisfying our assumptions, with accompanying numerical simulations, to better

explain the calculations and illustrate our theoretical results. We focus on the discussion

on Σ0, the construction of f(x) and the edges of 	 since they are the essential quantities.

We mention that there exist many other important examples of Σ0, beyond which we

discuss, having been used in applications that satisfy our assumptions. For instance,

one can consider Σ0 such that its limiting ESD satisfies either the truncated Gamma
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distribution in [36] or some Jacobi measure as in [17]. All these cases can be analyzed

using our methods. For our numerical experiments we effectively keep cN fixed by setting

M = �N/r� for r fixed.

In some situations, see (4.2), we know the first-order limit of the norms of the residual

and error vectors rk, ek. In other situations, we do not. When we do not we either

estimate or derive the bulk edges γ± — estimation involves rootfinding on f ′(x). This

then gives the large k behavior of the first-order limits via Theorem 3.3. For small k we

take the following estimation approach:

• Using a single sample with N = 2000, compute the Lanczos matrix T�(W, b), for

� small (all plots we use � = 5).

• Extend Tk to an approximation of T by setting ak = a, bk−1 = b as in (3.24) for

k ≥ �.

• Lastly, use Theorem 3.2 to give an estimate of the first-order limits of ‖rk‖2 and

‖ek‖W .

4.1. Johnstone’s spiked covariance matrix model [35]. We consider the standard spiked

covariance matrix model when cN < 1. In this case, Σ0 = I and the rank-one spiked

model

Σ = I + �vv∗. (4.1)

It is clear that (3) of Assumption 1 is satisfied. Moreover, according to (3.3), we have

that

f(x) = − 1

x
+

cN
x+ 1

, f ′(x) =
1

x2
− cN

(x+ 1)2
.

Consequently, we have that its critical points and the edges of the support are

γ+ = (1 +
√
cN )2, x+ = − 1√

cN + 1
; γ− = (1−√

cN )2, x− =
1√

cN − 1
.

Therefore, it is easy to see that αj ≡ 1 + O(e−cn) and βj =
√
cN + O(e−cn). According

to the bidiagonalization in [7] for the Gaussian case, if b = v we have,

L =

⎡⎢⎢⎢⎣
√
1 + �√
cN 1√

cN 1
. . .

. . .

⎤⎥⎥⎥⎦ .

Supposing that cN
N→∞−−−−→ d, this gives the formulae

‖rk(W,v)‖2 =

√
d

1 + �

{
1 + O≺(Cr,kM

−1/2) k = 1,

d(k−1)/2 +O≺(Cr,kM
−1/2) k > 1,

‖ek(W,v)‖W =

√
d

(1 + �)(1− d)

{
1 + O≺(Cr,kM

−1/2) k = 1,

d(k−1)/2 +O≺(Cr,kM
−1/2) k > 1.

(4.2)
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Fig. 2. A numerical demonstration of the concentration of the resid-
ual in the CGA on Johnstone’s spiked covariance model (4.1) when

X is an iid Gaussian matrix. Here we take � = 15,v = f1 and
b = v. In this case the bidiagonalization in [7] gives the matrix L
in the large M limit and the resulting predicted errors are given by
the dashed curve. See Figure 1 for a description of what these plots
demonstrate.

We demonstrate the convergence of the CGA in Figure 2. In Figure 3 we modify the

projection of b onto v. We demonstrate the case of two distinct spikes in Figure 4.

4.2. Spiked invariant model [5,17]. We consider the spiked invariant model where the

ESD of Σ0 converges to the standard MP law with parameter cN (cf. (D.8)). As discussed

in Remark 3.1, (3) of Assumption 1 is satisfied. It is well known that the asymptotic

density 	 can be characterized as the free multiplicative convolution of two MP laws. In

fact, the density function can be calculated explicitly as in Lemma D.4. In this case,

f(x) can be replaced by

f(x) = − 1

x
+ cN

∫
1

x+ λ−1
μMP(dλ),

where μMP is the standard MP law with parameter cN . Moreover, in this setting, γ± have

closed form expressions; see (3.26). For the spiked model, we can calculate the essential

quantities based on the above expressions. See Figure 5 for a demonstration.
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Fig. 3. A numerical demonstration of the concentration of the resid-
ual in the CGA on Johnstone’s spiked covariance model (4.1) when

X is an iid Gaussian matrix. Here we take � = 15,v = f1 and
b = 1√

2
f1 + 1√

2
w where w = [0,w′]T , and w′ is distributed uni-

formly on the hypersphere in RN−1. Since we do not have a closed-
form expression for the limiting dashed curve, we estimate it using
the procedure outlined at the beginning of this section. The mod-
ification of b, in comparison to Figure 2, modifies the behavior of
the first couple iterations — but the same asymptotic rate of con-
vergence persists. See Figure 1 for a description of what these plots
demonstrate.

4.3. Spiked covariance matrix with uniformly distributed eigenvalues [16]. We assume

that the ESD of Σ0 converges to the uniform distribution on [a, b], where a, b are some

positive constants. As discussed in Remark 3.1, (3) of Assumption 1 is satisfied. In this

case, f(x) can be replaced by

f(x) = − 1

x
+

cN
b− a

(
b− a

x
− 1

x2
ln

bx+ 1

ax+ 1

)
.

Then the desired quantities can be calculated based on the above expressions. For a

concrete example, we consider that a = 1, b = 3 and cN = 0.5. The critical points x±
can be calculated numerically using Newton’s method and are approximately −2,−0.25.

Then the support of 	 only contains a single interval and the edges are approximately

0.15 and 6.4, respectively. The essential quantities of the spiked model can be calculated

analogously; see Figure 6 for an illustration.
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Fig. 4. A numerical demonstration of the concentration of the resid-
ual in the CGA when Σ1/2 = diag(4, 3.5, 1, 1, . . . , 1) and X is an iid

Gaussian matrix. Here we take b = 1√
4
f1 + 1√

4
f2 + 1√

2
w where

w = [0, 0,w′]T , and w′ is distributed uniformly on the hypersphere
in RN−2. Since we do not have closed-form expression for the lim-
iting dashed curve, we estimate it using the procedure outlined at
the beginning of this section. See Figure 1 for a description of what
these plots demonstrate.

4.4. Spiked Toeplitz matrix [25]. Toeplitz matrices are a common object of study in

time series analysis since the covariance structure of a stationary time-series is a Toeplitz

matrix. Suppose that Σ0 is a symmetric positive definite Toeplitz matrix satisfying the

assumptions in [25, Section A.3.4]; then (3) of Assumption 1 is satisfied. Since the

eigenvalues of Σ0 do not have closed-forms, in general, we need to numerically calculate

the eigenvalues of Topelitz matrix and the function f in (3.3). The other quantities can

be calculated based on that. For a concrete example, let Σ0 be the covariance matrix of

an order one stationary autoregressive (AR) model such that the entries of Σ0 satisfy

(Σ0)i,j = 0.4|i−j|. (4.3)

For a concrete case when cN = 1/2, according to [16, Example 3.10], we use Newton’s

method to get the critical points of f(x), which are −0.33,−3.62. As a result, γ− ≈
0.086, γ+ ≈ 4.385. Similarly, we can obtain the other quantities for the spiked Toeplitz

matrix; see Figure 7 for a demonstration.

Licensed to Univ of Calif, Davis. Prepared on Fri Apr  1 18:55:40 EDT 2022 for download from IP 168.150.85.218.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



124 XIUCAI DING AND THOMAS TROGDON

Fig. 5. A demonstration of the concentration of ‖ek‖W in the case
of the spiked invariant model. Since we do not have closed-form
expression for the limiting dashed curve, we estimate it using the
procedure outlined at the beginning of this section. See Figure 1 for
a description of what these plots demonstrate. Note that these plots
show the W -norm of ek, not the 2-norm of rk as in Figure 1.

5. Asymptotics of orthogonal polynomials and Cholesky factorization. In

this section, we provide results on the theory of orthogonal polynomials.

5.1. Hankel determinants, moments and the three-term recurrence relation. In this

subsection, we introduce the connection between Lanczos iteration and orthogonal poly-

nomials [54, Lecture 36]. Let T be the N ×N Jacobi matrix generated from the Lanczos

iteration for its maximum of N steps. It produces a probability measure

μT =
N∑
j=1

δλj
ωj , (5.1)

where λj ’s are the eigenvalues of T and ωj is the squared modulus of the first component of

the normalized eigenvector associated to λj . For the N ×N Hermitian matrix W, denote

its eigenvectors as {ui}, and for any unit vector b, denote the eigenvector empirical

spectral distribution (VESD) as [2]

μW,b =

N∑
i=1

|〈ui, b〉|2δλi(W ). (5.2)
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Fig. 6. A demonstration of the concentration of ‖rk‖2 in the uni-
formly deformed case. Since we do not have closed-form expression
for the limiting dashed curve, we estimate it using the procedure out-
lined at the beginning of this section. See Figure 1 for a description
of what these plots demonstrate.

The VESD μW,b coincides with the spectral measure μT . In fact, there is a bijection

between such measures and Jacobi matrices [8]. Moreover, Proposition 5.1 indicates that

universality and estimates for the spectral measure in an appropriate sense will translate

to universality and estimates for the Lanczos matrix.

Based on μW,b, we can construct a sequence of orthogonal polynomials {pn(x)} from

the monomials via Gram-Schmidt. The polynomials obey the following three-term re-

currence relation [53]

xpn(x) = bnpn+1(x) + anpn(x) + bn−1pn−1(x), n ≥ 0, bn > 0, (5.3)

with the convention p−1(x) = 0 and b−1 = 0. Here an, bn are called the recurrence

coefficients.

Proposition 5.1. The three-term recurrence coefficients for the orthogonal polynomials

generated by the VESD of μW,b coincide with the entries in the Lanczos matrix T (W, b).

Proof. See [8]. �
Recall the classical fact that the coefficients in a three-term recurrence relation can be

recovered as a nearly rational function of the moments of the associated spectral measure.
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Fig. 7. A demonstration of the concentration of ‖rk‖2 in the case of
the unspiked Toeplitz case (4.3). Since we do not have closed-form
expression for the limiting dashed curve, we estimate it using the
procedure outlined at the beginning of this section. See Figure 1 for
a description of what these plots demonstrate.

We write pn(x) = �nx
n + snx

n−1 + · · · and find by equating coefficients that

�n = bn�n+1,

sn = an�n + bnsn+1,

where an and bn will be given in (5.5) after necessary notations are introduced.

Denote the Hankel moment matrix of μW,b as Mn and Dn = detMn. Moreover, define

Dn(λ) by the determinants

Dn(λ) = detMn(λ), (5.4)

and Mn(λ) is formed by replacing the last row of Mn with the row vector [1 λ λ2 · · ·λn].

Then, it is well-known that (see, e.g., [8])

pn(λ) =
Dn(λ)√
DnDn−1

.

This gives

bn =

√
Dn−1Dn+1

D2
n

, an =
sn − bnsn+1

�n
=

sn
�n

− sn+1

�n+1
. (5.5)
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The above expression shows that an and bn are infinitely differentiable functions of

m0,m1,m2, . . . ,m2n+2 on the open set

{Dj > 0, j = 1, 2, . . . , n+ 1}.

Remark 5.1. Associated with the three-term recurrence (5.3) is the following infinite-

dimensional Jacobi matrix

T =

⎡⎢⎢⎢⎢⎣
a0 b0
b0 a1 b1

b1 a2
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎦ .
Let Tn be the upper left n×n subblock of T . Then we readily see that Tn is a differentiable

function of (m0,m1, · · · ,m2n). We also note that [8]

f∗
1 T kf1 =

∫
λkμW,b(dλ).

5.2. Asymptotics of three-term recurrence relations and the Cholesky factorization.

In this subsection, we explore the asymptotic form of the Jacobi matrix and Cholesky

decomposition when the VESD exhibits regular square root behavior near the edges.

Theorem 5.2. Suppose h : [a, b] → R is a positive real analytic function. Consider the

measure μ defined by

μ(dλ) = h(λ)1[a,b](λ)(b− λ)α(λ− a)βdλ+

p∑
j=1

wjδcj (dλ),

where wj > 0 and cj ∈ R \ [a, b], for all 1 ≤ j ≤ p. Suppose, in addition, that α =

± 1
2 , β = ± 1

2 . Then there exists c > 0 such that

an =
b+ a

2
+O(e−cn), bn =

b− a

4
+O(e−cn).

Moreover, if there exists 0 < τ < 1 such that

• τ ≤ wj ≤ τ−1, for all j = 1, 2, . . . , p,

• τ ≤ |h(z)| ≤ τ−1 and h is analytic for all z ∈ C such that minλ∈[a,b] |z − λ| < τ ,

and

• min{|a− cj |, |b− cj |} ≥ τ for all j = 1, 2, . . . , p,

then c can be taken to be a function of τ alone.

Proof. It has been proved in [38, 39] for the case a = −1, b = 1 without discrete

contributions. The result follows from that with a simple modification if wj = 0 for

all j. With spikes, as noted in [38], the result follows from [28] for h, wj , cj fixed. To

obtain uniformity, one introduces poles into the Riemann–Hilbert formulation in [38]

(originally due to [34]), turning residue conditions into rational jump conditions and

then inverting exponential growing jumps so that they tend to the identity matrix at a

uniform exponential rate; see [56, Section 8.2.2], for example. �
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Remark 5.2. For the Marchenko–Pastur law, we have a = (1 − √
cN )2 and b =

(1 +
√
cN )2 so that

b+ a

2
= 1 + cN ,

b− a

4
=

√
cN .

The proof of Lemma 5.3 is a direct consequence of ϕ(T )ϕ(T )∗ = T where ϕ(T ) is

defined in Algorithm 3 and the fact that the diagonal entries in the Cholesky factorization

must be positive. Note that α in Lemma 5.3 is always real since

(b+ a)2

4
− 4

(b− a)2

16
=

1

4

(
(b+ a)2 − (b− a)2

)
= ab > 0.

Lemma 5.3. Let γ ≥ 2β ≥ 0 and set α =
γ+

√
γ2−4β2

2 . Suppose

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α(1 + E0) β(1 + fβ(0))

β(1 + fβ(0)) γ(1 + fγ(0)) β(1 + fβ(1))

β(1 + fβ(1)) γ(1 + fγ(1)) β(1 + fβ(2))

β(1 + fβ(2)) γ(1 + fγ(2))
. . .

. . .
. . .

β(1 + fβ(N − 2))

β(1 + fβ(N − 2)) γ(1 + fγ(N − 2))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.6)

for functions fβ , fγ : N ∪ {0} → (− 1,∞) and E0 > −1. Then if T is invertible,

ϕ(T ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
α
√
1 + E0

β√
α

1+fβ(0)√
1+E0

√
α
√
1 + E1

β√
α

1+fβ(1)√
1+E1

√
α
√
1 + E2

β√
α

1+fβ(2)√
1+E2

√
α
√
1 + E3

. . .
. . .

β√
α

1+fβ(N−2)√
1+EN−2

√
α
√

1 + EN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where En > −1 satisfies

En+1 = fγ(n) +
β2

α2

[
1 + fγ(n)−

(1 + fβ(n))
2

1 + En

]
.

Theorem 5.4. Suppose 0 < a < b and set γ = a+b
2 , β = b−a

4 and α =
γ+

√
γ2−4β2

2 =
(
√
a+

√
b)2

4 . Suppose T = TN = T1:N,1:N , the upper-left N ×N block of a Jacobi operator

T is of the form (5.6) and satisfies the assumptions of Lemma 5.3 for every N . Suppose,

in addition, that there exists σ > 0 such that

σ−1 ≤ x∗T x ≤ σ, ‖x‖2 = 1.

If limn→∞ fγ(n) = 0 = limn→∞ fβ(n), then limn→∞ En = 0.

Proof. Let ϕ(T ) be as in Lemma 5.3. Since
√
α
√
1 + En is an eigenvalue of ϕ(T ) we

find that there exists a unit vector v such that

‖ϕ(T )v‖22 = α(1 + En) = vTTv ≥ σ−1.
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Thus

En ≥ 1

ασ
− 1, for all n ≥ 0.

Then, because 1/(1 + En) ≥ 0, we have

En+1 ≤ |fγ(n)|+
β2

α2
[1 + |fγ |] .

Thus (En)n≥n0
forms a bounded sequence and any subsequence has a further subsequence

that converges. Supposing that fγ(n), fβ(n) → 0 as n → ∞, we find that the limit E∞
along this subsequence satisfies

E∞ =
β2

α2

[
1− 1

1 + E∞

]
.

Solving this relation gives E∞ = 0 or E∞ = β2

α2 − 1. So, it suffices to show that

E∞ �= β2

α2 − 1 as this will then imply that every subsequence has a further subsequence

that converges to a common limit.

Suppose that δ = β2

α2 − 1 is a limit point of the sequence En. Suppose that |Ek − δ| ≤
ε
2Γ

−j where Γ = 4α2

β2 and ε ≤ β2

2α2 . Then it follows that Ek+1 satisfies

|Ek+1 − δ| ≤ 2|fγ(k)|+ 4|fβ(k)|+ 2|fβ(k)|2 + 4
α2

β2
|Ek − δ|.

And therefore

|Ek+i − δ|

≤
(
4
α2

β2

)i

|Ek − δ|+ max
k≤m≤k+i

(
2|fγ(m)|+ 4|fβ(m)|+ 2|fβ(m)|2

) i∑
m=1

(
4
α2

β2

)i−m

.

Then provided that

max
k≤m≤k+i

(
2|fγ(m)|+ 4|fβ(m)|+ 2|fβ(m)|2

) i∑
m=1

(
4
α2

β2

)−m

≤ ε

2
Γ−j ,

we find that |Ek+i − δ| < ε for i = 1, 2, . . . , j. Next, we observe that

√
α
√
1 + δ =

β√
α

=

√
b−√

a

2
,

β
√
α
√
1 + δ

=
√
α =

√
b+

√
a

2
.

We then take the ratio of the elements in the (k + i+ 1)th column of ϕ(T ), giving

α(1 + Ek+i)

β(1 + fβ(k + i))
=

√
b+

√
a√

b−
√
a

1 + Ek+i

1 + δ

1

1 + fβ(k + i)

≥
√
b+

√
a√

b−
√
a

1 + δ − ε

1 + δ

1

1 + ε
≥ σ0 > 1,
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by further reducing ε, if necessary. We then consider applying the conjugate gradient

algorithm to Tx = f1. By Theorem B.1 we have that, in particular

‖rk+j‖2
‖rk‖2

≥ σj
0.

But we know that for any k

σ−1‖ek‖2T = σ−1e∗kTek ≤ ‖rk‖22 = e∗kT
2ek ≤ σe∗kTek = σ‖ek‖2T .

This results in the string of inequalities

σj
0 ≤ ‖rk+j‖2

‖rk‖2
≤ σ

‖ek+j‖T
‖ek‖T

≤ σ,

because
‖ek+j‖T

‖ek‖T
≤ 1. Since j can be made arbitrarily large, we see that δ cannot be a

limit point of (En)n≥0 and limn→∞ En = 0. �
This immediately implies the following.

Corollary 5.5. Given the assumptions of Theorem 5.4, suppose there exists C, c > 0

such that |fβ(n)|+ |fγ(n)| ≤ C e−cn then there exists C ′, c′ > 0 such that

|En| ≤ C ′e−c′n.

Proposition 5.6. Suppose h : [a, b] → R, a > 0 is a positive real analytic function.

Consider a probability measure μ defined by

μ(dλ) = h(λ)1[a,b](λ)(b− λ)α(λ− a)βdλ+

p∑
j=1

wjδcj (dλ),

where wj > 0 and cj > b for all 1 ≤ j ≤ p. Suppose, in addition, that α = ± 1
2 , β = ± 1

2 .

Let

T =

⎡⎢⎢⎢⎢⎢⎢⎣

a0 b0
b0 a1 b1

b1 a2 b2

b2 a3
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎦
be the associated Jacobi matrix of three-term recurrence coefficients. Let LLT = T be

the Cholesky factorization of T with

L =

⎡⎢⎢⎢⎢⎢⎣
α0

β0 α1

β1 α2

β2 α3

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ ;
then ∫

R

1

λ
μ(dλ) = f∗

1 T −1f1 =
1

α2
0

∞∑
�=0

�∏
j=1

β2
j−1

α2
j

.
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Proof. This follows from back substitution and the fact that∫
R

μ(dλ)

λ− z
= f∗

1 (T − z)−1f1,

for z outside the support of μ [8]. �
We point out that Proposition 5.6 is true much more generally but this is the version

we require.

Proposition 5.7. With the assumptions of Proposition 5.6

k−1∏
j=0

α2
j

β2
j

⎡⎣∫
R

1

λ
μ(dλ)− 1

α2
0

k−1∑
�=0

�∏
j=1

β2
j−1

α2
j

⎤⎦ =
1

α2
k

k−1∑
�=0

�∏
j=1

β2
k+j−1

α2
k+j

k→∞−−−−→ 1√
ab

.

Furthermore, this limit takes place at an exponential rate.

Remark 5.3. The convergence of the CGA is determined by the ratio of diagonal to

off-diagonal entries in the Cholesky factorization of the associated Jacobi matrix. For

0 < cN < 1 the Cholesky factorization of the Jacobi matrix

T =

⎡⎢⎣ cN
√
cN√

cN 1 + cN
√
cN

√
cN

. . .

⎤⎥⎦
pathologically has diagonal entries that are smaller than the off-diagonal entries. Since

any finite truncation of this matrix is invertible, CGA will experience residuals that grow

exponentially until convergence at k = N . This is an example where, in the notation of

Lemma 5.3, E∞ = β2

α2 − 1. Since this is an unstable fixed point of F (x) = β2

α2

[
1− 1

1+x

]
,

any small (generic) perturbation, that preserves definiteness, will force E∞ = 0.

6. Spiked covariance matrix model and VESD. In this section, we provide and

prove the results on random matrices. We first introduce some notations. For any N×N

symmetric matrix Z, denote mZ and mZ,b as the Stieltjes transforms of μZ as in (3.1)

and μZ,b as in (5.2), respectively, i.e.,

mZ(z) =

∫
1

x− z
μZ(dx), mZ,b(z) =

∫
1

x− z
μZ,b(dx), z ∈ C+.

Recall that the Stieltjes transform can be used to recover the associated probability

distribution μ using the well-known inversion formula (see equation (1.2) of [50])

μ{[a, b]} =
1

π

∫ b

a

Immμ(x+ i0+)dx. (6.1)

Moreover, let GZ be the resolvent of Z, i.e., GZ(z) = (Z − z)−1. Then

mZ =
1

M
TrGZ(z), mZ,b = b∗GZ(z)b.
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Next, we introduce the following contour representation for the moments of any given

spectral measure ν. Let mk(ν) denote the moments of ν. By Cauchy’s integral formula,

mk(ν) = − 1

2πi

∮
Γ

zkmν(z)dz, (6.2)

where Γ is a smooth simple contour that properly encloses the support of ν.

6.1. Local laws for the non-spiked model. In this subsection, we discuss results relating

to the so-called anisotropic local laws. Denote by H the (N +M)× (N +M) linearized

matrix

H ≡ H(z,X) :=
√
z

(
0 Σ

1/2
0 X

X∗Σ
1/2
0 0

)
. (6.3)

H is more convenient since, on one hand the eigenvalues of the sample covariance matrix

W0 can be studied via H, and on the other hand the resolvent of H can be written in

terms of those of W0 and W0. Let G1 and G2 be the resolvents of W0 and W0, and m1

and m2 be the Stieltjes transforms of the ESDs of W0 and W0, respectively.

For z ∈ C+, by Schur’s complement, we have that

G(z) ≡ G(z,X) := (H − z)−1 =

(
G1(z)

1√
z
Σ

1/2
0 XG2(z)

1√
z
G2(z)X

∗Σ
1/2
0 G2(z)

)
. (6.4)

Define the deterministic matrix

Π(z) ≡
(
Π1(z) 0

0 Π2(z)

)
:=

(
− 1

z (1 +m(z)Σ0)
−1 0

0 m(z)

)
. (6.5)

With a slight modification of the results in [37], we have the following result. Fix some

small constant τ > 0 and denote the set of admissible spectral parameters as

D ≡ D(z, τ ) =
{
z = E + iη : τ ≤ |z| ≤ τ−1, M−1+τ ≤ η ≤ τ−1

}
. (6.6)

A subset Do of D is defined by

Do ≡ Do(z, τ ) = D ∩ {dist(E, supp(	)) + η ≥ τ} . (6.7)

Lemma 6.1. Suppose (1)–(3) of Assumption 1 hold. For any unit deterministic vectors

u,v ∈ RM+N and fixed small constant τ > 0, we have that for all z ∈ Do(z, τ )

|u∗G(z)v − u∗Π(z)v| ≺ M−1/2.

Proof. See Appendix C.1. �
We remark that the results of [37] are established on the larger domain D defined

in (6.6) with the extra assumption that γ− ≥ τ. As discussed in [58, Remark 1.8], this

assumption requires that |cN − 1| ≥ τ. In this sense, on the spectral parameter set D0

in (6.7), we can handle the case cN = 1, which is an important regime in numerical

analysis. We also have the following edge convergence result. Denote the eigenvalues of

W0 in (2.8) as λ1 ≥ λ2 ≥ · · · .

Proposition 6.2. Suppose (1)–(3) of Assumption 1 hold; we have that

λ1 = γ+ +O≺(M
−2/3).

Proof. The proposition follows from [37, Theorem 3.12]. �
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We have focused our discussion on the ESD so far. Armed with these results, we

proceed to provide some results for the VESD. For any given deterministic unit vector

v ∈ RN , denote

wi = 〈v,vi〉, 1 ≤ i ≤ N. (6.8)

Recall (6.5). By Lemma 6.1, we find that v∗G1(z)v is close to

mv(z) = v∗Π1(z)v = −1

z

N∑
i=1

w2
i

1 + σim(z)
. (6.9)

We denote the probability measure associated with mv as 	v. Note that

Immv(x+ i0+) =
1

x

N∑
i=1

w2
i σiImm(x+ i0+)

|1 + σim(x+ i0+)|2 , (6.10)

where we denote Imm(x+i0+) = limη↓0 Imm(x+iη). Together with the inversion formula

(6.1), we see that

supp(	v) = supp(	). (6.11)

6.2. VESD for the spiked covariance matrix model. In this subsection, we provide

some results regarding the spiked model W as in (1.1). For the spiked model, we can

define H̃ by replacing Σ0 with Σ in (6.3). Analogously, we can define the resolvents as

G̃1, G̃2 and G̃, respectively. The following lemma collects the results on the asymptotic

convergence of the outlier and extremal non-outlier eigenvalues. Denote the eigenvalues

of W in (1.1) as μ1 ≥ μ2 · · · .

Lemma 6.3 (Outlier and extremal non-outlier eigenvalues). Suppose Assumption 1 holds.

Recall the function f defined in (3.3). We have that

μi = f
(
−σ̃−1

i

)
+O≺(M

−1/2), i ≤ r,

and

μr+1 = γ+ +O≺(M
−2/3).

Proof. See Theorem 3.2 of [16]. �
In the following lemma, we establish the fundamental connection between the VESDs

of the spiked and non-spiked models. Recall Do in (6.7). Denote the spectral parameter

set

D̃o := Do ∩
{

min
1≤i≤r

|z − f(−σ̃−1
i )| ≥ τ

}
, (6.12)

where τ > 0 is some small fixed constant.

Lemma 6.4. For the eigenvectors {vi} of Σ and any unit deterministic vector v ∈ R
N ,

let wi as in (6.8) and

Li :=

{
z−1(1 +m(z)σi)

−2
[
d−1
i + 1− (1 +m(z)σi)

−1
]−1

i ≤ r,

0 r + 1 ≤ i ≤ N.

Suppose Assumption 1 holds. Then for all z ∈ D̃o in (6.12),

v∗G̃1(z)v =

N∑
i=1

w2
i

1 + di
(v∗

i G1(z)vi − Li) + O≺(M
−1/2). (6.13)
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Similarly, for any deterministic vector u ∈ RM ,

u∗G̃2(z)u = u∗G2(z)u+O≺(M
−1/2). (6.14)

Proof. See Appendix C.1. �
Remark 6.1. Lemma 6.4 provides useful expressions for the VESD of the spiked model

in terms of the non-spiked model. First, for the VESD of W in (1.1), as illustrated in

(6.13), it can be described using that of W0 in (2.8) after proper scaling and shifting.

Especially, when b ∈ V⊥
r , the VESDs of W and W0 coincide asymptotically. Moreover,

the values of Li can be calculated explicitly at some specific points. Using the relation

(3.2) that m(f(−σ̃−1
i )) = −σ̃−1

i , we readily find that

d−1
i + 1− (1 +m(f(−σ̃−1

i ))σi)
−1 = 0.

Therefore, we conclude that f(−σ̃−1
i ) is a pole of Li. Second, (6.14) states that the VESDs

of W = X∗ΣX and W0 = X∗Σ0X match asymptotically regardless of the existence of

the spikes. As will be seen in the proof of Theorem 3.5, it explains why the spikes will

be ignored when the CGA is applied to normal equation.

6.3. Formulation of the moments of VESDs. In this subsection, we establish the key

relation for the (random) moments of the VESDs for the spiked and non-spiked models.

In particular, we represent the moments of the VESD of the spiked model using those of

the non-spiked model. Denote the VESDs of (W0, b) and (W, b) as νb and ν̃b, respectively.

Recall that their moments are defined as follows

m̂k,b =

∫
xkνb(dx), ̂̃mk,b =

∫
xkν̃b(dx). (6.15)

Theorem 6.5. Suppose Assumption 1 holds. Recall (3.10). We have that

̂̃mk,b =

N∑
i=1

b2i
1 + di

(
m̂k,vi

+ 1(i ≤ r)
f ′(−σ̃−1

i )
(
f(−σ̃−1

i )
)k−1

σi

)
+O≺(M

−1/2),

for all integers k ≥ 0.

Moreover, if γ− ≥ τ for some constant τ > 0 the above results extend to k = −1.

Proof. Recall 	b is the limiting VESD associated with the Stieltjes transform in (6.9).

By [2, Theorem 1], we have that νb → 	b weakly a.s. In order to apply (6.2), we first

properly choose a contour. In light of (6.11), we can choose a simply connected contour

Γ that encloses the support of the deformed MP law 	 and f(−σ̃−1
i ), 1 ≤ i ≤ r and is

also uniformly bounded away from them.

Then we apply (6.2) for the calculation. It is easy to check that the function f defined

in (3.3) is monotonically increasing when x ≥ m(γ+); for example, see the discussion

below [16, Lemma 6.1]. Moreover, under Assumption 1, we find that for some constant

τ ′ > 0

−σ̃−1
i > m(γ+) + τ ′. (6.16)

Therefore, we have that

f(−σ̃−1
i ) ≥ f(m(γ+)) = γ+. (6.17)
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Note that we have m(γ+) = b1 and f ′(b1) = 0. Further, for x ≥ γ+, by the square root

behavior of 	, we have that [37, equation (A.11)]

x− γ+ =
f

′′
(b1)

2
(m(x)− b1)

2 +O(|x− b1|3). (6.18)

From the proof of [37, Lemma A.3], we have that for some constant τ2 > 0,

f
′′
(b1) ≥ τ2,

Since (6.17) holds, we set x = f(−σ̃−1
i ) and evaluate (6.18). By (6.16), we conclude that

for some constant τ3 > 0,

f(−σ̃−1
i )− γ+ > τ3. (6.19)

Together with (6.11), Proposition 6.2 and Lemma 6.3, we find that f(−σ̃−1
i ) are isolated

points and uniformly far away from the support of 	. Therefore, (6.2) implies

m̂k,b = − 1

2πi

∮
Γ

zkb∗G1(z)bdz, k ≥ 0.

The above results hold for k < 0 when 0 /∈ supp(	), i.e., γ− ≥ τ for some constant τ > 0.

Moreover, by Lemma 6.4, we have that

̂̃mk,b = − 1

2πi

∮
Γ

zkb∗G̃1(z)bdz (6.20)

= −
N∑
i=1

b2i
1 + di

1

2πi

(∮
Γ

zkv∗
i G1(z)vidz −

∮
Γ

zkLi(z)dz

)
+O≺(M

−1/2)

=

N∑
i=1

b2i
1 + di

m̂k,vi
+

1

2πi

r∑
i=1

b2i
1 + di

∮
Γ

zkLi(z)dz +O≺(M
−1/2).

Next, we discuss the residues. Using (6.19), Assumption 1(3) and the monotonicity of f

on the real line, we conclude that the singularities of Li are not within the support of 	.

Then we set Υ = m(Γ), i.e., f(Υ) = Γ and use residue theorem to calculate

1

2πi

∮
Γ

zkLi(z)dz =
1

2πi

∮
Υ

(f(ζ))kLi(f(ζ))f
′(ζ)dζ

=
1

2πi

∮
Υ

(f(ζ))k−1f ′(ζ)
1

(1 + ζσi)2
di(1 + ζσi)

σ̃i

1

ζ + σ̃−1
i

dz

=
f ′(−σ̃−1

i )
(
f(−σ̃−1

i )
)k−1

σi
,

where in the second step we used that m(f(ζ)) = ζ and in the last step we used Cauchy’s

integral formula and σ̃i = σi(1 + di). This completes our proof. �
Remark 6.2. We remark that m̂k,b can be replaced by some deterministic quantities

using the limiting VESD (cf. 	b in (3.4)). Recall mk,b defined in (3.5). According to

[2, Theorem 1], we have that m̂k,b → mk,b a.s.. The convergence rates have also been

established under different assumptions in the literature. For example, by [59, Theorem
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1.6], it can be shown that m̂k,b = mk,b +OP(M
−1/8). Moreover, when γ− ≥ τ, the result

can be updated to m̂k,b = mk,b+OP(M
−1/4). Later on, under the assumption |cN−1| ≥ τ

(or γ− ≥ τ ), the authors established that m̂k,b = mk,b + O≺(M
−1/2) in [58, Theorem

1.5].

7. Theoretical analysis of the algorithms. Armed with the results established in

Sections 5 and 6, in this section, we provide the error analysis of the CGA and MINRES

algorithms. Due to similarity, we focus on Theorem 3.2 and only briefly discuss that of

Theorem 3.1.

Proof of Theorem 3.2. We focus our discussion on the non-spiked model and will

only briefly discuss the spiked case. Recall (5.2). Denote by M̂k the Hankel determinant

matrix using the VESD of μW0,b and recall that Mk is its limiting version defined in

(3.6). Note that for any nonsingular matrix A, square matrix B and small ε > 0 [27]

det(A+ εB) = (1 + ε tr(BA−1)) detA+O(ε2). (7.1)

Under the assumption that γ− ≥ τ1, by Remark 6.2, we find that

det(M̂k) = detMk +O≺(CkM
−1/2), (7.2)

where Ck is some constant which depends on k. In fact, by (7.1), we have

det M̂k = det
(
Mk +M−1/2(

√
M(M̂k −Mk))

)
= detMk +O(M−1) +M−1/2O≺(detMk tr(

√
M(M̂k −Mk)M

−1
k )).

Note that Mk is positive definite. Applying Hadamard’s inequality to detMk and the in-

equality that tr(AB) ≤ λmax(A) tr(B), where B is a positive-definite matrix, by Remark

6.2, we readily see that Ck ≤ ak for some constant a > 0.

Let b̂k be defined similarly as in (5.5) using the moments of μW0,b. By (7.2) and (3.16)

with (3.7), we readily see that

b̂k = bk +O≺(C
′
kM

−1/2), (7.3)

for some constant C ′
k which depends on k. Similarly, we can show that

âk = ak +O≺(C
′
kM

−1/2). (7.4)

Let T̂ be the tridiagonal matrix constructed using {âi} and {b̂i} as in (3.17). Analogous

to L in (3.18), we can apply Algorithm 3 to T̂ to obtain the Cholesky factorization L̂,

whose entries are denoted as {α̂j} and {β̂j}. By (7.3) and (7.4), it is easy to see that

α̂k = αk +O≺(C
′′
kM

−1/2), β̂k = βk +O≺(C
′′
kM

−1/2),

where C ′′
k is some constant depending on k. Consequently, by Lemma B.1, we conclude

that for some constant Cr,k > 0,

‖rk‖2 =
k−1∏
j=0

β̂j

α̂j
=

k−1∏
j=0

βj

αj
+O≺(Cr,kM

−1/2).
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Similarly, we can prove the results for ‖ek‖W0
. Finally, for the spiked model, (7.3) and

(7.4) can be proved similarly using Lemma 6.4 and Theorem 6.5. This completes our

proof. �
Proof of Theorem 3.1. The first part of the results follows from (7.3), (7.4), the

fact that Tk is banded and the Gershgorin circle theorem. The second part of the results

follows from Remark 5.1, Theorem 6.5 and Remark 6.2. �
Proof of Theorem 3.3. First, we consider the non-spiked case. Using (3.10) and

(3.4), we see that

	b(x) = h1(x)	(x),

where 	(x) is the deformed MP law and h1(x) is analytic and is given by

h1(x) =

N∑
i=1

biσi

x(1 + 2σiRem(x) + |m(x)|2σ2
i )
.

For the deformed MP law, by [37, Section A.2], we obtain that there exists some analytic

function h2(x) such that

	 = h2(x)
√
(γ+ − x)(x− γ−).

Consequently, we have that

	b(x) = h(x)
√
(γ+ − x)(x− γ−), h(x) = h1(x)h2(x).

Recall (3.23). By Theorem 5.2, we immediately obtain that

ak = a+O(e−ck), ak = b+O(e−ck),

where c > 0 is some constant. Applying Corollary 5.5 to the Jacobi matrix defined

in (3.24), under the assumption that γ− ≥ τ1, it is easy to see that the diagonal and

off-diagonal entries, respectively, satisfy

αk =

√
γ+ +

√
γ−

2
+ O(e−c′k), βk =

√
γ+ −√

γ−

2
+ O(e−c′k).

This completes (1) and (2) using Theorem 3.2 and Remark 3.2.

Second, for the spiked case, when b ∈ Vr, according to (3.9), we find that

m̃k,b = mk,b.

Since all the βj , αj and Sk are functions constructed via the Hankel moment matrices,

(1) and (2) hold for the spiked model. When |〈b,vi〉|τ1 for some 1 ≤ i ≤ r, the results

follow from (1) and (2) using Lemma 6.4 and Theorem 5.2. �
Proof of Theorem 3.4. The proof follows directly from Theorem 3.3. �
Proof of Theorem 3.5. Recall (3.29). Since a is a unit vector, using [26, Lemma

A.4], it is easy to see that

a∗Y ∗Y a = w+O≺(M
−1/2).

Moreover, it is clear that Theorem 3.2 applies to

Y0Y
∗
0

x

‖Y0a‖2
=

Y0a

‖Y0a‖2
.

Licensed to Univ of Calif, Davis. Prepared on Fri Apr  1 18:55:40 EDT 2022 for download from IP 168.150.85.218.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



138 XIUCAI DING AND THOMAS TROGDON

Note that the VESD satisfies that

a∗Y ∗
0 G1(z)Y0a = a∗G2(z)Y

∗Y a = a∗G2(Y
∗Y − z + z)a = 1 + za∗G2(z)a.

Consequently, by Lemma 6.1 and (6.1), its limiting asymptotic density will be

	′(x) = x	(x),

and its moments are as in (3.27). This completes the proof of the non-spiked model.

For the spiked model, since the formulas are functions of the moments of the VESD, it

suffices to show the closeness of the moments of the VESDs of the spiked and non-spiked

model, denoted as ̂̃mk and m̂k, respectively. When Y = Σ1/2X, the VESD satisfies that

a∗Y ∗G̃1(z)Y a = a∗G̃2(z)Y
∗Y a = a∗G̃2(Y

∗Y − z + z)a = 1 + za∗G̃2(z)a. (7.5)

Together with (6.14), we immediately obtain that

a∗Y ∗G̃1(z)Y a = 1 + za∗G2(z)a+O≺(M
−1/2).

By a discussion similar to (6.20), we can show that̂̃mk = m̂k +O≺(M
−1/2).

This completes our proof. �
Proof of Theorem 3.7. The proof is similar to that of Theorem 3.2 except that we

use the deterministic formula for MINRES in Lemma B.1. �

Appendix A. Universality: Proof of Theorem 3.6. In this section, we study

the universality of the fluctuations of the norms of the residual and error vectors for the

CGA and prove Theorem 3.6. Until the end of this section, for simplicity, we denote μx

and μy as the VESDs of (Σ
1/2
0 XX∗Σ

1/2
0 , b) and (Σ

1/2
0 Y Y ∗Σ

1/2
0 , b), respectively, where

Y is some random matrix whose first four moments are specified. Denote by mk(x) and

mk(y) as the moments of μx and μy, respectively. Moreover, we set

c0(z;μ) = mμ(z), scN (z) = m�b
(z),

where 	b is defined in (3.4).

A.1. Proof of Theorem 3.6. In this subsection, we prove Theorem 3.6. We will use

the following definition.

Definition 2. Fix some integer 0 < r ≤ M ε0 for some sufficiently small constant

ε0 > 0. Let Φ : Rr → R be bounded. Suppose, in addition, that for any multi-index

α = (α1, · · · , αn), 1 ≤ |α| ≤ 5 and for any ε′ > 0 sufficiently small, we have

max{|∂αΦ(x1, · · · , xr) : max
j

|xj | ≤ M ε′ |} ≤ MC0ε
′
,

for some C0 > 0. Then Φ is called an admissible test function.

Here we use the convention that for any positive integer m, some function Φ : Rm → R

and x = (x1, · · · , xm) ∈ R
m, we denote

∂kΦ(x) =
∂|k|Φ

∂xk1
1 ∂xk2

2 · · · ∂xkm
m

, k = (k1, · · · , km), (A.1)
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and

xk =

m∏
i=1

xki
i , k! =

m∏
i=1

ki!. (A.2)

Proof of Theorem 3.6. According to Lemma B.1 and Remark 5.1, since {αj} and

{βj} are locally analytic of the moments of the VESDs (cf. (6.15)), it suffices to establish

the universality for smooth functions of the moments. According to (6.2), for some

properly chosen contour Γ, we have that

mk(�) =
1

2πi

∮
Γ

zkc0(z;μ�)dz, � = x, y.

Therefore, it suffices to handle the integral. We point out that we only need to focus on

the non-spiked model. Note c0(z;μx) = b∗(Σ
1/2
0 XX∗Σ

1/2
0 − z)−1b = b∗G1(z)b. Denote

c0(z; μ̃x) as the associated Stieltjes transform for the spiked model, i.e., c0(z; μ̃x) =

b∗G̃1(z)b. By (C.6), it is easy to see that c0(z; μ̃x) can be expressed in terms of c0(z;μx).

Based on the above arguments, it is clear that the proof follows from the proposition

below.

Proposition A.1. Suppose the assumptions of Theorem 3.6 hold. For each j, let Γj =

∂Ωj , Ωj = Ωj be a simple smooth positively-oriented curve that is uniformly bounded
away from the support of the deformed MP law 	. Assume that fj , 1 ≤ j ≤ r, is a
collection of functions that are analytic in a neighborhood of Ωj , 1 ≤ r. Then for any
admissible function Φ : Rr → R, we have that∣∣∣∣EΦ

(√
M

2πi

∮
Γ1

f1(z)(c0(z;μx)− scN )dz, · · · ,
√
M

2πi

∮
Γr

fr(z)(c0(z;μx)− scN )dz

)

− EΦ

(√
M

2πi

∮
Γ1

f1(z)(c0(z;μy)− scN )dz, · · · ,
√
M

2πi

∮
Γr

fr(z)(c0(z;μy)− scN )dz

)∣∣∣∣
≤ CM−δ,

for some constants C, δ > 0.

�
The proof of Proposition A.1 will be provided in the next subsection. We provide

some remarks before concluding this subsection.

Remark A.1. We point out that some relevant results have been established in the

literature under various assumptions. In [2, Theorem 2], provided the ESD of Σ0 con-

verges to some deterministic limiting distribution and cN converges to some limit c,

under the assumption that Lemma 6.1 holds and Ex4
ij = 3/M, the authors proved that

(
∫
f1(x)μT (dx), · · · ,

∫
fr(x)μT (dx)) converges to some Gaussian random vector. More

recently, in [60], the authors generalized the above results without assuming convergence

of Σ0 and cN and the moment matching conditions (3.33). Further, [60] considers a

more general class of functions. However, the results of [60] are established under the

assumption that |cN − 1| ≥ τ. Our Proposition A.1 considers completely general popu-

lation covariance matrices as in [60] with r being possibly slowly divergent, but under

the moment matching condition (3.33). Under (3.33), our results also hold even cN = 1.

Finally, we mention that for all cN ∈ (0,∞), based on the results established in [3, 60],

it is possible to derive the explicit distribution for the functional forms of the VESDs of
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W0 in Proposition A.1, which depend on all the first four moments of X. We will pursue

this direction in the future.

Remark A.2. Since the support of 	b is the same with that of 	 (cf. (6.11)), an

immediate consequence of Proposition A.1 is that(∫
λkμW0,b(dλ)

)
k

�
(∫

λk	bdλ

)
k

,

in the sense of convergence of finite-dimensional marginals where k ≥ 0 for |cN − 1| < τ

and k ∈ Z if cN ≤ 1 = τ for some constant τ > 0.

A.2. Proof of Proposition A.1. We proceed to the proof of Proposition A.1 in this

subsection. We point out that in [45, Theorem 5.11], a similar result has been established

when Σ0 = I and Y is Gaussian. The proof of [45, Theorem 5.11] relies on a discrete

comparison method which only works for diagonal Σ0. For general Σ0, we need to use

the interpolation method as developed in [37].

For simplicity of notation, define the index sets

I1 := {1, . . . , N}, I2 := {N + 1, . . . , N +M}, I := I1 ∪ I2.
We shall consistently use the Latin letters i, j ∈ I1, Greek letters μ, ν ∈ I2, and a, b ∈ I.

Definition 3 (Interpolating matrices). Introduce the notations X0 := Y and X1 :=

X. Let ρ0iμ and ρ1iμ be the laws of X0
iμ and X1

iμ, respectively. For θ ∈ [0, 1], we define the

interpolated law

ρθiμ := (1− θ)ρ0iμ + θρ1iμ.

We shall work on the probability space consisting of triples (X0, Xθ, X1) of independent

I1 × I2 random matrices, where the matrix Xθ = (Xθ
iμ) has law∏

i∈I1

∏
μ∈I2

ρθiμ(dX
θ
iμ). (A.3)

For λ ∈ R, i ∈ I1 and μ ∈ I2, we define the matrix Xθ,λ
(iμ) through(

Xθ,λ
(iμ)

)
jν

:=

{
Xθ

iμ, if (j, ν) �= (i, μ)

λ, if (j, ν) = (i, μ)
. (A.4)

In view of (6.3) and (6.4), we introduce the matrices

Gθ(z) := G
(
z,Xθ

)
, Gθ,λ

(iμ)(z) := G
(
z,Xθ,λ

(iμ)

)
.

Furthermore, we denote the matrix

Δλ
(iμ) := λ

√
z

(
0 Σ

1/2
0 fif

∗
μ

fμf
∗
i Σ

1/2
0 0

)
. (A.5)

By resolvent expansion, we readily obtain that for λ, λ′ ∈ R

Gθ,λ′

(iμ) = Gθ,λ
(iμ) +

K∑
k=1

Gθ,λ
(iμ)

(
Δλ−λ′

(iμ) Gθ,λ
(iμ)

)k
+Gθ,λ′

(iμ)

(
Δλ−λ′

(iμ) Gθ,λ
(iμ)

)K+1

. (A.6)

Setting λ = Xθ
iμ, by Lemma 6.1, for z ∈ Do, since ‖Σ0‖ < ∞, we readily obtain that〈

u(Gθ,λ
(iμ) −Π(z)),v

〉
≺ M−1/2,

∥∥∥Gθ,λ
(iμ)

∥∥∥ = O≺(1). (A.7)
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Moreover, we set λ′ = 0. Under Assumption 1, it is easy to see that Xθ
iμ = O≺(M

−1/2).

Using the definition of Stieltjes transform, it is trivial to see that ‖Gθ,λ
(iμ)‖ ≤ Cη−1 for

some constant C > 0. Therefore, we can choose K = 2 in (A.6) such that for all z ∈ Do(z)∥∥∥∥Gθ,λ′

(iμ)

(
Δλ−λ′

(iμ) Gθ,λ
(iμ)

)K+1
∥∥∥∥ = O≺(M

−1/2+τ ),

where we used the structure of (A.5). Together with (A.6) and (A.7), we readily obtain

that 〈
u(Gθ,0

(iμ) −Π(z)),v
〉
≺ M−1/2. (A.8)

Lemma A.2. For any differentiable function F : RI1×I2 → C, we have that

d

dθ
EF (Xθ) =

∑
i∈I1

∑
μ∈I2

[
EF

(
X

θ,X1
iμ

(iμ)

)
− EF

(
X

θ,X0
iμ

(iμ)

)]
(A.9)

provided all the expectations exist.

Proof. This is an immediate result from (A.3) and fundamental theorem of calculus.

�
For any deterministic vector v ∈ RN , we denote its natural embedding into RN+M as

v̂ :=

(
v

0

)
∈ R

N+M . (A.10)

To establish an analogous result of Proposition 5.1 of [45], i.e., Theorem A.1, for any

fixed integer r and a sequence of deterministic vectors qk,pk, 1 ≤ k ≤ r, it suffices to set

F (X) = Φ(Z1, · · · , Zr), (A.11)

where we denote

Zk ≡ Zk(X) :=
√
M q̂∗

k(G(zk, X)−Π(zk))p̂k, 1 ≤ k ≤ r, (A.12)

and {zk} is a sequence of points away from the support of deformed MP law. In view of

Lemma A.2, we will need the following lemma. Its proof can be found in Appendix C.2.

Lemma A.3. For some simple smooth positively-oriented contour Ω which encloses the

support of 	, and its boundary Γ = ∂Ω, suppose that for some small constant τ > 0,

inf
z=E+iη∈Γ

max{dist(E, supp 	), η} > τ. (A.13)

Then there exists some 0 < δ < 0.5 such that for all θ ∈ [0, 1], we have∣∣∣∣∣∣
∑
i∈I1

∑
μ∈I2

[
EF

(
X

θ,X1
iμ

(iμ)

)
− EF

(
X

θ,X0
iμ

(iμ)

)]∣∣∣∣∣∣ ≤ N−δ.

We first show how Lemma A.3 implies Proposition A.1.

Proof of Proposition A.1. The proof relies on the trapezoidal rule (see Lemma

D.3) and is similar to the arguments of the proof of [45, Theorem 5.11]. We sketch the
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proof here for the purpose of completeness. Without loss of generality, we assume that

Γj = Γ for all j. Denote

Zj :=

√
M

2πi

∮
Γ

fj(z)(c0(z;μT )− scN )dz.

We use Lemma D.3 to approximate Zj and denote

Zj,m =

√
M

2πi

m∑
k=1

fj(zk)(c0(zk;μT )− scN )wj ,

where zj and wj are defined in (D.7). Consider that

ΔM,m := Φ (Z1, · · · ,Zr)− Φ (Z1,m, · · · ,Zr,m) .

Denote

L := lim inf
N

σN1M≤N (1−√
cN )2, U := γ+.

It is easy to see that both L and U are bounded. Since Γ is uniformly bounded away

from the support of 	, we can choose a small constant δ > 0 such that [L−δ, γ++δ] ⊂ Ω.

For any given small ε > 0, we define a high probability event Ξ ≡ Ξ(δ, ε) such that the

following conditions hold:

(i) For z ∈ Γ uniformly and any deterministic units u,v ∈ RN+M

|u∗G(z)v − u∗Π(z)v| ≤ M−1/2+ε. (A.14)

(ii) For the given δ > 0, when M is large enough

λN ≥ L− δ, λ1 ≤ γ+ + δ. (A.15)

Note that by Lemma 6.1, the definition of L and Proposition 6.2, such an event exists.

For the sequel, we fix some realization X ∈ Ξ or Y ∈ Ξ satisfying the above conditions

(i) and (ii). Hence, the rest of the proof is purely deterministic.

Recall Definition 2. Applying Lemma D.3 for Zj − Zj,m with D = 5, we obtain that

for some constant C > 0

|Zj −Zj,m| ≤ C
√
Mm−5,

where we used the assumption that fj is analytic. We can choose m such that
√
Mm5 =

o(1); for example, m = M1/9. Consequently, we have that for some constant C1 > 0

|ΔM,m| ≤ C1M
−1/18. (A.16)

Denote

Z̃j :=

√
M

2πi

∮
Γ

fj(z)(c0(z;μT̃ )− scN )dz, Z̃j,m =

√
M

2πi

m∑
k=1

fj(zk)(c0(zk;μT̃ )− scN )wj .

Using (A.16), an analogous discussion for μT̃ and triangle inequality, it suffices to control

Δ̃m := Φ(Z1,m, · · · ,Zr,m)− Φ(Z̃1,m, · · · , Z̃r,m).

Recall (A.12). We can consider a function Ψ : Rm → R such that

Ψ(Z1, · · · , Zm) := Φ(Z1,m, · · · ,Zr,m) = Φ

⎛⎝ m∑
j=1

f1(zj)
wj

2πi
Zj , · · · ,

m∑
j=1

fr(zj)
wj

2πi
Zj

⎞⎠ .
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In fact, it is easy to see that Δ̃m can be controlled using Lemmas A.2 and A.3, if we can

show that Ψ(·) is admissible with respect to Zk, 1 ≤ k ≤ m, in terms of Definition 2. The

rest of the proof is devoted to justifying this aspect. We first prepare some notations.

Note that by Chain rule

∂Zj1
,··· ,Zjq

Ψ(Z1, · · · , Zm) =
r∑

k1,k2,··· ,kp=1

∂yk1
,··· ,ykp

Φ(y1, · · · , yr)
(

q∏
p=1

Wkp,jp

)
,

where Yi, 1 ≤ i ≤ r, are defined as

Yi :=

m∑
j=1

fi(zj)
wj

2πi
Zj ,

and W = (W�j) ∈ R
r×m are denoted by

W�j = f�(zj)
wj

2πi
. (A.17)

Recall the definition of wj as in (D.7). Using (A.14), we find that there exists some small

constant ε′ ≡ ε′(ε) such that

max
i

{|Yi|, |Zi|} ≤ M ε′ , (A.18)

where we used the fact that ‖fj‖q∞ < ∞, 1 ≤ q ≤ r. Since Φ is admissible, by Definition

2, we have that for some constant C0 > 0∣∣∣∂yk1
,··· ,ykp

Φ(y1, · · · , yr)
∣∣∣ ≤ MC0ε

′
.

Moreover, since q ≤ m and r is fixed, we conclude that there exists some constant C1

such that ∣∣∣∂Zj1
,··· ,Zjq

Ψ(Z1, · · · , Zm)
∣∣∣ ≤ MC1ε

′
.

Since ε is arbitrary, using (A.18), we see that Ψ is admissible. This completes our

proof. �

Appendix B. Some algorithms and the deterministic formulae. In this ap-

pendix, we provide the Jacobi matrix Cholesky factorization algorithm, some determin-

istic formulas and the MINRES algorithm.

B.1. Cholesky factorization algorithm. In this subsection, we provide the following

algorithm, Algorithm 3, which is designed to calculate the Cholesky decomposition for a

Jacobi matrix.

Algorithm 3: Jacobi matrix Cholesky factorization

(1) Suppose T is an N ×N positive-definite Jacobi matrix, set H = T .

(2) For k = 1, 2, . . . , N − 1.

(a) Set Hk+1,k+1 = Hk+1,k+1 −
H2

k+1,k

Hkk
.

(b) Set Hk,k+1 = 0.

(c) Set Hk:k+1,k = Hk:k+1,k/
√
Hk,k.

(3) Set HN,N =
√
HN,N .

(4) Return ϕ(T ) = H.
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B.2. The MINRES algorithm. In this subsection, we record the MINRES algorithm

[54, Lecture 38]

Algorithm 4: MINRES Algorithm

(1) Given some threshold ε > 0 and set q1 = b/‖b‖2.
(2) For k = 1, 2, . . . , n, n ≤ N

(a) Compute ak−1 =
r∗k−1rk−1

r∗k−1Wpk−1
.

(b) Set xk = xk−1 + ak−1pk−1.

(c) Form ⎡⎢⎢⎢⎢⎣
a0 b0

b0 a1
. . .

. . .
. . . bk−2

bk−2 ak−1

⎤⎥⎥⎥⎥⎦ .
(d) Set rk = rk−1 − ak−1Wpk−1.

(e) Compute bk−1 = −
r∗k−1rk−1

r∗k−1rk−1
.

(f) Set pk = rk − bk−1pk−1.

B.3. Deterministic formulae. In this subsection, we provide some deterministic for-

mulas for the numerical algorithms.

Lemma B.1 (Deterministic formulae). Consider the Lanczos iteration applied to the

pair (W, b) with W > 0 and ‖b‖2 = 1. Suppose the iteration runs until step n ≤ N ,

rn = 0, producing a tridiagonal matrix T = Tn(W, b). Let T = HHT be the Cholesky

factorization (see Algorithm 3) of T where

H =

⎡⎢⎢⎢⎢⎢⎣
α0

β0 α1

β1 α2

. . .
. . .

βn−2 αn−1

⎤⎥⎥⎥⎥⎥⎦ .

Then for the CGA on Wx = b with x0 = 0, for k ≤ N ,

‖rk‖2 =

k−1∏
j=0

βj

αj
. (B.1)

Moreover, we have that

‖ek‖W =

∫
1

λ
dμZ,b(λ)−

1

α2
0

k−1∑
�=0

�∏
j=1

β2
j−1

α2
j

, (B.2)

or equivalently,

‖ek‖W = ‖rk‖2
√
f∗
1 (LkLT

k )
−1f1, Lk = Hk+1:N,k+1:N . (B.3)
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For the MINRES algorithm on Wx = b, for k < n,

‖rk‖2 =

⎛⎝1 +

k∑
j=1

j−1∏
�=0

α2
�

β2
�

⎞⎠−1/2

. (B.4)

Proof. (B.1) and (B.4) follow from Propositions 4.1, 4.2 and the calculations of Section

6 of [45]. (B.2) and (B.3) can be obtained with slightly modification using the calculation

below (34) of [45]. �

Appendix C. Additional technical proofs.

C.1. Proofs of Lemmas 6.1 and 6.4.

Proof of Lemma 6.1. The results have essentially been proved in [37] with slightly

different assumptions; we only point out how to conform our setting to that of [37].

First, in [37, Definition 3.2], the linearizing block matrix is defined as

H0 :=

(
−Σ−1

0 X

X∗ −zI

)
. (C.1)

It is easy to check the following relation between (6.3) and (C.1)

H =

(
z1/2Σ

1/2
0 0

0 I

)
H0

(
z1/2Σ

1/2
0 0

0 I

)
. (C.2)

In [37], the deterministic convergent limit of H−1
0 is

Π0(z) =

(
−Σ0(1 +m(z)Σ0)

−1 0

0 m(z)

)
. (C.3)

Therefore, by (C.2), we can get a similar relation between (6.5) and (C.3)

Π(z) =

(
z−1/2Σ

−1/2
0 0

0 I

)
Π0(z)

(
z−1/2Σ

−1/2
0 0

0 I

)
. (C.4)

Second, when dist(E, supp(	)) ≥ τ, the results have been established for (H−1
0 ,Π0) in

[37, Theorem 3.16]. Since |z| < ∞, together with (3) of Assumption 1, we can conclude

that the results should also hold for (G,Π). Moreover, when η ≥ τ, it is easy to see that

for some constant C > 0,

Imm(z) =

∫
η

(x− E)2 + η2
	(x)dx ≥ Cη.

Consequently, when η ≥ τ, we have that for some constant c > 0

inf
z∈Do

min
i

|1 +m(z)σi| ≥ c. (C.5)

According to (3.20) of [37], once (C.5) holds, under (1)–(3) of Assumption 1, the results

for (H−1
0 ,Π0) can be obtained as stated in [37, Theorem 3.6]. This completes the proof

using |z| < ∞ and (3) of Assumption 1. �
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Proof of Lemma 6.4. We start with (6.13). For vi, 1 ≤ i ≤ N, multiplying it on

both sides of (D.1) yields that

v∗
i G̃1(z)vi =

σi

σ̃i

(
v∗
iG1(z)vi − zv∗

i G1Vr

(
D−1 + 1 + zV∗

rG1Vr

)−1
V∗

rG1vi

)
. (C.6)

First, when v = vi, i > r, since v∗
i vj = 0, vj ∈ Vr, by Lemma 6.1, we conclude that for

z ∈ D̃o,

v∗
i G̃1(z)vi = v∗

iG1(z)vi +O≺(M
−1/2),

where we used the fact that σi = σ̃i, i > r. Second, when v = vi, i ≤ r, we obtain that

v∗
i G̃1(z)vi =

1

1 + di
(v∗

i G1(z)vi − Li) + O≺(M
−1/2),

where we used Lemma 6.1. This completes our proof of (6.13) using the expansion

v =
∑N

i=1 wivi.

For (6.14), let Δ(z) = G(z)−Π(z), by Lemma D.2, we have that

u∗G̃2(z)u = u∗G2(z)u+ zũ∗Π(z)V̂r

(
D−1 + 1 + zV̂∗

rG(z)V̂r

)−1

V̂∗
rG(z)ũ

−zũ∗Δ(z)V̂r

(
D−1 + 1 + zV̂∗

rG(z)V̂r

)−1

V̂∗
rG(z)ũ.

Using the structure of (6.5), (D.4) and (D.5), for the first term, we have that

zũ∗Π(z)V̂r

(
D−1 + 1 + zV̂∗

rG(z)V̂r

)−1

V̂∗
rG(z)ũ = 0.

By Lemma 6.1, we have that∥∥∥ũ∗Δ(z)V̂r

∥∥∥ = O≺(M
−1/2),

∥∥∥V̂∗
rG(z)ũ

∥∥∥ = O≺(1),

and for some constant C > 0,∥∥∥∥(D−1 + 1 + zV̂∗
rG(z)V̂r

)−1
∥∥∥∥ ≤ C

τ −Ψ(z)
+ O≺(M

−1/2),

where we used the definition D̃o in (6.12). This completes our proof for (6.14). �
C.2. Proof of Lemma A.3. In this subsection, we proceed to the proof of Lemma A.3.

Its proof relies on the following decomposition, which is an analog of Lemma 5.15 of [45].

Define

S(X) ≡ S(z,X) :=
√
M (G(z,X)−Π(z)) .

We use the shorthand notation S(X) ≡ S(z,X) if there is no confusion on the spectral

parameter.

For each pair (i, μ), since Σ
1/2
0 fif

∗
μ is a rank one matrix, we write

Σ
1/2
0 fif

∗
μ = �ξζ∗.

Note that � < ∞. Recall (A.5). Note that(
0 Σ

1/2
0 fif

∗
μ

fμf
∗
i Σ

1/2
0 0

)
= UDU∗, (C.7)
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where D ∈ R2×2 and U ∈ R(N+M)×2 are defined as

D :=

(
0 �

� 0

)
, U :=

(
ξ 0

0 ζ

)
.

Lemma C.1. For β = 0, 1, any deterministic unit vectors u,v ∈ R
N and any spectral

parameter z ∈ D(z, τ ) in (6.6), we have

û∗S(X
θ,Xβ

iμ

iμ )v̂ = û∗S(Xθ,0
iμ )v̂ + J0 +

4∑
k=1

M−k/2Jk +O≺

(
M−5/2

)
,

where J0 is defined as

J0 :=
√
Mη

∑
k∈{2,4}

(−
√
zXβ

iμ)
ksk,

and sk is independent of β and defined as

sk := û∗Π (UDU∗Π)k v̂, (C.8)

and Jk, 1 ≤ k ≤ 4, has the following form

Jk = (−
√
MXβ

iμ)
kgk,

where gk only depends on Xθ,0
(iμ), i.e., independent of X

β
iμ satisfying that

gk = O≺(1).

Proof. Using (A.6) with K = 4, we obtain

S

(
X

θ,Xβ
iμ

(iμ)

)
= S

(
Xθ,0

(iμ)

)
+
√
M

4∑
k=1

Gθ,0
(iμ)

(
Δ

−Xβ
iμ

(iμ) Gθ,0
(iμ)

)k

(C.9)

+
√
MG

θ,Xβ
iμ

(iμ)

(
Δ

−Xβ
iμ

(iμ) Gθ,0
(iμ)

)5

.

We now consider the terms on the right-hand side of (C.9). When k = 1, using (A.5)

and (C.7), we have that

√
M û∗Gθ,0

(iμ)Δ
−Xβ

iμ

(iμ) Gθ,0
(iμ)v̂ = −

√
MXβ

iμû
∗Gθ,0

(iμ)UDU∗Gθ,0
(iμ)v̂.

By construction of (A.4), we have that û∗Gθ,0
(iμ)UDU∗Gθ,0

(iμ)v̂ is independent of Xiμ. We

decompose

û∗Gθ,0
(iμ)UDU∗Gθ,0

(iμ)v̂ = û∗ΠUDU∗Πv̂ + Eiμ,1, (C.10)

where

Eiμ,1 := M−1/2û∗
[
S(Xθ,0

(iμ))UDU∗Gθ,0
(iμ) +ΠUDU∗S(Xθ,0

(iμ))
]
v̂.
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SinceXθ,0
(iμ) is independent ofX

β
iμ, we can see that Eiμ,1 is independent ofXβ

iμ.We proceed

to the analysis of (C.10). First, invoking the structure of (6.5) and (A.10), we find that

û∗ΠUDU∗Πv̂ = (u∗Π1(z), 0)UD

(
ξ∗Π1v

0

)
= (uΠ1(z)ξ, 0)D

(
ξ∗Π1v

0

)
= 0. (C.11)

Second, by Lemma 6.1 and the fact � < ∞, we have that

Eiμ,1 = O≺(M
−1/2).

Combining the above arguments, it is easy to see that we have that

J1 =
(
−
√
MXβ

iμ

)
g1, g1 :=

√
M

√
zEiμ,1.

The other terms when k = 2, 3, 4 can be analyzed in a similar fashion. We only point out

the differences. In particular, on one hand, by an argument similar to (C.11), we have

that

û∗Π(UDU∗Π)kv̂ = 0, k is an odd integer. (C.12)

Consequently, for k = 2, 4, we collect these two terms as J0. On the other hand, we define

Jk =
(
−
√
MXβ

iμ

)k
gk, gk := zk/2

√
MEiμ,k, k = 2, 3, 4,

where Eiμ,k, 2 ≤ k ≤ 4, are defined as

Eiμ,2 : = M−1/2û∗
[
S
(
Xθ,0

(iμ)

)(
UDU∗Gθ,0

(iμ)

)2
+ΠUDU∗S

(
Xθ,0

(iμ)

)
UDU∗Gθ,0

(iμ)

+ (ΠUDU∗)2 S
(
Xθ,0

(iμ)

)]
v̂,

Eiμ,3 : = M−1/2û∗
[
S
(
Xθ,0

(iμ)

)(
UDU∗Gθ,0

(iμ)

)3
+ΠUDU∗S

(
Xθ,0

(iμ)

)(
UDU∗Gθ,0

(iμ)

)2
+ (ΠUDU∗)2 S

(
Xθ,0

(iμ)

)
UDU∗Gθ,0

(iμ) + (ΠUDU∗)3 S
(
Xθ,0

(iμ)

)]
v̂,

Eiμ,4 : = M−1/2û∗
[
S
(
Xθ,0

(iμ)

)(
UDU∗Gθ,0

(iμ)

)4
+ΠUDU∗S

(
Xθ,0

(iμ)

)(
UDU∗Gθ,0

(iμ)

)3
+ (ΠUDU∗)

2
S
(
Xθ,0

(iμ)

)(
UDU∗Gθ,0

(iμ)

)2
+ (ΠUDU∗)

3
S
(
Xθ,0

(iμ)

)
UDU∗Gθ,0

(iμ)

+ (ΠUDU∗)4 S
(
Xθ,0

(iμ)

)]
v̂.

Moreover, it is easy to see from Lemma 6.1 that

Eiμ,k = O≺(M
−1/2), 2 ≤ k ≤ 4.

Finally, for k = 5, by a discussion similar to (A.8), we have that〈
û(G

θ,Xβ
iμ

(iμ) − Π(z)), v̂

〉
≺ M−1/2. (C.13)
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Since k is odd, using (C.12) and a discussion similar to (C.10), together with (C.13), we

obtain that

û∗G
θ,Xβ

iμ

(iμ)

(
UDU∗Gθ,0

(iμ)

)5
v̂ = Eiμ,5,

where Eiμ,5 is defined similarly as Eiμ,k, 1 ≤ k ≤ 4, and satisfies Eiμ,5 = O≺(M
−1/2).

Consequently, by Assumption 1, we conclude

√
M û∗G

θ,Xβ
iμ

(iμ)

(
Δ

−Xβ
iμ

(iμ) Gθ,0
(iμ)

)5

v̂ = O≺(M
−5/2).

This completes our proof. �
Armed with the above lemma, we proceed to the proof of Lemma A.3.

Proof of Lemma A.3. We claim that, for β = 0, 1, any θ ∈ [0, 1] and some small

constant ε > 0, the following holds∣∣∣∣EF (Xθ,Xβ
iμ

(iμ)

)
− EF

(
Xθ,0

(iμ)

)
− J

∣∣∣∣ ≤ M−5/2+ε, (C.14)

where J only depends on Xθ,0
(iμ), sk, k = 2, 4, defined in (C.8) and the moments of Xβ

iμ up

to order of four. (C.14) implies Lemma A.3. In fact, since sk, k = 2, 4, are independent

of β = 0, 1, by (3.33) and (C.14), we readily obtain that∣∣∣∣EF (Xθ,X1
iμ

(iμ)

)
− EF

(
X

θ,X0
iμ

(iμ)

)∣∣∣∣ ≤ M−5/2+ε.

This completes the proof of Lemma A.3.

The following arguments now lead to the proof of (C.14). These arguments are similar

to those in Proposition 5.16 of [45] utilizing Lemma C.1 and we only point out the main

differences. Denote γ = (γ1, · · · , γr) such that

γi = J0,i +

4∑
k=1

M−k/2Jk,i +O≺(M
−5/2), (C.15)

where this represents the term in Lemma C.1 applied to q̂i, p̂i, zi and Xθ,0
(iμ). Applying

a fifth order Taylor expansion to F defined in (A.11), using the conventions (A.1) and

(A.2), we have that for β = 0, 1,

F

(
X

θ,Xβ
iμ

(iμ)

)
= Φ

(
Z1

(
Xθ,0

(iμ)

)
+ γ1, · · · , Zr

(
Xθ,0

(iμ)

)
+ γr

)

= F
(
Xθ,0

(iμ)

)
+

4∑
k=1

∑
|α|=k

∂αΦ
(
Z1

(
Xθ,0

(iμ)

)
, · · · , Zr

(
Xθ,0

(iμ)

))
α!

γα

+
∑
|α|=5

∂αΦ
(
Z1

(
Xθ,0

(iμ) + hγ1

)
, · · · , Zr

(
Xθ,0

(iμ) + hγr

))
α!

γα,

for some constant 0 ≤ h ≤ 1. Here α ∈ Rm contains nonnegative integers. We first

handle the error term when |α| = 5. Recall the definitions of J0 and Jk in Lemma C.1.
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We readily conclude that for all 1 ≤ i ≤ r

J0,i = O≺(M
−1/2), Jk,i = O≺(1).

Consequently, according to (C.15), we find that

∑
|α|=5

∂αΦ
(
Z1

(
Xθ,0

(iμ) + hγ1

)
, · · · , Zr

(
Xθ,0

(iμ) + hγr

))
α!

γα = O≺(M
−5/2).

Next, we can set

J :=

4∑
k=1

∑
|α|=k

∂αΦ
(
Z1

(
Xθ,0

(iμ)

)
, · · · , Zr

(
Xθ,0

(iμ)

))
α!

γ̂α,

where γ̂ = (γ̂1, · · · , γ̂r) and

γ̂i = J0,i +

4∑
k=1

M−k/2Jk,i, 1 ≤ i ≤ r.

It is clear that J only depends on Xθ,0
(iμ), sk, k = 2, 4, defined in (C.8) and the moments

of Xβ
iμ up to order of four. Moreover, by (C.15), we conclude that

4∑
k=1

∑
|α|=k

∂αΦ
(
Z1

(
Xθ,0

(iμ)

)
, · · · , Zr

(
Xθ,0

(iμ)

))
α!

γα = J +O≺(M
−5/2).

This concludes the proof of (C.14) and hence Lemma A.3. �

Appendix D. Some extra lemmas.

D.1. Some technical lemmas. In this subsection, we prove some lemmas. These lem-

mas provide key connections between the VESDs of the spiked and non-spiked sample

covariance matrices.

Lemma D.1. Let Vr be the collection of the first r spiked eigenvectors of Σ and D =

diag{d1, · · · , dr}. We have that

Σ
−1/2
0 Σ1/2G̃1(z)Σ

1/2Σ
−1/2
0

= −zG1(z)Vr

(
D−1 + 1 + zV∗

rG1(z)Vr

)−1
V∗

rG1(z) +G1(z). (D.1)

Proof. Note that

Σ
−1/2
0 Σ1/2G̃1(z)Σ

1/2Σ
−1/2
0 = Σ

−1/2
0

(
XX� − zΣ−1

)−1
Σ

−1/2
0

=
(
W0 − z + z − zΣ

1/2
0 Σ−1Σ

1/2
0

)−1

=
(
[G1(z)]

−1 + zVrD(1 +D)−1V∗
r

)−1
. (D.2)

Licensed to Univ of Calif, Davis. Prepared on Fri Apr  1 18:55:40 EDT 2022 for download from IP 168.150.85.218.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 151

Using the Woodbury’s identity

(A+ SBT )−1 = A−1 −A−1S(B−1 + TA−1S)−1TA−1, (D.3)

we have that (
[G1(z)]

−1 + zVrD(1 +D)−1V∗
r

)−1

= G1(z)− zG1(z)Vr

(
D−1 + 1 + zV∗

rG1(z)Vr

)−1
V∗

rG1(z).

This completes our proof. �
The second lemma provides the connection of the VESDs of the right singular vectors

of the spiked and non-spiked covariance matrices.

Lemma D.2. For any deterministic vector u ∈ RM , denote ũ ∈ RN+M as the natural

embedding of u such that

ũ =

(
0

u

)
. (D.4)

Moreover, denote V̂r ∈ R(N+M)×r as the natural embedding of Vr such that

V̂r =

(
Vr

0.

)
. (D.5)

Then we have that

u∗G̃2u = u∗G2(z)u− zũ∗G(z)V̂r

(
D−1 + 1 + zV̂∗

rG(z)V̂r

)−1

V̂∗
rG(z)ũ.

Proof. Recall (6.3) and (6.4). We define the analogous quantities for the spiked model

as

H̃ ≡ H̃(z,X) :=
√
z

(
0 Σ1/2X

X∗Σ1/2 0

)
,

and G̃(z) = (H̃ − z)−1. Denote Σ̂0 ∈ RN+M as

Σ̂0 :=

(
Σ

1/2
0 0

0 I

)
.

Similarly, we can define Σ̂. With a discussion similar to (D.2), we find that

Σ̂−1
0 Σ̂G̃Σ̂Σ̂−1

0 =
(
[G(z)]−1 + zV̂rD(1 +D)−1V̂∗

r

)−1

.

Then by the Woodbury’s identity (D.3), we have that

Σ̂−1
0 Σ̂G̃Σ̂Σ̂−1

0 = G(z)− zG(z)V̂r

(
D−1 + 1 + zV̂∗

rG(z)V̂r

)−1

V̂∗
rG(z). (D.6)

Recall (6.4). Similar expression holds for G̃. We have that

u∗G̃2(z)u = ũ∗G̃ũ.

Moreover, by (D.6), we have

ũ∗G̃ũ = u∗G2(z)u− zũ∗G(z)V̂r

(
D−1 + 1 + zV̂∗

rG(z)V̂r

)−1

V̂∗
rG(z)ũ.

This completes our proof. �
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D.2. Some auxiliary lemmas. In this subsection, we collect some auxiliary lemmas.

Lemma D.3. Suppose Γ is a curve of length one with infinitely differentiable arc length

parameterization � : [0, 1] → Γ such that �(0) < �(1/2). Given some large integer m,

denote tj = (2j + 1)/2m, j = 0, 1, 2, · · · ,m with the convention sm = s0. Then for every

D > 0, there exists some CD ≡ CD(Γ) > 0, such that∣∣∣∣∣∣
∮
Γ

f(z)dz −
m−1∑
j=0

f(zj)wj

∣∣∣∣∣∣ ≤ CD‖f (D)‖∞m−D,

where zj and wj , j = 0, 1, 2, · · · ,m, are defined as

zj = �(sj), wj =
�′(sj)

m
. (D.7)

Proof. The proofs follows from a standard approximation argument using the

Euler-Maclaurin formula. For example, see the arguments above the proof of Theorem

5.11 in [45]. �

Lemma D.4. Denote the standard Marchenko-Pastur law [41] by μMP with parameter c,

i.e.,

dμMP(x) =
1

2πc

√
[(x− γ−)(γ+ − x)]+

x2
dx+ (1− c

−1)+δ0(dx), where γ± = (1±
√
c)2,

(D.8)

where [·]+ gives the positive part of (·). Suppose the spectrum of Σ0 is given by the

typical locations of μMP: ∫ γ+

σi

dμMP(x) =
i− 1/2

N
, 1 ≤ i ≤ N.

Set α2 = c−1 and assume that α1, α2 > 1, and c−1
N → α1. Let ρ(λ) be the asymptotic

density function of the ESD of W0 defined in (2.8). Then

ρ(λ) =

√
3

6π21/3λ

(
3

√
9α1(1 + α1 + α2)(λ− ξ0) + 6

√
3α3

1(λ− λ−)(λ+,2 − λ)(λ− λ+,1)

− 3

√
9α1(1 + α1 + α2)(λ− ξ0)− 6

√
3α3

1(λ− λ−)(λ+,2 − λ)(λ− λ+,1)

)
1

(λ ∈ [λ+,1, λ+,2]) ,

where ξ0 ≡ ξ0(α1, α2), λ− ≡ λ−(α1, α2) and λ+,k ≡ λ+,k(α1, α2), k = 1, 2, can be cal-

culated explicitly and defined in [23]. As a special case, if α1 = α2 = α, we have that

λ+,k = λ+, k = 1, 2, and

λ± =
−1 + 20α+ 8α2 ± (1 + 8α)3/2

8α2
, ξ0 =

2(α− 1)3

9α(1 + 2α)
.

Proof. See [23, Section 4.2]. �
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