QUARTERLY OF APPLIED MATHEMATICS
VOLUME LXXX, NUMBER 1

MARCH 2022, PAGES 99-155
https://doi.org/10.1090/qam/1605

Article electronically published on November 19, 2021

THE CONJUGATE GRADIENT ALGORITHM
ON A GENERAL CLASS OF SPIKED COVARIANCE MATRICES

By

XIUCAI DING (Department of Statistics, University of California Davis, Davis, CA 95616)
AND

THOMAS TROGDON (Department of Applied Mathematics, University of Washington,
Seattle, WA 98195-3925)

Abstract. We consider the conjugate gradient algorithm applied to a general class
of spiked sample covariance matrices. The main result of the paper is that the norms
of the error and residual vectors at any finite step concentrate on deterministic values
determined by orthogonal polynomials with respect to a deformed Marchenko-Pastur
law. The first-order limits and fluctuations are shown to be universal. Additionally, for
the case where the bulk eigenvalues lie in a single interval we show a stronger universality
result in that the asymptotic rate of convergence of the conjugate gradient algorithm
only depends on the support of the bulk, provided the spikes are well-separated from
the bulk. In particular, this shows that the classical condition number bound for the
conjugate gradient algorithm is pessimistic for spiked matrices.

1. Introduction. Large-dimensional covariance matrices are fundamental objects
in high-dimensional statistics and applied mathematics. For example, many statisti-
cal methodologies, including principal component analysis (PCA), clustering analysis,
and regression analysis, require the knowledge of the covariance structure. Moreover, in
applied mathematics, especially manifold learning, the kernel affinity matrix and graph
Laplacian matrix are closely related to covariance matrices. We refer the readers to
[19,261[32,[61] for more details.
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Sample covariance matrices play important roles in estimating and inferring popu-
lation covariance matrices. Even though high-dimensional sample covariance matrices
themselves cannot be applied directly, one can construct consistent estimators and use-
ful statistics for inference based on them. In particular, researchers are often interested
in understanding the asymptotics of the following random matrix

W =3xY2xx*%n1/2 (1.1)

where 3 is the population covariance matrix and X is an N x M random matrix with
centered independent and identically distributed (iid) entries. In the literature, a popular,
and quite delicate, model is the spiked covariance matrix model [16,[35], where a finite
number of spikes (i.e., eigenvalues detached from the bulk of the spectrum) are added to
the spectrum of X; for a precise definition, we refer the readers to Section Significant
efforts have been made to understand the statistical properties of W in ([II)) in the high-
dimensional setting when NN is comparably large to M. For a comprehensive review, we
refer the readers to [3}6}16}3546]47,6GI].

Despite the wide applications of sample covariance matrices within data science, most
of the existing literature focuses on the study of the asymptotic statistical properties
of W, and less is known on the algorithmic properties. More specifically, substantially
less is known about how algorithms from numerical linear algebra and optimization act
on sample covariance matrices. For the numerical solution of linear systems involving
W, when both N and M are large, Gaussian elimination is computationally expensive,
and supposing exact arithmetic, the accuracy of the result may be entirely unnecessary.
Instead, iterative methods are often preferred.

Before proceeding to our main focus, we pause to discuss some of the history of the
analysis of algorithms on random matrices. The first such analysis that we are aware
of was that of Goldstine and von Neumann [29] when they studied the conditioning of
random matrices (see [55] and [52] for more recent developments). Subsequently, many
authors (see, for example, [22[24|511[57]) analyzed the way in which classical factorization
algorithms act on Gaussian matrices. The analysis of fundamentally iterative methods
applied to random matrices began with the work of Pfrang et al. [49] and continued
in [I5]. Rigorous results were first obtained in [IT,[12] for eigenvalue algorithms. For
example, in [II], the authors analyzed the numerical performance of power iteration
methods applied to calculate the largest eigenvalue of W when ¥ = I. They prove that
the halting time, i.e., the minimal number of iterations before the power method satisfies
a given stopping rule, is universal and its distributional limit can be expressed in terms
of functionals of the limiting distribution of the largest eigenvalues of W. The iteration
errors and residuals can be analyzed similarly.

The main focus of the current work is towards the understanding of the solution of

Wx =b, (1.2)

where W is given in (II]). In the applied mathematics literature, there exist many useful
iterative algorithms for positive definite matrices (of which ([I]) is one such random
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THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 101

model). One such algorithm is the conjugate gradient algorithm (CGA, cf. Algorithm [I]
below), which is one of the most important Krylov subspace methods [54]. The CGA
[33] is an iterative method designed to solve ([.2)). We highlight that when b is random,
solving (L2) can be related to high-dimensional regression via the normal equations
[32] Section 2.3]. More specifically, consider @ = (a1, -+ ,ap), and set

where ¢;, 1 <i < M, are iid random noise and y; = £*/2X; € RY. Here X; refers to the
ith column of X. Then to obtain the ordinary least square estimator of x is equivalent
to solving the normal equations

Wx =Ya,

where Y collects the samples y; and W is the design matrix as in (IT)). In [13] the authors
presented rigorous results for the halting time of the CGA for solving (LZ), when ¥ =1
and X has iid centered Gaussian entries. The main result concerns the first-order limit
of the norms of the error and residual vectors as N — oo. This analysis was expanded
in [45], removing the Gaussian assumption, and providing the same results, i.e., proving
universality, and determining the structure of the fluctuations. These probabilistic results
have strong connection to the deterministic results of [4]. We remark that since the
methods employed in both [I3L45] rely on the Golub-Kahan bidiagonalization procedure
as given in [22], they cannot be applied to W in ([LI]) when ¥ is not a scalar multiple of
the identity matrix.

Motivated by the above applications and challenges, in the current paper, we develop
a new strategy to analyze the first-order limits (including rates) of the residuals and
errors in the CGA when W is of the form (I.T]); see Figure [l for an illustration. By using
deterministic formulas (cf. Proposition and Lemma [B]), the residuals and errors
of the CGA can be characterized using the entries of the Cholesky factorization of an
associated semi-infinite Jacobi matrix (cf. (BI7)). It turns out that this Jacobi matrix
coincides with the one produced from the well-known Lanczos iteration (cf. Algorithm
). Moreover, we point out that the entries of the Jacobi matrix can be described as the
three-term recurrence coefficients of the orthogonal polynomials generated by a spectral
measure which is the eigenvector empirical spectral distribution (VESD)[I] (cf. (52)),
which played a crucial role in [I0HI2]/45].

REMARK 1.1. The classical Chebyshev error bound for the CGA applied to Wx = b
[33] is

Vv )\max —V )\min g Hm _r ||
Vv )\max + Vv )\min o

where || - ||w is the W-norm; see ([2I)). The results of [T0,45] give that as N — oo

|z —zkllw < 2(

V )\max Y )\min

k

e — @llw = (
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FiG. 1. Top row: A demonstration of the results in [I3|45]. Shaded
region consists of sampling 5000 matrices from the Wishart distri-
bution (with ¥ = I) and plotting the 2-norm of the residual versus
k, the number of iterations in the CGA. The dashed red line gives
the asymptotic prediction from [I3}[45]. The blue histogram tallies
the relative frequency of the halting time with € = 104, i.e., the
statistics of the number of iterations required to realize a residual
with norm less than e. Bottom row: The same calculations as the
top row but with ©1/2 = diag(4,4,4,3.5,3.5,1,1,...,1). While the
spikes induce a transient disturbance to the iteration, the asymptotic
rate of convergence, for k in a scaling region, is the same as when
3 = I. The dashed red curve in the second row is the same as in the
first, for comparison.

when ¥ = I in ([I) demonstrating that the classical bound is quite good. But this is
no longer true in the presence of spikes as in the bottom row of Figure [Il The classical
bound gives

e = llw = 2(0.8)" |« — @ollw,

since Amin(W) = (1 — \/en)? 4+ 0(1) and Apax(W) = 16.32 + 0(1) (see Lemma [63), all as
N — oco. Our estimates, see Theorem [3.6] give a better estimate

|z — xk||lw = (0.5477 .. )||z — zp_1||w + o(1),
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THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 103

for sufficiently large k, i.e., after a transient period induced by the presence of spikes.
This should also be compared with the discussion in [40, Section 5.6.4] where it is shown
how the classical error bounds can be applied in the presence of outliers.

When ¥ has no spikes, the concentration and convergence of the VESD can be estab-
lished using the so-called anisotropic local laws [37] from random matrix theory. Based
on those results, we establish the concentration of the VESD for the spiked model (cf.
Lemma [G4]). Finally, as is well known and as was observed in [45], since orthogonal
polynomials can be fully constructed by their associated Hankel moment matrix of the
VESD (cf. Section Bl and [§] for more detail), we can obtain our main results by only
analyzing the convergence of the moments of the VESD.

We emphasize that the aforementioned strategy can handle general spiked covariance
matrices W in ([[I]). However, when ¥ in (II]) does not contain spikes or when b satisfies
certain conditions (cf. (3:20])), we simplify the procedure and obtain simple asymptotic
expressions: (1) The simplification first utilizes the asymptotic relation of the three-term
recurrence coefficients that is most simply derived using the Riemann-Hilbert approach
as in [39]. It turns out that asymptotically, the associated Jacobi semi-infinite matrix
has a very simple structure that can be described by the edges of the limiting VESD (cf.
Theorem [B.2)). (2) Then a straightforward calculation for the Cholesky factorization will
result in simple expressions (cf. Theorem [B3]). (3) The edges of the limiting VESD can
be calculated using the critical points of an analytic function as in ([B3]).

Finally, we mention that the main focus of this manuscript is to develop a new strategy
and novel formulas for the first order limits and rates of the CGA. However, we also
establish the second order universality on the distributions of the residuals and errors.
More specifically, we show that they only depend on the first four moments of the entries
of X in (). The universality indicates that we can construct useful statistics based on
the algorithms to infer the population covariance matrix ¥ in (LI)). This opens a new
door for high-dimensional statistical inference; see Remark [3.12] for more details. To have
a complete description of the performance of the CGA applied to (I.II), we still need to
consider the second order asymptotics, i.e. the limiting distribution of the residuals and
errors. This will be included in our future works; for example, see [1§].

This paper is organized as follows. In Section 2] we introduce the conjugate gradient
algorithm and the general spiked covariance matrix model. In Section [3 we state our
main results. In Section @l we provide some examples and conduct some numerical
simulations for illustration. In Section[] we provide the theory of orthogonal polynomials
and prove some essential asymptotics of the three-term recurrence relations. In Section
[6l we provide and prove the key ingredients regarding eigenvector empirical spectral
distribution. The main technical proofs are summarized in Section [l Some formulas,
additional technical proofs and auxiliary lemmas are collected in Appendices [A] Bl
and
Conventions. We denote by {fx}r>1 C RY the standard Euclidean basis of RY. We
denote C4 :={z = E+in € C: n > 0}. The fundamental large parameter is M and we
always assume that N is comparable to and depends on M. All quantities that are not
explicitly constant may depend on M, and we usually omit M from our notations. We
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104 XIUCAI DING aNnD THOMAS TROGDON

use C' to denote a generic large positive constant, whose value may change from one line
to the next. Similarly, we use €, 7, ¢, etc. to denote generic small positive constants.
If a constant depends on a quantity a, we use C'(a) or C, to indicate this dependence.
For two quantities ay and by depending on N, the notation ay = O(by) means that
lan| < Clbn| for some constant C' > 0, and ay = o(by) means that |an| < en|bn| for
some positive sequence cy | 0 as N — oo. We use capital letters to refer to matrices and
boldface to refer to vectors. Lower-case letter will be used to refer to individual entries
of a matrix, for example, x;; denotes the (4,7) entry of a matrix X. We use X;.; ¢x
to denote the subblock of a matrix X consisting of all entries in rows ¢ through j and
columns £ through k. If either j or k are absent then this notation refers to all entries in
rows > 4 or columns > £, respectively.

Disclaimer. All of our results concern running algorithms with exact arithmetic. It
is well-known that the Lanczos iteration and the CGA suffer from instabilities due to
finite-precision arithmetic [3I,[42]. So, in the current paper, to simulate full precision
arithmetic, we, when necessary, use an appropriately modified Householder reflection-
based tridiagonalization because of its superior numerical stability. In general, we notice
that for spiked random matrices, the Lanczos iteration, and hence the CGA, loses accu-
racy. When no spikes are present and there is only bulk spectrum, the Lanczos iteration
closely tracks the Householder-based algorithm.

2. The conjugate gradient algorithm and the model. This section is devoted
to introducing the necessary background. In Section 2], the CGA is stated and its
connection with Lanczos iteration is discussed. In Section 22 we introduce the spiked
covariance matrix model that will be used throughout the current paper.

2.1. The conjugate gradient algorithm and Lanczos iteration. In this subsection, we
provide the background on the CGA. The actual CGA is given by Algorithm [[I The
CGA can also be characterized in its variational form. Define the Krylov space

K = span {b7 wb,- - 7Wk_lb} . (2.1)

Starting with xg = 0, the kth iterate, @), of the CGA satisfies (see [30, Chapter 11] or
[54, Lecture 38])

xp = argming ., [z — yllw. (2.2)

Here we use the notation that for any vector z and positive definite matrix A,

Hz||§l = 2%Az.
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Algorithm 1: Conjugate Gradient Algorithm (CGA) ‘

(1) x¢ is the initial guess.
(2) Set ro =b— Wz, po = 10.
(3) For k=1,2,...,n, n < N is the maximum steps of iterations
Tk 1Tk—1
T271ka—1.
(b) Set x, = xp_1 + ap—1Pk—1-
(C) Set T =Tk—1 — ak,lek,l.
)
)

(a) Compute ar_1 =

TE Tk
(d) Compute b1 = SRS L]

ThoiTh-1
(e) Set p = rr — brp_1Pr—1-

The primary goal of the analysis of the CGA is to analyze the residual and error

vectors, denoted by 7, (W, b) and ey (W, b), respectively, and defined as

ri(W,b) :=b— Way, er(W,b) :=x — x.

It can be seen from (2:2)) that the Krylov subspace plays a central role in the analysis
of the CGA. It is well-known that the Lanczos iteration [54, Lecture 36] can be used to
produce an orthonormal basis for the Krylov subspace. As a result, the CGA is closely
related to Lanczos iteration [30, Section 11.3.5]. In fact, as discussed in Lemma [B.]
(reproduced from [45] for the reader’s convenience), the residuals and errors can be rep-
resented based on the outputs of Lanczos iteration. The Lanczos iteration can be applied

to any symmetric or Hermitian matrix W and it takes the following form:

’ Algorithm 2: Lanczos Iteration

(1) g is the initial vector. Suppose ||q1]|3 = g;q1 = 1.
(2) Set b,1 = ]., qo = 0.
(3) For k=1,2,...,n,n < N.
(a) Compute ar—1 = (Waqy — bx—2qr—1)"qx-
(b) Set vp = War — ar—1qr — bp—2qr—1.
(c) Compute by_1 = |lvg]l2 and if by_1 # 0, set qri1 = v /bip—1.
(4) Return ag,...,an—1,bg,..,bp_2.

The Lanczos algorithm at step & < N produces a Jacobi matrix T, and vectors

qi,...,qx, denoted as
ap bo

b
Q= @ - @], Th=T(W,q)=|" “

such that

WQk = QuTr + be—1gk+1 Fr -
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We use the notation T' = T(W,q1) = T, (W, q1) for the matrix produced when the
Lanczos iteration runs for its maximum of n steps. We point out that the columns of
Q. provide an orthonormal basis for the Krylov subspace span{q;, Wq,---, W* 1q;}
[54, Lecture 36].

REMARK 2.1. In this paper, we focus on the analysis of the CGA. However, the
arguments can be easily generalized to many other numerical algorithms involving large
dimensional random matrices. For example, in Section 3.6, we provide the results for
another iteration algorithm MINRES. Additionally, our results provide the existence of
first-order limits for the algorithms discussed in [44].

2.2. General spiked covariance matriz model. In this paper, we are interested in the
setting when W is random and the high dimensional scenario when M is comparably
large to N such that for some small constant 0 < 7 < 1,

N
T<cen = Y <7t (2.4)

In this subsection, we introduce the model for W as in (III]) . Moreover, we assume
that X = (z;;) is an N x M random matrix whose entries x;;,1 <i < N,1 < j < M,
are real or random variables satisfying

1
Ez;; =0, Ea}; = 7 (2.5)

For definiteness, in this paper, we focus on the real case, i.e., the random variables z;; are
real. However, we remark that our proof can be applied to the complex case after minor
modifications if we assume in addition that Rez;; and Imx;; are independent centered
random variables with variance (2M)~'. We also assume that the random variables z;;
have arbitrarily high moments, in the sense that for any fixed k € N, there is a constant

C. > 0 such that

VWE < o2, (2.6)

max (Elz;;|"
i,
The assumption that (ZG) holds for all & € N may be easily relaxed. For instance, it
is easy to check that our results and their proofs remain valid, after minor adjustments
using some suitable truncation and comparison techniques, if we only require that (2.6
holds for all k¥ < C for some finite constant C. As this is not the main focus of our
current paper, we do not pursue such generalizations.
For the population covariance matrix, we consider the spiked covariance matrix model
following the setting of [16]. Let X be a spiked population covariance matrix that admits
the following spectral decomposition

N
Y= Zgivz"vf’ o; = (14 d;)oi, (2.7)
=1

where 01 > 09 > -+ > on > 0 and for some fixed integer r > 0,
d; >0, i<r;d; =0, i>r.

The first r eigenvalues of ¥ are the spikes which may result in outlying eigenvalues of
W. Throughout the paper, we will call (L)) the spiked covariance matriz model. Except
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THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 107

for a few outliers, the limiting empirical spectral distribution of W coincides with the
associated non-spiked covariance matriz model, which is defined as follows

Wo = S0/ X X*5)/?, (2.8)

where Y has the following spectral decomposition

N
Eo = ZO’{U{U;‘. (29)
i=1

Note that g is the non-spiked version of ¥ in (Z7) with » = 0.

REMARK 2.2. We distinguish Y from ¥ because if a limit is desired for certain spectral
statistics of (1), then Xy will require some additional assumptions to be placed on it.
Specifically, one might want to take the o;’s to be the quantiles of some sufficiently
regular distribution. This aspect is discussed further in (3.11)) and (BI12]).

When o, = 1,1 < ¢ < N, it is well-known that the eigenvalues of W, obey the
Marchenko-Pastur (MP) law [41I] and for general X, they are governed by the deformed
Marchenko-Pastur law [137]. When r > 0 and d;,7 < r, in (Z7]) are above some critical
values, the corresponding eigenvalues of W will detach from the bulk (or the support of
the deformed MP law) and become outliers; see Lemma [6.3] for a more precise statement.

In this paper, we consider both the non-spiked and spiked covariance matrix models.
As we will see later, the discussion of the spiked model W is based on that of the non-
spiked model W.

REMARK 2.3. In [45], the authors studied the CGA for the non-spiked model under a
specific setting when X = I in (29). Their arguments are based on (23), which implies
that

QW Qr = Ty. (2.10)
Since @y, is orthonormal, when X is invariant (e.g. X is a Gaussian matrix), the spectral
distribution of W can be studied via those of T. However, when ¥y # I, even when X
is Gaussian, this method fails.

While we focus on the covariance type random matrix model ([T we note that our
framework and results can be generalized to other types of random matrix models, for
example, the separable covariance matrix model in [2I] when W = AY/2XBX*A'/? for
two positive definite matrices A and B. We will consider such generalizations in the
future works.

3. Main results. In this section, we state our main results. We first provide an
overview of this section. Section B.1]is devoted to introducing some notations and the
technical assumptions. In Section[3.2] we analyze the Lanczos algorithm. In Section B.3]
we conduct the error analysis for the CGA when b is deterministic. First, we propose a
general algorithm, Estimation Algorithm[2 to calculate some essential quantities. Armed
with these quantities, we establish the first-order limits and rates for norms of e; and
7. Second, under additional regularity assumptions, we can push the calculation further
and obtain simple formulas; see, for example, Theorem [3.3]

In Section [3.4] we give results when b is random such that the linear system becomes
the normal equations YY*z = Y*a,Y = £'/2X for the spiked model and Y = E(l)/QX for
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the non-spiked model. It turns out that the residuals and errors for the normal equation
have the same asymptotics regardless of whether ¥ is spiked or not; see Theorem
for more details. In Section B.5] we study the second-order fluctuations and prove that
the results are universal — they depend only on the first four moments of x;;. Finally,
in Section B.6] we discuss implications of the results and apply the results to another
iterative Krylov subspace algorithm, the minimal residual method (MINRES) [43], to
illustrate the generality of our proposed error analysis framework.

3.1. Notations and assumptions. We provide some necessary notation and assump-
tions in this subsection. For any N x N Hermitian matrix Z, denote its empirical spectral
distribution (ESD) as

1 N
ﬂZ:N;(SM(Z)' (3.1)

Denote by m,,,(z) the Stieltjes transform of nz, i.e.,

muz(z) :/ ! MZ(dx)v z € (C-i-'

r—z

We then denote the companion of Wy in (2.8)) as
Wo = X*3pX.

Note that Wy and W, have the same non-zero eigenvalues.

It is well known that [I], in general, the asymptotic density function of the ESD of
W, follows the deformed Marchenko—Pastur law, denoted as p. The deformed MP law
is best characterized by its Stieltjes transform. Let z € C,; the Stieltjes transform
m(z) = m,(z) of g can be characterized as the unique solution of the following equation
[37, Lemma 2.2

z = f(m), Imm(z) >0, (3.2)
where f(z) is defined as
N
f(@) = kZ - +0k (3.3)

Based on g, we denote the density function op as
ob(x) = %b*EO [I +2Rem(z +i01) o + |m(z + 10+)|223]_1 b. (3.4)

Moreover, we define the moments of gp as

Mgy = / )\kgb(A)d)\ (35)
R
For any integer n < N, denote the Hankel moment matrix of gp by
Dn = det Mn7 (Mn)zj = mi+j72,b> n 2 07 1 S Z?] S n—+ 17 D*l = 17 (36)
and, since gp does not vanish identically if b # 0, define the associated quantities

D, _ det M,
gn = —1 Sn = —67 (3.7)

Dn ’ vV DTLD'IL—I ’
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THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 109
where M,, is the matrix formed by removing the last row and second-to-last column of
M,,. Similarly, we define the relevant quantities for the spiked model. Specifically, we set

Dn = det Mn, (Mn)” = ‘[:(v17;+j,2’b, 1 < Z,j <n+ 1, (38)

where my p is defined by

N 2

IT‘lk)b = (m;m,i + l(i < ’I“)

1
i=1 1+d;
with the convention that

b; = (b,v;), 1 <i< N. (3.10)
We analogously define ﬁn, Zn and §,, using my p.

For the ease of the statement of our results, we use the following notion of stochastic
domination which provides precise meaning to a statement of the form “zy is bounded
by yn up to a small power of N with high probability”.

DEFINITION 1.

(i) Let

¢ = (§<N>(u) 'NeNuc U<N>) , (= (C(N)(u) 'NeNuc U(N>)

be two families of nonnegative random variables defined on the same probability space,
where U) is a possibly n-dependent parameter set. We say ¢ is stochastically dominated
by ¢, uniformly in w, if for any fixed (small) € > 0 and (large) D > 0,
sup P (€M () > N¢N (w)) <nP
ueU )
for large enough N > Ny(e, D), and we shall use the notation £ < ¢. Throughout this
paper, the stochastic domination will always be uniform in all parameters that are not
explicitly fixed (such as matrix indices, and z that takes values in some compact set).
Note that Ny(e, D) may depend on quantities that are explicitly constant, such as 7 in
Assumption [Il If for some complex family ¢ we have || < ¢, then we will also write
§ =< Cor&=0<(0).
(ii) We say an event = holds with high probability if for any constant D > 0, P(Z) >
1 — N—P for sufficiently large N.
Then we summarize the main technical assumptions which will be used throughout
this paper.
AssuMPTION 1. We assume that the following assumptions hold:
(1) On dimensionality. We consider the high-dimensional regime and assume that
24) holds.
(2) On X in ([LI). For X = (z;;), we assume that x;;,1 <4 < N,1 <j < M, are
iid real random variables such that (23] and (2.6]) hold.
(3) On Xy in ([29). We assume that for some small constant 0 < 7, < 1, the
following holds

n<oy<oy < <oy <7 (3.11)

For definiteness, we also assume that ¢ is supported on a single bulk component
such that supp ¢ = [y—,v+] and that there exists 72 > 0 such that, for a choice
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of the sign +, w(z) := o(z)(v4 — )~ ?(z — v_)*'/? and 1/w(x) have analytic
extensions to {z € C: minge[y, 4_]|T — 2| < 72}. Moreover, we assume that

V4 >, lort +m(ye)| > T, (3.12)
where, as above, m(-) is the Stieltjes transform of o.

(4) On the spikes in (27)). For some fixed integer r and ¢ < r, we assume that
there exists some constant w such that

Gi>— +o@, i< (3.13)

m(v+)

We also assume that 0;,1 < ¢ < r, are bounded.

The assumption (1) states that we consider the high dimensional regime which is
commonly used in the random matrix theory literature. The assumption (2) imposes
some conditions for the random matrix X. We refer the readers to the discussion below
([28) for more details. The assumption (3) is relatively standard in random matrix theory
literature. These conditions rule out the existence of spikes in Y so that all the possible
spikes are generated by those of 3, and also guarantee that ¢ has a regular square root
behavior near the edges v+. These conditions are satisfied by many commonly used
examples. We refer the readers to [37, Definition 2.7] for more details and Section [l for
examples. Moreover, we mention that v4 can be fully calculated via f(x) defined in ([B3)
as follows. Let _ < x4 be the critical points of f(z). Then we have that v1 = f(z4).

Finally, assumption (4) imposes the condition that 7;,1 < i < r, are the spikes (cf.
BI3)) which are well-separated from the upper edge with O(1) distance. We remark
that we can replace @ with O(M~1/3) and allow &; = 5;(M) to diverge with M. Since
these technical generalizations are not the main focus of the current paper, we do not
pursue these generalizations here and leave it as future work. For more details on this
aspect, we refer the readers to [3L6L16]21].

REMARK 3.1. In this paper, for definiteness and convenience of statement, we assume
that the support of ¢ is a single interval. On one hand, a general class of ¥ satisfies
this requirement. For example, this condition will be satisfied when the limiting spectral
distribution of ¥y is supported on some interval [a, b] C (0,00) and its density function is
bounded from both above and below; see [37, Example 2.9] or [25, Corollary 3] for more
details. One the other hand, this constraint is expected to be removed in the future. In
fact, as stated in [20] Lemma 2.4], in general, the support of ¢ is a union of connected
components on Ry, ie., suppo = U{_,[a2k, a2x—1] C (0,00), where ¢ depends on the
ESD of Xy. As we will see later (cf. Section []), our arguments rely on the asymptotics
of three-term recurrence relation of the orthogonal polynomials associated with o. These
asymptotic formulae can only be established for ¢ supported on a single interval (see
[39]) and do not hold more generally. The generalization to multiple bulk components
requires a substantial treatment using the Riemann-Hilbert approach [8]9141[38]48]62],
which is out of the scope of the current paper. We will pursue this direction in the future;
for example see [18].
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3.2. Lanczos for high-dimensional matrices: Deterministic b. We begin with our most
critical result concerning the leading-order behavior of the matrix that results from the
Lanczos iteration. The results are summarized in Estimation Algorithm [I] and Theorem

BT

THEOREM 3.1. Fix some small constant 7; > 0. and suppose Assumption [[l holds, v_ >

71, N < M, and ||b||]s = 1. Let T, (W,b) and Tj denote the upper-left k x k subblocks

the matrices calculated from Steps (1) and (3) of Estimation Algorithm [ respectively.
Then there exists some constant C; ;, > 0 such that

T (W, b) = Tr. + O (CLpM~Y?), (3.14)
where the approximation is in the sense of operator norm. Additionally,
bW lb=m+ O, (M~/?),

where m = m_, 3 for the non-spiked model and m = m_j p for the spiked model.

Estimation Algorithm 1: Analysis of the Lanczos iteration ‘

(1) Suppose that the Lanczos iteration Algorithm [ applied to the pair (W, b) runs
until step n < N in the sense that b,_1 = 0. Set a = 1,by = 0 for &k > n. Let
T (W, b) denote the associated Jacobi matrix.
(2) (a) If W is a spiked model as in ([I]), construct the sequence of a; and by
following

U Sk Sk+1

by = ——, . k=0,1,.... (3.15)
i1 b Lleta
(b) Otherwise, if W = W, is a non-spiked model as in (28], construct the

sequence of a; and by following

143 Sk Skt1
b, = —, = — — , k=0,1,.... 3.16
¥ Lt T Lt (3.16)

(3) Build the Jacobi matrix
ap bo

bo ap [31
= . . 3.17
T b, ay . (3.17)

3.3. The CGA for high-dimensional linear systems: Deterministic b in (L2). In this
subsection, we provide a framework to analyze the residuals and errors of the CGA when
applied to (L2)) for some deterministic vector b for both spiked and non-spiked covariance
matrices.

The framework contains three steps. First, we build up a tridiagonal Jacobi matrix
T (cf. BIT)) utilizing the Hankel moment matrix as in ([B.6). Second, we apply the
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Jacobi matrix Cholesky factorization algorithm, Algorithm [ to obtain the Cholesky
factorization of T, denoted £ (cf. (BI8])). Third, we provide the limits and rates based
on the entries of £. We summarize the above procedure in Estimation Algorithm

‘ Estimation Algorithm 2: Error analysis of the CGA ‘
(1) Suppose that the Lanczos iteration Algorithm [2] applied to the pair (W, b) runs
until step n < N and r,, = 0. Set r, =0 for k > n.
(2) (a) If W is a spiked model as in (LI]), construct the sequence of aj, and by
following 3I%), for k =0,1,--- ,n — 1.
(b) Otherwise, if W = W) is a non-spiked model as in (28], construct the
sequence of aj and by, following (BI6I).
(3) Build the Jacobi matrix following BI7).
(4) Apply the Jacobi matrix Cholesky factorization (cf. Algorithm[B]) to 7 to obtain

Qo

Bo o
L= Bi . (3.18)

(5) Based on L from Step (4), employ Theorem B2l to obtain estimates of the errors
encountered in the CGA.

Based on Algorithm 2] we prove the first order convergence limits and rates for the
residuals and errors of the CGA in Theorem Denote

Sk = L1 kt1:- (3.19)

THEOREM 3.2. Fix some small constant 71 > 0 and suppose Assumption[holds, v_ > 7,
N < M, and ||b]l2 = 1. Let {a;} and {B;} be the outputs calculated from Step (4) of
Algorithm 2l Then we have that with g = 0, for ¥ < n, there exists some constant
Crx > 0 such that

k—1
B; _
[7xll2 = 1:[ a; T O<(CriMd 12), (3.20)
=0
Recall (B19). Moreover, for some constant C , > 0, we have that

lellw = Irkllzy/ £5 (SkSE) ' fi + O (Ce M ~1/2). (3.21)

Recall [33). Equivalently, we have

1 k—1 ¢ /82
) —1 _
I\ekll%Zm—a—(%E [T =5 +0<(Cepnr™'72), (3.22)
¢=0 j=1 J

where m = m_ p for the non-spiked model and m = m_; p for the spiked model.
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REMARK 3.2. Employing Proposition 5.1 to ([8.22)) gives the following expression

2
k=1 £ 72 k-1 k=1 ¢ p2
1 B B; 1 k-1
n-S> 5= 115 ) 2215
0 p=0j=1 "7 j=0 7 k y=0j=1 ~J+k

which is then used to derive (B2I) by computing f;(SkS;) ™! f1 using forward substitu-
tion.

REMARK 3.3. Theorem provides a first order description for the CGA applied to
the linear system with deterministic b. The assumption that b is a unit vector is just
to ease the statement of the results and can be removed by minor modification. The
constants C. ; and C, ;, crucially depend on k. As we can see in the proof of Theorem [3.2]
these constants can be trivially bounded by a*, for some constant a > 1. In this sense,
the error becomes negligible for k¥ < C'log N where C' > 0 is some universal constant.
The discussion of the optimal choices of these constants is out of the scope of the current
paper. We will pursue this direction in the future work; for example, see [18].

Theorem provides us the general error analysis for CGA with a general covariance
matrix. As we can see from Steps (1)—(3) of Algorithm [2] it requires a large amount of
non-trivial computations in order to obtain the Jacobi matrix. However, under certain
conditions of W and b, we can simplify Algorithm 2] and provide a simpler but less exact
estimate. We find closed-form estimates for {a;}, {8;}, ||rx||2 and |ex||w in the rest of
this subsection. The framework is summarized in Estimation Algorithm Bl

‘Estimation Algorithm 3: Asymptotic analysis of the CGA for general model ‘

(1) Calculate the support of g using f in (B:3). More specifically, calculate the critical
points of f as x4 and the corresponding edges v+ = f(z1).

(2) Based on (1), set
_ 0+t

T+ -
b= . 3.23
0= 10 : (3.23)

Build the Jacobi matrix 7 as in (BI7) by setting
ap=a, by =0, £ >0. (3.24)

(3) Apply Jacobi matrix Cholesky factorization (cf. Algorithm3]) to 7 obtained from
Step (2) and get the Cholesky factorization £ as in (B.18).

(4) Based on £ from Step (3), employ Theorem B3] to obtain estimates of the errors
encountered in the CGA.

Compared to Estimation Algorithm[2] the simplified algorithm, Estimation Algorithm
does not require the calculations of Hankel moment matrices and the related quantities.
Instead, it only relies on the edges of the support of the deformed MP law, which can
be easily calculated using the function in ([.3)). The calculation workload is significantly
reduced. Based on Estimation Algorithm [B] we can establish Theorem [3.3] for the non-
spiked covariance matrix or the spiked covariance matrix with certain choices of b, which
gives an asymptotic convergence rate for both the residual and error vectors.
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THEOREM 3.3. Fix some small constant 7 > 0. Suppose Assumption [I(1)—(3) holds,
v— > 11, N <M and ||b||2 = 1. Let {c;;} and {f;} be the outputs calculated from Step
(3) of Algorithm [Bl Then we have that with @y =0, for 1 < k:

(1) For some constants C,; >0, ¢ >0

i (Wo, bl VIi+ — V- 1/2 —ck
H’I"k71(W0,b)H2 \/,W+\/—+O.<(CT7 M~ )+O( )

(2) For some constants Ce; > 0, ¢ > 0

Wo, b VY V-
||ek( 05 )HW +O<(Ce’ M- 1/2)+O( —ck)
lex—1(Wo,b)llw ¥ + -
In addition, suppose Assumption [[(4) holds and suppose for each i = 1,2,...,r that
either

<b, ’Ui> =0 or ‘<b, ’Ui>| > T1- (325)

Then:

(3) For some constants C,; >0, ¢ >0

[re(W,b)l2 7+ — /= 1/2 —ck
[7r—1(W,b)l2 \/7—++\/—+O<( MY+ O(e™F).

(4) For some constants Ce > 0, ¢ >0

lex WV, 0)llw Vs = V- 12
lex—1 (W, b)llw ﬁ+r+0<(c M) +0(e ).

REMARK 3.4. In the case that b € span{vy,...,v,} the calculations can be made
more explicit in the sense that the Jacobi matrix 7 determined by W and b (BI7)) can
be written explicitly in terms of quantities used in the analysis of the CGA applied to
Wo.’IJ =b.

REMARK 3.5. The formulas in Theorem [B.3] are explicit and only need the edges of
the support of p. In fact, in many examples, the edges also have known formulas. For
example, when Xy = I, we have that 74 = (1 + \/cny)?. Moreover, when the limiting
spectral distribution of Xy follows Marchenko—Pastur law with the same parameter cy,
we have that (cf. Lemma [D.4)

—1+20cy' +8cpy® £ (1+ 8c—1)3/2

3.26
80;[2 ( )

T+ =

For more general settings, we employ f in (3:3]) to calculate the support using Newton’s
method. We refer the readers to Section Ml for more examples.

REMARK 3.6. In the statement of Theorem [3.3]the potential vanishing of r,_; appears
to be ignored. But, indeed, Theorem establishes that it does not vanish with high
probability.
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Based on the formulas in Theorems and [3.3] we can derive expressions for the
halting times of the CGA for the non-spiked model. Similar results hold for spiked
model when b satisfies (B.28]). Define two CGA halting times as

t¢(Wo, b, €) = min{k : |lex(Wo, b)||lw, < €}, t"(Wo, b, €) = min{k : ||r,(Wo, b)|2 < €}.

We summarize the results in the following theorem. Define deterministic halting times

k—1 k—1 ¢
T¢(Lye) =min{k : ex(L) <€}, er(L):= ( & 1 H 5j+k—1’

Ak
T"(L,€e) =min{k : (L) <€}, (L) := |

THEOREM 3.4. Suppose the assumptions of Theorem B3] hold. Let £ be as in (BIJ).
(1) If ri(L) # € for all k then

lim P (t"(Wo,b,e) =7"(L,€)) = 1.

M — o0

(2) If ex (L) # € for all k then

lim P (t*(Wo,b,e) =7°(L,€)) = 1.

M—o0

Since ey (L) is strictly decreasing, if ek (L) = € for some K then as M — oo

P(te(WO’b’ 6) = Te(ﬁae)) =pm + 0(1>7
P (t5(Wo, b, €) = 7°(L,€) + 1) = 1 — par + o).

We note that it is conjectured that one can take py; = % in the above theorem. This
will be established in a future work.

REMARK 3.7. Often, in our numerical experiments, the estimate in Theorem [3.3] ap-
pears to set in almost immediately in the sense that the finite-size matrix effects dominate
the deviation from the first-order limit. Thus one might expect that

k—1 B
el = TT [0+ 5|

j=0
where M, = Hf;é (1 + E;) converges rapidly, or may even be nearly one. Set J =
VI —VI=

Nar=Var and then following is a very good first approximation to the halting time

1 (W, b, €) ~ Foge — log(limg— o0 Mk)-‘ .

log J

And even dropping log limy_, . My contribution entirely often only affects the halting time
estimate by an iteration or two, or maybe not at all.
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3.4. The CGA for high-dimensional regression: Random b in (IL2)). In this subsection,
we consider the scenario for the CGA when applied to ([2)) for a specific random vector
b, which concerns the high dimensional linear regression via the normal equation. More
specifically, denote Y = Eé/ 2X or N1/2X , for some deterministic vector a € R, and

consider
YY*x=b, b=Ya. (3.27)

As we will see in Theorem [3.5], the main difference between this random scenario and
the deterministic case in Section [3.3]is that the spikes of ¥ will not affect the errors and
residuals generated by the CGA. We first propose an algorithm analogous to Algorithm
Bl Denote

my = \/% /R NeFLo(A)d, (3.28)
where we recall that o is the asymptotic density function of the deformed MP law and
1N
W= Z oy (3.29)
i=1

Similar to ([3.6]) and [B.7), we can define analogous quantities |, and s,, using mj, as in
B28). The CGA for high-dimensional linear regression is summarized in the following
algorithm.

‘ Estimation Algorithm 4: Analysis of the CGA for high-dimensional linear regression

(1) Calculate the sequence {a,} and {b,} following

ITL n n
b, = 7a7L:S__S+1-
|n+1 ln |n+1
(2) Follow Steps (3)—(4) of Estimation Algorithm 2lto obtain the matrix £ in (BI8]).

(3) Apply Theorem B35l to obtain estimates.

REMARK 3.8. Compared to Estimation Algorithm 2] Estimation Algorithm @l has two
major differences. First, the Hankel moment matrices are constructed using the deformed
MP law directly (cf. (8:28))) whereas Algorithm 2] utilizes the density (3.4]). It can be seen
that op depends on the explicit form of b in (3.4 but g is independent of the choice of a
as in (B.27). Second, in Estimation Algorithm[2, we need to use different Hankel moment
matrices for the spiked and non-spiked models. In contrast, when the CGA is applied
to the normal equations, we always use the same moment regardless of the spikes. For a

more precise statement, see (B31)) and (332)).
Based on Estimation Algorithm [l we establish the theoretical results in Theorem

THEOREM 3.5. Fix some small constant 7, > 0. Suppose Assumption [ holds, v > 7
and ||a|l2 = 1. Let {a;} and {f;} be the outputs calculated from Step (2) of Algorithm
Al Denote Y = X1/2X and Yy = 2(1)/2X. Then for the non-spiked model, there exist some
constants Cy. j,Ce > 0 such that

k-1
7 (Wo, Yoa)l|2 = \/V_VH % +O<(CrpM Y2,

j=0
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and for Sy = Si() defined in (B19)

llex (Wo, Yoa)|lw, = [lTx(Wo, Yoa) |21/ fi (SkSE)~1f1 + O—<(Ce,kM71/2)7

or equivalently

k-1 ¢ 2
1
lex(Wo, Yoa) iy, =w {1 — Lo |+ 0<(Cenc M2, (3.30)
X 20 j=1 a]
where w is defined in (329).
Additionally, for the spiked model, we have that
Ik (W, Y @)l = [[rx(Wo, Yoa) |2 + O<(Cr M '/3), (3.31)
and
lex(W,Ya)llw = [lex(Wo, Yoa)|lw, + O<(CerM~/?). (3.32)

REMARK 3.9. We remark that compared to Theorem [3.2] where the CGA is applied for
a deterministic b, Theorem exhibits several differences. First, an extra normalization
constant w is used. In fact, w = E|Ypall2 is used to scale Ypa such that the Lanczos
Iteration, Algorithm [2] can be applied properly. Second, compared to ([B:22)), ([3.30) has a
simpler form due to (B27). Third, (332) implies that if we examine the performance of
the CGA using the error norm || - ||w, the spikes will be ignored. Therefore, even though
this measurement is standard in numerical analysis, for statisticians who are interested
in understanding the performance of the estimation of high dimensional ordinary least
square (OLS) coefficients, a better norm (i.e., loss function) should be considered and
studied. We will pursue this direction in the future works.

We point out that when ¥y = I, [45] used another approach to obtain a weak con-
vergence formula. Their method relies on exploring the structure of the error. However,
this method was not extended to give expressions for quantities beyond the W-norm of
the error. Our methods amount to a combination of the generality of the distributions
considered in [45] with the generality of the norms considered in [10] while extending
it to general spiked covariance matrices. Additionally, we can construct similar results
based on asymptotic relations of the orthogonal polynomials as in Algorithm [Bland The-
orem B3] as the Jacobi matrix T that is used to construct £ in step (2) of Estimation
Algorithm M) is just the Jacobi matrix associated to the modified density %g()\). We
omit the details here.

REMARK 3.10. We have now demonstrated a guiding principle. We know that for
]2 =1

b W ED / A gy (A)dA + O (CuM ~1/2),
R

and hence the performance of the CGA on Wax = b will be, up to some error, determined
by the three-term recurrence for the orthogonal polynomials for gp(\)dA.
Theorem [30] relies on the fact that for ||aljs =1

a’Y*'W"Ya = a*W"t'a /A“" )dA+O<(CM U2y w=v*y.
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Combining these two facts allows one to analyze the classical regression problem (I3]).
With
b=Y(Y*z+e), |zlla=1 |[e]2=1+0(M"1?),
one sees
b*Whb = 2*WhH2g + e Whle + 22" WhHlye.
Supposing € is isotropic and independent of W, the last term has expectation zero and

the asymptotic performance of the CGA on this regression problem will be determined
by the three-term recurrence for the orthogonal polynomials for

(AQQ,,(A) + Af}?)) dA.

This observation was previously made in [44]. And by Theorem the asymptotics of
this three-term recurrence is determined by the support of the measure alone when the
supports of gp and ¢ coincide

3.5. Unuwversality. In this subsection, we establish the universality of the fluctuations
of the norms of the error and residual vectors for the CGA. It demonstrates that the
second order fluctuations of the residuals and errors of the CGA depend only on the first
four moments of the entries (x;;) for both spiked and non-spiked models.

THEOREM 3.6. Suppose Assumption[Ilholds. Let W be as in ([2.8]) and let WY be defined
similarly by replacing X with another random matrix ¥ = (y;;) which satisfies (2) of
Assumption [[l Moreover, assume that

Exl; =Eyl;, 1<1<4, 1<i<N,1<j<M. (3.33)
Then we have that for all s;1,s:0 € R, 1 < i <k,

lim [PX ((M”Z (W, B) 2 = 7:(£)] < 500, M [[lex(W.b) [w — e:(£)] < ))

=8 (0 [l 0l = ()] < 50,32 [fes W 0~ ei@)] <) )]
=0

where PX and PY denote the laws of (z;;) and (y;;), respectively, and £ is defined in
BI3).

REMARK 3.11. Theorem proves the universality for the distributions of the errors
and residuals. We point out that the exact distributions for the residuals and errors are
generally unknown even when X is Gaussian. To our best knowledge, these results are
only established in the null case when ¥ = I in [45]. For general covariance matrix and
spiked model, it requires more careful treatment and is beyond the scope of the current
paper. We will consider this problem in the future work (cf. [1§]).

REMARK 3.12. We remark that Theorem can be used to conduct statistical in-
ference on the structure of population covariance matrix. For example, in the literature
[61], researchers are particularly interested in testing

H()ZE:A(),
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where Ag is some given positive definite matrix. We focus on our explanation on the
non-spiked model. Many statistics can be constructed based on Theorems and [3.3], or
Theorem 3.4l Even though the distributions of the halting times are unknown, according
to Theorem [B.6] when the fourth moment is assumed to be 3, we can always simulate their
distributions using Gaussian random variables. In this sense, TheoremsB.2land B.Glcan be
combined to provide new statistics for high-dimensional inference. This opens a new door
for high-dimensional statistics and demonstrates that in contrast to the standard testing
procedure where testing statistics are mostly based on the estimation procedure, we can
also propose useful statistics based on the computational and algorithmic viewpoint. We
will pursue this direction in the future works.

3.6. Some extensions and discussion. We employ the error analysis framework estab-
lished in Section B3] to analyze the minimal residual algorithm (MINRES) [43]. The
actual algorithm is recorded in Algorithm Hlin Appendix[B.2l Similar to the CGA, MIN-
RES is applied to solve linear systems of the form Wz = b, W € RY*¥ but for MINRES
W need not be definite. MINRES can also be described in its variational form. Recalling
1), MINRES, at iteration k, gives the solution of

xy = argming ., [|[b— Wyll2.

For simplicity, we focus on analyzing the residuals of MINRES using Estimation Algo-
rithm 2l The results are collected in Theorem 3.7

THEOREM 3.7. Fix some small constant 73 > 0. Suppose Assumption [ holds, v_ > 7
and ||bl|2 = 1. Let {a;} and {f;} be the outputs calculated from Step (4) of Algorithm
2l Then we have that with &y = 0, for k < n, there exists some constant C, ; > 0 such
that

-1/2
k j—1 /

2
o _
7kll2 = E ||_B§ +O0<(Cr M 1/2)-
7

=0 ¢=0

We point out that even though Estimation Algorithm [ is designed for the error
analysis for the CGA, it can also be used to analyze the residuals of MINRES because
MINRES is also closely connected to the Lanczos iteration. Compared to ([3.20) for the
CGA, the main difference lies in the leading order expression. These expressions are
derived deterministically using the variational forms of these algorithms. In this sense,
any numerical algorithm which is based on the Krylov space Kj and has errors that
depend only on the matrix £ constructed in ([BI8]) can be analyzed using our proposed
framework.

4. Examples and numerical simulations. In what follows, we provide a few ex-
amples satisfying our assumptions, with accompanying numerical simulations, to better
explain the calculations and illustrate our theoretical results. We focus on the discussion
on X, the construction of f(z) and the edges of ¢ since they are the essential quantities.
We mention that there exist many other important examples of ¥, beyond which we
discuss, having been used in applications that satisfy our assumptions. For instance,
one can consider Y such that its limiting ESD satisfies either the truncated Gamma

Licensed to Univ of Calif, Davis. Prepared on Fri Apr 1 18:55:40 EDT 2022 for download from IP 168.150.85.218.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



120 XIUCAI DING aNnD THOMAS TROGDON

distribution in [36] or some Jacobi measure as in [I7]. All these cases can be analyzed
using our methods. For our numerical experiments we effectively keep ¢y fixed by setting
M = |N/r] for r fixed.

In some situations, see (£.2), we know the first-order limit of the norms of the residual
and error vectors 7y, er. In other situations, we do not. When we do not we either
estimate or derive the bulk edges v+ — estimation involves rootfinding on f’(z). This
then gives the large k behavior of the first-order limits via Theorem 3.3l For small k we
take the following estimation approach:

e Using a single sample with N = 2000, compute the Lanczos matrix Tp(W, b), for
£ small (all plots we use £ = 5).

e Extend T}, to an approximation of 7 by setting ar = a, by—1 = b as in (F24) for
k>

e Lastly, use Theorem B2 to give an estimate of the first-order limits of ||ry||2 and
lexllw-

4.1. Johnstone’s spiked covariance matriz model [35]. We consider the standard spiked
covariance matrix model when cy < 1. In this case, ¥y = I and the rank-one spiked

model
¥ =1+ tvv*. (4.1)
It is clear that (3) of Assumption [I] is satisfied. Moreover, according to ([B3), we have
that
1 CN by 1 cN

Consequently, we have that its critical points and the edges of the support are
1 1
veny +1 N/CN—l'

Therefore, it is easy to see that a; =1+ O(e ") and §; = \/cn + O(e”°"). According
to the bidiagonalization in [7] for the Gaussian case, if b = v we have,

V1+4

4=+ ew)?, oy = Py = (1= Vew)?, ao =

Supposing that cy Noeo, d, this gives the formulae

14O (CppxM—1/2 k=1
(W, )l = /2 4 1+ O<(Cradd5) !
L+£ | d* =12 1 O (CrpM~Y2) k> 1, @)
4.2
1+ 0<(Cpp,M—1/2 k=1
lex(W, )l = 1 | 0 ] O<(CreM ™) :
L+ 01 —d) | d*D/2 4 0 (CrpM-1/2) k> 1.
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F1G. 2. A numerical demonstration of the concentration of the resid-
ual in the CGA on Johnstone’s spiked covariance model (@) when
X is an iid Gaussian matrix. Here we take ¢ = 15,v = f1 and
b = v. In this case the bidiagonalization in [7] gives the matrix £
in the large M limit and the resulting predicted errors are given by
the dashed curve. See Figure[Il for a description of what these plots
demonstrate.

We demonstrate the convergence of the CGA in Figure In Figure Bl we modify the
projection of b onto v. We demonstrate the case of two distinct spikes in Figure 4

4.2. Spiked invariant model [BlI7]. We consider the spiked invariant model where the
ESD of 3¢ converges to the standard MP law with parameter cy (cf. (O.8). As discussed
in Remark Bl (3) of Assumption [I] is satisfied. It is well known that the asymptotic
density o can be characterized as the free multiplicative convolution of two MP laws. In
fact, the density function can be calculated explicitly as in Lemma [D.4l In this case,
f(x) can be replaced by

1 1
f(x):—g +CN/mﬂMp(d>\)v

where pyp is the standard MP law with parameter cy. Moreover, in this setting, v+ have
closed form expressions; see ([B.20]). For the spiked model, we can calculate the essential
quantities based on the above expressions. See Figure [f] for a demonstration.
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Fic. 3. A numerical demonstration of the concentration of the resid-
ual in the CGA on Johnstone’s spiked covariance model (@) when

X is an iid Gaussian matrix. Here we take ¢ = 15,v = f1 and
b= %fl + %w where w = [0,w’]T, and w’ is distributed uni-

formly on the hypersphere in RN =1, Since we do not have a closed-
form expression for the limiting dashed curve, we estimate it using
the procedure outlined at the beginning of this section. The mod-

ification of b, in comparison to Figure 2 modifies the behavior of

the first couple iterations — but the same asymptotic rate of con-
vergence persists. See Figure [I] for a description of what these plots
demonstrate.

4.3. Spiked covariance matriz with uniformly distributed eigenvalues [16]. We assume
that the ESD of ¥y converges to the uniform distribution on [a, b], where a,b are some
positive constants. As discussed in Remark B] (3) of Assumption [1]is satisfied. In this
case, f(z) can be replaced by

—h—
T T ar + 1

@)= =+

r b—a

1 cN (b—a 11 bx—l—l)

Then the desired quantities can be calculated based on the above expressions. For a
concrete example, we consider that a = 1,0 = 3 and ¢y = 0.5. The critical points x4
can be calculated numerically using Newton’s method and are approximately —2, —0.25.
Then the support of ¢ only contains a single interval and the edges are approximately
0.15 and 6.4, respectively. The essential quantities of the spiked model can be calculated
analogously; see Figure [0l for an illustration.
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Fic. 4. A numerical demonstration of the concentration of the resid-
ual in the CGA when ©1/2 = diag(4,3.5,1,1,...,1) and X is an iid
Gaussian matrix. Here we take b = ﬁfl + ﬁfg + %'w where

w = [0,0,w’]T, and w’ is distributed uniformly on the hypersphere
in R¥=2. Since we do not have closed-form expression for the lim-
iting dashed curve, we estimate it using the procedure outlined at
the beginning of this section. See Figure [l for a description of what
these plots demonstrate.

4.4. Spiked Toeplitz matriz [25]. Toeplitz matrices are a common object of study in
time series analysis since the covariance structure of a stationary time-series is a Toeplitz
matrix. Suppose that ¥ is a symmetric positive definite Toeplitz matrix satisfying the
assumptions in [25, Section A.3.4]; then (3) of Assumption [l is satisfied. Since the
eigenvalues of ¥y do not have closed-forms, in general, we need to numerically calculate
the eigenvalues of Topelitz matrix and the function f in (B3). The other quantities can
be calculated based on that. For a concrete example, let 3y be the covariance matrix of
an order one stationary autoregressive (AR) model such that the entries of ¥ satisfy

(20)i; = 0.411=31, (4.3)

For a concrete case when cy = 1/2, according to [16, Example 3.10], we use Newton’s
method to get the critical points of f(x), which are —0.33,—3.62. As a result, y_ =
0.086, v+ ~ 4.385. Similarly, we can obtain the other quantities for the spiked Toeplitz
matrix; see Figure [] for a demonstration.
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F1G. 5. A demonstration of the concentration of ||ey||w in the case
of the spiked invariant model. Since we do not have closed-form
expression for the limiting dashed curve, we estimate it using the
procedure outlined at the beginning of this section. See Figure [l for
a description of what these plots demonstrate. Note that these plots
show the W-norm of ey, not the 2-norm of r as in Figure [l

5. Asymptotics of orthogonal polynomials and Cholesky factorization. In
this section, we provide results on the theory of orthogonal polynomials.

5.1. Hankel determinants, moments and the three-term recurrence relation. In this
subsection, we introduce the connection between Lanczos iteration and orthogonal poly-
nomials [54, Lecture 36]. Let T be the N x N Jacobi matrix generated from the Lanczos
iteration for its maximum of N steps. It produces a probability measure

N
Hnr = 26’\1%’ (5.1)
j=1

where \;’s are the eigenvalues of T and wj is the squared modulus of the first component of
the normalized eigenvector associated to A;. For the N x N Hermitian matrix W, denote
its eigenvectors as {u;}, and for any unit vector b, denote the eigenvector empirical
spectral distribution (VESD) as [2]

N
pwy = > [(wi, b)[*8x, ). (5.2)

i=1

Licensed to Univ of Calif, Davis. Prepared on Fri Apr 1 18:55:40 EDT 2022 for download from IP 168.150.85.218.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 125

N =50,M = 167,cy = 0.3 N =100,M = 333,cy = 0.3

) )
= 4| = a4l
FRU FRU
105} 105
108 108
N =200, M = 667, cx = 0.3 N =400, M = 1333,¢n = 0.3
_ 06 -
0 0
100 F | 100
05 los
102} {04 102}
o~ o
= = 104
-4 B -4
E ot 03 FRCM
) 102 )
10°8F 108 ¢ lo2
{0.1
108} 108}
J0.0 J0.0
5 10 15 20 25 30 5 10 15 20 25 30
k k

F1G. 6. A demonstration of the concentration of ||rg|l2 in the uni-
formly deformed case. Since we do not have closed-form expression
for the limiting dashed curve, we estimate it using the procedure out-
lined at the beginning of this section. See Figure [l for a description
of what these plots demonstrate.

The VESD pw s coincides with the spectral measure pr. In fact, there is a bijection
between such measures and Jacobi matrices [8]. Moreover, Proposition Bl indicates that
universality and estimates for the spectral measure in an appropriate sense will translate
to universality and estimates for the Lanczos matrix.

Based on g, we can construct a sequence of orthogonal polynomials {p,(z)} from
the monomials via Gram-Schmidt. The polynomials obey the following three-term re-
currence relation [53]

Tpn () = bppny1(2) + anpn(x) + by_1pn—1(x), n > 0,b, >0, (5.3)

with the convention p_i(x) = 0 and b_; = 0. Here a,,b, are called the recurrence
coeflicients.

PropPOSITION 5.1. The three-term recurrence coefficients for the orthogonal polynomials
generated by the VESD of pyyp coincide with the entries in the Lanczos matrix T'(WW, b).

Proof. See [g]. O
Recall the classical fact that the coefficients in a three-term recurrence relation can be
recovered as a nearly rational function of the moments of the associated spectral measure.
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F1G. 7. A demonstration of the concentration of ||ry||2 in the case of
the unspiked Toeplitz case [@3). Since we do not have closed-form
expression for the limiting dashed curve, we estimate it using the
procedure outlined at the beginning of this section. See Figure [ for
a description of what these plots demonstrate.

We write p,(z) = £,2" + s,2" "1 + -+ and find by equating coefficients that

En - bnen—i-lv
Sp = angn + bnsn+1a
where a,, and b,, will be given in (53] after necessary notations are introduced.

Denote the Hankel moment matrix of uw as M, and D,, = det M,,. Moreover, define
D,,(\) by the determinants

Dy(X\) = det M, (M), (5.4)

and M, ()) is formed by replacing the last row of M,, with the row vector [ A A% - A"].
Then, it is well-known that (see, e.g., [8])

Dn(N)
n A) = =
P ( ) DnDn—l
This gives
D_1D+1 S —b8+1 S Sn+1
pz 0 ° 00 0 ot (5:5)
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The above expression shows that a, and b, are infinitely differentiable functions of
mg, M1, Mg, ..., Ma,+o on the open set

{D; >0, j=12...,n+1}

REMARK 5.1. Associated with the three-term recurrence (5.3) is the following infinite-
dimensional Jacobi matrix

ap bo
bo al bl
T - b1 as

Let T;, be the upper left nxn subblock of 7. Then we readily see that T, is a differentiable
function of (mg, m1,- -, ma2,). We also note that [8]

FiT = / Mgy (dN).

5.2. Asymptotics of three-term recurrence relations and the Cholesky factorization.
In this subsection, we explore the asymptotic form of the Jacobi matrix and Cholesky
decomposition when the VESD exhibits regular square root behavior near the edges.

THEOREM 5.2. Suppose h : [a,b] — R is a positive real analytic function. Consider the
measure p defined by

Mdn:hQﬂMMQxh—»%A—@&u+§:wﬂq@n,

where w; > 0 and ¢; € R\ [a,b], for all 1 < j < p. Suppose, in addition, that o =
:I:%7 8= j:%. Then there exists ¢ > 0 such that

=b;“+0@%w,bn=b_”+0@%w.

4
Moreover, if there exists 0 < 7 < 1 such that
o 7 <w; <7 1 forall j=1,2,...,p,

Qn

o 7 <|h(2)| < 77! and h is analytic for all z € C such that minye[q4) |2 — A| < 7,
and
e min{la —¢j|,|b—¢;|} >7forall j =1,2,...,p,
then ¢ can be taken to be a function of 7 alone.

Proof. Tt has been proved in [38,[89] for the case a = —1,b = 1 without discrete
contributions. The result follows from that with a simple modification if w; = 0 for
all j. With spikes, as noted in [38], the result follows from [28] for h, w;, ¢; fixed. To
obtain uniformity, one introduces poles into the Riemann—Hilbert formulation in [38]
(originally due to [34]), turning residue conditions into rational jump conditions and
then inverting exponential growing jumps so that they tend to the identity matrix at a
uniform exponential rate; see [56], Section 8.2.2], for example. O
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REMARK 5.2. For the Marchenko-Pastur law, we have a = (1 — \/cy)? and b =

(1+ /cn)? so that
b+a
2
The proof of Lemma is a direct consequence of ¢(T)p(T)* = T where ¢(T) is
defined in Algorithm[3]and the fact that the diagonal entries in the Cholesky factorization
must be positive. Note that « in Lemma [5.3] is always real since

b—a
—lten, = ew,

a)? —a)?
(btl ) _4(b 16) :%((b+a)2—(b—a)2):ab>0.

LEMMA 5.3. Let v > 28 >0 and set a = RRV ”722_452. Suppose

[ a(l+Eo) A1+ fs(0)
B+ f5(0)) ~(1 4+ f4(0)) B+ fs(1))
B+ f3(1)) ~(1+fy(1) B+ fs(2)

T= B+ fs(2) ~(1+ f4(2)

B+ fa(N —2))

BOL+ fo(N —2) (1 + fr(N —2))]
(5.6)

for functions fa, fy : NU{0} — (—1,00) and Ey > —1. Then if T is invertible,

rVavITEy
Gle VaVITE
LLE VaVITE
(T) = g 14152 JaviTEs ,

Va JitE;

1+fg(N-2)
Ve iR VeVIE B

where F,, > —1 satisfies

2 2
Buin = fy(n) + O |14 £ () - %

/T _

THEORE2M 5.4. Suppose 0 < a < b and set v = “TH’, 8= bTTa and o = 5
M. Suppose T' = Ty = T1:n,1:n, the upper-left N x N block of a Jacobi operator
T is of the form (B8] and satisfies the assumptions of Lemma [5.3] for every N. Suppose,

in addition, that there exists o > 0 such that

o' <z Tx <o, |z|=1

If lim, 0o fry(n) = 0 = lim,, o0 fg(n), then lim, o E, = 0.

Proof. Let ¢(T) be as in Lemma 53 Since v/ay/1 + E, is an eigenvalue of ¢(T') we
find that there exists a unit vector v such that

lp(T)v|3 = a(l+E,) =v"Tv >0t
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Thus
1
E,>——1, foralln>0.
ao

Then, because 1/(1 + E,,) > 0, we have

ﬁ2
Enyr < |fv(n)| + o2 [1 + ‘fv” .

Thus (E),)n>n, forms a bounded sequence and any subsequence has a further subsequence
that converges. Supposing that f,(n), fzs(n) = 0 as n — oo, we find that the limit F
along this subsequence satisfies

S .|

a 1+ F
Solving this relation gives Eoo = 0 or Ey = g—z — 1. So, it suffices to show that

Es # g—z — 1 as this will then imply that every subsequence has a further subsequence
that converges to a common limit.
2
Suppose that § = % — 1 is a limit point of the sequence E,,. Suppose that |Ey — d| <

2

%I“j where I' = 4% and € < % Then it follows that Ej 1 satisfies

2
o
|Brs1 — 0] < 2/f, (k) + 4l fa(k)| + 2| f5(k)? +4§|Ek = 4.
And therefore

|Egti — 0]

PRNK i 2\ I—m
< (15) 1= o max @I+ g+ 20m0R) Y (15)

Then provided that

[ 042 —-m € )
225, CLE I st +21550m0) 3 (1) =50

we find that |Eyy; — 6| < efori=1,2,...,7. Next, we observe that
B Vb —\/a
]_ = —_— = —
Vavl+ o 5
b
B8 _ Ja = M
Vay1+46 2

We then take the ratio of the elements in the (k + ¢ + 1)th column of ¢(7T), giving

a(l+ Ey)  Vb+yal+ Egy, 1

B+ falk+14)  Vb—a 1+38 1+ fa(k+i)
Vbt Valyd—c 1
“Vb—va 1406 1+¢

> o9 > 1,
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by further reducing e, if necessary. We then consider applying the conjugate gradient
algorithm to Tz = f;. By Theorem [B.I] we have that, in particular

175l > o,
7|2

But we know that for any k
o exllr = o erTey, < ||rill3 = exT ex < oeTey, = ollex||-
This results in the string of inequalities

J < Irerillz o _lles+sllr

— b

Irellz = llexllr
because % < 1. Since j can be made arbitrarily large, we see that § cannot be a
limit point of (E),)p>0 and lim,, o E, = 0. |

This immediately implies the following.

COROLLARY 5.5. Given the assumptions of Theorem [5.4], suppose there exists C,c > 0
such that |fzg(n)| + |fy(n)| < Ce™°" then there exists C’, ¢’ > 0 such that
|E,| < e

PROPOSITION 5.6. Suppose h : [a,b] = R, a > 0 is a positive real analytic function.
Consider a probability measure p defined by

p(dX) = h(AN)1ap (N (b= NN = a)’dA + > w;de, (dN),

Jj=1

where w; > 0 and ¢; > b for all 1 < j < p. Suppose, in addition, that o = :i:%, B = :l:%.
Let

ao b()
bo aq bl
bl a9 b2

b2 as

be the associated Jacobi matrix of three-term recurrence coefficients. Let £L£T = T be
the Cholesky factorization of 7 with

)]
Bo
L= B1

then
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Proof. This follows from back substitution and the fact that

dA
[ 5 = g

for z outside the support of p [8]. O
We point out that Proposition is true much more generally but this is the version
we require.

ProPOSITION 5.7. With the assumptions of Proposition

_ 2 1 1 k—1 ¢ 2 k—1 ¢ Bk;Jr Lk 1

J Jj—
||— Sp(dh) = = || ==> 1] —ee .
=0 ﬁJQ /]RA a(Q) =0 j= _7 O‘i =0 j=1 k+] V (lb

Furthermore, this limit takes place at an exponential rate.

REMARK 5.3. The convergence of the CGA is determined by the ratio of diagonal to
off-diagonal entries in the Cholesky factorization of the associated Jacobi matrix. For
0 < ¢y < 1 the Cholesky factorization of the Jacobi matrix

CN \/CN
T=|ven l+en y/fen

NG

pathologically has diagonal entries that are smaller than the off-diagonal entries. Since
any finite truncation of this matrix is invertible, CGA will experience residuals that grow
exponentially until convergence at £k = N. This is an example where, in the notation of
Lemma 53] Fo, = g—z — 1. Since this is an unstable fixed point of F(x) = [1 - H—x}

any small (generic) perturbation, that preserves definiteness, will force EOo = 0.

6. Spiked covariance matrix model and VESD. In this section, we provide and
prove the results on random matrices. We first introduce some notations. For any N x N
symmetric matrix Z, denote myz and mzp as the Stieltjes transforms of uz as in B.1))
and pzp as in (5.2)), respectively, i.e.,

1

Recall that the Stieltjes transform can be used to recover the associated probability
distribution p using the well-known inversion formula (see equation (1.2) of [50])

zuz’b(dx)’ z € Cy.

b
w{la,b]} = %/ Imm,(z +107)dz. (6.1)

Moreover, let Gz be the resolvent of Z, i.e., Gz(z) = (Z — z)~*. Then

myg = % TI"Gz(Z), mz_’b = b*Gz(Z)b
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Next, we introduce the following contour representation for the moments of any given
spectral measure v. Let my(v) denote the moments of v. By Cauchy’s integral formula,

mg(v) = _2L7ri d 2Fm,, (2)dz, (6.2)
where T is a smooth simple contour that properly encloses the support of v.

6.1. Local laws for the non-spiked model. In this subsection, we discuss results relating
to the so-called anisotropic local laws. Denote by H the (N + M) x (N + M) linearized
matrix 1o

0 3o X
H=H(zX):=z (X*Z(l)/2 00 > . (6.3)
H is more convenient since, on one hand the eigenvalues of the sample covariance matrix
Wy can be studied via H, and on the other hand the resolvent of H can be written in
terms of those of W and Wy. Let G1 and G5 be the resolvents of Wy and Wy, and mq
and my be the Stieltjes transforms of the ESDs of W, and W, respectively.

For z € C,, by Schur’s complement, we have that
Gi(2) 25y QXG2<2>>

6.4
LGs(2) X5 Ga(2) (64)

G(2)=G(2,X)=(H-2)""'= (

Define the deterministic matrix
_((z) 0\ _ (~f+m5) 0
e = (M7 )= (U L) (65

With a slight modification of the results in [37], we have the following result. Fix some
small constant 7 > 0 and denote the set of admissible spectral parameters as

D=D(z,7)={z=E+in:7<|z| <77, M7 <np<7r7'}. (6.6)
A subset D, of D is defined by
D, = Do(z,7) = DN {dist(E,supp(e)) +n > 7} . (6.7)

LEMMA 6.1. Suppose (1)—(3) of Assumption [[l hold. For any unit deterministic vectors
u,v € RMTY and fixed small constant 7 > 0, we have that for all z € D,(z,T)

lw*G(2)v — w'Tl(2)v| < M~1/2,

Proof. See Appendix O
We remark that the results of [37] are established on the larger domain D defined
in ([€8) with the extra assumption that v_ > 7. As discussed in [568, Remark 1.8], this
assumption requires that |cy — 1] > 7. In this sense, on the spectral parameter set Dy
in ([67), we can handle the case ¢y = 1, which is an important regime in numerical

analysis. We also have the following edge convergence result. Denote the eigenvalues of
WO in(IEI)aS)\lz)\22~~.

PROPOSITION 6.2. Suppose (1)—(3) of Assumption [l hold; we have that
A =74 + O (M3,

Proof. The proposition follows from [37, Theorem 3.12]. O
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We have focused our discussion on the ESD so far. Armed with these results, we
proceed to provide some results for the VESD. For any given deterministic unit vector
v € RY, denote

wi:<v,vi>, 1§1§N (68)
Recall (63). By Lemma [61], we find that v*G;(z)v is close to
1 w?
(= LS W |
moy(2) = v' T (2)v = —— ; o) (6.9)

We denote the probability measure associated with m,, as o0,. Note that

Z wio;Imm(z +i0")

I 0f) =
mmv(x+1 |1+Uz x+10+)|27

(6.10)

where we denote Im m(z+i0") = lim,, o Im m(x—i—m). Together with the inversion formula
(61D, we see that
supp(gv) = supp(e)- (6.11)
6.2. VESD for the spiked covariance matriz model. In this subsection, we provide
some results regarding the spiked model W as in ([LI)). For the spiked model, we can
define H by replacing ¥y with ¥ in (63]). Analogously, we can define the resolvents as
él, ég and é, respectively. The following lemma collects the results on the asymptotic
convergence of the outlier and extremal non-outlier eigenvalues. Denote the eigenvalues

of Win ([Tl as ug > pa---.

LEMMA 6.3 (Outlier and extremal non-outlier eigenvalues). Suppose Assumption [[lholds.
Recall the function f defined in ([B:3). We have that
pi=f(=0,") + 0 (M%), i<,
and
frg1 = Y4 + O (M72/3),

Proof. See Theorem 3.2 of [16]. O

In the following lemma, we establish the fundamental connection between the VESDs
of the spiked and non-spiked models. Recall D, in (61). Denote the spectral parameter
set

1<ilr

D, := D, N { min |z — f(—o; 1) > T} , (6.12)
where 7 > 0 is some small fixed constant.

LEMMA 6.4. For the eigenvectors {v;} of ¥ and any unit deterministic vector v € RY,
let w; as in (@8] and
-1

£ 2 1+ m(z)o) 72 [di 41— (1 +m(2)o;) 7 i<,
7 0
Suppose Assumption [ holds. Then for all z € D, in ©12),

’UGl :Z

i=1

(0 Gy (2)v; — L) + O (M~Y?). (6.13)
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Similarly, for any deterministic vector u € RM,

uw*Ga(2)u = u*Ga(2)u + O (M~1/?). (6.14)
Proof. See Appendix O

REMARK 6.1. Lemmal6.4] provides useful expressions for the VESD of the spiked model
in terms of the non-spiked model. First, for the VESD of W in (), as illustrated in
©13), it can be described using that of Wy in (Z8)) after proper scaling and shifting.
Especially, when b € V-, the VESDs of W and W, coincide asymptotically. Moreover,
the values of £; can be calculated explicitly at some specific points. Using the relation
B2) that m(f(—o; ")) = —5; *, we readily find that

di'+1— (L+m(f(=5;"))oy) ' =0.
Therefore, we conclude that f(—&; ') is a pole of £;. Second, (6.14)) states that the VESDs

of W= X*YX and Wy = X*¥yX match asymptotically regardless of the existence of
the spikes. As will be seen in the proof of Theorem [B.5] it explains why the spikes will
be ignored when the CGA is applied to normal equation.

6.3. Formulation of the moments of VESDs. In this subsection, we establish the key
relation for the (random) moments of the VESDs for the spiked and non-spiked models.
In particular, we represent the moments of the VESD of the spiked model using those of
the non-spiked model. Denote the VESDs of (W, b) and (W, b) as vy, and p, respectively.
Recall that their moments are defined as follows

Ifl\‘l;ﬁb = /Ikyb(dI), I/T\‘l;ﬁb = /Ik;b(diﬂ) (615)

THEOREM 6.5. Suppose Assumption [l holds. Recall (BI0). We have that

) o;

N 2 1(_=—1 _=—1 k-1
Feo = ml<ﬁmh+uismf(gz)“(al” >+o<wr”%
for all integers k > 0.

Moreover, if v_ > 7 for some constant 7 > 0 the above results extend to k = —1.

Proof. Recall gp is the limiting VESD associated with the Stieltjes transform in (6.9]).
By [2 Theorem 1], we have that v, — gp weakly a.s. In order to apply (G.2l), we first
properly choose a contour. In light of (G.ITl), we can choose a simply connected contour
I" that encloses the support of the deformed MP law o and f(—&;l),l < i <randis
also uniformly bounded away from them.

Then we apply (6.2) for the calculation. It is easy to check that the function f defined
in (B3) is monotonically increasing when = > m(~v4); for example, see the discussion
below [16, Lemma 6.1]. Moreover, under Assumption [I we find that for some constant
>0

—G;7 > m(yy) + 7 (6.16)
Therefore, we have that

F(=571 = fm(y4)) = 7+ (6.17)
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Note that we have m(y4) = by and f'(b1) = 0. Further, for = > v, by the square root
behavior of g, we have that [37, equation (A.11)]

T =t = (m(@) = b1)* + O(lz — be ). (6.18)

From the proof of [37, Lemma A.3], we have that for some constant 75 > 0,

f”(b1) > Ty,

Since (6.I7) holds, we set © = f(—a; ') and evaluate (6I8). By (6.16), we conclude that
for some constant 73 > 0,

f(=a7h) = > (6.19)

Together with (G.I1]), Proposition 5.2l and Lemma [63] we find that f(—5; ') are isolated
points and uniformly far away from the support of p. Therefore, ([6.2]) implies

1
My p = “om b 2#b*G1(2)bdz, k> 0.

The above results hold for & < 0 when 0 ¢ supp(p), i.e., v— > 7 for some constant 7 > 0.
Moreover, by Lemma [6.4] we have that

~

~ 1 ~
Mpp = —— j{ 2Fb*G1(2)bdz (6.20)
27Tl T

— (7{ PG (2)vidz — frzkﬁi(z)dz> + O<(M_1/2)

k ~1/2
QIZHd]{c )z + O (M~1/2).

Next, we discuss the residues. Using (6:19), Assumption [I(3) and the monotonicity of f
on the real line, we conclude that the singularities of £; are not within the support of .
Then we set T = m(T'),i.e., f(T) =T and use residue theorem to calculate

|
|
—
+ |3,
S
N
A

I
M=
- i

o
=N
Q.

77 2Ll = o f (FOP (O ()¢
1 dl(l + Co'l) 1

L k—1 5
= o= T(f(C)) rOTTar 5 e
A )

where in the second step we used that m(f(¢)) = ¢ and in the last step we used Cauchy’s
integral formula and &; = ¢;(1 + d;). This completes our proof. a

REMARK 6.2. We remark that my p can be replaced by some deterministic quantities
using the limiting VESD (cf. gp in (34)). Recall mgp defined in (B0). According to
[2, Theorem 1], we have that ﬁikyb — myp a.s.. The convergence rates have also been
established under different assumptions in the literature. For example, by [59, Theorem
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1.6], it can be shown that My p = myp + OP(M*I/B). Moreover, when y_ > 7, the result
can be updated to my p = mkyb—l—Op(Mfl/‘l). Later on, under the assumption ey —1| > 7
(or y_ > 7), the authors established that My, = mgp + O (M ~1/2) in [58, Theorem
1.5).

7. Theoretical analysis of the algorithms. Armed with the results established in
Sections Bl and [6] in this section, we provide the error analysis of the CGA and MINRES
algorithms. Due to similarity, we focus on Theorem and only briefly discuss that of
Theorem 311

Proof of Theorem We focus our discussion on the non-spiked model and will
only briefly discuss the spiked case. Recall (2.2]). Denote by M, r the Hankel determinant
matrix using the VESD of pyw, » and recall that Mj is its limiting version defined in
B8). Note that for any nonsingular matrix A, square matrix B and small € > 0 [27]

det(A+eB) = (1 +etr(BA™))det A + O(?). (7.1)
Under the assumption that y_ > 71, by Remark [6.2] we find that
det(My) = det My, + O (CM~Y/?), (7.2)
where CY, is some constant which depends on k. In fact, by (ZI]), we have
det Mj, = det (Mk + M~Y2(VM (M, — Mk)))
= det My, + O(M ™) + M~Y20_(det My tr(vV M (My, — M) M;Y)).

Note that Mj, is positive definite. Applying Hadamard’s inequality to det M} and the in-
equality that tr(AB) < Apax(A) tr(B), where B is a positive-definite matrix, by Remark
[6:2] we readily see that Cj, < a* for some constant a > 0.

Let by, be defined similarly as in (5.5) using the moments of pw,.p- By ((2) and (316])
with ([B7), we readily see that

by, = by + O (CLM~1/?), (7.3)
for some constant C}, which depends on k. Similarly, we can show that
A = ap + O (CrLM~Y/?), (7.4)

Let 7' be the tridiagonal matrix constructed using {@;} and {EZ} as in (BI7). Analogous
to L in (BI]), we can apply Algorithm Bl to T to obtain the Cholesky factorization L,
whose entries are denoted as {&@;} and {8;}. By (Z3) and (T4), it is easy to see that

ar = ap + O (CYM™?), B = B + O (CYM~/?),

where C}/ is some constant depending on k. Consequently, by Lemma [B.I] we conclude
that for some constant Crx >0,

k—1 B k—1 B
Irille =TT 5 = [[ 2 + O<(CrxM~1/2).
=0 Qj =0 Qj
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Similarly, we can prove the results for ||eg|w,. Finally, for the spiked model, (73] and
([T4) can be proved similarly using Lemma and Theorem This completes our
proof. |

Proof of Theorem [B.3]l The first part of the results follows from (73], (Z4), the
fact that T}, is banded and the Gershgorin circle theorem. The second part of the results
follows from Remark 5.1l Theorem and Remark O

Proof of Theorem First, we consider the non-spiked case. Using (B.10) and
B4), we see that

ob(z) = ha(x)o(z),
where g(x) is the deformed MP law and h;(x) is analytic and is given by

bi(fi
o) = ; (1420, Rem(x) + [m(z)?o?)’

For the deformed MP law, by [37, Section A.2], we obtain that there exists some analytic
function hs(z) such that

0 = ha()y/(v4 — ) (z = 7).
Consequently, we have that
o6(z) = h(z)/ (74 — 2) (& —7-), h(z) = hi(@)ha(z).
Recall 323). By Theorem 52, we immediately obtain that
ap = a+0(e™ %), ap = b+ 0(e™ ),

where ¢ > 0 is some constant. Applying Corollary to the Jacobi matrix defined
in (B24), under the assumption that y_ > 7y, it is easy to see that the diagonal and
off-diagonal entries, respectively, satisfy
—+ — ’ A/ — £/ V= ’
ap = v+ y vt —|—O(67€ k), ﬂk:77+ 5 v —f-O(eiCk).
This completes (1) and (2) using Theorem and Remark
Second, for the spiked case, when b € V,.; according to (B:9), we find that

Mep = Mk b

Since all the 3, ; and Sy are functions constructed via the Hankel moment matrices,
(1) and (2) hold for the spiked model. When [(b, v;)|m for some 1 < i < r, the results

follow from (1) and (2) using Lemma and Theorem O
Proof of Theorem [3.4. The proof follows directly from Theorem [(B.31 a

Proof of Theorem Recall (B:229). Since a is a unit vector, using |26, Lemma
A.4], it is easy to see that

a’Y*Ya=w+ O (M~ Y?).
Moreover, it is clear that Theorem applies to
T Yoa

Yo Y = .
" Yoalls — [[Yoals
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Note that the VESD satisfies that
a'YyG1(2)Yoa = a"Ga(2)Y*Ya =a"Go (Y'Y — 2+ 2)a =1+ za*Gz(2)a.
Consequently, by Lemma and (6], its limiting asymptotic density will be
o' (z) = zo(x),
and its moments are as in [3.27]). This completes the proof of the non-spiked model.
For the spiked model, since the formulas are functions of the moments of the VESD, it

suffices to show the closeness of the moments of the VESDs of the spiked and non-spiked
model, denoted as my, and My, respectively. When Y = $'/2X, the VESD satisfies that

a'Y*Gi(2)Ya = a*Gy(2)Y*Ya = a*Go(Y*Y — 2+ 2)a = 1 + za* G4 (2)a. (7.5)
Together with ([€.14]), we immediately obtain that
a*Y*Gi(2)Ya =1+ za*Ga(2)a + O (M~1/?).
By a discussion similar to ([620), we can show that

T/'T\lk = ﬁ\lk + O.<(M71/2).

This completes our proof. (Il
Proof of Theorem [B.7l The proof is similar to that of Theorem except that we
use the deterministic formula for MINRES in Lemma [B1l O

Appendix A. Universality: Proof of Theorem In this section, we study
the universality of the fluctuations of the norms of the residual and error vectors for the
CGA and prove Theorem Until the end of this section, for simplicity, we denote pu,
and p, as the VESDs of (Eé/2XX*Zé/2,b) and (Eé/QYY*Zé/Q, b), respectively, where
Y is some random matrix whose first four moments are specified. Denote by my(z) and
my(y) as the moments of p, and g, respectively. Moreover, we set

co(z; 1) = mu(2), sey(2) = myg,(2),
where gp is defined in ([B4).
A.1. Proof of Theorem B0l In this subsection, we prove Theorem We will use
the following definition.
DEFINITION 2. Fix some integer 0 < r < M for some sufficiently small constant
€gp > 0. Let & : R — R be bounded. Suppose, in addition, that for any multi-index
a=(ay, ,a,),1 <|a| <5 and for any € > 0 sufficiently small, we have

max{|0%®(z1,- - ,x,) : max|z,;| < M€ |} < M%<
J

for some Cy > 0. Then & is called an admissible test function.

Here we use the convention that for any positive integer m, some function ® : R™ — R
and x = (21, -+ ,Zm) € R™, we denote
ko

8k¢($) - 8Z‘k18xk2 .. .8ajk:m ’ k= (kl’ T ’km)’ (A'l)
1 2 m
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and

:ﬁxfi, k! :ﬁki!. (A.2)
=1 =1

Proof of Theorem According to Lemma [BJ] and Remark [B.1] since {«;} and
{B;} are locally analytic of the moments of the VESDs (cf. ([6.10])), it suffices to establish
the universality for smooth functions of the moments. According to ([6.2]), for some
properly chosen contour I', we have that

1

—.%cho("ﬁ,ué)dzv l=uxz,y.
271 T

my(€) =

Therefore, it suffices to handle the integral. We point out that we only need to focus on

the non-spiked model. Note co(2; ptz) = b* (56> X X*5/? = 2)=1b = b*G4(2)b. Denote

co(z; i) as the associated Stieltjes transform for the spiked model, i.e., co(z; ) =

b*G1(2)b. By (C0), it is easy to see that co(2; i) can be expressed in terms of co(2; fig ).

Based on the above arguments, it is clear that the proof follows from the proposition
below.

PrOPOSITION A.1. Suppose the assumptions of Theorem hold. For each j, let I'; =
0%, Q; = Q; be a simple smooth positively-oriented curve that is uniformly bounded
away from the support of the deformed MP law ¢. Assume that f;,1 < j < r, is a
collection of functions that are analytic in a neighborhood of ©;,1 < 7. Then for any
admissible function ® : R™ — R, we have that

‘m(m. F 2ozt 1) = sy )z, - YT f FEelzine) -~ sen)d:)

2mi Jr,

_m(m Fu(2)(co(Z: py) — Sen )z, -+ 7{ Fo(2)(co (i ) — scN)d)’

2mi Jr,

<CM”’,
for some constants C,§ > 0.

|

The proof of Proposition [A] will be provided in the next subsection. We provide
some remarks before concluding this subsection.

REMARK A.1. We point out that some relevant results have been established in the
literature under various assumptions. In [2] Theorem 2], provided the ESD of ¥, con-
verges to some deterministic limiting distribution and cy converges to some limit ¢,
under the assumption that Lemma [6.1] holds and ]Ex?j = 3/M, the authors proved that

(J fi(x)pr(dz), -, [ fr(z)ur(dz)) converges to some Gaussian random vector. More
recently, in [6()], the authors generalized the above results without assuming convergence
of ¥y and ¢y and the moment matching conditions (B33). Further, [60] considers a
more general class of functions. However, the results of [60] are established under the
assumption that |cy — 1] > 7. Our Proposition [A] considers completely general popu-
lation covariance matrices as in [60] with r being possibly slowly divergent, but under
the moment matching condition [.33]). Under [B.33]), our results also hold even ¢y = 1.
Finally, we mention that for all ¢y € (0,00), based on the results established in [3[60],
it is possible to derive the explicit distribution for the functional forms of the VESDs of
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Wy in Proposition [A.], which depend on all the first four moments of X. We will pursue
this direction in the future.

REMARK A.2. Since the support of gp is the same with that of ¢ (cf. (GII))), an
immediate consequence of Proposition [A 1] is that

(f i) = (o)

in the sense of convergence of finite-dimensional marginals where k > 0 for |ey — 1| <7
and k € Z if ¢y < 1 = 7 for some constant 7 > 0.

A.2. Proof of Proposition [A1l We proceed to the proof of Proposition [A1] in this
subsection. We point out that in [45] Theorem 5.11], a similar result has been established
when Xy = I and Y is Gaussian. The proof of [45, Theorem 5.11] relies on a discrete
comparison method which only works for diagonal Y. For general ¥, we need to use
the interpolation method as developed in [37].

For simplicity of notation, define the index sets

Ty:={1,...,N}, Tr:={N+1,....N+ M}, T:=T,UT,.

We shall consistently use the Latin letters ¢, j € Z;, Greek letters u,v € Iy, and a,b € Z.
DEFINITION 3 (Interpolating matrices). Introduce the notations X° :=Y and X! :=

X. Let p?u and pw be the laws of XO and X}M, respectively. For 6 € [0, 1], we define the
interpolated law

We shall work on the probability space consisting of triples (X, X?, X1) of independent
T, x I, random matrices, where the matrix X¢ = (X? 1) has law

IT IT #%.(ax?). (A.3)
1€1y p€ls

For A e R, i € 7; and p € 7, we define the matrix X through

0, L XZL, if (.7) V) 7é (i’ :u)
(X(im)jy o {,\’ if (j,v) = (i,p) (A-4)

In view of ([6.3) and (6.4]), we introduce the matrices
0 . 0 0, . 0,1
GO(2) =G (2, X%), Gl (2) =G (X0

(ip)
Furthermore, we denote the matrix
$1/2 .
= )\\/— 1/2 0 f f# . (A5)
fuf %o 0

By resolvent expansion we readily obtain that for A, \' € R

’ K+1
ertateert ’\)—I—ZG(W (ak, AG“) el (anyein) (A.6)

(i (i) " (in)
Setting A = X¢ | by Lemma 6. for z € D,, since || Lo < oo, we readily obtain that

(@) — 1), v) < M2,

G H —0-(1). (A7)
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Moreover, we set X' = 0. Under Assumption [ it is easy to see that X(’ =0 (M~1/?),
Using the definition of Stieltjes transform, it is trivial to see that ”G(m)” < Cn~t for
some constant C' > 0. Therefore, we can choose K = 2 in ([AZ6]) such that for all z € D,(z)

ot (anem)™

‘ = O«(M7127),
where we used the structure of (AH). Together with (AL6) and (A7), we readily obtain
that
< (G20 ~11(2)), > < M2, (A.8)

LEMMA A.2. For any differentiable function F : R71*%2 — C, we have that

—]EF =Y 3 |EF ) _EF (x5 (A.9)

w) (in) ’
i€Z1 pely

provided all the expectations exist.

Proof. This is an immediate result from (A3) and fundamental theorem of calculus.
(]
For any deterministic vector v € R, we denote its natural embedding into RN +M as

5= (g) e RN+M, (A.10)

To establish an analogous result of Proposition 5.1 of [45], i.e., Theorem [A1]l for any
fixed integer r and a sequence of deterministic vectors qx, px, 1 < k < r, it suffices to set

F(X):(I)(Zl, aZT), (A].l)
where we denote
Zy = Zp(X) == VM@; (G (2, X) — I(zx))Pr, 1 < k <7, (A.12)

and {zx} is a sequence of points away from the support of deformed MP law. In view of
Lemma [A2] we will need the following lemma. Its proof can be found in Appendix

LEMMA A.3. For some simple smooth positively-oriented contour 2 which encloses the
support of g, and its boundary I' = 0f2, suppose that for some small constant 7 > 0,

inf dist(E . A13
Z:b;ginermax{ ist(E,supp 0),n} > 7 (A.13)

Then there exists some 0 < § < 0.5 such that for all § € [0, 1], we have

3 []EF ( - ) EF (X( 5)} <N°°.
1€L1 p€ls
We first show how Lemma [A-3] implies Proposition [A1l

Proof of Proposition [Adl The proof relies on the trapezoidal rule (see Lemma
[D3) and is similar to the arguments of the proof of [45, Theorem 5.11]. We sketch the
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proof here for the purpose of completeness. Without loss of generality, we assume that
I'; =T for all j. Denote

Z; = j{fj (co(z; pr) — Sey )dz.

27

We use Lemma [D.3] to approximate Z; and denote

\/_

Zim = S 32 Do) e

where z; and w; are defined in (m) Consider that
AM,WL =0 (Zla ce 7ZT) - (Zl,m7 T 7Zr,m) .

Denote
L= hmi%fo’NlMSN(l — \/CN)Q’ =y

It is easy to see that both £ and 4 are bounded. Since I' is uniformly bounded away
from the support of g, we can choose a small constant 6 > 0 such that [£—J,v4 +J] C Q.
For any given small € > 0, we define a high probability event = = E(J, €) such that the
following conditions hold:

(i) For z € I' uniformly and any deterministic units u,v € R¥N+M

u*G(2)v — u'Il(z)v| < M~1/2+e, (A.14)

(ii) For the given § > 0, when M is large enough

/\NZ£—5, )\1 S’Y++5. (A15)
Note that by Lemma [6.I] the definition of £ and Proposition [6.2] such an event exists.
For the sequel, we fix some realization X € = or Y € E satisfying the above conditions
(i) and (ii). Hence, the rest of the proof is purely deterministic.

Recall Definition 2 Applying Lemma for Z; — Z; ,, with D =5, we obtain that

for some constant C' > 0

‘Zj — Zj,m‘ S C\/M’ITL_5,
where we used the assumption that f; is analytic. We can choose m such that VMmb =
o(1); for example, m = M'/. Consequently, we have that for some constant C'; > 0

|Ansm| < CLMTY/18, (A.16)

Denote

Z; = o j{f] (co(z pg) = Sen )z, Zjm =

Zf] zk C0 ZkaMT) SCN)wj'

27i

Using (A.16), an analogous discussion for pz and triangle inequality, it suffices to control
zm = (P(Zl,mu te 7Z'r,m) - (I)(gl,'rru e 72r,m)-

Recall (A-12). We can consider a function ¥ : R™ — R such that

m Wi m

2771
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In fact, it is easy to see that Am can be controlled using Lemmas and [A.3] if we can
show that ¥(-) is admissible with respect to Zx, 1 < k < m, in terms of Definition[2l The
rest of the proof is devoted to justifying this aspect. We first prepare some notations.
Note that by Chain rule

s

q
aZjlv"'7qu\Il(Zlﬂ"' va) = Z ayk17'”>ykp¢(y1,... ;y’r’) (H Wkp’jp> ’
p=1

k1,ka2, kp=1
where Y;,1 < i < r, are defined as

Y, (= (s N 7.
7 Zfl(z])Zﬂ,iZJ’
Jj=1
and W = (W;;) € R™™ are denoted by
W
Wi = fo(zj) =2 (A.17)

2mi’
Recall the definition of w; as in (D.7). Using (A4), we find that there exists some small
constant € = ¢’(¢) such that

max{[Yi|,|Z|} < M*, (A.18)
3

where we used the fact that || ;]| < oo, 1 < ¢ < r. Since ® is admissible, by Definition
Bl we have that for some constant Cy > 0

< MCOG/ .

‘ayklv'“ ﬂk,,q)(yla L Yr)

Moreover, since ¢ < m and 7 is fixed, we conclude that there exists some constant C
such that
g1’

’8Zv ..7qu\I/(Zl,--- ,Zm)’ < Mc1e’.

Since € is arbitrary, using (AIf), we see that ¥ is admissible. This completes our
proof. O

Appendix B. Some algorithms and the deterministic formulae. In this ap-
pendix, we provide the Jacobi matrix Cholesky factorization algorithm, some determin-
istic formulas and the MINRES algorithm.

B.1. Cholesky factorization algorithm. In this subsection, we provide the following
algorithm, Algorithm [Bl which is designed to calculate the Cholesky decomposition for a
Jacobi matrix.

Algorithm 3: Jacobi matrix Cholesky factorization

(1) Suppose T is an N x N positive-definite Jacobi matrix, set H = T.
(2) Fork=1,2,...,N — 1.
HI?Jrl,k

Hyy

(a) Set Hii1e41 = Hey1p1 —
(b) Set Hk;’k;Jrl =0.
(¢) Set Hikr1,k = Hikr1,6/ v/ Hi k-

(3) Set HN,N = \/HNJ\/.

(4) Return o(T) = H.
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B.2. The MINRES algorithm. In this subsection, we record the MINRES algorithm

[54] Lecture 38|

| Algorithm 4: MINRES Algorithm

(1) Given some threshold € > 0 and set g; = b/||b]|2.
(2) Fork=1,2,....n,n <N

(a) Compute a Tia Tk
k=1 = S 1 -
Tk_1ka71
(b) Set @ = x—1 + ap—1Pr—1-
(¢) Form
aq bo
bo ai

b2 ap—1
(d) Set T =Tk—1 — ak,lek,l.
T Tr_
(e) Compute b1 = —ﬁ;kl.
Tr—1Tk—1
(f) Set pr = ri — b—1Pr—1.

B.3. Deterministic formulae. In this subsection, we provide some deterministic for-

mulas for the numerical algorithms.

LEMMA B.1 (Deterministic formulae). Consider the Lanczos iteration applied to the
pair (W,b) with W > 0 and ||bl]]2 = 1. Suppose the iteration runs until step n < N,
r,, = 0, producing a tridiagonal matrix T = T,,(W,b). Let T = HH™ be the Cholesky

factorization (see Algorithm Bl of T" where

Qo
Bo oq
H = B1

ﬁn72 Qp—1

Then for the CGA on Wa = b with &g =0, for k < N,

k—1
ﬁ,
Ikl = T a—J
j=0 "

Moreover, we have that

1 1 g B
lewllw = / Lanzsn) - 5
3 a1l

or equivalently,

lerllw = lrellan/ £ (LeLE) = f1, Lk = Hip1:n pt1:n-

Licensed to Univ of Calif, Davis. Prepared on Fri Apr 1 18:55:40 EDT 2022 for download from IP 168.150.85.218.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

(B.3)




THE CONJUGATE GRADIENT ALGORITHM ON SPIKED COVARIANCE MATRICES 145

For the MINRES algorithm on Wz = b, for k < n,

izl o —1/2
Irella = {1+ ]] 3 . (B.4)
j=1¢=0"*

Proof. (B) and (B4 follow from Propositions 4.1, 4.2 and the calculations of Section
6 of [45]. (B2) and (B3) can be obtained with slightly modification using the calculation
below (34) of [45]. O

Appendix C. Additional technical proofs.

C.1. Proofs of Lemmas [G.1] and 6.4l

Proof of Lemma The results have essentially been proved in [37] with slightly
different assumptions; we only point out how to conform our setting to that of [37].

First, in [37, Definition 3.2], the linearizing block matrix is defined as

-5t X
Hy = 0 . 1
0 ( X* =zl ) (C.1)
It is easy to check the following relation between (6.3) and (CI)
1/2y21/2 1/2v11/2
| * X 0 H,y zH 4%, 0 . (C.2)
0 1 0 1

In [37], the deterministic convergent limit of Hy ' is

| —Zo(1+m(2)%0) 7t 0
Hoz) = ( 0 m(z) ) |

Therefore, by (C.2), we can get a similar relation between ([6.3]) and (C3)

_ 271/2251/2 0 271/2251/2 0
H(z)< 0 7 IIy(2) 0 ] (C4)

Second, when dist(E,supp(g)) > 7, the results have been established for (H; !, Tly) in
[37, Theorem 3.16]. Since |z| < oo, together with (3) of Assumption [I we can conclude
that the results should also hold for (G,II). Moreover, when 7 > 7, it is easy to see that
for some constant C' > 0,

n
Consequently, when 1 > 7, we have that for some constant ¢ > 0

: : 1> e .
zleanU min |14+ m(2)o;| > ¢ (C.5)

According to (3.20) of [37], once (C.H) holds, under (1)—(3) of Assumption [l the results
for (Hy*,Ty) can be obtained as stated in [37, Theorem 3.6]. This completes the proof
using |z| < oo and (3) of Assumption [II O
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Proof of Lemma We start with (6I3)). For v;,1 < i < N, multiplying it on
both sides of (D) yields that

0rCi () = 2 (v;‘Gl(z)'vi — GV, (D7 414 2VIG V)T v:lei) . (C.6)
gi

First~7 when v = v;,7 > r, since v}v; =0, v; € V,, by Lemma [6.I] we conclude that for
z € D,,
vi G (2)v; = viG(2)v; + O (M~Y?),
where we used the fact that o; = 7;,7 > r. Second, when v = v;,¢ < r, we obtain that
1
1+d;
where we used Lemma This completes our proof of (6I3]) using the expansion

v = Zj\il wW;V;.
For ([6.14), let A(z) = G(z) — II(2), by Lemma [D.2] we have that

v;‘él(z)vi = (vViG1(2)v; — L;) + O<(M_1/2)7

~ ~ ~ ~ \—1 ~
w* Ga(2)u = u*Ga(2)u + 2 11(2)V, (D*1 +1+ zVﬁG(z)VT) ViG(2)u
~ ~ ~ \ 1 ~
A A(2)V, (D—l +1+ zV:G(z)VT> VG (2)a.

Using the structure of ([6.5), (D-4) and (D.5), for the first term, we have that

~ ~ ~ \ 1 ~
A TI(2)V, (D*1 t1+ ZV:G(z)Vr) VG (2)a = 0.
By Lemma [61] we have that

Hﬁ*A(z)\A/T

= 0. (M), || ViG] = 0<(1),

and for some constant C > 0,

< S Lo,

~ ~ \ 1
—1 *
H (D +1+ erG(z)V,) S T590)

where we used the definition D, in (BIZ). This completes our proof for (6.14). O

C.2. Proof of Lemma[A3] In this subsection, we proceed to the proof of Lemma [A3]
Its proof relies on the following decomposition, which is an analog of Lemma 5.15 of [45].
Define

S(X)=8(z,X) =VM(G(z,X) —T1(2)).

We use the shorthand notation S(X) = S(z, X) if there is no confusion on the spectral
parameter.
For each pair (i, ), since 2(1)/ 2 Jif,, is a rank one matrix, we write

S5 fify = 16¢".
Note that £ < co. Recall (AF]). Note that

1/2 ¢ px
(f f?zl/Q 20 OfoH> = UDU*u (C7)
pdi =0
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where D € R2%2 and U € RV+M) X2 gp6 defined as

oot 0= (5 1)

LEMMA C.1. For 8 = 0,1, any deterministic unit vectors w,v € RY and any spectral
parameter z € D(z,7) in (6.0), we have

4
B
AS(X, )8 = A S(XE0)T + Jo + Y M2, + O (M—5/2) ,
k=1

where J is defined as

JO — \/ Z \/—Xi 57%

k:e{2 4}
and s, is independent of 5 and defined as
s := w11 (UDU*I)* 3, (C.8)
and Jg,1 < k < 4, has the following form
= (—\/MXi)kgk,

where g only depends on X 2’3), i.e., independent of XSL satisfying that

gr. = 0<(1).
Proof. Using ([(ALG) with K = 4, we obtain

0,x5, X5 6.0 F
S(X(w) > s(x (w))+x/_ZGW< e > (C.9)

5
GaXm w 6,0
+VMG, ( (i) G(w)) :

We now consider the terms on the right-hand side of (C.9). When k = 1, using (A7)
and (C7)), we have that

sk 0,0 e 0,0 ~ B~k 0,0 0.0 &
VI GUf) A Gl = —VALX @ Gl UDU" Gl o

By construction of (A4]), we have that ﬁ*GG 0 UDU*G )'v is independent of X;,,. We
decompose

@*G;) UDU*G(;) & = W TIUDU"II® + &1, (C.10)

where

Eipn = M2 [S( © JUDU*GYS, + TUDU"S(X(.2)] &.
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Since X 2’2) is independent of X i, we can see that &;,, 1 is independent of X, f; We proceed
to the analysis of (CI0Q). First, invoking the structure of (G.5) and (A1), we find that

@ TTUDUIS = (w*IL;(2),0) UD (5 g“’)

~ (um (.0 (1)
=0. (C.11)
Second, by Lemma [6.T] and the fact £ < oo, we have that
Eipa = O<(M1/?).
Combining the above arguments, it is easy to see that we have that

= (VX)) g1, g1 = VIIVEE .

The other terms when k = 2, 3,4 can be analyzed in a similar fashion. We only point out
the differences. In particular, on one hand, by an argument similar to (CII]), we have
that

W I(UDU*I)*% = 0, k is an odd integer. (C.12)

Consequently, for k = 2,4, we collect these two terms as Jy. On the other hand, we define

k
Ji = (_ \ MX»LBM) 9k, Gk = Zk/2 v Mgiu,]ﬁ k= 273747

where &, 1,2 < k < 4, are defined as
2
Eipa = MG {S (x(0) (upurGyy)) +UDU*s (X(9) ) UDU*GY)

+ (ITUDU*)? S (X9 0 )}

(ip)

Eins = M%G" [S (x() (vpUray, ) +1UDU"S (X)) ) (UDU" Gy, )

+ (IUDU*)? § (X9 0)) UDU*GY’) + (IIUDU")’ § ( )}

o) (vpuraly, ) +1UDU"S (X)) (UDU*GW))S

Eipa:= M—2g* [S (X

+ (MUDU*)’ s (x{9) ) (UDU*GYy)

+ (IUDU*)* § (Xf,‘j))}

) + (IUDU*)® § (Xf“?)> UDU*G!

Moreover, it is easy to see from Lemma that
Eipk =0 (M%) 2<k<4.
Finally, for k = 5, by a discussion similar to (AS]), we have that

< (ijf)ﬁ - n(z)),a> < MU, (C.13)
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Since k is odd, using (CI2) and a discussion similar to (CI0), together with (CI3), we
obtain that

0 X 0.0
@G, (UDuU* Gw) = Eips,

where &, 5 is defined similarly as &, ,1 < k < 4, and satisfies &, 5 = O<(M*1/2).
Consequently, by Assumption [Il we conclude

Sk O’Xfm i —
vVMaG," (A(w G?ﬁ) D=0 (M™?).

This completes our proof. (|
Armed with the above lemma, we proceed to the proof of Lemma [A.3]

Proof of Lemma [A.3l We claim that, for 8 = 0,1, any 6 € [0,1] and some small
constant € > 0, the following holds

X5, 6,0 —5/2+4€
‘IEF (X(Z g ) ~EF (x02) - j’ < M/ (C.14)

where J only depends on X(ei’g), Sk, k = 2,4, defined in (C.§) and the moments of th up
to order of four. (CI4) implies Lemma [AZ3l In fact, since 53, k = 2,4, are independent
of 3=0,1, by 333) and (CI4)), we readily obtain that

EF (x050) g (x05 )| < prs/2ee,
(ip) (ip)

This completes the proof of Lemma [A3]

The following arguments now lead to the proof of (CI4]). These arguments are similar
to those in Proposition 5.16 of [45] utilizing Lemma [C.J] and we only point out the main
differences. Denote v = (y1, -+, ) such that

4
vi=Joi+ Y M7F2J + O (M), (C.15)

k=1

where this represents the term in Lemma applied to q;, p;, z; and x? z’u) Applying
a fifth order Taylor expansion to F' defined in ([A.T1l), using the conventions (Al and
([A22)), we have that for 8 = 0,1,

() -0 (08 s (32) )
@ (20 (X(0) . 2 (XZ’S)))%

~r(xi) e 3 ol

k=1 |a|=k

- 6,0
9*e (Zl (X(z'u) + h%) 2 (X(m) + h%))
o!

¥,

+ 2

|a]=5

for some constant 0 < h < 1. Here a € R™ contains nonnegative integers. We first
handle the error term when |a| = 5. Recall the definitions of Jy and J; in Lemma
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We readily conclude that for all 1 <i <r

Joi =0 (M~Y?), J,., = 02(1).
Consequently, according to (C.I5)), we find that

020 (70 (X(0) +hn) o 2 (X0 + e )) O

|a|=5

Next, we can set

0*d (Z1 (X(O{S)> vy Ly (XZ’S))) ~a

4
J= ~ 3,

where 4 = (31, -+ ,7,) and

4
Fi=Joi+y M FPJ 1<i<r
k=1

It is clear that J only depends on X(Q{S)’ sk, k = 2,4, defined in (C.§) and the moments
of Xi up to order of four. Moreover, by (C15), we conclude that

o A ) B i) IV

This concludes the proof of (C.I4) and hence Lemma [A.3] O

Appendix D. Some extra lemmas.

D.1. Some technical lemmas. In this subsection, we prove some lemmas. These lem-
mas provide key connections between the VESDs of the spiked and non-spiked sample
covariance matrices.

LEMMA D.1. Let V,. be the collection of the first r spiked eigenvectors of ¥ and D =
diag{ds,- - ,d,}. We have that

2, P26, (2) 8 28y 1
— —2G1(2)V, (D' + 14 2VIG1(2)V,)  VIGi(2) + Gi(2).  (D.1)
Proof. Note that
Sy ARG () B2 R = s (XX T - an ) T g
= (Wo-2+2- 22(1)/22712(1)/2)*1

= ([G1(2)] " + 2V, D(1 + D)V L. (D.2)
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Using the Woodbury’s identity
(A+SBT) ' =A"' - A 1S(B '+ TA'S)"'TA Y, (D.3)
we have that
(IG1(2)) ! + 2V, D1+ D)~ 'v:) ™"
— Gi(2) = 2G1(2)V, (D™  + 1+ 2ViG1(2)V,) " VIGy(2).

This completes our proof. O
The second lemma provides the connection of the VESDs of the right singular vectors
of the spiked and non-spiked covariance matrices.

LEMMA D.2. For any deterministic vector u € R, denote u € RV*+M as the natural
embedding of w such that
_ 0
= . D4
(1) (.4

Moreover, denote \A/'T e RWHM)Xr a5 the natural embedding of V,. such that
V, = C;) . (D.5)

~ ~ ~ ~ \ 1 ~
u'Gou = u*Ga(2)u — 20" G(2)V, (D_l +1+ zVﬁG(z)VT) V:G(z)u.

Then we have that

Proof. Recall [6.3)) and (6.4]). We define the analogous quantities for the spiked model

as
~ - 0 »2x
HEH(Z7X) ::\/E<X*El/2 0 )7

and G(z) = (H — z)~!. Denote £ € RN+M ag
5= (25/2 0) |
0 I
Similarly, we can define S, With a discussion similar to ([D.2), we find that
STISEES;t = ([G(z)]’1 +2V,D(1 + D)*l\A/:)_1 .
Then by the Woodbury’s identity (D.3)), we have that
SSISGSST! = G(2) — 2G(2)V, (D*1 Y14 Z\A/':G(z)\A/})_l ViG(z).  (D.6)
Recall ([6.4]). Similar expression holds for G. We have that
u*Gy(2)u = w* Ga.
Moreover, by (D6, we have
WGU = u Go(2)u — 20 G(2)V, (D-1 +1+ zV:G(z)\Z) ViG(2)a.

This completes our proof. O
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D.2. Some auziliary lemmas. In this subsection, we collect some auxiliary lemmas.

LEMMA D.3. Suppose I is a curve of length one with infinitely differentiable arc length
parameterization £ : [0,1] — T such that £(0) < ¢(1/2). Given some large integer m,
denote t; = (2j +1)/2m,j =0,1,2,--- ,m with the convention s,, = so. Then for every
D > 0, there exists some Cp = Cp(T) > 0, such that

m—1

75 [(2)dz = 3 f(z)ws| < ColfP)laom™P,

Jj=

where z; and w;,5 =0,1,2,--- ,m, are defined as

zj = U(s;), wj = % (D.7)

Proof. The proofs follows from a standard approximation argument using the
Euler-Maclaurin formula. For example, see the arguments above the proof of Theorem
5.11 in [45]. O

LEMMA D.4. Denote the standard Marchenko-Pastur law [41] by pwp with parameter c,
ie.,

e (0) = ey 1E =200 =2 gy (1 ) ), where s = (1.5 VR
(D.8)
where []; gives the positive part of (-). Suppose the spectrum of ¥y is given by the
typical locations of puyp:

T+ 1—1/2
() =

,1<i<N.

aq

Set o = ¢~ ! and assume that aq, s > 1, and cj_\,1 — aj. Let p(\) be the asymptotic

density function of the ESD of Wy defined in ([2.8). Then

p(N) = % <§/9a1(1 +ar +a2)(A— &) + 6\/3aif(A “A) A2 =N = A1)

- §/9a1(1 +ay + as)(A — &) — 6\/3a§(A “A) Mg — NN — AH)) 1

Ae Dy Ar2]),

where & = oo, a2), Ao = A_(a1,a2) and Ay = Ay (o, a0),k = 1,2, can be cal-
culated explicitly and defined in [23]. As a special case, if oy = ag = «, we have that
)\_;,_7]9 = )\+, k= 1,2, and

\  —1+420a+8a%+ (1+8w)*?  2(a—1)3
£ "0 T 901+ 2a)°

8a2

Proof. See [23] Section 4.2]. O
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