
Hamiltonicity of random graphs in the stochastic block
model

Michael Anastos
Freie Universität Berlin

manastos@zedat.fu-berlin.de

Alan Frieze∗

Carnegie Mellon University
alan@random.math.cmu.edu

Pu Gao†

University of Waterloo
pu.gao@uwaterloo.ca

Abstract

We study the Hamiltonicity of the following model of a random graph. Suppose that
we partition [n] into V1, V2, . . . , Vk and add edge {x, y} to our graph with probability
p if there exists i such that x, y ∈ Vi. Otherwise, we add the edge with probability q.
We denote this model by G(n, p, q) and give tight results for Hamiltonicity, including
a critical window analysis, under various conditions.

1 Introduction

The Hamiltonicity of various models of random graphs has been studied for many years. As
far back as 1976, Komlós and Szemerédi announced their solution for the random graph Gn,m,
although the published paper came out later in 1983 [5]. Since that time there have been
many results on Hamiltonicity of random graphs, including but not restricted to, binomial
random graphs, random regular graphs, binomial random graphs restricted to given mini-
mum degrees, random k-out graphs, random percolation on given graphs, random graphs
produced by (various types of) random graph processes, and also random hypergraphs. See
a recent bibliography [3] by the second author which goes into great details.

In this paper we study Hamiltonicity of random graphs from the so-called Stochastic Block
Model. This random graph model has been the subject of much research in the computer
science community. It is a generative model for social networks consisting of distinct commu-
nities. The model generalises the Erdős-Rényi random graphs, where every pair of vertices
is connected by an edge independently with the same probability. In the stochastic block
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model, the probability of connecting a pair of vertices depends on which communities they
belong to. Research on the stochastic block model is mainly on inferring the community
membership given an instance sampled from the model. A recent paper by Abbe [1] surveys
this aspect.

A formal definition of the stochastic block model is given as follows. Let P be a symmetric
k × k matrix with nonnegative entries between 0 and 1, and n = (n1, . . . , nk) be a vector of
positive integers. Let n =

∑n
i=1 ni. Let G(n, P ) be a random graph constructed as follows.

The vertex set is V = ∪k
i=1Vi where Vi = {(i, j), j ∈ [ni]}, and any two vertices (i1, j1)

and (i2, j2) are adjacent with probability P (i1, i2) mutually independently. In this paper we
consider the special case where k ≥ 1 is a fixed integer, and P has value p = p(n) on the
diagonal, and has value q = q(n) off the diagonal. We denote G(n, P ) by G(n, p, q) for this
special P .

Unlike the Erdős-Rényi random graph, G(n, p, q) is a non-homogeneous model where the
distribution of the neighbourhood of vertex v depends on which Vi it belongs to. If p = q
then G(n, p, q) reduces to G(n, p). If p = 0 then G(n, p, q) reduces to a random k-partite
graph. The closest previous results to this work are the cases of Hamiltonicity of Erdős-
Rényi graphs by Komlós and Szemerédi [5], and of random bipartite graphs considered by
the second author[2]. The present paper utilises and extends the proofs in these papers in a
significant manner.

2 The main results

We call vertex sets Vi blocks, and an edge is called a block edge if its ends lie in the same
block, and a crossing edge otherwise. Given a vertex u ∈ Vi, we say u has partition index i.
We aim to determine when G(n, p, q) is Hamiltonian.

We will assume the following set of conditions.

(A1) min
1≤i≤k

{pni + (n− ni)q − log ni} = log log n+O(1);

(A2) qn2 = ω(1);

(A3) max
1≤i≤k

ni ≤ n/2, if p = O(1/n).

(A4) min
1≤i≤k

ni = Ω(n).

Note that if G(n, p, q) is Hamiltonian then conditions (A2) and (A3) are necessary in general.
If (A2) fails then with a non-vanishing probability there can be some Vi such that E(Vi, V \
Vi) = ∅. If (A3) fails then G(n, p, q) cannot be Hamiltonian if p = 0. Condition (A4) can
probably be relaxed, but it requires more delicate analysis. We will show that condition
(A1) captures the critical window for Hamiltonicity of G(n, p, q).

Let an and bn be two sequences of real numbers. We say an = O(bn) if there exists an
absolute constant C > 0 such that |an| ≤ C|bn| for every n ≥ 1. We say an = o(bn) if
bn > 0 for all n ≥ 1 and limn→∞ an/bn = 0. If an > 0 for all n ≥ 1, and bn = O(an)

2



(or bn = o(an)) then we write an = Ω(bn) (or bn = ω(an) respectively). We will consider
a sequence of random graphs indexed by their order, denoted by n. All asymptotics refer
to n → ∞. Given a graph property Γ, we say G(n, p, q) ∈ Γ asymptotically almost surely
(a.a.s.) if limn→∞(G(n, p, q) ∈ Γ) = 1. Let HAM denote the class of Hamiltonian graphs. Our
main result is the following.
Theorem 1. Assume p and q and n satisfy assumptions (A1)–(A4).

lim
n→∞

P(G(n, p, q) ∈ HAM) = exp

(
−
∑

1≤i≤k

e−ci

)
,

where ci = pni + (n− ni)q − log ni − log log n.

As Hamiltonicity is an increasing property, the following corollary follows immediately.
Corollary 2. Assume p and q and n satisfy assumptions (A2)–(A4).

lim
n→∞

P(G(n, p, q) ∈ HAM) =

{
0 if min1≤i≤k{pni + (n− ni)q − log ni} < log log n− ω(1)
1 if min1≤i≤k{pni + (n− ni)q − log ni} > log log n+ ω(1).

3 Small degrees

Let D2 denote the class of graphs with minimum degree at least 2. Note that G /∈ D2

implies that G /∈ HAM. Thus, the following lemma immediately yields an upper bound on the
probability that G(n, p, q) is Hamiltonian.
Lemma 3. Assume (A1) and (A4). Then,

(a)

lim
n→∞

P(G(n, p, q) ∈ D2) = exp

(
−
∑

1≤i≤k

e−ci

)
,

where ci = pni + (n− ni)q − log ni − log log n.

(b) For constants 0 < α < 1, and α + α ln(1/α) < γ < 1. A.a.s. G(n, p, q) contains at
most nγ vertices whose degree is at most α log n.

Proof. For part (a), let Xj(i) =
∑

v∈Vi
1{d(v)=j} be the number of vertices in Vi with degree

j. Let W1 and W2 be two independent random variables with W1 ∼ Bin(ni − 1, p) and
W2 ∼ Bin(n − ni, q). Let j = O(log n). By (A1) and (A4) we have p2n = o(1), pj = o(1),
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j2 = o(ni), and j
2 = o(n− ni). Then,

EXj(i) = niP(W1 +W2 = j)

= ni

j∑

s=0

(
ni − 1

s

)
ps(1− p)ni−1−s

(
n− ni

j − s

)
qj−s(1− q)n−ni−j+s

∼ ni exp(−pni − q(n− ni))

j∑

s=0

ns
i (n− ni)

j−s

s!(j − s)!
psqj−s

= nie
−φi

φj
i

j!
, (1)

where φi = pni + q(n− ni).

By (A1), φi − (log ni + log log n) > C for some constant real C and for all i ∈ [k]. It follows
immediately that a.a.s. X0(i) = 0 for every i.

Recall that ci = φi − (log ni + log log n). Let X1 =
∑

i∈[k]X1(i). Then, EX1 ∼
∑

i∈[k] e
−ci .

By (A1), EX1 = Θ(1). Using the standard method of moments (we omit the tedious calcu-
lations), it is easy to prove that X1 is asymptotically Poisson. As an example of similar
calculations, see Theorem 2.8 of [4]. Hence,

P(X1 = 0) ∼ exp


−

∑

i∈[k]

e−ci


 . (2)

The lemma follows by (2) and the fact that a.a.s. X0(i) = 0 for every i ∈ [k].

For part (b), from (1) we have

∑

j≤α logn

∑

i∈[k]

EXj(i) < (1 + o(1))
∑

j≤α logn

∑

i∈[k]

ni exp(− log ni)
(log ni)

j

j!

< k
∑

j≤α logn

(
e log n

j

)j

= (1 + o(1))knρ(α),

where ρ(α) = α + α log(1/α). Part (b) follows by the Markov inequality.

4 Vertex expansion and connectivity

Let G be a graph and S ⊆ V (G), define

NG(S) = {j ∈ V (G) \ S : ∃i ∈ S, i ∼ j}

NG(S) = |NG(S)|

n1(G) =
∑

i∈V (G)

1{d(i)≤1}.
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I.e. NG(S) is the set of vertices not in S which are adjacent to some vertex in S in graph G.
We may drop G from the subscript if the underlying graph G is clear from the context.
Definition 4. In the following and throughout the paper γ ≤ 1. A vertex in G is called
γ-small, if its degree is less than (γ log n)/10. A vertex with degree at least (γ log n)/10 is
called γ-large.

We say that V (G) naturally admits the block partition V1, V2, ..., Vk if the block partition
V1, V2, ..., Vk is defined by the model used to generate G. (e.g. when G is generated via the
stochastic block model). We say G has property EXPN, if there exists ε > 0 such that

for every S ⊆ V (G) where |S| ≤ εn, |NG(S)| ≥ 2|S| · 1{n1(G)=0}.

If F is a subset of edges in G, we use G−F to denote the subgraph of G obtained by deleting
edges in F . A set F ⊆ E(G) is said to be γ-deletable if (i) |F ∩ NG(v)| = 0 if v is γ-small,
and is at most (γ log n)/100 otherwise and (ii) if V (G) naturally admits the block partition
V1, V2, ..., Vk then F contains at most half of the edges between any pair of distinct blocks
Vi, Vj, i, j ∈ [k]. We say G has property SEXPN(γ), if G− F is connected and G− F ∈ EXPN

for all γ-deletable F .

5 Overview of the proof of Theorem 1

Since G /∈ D2 implies that G /∈ HAM, the upper bound for the probability that G(n, p, q) ∈ HAM

is implied by Lemma 3(a). Next we prove the lower bound. Let LC denote the set of graphs
where a longest path contains the same number of vertices as in a longest cycle, and let CNT
denote the class of connected graphs. Note that if G ∈ LC∩CNT then G must be Hamiltonian,
since otherwise, by connectivity it is always possible to extend a longest cycle into a path
which contains more vertices than the cycle we start with, contradicting with G ∈ LC. It
follows then that

P(G(n, p, q) ∈ HAM) = P(G(n, p, q) ∈ LC ∩ CNT) = P(G(n, p, q) ∈ LC ∩ CNT ∩ D2). (3)

Our goal is to prove that P(G(n, p, q) ∈ LC ∩ CNT ∩ D2) ∼ P(G(n, p, q) ∈ D2), which then
yields the asymptotic probability desired by Theorem 1. The proof of the lower bound of
P(G(n, p, q) ∈ HAM) will be split into three cases: (1) p, q = ω(1/n); (2) p = O(1/n); and (3)
q = O(1/n). In all three cases, we will use a multi-round exposure technique of G(n, p, q).
Roughly speaking, we will expose a subgraph Gb ⊆ G where G ∼ G(n, p, q) and Gb contains
most edges of G.

Case 1 is the simplest case, in which we will define graph property TPCL which consists of
a set of properties that hold a.a.s. for G(n, p, q). Then we will define COL to be a set of
properties that edges in G \Gb must satisfy. Then, we will prove that

P({G ∈ LC ∩ CNT ∩ D2 ∩ TPCL} ∩ COL) � P(COL | G ∈ LC ∩ CNT ∩ D2 ∩ TPCL).

This implies that P(G ∈ LC ∩ CNT ∩ D2 ∩ TPCL) = o(1), which will lead us to derive the
asymptotic probability for P(G ∈ LC∩ CNT∩ D2). While obtaining a lower bound for P(COL |
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G ∈ LC∩ CNT∩ D2∩ TPCL) is rather straightforward, an upper bound for P({G ∈ LC∩ CNT∩
D2 ∩ TPCL} ∩ COL) is obtained by using Pósa rotations and bounding the probability that
the longest path does not get extended by the edges exposed in the second stage. This is a
standard technique for proving Hamiltonicity in random graphs.

In Case 2, G(n, p, q) looks like a collection of Gi ∼ G(n, p) plus a set of random edges between
every pair of Gi, Gj, 1 ≤ i < j ≤ k. A tempting approach would be to find a Hamilton cycle
in each Gi and then somehow connect these cycles by using a few crossing edges to form a
Hamilton cycle in G(n, p, q). This approach would succeed if q = o(1/n). However, when
q = Θ(1/n), similar to Case 2, the crossing edges are contributing, with a non-negligible
probability, to the degree 2 vertices in G(n, p, q). Thus, we cannot purely focus on structures
in Gi. Instead, inside each Gi, we will take particular care of the vertices with degree less
than 2, and we will look for a small number of vertex disjoint paths covering all vertices in
Gi. These paths have specified end vertices. Then we will stitch these paths together with
some crossing edges to form a Hamilton cycle in G(n, p, q).

In Case 3, G(n, p, q) is similar to the random k-partite graph G(n, 0, q). Two complications
arise in this case. Firstly, we cannot totally ignore block edges in G(n, p, q) as they con-
tribute to degree 2 vertices in G(n, p, q) with a non-varnishing probability. More specifically,
P(G(n, p, q) ∈ HAM) > P(G(n, 0, q) ∈ HAM) when p = Θ(1/n) and thus, the proof cannot be
obtained by simply extending the proof for random bipartite graphs to random k-partite
graphs. Secondly, due to the asymmetry between p and q, the edges exposed in later stages
will not be uniformly distributed and we need to take care of the multipartition of the
vertices. This is similar to the case of the random bipartite graphs.

As part of the overview of the proof, we define TPCL and COL. They will be used in the proof
of the first case, and in the second case as well with some minor modifications. In Case 3,
their definitions will be significantly modified.

5.1 TPCL

We say G ∈ TPCL(γ) if G satisfies the following set of properties.

(T1) G ∈ SEXPN(γ).

(T2) There are at most nξ γ-small vertices, where 0 < ξ = ξ(γ) < 1.

(T3) If p = o((log n)/n) then every vertex is incident with at most (γ log n)/100 block
edges. If q = o((log n)/n) then every vertex is incident with at most (γ log n)/100
crossing edges.

(T4) There are ω(n) edges between any pair of blocks .

(T5) The maximum degree is at most K log n for some sufficiently large constant K > 0.
Lemma 5. There exists γ such that a.a.s. G(n, p, q) ∈ D2 implies G(n, p, q) ∈ TPCL(γ).

Proof. (T1) follows by Lemma 6. (T2) follows by Lemma 3(b). (T3) and (T5) follow by
a standard first moment argument similar to the proof of Lemma 3. (T4) follows from a
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standard application of Chernoff bounds. We omit the details.

5.2 COL

Let L(G) denote the length of a longest path in G. Assume G′ ⊆ G. Let F = E(G \ G′).
We say (G,G′) ∈ COL if

(a) F is γ-deletable;

(b) L(G) = L(G′) if L(G′) < n− 1, and G /∈ HAM if L(G′) = n− 1.

In the proof of Theorem 1, we will use COL to denote the event that (G,Gb) ∈ COL, although
G and Gb are defined differently in the three cases. We will recall the definition of COL when
we proceed to the proof in each case.

6 Proof of Theorem 1: when p, q = ω(1/n)

Lemma 6. Assume (A1), (A2) and (A4). If p, q = ω(1/n) then a.a.s. G(n, p, q) ∈ D2

implies G(n, p, q) ∈ SEXPN.

Its technical proof is postponed till Section 9.

In this section we take

γ = 1 and ε = b6mim/3 and ξ = 2/5 in (T2).

We also denote by small, EXPN, SEXPN, TPCL the properties γ-small, EXPN, SEXPN(γ), TPCL(γ)
with γ as given above. We first define Gb.

6.1 Gb

Let p̄ = a/n log n, where a = 1. We will choose similar parameters for multi-round exposures
in Cases 2 and 3 with different values of a. We keep a in the definition of p̄ for the ease of
comparison. Define

p1 = 1−
1− p

1− p̄
; q1 = 1−

1− q

1− p̄
.

In Case 1, both p1 and q1 are real numbers between 0 and 1. We will run a two stage
exposure of the edges in G(n, p, q). First, generate Gb ∼ G(n, p1, q1), then independently for
every non-edge x in Gb, add x to the graph with probability p̄. Call the resulting graph G.
It is straightforward to verify that G ∼ G(n, p, q). For convenience, colour the edges in Gb

blue and the edges in E(G \Gb) red.

By our definition of p1 and q1 it is easy to see that (A1) and (A2) are satisfied with p and q
replaced by p1 and q1. Recall that COL denotes the event that (G,Gb) ∈ COL.

The next two lemmas bound P(COL | G ∈ LC∩D2∩TPCL) and P({G ∈ LC∩D2∩TPCL}∩COL).
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Lemma 7. There exists a function f = f(n) → ∞ as n→ ∞ such that

P(COL | G ∈ LC ∩ D2 ∩ TPCL) ≥ exp(−an/f log n).

Lemma 8.

P({G ∈ LC ∩ D2 ∩ TPCL} ∩ COL) ≤ exp(−Ω(an/ log n)).

Now we are ready to prove Theorem 1 in Case 1.

Proof of Theorem 1 (case 1). By Lemmas 7 and 8,

P(G ∈ LC ∩ D2 ∩ TPCL) ≤
exp(−Ω(an/ log n))

exp(−an/f log n)
.

As f → ∞ as n → ∞, the above probability is o(1). By Lemmas 6 and 5, P(G ∈ D2) =
P(G ∈ D2 ∩ TPCL ∩ CNT) + o(1). It follows immediately that

P(G ∈ LC ∩ D2 ∩ CNT) = P(G ∈ D2)− P(G ∈ LC ∩ CNT ∩ D2 ∩ TPCL) + o(1) = P(D2) + o(1).

By (3) and the fact that G ∈ HAM implies G ∈ D2, we have P(G ∈ HAM) = P(G ∈ D2) + o(1).
Together with Lemma 3 this yields the asymptotic probability of P(G ∈ HAM) as in Theorem 1.

It remains to prove Lemmas 7 and 8.

6.2 Proof of Lemma 7

Equivalently we can define Gb as follows. Take G ∼ G(n, p, q). Define

p∗ =
p̄(1− p)

(1− p̄)p
, q∗ =

p̄(1− q)

(1− p̄)q
.

Do the following independently for every edge x ∈ G: if x is a block edge, delete x with
probability p∗; if x is a crossing edge, delete x with probability q∗. As p(1 − p∗) = p1 and
q(1− q∗) = q1 with our definition of (p∗, q∗), we immediately have
Claim 9. The resulting graph is distributed as G(n, p1, q1).

We will prove that conditioning on G = H for any H ∈ LC ∩ D2 ∩ TPCL, P(COL | G = H) ≥
exp(−an/f log n), and Lemma 7 follows.

Consider the set of edges deleted in generating Gb from H. Colour these edges red.

Let P be a longest path in H. Note that COL is implied if

(B1) no large vertex in H is incident with more than (log n)/100 red edges.

(B2) no small vertex in H is incident with a red edge;

(B3) no edge in P is red.

(B4) at most half of the edges between any pair of blocks are red.
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Let X be the union of the set of edges in P and the set of edges incident with small vertices.
Let X = |X |. By (T2), |X | ≤ (n− 1) + n0.4(log n)/10 < 2n. As max{p∗, q∗} = o(a/ log n) in
Case 1, the probability that none of the edges in X is deleted is at least (1− o(a/ log n))2n ≥
exp(−an/f log n) for some f → ∞. Note that (B2) and (B3) are implied if no edges in X
are red. Hence, P(B2 ∩ B3) ≥ exp(−an/f log n). For (B4) we observe that q∗ = o(1), (T4)
implies that there are ω(n) edges between every pair of blocks, and a standard application
of Chernoff bounds shows that there exists a pair for which more than half of the edges are
deleted with probability at most e−ω(n).

Let X be the set of edges in H that are not in X . Condition on no edges in X were
deleted (i.e. became red). We will prove that a.a.s. every vertex is incident with at most
(log n)/200 red block edges in X , and at most (log n)/200 red crossing edges in X . By
(T3) we may assume that p, q = Ω((log n)/n). By (T5), each vertex has degree O(log n).
By the definition of p∗ and q∗, every edge is deleted (i.e. becomes red) with probability
O(p̄ · max{1/p, 1/q}) = O(1/ log2 n). By the tail bounds for the binomial distribution and
the union bound, a.a.s. every vertex is incident with at most o(log n) red edges and thus
P(B1 | B2∩B3) = 1−o(1). Hence, P(COL | G = H) ≥ P(B1∩B2∩B3) ≥ exp(−an/f log n)
for some f → ∞. Lemma 7 follows.

6.3 Proof of Lemma 8

Recall the definition of EXPN and SEXPN. Assuming (T1), there exists an absolute constant
ε > 0 such that

for every S ⊆ V (G) where |S| ≤ εn, we have |NG(S)| ≥ 2|S| · 1{n1(G)=0}. (4)

By the definition of COL we immediately have the following claim.
Claim 10. {G ∈ LC ∩ D2 ∩ TPCL} ∩ COL implies B ∩ {Gb ∈ CNT ∩ EXPN ∩ D2}, where

B = {L(G) = L(Gb) < n− 1} ∪ ({L(Gb) = n− 1} ∩ {G /∈ HAM}). (5)

Proof. If G ∈ TPCL ∩ D2 and (G,Gb) ∈ COL, then by (T1) we have Gb ∈ CNT ∩ EXPN ∩ D2.
Moreover, (G,Gb) ∈ COL implies B. This proves our claim.

Hence, it is sufficient to prove

P(B | Gb ∈ CNT ∩ EXPN ∩ D2) ≤ exp(−Ω(an/ log n)),

as

P({G ∈ LC ∩ D2 ∩ TPCL} ∩ COL) ≤ P(B ∩ {Gb ∈ CNT ∩ EXPN ∩ D2})

≤ P(B | Gb ∈ CNT ∩ EXPN ∩ D2),

by Claim 10. Note that G is obtained by adding every non-edge in Gb independently with
probability p̄. We will prove that conditioning on any graph Gb ∈ CNT ∩ EXPN, adding
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approximately p̄
(
n
2

)
∼ an/2 log n edges will either increase L(Gb), or complete a Hamilton

path in Gb to a Hamilton cycle, with sufficiently high probability. We will use the classical
technique of Pósa rotations to bound the probability of B.

Pósa rotations. Let P = v0, v1, . . . , v` be a longest path in Gb. Then v0 is not adjacent to
v`, and all the neighbours of v` in Gb must be in P , since otherwise we can extend P to
a longer path. Assume viv` is an edge in Gb where i < ` − 1, then another longest path
P ′ = v0, . . . , viv`, v`−1, . . . , vi+1 can be obtained by using the edge viv` instead of vivi+1.
This operation from P to P ′ is called a Pósa rotation. Consider the set P of longest paths
obtained by repeatedly rotating P . All of these paths start from v0 and end at a vertex
that is in P . Let End(v0) denote the set of ends other than v0 in the paths in P. A key
observation is the following. The reader may refer to [4] for a proof.
Lemma 11. |NGb

(End(v0))| < 2|End(v0)|.

Proof. As Gb ∈ EXPN ∩ D2 we immediately have that |End(v0)| ≥ εn where ε is specified
in (4).

Now for every v ∈ End(v0), there is a longest path Pv which is obtained from P by repeatedly
applying Pósa rotations. Let End(v) denote the set of ends other than v in the longest paths
obtained by rotating Pv while keeping v fixed. Again, we have |NGb

(End(v))| < 2|End(v)|,
which implies that |End(v)| ≥ εn. Consider the set E of pairs of vertices (x, y) where
x ∈ End(v0), and y ∈ End(x). We have that |E | ≥ ε2n2. Moreover, adding any pair in E

as an edge to G will either form a Hamilton cycle in G, if ` = n − 1, or form a cycle with
length `+1, and then using the fact that G is connected, we can extend the cycle to a path
of length `+ 1, if ` < n− 1. In either case, event B fails. For that reason, we call E a set of
boosters. We have shown that B fails if E ∩ E(G \Gb) 6= ∅.

By the construction of G, every edge in E is added to G in the second stage of edge exposure,
independently with probability p̄. The probability that none of these edges are added is
(1− p̄)|E |/2 ≤ exp(−ε2an/2 log n). This completes the proof for Lemma 8.

7 Proof of Theorem 1: when q = O(1/n).

The parameters ε, γ, ξ as well as the relevant notation are unchanged from Section 6.

In this case we have min1≤i≤k{pni − log ni} = log log n + O(1). The subgraph induced by
the vertices in block i is distributed as G(ni, p).

Let p̄ = a/n log n with a = 1. Define

p1 = 1−
1− p

(1− p̄)
.

We give a quick overview of the proof in this case. First we generate Gb ∼ G(n, p1, q). We call
a vertex “problematic” if it is incident with fewer than 2 block edges in Gb. Let P denote the
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set of problematic vertices. All edges in Gb are coloured blue. In the second round of edge
exposure, we expose block edges that are not present in Gb with probability p̄. The resulting
graph is G. All edges in G \ Gb are coloured red. It is easy to see that G ∼ G(n, p, q). We
obtain our Hamilton cycle by (i) finding a collection A1 of paths of length 1 or 2 that cover
the problematic vertices, (ii) finding a collection A2 of crossing edges so that the number
of crossing edges in A1 ∪ A2 between any pairs Vi and Vj is even and positive, and (iii)
finding a collection of vertex disjoint paths that connect the ends of the paths and edges in
A= A1 ∪ A2 into a Hamilton cycle. These longer paths found in (iii) only use block edges.

The property COL will be defined differently from the previous case. We will split COL into
three parts. Let COL1 denote the property that

|F ∩NG(v)| ≤ dG(v)− 2 for all v ∈ G such that dG(v) ≥ 2.

where F = E(G)\E(Gb). With a simple first moment argument we can prove the following.
Claim 12. A.a.s. (G,Gb) ∈ COL1.

Let COL = COL1 ∩ COL2 ∩ COL3 where COL2 and COL3 will be defined later. Note that
{G ∈ D2} ∩ COL1 implies Gb ∈ D2. If {G ∈ D2} ∩ COL1 holds then every problematic vertex
is incident with at least 2 edges. For every u ∈ P , randomly choose 2 edges incident with u,
colour them green. For each green edge, colour the end other than the problematic vertex
green. See the left side of Figure 1 for an example.

Given a path u1u2 . . . u`, we say that we supplant the path by an edge e = u1u` if we delete
all the internal vertices on the path and their incident edges, and add edge e. Assume {G ∈
D2}∩ COL1. Supplant every green 2-path in G by a new green edge. Call the resulting graph
H. Note that H is not defined if {G ∈ D2}∩ COL1 fails. Note also that H[Vi \P ] = G[Vi \P ]
for every 1 ≤ i ≤ k. Let E0 denote the set of green edges and let U0 denote the set of green
vertices obtained so far in H.

Next, we will choose a set of blue crossing edges and recolour them green, and colour the
ends of these edges green. For every 1 ≤ i < j ≤ k, if there are an odd number of green
edges between Vi and Vj in H, then randomly choose a blue crossing edge x between Vi and
Vj in Gb and recolour it green. Colour the end vertices of x green. If there is no green edge
between Vi and Vj in H, then randomly choose two blue crossing edges x, y between Vi and
Vj in Gb and recolour them green. Colour the end vertices of x and y green.

See Figure 1 for an illustration of the construction of H and Eg. Let E denote the set of
crossing edges recoloured from blue to green. Let U denote the set of end vertices of edges
in E. Write E =⊥ if the above construction cannot be completed. This happens only if
|EGb

(Vi, Vj)| < 2 for some i 6= j. However (A2) and (A4) ensure that P(|EGb
(Vi, Vj)| < 2) =

o(1). The following a.a.s. properties are straightforward and we omit their proofs.
Claim 13. A.a.s. the following statements hold.

(a) E 6=⊥.

(b) E ∩ E0 = ∅.

(c) E induces a matching.
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immediately implies HHAM, which gives

P(G ∈ HAM) ≥ P({G ∈ D2} ∩ COL1 ∩ HHAM)

≥ P(G ∈ D2)− P({G ∈ D2} ∩ COL1 ∩ HHAM})− P(COL1)

= P(G ∈ D2)− o(1),

by Claim 12 and Lemma 15, which completes the proof.

It only remains to prove Lemma 15. We will prove it by induction on k. The following key
lemma will be used to complete the inductive argument.
Lemma 16. Fix 1 ≤ i ≤ k. Let Hi = G[Vi \ P ] and Ai be a set of pairs of vertices of Hi

such that

• the pairs in Ai are pairwise disjoint;

• V (Ai) ≤ log n;

• no two vertices in V (Ai) share a common neighbour in Hi;

• no vertex in V (Ai) is adjacent to a vertex with degree at most 2 in Hi.

Then a.a.s. if {G ∈ D2} ∩ COL1 holds then Hi + Ai has a Hamilton cycle containing all of
the edges in Ai.

We will prove Lemma 15 in Section 7.1 and prove Lemma 16 in Section 7.2.

7.1 Proof of Lemma 15

We proceed with induction on k. The base case k = 1 follows by Lemma 16. Assume k ≥ 2
and that the assertion holds for k − 1.

With a slight abuse of notation we call the pairs in B edges, even though they are not
necessarily edges present in H. Let B′

k denote the set of edges in B with both ends in Vk
and let B′′

k denote the set of edges of B with exactly one end in Vk. Let Vk(B
′′
k) denote the

ends of the edges in B′′
k that are in Vk. The second assumption of Lemma 15 implies that

|B′′
k | is even. Take an arbitrary pairing A′

k of the vertices in Vk(B
′′
k) and let Ak = B′

k ∪ A
′
k.

By Lemma 16, Hk +Ak has a Hamilton cycle C which uses all edges in Ak. Delete all edges
in A′

k from C. This results in a collection of vertex disjoint paths P1, . . . , P` such that

• the ` paths cover all vertices in Hk and use all the edges in B′
k;

• ` = |A′
k| =

1
2
|Vk(B

′′
k)|;

• the ends of the ` paths are the set of vertices in Vk(B
′′
k);

For every Pj above, the ends of Pj are each incident with an edge in Eg ⊆ B′′
k . Let P+

j

denote the path obtained by adding these two edges to Pj. Supplant P
+
j by a new edge ej.

Now both ends of ej are in ∪i≤k−1Vi. See Figure 2 for an example of the construction of Pj,
P+
j and ej.
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admissible if for each edge in Ai it uses either that edge or none of its vertices. Let L(H+
i )

and L(Hb+
i ) denote the length of a longest admissible path in H+

i and Hb+
i respectively.

We will adapt the previous Pósa rotation arguments to cope with admissible paths. This
requires modifications of several previous definitions.

7.2.1 COL, SSEXPN, TPCL and LC

First, we define SSEXPN which is a stronger condition than SEXPN. For V ⊆ V (G), we say
that (G, V ) has property EXPN

+, if there exists an absolute constant ε > 0 such that

for every S ⊆ V (G) where |S| ≤ εn, |NG(S) \ V | ≥ 2|S| · 1{n1(G)=0}.

We say (G, V ) has property SSEXPN, if the following holds: (i) |V | ≤ log n, (ii) no two vertices
in V share a common neighbour (iii) no vertex in V is adjacent to a vertex with degree at
most 2, (iv) for any F ⊆ E(G) such that |F ∩ NG(v)| is 0 if v is small, and is at most
(log n)/100 if v is large, we have that G− F is connected, and (G− F, V ) ∈ EXPN

+.

We have the following lemma whose proof is postponed until Section 9. For 1 ≤ i ≤ k we
let V (Ai) = ∪e∈Ai

e.
Lemma 17. A.a.s. G ∈ D2 implies (Hi, V (Ai)) ∈ SSEXPN for every 1 ≤ i ≤ k.

Let COL2(i) denote the event that L(H+
i ) = L(Hb+

i ) if L(Hb+
i ) < n − 1, and H+

i /∈ HAM
+ if

L(Hb+
i ) = n − 1. We may define COL2 = ∪i∈[k]COL2(i), although in the proof of Lemma 16

we only need to consider COL2(i). Let COL3 denote the event that

|F ∩NG(v)| is 0 if v is small in G, and is at most (log n)/100 if v is large in G,

where F = E(G \Gb).

We redefine TPCL so that (T1) is replaced by

(T1’): (Hi, V (Ai)) ∈ SSEXPN for every 1 ≤ i ≤ k.

Let H+
i ∈ LC denote the event that the longest admissible path has the same number of

vertices as the longest admissible cycle in H+
i .

7.2.2 Completing the proof of Lemma 16

Because Ai is a set of vertex-disjoint edges, no two edges in Ai appear next to each other
in the longest admissible cycle. Then, if H+

i is connected, one can always extend a longest
admissible cycle to a longer admissible path, unless H+

i ∈ HAM
+. Hence, H+

i ∈ LC ∩ CNT

implies that H+
i ∈ HAM

+. Recall again that Hi and H
+
i are defined only if {G ∈ D2} ∩ COL1

holds. Hence

P(G ∈ D2 ∩ COL1 ∩H+
i /∈ HAM

+) ≤ P(G ∈ D2 ∩ COL1 ∩ {H+
i /∈ LC ∩ CNT})

≤ P(G ∈ D2 ∩ COL1 ∩H+
i /∈ LC) + P(G ∈ D2 ∩ COL1 ∩H+

i /∈ CNT)

= P(G ∈ D2 ∩ COL1 ∩H+
i /∈ LC) + o(1) (by Lemma 17).
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It is sufficient to prove that P(G ∈ D2 ∩ COL1 ∩ H+
i /∈ LC) = o(1), which follows from the

following two lemmas and the fact that a.a.s. G ∈ TPCL.
Lemma 18. P(COL2(i)∩COL3 | H+

i ∈ LC∩{G ∈ D2∩COL1∩TPCL}) ≥ exp(−O(an/ log2 n)).

The proof is almost identical to the proof of Lemma 7, with a few trivial modifications as in
Lemma 23. We omit the details.
Lemma 19. P(H+

i ∈ LC∩{G ∈ D2∩ COL1∩ TPCL}∩ COL2(i)∩ COL3) ≤ exp(−Ω(an/ log n)).

Proof. Recall that V (Ai) denotes the set of vertices spanned by the edges in Ai. We have
the following claim similar to Claim 10.

Claim 20. {G ∈ D2∩COL3∩TPCL} implies that {Hb+
i ∈ CNT∩D2}∩{(Hb+

i , V (Ai)) ∈ EXPN
+}.

Hence,

P(H+
i ∈ LC ∩ (G ∈ D2 ∩ COL1 ∩ TPCL) ∩ COL2(i) ∩ COL3)

≤ P(H+
i ∈ LC ∩ {Hb+

i ∈ CNT ∩ D2} ∩ {(Hb+
i , V (Ai)) ∈ EXPN

+} ∩ COL2(i) ∩ COL3)

≤ P(COL2(i) ∩ COL3 | {Hb+
i ∈ CNT ∩ D2} ∩ (Hb+

i , V (Ai)) ∈ EXPN
+)

Let P = v0v1, . . . v` be a longest admissible path in Hb+
i . A Pósa rotation which adds edge

vhv` and deletes edge vhvh+1 is said to be admissible if vhvh+1 /∈ Ai. Let End(v0) be the set
of admissible paths obtained by doing admissible Pósa rotations on P . We first show that

Claim 21. |NHb+
i
(End(v0)) \ V (Ai)| < 2|End(v0)|.

Proof. The proof is similar to the standard Pósa rotation argument. Consider any y ∈
End(v0) and the path P ′ obtained via a Pósa rotation when y is added to End(v0). Assume
xy is an edge where x in on P . Assume x = vi and assume x /∈ V (Ai). Then, either the
two neightbours of x on P ′ are exactly vi−1 and vi+1, in which case one of them can be
added to End(v0) by a Pósa rotation; or the two neighbours of x on P ′ are not vi−1 and vi+1,
which implies that one of them must have been added to End(v0) before y. Hence, either
{vi−1, vi+1} ∩ End(v0) 6= ∅ or vi ∈ V (Ai). Our claim follows immediately.

By (T1’) and Claim 21, we have that |End(v0)| = Ω(n). Take any x ∈ End(v0), consider
End(x), the set of longest admissible paths starting from x by performing admissible Pósa
rotations. Then we also have |End(x)| = Ω(n) for every x ∈ End(v0). If any of the edges
in E(H+

i \ Hb+
i ) belongs to the set E := {xy : x ∈ End(v0), y ∈ End(x)}, then the event

COL2(i) fails. As |E | = Ω(n2), the probability that E(H+
i \ Hb+

i ) ∩ E = ∅ is at most
(1− p̄)Ω(n2) = exp(−Ω(an/ log n)). Hence

P(COL2(i) | Hb+
i ∈ CNT ∩ D2 ∩ ((Hb+

i , V (Ai)) ∈ EXPN
+)) ≤ exp(−Ω(an/ log n)),

completing the proof.
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8 Proof of Theorem 1: when p = O(1/n)

Our strategy in this case is to produce a random bipartite graph and apply the methodology
of [2]. We will define a 3-round edge exposure of G(n, p, q). Let q̄ = a/n log n where a→ ∞
and a = o(log n). Define

q1 = 1−
1− q

(1− q̄)2
≥

(1 + η) log n

n
,

where η is a positive constant. The inequality above follows by (A1), (A4) and the assumption
that p = O(1/n).

Let Ĝ ∼ G(n, p, q1) and let E1 = E(Ĝ). For every crossing uv /∈ E1, add uv with probability
q̄ and colour uv yellow. Let Ey be the set of yellow edges. Finally, for every crossing
uv /∈ E1 ∪ Ey, add uv with probability q̄ and colour uv red. Let Er be the set of red edges.
The graph with edge set E1 ∪ Ey ∪ Er has the distribution G(n, p, q).

8.1 Gb

Assume that Ĝ ∈ D2 (note that P(G(n, p, q1) ∈ D2) = P(G(n, p, q) ∈ D2) + o(1)). We will

create a bipartite graph Gb which is a subgraph of Ĝ except for a few additional golden
edges which we will denote by G. We will also denote by GV the set of endpoints of edges
in G. Given a graph G and two disjoint subsets of vertices U and V let G[U, V ] denote the
subgraph of G on V (G) with the set of edges in G that join vertices in U to vertices in V .

Property EXPN is modified to state the following: in equation (7) below, A,B is a partition
of V (G).

For all S ⊆ A (resp. B) where |S| ≤ 0.24n, |NG(S) \GV | ≥ 2|S|1n1(G)=0. (7)

Property SEXPN is defined as before.

We will define a bipartite graph Gb that has the following property a.a.s.

Property P: (a) V (Gb) ⊆ [n], |V (Gb)| = n − O(n1/2) and |V (Gb)| is even; (b) Gb has a
set G of golden edges and |G| = O(n1/2); (c) a Hamilton cycle in Gb ∪ Ey ∪ Er covering

G can be modified to create a Hamilton cycle in Ĝ ∪ Ey ∪ Er; (d) there is a bipartition
(A,B) of V (Gb) and a block X satisfying the following conditions: (d1) |A| = |B|; (d2)
min{Vj∩A, Vj∩B} < n/ log2 n for each block Vj 6= X; (d3) |X| ≤ 0.22n if k ≥ 3, and X = ∅

if k = 2; (d4) Gb = Gb[A,B], and if Ĝ ∈ D2 then Gb ∈ D2 ∩ EXPN ∩ CNT.

A partition (V1, . . . , Vk) of V is said to be special if the smallest part has size greater than
0.22n. We will discuss the special case in Section 10. So assume for now that we have
Property P .
Claim 22. Assume that (V1, . . . , Vk) is not special. Then, a.a.s. there exists a graph Gb with

Property P such that (Gb \G) ⊆ Ĝ.
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We postpone the proof of Claim 22 until later. Let Gb be the graph from Claim 22 and let
X be the block that satisfies condition (d) of Property P . Let G = Gb ∪ Ey ∪ Er. We will
show the existence of a Hamilton cycle of G covering G. Then G(n, p, q) ∈ HAM follows by

Property P as Ĝ ∪ Ey ∪ Er has the same distribution as G(n, p, q).

As in Section 7, we will restrict our attention to admissible paths and admissible Pósa
rotations with respect to golden edges. That is, a path is admissible if for all e ∈ G it uses
e or contains neither of the ends of e. A Pósa rotation is admissible if it does not delete an
edge of G. We say that G ∈ HAM

+ if G has a Hamilton cycle containing all golden edges in
G. A matching lower bound as in Theorem 1 on P(G ∈ HAM

+) follows by the following two
lemmas, as in the previous cases.

Let
bmin = min{|Vi|/n : i ∈ [k]} and let γ = b20min/k. (8)

Every γ-large vertex v ∈ A (and ∈ B resp.) in G has at least γ log n neighbors in B (and A
resp).

The next two lemmas bound P(COL | G ∈ LC∩D2∩TPCL) and P({G ∈ LC∩D2∩TPCL}∩COL).
Lemma 23. There exists a constant K > 0 such that

P(COL | G ∈ LC ∩ D2 ∩ TPCL) ≥ exp(−Kan/ log2 n).

Lemma 24.

P({G ∈ LC ∩ D2 ∩ TPCL} ∩ COL) ≤ exp(−Ω(a2n/ log2 n)).

Since P({G ∈ LC ∩ D2 ∩ TPCL} ∩ COL) � P(COL | G ∈ LC ∩ D2 ∩ TPCL) as a → ∞, the proof
of Theorem 1 for Case 3 where (V1, . . . , Vk) is not special follows exactly as in Case 1.

It only remains to prove Lemmas 23 and 24.

8.2 Proof of Lemma 23

The proof is basically the same as that of Lemma 7, except that the probability bounds are
different. G is obtained from G(n, p.q) by deleting edges with probability q∗ = Θ(a/ log2 n)
where q(1−q∗) = q1. Let X be as in Lemma 7, for some longest path P ofG′. The probability
that none of the edges in X are deleted is at least (1−Θ(a/ log2 n))2n ≥ exp(−Θ(an/ log2 n)).
The rest of the proof is the same as in Lemma 7.

8.3 Proof of Lemma 24

Recall the definition of TPCL, EXPN and SEXPN. Claim 10 continues to hold. Thus, it is
sufficient to show

P(B | {Gb ∈ CNT ∩ EXPN ∩ D2}) ≤ exp(−Ω(a2n/ log2 n)),

where event B is as defined in (5).
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As in the proof of Lemma 8, we will show that the probability that the additional yellow and
red edges do not increase L(Gb) is small. However, the graph induced by the yellow and red
edges is k-partite and so there is a subtle issue here with k-partite graphs. The yellow and
red edges exposed in the second and third stage must respect the vertex partition. If the set
of boosters, the potential non-edges whose addition will allow an extension of the longest
path, are all unichromatic, i.e. the ends of each booster are in the same block, then the
edges exposed in the second stage will not help to extend the paths. The purpose of using
several rounds of edge exposure and the bipartitasion is to cope with this vertex partition
issue. To explain how it works, we need a few definitions.

The proof of finding a Hamilton cycle covering G will be an adaptation of [2]. The differences
are that we will restrict to admissible paths, admissible Hamilton cycles, and admissible Pósa
rotations. A pair x ∈ A, y ∈ B is said to be crossing. A crossing pair (x, y) is said to be valid
if x and y are contained in distinct blocks. The other difference from [2] is that we need to
take care of invalid crossing pairs. Let P = (v0, . . . , v`) be a longest admissible path in the
graph Gb. For v ∈ V (Gb) we let σ(v) = 1v∈A. The main effect of restricting to admissible
paths and admissible rotations is to make σ(x) = σ(y) for all x, y ∈ End(v0).

We replace Lemma 11 by the following:

Lemma 25. |NGb
(End(v0))\GV | < 2|End(v0), where GV denotes the end points of the edges

of G.

The proof of the above Lemma is identical to the proof of Claim 21.

Let P be a list of longest paths obtained as follows. P = P ′ = {P} initially and End(v0) =
{v`}. Take a path P ′ ∈ P and do an admissible Pósa rotation (that has not been performed
yet). If it creates a path whose end other than v0 is not yet in End(v0) then add this new
path to both P and P ′, and add its end vertex other than v0 to End(v0). Otherwise add
it to P ′ only. Since at the end |P ′| ≤ n! and each path in P ′ may yield up to n− 1 Pósa
rotations, this process will terminate.

Given that Gb ∈ EXPN we have |End(v0)| ≥ 0.24n.

For each x ∈ End(v0), let Px be the path that was added to P when x was added to End(v0).
Let φ(x) be the vertex adjacent to x on Px. We show next that

|φ−1(z)| ≤ 2 for all vertices on P. (9)

Proof of (9): Assume x ∈ End(v0), u and v are the two neighbours of x on P . Then we
know u and v cannot be in End(v0), since σ(u), σ(v) 6= σ(x), the two edges xu and xv were
not deleted until the rotation step where x is added to End(v0). Suppose xu was deleted in
that step, then φ(x) = v in the path Px. If xv was deleted, then φ(x) = u in Px. Hence for
z ∈ V (P ) we have that x ∈ φ−1(z) only if zx ∈ E(P ). This completes the proof of (9).

Let P(x) denote the set of longest paths obtained by rotating Px with x being the fixed
end, and let End(x) denote the set of the ends of the paths other than x in P(x). Then, all
paths in P(x) must start with xφ(x). Remove from End(v0) those o(n) vertices x for which
φ(x) is incident with a golden edge. Let a path P be EVEN if its endpoints x, y satisfy
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σ(x) = σ(y). Otherwise P is ODD. Since Gb is bipartite, σ is constant over End(x) and so
if P is EVEN (resp. ODD) then so are all the paths in P(x), x ∈ END(v0) and furthermore
for all EVEN paths, σ(x) 6= σ(φ(x)).

Consider Gy. Let Out denote the set of vertices x for which there exists a longest path P in
Gy such that x /∈ P and one end y of P satisfies σ(y) 6= σ(x). We will show the following.

Claim 26. Either all longest paths are ODD or with probability 1 − exp(−Ω(an/ log n)),
either L(Gy) > L(Gb) or |Out| = Ω(an/ log n) in Gy.

Note exp(−Ω(an/ log n)) ≤ exp(−Ω(a2n/ log2 n)) as a→ ∞ is chosen to be o(log n).

If all the paths in P are ODD then with the same proof as in Case 1, we can bound
P(B | Gb ∈ CNT∩EXPN∩D2) by exp(−Ω(an/ log n)) ≤ exp(−Ω(a2n/ log2 n)) by using the set
of red edges. There is one small point. Rotations produced Ω(n2) paths with endpoints x, y
where x ∈ B and y ∈ End(x). Such a pair x, y ∈ End(x) forms a booster unless x ∈ X ∩ B
and y ∈ X ∩ A. Because of Property P (d3), |X ∩ A|, |X ∩ B| ≤ 0.22n . Thus the number
of boosters is now at least [(0.24− 0.22)n]2 = Ω(n2).

If instead |Out| = Ω(an/ log n) in Gy, then we will prove the following claim which, together
with Claim 26 and the argument above, completes the proof for Lemma 24.

Claim 27. If |Out| = Ω(an/ log n) then B holds with probability exp(−Ω(a2n/ log2 n)).

Proof. Let x ∈ Out, let P be the corresponding path and we may assume that P is EVEN,
and let w be an end on P where σ(x) 6= σ(w) and let y be the other end of P . Consider
admissible Pósa rotations on P with y as the fixed end, and let End(y) denote the ends
obtained. Since P is EVEN, for every z ∈ End(y) we have σ(z) 6= σ(x). This implies that
|Ex| = Ω(n) where

Ex = {{x, z} : z ∈ End(y) \X, z ∈ A}.

Let E = ∪x∈OutEx. Then |E | = Ω(an2/ log n). Moreover, B fails if E ∩ E(G \ Gy) 6= ∅.
Since every booster in E appears in the final stage of edge exposure with probability q̄. The
probability that none of them appears is at most (1− q̄)|E | = exp(−Ω(a2n/ log2 n)).

Proof of Claim 26. Assume that all longest paths are EVEN. Consider all pairs of vertices
E ′ = {(φ(x), w) : x ∈ End(v0), w ∈ End(x) \X}. As TPCL∩ COL implies COL, it follows, using
(9), that |E ′| ≥ |End(v0)|/2 × (0.24 − 0.22)n = Ω(n2). If any yellow edge is a valid pair in
E ′, then we find a cycle Cx, |Cx| = Ω(n) by deleting x from the corresponding path P ′, and
then adding the edge wφ(x). Using the Chernoff bounds we see that we get Ω(an/ log n)
distinct cycles, with the required probability. Gb is connected and because Gb is bipartite
there must exist a vertex z such that (a) σ(z) 6= σ(x); (b) z is not on Cx; (c) there is a path
from z to Cx. Using the cycle Cx and the path from z to Cx we distinguish two cases: (i)
we obtain a path of length greater than that of P , which implies L(Gy) > L(Gb), or (ii) we
obtain a path of the same length as P , with x /∈ P , and one of the ends of P , namely z,
satisfies σ(z) 6= σ(x). That gives us the required number of vertices in Out.
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8.4 Proof of Claim 22

We first assume k ≥ 3. The case k = 2 is much simpler which will be discussed at the end
of this section. We start with a tripartition A,B,C with the following conditions:

(i) C is the smallest block and |C| ≤ 0.22n, and |A| ≥ |B|; (ii) if S is a block other than C
then S ⊆ A or S ⊆ B; (iii) |C| ≥ |A| − |B|.

Claim 28. A partition (A,B,C) satisfying the above conditions exists.

Let (A,B,C) be a partition as in Claim 28. Next, we will construct Gb and partition the

vertices in C and assign them to A and B according to Ĝ. We will then move a small number
of vertices from A to B and vice versa.

Recall that bmin = min{|Vi|/n : i ∈ [k]}. By (A4) bmin = Ω(1). Consider Ĝ and assume

Ĝ ∈ D2. Let SAFE be the set of vertices v in Ĝ which have at least bmin log n/20 neighbours
in every block other than the block containing v. Let VERYSMALL be the set of vertices
with degree less than 6/δ, where δ is a constant to be specified in the lemma below. Let
TWO be the set of vertices with degree two.
Lemma 29. A.a.s. there exists 0 < δ = δ(c) < 1/10 such that Ĝ has the following properties.

(a) |[n] \ SAFE| < n1−δ, |VERYSMALL| < n1/2−δ.

(b) The graph distance between any pair of distinct vertices in VERYSMALL is at least
10.

(c) No vertex in VERYSMALL is in a cycle of length at most 5.

(d) No vertex in Ĝ has more than 2/δ neighbors in [n] \ SAFE.

We will sketch the proof in Section 9.

Now, arbitrarily assign the vertices in C to A and B so that
∣∣|A| − |B|

∣∣ = 1{n is odd}. Since
initially |C| ≥ |A| − |B| this can be done. Next, we reallocate vertices in [n] \ (SAFE \
VERYSMALL) so that they all have degree at least 3/δ−2/δ = 1/δ by Lemma 29(d) and the
definition of VERYSMALL. Finally we sequentially reallocate vertices in v ∈ VERYSMALL
so that v is put into A if it has more neighbours in B than in A, and put it into B otherwise.
After this we have

∣∣|A| − |B|
∣∣ < n1−δ + 1 since we only moved at most n1−δ vertices by

Lemma 29(a). The moves above do not guarantee that the minimum degree of Ĝ[A,B]

is at least 2. A vertex v will be of degree less than 2 in Ĝ[A,B] only when v ∈ TWO
had two neighbours, one in A and the other in B at the time that v was processed. Let
BA and BB denote the sets of these vertices in A and B respectively. By Lemma 29(a),
|BA| + |BB| < n1/2−δ. For each vertex u ∈ BA ∪ BB, let ux and uy be the two neighbours of

u. Delete u from Ĝ and from A ∪ B, and add a golden edge between ux and uy. By this
point we have |A| + |B| = n− BA − BB and

∣∣|A| − |B|
∣∣ < n1−δ + 1 since we only moved at

most n1−δ vertices by Lemma 29(a).

If n − BA − BB is odd, choose an arbitrary vertex u ∈ SAFE and delete all edges incident
with u except two, one joining u to a vertex ux in A and the other joining u to a vertex
uy in B. Delete u from the graph and from A ∪ B and add a golden edge between ux and
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uy. By our construction so far, we have a bipartition of the vertices of Gb into A and B;
the absolute difference between |A| and |B| is at most n1−δ + 1 + n1/2−δ. There are at most
n1/2−δ golden edges, all of which join vertices in A to vertices in B. Now, we move vertices
in SAFE that are not incident with any golden edge to make |A| = |B|, without making
any vertex having less than 2 neighbours on their (possibly new) opposite side. Assume
that |A| ≥ |B| so that we are looking for vertices to move from A to B. We will avoid
VERYSMALL and its neighborhood and we will choose a set of vertices in A such that
each vertex has at least 2 neighbors in A and each pair of vertices are at least distance two
in G. The latter condition ensures that we do not move any vertices in the neighborhood
of a moved vertex. Let Aδ≥2 be the set of vertices in A that have at least 2 neighbors
in A. Also let V ALID = (Aδ≥2) ∩ SAFE \ (VERYSMALL ∪ N(VERYSMALL )). In the
case that |V ALID| = ω(n1−δ log2 n) the greedy algorithm will ensure that one can find the
corresponding set because the maximum degree in G is O(log n) a.a.s. The existence of that
many vertices is justified as follows:

In the case where p = Ω(n−1−0.49δ), partition V1 into two equal sets V 1
1 , V

2
1 . Then the

probability that there do not exist n1−0.985δ vertices in V 1
1 that are adjacent to 2 vertices in

V 2
1 is bounded above by P(Bin(Ω(n),Ω(n−0.98δ)) ≤ n1−0.985δ) = o(1). Thus a.a.s |V ALID| =

Ω(n1−0.985δ)−O(n1−δ) = ω(n1−δ log2 n). In the case where n/2− |V1| = Ω(n1−0.99δ), then by
construction, there is a block Vj with j 6= 1 such that |Vj ∩ A| = Ω(n1−0.99δ). Any vertex in
Vj ∪ SAFE is adjacent to c log n/20 vertices in V1, hence to at least 2 vertices in A and can
be moved to A. Lemma 29 (a) implies that |Vj ∩ V ALID| = Ω(n1−0.99δ) = ω(n1−δ log n).

Finally in the case where p = O(n−1−0.49δ) and n/2 − |V1| = O(n1−0.99δ), (A3) and (A4)
imply that there exists β > 0 such that every block other than V1 consists of at most
(1/2 − β)n vertices. Hence the minimum in (A1) is due to block V1 and q ≥ 2(log n +
log log n+O(1))/n and the expected number of vertices in block Vi , i 6= 1 of degree at most
2 is O(n

(
n
2

)
q2(1− q)n−(1/2−β)n) = O(n(log2 n)e−(1+2β)(logn+log logn+O(1))) = O((log1−β n)n−2β).

Also, the expected number of vertices in V1 of degree 2 in G that are adjacent to 2 or 1
or 0 vertices in V1 is O(n−(0.98+o(1))δ), O(n−(0.49+o(1))δ) and O(log n) respectively (here we
have used the fact that such a vertex has at most 0,1,2 neighbors in V \ V1 each event
occurring with probability o(n−1), O(n−1) and O(log n/n) respectively). Hence in the case
p = O(n−1−0.49δ) and n/2−|V1| = O(n1−0.99δ) the Markov inequality implies that a.a.s TWO
consists of at most log2 n vertices and TWO ⊂ V1. In addition a.a.s. the neighborhood of
TWO consists of 2|TWO| ≤ 2 log2 n vertices, is a subset of SAFE and will be assigned to
B. Hence a.a.s no golden edges will be created, |A| = |B| and there is no need to move any
vertices between the blocks.

Finally, let Gb be the graph obtained by deleting all edges inside A or inside B. Thus, Gb is
bipartite, i.e. Gb = Gb[A,B]. Our construction guarantees conditions (a),(b),(d1) and (d2)
required by property P . Obviously a Hamilton cycle in Gb ∪ Ey ∪ Er can be modified to

create a Hamilton cycle in Ĝ ∪ Ey ∪ Er by replacing each golden edge by a 2-path. This
verifies condition (c). Condition (d3) is guaranteed by Claim 28. For condition (d4), our

construction guarantees Gb = Gb[A,B] and if Ĝ ∈ D2 then Gb ∈ D2 and therefore G ∈ D2.
The second part of (d4) is verified by the following claim whose proof is given in Section 9.
Claim 30. If G ∈ D2 then G ∈ SEXPN a.a.s.
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Proof of Claim 28 Order the k ≥ 3 blocks so the block sizes are non-increasing. If
|V1| = |V2| then we will let C = V3. Then |C| ≤ n/3. To construct A and B, initially let
A = V1 and B = V2. Sequentially adding Vj, j ≥ 4 to the smaller between A and B. It is
easy to see that (A,B,C) satisfies conditions (i)–(iii).

If |V1| > |V2|, let t be the minimum integer such that
∑t

i=2 |Vi| ≥ |V1|. Such a t exists by
(A3), and t ≥ 3. Let C = Vt. Then |C| ≤ n/3. To construct A and B, initially let A = V1
and B = ∪t−1

j=2Vj. Sequentially adding Vj, j ≥ 4 to the smaller between A and B. It is easy
to see that (A,B,C) satisfies conditions (i)–(iii).

Finally if k = 2 then |V1| = |V2| by (A3). Let A = V1 and B = V2. Similar to the case k ≥ 3
we consider two cases. The first one is p = O(n−1−0.49δ). In this case we can construct Gb and
a bipartition of the vertices in Gb by moving o(n/ log2 n) vertices and deleting o(n1/2) vertices
as done earlier. The second case is p = Ω(n−1−0.49δ) (and |V1| = n/2 = n/2−O(n1−0.985δ)). As
shown earlier in this case no further golden edges will be created and no further modifications
are needed. The argument of finding an admissible Hamilton cycle in Gb will be exactly the
same.

9 Proof of Technical Lemmas

We first state a lemma, whose proof is sketched below.
Lemma 31. Assume (A1). A.a.s. G(n, p, q) satisfies the following graph properties.

(C0) The maximum degree is O(log n).

(C1) For some constant 0 < ζ < 1, and every i ∈ [k], at most nζ vertices in Vi have

degree less than 0.9 log n.

(C2) No two vertices with degree less than log log n are within distance 10.

(C3) No vertex with degree less than log log n is contained in cycles of length at most 5.

(C4) |E(S)| ≤ 3|S| for all |S| < 4n/ log2 n.

(C5) |E(S)| ≤ (4s2/bminn) log n for all n/ log3 n ≤ |S| ≤ b6minn.

In addition, in the case of Section 8 where p = O(1/n) we have the following:

(C6) For all S ⊆ A (resp. B) satisfying b8min ≤ |S| ≤ 0.24n and all γ-deletable edge sets F

|NG−F (S)| ≥ (2 + 10−4)|S|.

9.1 Proof of Lemma 6

Let G be a graph with minimum degree at least 2 that satisfies properties (C0)–(C5). In
the proof of the lemma we consider various ranges for |S|. Colour the edges in F red and
let G′ = G− F . Our assumption on F implies that

every vertex is incident with at most log n/100 red edges. (10)
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We first show that G− F ∈ EXPN a.a.s.

Case a: n/(log n)3 ≤ |S| ≤ b6minn/3. Let E1 = EG(S, S) and E2 = EG′(S, S) and let
U = NG′(S). Suppose that |U | < 2|S|. Then, |S ∪ U | < 3|S| ≤ b6minn. By (C5), S ∪ U
induces at most (4|S ∪ U |2/bminn) log n ≤ (36|S|2/bminn) log n edges in G. This implies
that |E2| ≤ (36|S|2/bminn) log n. By (C1), the total degree of vertices in S is at least
(|S| − nζ) × 0.9 log n ≥ 0.85|S| log n. On the other hand, by (C5), S induces at most
4(|S|2/bminn) log n edges. Thus, |E1| ≥ 0.85|S| log n − 4(|S|2/bminn) log n. Consequently,
|F ∩ EG(S, S)| = |E1| − |E2| ≥ 0.85|S| log n − 4(|S|2/bminn) log n − (36|S|2/bminn) log n ≥
(0.85− 120b11min)|S| log n ≥ (0.85− 120× 2−11)|S| log n > (1/10)|S| log n, contradicting con-
dition (10).

Case b |S| < n/ log3 n. A vertex in G is called moderately small if its degree is less than
log log n. Let X denote the set of moderately small vertices in S, and Y denote S \ X .

Case b1: |Y| = 0. Then F is not incident with any vertex in S. By (C2), S must induce
an independent set. By our assumption, all vertices in S have degree at least 2. By (C2),
NG(a) ∩ NG(b) = ∅ for every distinct a, b ∈ S. It follows immediately then that |NG′(S)| =
|NG(S)| ≥ 2|S|.

Case b2: |Y| ≥ 1. Now F is not incident with any vertex in X . Let Z1 = NG′(X ) \ Y =
NG(X )\Y be the set of neighbours of X that are not in Y , Z2 = NG′(S)\Z1 be the neighbours
of S in G′ that are not in Z1. Then, |NG′(S)| = |Z1| + |Z2|. Let Y1 = NG′(X ) ∩ Y be the
set of neighbours of X in Y . By (C2) and our assumption that the minimum degree of G is
at least 2,

|Y1| = |EG′(X ,Y)| = |EG(X ,Y)| (11)

|NG′(X )| = |Z1|+ |Y1| ≥ 2|X |. (12)

We prove next that every vertex in Y can be incident to at most one vertex in Z1 in G (and
G′). Assume a ∈ Y is adjacent to two vertices b and c in Z1. If b and c have a common
neighbour z ∈ X , then abzc forms a 4-cycle in G, violating (C3). Assume b and c each
adjacent to b′ ∈ X and c′ ∈ X respectively. Then b′bacc′ is a 4-path in G connecting two
light vertices, violating (C2). Hence, |NG′(z) ∩ Z1| ≤ 1 for every z ∈ Y . Consequently,

|EG′(Y ,Z1)| ≤ |Y|. (13)

Assume to the contrary that |Z1|+ |Z2| = |NG′(S)| < 2|S| = 2(|X |+ |Y|). Then, by (12) we
have

|Z2| < 2|Y|+ |Y1|. (14)

Every vertex in Y has degree at least log log n in G. Also, a vertex is incident with red edges
only if its degree is at least (γ log n)/10 and then with at most (γ log n)/100 red edges. It
follows that every vertex in Y has degree at least log log n in G′ as well. Thus,

|EG′(X ,Y)|+ 2|EG′(Y)|+ |EG′(Y ,Z1)|+ |EG′(Y ,Z2)| ≥ |Y| log log n. (15)

By (C0), (C4) and |S| ≤ n/ log3 n, |EG′(Y)| ≤ 3|Y|, |EG′(Y ,Z2)| ≤ |EG′(Y ∪Z2)| ≤ 3(|Y|+
|Z2|). We have shown that |EG′(X ,Y)| ≤ |Y1| and |EG′(Y ,Z1)| ≤ |Y|. Hence, by (14),

24



the left hand side of (15) is at most 16|Y| + 4|Y1| ≤ 20|Y|, whereas the right hand side is
|Y| log log n, contradiction. This confirms that |NG′(S)| ≥ 2|S|.

We will now show that if p, q = ω(1/n) then a.a.s. G−F ∈ CNT. G−F ∈ EXPN implies that
that every connected component of G− F has size at least εn, where ε = b6min/3. Let C be
the smallest connected component in G− F . If G− F /∈ CNT then |C| ∈ [εn, 0.5n].

Case 1: Assume first that bminnp ≤ 0.5 log n. The number of edges spanned by C and not
contained in a block is equal to a binomial random variable with mean at least 1

2

∑k
i=1 |C ∩

Vi|(n− ni)q = Ω(n log n). The Chernoff bounds imply that a.a.s C spans

1

2

k∑

i=1

|C ∩ Vi|(n− ni)× 0.99q − (γ|C| log n)/100 ≥

0.49
k∑

i=1

|C ∩Vi|(log n− 0.5 log n)− (γ|C| log n)/100 ≥ 0.49|C|(log n−np)− (γ|C| log n)/100

≥ 0.24|C| log n− (γ|C| log n/100) ≥ 0.23|C| log n

edges in G − F that are not contained in any block. (Recall that γ ≤ 1, see (8).) A
calculation similar to the one done to prove Lemma 31 (C5) shows that every set S of size
εn ≤ |S| ≤ n/10 spans less than

(
|S|
2

)
×1.01q < (1.05|S|2 log n)/n ≤ 0.105|S| log n edges that

are not contained in any block. (Note that (A1) implies that q ≤ (2.1 log n)/n.)

Observe from (A1) that q ≥ (0.5 + o(1))(log n)/n. Now let n/10 ≤ |C| ≤ n/2. Let c = |C|
and nj = |Vj| and cj = |C ∩ Vj| for j = 1, 2, . . . , k. Now v ∈ Vj \ C has Bin(c − cj, q)
G-neighbors in C for j = 1, 2, . . . , k. Let J0.75 = {j : cj ≤ 0.75min {c, nj}} and suppose that
J0.75 6= ∅. Let j ∈ J0.75. Then v ∈ Vj \ C has at least Bin(c − cj, q) neighbors in C, where
c− cj ≥ 0.25c ≥ n/40. And so the probability it has fewer than log n/100 G-neighbors in C
is at most n−ξ for some ξ > 0. Thus the probability that all vertices in Vj \ C have fewer
than log n/100 G-neighbors in C is at most n−(vj−cj)ξ ≤ n−0.25ξvj = e−Ω(n logn). There are at
most 2kn choices for the blocks and so, if J0.75 6= ∅, then a.a.s. there is a vertex not in C
with at least log n/100 G-neighbors in C, and so C is not a component in G−F (recall that
γ ≤ 1 and every vertex is incident to at most γ/100 log n neighbors in F ).

To complete this case, we must show that J0.75 6= ∅. Now J0.75 = ∅ means that cj ≤ 0.75c
implies that cj ≥ 0.75nj. So, if cj ≤ 0.75c for all j then c = c1+· · ·+ck ≥ 0.75(n1+· · ·+nk) =
0.75n, which is a contradiction. So, assume that c1 > 0.75c > 0.25c > c2 + · · · + ck and
cj ≥ 0.75nj for j ≥ 2. It follows that 0.25c ≥ 0.75

∑k
i=2 ni ≥ 0.75(n−n1) ≥ 0.75n/2 > 0.25c,

which is a contradiction.

Case 2: Now assume that bminnp ≥ 0.5 log n. Fix a block Vj. Let largej be the set of vertices
in Vj that have at least 0.4 log n G-neighbors in Vj. A first moment argument implies that
a.a.s largej = (1+o(1))|Vj|. An argument similar to the one used to show that G−F ∈ EXPN

implies that in G − F no vertex in largej lies in a component of size smaller than εn. Fix
disjoint sets S, T ⊆ Vj let Ej(S, T ) denote the event that there are at most |S| |T |p/2 edges
between S and T . Then, where m = bminn/3,

Pr (∃|S| = Ω(n), |T | = m : Ej(S, T )) ≤ 22ne−|S|mp/8 = o(1).
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Now F contains at most (|S| log n)/100 ≤ |S||T |p/10 edges between such a pair S, T . It
follows that after deletion of F , each block contains a component Cj of size (1 + o(1))nj.
A.a.s. there are at most 5ninjq/4 crossing edges between Vi and Vj and at least 3ninjq/4
crossing edges between largei and largej. Because F deletes at most half of the edges
between a pair of blocks we see that G − F contains a component containing ∪i∈klargei,
hence of size n − o(n). Since G − F dose not have a component of size smaller than εn we
have that G− F ∈ CNT.

9.2 Proof of Lemma 31

The proof is standard and straightforward. We give a sketch only and omit the somewhat
tedious calculations. For (C0) we use the first moment method. For (C1), following the same
argument as in Lemma 3, we can show that the expected number of vertices with degree less
than 1

2
log n is o(n0.9).

By (A1), there is i ∈ [k] such that pni + (n− ni)q− log ni = log log n+O(1). Together with
(A4), this implies that p, q . 2(log n)/bminn. Using this, the expected number of S with
|S| = s which induce more than 3s edges is at most

(
n

s

)((s
2

)

3s

)(
(1 + o(1)) log n

bminn

)3s

≤

(
(2 + o(1))3e4(log3 n)s2

27bminn2

)s

.

It is straightforward to see that summing the above over s < 4n/ log2 n yields o(1). This
proves (C4). The proof for (C5) is the same.

For (C2), we bound the expected number of `-paths, ` ≤ 10, where the ends are vertices of
degree less than log log n. There are at most n`+1 ways to choose the ` + 1 vertices. Using
the probability bounds as in Lemma 3, the probability of both of the chosen end-vertices
having degree less than log log n is at most no(1)−2. The probability that the chosen ` + 1
vertices form a path is bounded by ((C log n)/n)`. Multiplying all together we have that the
expected number of such paths is at most n`+1 · no(1)−2 · ((C log n)/n)` = o(1). This proves
(C2). The proof of (C3) is similar.

For (C6), fix S ⊆ A such that b8minn ≤ |S| ≤ 0.24n. Either there exists some i such that
|Vi ∩ S| ≥ b8minn/10

3k and Vi 6= X or |S ∩X| ≥ (1− 10−3)|S|. We thus consider 2 cases.

Case 1: |Vi ∩ S| ≥ b8minn/10
3k for some Vi 6= X.

Let S ′ be a subset of S of size b8minn/10
3k and S∗ be the set of vertices in Ĝ that have at

least γ log n/100 + 2 (recall γ = b20min/k) neighbors in S
′.

P(|S∗| ≤ 0.999(n− |Vi|)) ≤

(
n

b8minn/10
3k

)(
n

0.001n

)
(e−Ω(logn))cn ≤ 22ne−Ω(n logn) = o(1).

Thus a.a.s. |S∗| ≥ 0.999(n− |Vi|). Now observe that o(n) of the vertices in B ∩S∗ may have
been moved to A and each of the rest of the vertices may have a single neighbor from A
moved to B (see construction of Gb). After removing F from G each of the (0.499− o(1))n
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remaining vertices in S∗∩B has at least γ log n/100+2−(γ log n/100+1) neighbors in S ′∩A.
Hence |NG−F (S

′)| ≥ (1+o(1))|S∗∩B| ≥ (0.499−o(1))n ≥ (2+10−4)×0.24n ≥ (2+10−4)|S|.

Case 2: (1 − 10−3)|S| ≤ |S ∩X|. The probability that b ∈ B \X has at least (γ log n)/50
neighbors in S ∩X is 1−O(n−c) for some constant c > 0. Hence, we have that a.a.s., after
removing F , |N(S ∩X)| ≥ 0.999|B \X|. S ⊂ A implies that

|N(S)| ≥ 0.999|B \X| = 0.999(|B| − |X ∩ B|) = 0.999(|B| − |X|+ |X ∩ A|) ≥

0.999× n/2− 0.22n+ (1− 10−3)|S| ≥ (2 + 10−4)|S|.

In the last inequality we used the fact that |S| ≤ 0.22n.

9.3 Proof of Lemma 29

(b) and (c) follow from (C2), (C3) and the remaining properties are also first moment
calculations.

9.4 Proof of Lemma 17

There are three types of vertices in V (Ai): (a) they are the neighbours of some vertex in Vi
whose degree in G[Vi] equals 1; (b) they are the neighbours of some vertex Vj (for some j 6= i)
whose degree in G[Vj] is at most 1; (c) they are ends of some crossing edge recoloured from
blue to green. Vertices of the first two types are neighbours of vertices with degree at most
1, and vertices of the last type are random vertices in Vi. It is standard argument to show
|V (Ai)| ≤ log n, and no two vertices in V (Ai) share a common neighbour, and no vertex in
V (Ai) is adjacent to a vertex of degree at most 2. This confirms that V (Ai) satisfies the
required properties. We only need to consider G(ni, p) where pni ≥ log n+ log log n+O(1).
The proof is almost the same as the proof of Lemma 6 with only small modifications which
we point out below. Again we assume that Hi is a graph satisfying (C1)–(C5) (for (C1),
we only need to consider a fixed i). Let V be an arbitrary set of vertices in Hi such that
|V | ≤ log n, no two vertices in V share a common neighbour, and no vertex in V is adjacent
to a vertex of degree at most 2. Colour the vertices in V red. Let F be an arbitrary set of
edges such that |F ∩ NHi

(v)| is 0 if v is small, and is at most (log n)/100 if v is large. Let
H ′

i = Hi − F .

Let ε = 1/24, and let ψ > 0 be the constant in (C5). For S where n/(log n)2 ≤ |S| ≤ (ψ/4)n,
let E1 = EHi

(S, S) and let E2 = EH′

i
(S, S). Let U = NH′

i
(S). Assume |U \ V | < 2|S|. Then,

|S ∪ U | < 3|S|+ |V | ≤ 4|S| ≤ ψn. Now with the same proof as in Lemma 6, we can lead to
a contradiction with condition (10). Thus, we must have |U \ V | ≥ 2|S| in this case.

For S where |S| ≤ n/ log2 n, call a vertex in Hi extremely small if its degree is less than 100.
Let X denote the set of extremely small vertices in S, and Y denote S \ X .

Case 1: |Y| = 0. Then F is not incident with any vertex in S. By (C2), S must induce an
independent set. Recall that Hi = Gb[Vi \ P ]. It follows immediately that every vertex in
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Hi has degree at least 2, as all problematic vertices are in P . Moreover, by the assumptions
on V , the vertices with degree 2 are not adjacent to any vertex in V , and every vertex in
Hi can be adjacent to at most one vertex in V . Hence, every vertex has at least 2 non-red
neighbours. By (C2), NHi

(a)∩NHi
(b) = ∅ for every distinct a, b ∈ S. It follows immediately

then that |NH′

i
(S) \ V | = |NHi

(S) \ V | ≥ 2|S|.

Case 2: |Y| ≥ 1. Now F is not incident with any vertex in X . Let Z1 = NG′(X ) \ Y =
NG(X ) \ Y be the set of neighbours of X that are not in Y , Z2 = NG′(S) \ Z1 be the
neighbours of S in G′ that are not counted in Z1. Let Z ′

i = Zi \ V for i ∈ {1, 2}. Then,
|NH′

i
(S) \ V | = |Z ′

1|+ |Z ′
2|. Let Y1 = NG′(X ) ∩ Y be the set of neighbours of X in Y . With

the same argument for (11)–(13), together with the fact that every vertex in X has at least
2 non-red neighbours, we have

|Y1| = |EH′

i
(X ,Y)| = |EHi

(X ,Y)| (16)

|NHi
(X ) \ V | = |Z ′

1|+ |Y1| ≥ 2|X | (17)

|EH′

i
(Y ,Z1)| ≤ |Y|. (18)

Assume to the contrary that |Z ′
1|+ |Z ′

2| = |NH′

i
(S)\V | < 2|S| = 2(|X |+ |Y|). Then, by (17)

we have
|Z ′

2| < 2|Y|+ |Y1|. (19)

Every vertex is adjacent to at most one vertex in V . It follows immediately that

|Z2| ≤ |Z ′
2|+ |Y|. (20)

Every vertex in Y has degree at least 100 in Hi. Also, a vertex is incident with red edges
only if its degree is at least (log n)/10 and then at most (log n)/100 red edges. It follows
that every vertex in Y has degree at least 100 in G′ as well. Thus,

|EH′

i
(X ,Y)|+ 2|EH′

i
(Y)|+ |EH′

i
(Y ,Z1)|+ |EH′

i
(Y ,Z2)| ≥ 99|Y|. (21)

By (C4) , |EH′

i
(Y)| ≤ 3|Y|, |EH′

i
(Y ,Z2)| ≤ |EH′

i
(Y ∪ Z2)| ≤ 3(|Y| + |Z2|) ≤ 3(4|Y| + |Y1|)

by (19) and (20). We have shown that |EH′

i
(X ,Y)| = |Y1| and |EH′

i
(Y ,Z1)| ≤ |Y|. Hence,

the left hand side of (15) is at most 19|Y| + 4|Y1| ≤ 23|Y|, whereas the right hand side is
99|Y|, contradicting with |Y| ≥ 1. This shows that |NH′

i
(S) \ V (Ai)| ≥ 2|S|.

It remains to show that H ′
i ∈ CNT. As done in Lemma 6 one may show that each component

of Hi has size Ω(n) and that the largest component of Hi spans (1 + o(1))|Hi| vertices a.a.s.
Hence H ′

i ∈ CNT a.a.s.

9.5 Proof of Claim 30

Assume that G ∈ D2. Recall γ = b20min/k. Let F ⊂ E(G) be a γ-deletable set and let
G′ = G− F . We will first show that G′ ∈ EXPN a.a.s. Let S ⊂ A, |S| ≤ 0.24n. We consider
two cases:

Case 1: |S \ SAFE| ≥ |S|/ log log n. Lemma 29 (a) implies that |S| ≤ n
log4 n

. Let S1 =

S∩VERYSMALL and S2 = S \S1. Lemma 29 implies that (i) |N(S1)\GV | ≥ 2|S1|, (ii) each
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vertex in S2 has at most a single neighbor in N(S1)∪GV hence |N(S2)∩(N(S1)∪GV )| ≤ |S2|.
In addition S2 ∪ N(S2) spans at least (6/δ)|S2|/2 ≤ 30|S2| edges (recall δ < 1/10). Since
|S2| ≤ |S| ≤ n/ log4 n, Lemma 31 (C4) implies that no set of size 10|S2| spans 30|S2| edges
and therefore |N(S2)| ≥ 10|S2|. Thus |N(S)\GV | = |N(S1)|+10|N(S2)|−|N(S2)∩(N(S1)∪
GV )| ≥ 2|S1|+ 10|S2| − |S2| = 2|S|+ 8|S2| ≥ 2|S|.

Case 2: |S \ SAFE| ≤ |S|/ log log n. If |S| ≤ n
log4 n

then the above argument implies that

|N(S)\GV | ≥ 2|S|. Hence we may assume that |S| ≥ n
log4 n

and |S∩SAFE| = (1−o(1))|S|.

Let S ′ = S \ SAFE. We will show that if |S ′| ≤ 0.24n then |N(S ′)| ≥ (2 + 10−4)|S ′|.
Hence, |N(S) \ GV | ≥ |N(S ′)| − |GV | = |N(S ′)| − o(S ′) ≥ (2 + 10−4 − o(1))|S ′| ≥ 2|S|.
At the first equality we used that Lemma 29 (a) implies that |GV | = o(|S|) = o(|S ′|).
As before Lemma 29 implies each vertex in S ′ has at most one neighbor in GV . Hence
S ′ ∪ N(S ′) span at least (bmin log n/30)|S

′| edges in G′. Lemma 31 (C4) implies that if
|S ′| < n/ log2 n then |N(S ′)| ≥ 3|S ′|. Thereafter if n/ log2 n ≤ |S ′| ≤ b8minn Lemma 31 (C5)
implies that any set of size at most 4|S| spans at most (4|4S|2/n) log n ≤ 64b16min|S| log n <
64 × 2−15 × bmin|S| log n/30 < bmin|S| log n/30 edges, hence N(S ′) ≥ 3|S ′|. Finally 31 (C5)
implies that if |S| ≥ b8minn then |N(S ′)| ≥ (2 + 10−4)|S ′|.

Now we will show that if G′ ∈ EXPN then G′ ∈ CNT. Assume that G′ ∈ EXPN. In the
event that G′ /∈ CNT there exists a bipartition of A (and B respectively) into A1, A2 (and
B1, B2 resp.) such that there are no edges from A1 to B2 and from A2 to B1. However by
considering a subset of Ai (and N(Ai) resp.) of size max{|Ai|, 0.24} (and max{|N(Ai)|, 0.24}
resp.) G′ ∈ EXPN and N(N(Ai)) = Ai for i = 1, 2 imply that |A1|, |A2| ≥ 2 × 0.24n which
gives a contradiction.

10 Special case

In the special case we have k = 3 or 4 and 0.22n ≤ |Vi| for i ∈ [k].

First assume that k = 3 and 0.22n ≤ |V3| ≤ |V2| ≤ |V1| ≤ 0.5. Let V ′
1 (and V ′

2 respectively)

be random subsets of V1 (V2 resp.) of size |V1|− |V2|+
|V3|−(|V1|−|V2|)

2
(and |V3|−(|V1|−|V2|)

2
resp.).

Consider the graphs G1 = Ĝ[V1 \V
′
1 , V2 \V

′
2 ] and G2 = Ĝ[V3, V

′
1 ∪V

′
2 ]. In this case in addition

to Ey, Er we will need a fourth set of random edges Ef in which every edge not in E1∪Ey∪Er

belongs with probability Θ(α/n log n), where α → ∞ slowly. Call these the fuchsia edges.
We let SAFE be the set of vertices that have at least log n/100 neighbors in each of the 4
sets of vertices that are defined by the bipartitions of the 2 graphs except from the block
that they belong to. As done earlier we can move o(n) vertices around in order to ensure
that (i) each vertex has at least 2 neighbors in its own graph, (ii) no vertex of degree larger

than 2 in Ĝ will contribute to the creation of the golden edges and (iii) after considering the
golden edges the partition defined by each of the two bipartite graphs is an equi-bipartition.
Then using the same tools as earlier we can show that after revealing Ey ∪ Er, both of the
two resulting graphs are Hamilonian. Notice that we have avoided the special case in both
graphs.
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Let H1, H2 be Hamilton cycles of G1 and G2 respectively. Now observe that for every a ∈
V1∩V (G1), b ∈ V2∩V (G1), c ∈ V3∩V (G2) and d ∈ V (G2) such that ab ∈ E(H1), cd ∈ E(H2)

if ad ∈ E(Ĝ) (bd ∈ E(Ĝ) resp.) and ac (bc resp) ∈ Ef then Gb∪Ey∪Er∪Ef is Hamiltonian.
Now a.a.s there will be Ω(n log n) edges ad such that (i) a ∈ SAFE and (ii) a is at distance
at least two from any vertex that was “reshuffled” in the process of creating H1, H2. The
latest condition implies that the neighbors of a and d respectively on H1 and H2 resp. lie
in V2 and V3 resp. Thus a.a.s there exists a set of Ω(n log n) edges which if they belong to
E1 ∪ Ey ∪ Er ∪ Ef then our we get the requested Hamiltonicity. Since α → ∞, the latest
event occurs with probability P(Bin(Ω(n log n),Θ(α/n log n)) ≥ 1) = 1− o(1).

In the case k = 4 we have 0.22n ≤ |V4| ≤ |V3| ≤ |V2| ≤ |V1| ≤ 0.36n. We then let U1 = U3∪U4

(hence |U1| ≥ 0.44n ≥ |V1|), U2 = V1 and U3 = V2. We then repeat the above construction
with U1, U2, U3 in place of V1, V2 and V3 resp.

11 Conclusion

We have analysed the Hamiltonicity of a particular stochastic block model and given tight
estimates for the threshold. The most natural extension of this work will be to the case
where P is an arbitrary symmetric stochastic matrix. This will be the subject of further
research.
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