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Abstract

We consider the following question. We have a dense regular graph G with degree αn, where α > 0
is a constant. We add m = o(n2) random edges. The edges of the augmented graph G(m) are given
independent edge weights X(e), e ∈ E(G(m)). We estimate the minimum weight of some specified
combinatorial structures. We show that in certain cases, we can obtain the same estimate as is known for
the complete graph, but scaled by a factor α−1. We consider spanning trees, shortest paths and perfect
matchings in (pseudo-random) bipartite graphs.

1 Introduction

It is often the case that adding some randomness to a combinatorial structure can lead to significant positive
change. Perhaps the most important example of this and the inspiration for a lot of what has followed, is the
seminal result of Spielman and Teng [34] on the performance of the simplex algorithm, see also Vershynin
[37] and Dadush and Huiberts [13].

The paper [34] inspired the following model of Bohman, Frieze and Martin [10]. They consider adding random
edges to an arbitrary member G of G(α). Here α is a positive constant and G(α) is the set of graphs with
vertex set [n] and minimum degree at least αn. They show that adding O(n) random edges to G is enough to
create a Hamilton cycle w.h.p. This is in contrast to the approximately 1

2
n log n edges needed if we rely only

on the random edges. Research on this model and its variations has been quite substantial, see for example
[11], [27], [35], [25], [26], [12], [5], [29], [9], [21], [14], [33], [16], [31].

Anastos and Frieze [4] introduced a variation on this theme by adding color to the edges. They consider
rainbow Hamiltonicity and rainbow connection in the context of a randomly colored dense graph with the
addition of randomly colored edges. Aigner-Horev and Hefetz [1] strengthened the Hamiltonicity result of [4].

In this paper we introduce another variation. We start with a dense graph in which each edge e has a random
weight X(e) and add randomly weighted random edges. We study the effect on the minimum value of various
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combinatorial structures. We will for simplicity restrict our attention to what we will call Greg(α), the graphs
in G(α) that are αn regular.

1.1 Spanning Trees

We start with spanning trees. Suppose that G ∈ Greg(α) and each edge e of G is given an independent random
weight X(e) chosen uniformly from [0, 1]. Let mst(G) denote the expected minimum weight of a spanning
tree of G, assuming it is connected. Beveridge, Frieze and McDiarmid [6] and Frieze, Ruszinko and Thoma
[20] show that assuming certain connectivity conditions on G,

mst(G) ≈
ζ(3)

α
as n → ∞. (1)

where for a positive integer k ≥ 2 we have ζ(k) =
∑∞

n=1 n
−k.

Here An ≈ Bn if An = (1 + o(1))Bn as n → ∞ and An . Bn if An ≤ (1 + o(1))Bn as n → ∞ and An � Bn

if An/Bn → ∞.

Now let G(m) be obtained from G by adding m random edges to G. Each added random edge also has an
independent uniform [0, 1] weight. Also, let G(p) be obtained from G by independently adding randomly
weighted copies of edges not in G, with probability p. We let Rm, Rp denote the added edges. Our first
theorem is a simple extension of (1).

Theorem 1. Suppose that G ∈ Greg(α) and n log n � m � n5/3 and the edges of G(m) have independent
weights chosen uniformly from [0, 1]. Then w.h.p.

mst(G(m)) ≈
ζ(3)

α
as n → ∞. (2)

In addition, if α > 1/2 then (2) holds without the use of random edges.

This theorem is very easy to prove. One simply verifies that certain conditions in [6] hold w.h.p. On the
other hand it sets the stage for what we are trying to prove in other scenarios. The upper bound on m is not
essential, we could most likely replace it by o(n2), but this would require us to re-do the calculations in [6].

Without the addition of random edges, all that can be claimed (assuming G is connected) is that

ζ(3)

α
. mst(G) .

ζ(3) + 1

α
. (3)

See [20].
Conjecture: The +1 in (3) can be replaced by +1/2 (which is best possible).

The example giving 1/2 is a collection of n/r copies of H = Kr − e, r = αn where there is a perfect matching
on the vertices of degree r − 2 added so that the copies of H are connected in a cycle by bridges.

1.2 Shortest paths

We turn our attention next to shortest paths. Janson [23] considered the following scenario: the edges of Kn

are given independent exponential mean one random lengths, denoted by E(1). Let di,j denote the shortest
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distance between vertex i and vertex j. He shows that w.h.p.

d1,2 ≈
log n

n
, max

j∈[n]
d1,j ≈

2 log n

n
, max

i,j
di,j ≈

3 log n

n
.

Bhamidi and van der Hofstad [7] proved an equivalent expression for d1,2 for a much wider class of distribution.
They actually determined an asymptotic limiting distribution. (See also Bhamidi, van der Hofstad and
Hooghiemstra [8].) We prove the following:

Theorem 2. Suppose that n2/ log n � m � n2 and that G ∈ Greg(α) and the edges of G(m) are given
independent exponential mean one random lengths. Let di,j denote the shortest distance between vertex i and
vertex j. Then w.h.p.

d1,2 ≈
log n

αn
, max

j∈[n]
d1,j ≈

2 log n

αn
, max

i,j∈[n]
di,j ≈

3 log n

αn
.

In addition, if α > 1/2 then (2) holds without the use of random edges.

1.3 Bipartite matchings

We turn our attention next to bipartite matchings. For background consider the following well-studied
problem: each edge of the complete bipartite graph Kn,n is given an independent edge weight X(e). Let Cn

denote the minimum weight of a perfect matching in this context. Walkup [38] considered the case where X(e)
is uniform [0, 1] and proved that E(Cn) ≤ 3. Later Karp [24] proved that E(Cn) ≤ 2. Aldous [2, 3] proved that
if the X(e) are independent exponential mean one random variables then limn→∞ E(Cn) = ζ(2) =

∑∞
k=1

1
k2
.

Parisi [32] conjectured that in fact E(Cn) =
∑n

k=1
1
k2
. This was proved independently by Linusson and

Wästlund [28] and by Nair, Prabhakar and Sharma [30]. A short elegant proof was given by Wästlund
[40, 41].

We now consider G(m). G is an αn regular bipartite graph with vertex set A ∪ B, |A| = |B| = n. Unfortu-
nately, our proof only works if G is pseudo-random, as defined by Thomason [36]. By this we mean that for
some 0 < ε < 1 we have

|co− degree(u, v)− α2n| ≤ µ = O(n1−ε) for all u, v ∈ A. (4)

Here, as usual, co− degree(u, v) = | {w ∈ B : (u, w), (v, w) ∈ E(G)}.

Theorem 3. Let G be a pseudo-random αn regular bipartite graph with vertex set A ∪ B, |A| = |B| = n.
Suppose that n49/25 � m = o(n2). Let Cn denote the minimum weight of a perfect matching when the weights
of the edges of G(m) are independent exponential mean one random variables. (To be clear, the m added
random edges have endpoints in the different vertex classes A and B, so that G(m) is bipartite.) Then

E(Cn) ≈
ζ(2)

α
=

π2

6α
. (5)

Conjecture: equation (5) holds forG(m),m = o(n2) growing sufficiently quickly, but without the assumption
of pseudo-randomness.

Frieze and Johansson [18] showed that if G is the random bipartite graph Kn,n,p where np � log2 n then

E(Cn) ≈
π2

6p
. (6)
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That paper also conjectured that if (Gn) is a sequence of r = r(n)-regular bipartite graphs with n+n vertices
then E(Cn) ≈

nπ2

6r
as r, n → ∞. This conjecture is false. Instead we have:

Conjecture: E(Cn) ≈
nπ2

6r
if the connectivity of Gn tends to infinity. Also, in general E(Cn) .

n
r

(
π2

6
+ 1

2

)
.

The 1/2 here is best possible in general. We take n/r copies of H = Kr,r−e where there is a perfect matching
on the vertices of degree r − 1 added so that the copies of H are connected in a cycle by bridges.

In what follows we will sometimes treat large values as integers when strictly speaking we should round up
or down. In all cases the choice of up or down has negligible effect on the proof.

2 Spanning Trees

Theorem 2 of Beveridge, Frieze and McDiarmid [6] yields the following. Suppose that

αn ≤ δ(G) ≤ ∆(G) ≤ α(1 +O(n−1/3)))n. (7)

Let S : S̄ denote the set of edges of G with exactly one endpoint in S. Then (2) holds if

|S : S̄|

|S|
≥ n2/3 log3/2 n for all S ⊆ [n],

αn

2
≤ |S| ≤

n

2
. (8)

Now if we add m random edges satisfying the conditions of the theorem then all degrees will be αn+ o(n2/3)
and this will satisfy (7).

So, to prove Theorem 1, all we need to do is to verify (8). Now let p = m

(n
2
)
� logn

n
. The probability that

G(p) contains a set failing to satisfy (8) can be bounded by

n/2∑

s=αn/2

(
n

s

)
P(Bin(sn/2, p) ≤ sn2/3 log3/2 n) ≤

n/2∑

s=αn/2

(ne
s

)s
e−snp/10 = o(1), (9)

where we have just looked at the edges Rp to satisfy (8). The property described in (8) is monotone increasing
and so the o(1) upper bound in (9) holds in G(m) as well, see for example Lemma 1.3 of [19].

Finally note that if α > 1/2 and S is as in (8) then each v ∈ S has at least εn neighbors in S̄. And therefore
|S : S̄|/|S| ≥ εn. This completes the proof of Theorem 1.

3 Shortest Paths

We use the ideas of Janson [23]. Sometimes we make a small tweak and in one case we shorten his proof
considerably. The case α > 1/2 will be discussed at the end of this section. We note that the lower bounds
hold a fortiori if we do not have random edges Rp.

3.1 d1,2

We set S1 = {1} and d1 = 0 and consider running Dijkstra’s shortest path algorithm [15]. At the end of Step
k we will have computed Sk = {1 = v1, v2, . . . , vk} and 0 = d1, d2, . . . , dk where di is the minimum length
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of a path from 1 to vi, i = 1, 2, . . . , k. Let there be νk edges from Sk to [n] \ Sk. Arguing as in [23] we see
that dk+1 − dk = Zk where Zk is the minimum of νk independent exponential mean one random variables,
independent of dk. We note that

E(Zk | νk) =
1

νk
and Var(Zk | νk) =

1

ν2
k

. (10)

Suppose now that

m =
ωn2

log n
where 1 � ω � log n.

It follows that w.h.p. δ(G(m)) ≈ ∆(G(m)) ≈ αn. Now

kδ − 2

(
k

2

)
≤ νk ≤ k∆(G(m))

and so
w.h.p. νk ≈ kαn for k = o(n). (11)

Conditioning on the set of added edges and taking expectations with respect to edge weights, we see that if
1 � k = o(n) then

E(dk) = E

(
k−1∑

i=1

1

νi

)
≈

k−1∑

i=1

1

iαn
≈

log k

αn
. (12)

By the same token,

Var(dk) ≈
k−1∑

i=1

1

i2α2n2
= O(n−2). (13)

3.1.1 Upper Bound

If k0 = n1/2ω1/2 then w.h.p. dk . logn
2αn

for 0 ≤ k ≤ k0. Now execute Dijkstra’s algorithm from vertex 2 and

let d̄k, Tk correspond to dk, Sk. If Sk0 ∩ Tk0 6= ∅ then we already have d1,2 .
logn
αn

. If Sk0 , Tk0 are disjoint then
we use the random edges Rm or Rp. Let p = m/

(
n
2

)
≈ 2ω/ log n. Then,

P

(
6 ∃e ∈ Rp ∩ (Sk0 : Tk0) : X(e) ≤

log n

ωn

)
≤

(
1− p

(
1− exp

{
−
log n

ωn

}))k2
0

=

(
1− (1 + o(1))

p log n

ωn

)k2
0

≤ exp

{
−
k2
0p log n

2ωn

}
= e−ω. (14)

So, in this case we see too that w.h.p.

d1,2 ≤ (1 + o(1))

(
log n

2αn
+

log n

2αn

)
+

log n

ωn
≈

log n

αn
.

3.1.2 Lower Bound

We now consider a lower bound for d1,2. Let k1 = n1/2/ log n. We observe that because w.h.p. all vertices
have degree ≈ αn and because the edge joining vk+1 to Sk is uniform among Sk : S̄k edges, we see that
P(2 ∈ Sk1) = O(k1/n) = o(1). By the same token, P(Tk1 ∩ Sk1 6= ∅) = O(k2

1/n) = o(1). It follows that w.h.p.

d1,2 & 2
log k1
αn

≈
log n

αn
.
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3.2 maxj d1,j

3.2.1 Lower Bound

For this we run Dijkstra’s algorithm until all vertices have been included in the shortest path tree. We can
therefore immediately see that if k2 = n/ log n then

E(max
j

d1,j) &

k2∑

i=1

1

iαn
+

n−1∑

i=n−k2+1

1

(n− i)αn
≈

2 log n

αn
. (15)

The second sum in (15) is the contribution from adding the final k2 vertices and uses νn−i ≈ (n− i)αn w.h.p.
for i = o(n). Equation (13) allows us to claim the lower bound w.h.p.

3.2.2 Upper Bound

For an upper bound we use the fact that w.h.p. there are approximately i(n− i)p Rp edges between Si and
S̄i in order to show that if k2 = n/ω then

E(max
j

d1,j) .

(
2 log n

αn
+

n−k2∑

i=k2+1

1

i(n− i)p

)

≈
2 log n

αn
+

log n

2ωn

n−k2∑

i=k2+1

(
1

i
+

1

n− i

)
=

2 log n

αn

(
1 +

(α + o(1)) logω

2ω

)
≈

2 log n

αn
. (16)

Equations (15) and (16) imply that E(maxj d1,j) ≈
2 logn
αn

and we can use equation (13) to get concentration
around the mean.

3.3 maxi,j di,j

3.3.1 Lower Bound

Our proof here is somewhat shorter than that in [23], but it is based on the same idea. We begin with a lower

bound. Let Yv = min {X(e) : e = {v, w} ∈ G(m)}. Let A =
{
v : Yv ≥

(1−ε) logn
αn

}
. Then, given that all vertex

degrees are asymptotically equal to αn, we have that for v ∈ [n],

P(v ∈ A) = exp

{
−(αn+ o(n))

(1− ε) log n

αn

}
= n−1+ε+o(1). (17)

An application of the Chebyshev inequality shows that |A| ≈ nε+o(1) w.h.p. and we can assume the existence

of a1 6= a2 ∈ A. Now the expected number of paths from a1 to a2 of length at most (3−2ε) logn
αn

can be bounded
by

n2ε+o(1) × n2 × n−3ε+o(1) ×
log2 n

α2n2
= n−ε+o(1). (18)

Explanation for (18): The first factor n2ε+o(1) is the expected number of pairs of vertices a1, a2 ∈ A. The
second factor is a bound on the number of choices b1, b2 for the neighbors of a1, a2 on the path. The third
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factor F3 is a bound on the expected number of paths of length at most β logn
αn

from b1 to b2, β = 1− 3ε. This
factor comes from

F3 ≤
∑

`≥0

((α + o(1)n)`
(
β log n

αn

)`+1
1

(`+ 1)!
.

Here ` is the number of internal vertices on the path. There will be ((α + o(1))n)` choices for the sequence
of vertices on the path. We then use the fact that the exponential mean one random variable stochastically
dominates the uniform [0, 1] random variable U . The final two factors are the probability that the sum of
`+ 1 independent copies of U sum to at most β logn

αn
. Continuing we have

F3 ≤
∑

`≥0

β log n

αn(`+ 1)

(
e1+o(1)β log n

`

)`

≤
β log n

αn

(
10 logn∑

`=0

nβ+o(1) +
∑

`>10 logn

e−`

)
= n−1+β+o(1) = n−3ε+o(1).

The final factor in (18) is a bound on the probability that Xa1b1 +Xa2b2 ≤
(2+ε) logn

αn
. For this we use the fact

that Xaibi , i = 1, 2 is distributed as (1−ε) logn
αn

+ Ei where E1, E2 are independent exponential mean one. Now

P(E1 + E2 ≤ t) ≤ (1− e−t)2 ≤ t2 and taking t = 3ε logn
αn

justifies the final factor of (18).

It follows from (18) and the Markov inequality that the shortest distance between a pair of vertices in A is

at least (3−2ε) logn
αn

w.h.p., completing our proof of the lower bound in Theorem 2.

3.3.2 Upper Bound

We now consider the upper bound. Let Y1 = dk3 where dk is from Section 3.1 and k3 = n1/2 log n. For

t < 1− 1+o(1)
αn

we have that w.h.p. over our choice of Rm, that

E(etαnY1) = E

(
exp

{
k3∑

i=1

αtnZi

})
=

k3∏

i=1

(
1−

(1 + o(1))t

i

)−1

,

where the Zi are as in (10).

Then for any β > 0 we have

P

(
Y1 ≥

β log n

αn

)
≤ E(etαnY1−tβ logn) ≤ e−tβ logn

k3∏

i=1

(
1−

(1 + o(1))t

i

)−1

= e−tβ logn exp

{
k3∑

i=1

(1 + o(1))t

i
+O

(
t

i2

)}
= exp

{(
1

2
+ o(1)− β

)
t log n

}
.

It follows, on taking β = 3/2 + o(1) that w.h.p.

Yj ≤
(3 + o(1)) log n

2αn
for all j ∈ [n].

Letting Tj be the set corresponding to Sk3 when we execute Dijkstra’s algorithm starting at j, then we have
that for j 6= k where Tj ∩ Tk = ∅,

P

(
6 ∃e ∈ Rp ∩ (Tj : Tk) : X(e) ≤

log n

ωn

)
≤ exp

{
−
(1 + o(1))k2

3p log n

ωn

}
= e−(2+o(1)) log2 n = o(n−2) (19)

and this is enough to complete the proof of Theorem 2, except for when α > 1/2 and we do not add random
edges.
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3.4 α > 1/2

The Rp edges are needed for (14), (16) and (19). In each case we are two sets S, T of size s = o(n) say and we
need to argue for a short edge between them. In our case we look for a short path of length two. So, let X
denote the number of triples a, b, x where a ∈ S, b ∈ T and x /∈ S ∪ T and the lengths of edges {a, x} , {b, x}
are both at most p = logn

ωn
. Let T denote the set of such triples, so that X = |T |. The lengths of candidate

edges will not be conditioned by the history of the process. We use Janson’s inequality [22].

Each pair a ∈ S, b ∈ T have at least 2εn common neighbors. It follows that

E(X) ≥ s2εnp2.

We then estimate
∆ =

∑

(a,b,x)∼(a′,b′,x′)

P((a, b, x), (a′, b′, x′) ∈ T ),

where (a, b, x) ∼ (a′, b′, x′) if {a, x} = {a′, x′} or {b, x} = {b′, x′}.

Then,
∆ ≤ E(X) + 2s2np2 × sp

Then Janson’s inequality implies

P(X = 0) ≤ exp

{
−
E(X)2

2∆

}
≤ exp

{
−

s4ε2n2p4

s2np2 + 4s3np3

}
= e−Ω(snp) = e−Ω(s logn/ω). (20)

In all cases considered, s ≥ n1/2+o(1) an so the RHS of (20) is o(n−1), completing the proof of Theorem 2 for
the case where α > 1/2.

4 Bipartite matchings

We find, just as in [18], that the proofs in [40], [41] can be adapted to our current situation. Suppose that
the vertices of G are denoted A = {ai, i ∈ [n]} and B = {bj, j ∈ [n]}. We will need to assume that

a1, a2, . . . , an constitutes a random ordering of the vertices in A.

We will use the notation (a, b) for edges of G, where a ∈ A and b ∈ B. We will let w(a, b) denote
the weight of (a, b). Let Ar = {a1, a2, . . . , ar} and let C(n, r) denote the weight of the minimum weight
matching of Mr of Ar into B. (Mr is unique with probability one.) Suppose also that φr is defined by
Mr = {(ai, φr(ai)) : i = 1, 2, . . . , r}. Let Br = {φr(ai) : i = 1, 2, . . . , r}.

We will prove that

E(C(n, r)− C(n, r − 1)) ≈
1

α

r∑

i=1

1

r(n− i+ 1)
. (21)

for r = 1, 2, . . . , n− o(n).

Using this and a simple argument for r ≥ n− o(n) we argue that

E(Cn) = E(C(n, n)) ≈
1

α

n∑

r=1

r∑

i=1

1

r(n− i+ 1)
≈

1

α

∞∑

k=1

1

k2
=

π2

6α
. (22)
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4.1 Proof details

We add a special vertex bn+1 to B, with edges to all n vertices of A. Each edge adjacent to bn+1 is assigned
an E(λ) weight independently, λ > 0. Here E(λ) is an exponential random variable of rate λ i.e. P(E(λ) ≥
x) = e−λx. We now consider Mr to be the minimum weight matching of Ar into B∗ = B ∪ {bn+1}. (As
λ → 0 it becomes increasingly unlikely that any of the extra edges are actually used in the minimum weight
matching.) We denote this matching by M∗

r and we let B∗
r denote the corresponding set of vertices of B∗

that are covered by M∗
r .

Define P (n, r) as the normalized probability that bn+1 participates in M∗
r , i.e.

P (n, r) = lim
λ→0

P(bn+1 ∈ B∗
r )

λ
. (23)

Its importance lies in the following lemma:

Lemma 4.

E(C(n, r)− C(n, r − 1)) =
P (n, r)

r
. (24)

Proof. Choose i randomly from [r] and let B̂i ⊆ Br be the B-vertices in the minimum weight matching of
(Ar \ {ai}) into B∗. Let X = C(n, r) and let Y = C(n, r− 1). Let wi be the weight of the edge (ai, bn+1), and
let Ii denote the indicator variable for the event that the minimum weight of an Ar matching that contains
this edge is smaller than the minimum weight of an Ar matching that does not use bn+1. We can see that Ii
is the indicator variable for the event {Yi + wi < X}, where Yi is the minimum weight of a matching from
Ar \ {ai} to B. Indeed, if (ai, bn+1) ∈ M∗

r then wi < X − Yi. Conversely, if wi < X − Yi and no other edge
from bn+1 has weight smaller than X − Yi, then (ai, bn+1) ∈ M∗

r , and when λ → 0, the probability that there
are two distinct edges from bn+1 of weight smaller than X − Yi is of order O(λ2). Indeed, let F denote the
existence of two distinct edges from bn+1 of weight smaller than X and let Fi,j denote the event that (ai, bn+1)
and aj, bn+1) both have weight smaller than X.

Then,
P(F) ≤ n2

EX(max
i,j

P(Fi,j | X)) = n2
E((1− e−λX)2) ≤ n2λ2

E(X2), (25)

and since E(X2) is finite and independent of λ, this is O(λ2).

Note that Y and Yi have the same distribution. They are both equal to the minimum weight of a matching
of a random (r − 1)-set of A into B. As a consequence, E(Y ) = E(Yi) = 1

r

∑
j∈Ar

E(Yj). Since wi is E(λ)
distributed, as λ → 0 we have from (25) that

P (n, r) = lim
λ→0

(
1

λ

∑

j∈Ar

P(wj < X − Yj) +O(λ)

)
= lim

λ→0
E

(
1

λ

∑

j∈Ar

(
1− e−λ(X−Yj)

)
)

=
∑

j∈Ar

E(X − Yi) = rE(X − Y ).

We now proceed to estimate P (n, r). Fix r and assume that bn+1 /∈ B∗
r−1. Suppose that M∗

r is ob-
tained from M∗

r−1 by finding an augmenting path P = (ar, . . . , aσ, bτ ) from ar to B \ Br−1 of minimum
additional weight. We condition on (i) σ, (ii) the lengths of all edges other than (aσ, bj), bj ∈ B \ Br−1

9



and (iii) min {w(aσ, bj) : bj ∈ B \Br−1}. With this conditioning Mr−1 = M∗
r−1 will be fixed and so will

P ′ = (ar, . . . , aσ). We can now use the following fact: Let X1, X2, . . . , XM be independent exponential random
variables of rates λ1, λ2, . . . , λM . Then the probability that Xi is the smallest of them is λi/(λ1+λ2+· · ·+λM).
Furthermore, the probability stays the same if we condition on the value of min {X1, X2, . . . , XM}. Thus

P(bn+1 ∈ B∗
r | bn+1 /∈ B∗

r−1) = E

(
λ

δr + λ

)

where δr = dr−1(aσ) is the number of neighbors of aσ in B \Br−1.

Lemma 5.

P (n, r) = E

(
1

δ1
+

1

δ2
+ · · ·+

1

δr

)
. (26)

Proof.

lim
λ→0

λ−1
P(bn+1 ∈ B∗

r ) = lim
λ→0

λ−1
E

(
1−

δ1
δ1 + λ

·
δ2

δ2 + λ
· · ·

δr
δr + λ

)

= lim
λ→0

λ−1
E

(
1−

(
1 +

λ

δ1

)−1

· · ·

(
1 +

λ

δr

)−1
)

= lim
λ→0

λ−1
E

((
1

δ1
+

1

δ2
+ · · ·+

1

δr

)
λ+O(λ2)

)

= E

(
1

δ1
+

1

δ2
+ · · ·+

1

δr

)
. (27)

It is this point we need to assume that G is pseudo-random. We have used this to control the values of the
δi. We now state (part of) Theorem 2 of Thomason [36] in terms of our notation. Assume that G(m) is as in
Theorem 3.

Theorem 6. If X ⊆ A, Y ⊆ B and α|X| > 1 and x = |X|, y = |Y |, then

|e(X, Y )− αxy| ≤ (xy(αn+ µx))1/2.

where e(X, Y ) is the number of edges with one end in X and the other in Y .

4.1.1 Upper bound

We begin with an upper bound estimate for (27). This means finding lower bounds for the δi. Let

r0 = nβ, ω = nγ, θ =
1

ω2
, ε =

1

ω
, k = ω3. (28)

We will establish bounds on 0 < β, γ < 1 as we proceed through the proof. We will then choose suitable
values for these parameters.

We have the trivial bound δr ≥ αn− r which implies that

r0∑

r=1

1

r

r∑

i=1

1

δi
≤

r0∑

r=1

1

αn− r0
= o(1). (29)
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Now suppose that r ≥ r0 and let

Er = {∃S ⊆ [r, r + θr] : |S| = k, δi ≤ α(1− ε)(n− r − i) for i ∈ S} .

We claim that Theorem 6 implies that Er cannot occur for r ≤ n− r0. Indeed, suppose that Er occurs. Then

e(S,Br+θr) ≥ α
∑

i∈S

(r + i+ ε(n− r − i)) ≥ αk(r + ε(n− r)). (30)

On the other hand, Theorem 6 implies that

e(S,Br+θr) ≤ αk(r + θr) + (k(r + θr)(αn+ µk))1/2. (31)

Plugging in the values from (28) into (30) and (31) we see that after subtracting αkr the RHS of (30) is

Ω
(

knβ

ω

)
and the RHS of (31) is O

(
kn
ω3/2

)
, a contradiction, assuming

nβ

nγ
�

n

n3γ/2
or β > 1−

γ

2
. (32)

Let

p =
m(
n
2

) =
1

nη
. (33)

Let ζa denote the number of times that vertex a takes the role of aσ. We will show that with probability
1− o(n−1) that

ζa ≤ ν2 =
log3 n

p
, for all a ∈ A. (34)

We will prove below that if r ≤ n− r0 then with probability 1−O(n−2η)

δr ≥ ν1 =
n9β/10

ν2
2

= n9β/10−2η+o(1) except for at most
n9β/10+2η+o(1)

ν2
indices r. (35)

Let ξ(r) be the indicator for the exceptions in (35).

Let I1, I2, . . . , Is, s =
⌈
n−2r0
θn

⌉
be an equitable partition of [r0, n− r0] into consecutive intervals of length ≈ θn.

By equitable we mean that |Ik − Il| ≤ 1 for all k 6= l. Given that Er doesn’t occur and (35) we see that with
probability 1−O(n−3η/2) we have

∑

j∈I`

1

δj
≤

1

α

∑

j∈I`

1

(1− ε)(n− j)
+

kν2
ν1

+ ξ(It). (36)

Consequently, if γt = |I1|+ · · ·+ |It| and

kν2
θν1r0

= n5γ+3η−2β+o(1) = o(1), (37)

then with probability 1−O(n−3η/2) we have

C(n, n− r0) ≤ o(1) +
1 + o(1)

α

s∑

t=1

r0+γt∑

r=r0+γt−1+1

1

r

r∑

j=1

1

n− j + 1
+

kν2s

ν1r0
+

ν2n
9β/10+2η+o(1)

ν2r0

= o(1) +
1 + o(1)

α

n−r0∑

r=r0

1

r

r∑

j=1

1

n− j + 1
≈

π2

6α
, (38)
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assuming that

η <
β

20
. (39)

Explanation: The first o(1) term in (38) comes from (29). For a proof of the final estimate in (38) we refer
the reader to Section A in an appendix. (The calculation is taken from [18].)

We show later that with probability 1− o(n−1) we have

C(n, n)− C(n, n− r0) = o(1). (40)

To get an upper bound on E(Cn) we have to deal with the possibility of failure of (35). So what we do is to
think of adding Rp as the union of two copies of Rp/2, a red copy and a blue copy. With just the red copy,

we see that with probability 1−O(n−3η/2) we have Cn . π2

6α
and we use (6) for the blue copy. Thus,

E(Cn) ≤
π2

6α
+O(n−2η × p−1) ≈

π2

6α
.

4.1.2 Lower bound

Let ` = n1/3 and n1 = n− r0 and s =
⌈
n1

`

⌉
≈ n2/3 and equitably partition [n1] into intervals Ij, j = 1, 2, . . . , `

of length ≈ s and define γt = |I1|+ · · ·+ |It| as before. Fix j and let I = Ij. Next let Si, i ≤ ν2 denote the set
of elements of A that appear i times as aσ in I and let si = |Si|. Let Ti denote the subset of Ij corresponding
to Si. Partition Ti = U1 ∪ · · · ∪ Ui into i copies of Si in a natural way. Then it follows from Theorem 6 that
if siα > 1 then for 1 ≤ k ≤ i,

∣∣∣∣∣
∑

j∈Uk

δj − siα(n− (j − 1)s)

∣∣∣∣∣ ≤ (si(n− (j − 1)s)(αn+ µsi))
1/2.

Therefore,

∑

i:si>1/α

(
∑

j∈Ti

δj − isiα(n− (j − 1)s)

)
≤

∑

i:si>1/α

i(si(n− (j − 1)s)(αn+ µsi))
1/2

≤ n1/2(n− (j − 1)s)1/2
∑

i:si>1/α

is
1/2
i ≤ ν2

2s
1/2n1/2(n− (j − 1)s)1/2.

It follows then that

∑

k∈Ij

δk ≤ αs(n− (j − 1)s) + ν2
2s

1/2n1/2(n− (j − 1)s)1/2 + α−1ν2(n− (j − 1)s). (41)

We have from (41) and the fact that the harmonic mean is at most the arithmetic mean that if

η <
1

6
which implies that ν2

2 = o(s1/2) (42)

then, assuming

β >
2

3
, (43)
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∑

i∈Ij

1

δi
≥

s2∑
i∈Ij

δi
≥

s

α(n− (j − 1)s)

(
1 +

ν2
2

α

(
n

s(n−(j−1)s)

)1/2
+ ν2

αs

)

=
s

α(n− (j − 1)s)


1 +O


 ν2

2

s1/2
(
1− (j−1)s

n

)




 =

1

α

∑

i∈Ij

1

n− i+ 1


1 +O


 ν2

2

s1/2
(
1− (j−1)s

n

)


+O

(
s

n− (j − 1)s

)
 ≈

1

α

∑

i∈Ij

1

n− i+ 1
.

Therefore,

E(C(n, n1)) = E

(
n1∑

r=1

1

r

r∑

i=1

1

δi

)
= E


∑̀

j=1

∑

r∈Ij

1

r

r∑

i=1

1

δi


 &

1

α

∑̀

j=1

∑

r∈Ij

1

r

γj−1∑

i=1

1

n− i+ 1
≥

1

α

n1∑

r=1

1

r

r∑

i=1

1

n− i+ 1
−

s

n− s
−
∑̀

j=2

s

(j − 1)s(n− js)
=

1

α

n1∑

r=1

1

r

r∑

i=1

1

n− i+ 1
− o(1) ≈

π2

6α
. (44)

Explanation: the term −
∑`

j=2
s

(j−1)s(n−js)
accounts for the third summation in the last term of the first line

only going as far as γj−1 instead of γj. The term − s
n−s

, which is small due to (43), accounts for the j = 1
summand in the last term of the first line being missing, due to the same thing.

This gives the correct lower bound for Theorem 3. The proof of the final estimate in (44) is proved in the
same way as the final estimate in (38).

We now have to verify (35), (40). These claims rest on a bound on the maximum weight of an edge in the
minimum weight perfect matching.

4.1.3 No long edges

The aim of this section is to show that w.h.p. no edges of weight more than w1 = 2w0 log n (where w0 =
c1 logn

np
)

are used in the construction of Mn. Here c1 is a sufficiently large constant. For a set S ⊆ A, 2 ≤ |S| we let

N0(S) = {b ∈ B : (a, b) ∈ Rp and w(a, b) ≤ w0 for some a ∈ S} .

And for a ∈ A let
N0(a) = {b ∈ B : (a, b) ∈ E(G) and w(a, b) ≤ w0}

Let

r1 = p−1 log1/2 n; r2 =
n

10c1 log n
; r3 =

n

2000
; r4 = n−

4000n

c1 log n
.
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Lemma 7. W.h.p. we have

|N0(a)| ≥ 2r1 for all a ∈ A. (45)

|N0(S)| ≥
c1|S| log n

4
for all S ⊆ A, r1 < |S| ≤ r2. (46)

|N0(S)| ≥
n

40
for all S ⊆ A, r2 < |S| ≤ r3. (47)

|N0(S)| ≥ n−
3000n

c1 log n
for all S ⊆ A, r3 < |S|. (48)

n− |N0(S)| ≤
1

2
(n− |S|) for all S ⊆ A, |S| ≥ r4. (49)

Proof. We first observe that |N0(a)| is distributed as Bin(αn, 1− e−w0) and αn(1− e−w0) & αr1 log
1/2 n and

so the Chernoff bounds imply that

P(∃a : |N0(a)| ≤ 2r1) ≤ ne−αnw0/4 = o(n−1).

We next observe that for a fixed S ⊆ A we have

|N0(S)| ∼ Bin(n, q) where q = 1− (1− p(1− e−w0))|S| = 1− (1− (1 + o(1))w0p)
|S|.

(Here ∼ is used to indicate the distribution of |N0(S)|.)

If r1 < |S| ≤ r2 then q ≥ w0p|S|/2. So,

P (¬(46)) ≤
r2∑

s=r1

(
n

s

)
P

(
Bin(n, q) ≤

c1s log n

4

)
≤

r2∑

s=r1

(ne
s

)s
e−c1s logn/4 =

r2∑

s=r1

(
n1−c1/4e

s

)s

= o(1).

If r2 < |S| ≤ r3 then q > 1/20. So,

P (¬(47)) ≤
r3∑

s=r2

(
n

s

)
P

(
Bin

(
n,

1

20

)
≤

n

40

)
≤

r3∑

s=r2

(ne
s

)s
e−n/160 ≤ 2(2000)n/2000e−n/160 = o(1).

If r3 < |S| ≤ r4 then q ≥ 1− n−c1/3000. So,

P (¬(48)) ≤ 2nn−(n−n0)c1/3000 = o(1).

If r4 < |S|, let t = n− |S|. Then, q ≥ 1− n−c1/2 and so

P(¬(49)) ≤
n−r4∑

t=1

(
n

t

)(
n

t/2

)
(1− q)t/2 ≤

n−r4∑

t=1

(ne
t

)2t
n−c1t/2 = o(1).

Lemma 8. W.h.p., no edge of length at least w1 appears in any Mr, r ≤ n

Proof. We first consider r = 1, 2, . . . , r1 = p−1 log1/2 n. If a ∈ Ar and w(a, φr(a)) > w0 then (45) implies that
there are at least r1 choices of b ∈ B \φ(Ar) such that we can reduce the matching cost by replacing (a, φr(a))
by (a, b).
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We now consider r > r1. Choose a ∈ Ar and let S0 = {a} and let an alternating path P = (a =
u1, v1, . . . , vk−1, uk, . . .) be acceptable if (i) u1, . . . , uk, . . . ∈ A, v1, . . . , vk−1, . . . ∈ B, (ii) (ui+1, vi) ∈ Mr, i =
1, 2, . . . and (iii) w(ui, vi) ≤ w0, i = 1, 2, . . ..

Now consider the sequence of sets S0 = {a0} , S1, S2, . . . , Si, . . . defined as follows:

Case (a): N0(Si) ⊆ φ(Ar). In this case we define Si+1 = φ−1
r (Ti), where Ti = N0(Si). By construction then,

every vertex in Sj, j ≤ i+ 1 is the endpoint of some acceptable alternating path.

Case (b): Ti\φ(Ar) 6= ∅. In this case there exists b ∈ Ti which is the endpoint of some acceptable augmenting
path.

It follows from (46) applied to Si that w.h.p. there exists k = O
(

logn
log logn

)
such that |N0(Sk)| > r and

so Case (b) holds. This implies that if r1 ≤ r ≤ r2 then w(a, φr(a)) ≤ w0 log n for all a ∈ Ar. For if
w(a, φr(a)) > w0 log n then there are at least Ω(r log n) choices of b ∈ B \ φ(Ar) such that we can reduce the
matching cost by deleting (a, φr(a)) and changing Mr via an acceptable augmenting path from a to b. The
extra cost of the edges added in this path is o(w0 log n).

Now consider r2 < r ≤ r3 = n/100. We know that w.h.p. there is k = o(log n) such that |Sk| > r2 and that
by (47) we have that w.h.p. |N0(Sk+1)| > n/40 > r and we are in Case (b) and there is a low cost augmenting
path for every a, as in the previous case. When r3 < |Sk| ≤ r4 we use the same argument and find by (48)
we have w.h.p. N0(Sk+1) > r4 ≥ r and there is a low cost augmenting path. Similarly for r > r4, using (49).

Finally note that the number of edges in the augmenting paths we find is always at most o(log n) + log2 n ≤
2 log n.

This also proves that
E(C(n, n)− C(n, n− r0) = O

(
nβw1

)
= o(1),

provided
β < 1− η. (50)

This verifies (40).

To prove (34) we argue

P

(
∃a ∈ A : |{e : a ∈ e,Xe ≤ w1}| ≥

log3 n

p

)
≤ P

(
Bin (αn,w1) ≥

log3 n

p

)

≤

(
αn

p−1 log3 n

)
wp−1 log3 n

1 ≤

(
ew1

log3 n

)p−1 log2 n

= o(1). (51)

This verifies (34).

We finally consider (35). Consider how a vertex a ∈ A loses neighbors in B \ Br. It can lose up to ν2 for
the times when a = aσ. Otherwise, it loses a neighbor when aσ 6= a chooses a common neighbor with a.
The important point here is that this choice depends on the structure of G, but not on the weights of edges
incident with a. It follows that the cheapest neighbors at any time are randomly distributed among the
current set of available neighbors. To get to the point where aσ = a and δr ≤ ν1, we must have at least one
of the ν2 original cheapest neighbors occuring in a random ν1 subset of a set of size ≈ µr = min {αn, n− r}.
This has probability O(ν1ν2/µr) and (35) follows from the Markov inequality.
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We finally choose β, γ, η such that (32), (37), (39), (42), (43) and (50) hold. We let β = 5/6 + η and then we
choose γ = 1/3− η, η = 1/25.

5 Final remarks

We have shown that adding sufficiently many random edges is enough to “smooth out” the optimal value in
certain optimization problems. There are several questions that remain. The first is to remove the pseudo-
random requirement from Theorem 3. The problem is to control the sizes of the δr. Another possibility is to
consider matchings and 2-factors in arbitrary regular graphs, not just bipartite ones. Then one can consider
the Travelling Salesperson problem. We could also consider relaxing α to be o(1) and we can consider more
general distributions than E(1).
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A Proof of final estimate from (38)

We use the following expression from Young [42].

n∑

i=1

1

i
= log n+ γ +

1

2n
+O(n−2), where γ is Euler’s constant. (52)

n−r0∑

r=r0

1

r

r∑

j=1

1

n− j + 1

n−r0∑

j=r0

1

n− j + 1

n−r0∑

r=j

1

r
,

=

n−r0∑

j=r0

1

n− j + 1

(
log

(
n− r0

j

)
+

1

2(n− r0)
−

1

2j
+O(j−2)

)
+ o(1),

=

n−r0∑

j=r0

1

n− j + 1
log

(
n− r0

j

)
+ o(1),

=

n−r0∑

i=r0

1

i+ 1
log

(
n− r0
n− i

)
+ o(1), (53)

=

∫ n−r0

x=r0

1

x
log

(
n− r0
n− x

)
dx+ o(1).
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We can replace the sum in (53) by an integral because the sequence of summands is unimodal and the terms
are all o(1).

Continuing, we have

∫ n−r0

x=r0

1

x
log

(
n− r0
n− x

)
dx

= −

∫ n−r0

x=r0

1

x
log

(
1−

x− r0
n− r0

)
dx

=
∞∑

k=1

∫ n−r0

x=r0

1

x

(x− r0)
k

k(n− r0)k
dx

=
∞∑

k=1

∫ n−2r0

y=0

1

y + r0

yk

k(n− r0)k
dy. (54)

Observe next that for every k ≥ 1

∫ n−2r0

y=0

1

y + r0

yk

k(n− r0)k
dy ≤

∫ n−2r0

y=0

yk−1

k(n− r0)k
dy ≤

1

k2
.

So,

0 ≤
∞∑

k=logn

∫ n−r0

x=r0

1

x

(x− r0)
k

k(n− r0)k
dx ≤

∞∑

k=logn

1

k2
= o(1). (55)

If 1 ≤ k ≤ log n then we write

∫ n−2r0

y=0

1

y + r0

yk

k(n− r0)k
dy =

∫ n−2r0

y=0

(y + r0)
k−1

k(n− r0)k
dy +

∫ n−2r0

y=0

yk − (y + r0)
k

(y + r0)k(n− r0)k
dy.

Now ∫ n−2r0

y=0

(y + r0)
k−1

k(n− r0)k
dy =

1

k2

(n− r0)
k − (r0 + 1)k

(n− r0)k
=

1

k2
+O(n−βk/2). (56)

If k = 1 then our choice of r0 implies that

∫ n−2r0

y=0

(y + r0)
k − yk

(y + r0)k(n− r0)k
dy ≤

r0 log(n− 2r0)

n− r0
= o(1).

And if 2 ≤ k ≤ log n then

∫ n−2r0

y=0

(y + r0)
k − yk

(y + r0)k(n− r0)k
dy =

k∑

l=1

∫ n−2r0

y=0

(
k

l

)
yk−lrl0

(y + r0)k(n− r0)k
dy

≤
k∑

l=1

∫ n−2r0

y=0

(
k

l

)
yk−l−1rl0
k(n− r0)k

dy

=
k∑

l=1

(
k

l

)
rl0(n− 2r0)

k−l

k(k − l)(n− r0)k
(57)

= O

(
kr0

k(k − 1)n

)
= O

(
1

kn1−β

)
. (58)

To go from (57) to (58) we argue that if the summand in (57) is denoted by ul then ul+1/ul = O(r0/n) for
2 ≤ l ≤ log n. Hence the sum is O(u1).
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It follows that

0 ≤

logn∑

k=1

∫ n−2r0

y=0

(y + r0)
k − yk

(y + r0)k(n− r0)k
dy = o(1) +O

(
logn∑

k=2

1

kn1−β

)
= o(1). (59)

Equations (55), (56) and (59) complete the argument.
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