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Abstract

We consider the following question. We have a dense regular graph G with degree an, where o > 0
is a constant. We add m = o(n?) random edges. The edges of the augmented graph G(m) are given
independent edge weights X (e),e € E(G(m)). We estimate the minimum weight of some specified
combinatorial structures. We show that in certain cases, we can obtain the same estimate as is known for
the complete graph, but scaled by a factor a~!. We consider spanning trees, shortest paths and perfect
matchings in (pseudo-random) bipartite graphs.

1 Introduction

It is often the case that adding some randomness to a combinatorial structure can lead to significant positive
change. Perhaps the most important example of this and the inspiration for a lot of what has followed, is the
seminal result of Spielman and Teng [34] on the performance of the simplex algorithm, see also Vershynin
[37] and Dadush and Huiberts [13].

The paper [34] inspired the following model of Bohman, Frieze and Martin [10]. They consider adding random
edges to an arbitrary member G of G(«). Here « is a positive constant and G(«) is the set of graphs with
vertex set [n| and minimum degree at least an. They show that adding O(n) random edges to G is enough to
create a Hamilton cycle w.h.p. This is in contrast to the approximately %nlogn edges needed if we rely only
on the random edges. Research on this model and its variations has been quite substantial, see for example

[11], [27], [35], [25], [26], [12], [5], [29], [9], [21], [14], [33], [16], [31].

Anastos and Frieze [4] introduced a variation on this theme by adding color to the edges. They consider
rainbow Hamiltonicity and rainbow connection in the context of a randomly colored dense graph with the
addition of randomly colored edges. Aigner-Horev and Hefetz [1] strengthened the Hamiltonicity result of [4].

In this paper we introduce another variation. We start with a dense graph in which each edge e has a random
weight X (e) and add randomly weighted random edges. We study the effect on the minimum value of various
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combinatorial structures. We will for simplicity restrict our attention to what we will call G,.4(c), the graphs
in G(«) that are an regular.

1.1 Spanning Trees

We start with spanning trees. Suppose that G € G,.,(a) and each edge e of G is given an independent random
weight X (e) chosen uniformly from [0,1]. Let mst(G) denote the expected minimum weight of a spanning
tree of GG, assuming it is connected. Beveridge, Frieze and McDiarmid [6] and Frieze, Ruszinko and Thoma
[20] show that assuming certain connectivity conditions on G,

mst(G) ~ % as n — 00. (1)

where for a positive integer k¥ > 2 we have ((k) = " n".
Here A, =~ B, if A, = (1+0(1))B, asn — oo and A, < B, if A, < (1+0(1))B, asn — oo and A, > B,
if A,/B, — .

Now let G(m) be obtained from G by adding m random edges to G. Each added random edge also has an
independent uniform [0, 1] weight. Also, let G(p) be obtained from G by independently adding randomly
weighted copies of edges not in G, with probability p. We let R,,, R, denote the added edges. Our first
theorem is a simple extension of (1).

Theorem 1. Suppose that G € Grey() and nlogn < m < n°/3 and the edges of G(m) have independent
weights chosen uniformly from [0,1]. Then w.h.p.

mst(G(m)) ~ ? as n — 0o. (2)

In addition, if a > 1/2 then (2) holds without the use of random edges.

This theorem is very easy to prove. One simply verifies that certain conditions in [6] hold w.h.p. On the
other hand it sets the stage for what we are trying to prove in other scenarios. The upper bound on m is not
essential, we could most likely replace it by o(n?), but this would require us to re-do the calculations in [6].

Without the addition of random edges, all that can be claimed (assuming G is connected) is that

@) +1

) < msto) £ ®)

See [20].
Conjecture: The +1 in (3) can be replaced by +1/2 (which is best possible).

The example giving 1/2 is a collection of n/r copies of H = K, — e,r = an where there is a perfect matching
on the vertices of degree r — 2 added so that the copies of H are connected in a cycle by bridges.

1.2 Shortest paths

We turn our attention next to shortest paths. Janson [23] considered the following scenario: the edges of K,
are given independent exponential mean one random lengths, denoted by E(1). Let d;; denote the shortest
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distance between vertex ¢ and vertex j. He shows that w.h.p.

1 21 31
dl’g =~ Ogn, max dl,j ~ Ogn, maxdm ~ Ogn.
n J€[n] n ,J n

Bhamidi and van der Hofstad [7] proved an equivalent expression for d; 5 for a much wider class of distribution.
They actually determined an asymptotic limiting distribution. (See also Bhamidi, van der Hofstad and
Hooghiemstra [8].) We prove the following:

Theorem 2. Suppose that n?/logn < m <K n? and that G € G,ey() and the edges of G(m) are given
independent exponential mean one random lengths. Let d; ; denote the shortest distance between vertex i and

vertex j. Then w.h.p.

logn 2logn 3logn
maxd; j ~ , maxd;; ~

an j€n] 7’ an i,5€[n] an

d172 ~

In addition, if o > 1/2 then (2) holds without the use of random edges.

1.3 Bipartite matchings

We turn our attention next to bipartite matchings. For background consider the following well-studied
problem: each edge of the complete bipartite graph K, ,, is given an independent edge weight X (e). Let C,,
denote the minimum weight of a perfect matching in this context. Walkup [38] considered the case where X (e)
is uniform [0, 1] and proved that E(C,,) < 3. Later Karp [24] proved that E(C,,) < 2. Aldous |2, 3] proved that
if the X (¢) are independent exponential mean one random variables then lim, . E(C,) = ((2) = Y00, 5.
Parisi [32] conjectured that in fact E(C,) = >, 1%2 This was proved independently by Linusson and
Wistlund [28] and by Nair, Prabhakar and Sharma [30]. A short elegant proof was given by Wéstlund
(40, 41].

We now consider G(m). G is an an regular bipartite graph with vertex set AU B, |A| = |B| = n. Unfortu-
nately, our proof only works if G is pseudo-random, as defined by Thomason [36]. By this we mean that for
some 0 < ¢ < 1 we have

lco — degree(u,v) — a’n| < p=O(n'"%) for all u,v € A. (4)
Here, as usual, co — degree(u,v) = |{w € B : (u,w), (v,w) € E(G)}.

Theorem 3. Let G be a pseudo-random an regular bipartite graph with vertex set AU B, |A| = |B| = n.
Suppose that n**?> < m = o(n?). Let C, denote the minimum weight of a perfect matching when the weights
of the edges of G(m) are independent exponential mean one random variables. (To be clear, the m added
random edges have endpoints in the different vertex classes A and B, so that G(m) is bipartite.) Then

E(C,) ~ >~ = —. (5)

Conjecture: equation (5) holds for G(m), m = o(n?) growing sufficiently quickly, but without the assumption
of pseudo-randomness.

Frieze and Johansson [18] showed that if G is the random bipartite graph K, ,, where np > log”n then

E(C,) ~ —. (6)



That paper also conjectured that if (G,,) is a sequence of r = r(n)-regular bipartite graphs with n+n vertices

then E(C,,) ~ "GLTQ as 7,n — oco. This conjecture is false. Instead we have:

Conjecture: E(C,) ~ ”6—’;2 if the connectivity of G, tends to infinity. Also, in general E(C,) < (%2 + %)

The 1/2 here is best possible in general. We take n/r copies of H = K,.,, — e where there is a perfect matching
on the vertices of degree r — 1 added so that the copies of H are connected in a cycle by bridges.

In what follows we will sometimes treat large values as integers when strictly speaking we should round up
or down. In all cases the choice of up or down has negligible effect on the proof.

2 Spanning Trees

Theorem 2 of Beveridge, Frieze and McDiarmid [6] yields the following. Suppose that

an < §6(G) < A(G) < a(1+0n*))n. (7)
Let S : S denote the set of edges of G with exactly one endpoint in S. Then (2) holds if
%2n2/310g3/2nf0r allSQ[n],%gwlgg. (8)

Now if we add m random edges satisfying the conditions of the theorem then all degrees will be an + o(n??)
and this will satisfy (7).

So, to prove Theorem 1, all we need to do is to verify (8). Now let p = ﬁ > lo%. The probability that

n
2

G(p) contains a set failing to satisfy (8) can be bounded by

n/2 n/2 s
E (n>]P’(Bm(sn/2,p) < sn*3log*?n) < E (E) e~*P10 — o(1), (9)
s s
s=an/2 s=an/2

where we have just looked at the edges R, to satisfy (8). The property described in (8) is monotone increasing
and so the o(1) upper bound in (9) holds in G(m) as well, see for example Lemma 1.3 of [19].

Finally note that if v > 1/2 and S is as in (8) then each v € S has at least en neighbors in S. And therefore
|S 2 S|/|S| > en. This completes the proof of Theorem 1.

3 Shortest Paths

We use the ideas of Janson [23]. Sometimes we make a small tweak and in one case we shorten his proof
considerably. The case a > 1/2 will be discussed at the end of this section. We note that the lower bounds
hold a fortiori if we do not have random edges R,.

3.1 dyy

We set S; = {1} and d; = 0 and consider running Dijkstra’s shortest path algorithm [15]. At the end of Step
k we will have computed Sy = {1 =wy,v9,...,05} and 0 = dy,ds,...,d; where d; is the minimum length
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of a path from 1 to v;,i = 1,2,..., k. Let there be v, edges from Sy to [n] \ Sk. Arguing as in [23] we see
that dpy1 — dp = Z; where Z; is the minimum of v, independent exponential mean one random variables,
independent of di. We note that

1 1
E(Zy | vi) = — and Var(Zy | ) = — (10)
14% vy
Suppose now that
wn?
m = where 1 < w < logn.
logn
It follows that w.h.p. 6(G(m)) = A(G(m)) ~ an. Now
k
ké — 2(2> < v < kA(G(m))
and so
w.h.p. v, = kan for k = o(n). (11)

Conditioning on the set of added edges and taking expectations with respect to edge weights, we see that if

1 < k =o0(n) then
Uty | Ut log k
E(d,) = E — | = — = . 12
(ds) Z V; ; an an (12)

i=1

By the same token,
=0(n™?). (13)

3.1.1 Upper Bound

If ko = n'/?w'/? then whp. dp <22 for 0 < k < ky. Now execute Dijkstra’s algorithm from vertex 2 and

let dy, T}, correspond to dy, Sg. If S, N Tk, # () then we already have dig S l‘fn". If Sy,, Ty, are disjoint then
we use the random edges R,, or R,. Let p=m/(}) ~ 2w/logn. Then,

e  ))

wn wn
k2 2
plogn\ ™ kiplogn _
=(1-(1 1 < —— =" (14
(1= o)) " cexp{ BB e 1y

So, in this case we see too that w.h.p.

logen logn loen logn
dia s (L4 oll)) (QEn - 2571) - wgn ~ agn '

3.1.2 Lower Bound

We now consider a lower bound for d; ». Let ky = nl/2 /logn. We observe that because w.h.p. all vertices
have degree ~ an and because the edge joining vi.; to Sk is uniform among Sy : Sp edges, we see that

P(2 € Si,) = O(k1/n) = o(1). By the same token, P(T}, NSy, # 0) = O(k?/n) = o(1). It follows that w.h.p.

dis > 210gk1 ~ logn.
an an
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3.2 man dl,j
3.2.1 Lower Bound

For this we run Dijkstra’s algorithm until all vertices have been included in the shortest path tree. We can
therefore immediately see that if ko = n/logn then

- R = 1 2logn
E(mjax 4 2 ion * Z (n —i)an = Tan (15)
i=1 i=n—ko+1

The second sum in (15) is the contribution from adding the final ks vertices and uses v,,—; = (n —i)an w.h.p.
for i = o(n). Equation (13) allows us to claim the lower bound w.h.p.

3.2.2 Upper Bound

For an upper bound we use the fact that w.h.p. there are approximately i(n — i)p R, edges between S; and

S; in order to show that if ky = n/w then

2logn le 1
E di ) < P ——
(mjax 1) ( on + ; - >

S i —a)p
n—ko
2logn  logn 1 1 2logn a+o(l))logw 2logn
» 2logn  log Z(_'Jr .): g(H( ())g)% B (16)
an 2wn Mt T n—1 an w an

Equations (15) and (16) imply that E(max; d; ;) ~ 2125” and we can use equation (13) to get concentration
around the mean.

3.3 max; ; di,j
3.3.1 Lower Bound

Our proof here is somewhat shorter than that in [23], but it is based on the same idea. We begin with a lower
bound. Let Y, = min{X(e) : e = {v,w} € G(m)}. Let A = {v Y, > %} Then, given that all vertex

degrees are asymptotically equal to an, we have that for v € [n],

P(v € A) = exp {—(om + O(n))w} — p~Hetoll), (17)

an

An application of the Chebyshev inequality shows that |A| ~ n*T°®) w.h.p. and we can assume the existence

of a; # a, € A. Now the expected number of paths from a; to as of length at most (Sfﬁﬂ
by

can be bounded

—3e+0(1) logQ n —e+o(1) (18)

n2a+o(1) % —n
a’n?

xn2xn

Explanation for (18): The first factor n?+°(1) is the expected number of pairs of vertices a;,as € A. The
second factor is a bound on the number of choices by, by for the neighbors of aq,as on the path. The third
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factor F3 is a bound on the expected number of paths of length at most Bg’% from by to by, § =1 — 3e. This

factor comes from 041
Blogn 1
< £ .
Fs < Z((a +o(l)n) ( an €+ 1)

£>0

Here £ is the number of internal vertices on the path. There will be ((a + o(1))n)* choices for the sequence
of vertices on the path. We then use the fact that the exponential mean one random variable stochastically
dominates the uniform [0, 1] random variable U. The final two factors are the probability that the sum of
¢ + 1 independent copies of U sum to at most Bf%. Continuing we have

10logn
Blogn [e't°MBlogn B log n B B
s < B+o(1) ntHBto(l) — ) —3eto(1)
s < Z ol 1) ; 2o ) n

£>10logn

The final factor in (18) is a bound on the probability that X, 5 + X, . For this we use the fact
that X,p,,7 = 1,2 is distributed as (1_2% + E; where E;, Es are independent exponential mean one. Now

P(Ey 4+ E» < t) < (1—e7*)? < ? and taking ¢t = 221%™ justifies the final factor of (18).

2boy >

(2+¢)logn
1b1 < an

It follows from (18) and the Markov inequality that the shortest distance between a pair of vertices in A is

(3—2¢)logn
an

at least w.h.p., completing our proof of the lower bound in Theorem 2.

3.3.2 Upper Bound

We now consider the upper bound. Let Y; = dj, where dj, is from Section 3.1 and ks = n'/?logn. For
t<1-— 1+°( ) we have that w.h. p. over our choice of R,,, that

k3 k3 -1
E(ef*™) = | (exp {Z ozthi}) = H <1 - W) :

=1

where the Z; are as in (10).

Then for any £ > 0 we have

ks .
P (Y1 > 5logn) < B(efonyi—tflosny < e—tmognH (1 B (1+—0(1))t>

an
=1

= e Plosm exp {kzg w +0 (%)} = exp { (% +o(1) - 5) thgn} :

It follows, on taking § = 3/2 + o(1) that w.h.p.

(34 0(1))logn
2amn

Y, <

] =

for all j € [n].

Letting T; be the set corresponding to Sy, when we execute Dijkstra’s algorithm starting at j, then we have
that for j # k where T; N T}, = (),

wn wn

2
P (ﬁe c Rp A (T] : Tk) : X(e) < 1Ogn> < exp {_(1 + 0(1))k3p10gn} _ 6*(2+o(1))log2n — O(n’Q) (19>

and this is enough to complete the proof of Theorem 2, except for when o > 1/2 and we do not add random
edges.



34 a>1/2

The R, edges are needed for (14), (16) and (19). In each case we are two sets S, T of size s = o(n) say and we
need to argue for a short edge between them. In our case we look for a short path of length two. So, let X
denote the number of triples a, b, z where a € S;b € T and z ¢ S UT and the lengths of edges {a,z}, {b, z}
are both at most p = lzgn”. Let T denote the set of such triples, so that X = |7|. The lengths of candidate
edges will not be conditioned by the history of the process. We use Janson’s inequality [22].

Each pair a € S,b € T have at least 2en common neighbors. It follows that
E(X) > s*enp®.

We then estimate

A = Z P((a,b,x),(d',b',2") € T),

(a,b,x)~(a’ b x")
where (a,b,z) ~ (a/,0,2") if {a,x} = {d’, 2"} or {b,z} = {V,2'}.

Then,
A < E(X) + 2s’np* x sp

Then Janson’s inequality implies

E(X)? ste?n?pt o
P(X =0) < 2\~ . — o (snp) — —Q(slogn/w). 20
( )< exp{ 2A } - exp{ s?np? + 4s3np3 c ‘ (20)

In all cases considered, s > n'/27°() an so the RHS of (20) is o(n™'), completing the proof of Theorem 2 for
the case where a > 1/2.

4 Bipartite matchings

We find, just as in [18], that the proofs in [40], [41] can be adapted to our current situation. Suppose that
the vertices of G are denoted A = {a;,i € [n|} and B = {b;,j € [n]}. We will need to assume that

ai, as, . .., a, constitutes a random ordering of the vertices in A.

We will use the notation (a,b) for edges of G, where a € A and b € B. We will let w(a,b) denote
the weight of (a,b). Let A, = {a1,a9,...,a,} and let C(n,r) denote the weight of the minimum weight
matching of M, of A, into B. (M, is unique with probability one.) Suppose also that ¢, is defined by

M, = {(a;,d.(a;)) : i =1,2,...,7r}. Let B, ={o.(a;) : i =1,2,...,7}.
We will prove that
1
E — —1))~— 21
(Cor) = =) = 23—t (21)

=1

forr=1,2,...,n—o(n).

Using this and a simple argument for » > n — o(n) we argue that

E(C,) = E(C(n, n)) ~ ézz m ~ éZ% - (22)



4.1 Proof details

We add a special vertex b,41 to B, with edges to all n vertices of A. Each edge adjacent to b, is assigned
an F(\) weight independently, A > 0. Here E()) is an exponential random variable of rate A i.e. P(E(X) >
r) = e . We now consider M, to be the minimum weight matching of A, into B* = B U {b,11}. (As
A — 0 it becomes increasingly unlikely that any of the extra edges are actually used in the minimum weight
matching.) We denote this matching by M} and we let B denote the corresponding set of vertices of B*
that are covered by M.

Define P(n,r) as the normalized probability that b, ; participates in M}, i.e.
P(bn—H < B:)

P(n,r) = }\11% S . (23)
Its importance lies in the following lemma:
Lemma 4. P
E(C(n,r) — C(n,r —1)) = (T: ) (24)

Proof. Choose i randomly from [r] and let Bl C B, be the B-vertices in the minimum weight matching of
(Ar-\{a;}) into B*. Let X = C(n,r) and let Y = C(n,r —1). Let w; be the weight of the edge (a;, b,41), and
let I; denote the indicator variable for the event that the minimum weight of an A, matching that contains
this edge is smaller than the minimum weight of an A, matching that does not use b,.1. We can see that I;
is the indicator variable for the event {Y; + w; < X}, where Y; is the minimum weight of a matching from
A\ {a;} to B. Indeed, if (a;,b,41) € M} then w; < X —Y;. Conversely, if w; < X —Y; and no other edge
from b,+1 has weight smaller than X — Y, then (a;, b,41) € M, and when A — 0, the probability that there
are two distinct edges from b, of weight smaller than X — Y; is of order O()\?). Indeed, let F denote the
existence of two distinct edges from b, 41 of weight smaller than X and let F; ; denote the event that (a;, b,+1)
and a;, b,11) both have weight smaller than X.

Then,
P(F) < n*Ex(maxP(F;; | X)) = n’E((1 — e *)?) < n?\2E(X?), (25)
?/7.7

and since E(X?) is finite and independent of A, this is O()\?).

Note that Y and Y; have the same distribution. They are both equal to the minimum weight of a matching
of a random (r — 1)-set of A into B. As a consequence, E(Y) = E(Y;) = - >7.., E(Y)). Since w; is E())
distributed, as A\ — 0 we have from (25) that

P(n,r) = /1\11)1(1) (% Z Plw; < X =Y;) + O(/\)) — }E{%}E <§ Z (1 . e—A(X_yj))>

JEA, JEA,
=Y E(X-Y;) =rEX -Y).

JEA,

]

We now proceed to estimate P(n,r). Fix r and assume that b,.; ¢ B} ;. Suppose that M} is ob-
tained from M ; by finding an augmenting path P = (a,,...,a,,b,) from a, to B\ B,_; of minimum
additional weight. We condition on (i) o, (ii) the lengths of all edges other than (a,,b;),b; € B\ B,_;
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and (iii) min{w(a,,b;) : b; € B\ B,_1}. With this conditioning M,_; = M, will be fixed and so will
P = (a,,...,a,). We can now use the following fact: Let X7, X5, ..., X)s be independent exponential random
variables of rates Ay, Ao, ..., Aps. Then the probability that X; is the smallest of them is A; /(A1 +Ao+- - -+ Aps).
Furthermore, the probability stays the same if we condition on the value of min {X;, X5, ..., Xy/}. Thus

A
P B’ B )=E
(s € B b ¢ 5) = (535

where 0, = d,_1(a,) is the number of neighbors of a, in B\ B,_;.

Lemma 5.

1 1 1
P(n,r):E<5—1+5—2+-'-+5—). (26)

Proof.

o 0. )
I ! ) =1 -1 —_ ! . 2 oo r
}\15{(1))\ P(bn—l—lEBr)—}\lLI(l)/\ E(l PR i 5r+)\)
:lim)\_lE<1—(1—|—i) <1+i) )
A—0 (51 5r
1 1 1
= lim A7} e A R 2
= lim A E(<51+52+ +6r>“0(”)
1

1 1
—El =+ =4...0 ). 2
(51+52+ +5T> (27)

It is this point we need to assume that G is pseudo-random. We have used this to control the values of the
;. We now state (part of) Theorem 2 of Thomason [36] in terms of our notation. Assume that G(m) is as in
Theorem 3.

Theorem 6. If X CAY C B and o|X| > 1 and z = | X|,y = |Y|, then
[e(X,Y) — azy| < (zy(an + pa))' 2.

where e(X,Y) is the number of edges with one end in X and the other in Y.

4.1.1 Upper bound

We begin with an upper bound estimate for (27). This means finding lower bounds for the ¢;. Let
B 1 1 3
ro=n", w=n’, #=—, e=—, k=uw". (28)

We will establish bounds on 0 < 8,7 < 1 as we proceed through the proof. We will then choose suitable
values for these parameters.

We have the trivial bound ¢, > an — r which implies that
N R D N |
- — < = o(1). 29
22 L .
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Now suppose that r > rg and let
E={3SCrr+0r]: |S|=Fkd <a(l—¢c)(n—r—i)foriecS}.
We claim that Theorem 6 implies that £, cannot occur for r < n — ry. Indeed, suppose that &, occurs. Then

e(S, Bryor) > @Y (r+i+e(n—r—i)) > ak(r+en—r)). (30)

i€s
On the other hand, Theorem 6 implies that
e(S, Brygr) < ak(r +0r) + (k(r + 0r)(an + uk))"/>. (31)

Plugging in the values from (28) into (30) and (31) we see that after subtracting akr the RHS of (30) is
Q (%) and the RHS of (31) is O ( 3/2) a contradiction, assuming

Let 1
m
= =_ 33
T w )

Let (, denote the number of times that vertex a takes the role of a,. We will show that with probability
1 —o(n™') that

log®n

Co <1y = , for all a € A. (34)

We will prove below that if r < n — rq then with probability 1 — O(n=2")
198/10 n98/10+2n+0(1)

- p?8/10=21+0() except for at most ————— indices . (35)

57‘ >V = =

Let &(r) be the indicator for the exceptions in (35).

Let I1, Ir, ..., I, s = [";—ffﬂ be an equitable partition of [rg, n — o] into consecutive intervals of length ~ 6n.
By equitable we mean that |I, — ;| <1 for all k # [. Given that &, doesn’t occur and (35) we see that with
probability 1 — O(n~%"2) we have

Z— —Z =5 —7) +V—1+§(It) (36)

Consequently, if v = [I1]| + -+ - + |[;| and

kv 5y+3n—28+o(1)
= o = ]_ 37
91/17,,0 n O( )7 ( )

then with probability 1 — O(n=*"/2) we have

1 1+0(1) ° g 1 - ku s vyn28/10+2n+o(l)
C(n,n—rg) <o Z 1 2 2
t=1 r=ro+v-1+1 j=1 n- ‘7 + “To v2ro
1 —|— o( — 2
=0 ~—, (38
(1) Z Z n—j+1 6« (38)

=70
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assuming that

s
n < 20 (39)

Explanation: The first o(1) term in (38) comes from (29). For a proof of the final estimate in (38) we refer
the reader to Section A in an appendix. (The calculation is taken from [18].)

We show later that with probability 1 — o(n™!) we have
C(n,n) — C(n,n —rg) = o(1). (40)

To get an upper bound on E(C;,) we have to deal with the possibility of failure of (35). So what we do is to
think of adding R, as the union of two copies of R, /s, a red copy and a blue copy. With just the red copy,

we see that with probability 1 — O(n3"2) we have C,, < Z and we use (6) for the blue copy. Thus,

n N 6a
E(C,) < g—; + 02" x p) ~ g—;
4.1.2 Lower bound
Let £ =n'3 andn; =n—r1p and s = (%W ~ n?/3 and equitably partition [n,] into intervals I;,j = 1,2,...,¢

of length ~ s and define 4 = |I;|+ - - - +|I;| as before. Fix j and let I = I;. Next let S;,i < 1y denote the set
of elements of A that appear ¢ times as a, in I and let s; = |.S;|. Let T; denote the subset of I; corresponding
to .S;. Partition T; = U; U --- U U; into ¢ copies of .S; in a natural way. Then it follows from Theorem 6 that
if s;a > 1 then for 1 < k <1,

Y 05— sialn = (j = 1)s)| < (si(n— (j — )s)(an + ps;)) %,

JeU
Therefore,
Z (Zé isia(n— (7 —1)s )) < Z i(si(n— (j — 1)s)(an + ps;))"?
5, >1/a \JET; :8;>1/a
< nl/Z(n — (- 1)8)1/2 Z / < Vz 1/2 1/2( — (- 1)5)1/2.
i:5;>1/a
It follows then that
D ok <as(n— (= 1)s) + 58P0 (n— (= 1)s)2 + o wa(n — (5 — 1)s). (41)

kEI]’

We have from (41) and the fact that the harmonic mean is at most the arithmetic mean that if

1
n<g which implies that v2 = o(s/?) (42)
then, assuming
2

12



> >
61 - 57, o 12 1/2
pry D ier, aln—(j—1)s) (1 +4 (S(n*(?*l)s)) + Z—2>
2
s v
= 1+0 : =
an—(j—1)s) 51/2 <1 (j—l)S)
1 1 S 1 1
— 1+0 2_ @) < ) R — —.
oz%;n—z—l—l 51/2<1 (J—1)8> n—(j—1)s a%n—@%—l
Therefore,
Ll 1 1 G Ll 1R 1
E(C =E -y — | =E i N -
(Cln,m1) ( . 51,) PIDBED B TP DD DD D srur =
r=1 i=1 j=1rel; i=1 j=1rel;
Tehles 1 s - s Iehl~ 1 n?
—) - — - — —Z — — :—Z— —————o(l) = —. (44)
a‘=sr=n—i+l n-s = J—=1Dstn—js) a‘=zrisn—i+l (ife?

Explanation: the term — Z?:Q m accounts for the third summation in the last term of the first line

only going as far as v;_; instead of ;. The term ——*-, which is small due to (43), accounts for the j = 1

summand in the last term of the first line being missing, due to the same thing.

This gives the correct lower bound for Theorem 3. The proof of the final estimate in (44) is proved in the
same way as the final estimate in (38).

We now have to verify (35), (40). These claims rest on a bound on the maximum weight of an edge in the
minimum weight perfect matching.

4.1.3 No long edges

The aim of this section is to show that w.h.p. no edges of weight more than w; = 2wg logn (where wy = Cl;%)

are used in the construction of M,,. Here ¢ is a sufficiently large constant. For a set S C A,2 < |S| we let
No(S)={be B:(a,b) € R, and w(a,b) < wy for some a € S}.

And for a € A let
No(a) ={be B: (a,b) € E(G) and w(a,b) < wp}

Let

n n 4000n
r3 = ——: ra=mn — .
572000’ ! cilogn

_ 1 1/2 . _ .
— 1 -
1 p 0g " n; T2 10c, lOg n’

13



Lemma 7. W.h.p. we have

|No(a)| > 2ry  for all a € A. (45)
1
INo(S)| > C”S!# for all S C A,r1 < |S| < 1. (46)
n
|INo(S)| > 10 for all S C A;ry < |S| < rs. (47)
No(S)] > m— S0 o Gl S C A, g < |S]. (48)
c1logn
1
n—|No(9)| < 5(n—|5|) forall S C A, |S| > ry. (49)

Proof. We first observe that |Ny(a)| is distributed as Bin(an,1 — e °) and an(l — e ) > ar; log"/? n and
so the Chernoff bounds imply that

P(3a : |No(a)| < 2rp) < ne o™0/* = o(n~1).
We next observe that for a fixed S C A we have
INo(S)| ~ Bin(n,q)  where g = 1— (1—p(1 — e )l =1 — (1 = (1 + o(1))upp) ¥
(Here ~ is used to indicate the distribution of |Ny(S)].)

If r < |S| < ry then ¢ > wop|S|/2. So,

P(-(46) < Y (1) (Bintn.a) < 275 < >0 (1) et 2y (”/) —o(1).

s=r1 s=r1 s=r1

If ro < |S| < r3 then ¢ > 1/20. So,

T3 1 T3 s
P(-(47) <Y (Z)IP’ (Bm (n %) < %) <y (%) e~1/160 < 9(2000)"/200=n/160 — (1),

S=T9 S=To

If r3 < |S| < ry then ¢ > 1 —n=/3090_ Qo
]P)(—'(48)) < 2nn—(n—no)cl/3000 _ O(l).

If r, < |S|, let t =n —|S|. Then, ¢ > 1 —n"/2 and so

P(-(19) < 3 (1)(,),)a-a< Z (22)" ooz = o).

t=1

Lemma 8. W.h.p., no edge of length at least wy appears in any M,,r <n

Proof. We first consider r = 1,2, ..., = p~log"?n. If a € A, and w(a, ¢,(a)) > wy then (45) implies that
there are at least r; choices of b € B\ ¢(A,) such that we can reduce the matching cost by replacing (a, ¢,.(a))
by (a,b).

14



We now consider r > r;. Choose a € A, and let Sy = {a} and let an alternating path P = (a =
UL, V1, v oy Up—1, Up, - - .) De acceptable if (1) uy,... Ug,... € A, v1,...,0k_1,... € B, (i) (uiy1,v;) € M, i =
1,2,...and (iil) w(u;, v;) < wg, i = 1,2, .. ..

Now consider the sequence of sets Sy = {ao},S1,52,...,5;, ... defined as follows:

Case (a): Ny(S;) C ¢(A,). In this case we define S;1; = ¢ "1(T;), where T; = Ny(S;). By construction then,
every vertex in S;,j <+ 1 is the endpoint of some acceptable alternating path.

Case (b): T;\¢(A,) # 0. In this case there exists b € T; which is the endpoint of some acceptable augmenting
path.

It follows from (46) applied to S; that w.h.p. there exists k = O (1;;1%) such that |Ny(Sk)| > r and

so Case (b) holds. This implies that if r; < r < 7y then w(a, ¢,(a)) < wologn for all a € A,. For if
w(a, ¢.(a)) > wologn then there are at least Q(rlogn) choices of b € B\ ¢(A,) such that we can reduce the
matching cost by deleting (a, ¢.(a)) and changing M, via an acceptable augmenting path from a to b. The
extra cost of the edges added in this path is o(wglogn).

Now consider ry < r < r3 = n/100. We know that w.h.p. there is k = o(logn) such that |Sg| > o and that
by (47) we have that w.h.p. |Ny(Sk+1)| > n/40 > r and we are in Case (b) and there is a low cost augmenting
path for every a, as in the previous case. When 73 < |Si| < ry we use the same argument and find by (48)
we have w.h.p. No(Sky1) > 74 > r and there is a low cost augmenting path. Similarly for r > ry, using (49).

Finally note that the number of edges in the augmenting paths we find is always at most o(logn) + log, n <
2logn. [

This also proves that
E(C(n,n) — C(n,n —ry) = O (n"wy) = o(1),

provided
g<1l—n. (50)
This verifies (40).

To prove (34) we argue

log” log”
P(HaeA:]{e:aee,Xegwl}\z o8 n) gIP’(Bin(om,wl)z o8 n)
p p

an 113 ew, \P ' leg’n
< plogtn o ! —o(1). (51
- (p110g3 n>w1 - (10g3n) o). (51)

This verifies (34).

We finally consider (35). Consider how a vertex a € A loses neighbors in B\ B,. It can lose up to v, for
the times when a = a,. Otherwise, it loses a neighbor when a, # a chooses a common neighbor with a.
The important point here is that this choice depends on the structure of GG, but not on the weights of edges
incident with a. It follows that the cheapest neighbors at any time are randomly distributed among the
current set of available neighbors. To get to the point where a, = a and 9, < 11, we must have at least one
of the vy original cheapest neighbors occuring in a random vy subset of a set of size &~ p, = min{an,n — r}.
This has probability O(v1v2/u,) and (35) follows from the Markov inequality.

15



We finally choose 3,7, n such that (32), (37), (39), (42), (43) and (50) hold. We let 8 = 5/6 +n and then we
choose vy =1/3 —n,n =1/25.

5 Final remarks

We have shown that adding sufficiently many random edges is enough to “smooth out” the optimal value in
certain optimization problems. There are several questions that remain. The first is to remove the pseudo-
random requirement from Theorem 3. The problem is to control the sizes of the d,. Another possibility is to
consider matchings and 2-factors in arbitrary regular graphs, not just bipartite ones. Then one can consider
the Travelling Salesperson problem. We could also consider relaxing « to be o(1) and we can consider more
general distributions than F(1).
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Proof of final estimate from (38)

We use the following expression from Young [42].

n

1 1

E - =logn+~vy+ I +0(n™?), where ~y is Euler’s constant. (52)
i n

i=1

n—ro n—ro

Z%g i Zn j—|—1z_

- Z ﬁ (log (n ; ro) o 1_ i % + O(j‘z)) +o(1),

J=ro
n—ro n—ro
= 1 1
- ]+10g< >+0(),
J=ro
:n—’"o L log noTo + o(1), (53)
, 1+ 1 n—1
i=rQ




We can replace the sum in (53) by an integral because the sequence of summands is unimodal and the terms
are all o(1).

Continuing, we have

Observe next that for every £ > 1

n—2ro 1 k n—2rg k—1 1
y Yy

dy < 7 dy < —.

/y:o Y+ 1o k(n — ro)F y—/yzo Ko —ro)F Y = R

So,
> ol (3 —1o)¥ =1
0< ————dr < — =o0(1). 55
- Z /xr xk(n —rg)k r= k2 o(1) (55)
k=logn 0 k=logn

If 1 <k <logn then we write
n—2rg 1 k n—2rg n—2rg k k
/ y kdy:/ (y +ro)*” d +/ y" —(y+ro) dy.
y=0 Y+rok(n—ro) y=o  k(n —mo)* y=o (Y +70)k(n—ro)

J A 0P RO X
o k(n—ro)k 7 k2 (n—r1o)* k2

If £ =1 then our choice of ry implies that

/n%0 (y +71o)k —¢” d <r010g(n—2r0)
=0 (yH+ro)k(n—mro)k "~ n—ro

Now

+ O(n =Pk, (56)

=o(1).

And if 2 < k <logn then
n—2rg . n—2rg k—1,.1
/ (y +70)" dy = Z/ (k) Y 'y dy
y=0 (W Fro)k(n — 1)k 1) (y+ro)k(n—ry)k
/n 2rg k k: - 17”(1) dy
[ ) k(n—ry)k
Xk: 7“0 n— 2T0>k t (57)

— (n—ro)*

:()(k(kk%m) :O<kn{ﬂ)‘ (58)

To go from (57) to (58) we argue that if the summand in (57) is denoted by wu; then w1 /u; = O(rg/n) for
2 <1 <logn. Hence the sum is O(uy).
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It follows that

Equations (55), (56) an

k=1

oL

n—2ro <y + To)k o yk .
/y=0 (y + ro)k(n — To)kdy =o(1)+0 (

59) complete the argument.

20

logn

1
kn1-8

> =o(1).

(59)
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