Maker Breaker on Digraphs

Alan Frieze*and Wesley Pegden'!
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh PA 15213

November 30, 2021

Abstract

We study two biased Maker-Breaker games played on the complete digraph K,. In the strong connec-
tivity game, Maker wants to build a strongly connected subgraph. We determine the asymptotic optimal
bias for this game viz. %. In the Hamiltonian game, Maker wants to build a Hamiltonian subgraph.
We determine the asymptotic optimal bias for this game up to a constant factor.

Keywords: Maker-Breaker, Digraphs, Strong connectivity, Hamiltonicity.

1 Introduction

We consider some biased Maker-Breaker games played on the complete digraph K, on n vertices. This is
in contrast to the large literature already existing on games played on the complete graph K,. For a very
nice summary of the main results in this area, we refer the reader to the monograph by Hefetz, Krivelevich,
Stojakovi¢ and Szabo [4]. A typical example of such a game is the biased connectivity game first studied by
Chvétal and Erd6s [2]. It is palyed on the complete graph K, and player Maker chooses an edge and then
player Breaker chooses b edges. Maker and Breaker’s choices being disjoint. Maker will try to ensure that
at the end of play, the graph GG, induced by her edges is connected and Breaker will try to prevent this. It
is clear that there is some threshold by say, such that if b < by then Maker will succeed and if b > by then
Breaker will win. Estimating by is the challenge in this area. Chvatal and Erdés gave an upper bound of
bp < (1 —1—5)1"% in the connectivity game and Gebauer and Szabé [3] proved a lower bound of by > (1 — 5)10%.
We can rephrase the connectivity game as that Maker wants to build a spanning tree of K,, and Breaker
wants to prevent this. As such we see that there is a corresponding game for any possible subgraph of K,,. In
particular, Maker might wish to build a Hamilton cycle. This Hamiltonicity game was solved by Krivelevich

5].

Our aim here is to analyse the directed versions of the Connectivity Game and the Hamiltonicity Game.

*Research supported in part by NSF grant DMS1661063. Corresponding author.
TResearch supported in part by NSF grant DMS1363136

In the games analysed below, Maker goes first, claiming an edge of K,,. Breaker then claims b edges and so on,
with Maker and Breaker taking one and b edges respectively until there are no edges left to take. In addition,
Maker and Breaker must claim disjoint sets of edges. Maker is aiming to construct a digraph with certain
properties and Breaker is aiming to prevent this. The properties involved are monotone increasing and so
there is a critical bias, by say, such that if b < by then Maker will win and if b > by then Breaker will win. We
will consider two properties here: strong connectivity and Hamiltonicity. We let D,;, D denote the digraphs
with vertex set [n] and the edges taken by Maker, Breaker respectively. Maker wins the strong connectivity
game if on termination D), is strongly connected. Maker wins the Hamiltonian game if on termination D),
is Hamiltonian.

Theorem 1. Let € > 0 be arbitrarily small and n > n. sufficiently large. Then Breaker wins the strong

connectivity game if b > % and Maker wins if b < (};;in.

Theorem 2. Let € > 0 be arbitrarily small and n > n. sufficiently large. Then Breaker wins the Hamiltonian

game if b > %. Furthermore, there exists an absolute constant > 0 such that Maker wins if b < lfg"n.

The structure of the paper is as follows: Section 2 deals with a game played on an undirected n-regular graph
G. We show how Maker can exert some control over the minimum degree in the graph GGj; induced by Maker’s
edges and over the maximum degree in the graph Gp induced by Breaker’s edges. We apply the theorem in
the context of the bipartite graph K, , using the natural relationship between a digraph D = (V| F') and the
bipartite graph I' = (V, V, A) where {i,j} € A if and only (7, 5) € E.

Section 3 verifies the Breaker win in the Strong Connectivity and Hamilton cycle games for sufficiently large
b. Section 3.2 verifies the Maker win in the Strong Connectivity game for b not too large.

Section 4 verifies the Maker win in the Hamilton Cycle game for b not too large.

2 Degree bound

Notation We let d},(v),d;,(v) denote the out-degree, in-degree of vertex v in Dy for v € [n]. We define
d}, dy similarly. We let Eyr, Ep denote the edges claimed by Maker and Breaker respectively, on termination.

The following Theorem is a straightforward generalisation of results from Chapter 5 of Hefetz, Krivelevich,
Stojakovi¢ and Szabo [4]. Let b = lfg”n be Breaker’s bias, where 3 < 1 is a constant. Note that it deals with
undirected graphs. As already mentioned above, we apply it to K, , and we will see that it gives control for

Maker over in- and out-degrees.

Theorem 3. Let G = (V, E) be an n-regular graph and let o € (8,1) and suppose that 2/a < K < flogn
where 26 < O‘TZ’B s a constant. Then the following holds: Maker has a randomised strateqy that with positive

probability can in at most K|V'| rounds ensure that Maker’s graph has minimum degree K and Breaker’s graph
has mazimum degree at most an. Furthermore, Maker always chooses a vertex v and then randomly chooses
an edge incident with v from a set of size at least (1 — a)n.

The proof of this involves a minor modification of the proof in [4]. We have for completeness provided a
condensed proof in an appendix. Of course, having a randomized strategy in this context, also means implies
the existence of a deterministic strategy.

Now a digraph D on vertex set [n] can be associated with a bipartite graph G on vertex set A U B where
A={ay,...,a,},B ={by,...,b,} and where oriented edge (i, j) is replaced by the edge {a;, b;}. In this way

2

the out-degree of k in D is the degree of a5 in G and the in-degree of k is the degree of by in G. It follows
from Theorem 3 that Maker can ensure that Dj; has minimum in- and out-degree at least K after at most
2Kn rounds. And that Dp has maximum in- and out-degree at most an.

3 Strong Connectivity

3.1 Breaker win

We now consider the game to be played on the complete bipartite graph [, ,, where the bipartition is AU B
with |A| = |B| = n. Breaker’s aim is to claim all the edges incident with some vertex a € A. This is
essentially the boz game of Chvatal and Erdés [2]. We let box A; = {{i,b} : b € B} for i € A. Breaker claims
b elements from the boxes and Maker claims one whole box in each turn. The claimed upper bound follows
from Theorem 2.1 of [2].

Note that this also verfies the Breaker win in Theorem 2.

3.2 Maker win

Because Maker chooses neighbors randomly, small sets must have edges entering and leaving.

Lemma 4. Suppose that K > (2—2log(1—a))/a is sufficiently large with respect to «v. Then, w.h.p., S C [n],
|S| < (1 — «)?n implies that

{(i,j) €EEp:i€8S,j¢S}#0 and {(i,j) € Ey:i ¢ S,j € S} #0.

Proof. The probability that there exists a set violating the condition in the lemma is at most

(1—a)3n

3 () () =2 (5 ()) o

O

Assume now that § = 1 — ¢ is a close to one and that § = (1 + a)/2. Now consider the Directed Acyclic
Graph (DAG) with one vertex for each strong component of Dy, in which there is an edge (A, B) if there is
an edge in D), directed from A to B. (A DAG is a digraph without directed circuits.) We observe that w.h.p.
each source and sink in Dj; must be associated with a subset of [n] of size at least (1 — «)?n. This follows
directly from Lemma 4. A smaller sink would have an edge oriented from it to another strong component,
contradiction.

It follows that w.h.p. after 2Kn rounds, Maker can make D, strongly connected in a further [(1 — a)™*]
rounds by adding an edge from each sink to each source. There will be by construction Q(n?) choices of edge
available for each such pair and Breaker can only claim o(n) edges in this number of rounds. This completes
the proof of Theorem 1

4 Hamiltonicity

We show that w.h.p. the digraph constructed by Maker is Hamiltonian. For each v € [n] there are sets
in-neighbors I N(v) and out-neighbors OUT (v) of size K = 0logn, where each of the 2n K-sets have been
chosen uniformly from sets A(v), B(v) of size (1 — a)n. The sets A(v), B(v),v € [n]| are chosen adversarially.

Our analysis assumes that « is sufficiently small and 6 is sufficiently large, given a, 6 > 10/a? will suffice.
Note that we require 208 < « so that 2K/n/logn < an in order not to violate Maker’s choices. We also
need 6 < a‘%ﬁ, which is required by Theorem 3. This makes g small compared to «.

We will follow an approach similar to that of Angluin and Valiant [1]. We choose an arbitrary vertex denoted
sp to start and at any point during the execution of the algorithm we have (i) a path P that begins at sp
and ends at some vertex fp, (ii) a cycle C disjoint from P and (iii) a set U = [n] \ (V(P) U V(C)). We let
Pla,b] denote the sub-path of P that goes from a to b. At certain points one of P or C' may be empty and
we denote this by A.

The execution of the algorithm does not require the whole of OUT(v) be known at the start. As the algorithm
progresses it learns more and more about the contents of the lists OUT(v),v € [n]. We will assume that
OUT(v) is kept as a randomly ordered list and that its contents are accessed through a pointer out(v).
Initially only one vertex of OUT(v) is known for each v € [n] i.e. the first vertex of the list and this is
pointed to by out(v). These pointers are updated to the next vertex in the list, after a selection is made from
OUT (v). The actual choices of vertices in the OUT sets are exposed one by one as the algorithm progresses.
This is usually referred to as deferred decisions. Thus the algorithm will ask for out(v). A random choice will
be made and then move the pointer out(v) to the next place in the list. Imagine then that the OUT (v) are
ordered lists of boxes, each containing a random integer (from some large set).

Maker’s strategy can be summarised as follows: the aim is execute the algorithm until C' is a Hamilton cycle.
While |U| > 2an, she just tries to grow P by adding the edge (fp, out(fp) if out(fp) € U to the tail end of
P. Once |U| < 2an there are more possibilities. If C' = A then she examines out(fp). If y = out(fp) € U
then P grows. If y € P is far from fp along P then the edge of P pointing into y is deleted and we are left
with a smaller P and a cycle C' of size at least 2an. If C' # A then she examines y = out(fp). If y € U then
P grows and C' is unchanged. If y € C then she creates a new path from P U C by deleting the edge of C'
pointing into y. This continues until PUC = [n] and then w.h.p. after O(n) more steps we find that |C| = n.

Next let B
U'={v¢U: JuelUst.velIN(u)}.

A general step of the process proceeds as follows: we begin with P = (sp = fp),C = A and U = [n] \ {sp}
for an arbitrary choice of vertex sp.
For x € PUC we let m(z) denote the unique vertex z such that (z,z) is an edge of P U C.

While |U| > 2an, we simply try to grow P by attaching an edge (fp,u) where u = out(fp) € U.

If |U| < 2an and C' = A then we try to create a large cycle C' by adding an edge from fp to y # sp,y € P.
We then delete the previous edge (x,y) of P that points to y. The size of U is decreased when C' = A and
the vertex € U*. In this case we can extend P by adding an edge (z,u),u € U where x € IN(u). If C # A
then we wait until we add another edge (fp, z) where z € C' and then make one long path, perhaps reducing
|U| by adding an edge pointing into U.

The reader will notice that we avoid adding the edge (fp,sp) if sp = out(fp). This is just a matter of

convenience. It saves adding a case. The details are as follows: Recall that in what follows P goes from its
start sp to its finish fp and y = out(fp).

Case 1 |U| > 2an (and so C' = A). If y € U then P < P+ (fp,y) and U < U \ {y}.
Case 2 |U| < 2an.

(a) If C # A and y € C then P < P[sp,y] + Cly,7(y)], C + A.

b) fC =Aandy € Pandz=n(y) ¢ U and y # sp is distance at least 2an from fp along P
then P <— P[sp,z| and C < Py, fp] + (fp,y).

(c) fC=Aand y € Pand z = 7(y) € U* and y # sp is distance at least 2an from fp along P
then P <— P[sp, x|+ (x,u) and C < Py, fp]+(fp,y) whereu € U and x € IN(u). U < U\{u}.

If none of these cases are applicable, then move out(fp) to the next vertex on its list.

It follows that |C'| = 0 or |C| > 2an throughout. The pointers out are updated if necessary to the next vertex
on the list, if they are used in a step. Also, the above procedure fails if it reaches the end of a vertex list
before creating a Hamilton cycle.

Next let X; be the number of edges examined in order to increase |P| + |C| from ¢ to i + 1. Note that all
random choices can be ascribed to a choice of out(fp). We now discuss the distribution of the Xj.

(a) If [U| > 2an then X; is dominated by the geometric random variable Geo(p;) where p; = |U‘+a” > a.
This is because fp has at least |U| — an choices available to it in U for the next choice of vertex in
OUT(fp). A step here means opening an OUT box and looking inside.

(b) Now consider the case where C'= A and 1 < [U| < 2an. At this point we need a lower bound on the
size of |[U*|. In Section 4.1 below, we will prove the following bound that holds w.h.p. throughout the

process:
_ > D
o= {00 e)
02| Ulogn |U| < git-

We will now use the above to estimate how long it takes to finish the process. We will justify it at the end of
this section. Let us first ignore the sizes of the sets OUT'(v),v € [n] and deal with this issue later. Each X;
can be coupled with and bounded by an independent geometric random variable with probability of success,
pi say. We will see that w.h.p. we obtain P U C = [n] in less than O(n) trials. Here a trial means exposure
of out(v). Our high probability bound on the number of trials will follow from the Chebyshev inequality and
from the fact that E(Geo(p)) = % and Var(Geo(p)) = %.

When [U| > 2an we take p; > a. When g2 < [U]| < 2an we can take p; = a1 — «)(1/40 —). When

U < grogm we take p; = o1 — a)0'/?|U|/6n. We can argue this as follows. Suppose that C' = A. If at

least half of U* is on P and is further than 2an from fp then we are in good shape. In this case there is a
probability p at least (1 — a))/2n times the RHS of (1) of reducing |U| by one. Otherwise, with probability
at least (1 — a)/2, we create a cycle of size at least n/2 and then with probablity at least 1/3 we will be in
good shape after the next choice of out(fp). So, when |U| < 2an we reduce |U| by one in at most four steps,

with probability at least p/6. If C' # A then there is a probability of at least v of making it equal to A in one
step. Thus if T" denotes the total number of trials then we have,

2an n/0logn
n 6 n
E(T)< —+4 4 = 0O(n).
(T) = o % a(l —a)(1/40 — a) * Zl 6a(1 — a)ub'/2logn (n)
u=n/0logn u=
n 2am 36 n/0logn 77,2
Var(T) < — + 16 + 16 = o(n?).
M S0 2, Sa—apam—ar 0 & et - aperoga ")

The Chebyshev inequality now implies that w.h.p. the number of trials needed is at most Cn for some
constant C' = C'(a)) > 0.

We now deal with the sizes of the sets OUT (v),v € [n]. We need to show that w.h.p. we do not come to the end
of alist. A given vertex v has probabilty at most ¢ = W of being selected as the next y and this implies

that the probability K = 6logn items on its OUT list are examined is at most P(Bin(Cn,q) > K) = o(n™1).

Once PUC = [n], it takes O(n) expected time to create a Hamilton cycle. Let us go through the possibilities.

(i) If C = A and sp € B(fp) or fp € A(sp) then the process finishes in one more step with probability at
least 1/n.

(ii) If C = A and (i) does not hold, then we update out(fp). Note that there is a probability of at least
1 — 2« that we will now be in case (iii).

(iii) If C' # A then there is a probability of at least « that out(fp) € C' and we are in (i).

4.1 Proof of (1)

We estimate the probability that there is a subset U, |U| < 2an for which |U*| < ~|U| for ~ inferred by (1).
We bound this probability by

() () (G ey S ey () ()™ .
S (YT a5
()™) .

Explanation for (2): we choose a set of size k for U and then a set of size vk for U*. Then we estimate the
probability that each choice in IN(U) is in U or the set of size vk that we have chosen.

IN

When k = |U| > n/flogn we take v+ 1 =n/10k < 0logn/10 and we note that vk > n/20. We then have

2an flogn—y—1 k 2am 96logn/10—1 k
1 1
2 ((M) ”) “ ((W> 'eemog”/slog”) -
—a)n -«

k=n/0logn k=n/0logn

For 1 < k < n/flogn we take v = 6/2logn. And then,

k

n/0logn flogn—y—1 k n/0logn 960 logn /10
Z 1)k Z 2
<<(<rlyj_a§n> | 7627) : <(91/2> . 91/26291/2 - log n) B 0(1)

k=1 k=1

This completes the proof of Theorem 2

Acknowledgement We thank Adnane Fouadi for pointing to some defiiciencies in the proof ot Theorem
3.

5 Conclusion

We solved the strong connectivity game, but there is a big gap between the upper and lower bounds for
Hamiltonicity. Closing this gap is an interesting open problem.

References
[1] D. Angluin and L. Valiant, Fast probabilistic algorithms for hamiltonian circuits and matchings, Journal
of Computer and System Sciences 18 (1979) 155-193.
[2] V. Chvatal and P. Erdés, Biased Positional Games, Annals of Discrete Mathematics 2 (1978) 221-229.

[3] H. Gebauer and T. Szabd, Asymptotic random graph intuition for the biased connectivity game, Random
Structures and Algorithms 35 (2009) 431-443.

[4] D. Hefetz, M. Krivelevich, M. Stojakovi¢ and T. Szabo, Positional Games, Birkhauser, 2014.

[5] M. Krivelevich, The critical bias for the Hamiltonicity game is (1+o0(1))n/Ilnn, Journal of the American
Mathematical Society 24 (2011) 125-131.

A Proof of Theorem 3

We let G, Gp denote the subgraphs of G with the edges taken by Maker, Breaker respectively. We let dy;(v)
denote the degree of vertex v in Gy, for v € V. We define dp similarly. Let dang(v) = dg(v) — 2bdy(v) be
the danger of vertex v at any time. A vertex is dangerous for Maker if dy;(v) < K.

Maker’s Strategy: In round ¢, choose a dangerous vertex v; of maximum danger and choose a random edge
incident with v;, not already taken. This is called easing v.

We claim that Maker can ensure that for all v € V', we have that dg(v) < an as long as dy(v) < K. Let
M;, B; denote Maker and Breaker’s ith moves. Suppose that Breaker wins in round g — 1, so that after B,_;
there is a vertex v, such that dy/(v,) < K and dg(v,) > an. Let J; = {vi41,...,v,}. Next define

ZUEJifl dang(V) Z’UGJL dang(V)
Jia| | Ji 7

dang(M;) = and dang(B;) =

computed before the ith moves of Maker, Breaker respectively.

Then dang(M;) = 0 and dang(M,) = dang(vy) > an — 2Kb. Let a(i) be the number of edges contained in J;
that are claimed by Breaker in his first ¢ moves.We have

Lemma 5.
dang(M;) > dang(B;). (4)
dang(M;) > dang(B;) + ’273, if Ji = Ji1. (5)
Tang(B) > (M)~ ©)
g3, > dang(y) - HU)y @

Proof. Equation (4) follows from the fact that a move by Maker does not increase danger. Equation (5)
follows from the fact that if v; € J;_; then its danger, which is a maximum, drops by 2b. Equation (6) follows
from the fact that Breaker takes at most b edges inside J;. For equation 7, let e4,upe be the number of edges
that Breaker adds to J; in round B;. Then

dang(B;) > dang(M;1) —

and
a(i) — eqounte > a(i — 1) — | Ji|.

O
It follows that
dang(M;) > dang(M;1) if J; = J;_y. (8)
o 5 N ol 1
dang(M;) > dang(M;11) — min {U—b|, ot a(z)u |a(z) _ 1} : (9)

Next let 1 <4y < --- <4, < g—1 be the indices where J; # J;_y. Then we have |J; | = |J,_1] = 1 and
| Jiy-1] = [Jo| = r+1. Let k = 7 and assume first that 7 > & and then use the first minimand in (9) for
i1,...,%—r and the second minimand otherwise.

0 = dang(M,)
b+ a(i,) —a(i, — 1) b+ a(ty_gi1) — alip_pr1 — 1)
> dang(My) = 7] T ol
2b 2b
k- o (10)
|Jir—k‘ |‘]11|
b b a(i, 2b 2b
2 Tang(My) — { o ke an

>an —2Kb—b(1+logk) — k —2b(logn — log k).

To go from (10) to (11) we use a(é,—; — 1) > a(i,—j—1),j > 0 which follows from J; _;_; = J; _; — 1 and then

the coefficient of a(i,—;-1) is at least 5 — =5 > 0. Also, a(i,) = 0 because J;, = Jy-1 = {v,}.

It follows that

b an —k < (. —1/logn)n
2K +1+1logn+loglogn+o(1) = (14260 + o(1))logn’
contradicting our upper bound, 20 < O‘Tgﬁ

If » < k then we replace (11) by

S b b ali,
O—dang(Ml)Zdang(Mg)—I—~~~—E—%”—kZom—ZKb—b(l—i—logk)—k

and obtain the same contradiction.

	Introduction
	Degree bound
	Strong Connectivity
	Breaker win
	Maker win

	Hamiltonicity
	Proof of (1)

	Conclusion
	Proof of Theorem 3

