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Abstract

This paper introduces a space of nonabelian modular symbols S(V)
attached to any hyperbolic Riemann surface V', and applies it to ob-
tain new results on polygonal billiards and holomorphic 1-forms. In
particular, it shows the scarring behavior of periodic trajectories for
billiards in a regular polygon is governed by a countable set of measures
homeomorphic to w* + 1.
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1 Introduction

The purpose of this paper is to investigate the following related phenomena:

e the behavior of long, periodic trajectories for billiards in a regular
polygon;

e the distribution of the closed geodesics on a singular flat surface (X, |w|),
when SL(X,w) is a lattice;

o the different ways of describing a Teichmiiller curve V' — M, by purely
topological data; and

e the closure of the projective monodromy group for such a curve.

In all four cases, a countable compact set homeomorphic to the ordinal
w” + 1 emerges.!

We will show that these sets are all reflections of the space of nonabelian

modular symbols S(V'), which is itself homeomorphic to w®. This new
structure is a natural enhancement of the classical modular symbols for
SLa(Z).
Billiards. Here is a special case of the phenomena we will describe. Con-
sider billiards in a regular n—sided polygon P,, n > 3. It is well-known that
P, has optimal dynamics: every billiard trajectory in P, is either periodic,
or uniformly distributed [V1].

Somewhat paradoxically, one can still find long periodic billiard trajecto-
ries that are not equidistributed. To describe their behavior, let M, denote
the set of probability measures on P, that arise from limits of periodic tra-
jectories C), with slopes s,, — s and lengths L(C),) — oo. We will show:

Theorem 1.1 The space of limit measures My is homeomorphic to w® + 1
whenever s is a periodic slope and n # 3,4 or 6. Its derived set D> Mg
consists of a single point, namely normalized area measure on Py,.

(We note that periodic slopes are dense in R and include the slopes of the
sides of P,.)

The failure of periodic trajectories to distribute evenly was first observed
in the regular pentagon, by Davis and Lelievre; see [DL, §4] and Figure 1.

!The space E = w* + 1 is characterized by the property that its derived set D> (FE)
consists of a single point. The first derived set D(FE) consists of the limit points of E;
D"Y(E) = D(D™(E)); and D*(E) = (D™(E).



Theorem 1.1 shows the scarring behavior of such trajectories is governed by
a countable set of measures clustered around the uniform distribution.
Equidistribution of C), can be recovered by requiring that the lengths of
the ‘continued fractions’ of the slopes s,, tend to infinity (see [Mc5, Theorem
3] and Theorem 1.4 below). Equidistribution is automatic if the slope s is
aperiodic; in this case My is a single point.
Ergodic measures. Theorem 1.1 completes the description of the closure
of the ergodic invariant measures for billiards in a regular polygon. The
closure consists of the measures on periodic orbits, together with | M. As
we will see in detail below, when s is a periodic slope, none of the measures
in Mg are ergodic. By comparison, for unipotent flows, limits of ergodic
measures remain ergodic [MS].

Figure 1. Long periodic billiard trajectories need not be uniformly distributed.

Teichmiiller curves. The theory of billiards in rational polygons can
be related to the natural action of SLy(R) on the bundle QM, — M,
of holomorphic 1-forms (X,w) over the moduli space of Riemann surfaces
X of genus g.2 Via this connection, Theorem 1.1 will be an immediate
consequence of Theorem 1.2 below.

Let (X,w) be a holomorphic 1-form of genus g, normalized so that
Ix |w|? = 1. In local coordinates where w = dz, the geodesics on the singu-
lar flat surface (X, |w|) are simply straight lines in the complex plane with
constant slope s.

2The notation w® refers to an ordinal; otherwise, w will always denote a holomorphic
1-form on a compact Riemann surface X € M,.



For any such form we have an exact sequence
1 — Aut(X,w) — AffH(X,w) Tt SL(X,w) — 1,

where the three main terms are (i) the group of holomorphic automorphisms
of X preserving w; (ii) the group of orientation—preserving real affine auto-
morphisms ¢ of (X,w); and (iii) the stabilizer of (X,w) in SLy(R). We
remark that the real affine automorphism are simply the homeomorphisms
that send geodesics to geodesics.

Let us focus on the case where SL(X,w) is a lattice in SLy(R). In this
case, the SLa(R) orbit of (X,w) projects to give an algebraic, isometrically
immersed Teichmiller curve

f:V =H/SL(X,w) = M,.

Globally, our assumption that SL(X,Aw) is a lattice implies the geodesic
flow has optimal dynamics: for any s € R = RU {00}, either:

(i) every geodesic with slope s is closed, or
(ii) every geodesic with slope s is dense and equidistributed.

See [V1]. In case (i) we say s is periodic; otherwise it is aperiodic. In case
(ii), we have equidistribution with respect to the probability measure |w|?
on X.

Cylinders and cusps. The periodic slopes are dense in f&, and correspond
to the cusps of SL(X,w). In fact, the smooth periodic geodesics with slope
s sweep out a collection of open cylinders

A:C(S) = {Al,--',An}a

whose closures cover X. The modulus of A; is defined in terms of its height
and circumference, in the metric |w|, by m; = mod(4;) = h(4;)/c(4;). Tt is
known that the cylinders with a given slope have rational ratios of moduli;
thus (m;) is proportional to a unique vector of relatively prime integers,

m(s) = (ai,...,an) = (M1,...,my)/m, (1.1)

where m = ged(my,...,my). The associated fundamental twist is the ele-
ment of Aff*(X,w) given by

TA =Ty T, (1.2)

where 7; is an affine right Dehn twist supported in A;; and D74 is a parabolic
element of SL(X,w), fixing the unique cusp on OH corresponding to s.



Limit measures. Consider a sequence of closed geodesics C,, with slopes
sp — s and lengths

B = | ol > oo

We say p is a limit measure for slope s if the C,, can be chosen so that

L(lcm/cnf'“'%/xf“

for all f € C(X). Let My denote the compact set of all such probability
measures. By (ii) above, if s is aperiodic then My = {|w|?}.
Our main result on limit measures treats the periodic case.

Theorem 1.2 Let s be a periodic slope for (X,w). Then either:

o The space of limit measures Mg is homeomorphic to w“+1, and D> M,
consists of a single point, namely the uniform measure |w|?> on X; or

e The trace field of SL(X,w) is Q, and M = {|w|*}.

We also obtain a description of the measures in M. Given a homol-
ogy class C € Hi(X,R), let fi(C) denote the unique probability measure
proportional to

() = 5 O (1)

provided this is nonzero. Here (A;, C') denotes the intersection pairing be-
tween C' and a closed geodesic contained in A;.

Theorem 1.3 The measures [i(C) coming from closed geodesics C on X
form a dense subset of M.

Every other measure in My, with the possible exception of |w|?, is given
by f(C) for some rational homology class C'.

Square—tiled surfaces. The first case of Theorem 1.2 can also occur
when the trace field is Q. Indeed, there are square—tiled surfaces of genus
two where Mj is a single point for some periodic slopes, and My =2 w“ + 1
for others; see §9.

Continued fractions. As a complement to Theorem 1.2, we have the
following criterion for equidistribution.

Fix a compact set K C V, e.g. the complement of standard horoball
neighborhoods of its cusps. Given a periodic slope s, let © = —1/s € 0H



be the corresponding cusp of SL(X,w), let v(s) be the projection to V =
H/ SL(X, w) of the hyperbolic geodesic from z =i to z, and let T'(s) be the
hyperbolic length of v(s) N K. (Intuitively, T'(s) measures the length of the
‘continued fraction’ for s.)

Theorem 1.4 If T(s,) — oo, then any sequence of closed geodesics Cy
with slopes s, is uniformly distributed on X. The converse holds provided
the trace field of SL(X,w) is irrational.

Theorems 1.1, 1.2, 1.3 and 1.4 are proved in §8.

Twists and the failure of equidistribution. We now turn to a more
detailed discussion of Theorem 1.2.

Here is one mechanism for producing badly distributed long geodesics
on (X, |w]). Let 74 be the fundamental twist (1.2) at slope s, and let C
be a closed geodesic at a different slope ¢. Then the slopes of the geodesics
Cr, = 74(C) tend to s and the corresponding measures converge to fi(C),
defined using (1.3). This measure is typically distinct from the uniform
measure |w|?, so equidistribution fails.

Modular symbols. This twist construction, however, does not account for
all limit measures, or even a closed subset thereof. To describe the full space
of limit measures, we are led to iterate the twist construction along sequences
of periodic slopes (si,...,sy), which are encoded by modular symbols o for
the Teichmiiller curve V.

The space of modular symbols S(V) is in turn homeomorphic to w*,
giving a natural explanation for the appearance of this ordinal in the state-
ment Theorem 1.2. We will see that S(V') naturally parameterizes the limit
measures for all slopes at once, describes how different slopes interact, and
explains why they form a countable set rather than, say, a Cantor set.

We will also see that modular symbols label the Thurston multicurve sys-
tems (A;, Bj) presenting a given 1-form (X, w), their intersection matrices
i(A;, Bj), and, most importantly, limits and products of these matrices.

It is essential to study limits to obtain the a closed set of measures.
Remarkably, we will find the closure can also be formed by taking all finite
products of Thurston matrices. See Theorems 1.7, 1.8 and 1.9 below.

In a case like the regular pentagon, where V has just one cusp, the
space of invariant measures is naturally a semigroup. The category of mod-
ular symbols highlights this unexpected multiplicative structure, which also
appears in the matrix entries of the (2,5,00) triangle group and will be
developed in a sequel.



Hodge theory. The proof of Theorem 1.2 is completed using a Hodge
theory argument (§5), based on contraction of the relative period mapping
[Mc5], to show that the only limit measure that might not be accounted
for by a modular symbol is the uniform measure on X. This argument also
shows that Thurston’s intersection matrices i(A;, B;) decouple in the limit
(see equation (1.11) and Theorem 5.1 below).

Figure 2. A modular symbol of degree one is a geodesic v connecting a pair of
cusps (a, b) of V.

Definitions. To give a more detailed discussion and formulate these addi-
tional results, we begin by defining modular symbols and their associated
intersection matrices.

Let V = H/T be a hyperbolic Riemann surface. A modular symbol of
degree d for V is a formal product

o=t (1.4)

where ag,...,aq are cusps of V, and where ~; is an oriented hyperbolic
geodesic joining a;—1 to a;. Let S(V') denote the space of all such symbols;
S%(V), those of degree d; and for any pair of cusps (a,b), let

Sw(V)={0€8(V) : ap =a and Adeg() = b}.

The space S(V') can be regarded as the morphisms in a category whose
objects are the cusps of V. (The identity maps have degree 0.) More pre-



cisely, in this category we have
Sap = Mor (b, a);

a chain of geodesics running from a to b gives a morphism from b to a. With
this convention we have o1 * 09 = 01 0 09. See Figure 2.

The space of modular symbols carries a natural geometric topology such
that composition is continuous and morphisms of degree < 1 are dense.
In the geometric topology, the product o in equation (1.4) is a limit of
geodesics v, from ag to ag that make longer and longer excursions into the
cusps ai,...,aq_1. 1t is easy to see we have a homeomorphism

provided V has at least one cusp and 71 (V) is not cyclic.

Intersection matrices. We now return to the setting of Teichmiiller
curves. We define the intersection matrixz between a pair of cylinder sys-

tems A = C(s) and B = C(t) by
I(A, B)ij = Q; - Z(A,, Bj). (15)

Here (a;) = m(s) is the vector proportional to (mod(A4;)) defined by (1.1).
We can regard this integral matrix as a linear map

I(A,B) : RP - R4,
the factors (a;) are included so that, on the level of D € H;(X,R), we have
[ra(D)] = [D] + [I(4, B) - D]

for all D € RB.

The intersection functor. A central and unexpected point of the present
paper is that, by extending I to a functor on the full space of modular
symbols, we obtain matrices that describe all the measures and currents
that arise as limits of closed geodesics on (X, |w|). We begin by describing
the target of this functor.

The vector space of a cusp. For simplicity, we will assume:

Condition 1.5 Let s be a periodic slope with C(s) = {A1,...,An}. Then
every ¢ € AfFT (X, w)® satisfies ¢(A;) = A; for all i.



Here Aff™ (X, w)® is the subgroup where D¢ fixes s.

Condition 1.5 can always be achieved by passing to a subgroup of finite
index in Afft(X,w) (see Theorem 3.1), and all the results which follow hold
unconditionally once this is done.

Interactions between cusps. Subject to Condition 1.5, one can func-
torially attach, to each cusp a of V, a finite set A = {A1,..., A,} which
consistently labels the cylinders in C(s) for every slope s corresponding to
a. Hence each cusp of V also determines a finite-dimensional vector space

L(a) =RA, (1.6)
Given a pair of cusps (a,b) with (L(a), £(b)) = (R4, RE), let
La(V) = PHom(RZ, R4) U {0}, (1.7)

and let £(V) = U, Lab(V). The elements of Lq(V) are matrices up to
scale. With its natural topology, L4(V) is compact and 0 is an isolated
point.

Like S(V'), we can regard L(V') as the set of morphisms in a category
with one object R4 for each cusp a of V, with

Lap(V) = Mor(RZ R?Y),

and with composition defined by matrix multiplication. The composition
map is continuous except at points where the product is 0.

The matrix of a modular symbol. We can now define the functor
I:8(V)—=L(V).

Consider first the case of a modular symbol of degree one, i.e. a geodesic
~ connecting a pair of cusps (a,b) of V. In this case, a lift of v to the
universal cover of V' determines a pair of cusps for SL(X,w) and hence a
pair of periodic slopes (s,t); and we simply set

[I(7)] = [I(A, B)] € PHom(R?,R*), (1.8)

where A = C(s), B = C(t) and where I(A, B) is defined by equation (1.5).
This matrix is independent of the choice of lift of ~.

Since S(V) is freely generated by its morphisms of degree 1, there is
a unique functorial extension of I to all modular symbols. Its value on a
general symbol o is given by

[L(o)] = U (- x7a)] = [I(n) - 1(72) -~ L (7a)]- (1.9)



Properties of I. We will also need the decoupled matrices
R(CL, b)l] = [h(Az) C(Bj)] € Eab(v)v (110)

which are well-defined up to scale. Their union R(V) C L(V) is closed
under composition. Let Rqp(V) = {R(a,b)}.

The proof of our main result rests on the two topological properties of
1.

Theorem 1.6 The intersection functor
I:S8(V)— L(V)
is continuous; and if v, — 00 in Sep(V'), then
I(m) = [R(a,b)] € Lap(V). (1.11)

(See Theorems 4.1 and 5.1 below).

Geometrically, the second statement means that parallel transport along
v effectively randomizes the curves (A;), so they become uniformly dis-
tributed as seen from the perspective of (Bj). Combining these facts, we
will show:

Theorem 1.7 Letting T = {I(v) : v € S} (V)}, we have
T=(T)UR(V)CL(V). (1.12)

Here (T') denotes the smallest set of morphisms containing 7" and closed
under composition. Equation (1.12) says that the topological and algebraic
completions of T agree, up to the finite set R(V'). Since the algebraic com-
pletion of T is countable, so is its topological closure. The shape of T is
described more precisely by:

Theorem 1.8 For any pair of cusps (a,b) of V, let Typ =T N Lop(V'). We
then have: o

Ty 2w +1 or Typ = Rap. (1.13)
In the first case, we have D®Ty, = Rap; in the second case, the trace field
of SL(X,w) is Q.

Our results on measures and limits of periodic trajectories follow from
a statement similar to Theorem 1.8 for the columns of the matrices in Ty
(see Theorem 7.1).



Thurston’s multicurve construction. We now turn to Thurston’s con-
struction [Th2]. This construction canonically attaches a holomorphic 1-
form (Y, n) € QM, to a suitable pair of integral measured laminations («, )
on a topological surface >,.

Every Teichmiiller curve V can be encoded by such a topological pair
(a, B); however many pairs give the same V. To make this more precise, let
f:V — M, be a complex geodesic generated by (X,w). Choose a marking
homeomorphism ¥, = X. Using the pair of cylinder systems (A,B) =
(C(s),C(t)) attached to a lift of ~, define

7: SYV) = MLY(Z) x ML,(Z)]/ Mod,

by
() = () = (Y e A Y by By). (1.14)

Here (a;) = m(s) and (b;) = m(t) are defined by equation (1.1), and we
have identified A; and B; with the simple closed curves they represent on
¥4. In §10 we will show:

Theorem 1.9 The map 7 gives a natural bijection between the modular
symbols of degree 1 on the complex geodesic f : V' — Mg and the multicurves
(cv, B) which encode it.

The intersection matrix I(vy) arises naturally in Thurston’s construction,
and records useful information about V.

Closure of the monodromy group. Finally, we note that the same circle
of ideas can be used to study the closure of the (projective) monodromy
group G of a Teichmiiller curve, defined as the image of the natural map

AffT(X,w) — PEnd(H' (X, R)).

For example, when SL(X,w) is a lattice and its trace field is not Q, one can
show that
G=uwuUS! xSt

To be more precise, let W C H'(X,R) be the span of (Rew,Imw), and let
Q = S' x 8! denote the space of rank one endomorphisms ) of H'(X,R),
up to scale, such that Im(y) C W and Ker(x)) D W+. Then we can write
G = KUQ, where K is homeomorphic to w* and Q C K. The proof is based
on a completion 71 (X, p) = w* similar to the space of modular symbols,
which bounds the complexity of K from above; on the contractivity of the

10



complementary period map [Mc5, Theorem 4.1], and on Theorem 7.1 which
bounds the complexity of K from below.

An application of modular symbols to the Weil-Petersson metric is given
in the Appendix.

Notes and references. The space of modular symbols considered here
is well adapted to the study of flat bundles on curves with unipotent mon-
odromy at singular points. Classical modular symbols are an abelian ver-
sion of the same structure, used to represent relative cohomology classes
on (V,0V) and to study the periods of modular forms for SLy(Z) and its
congruence subgroups I'(N); see e.g. [Bi], [Maz], [Man], [La, Ch. IV.2].
Drinfeld and Manin used modular symbols to show the cusps of H/T'(NV)
form a torsion packet in its Jacobian. Applications of modular symbols to
non—arithmetic groups are developed further in [Mc6].

The trajectory shown in Figure 1 starts at the midpoint p of the bottom
edge, with slope s = \/73225 - 4790\/5/209; it nearly connects p to a vertex
of the pentagon. See [DL] for a detailed study of periodic trajectories in the
regular pentagon. Theorem 1.1 above establishes a modified version of [DL,
Conj. 4.6]. Theorem 1.6 of [Mc6] gives an explicit description of the limit
measures for billiards in a regular pentagon, in terms of the matrix entries
for the triangle group group A(2,5,00) C SLo(R). For surveys on the topic
of billiards and moduli spaces, see e.g. [Mas|, [Mol] and [Z].

The ordinal w® also occurs in the study of Pisot numbers [BM], hyper-
bolic volumes [Thl, §6.6], and cascades of bifurcations of interval exchange
maps [Mc4]. Figure 3 of the last paper gives a hint of the behavior of closed
trajectories in an octagon, and the mechanism underlying Theorem 1.1; see
also [DL, Figure 16].

This paper is a sequel to [Mcb], which establishes the equidistribution
results underlying Theorems 1.4 and 5.1.

2 Modular symbols

This section gives a self-contained introduction to the theory of nonabelian
modular symbols we will use in the sequel. In particular, we show the space
of modular symbols S(V') is typically homeomorphic to w*, and we give an
explicit description of the modular symbols for SLy(Z).

Background. Let V' = H/T be a hyperbolic Riemann surface (or orbifold),
presented as the quotient of the upper halfplane H = {z : Im(z) > 0} by

11



the action of a discrete group
[' C G = PSLy(R) = Isom™ (H).

Let R=RU {o0} denote the boundary of H. A point x € Risa cusp of
I if it is the fixed point of a parabolic element g € I'. In this case there is a
unique generator p, for its stabilizer I'* which is conjugate to (}1) in G.

We denote the cusps of I by «(I"). There is a natural complex structure
on

V = (HU&(I))/T,

and when V has finite volume, V is compact. We refer to
k(V)=V -V =xT)/T

as the set of cusps of V.

The thin part of V', where the injectivity radius is small, consists of collar
neighborhoods of short geodesics and horoball neighborhoods of cusps (see
e.g. [Th3, §4.5]). The union of the latter forms the cuspidal thin part Veusp
of V.

Modular symbols. As in the Introduction, a modular symbol of degree d
for V is a formal product

O ="71%" %7

of oriented geodesics running between the cusps of V', such that ~; ends at
the same cusp where ~;11 starts. By adding in these cusps, we obtain a path
G :[0,1] — V, well-defined up to reparameterization.

Category theory. Whenever o; ends at the same cusp where oo begins,
we can form their product oy * os.

The modular symbols S(V') form the morphisms in a category C whose
objects are the cusps of V. However, we must regard a modular symbol
running from a to b as morphism from b to a. With this convention, the
composition map

Mor(b, a) x Mor(c,b) — Mor(c, a)

is given by (01, 092) — 01 * 02, as required by the axioms of a category (cf.
[Mun, p.159]).
The morphisms in C have a natural grading by degree,

sv)=Js4v),

d>0

12



and C is freely generated by its morphisms of degree one. The identity maps
have degree zero; thus S°(V) is in bijection with the cusps of V.

Cusps of I'. For a more discrete perspective, one can regard a modular
symbol of degree 1 as an ordered pair [z,y] of distinct cusps of I, subject
to the relation

[z,y] ~ [92,9y] VgeT.
The unique hyperbolic geodesic running from x to y in H projects to the

corresponding geodesic v joining a pair of cusps of V. A general modular
symbol of degree d can then be expressed as a product

g = [:L’o,:L’l] * [1,‘1,582] E RIS [xd_l,l’d],

or more briefly as o = [zg, 21, ..., z4].

Topology. The set S(V') carries a natural geometric topology, which makes
it into a countable, locally compact Hausdorff space. This topology can be
defined briefly as follows: a sequence o,, € S(V') converges to p if and only
if 7,, — P as paths in V.3 If o,, comes closer and closer to a cusp a of V,
then this cusp will ultimately be visited by p.

Here are some basic properties of S(V') in the geometric topology.

1. The composition map S(V) x S(V) — S(V) is continuous.

2. If a product a, * 8, of modular symbols of degrees d and e converges,
then so does each factor, and

(lim ) * (lim B,,) = lim(av, * By). (2.1)

3. The set S°(V)US(V) is dense in S(V'). More generally, for d > 1 we
have
SUV) = Jsv).

e>d

4. Provided T has infinitely many cusps, S¢(V) # () for all d, and hence
(by the preceding observation) S(V') is homeomorphic to w®.

5. Let K be a compact subset of V. Then the set of modular symbols o
contained in K U Viugp, and with length L(o N K) < Ly, is compact.

3Since paths are only well-defined up to reparameterization, convergence here means
that there exist homeomorphisms ¢, : [0, 1] — [0, 1], fixing the endpoints, such that 7, 0¢,
converges uniformly to p on [0, 1].
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6. When V' has finite volume, we can take K =V — Vi, and conclude:

The set of modular symbols with L(c N K) < Lg is compact. (2.2)

Iterated parabolics. The geometric topology can also be characterized
from an algebraic perspective. Let p € G be a parabolic transformation
fixing z € R — {x,y}. Then

Yo = [z, 0"y] = [z,2,9] =0

as n — oo. Indeed, the representatives [z, p™y] and [p~"x,y] of ~,, converge
algebraically to [z, z] and [z,y| respectively, in the sense that p"y — z and
p~ "z — z. These algebraic limits represent the two components of the path
o in V — Viusp, so their composition gives o.

More generally, given distinct cusps (z, 21, ..., 2, y), and parabolics p;
fixing z;, we have

[l‘vp?l"'pgey] — [ZU,Zl,-..,Ze,y] (23)

as inf; |n;| — oco. This property explains the density of modular symbols
of degree < 1, and together with continuity of composition, it suffices to
characterize the topology on S(V). (See e.g. [MT, §7] for the notions of
algebraic and geometric convergence of Kleinian groups, which are similar
in spirit.)

Example: SL2(Z). As a concrete example, let I' = SLo(Z). Then V =
H/ SLy(Z) is the (2,3, 00) orbifold, and I acts transitively on its set of cusps
k(I") = QU {oo}. Since the stabilizer of co in I' is generated by z — z + 1,
we have

S' (V) =Q/Z = {[o0,p/q] : p/q € [0,1]}.

It is convenient to describe the modular symbols of degree one using the
continued fraction expansion

p/a=1/(a1+1/(az + - +1/an)
for rationals p/q € [0, 1]; thus, we will write
[OO,p/q] = <CL1, ) an>‘

The continued fraction for a given modular symbol is not quite unique;
for example, we have () = (1) = [00,0] = [00,1], and (ai,...,an,1) =
<a1,...,an+1>.

14



On the other hand, the modular symbols of higher degree can be simply
described by allowing a; = oo for one or more i. Indeed, if we let A = AU
{o0} be the one—point compactification of the discrete set A = {1,2,3,...},
then there is a unique continuous map

[ee)

T |_|Zn — USd(V)
n=0

d>1

such that w(ai,...,a,) = {(a1,...,a,) on A™. This map is surjective, with
finite fibers. Thus its domain provides a good approximate model for S(V).

In concrete terms, the image of (ay, ..., a,) is obtained by replacing each
occurrence of a; = oo with *. For example,

(3,4,00,5,6,00,7) = (3,4) % (5,6) * (7);
(o0) = (x()=(1)*(1); and
<37 00, 00, 9, OO> = <3> * <1> * <5> * <1>

The degree of m(ay,...,a,) is always one more than the number of i such
that a; = co. These statements can all be verified using equation (2.3).

Note that the modular symbols (a1, ..., a,) with a; < M for all i do not
form a compact set, but those with n < M do.

Weil-Petersson geodesics. The modular symbols for SLa(Z) arise natu-
rally in the study of the moduli space M 1; see the Appendix.

3 Teichmiiller curves

In this section we review the action of SLy(R) on the moduli space of
holomorphic 1-forms (X,w), and its role in constructing algebraic curves
V & M,. We then discuss the fundamental twist 74 associated to a cylin-
der system A = C(s). Finally we show Condition 1.5 can always be achieved
by passing to a finite index subgroup of Aff*(X,w). The precise statement
is:

Theorem 3.1 Suppose SL(X,w) is a lattice. Then there is a subgroup ® of
finite index in Aff(X,w) such that the natural map

¢ — 7T1(V) = PSLQ(X,LU)

1s injective, and the stabilizer ®° of each periodic slope is generated by a
power of T4, A= C(s).
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We note that 74(A;) = A; for each A; € A, and 74| H1 (X, R) is unipotent.
Thus the same is true for every element in ®°.

Notation. The natural actions of SLy(R) on R2, P}(R), and H = HUR
are given, for g = (‘Cl Z), by

g- <x> = (am + by) on R?,

Y cx + dy
g-s = (ds+c)/(bs+a) onP}YR), and
g-t = (at+b)/(ct+d) on H.

The first two actions are compatible under the relation s = y/x between a
vector and its slope.

Complex geodesics. (Cf. [Mcl, §3].) Each form (X,w) € QM, generates
a holomorphic map

f: H — My,
characterized by the property that the real Teichmiiller geodesic p(s) =

f(ie?®) satisfies p(0) = X and p/(0) = [~@/w]. It is given explicitly by

Ft) =m(ar - (X,w)) where a; = \/Ilrth ((1) iii) .

The map fdescends to give a complex geodesic
f:V=H/T = M,,

where

I'={g €SL(R) : f(g-t) = f(t) Vt € H}.

The map f is a generically injective immersion. Using the fact that rotations
leave the fibers of 7 invariant, we can also write

V 2 S02(R)\ SLa(R)/ SL(X, w).
One can readily verify that
I'=R-SL(X,w) R, where R=(7,'9); (3.1)
put differently, if we let g € SL(X,w) act on H by

at—b
g‘t:ma (3.2)
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then the relation
s=-1/x

between slopes in P!(R) and points € OH is compatible with the action of
g, and we have V = H/SL(X,w).
Teichmiiller curves. Now suppose SL(X,w) is lattice in SLa(R). Then V
is a hyperbolic Riemann surface (or orbifold) of finite volume, and the map
[V — M, gives an algebraic, isometrically immersed Teichmailler curve
in moduli space.

In this case, the relation s = —1/x gives a natural bijection between the
cusps of I and the periodic slopes for (X, w).

Oriented cylinders. Let s be a periodic slope with associated cylinders
C(s) ={A1,...., A}

It is often convenient to coherently orient the core curves of these cylinders,
so they each determine a homology class [4;] € Hi(X,R). We say these
cylinders are given parallel orientations if

arg /A = g4l )

is independent of 7. This means the oriented closed geodesics that sweep out
these cylinders all run in the same direction in local charts where w = dz.

Fundamental twists. Recall from §1 that the slope s determines an in-
tegral vector m(s) = (aq,...,a,) proportional to (mod(A;)), and abyby
fundamental twist 74 = [[ 7" (see equations (1.1) and (1.2)). Choose par-
allel orientations for the cylinders (A;). Then action of 74 on H;(X,R) is
given by the unipotent transformation

[ra(D)] = [D] + > ai{A;, D)[Ai]. (3.3)
=1

This map is actually independent of the choice of orientations.

Finite covers. In general, there may be affine automorphisms of (X,w)
that permute the cylinders (4;) or act by fractional twists on some of them.
Theorem 3.1 shows these extra maps can be eliminated by passing to a finite
subgroup ®. The proof will use:

Lemma 3.2 Let Z be a finite volume, noncompact hyperbolic surface, let
N > 1 an integer. Then there exists a finite covering map p : Z' — Z which
is branched of order N over each cusp of Z.
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Proof. Passing to a double cover, if necessary, we can assume that Z has
at least two cusps. Then the natural map m(Z) — H1(Z,Z/N) sends each
peripheral loop around a cusp to an element of order IV, so its kernel defines
the desired covering space Z' — Z. [ |

Proof of Theorem 3.1 . Since the orbifold V has at least one cusp, there
is a finite cover Vj — V with free fundamental group. Thus 71 (Vp) lifts
(under D71) to a subgroup @ of affine automorphisms of X. Each cusp of
a of Vj corresponds to a periodic slope s, stabilized by the cyclic subgroup
(¢p) = ®j. Since the fundamental twist 74, A = C(s), also stabilizes s,
there is an N(a) > 0 such that ¢N(® € (r4). To complete the proof, let
N Dbe the least common multiple of all such N(a), let vV — Vo be the finite
covering provided by the preceding lemma, and let ® be the subgroup of ®g
corresponding to 71 (V) C w1 (Vp). [ |

4 Intersection matrices

In this section we discuss the intersection matrix /(o) associated to a mod-
ular symbol, and prove:

Theorem 4.1 . The functor I : S(V) — L(V) is continuous.

As in the Introduction, we will assume the simplifying Condition 1.5
holds. The general case can be treated by passing to a finite cover, using
Theorem 3.1; see the end of this section.

The vector space of a cusp. We begin with a formal definition of the
vector space £(a) = R4 associated to a cusp a of V.

Let V = H/SL(X,w), where SL(X,w) acts on H by equation (3.2). Let
S C P(R?) denote the set of periodic slopes for (X,w). There is a natural
bijection

k(V) = S/SL(X,w)

between the cusps of V' and the orbits of periodic slopes, compatible with
the map = — s = —1/x between OH and P(R?). Let S(a) denote the slopes
associated to a given cusp a. We can then canonically associate to a the
finite set

A= | |J cs) /Aﬂ-’+(X,w).

seS(a)
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Condition 1.5 insures that the stabilizer of s in the affine group does not
permute the elements of C(s); consequently we have a natural bijection
between A and C(s) for each s € S(a).

With this definition, it is clear that the vector space £(a) = R* depends
only on the cusp a. These vector spaces form the objects of the category
whose morphisms £(V') are defined by equation (1.7).

The intersection matrix. Next we recapitulate the definition of the func-
tor [ : S(V) — L(V).

Let v = [z, y] be a modular symbol of degree one, in the notation of §2,
joining a pair of cusps (a,b). Then v determines a pair of periodic slopes
(s,t) = (=1/xz,—1/y), a pair of cylinder systems C(s) = {A1,...,A,} and
C(t) = {Bi,...,Bn}, and an integral vector m(s) = (a;) proportional to
mod(A4;). By the remarks above, if we write (£(a), £(b)) = (R4, R5), then
we can naturally identify A with {A;,...,A,} and B with {Bi,...,Bn}.
The intersection matrix is the map I(vy) : R® — R4 with matrix entries

I(v) = a; - i(A;, Bj).

If we replace [x,y] with [gx,gy], ¢ = D¢ € SL(X,w), then the matrix
remains the same, because i(¢(A4;), ¢(B;)) = i(A;, Bj) and mod(A4;) = A -
mod(¢(A;)) for any affine automorphism ¢.

Regarded as a matrix up to scale, [I(y)] naturally resides in Ly (V).
There is a unique functorial extension of this map from S'(V) to S(V),
given by equation (1.9).

Biconnected matrices. We now turn to the proof of Theorem 4.1.

Given an n x m real matrix M;; > 0, one can form a bipartite graph
G(M) whose vertices are the rows and columns of M, and where row i is
connected to column j if and only if M;; > 0. We say M is biconnected if
G(M) is connected. By an easy argument, one can show:

The product of two biconnected matrices is biconnected.

It is also easy to see that I(v) is biconnected for any geodesic v, using the
fact that (|J A;)U(|J B;) is connected. Since this property is preserved under
products, we have:

Proposition 4.2 For all 0 € S(V), the intersection matriz I(o) is a bi-
connected matriz of non—negative integers. In particular, I(c) is nonzero.

Continuity. The main case of continuity to be considered is the following.
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Proposition 4.3 Suppose we have a sequence of geodesics such that v, —
o€ S8(V). Then I(v,) — I(o) in L(V).

Proof. Let us begin with a basic example . Let z,y, z € OH be three distinct
cusps of SL(X,w), let p € SL(X,w) be a parabolic element generating the
stabilizer of z, and let

Tn = [xvpny} — [LU,Z] * [Zvy] = 51 *(52 = 0.

Let (s,t,u) be the slopes (—1/z, —1/y,—1/z), and denote the corresponding
families of cylinders by C(s) = A = (4;), C(t) = B = (Bj), and C(u) =
C = (Ck). Let (a;), (bj) and (ci) denote the primitive integral vectors
proportional to (mod(4;)), (mod(B;)) and (mod(Cj)). Then

I(él)ik = azz(AZ,Ck) and
I(02)r; = cx-i(Cy, Bj).

Let ¢c € AffT(X,w)" be an affine automorphism mapping to p under
the natural surjection Aff*(X,w) — SL(X,w). We then have

I(m)ij = ai - i(Ai, 92 (Bj))- (4.1)

First suppose ¢c = 7¢. With suitable orientations on A;, Bj, the geo-
metric and homological intersection numbers agree, and by equation (3.3),
we have

[r(B))] = [Bj] +n)_ c(Ck, By)[Cil- (4.2)
k

As n — o0, the second term dominates, and therefore we have

[(Ai, 78(B)] — [Z ¢k (Ck, Bj)(Ai, Ck) (4.3)
!

in the space ]P’Hom(RB ,]RA) of matrices up to scale. The combination of
equations (4.1) and (4.3) then implies that

lim [I(y,)] = [Z ai (A, Ck) - ¢ i(Cy, Bj)
K

= [(61) - 1(62)] = [L(0)],

as desired.
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For the general case, using the fact that 7o generates a subgroup of finite
index in AffT(X,w)%, we can write

o =bor

where m — oo as n — 00, and 9 ranges in a finite subset of Aff™ (X, w)%.
By Condition 1.5, ¥(Cy) = C}, for all k, so 1 preserves the dominant term
in equation (4.2), and the same conclusion holds.

This establishes the basic mechanism of continuity; the general case,
described by equation (2.3), can be treated similarly. |

Proof of Theorem 4.1. Recall that the composition in £(V') is contin-
uous near any pair of matrices whose product is nonzero. In particular,
Proposition 4.2 insures that composition is continuous on the image of I.
Since every modular symbol o of degree d > 1 is uniquely the product of d
modular symbols of degree 1, continuity of I on the whole of S(V) follows
from Proposition 4.3, using equation (2.1). |

General Teichmiiller curves. The case of a general Teichmiiller curve
V' — where Condition 1.5 may not hold — can be treated similarly by
appealing to Theorem 3.1.

In the notation of that result, one can simply replace Aff(X,w) with
¢, SL(X,w) with D®, and V with the corresponding finite covering space
V — V. Since the properties insured by Condition 1.5 hold after making
this adjustment, the constructions above go through to yield a continuous
functor

1:8(V) = L£(V),

and the proofs of Theorems 4.1, 1.7 and 1.8 go through as well, with 1%
replacing V. Intuitively, one can simply imagine that (X,w) acquires some
additional rigidity, which reduces its affine automorphism group to ®.

5 Hodge theory and equidistribution
In this section we begin the study of the space of all intersection matrices:
Z(V)=A{[I(0)] : c€S(V) and deg(c) > 0}.

Using results on currents and Hodge theory from [Mc5], we will describe the
closure of Z(V') in £(V') and prove Theorem 1.7.
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Note that, for convenience, we have excluded the identity matrices I(o)
which arise from the degree zero elements of S(V). This simplifies later
arguments, since we can use the fact that S*(V) is dense in S(V)) — S°(V).

To state the main result, let Zy, (V) = Z(V) N Lap(V). Recall from
equation (1.10) that R4, (V) consists of the single decoupled matrix

[R(a,b)] = [n(Ai)c(B))] € Lap(V),
and that R(V) = [JRa(V). In this section we will show:
Theorem 5.1 The closure of Zoy(V) in Lap(V') is given by
Zap(V) URa(V).
Moreover, if o, — 00 in Sep(V'), then [I(o,)] — [R(a,b)].
We also note:

Proposition 5.2 The sets Z(V) and R(V') are disjoint, provided the trace
field K of SL(X,w) is not Q.

Proof. The matrices in Z(V') are all rational (up to scale), while the ma-
trices in R(V') are irrational under the assumption above. Indeed, in §6 we
will see there is an integral matrix P such that P - h(A4;) = A\ h(4;) and
K =Q(\). n

Currents and equidistribution. To set the stage for the proof, recall that
any holomorphic 1-form (X,w) determines a foliation F(w) of X, given by
horizontal lines in local coordinates where w = dz. Write w = a + i3 as
a linear combination of real harmonic forms. Then the space of closed,
positive, 1-dimensional currents carried by F(w) is defined by

P(w) = {currents ¢ : d€ =0, A =0 and aA{>0}. (5.1)

(The final condition means [ fa A& > 0 whenever f > 0.) The space P(w)
is a convex cone in the natural topology on currents, and it contains the ray
R4 - 5. The narrower the cone is, the closer the foliation F(w) is to being
uniquely ergodic.

This narrowness is estimated effectively in Theorem 1.2 of [Mc5, §3],
which states:
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Theorem 5.3 Suppose X lies in a compact subset K C Mg, and the Te-
ichmiiller geodesic ray generated by (X,w) spends at least time T in K.
Then the closed, positive currents carried by F(w) determine a convex cone

[P(w)] ¢ HY(X,R)

which meets the unit sphere in a set of diameter O(e= T,
Here the unit sphere and diameter are defined using the Hodge norm on
H'(X,R), and A\(K) > 0 depends only on K.

1

P

H

In

xr Yn

Figure 3. The geodesic p,, is close to 7, outside a horoball neighborhood of
the cusp x.

Proof of Theorem 5.1. Let o, € Su;(V) be a sequence of modular
symbols tending to infinity in S(V') (leaving every compact set). We begin
by showing

L (on)] = [R(a,b)]. (5.2)

The rest of the Theorem then easily follows.

Since V has finite volume, by removing standard horoball neighborhoods
of its cusps we obtain a compact set K = V — Vsp. Then the hyperbolic
length of o, satisfies

L(o, NK) = o0 (5.3)
as n — oo (see statement (2.2)). Passing to a subsequence, we can assume
that lim[I(oy,)] exists in L4(V'). To prove equation (5.2), it suffices to show
this limit is [R(a, b)].

Since I is continuous and modular symbols of degree 1 are dense in
S(V) — Sy(V), we can reduce to the case where o, = 7, is a sequence of
geodesics from a to b. We can then write

Tn = [$7yn],
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and pass to a subsequence such that y, — y € R. Since [, yn] ~ [z, gyn] for
all g € I'*, we can also arrange that y # x. Let s = —1/z and ¢, = —1/y,
be the corresponding slopes.

Let us normalize so that [y |w| = 1, and so that lim¢, = 0. Then s # 0,
since y # x. Choose 6,, — 0 such that tan(6,) = t,, and let w, = e~ iny,
Writing w = o + i and wy, = a, + if,, we have ||5|| = ||Bn]| = 1 in the
Hodge norm on H'(X,R).

Recall that the complex geodesic f: H — M, covering f : V — M,
is normalized so that f(i) = [X] and satisfies f = f o, where 7 : H —
V' is the universal covering map. Let 7, and p, in H be the hyperbolic
geodesics joining = to y, and i to y,, respectively. Then v, = 7(7,), and
pn = m(pn) CV & M, is the Teichmiiller geodesic ray generated by F(wy,).
Since y, — y # x, the geodesic p,, stays close to 7, outside a neighborhood
of the cusp x (see Figure 3). Thus equation (5.3) implies that

L(pn N K) — . (5.4)

Let A = C(s) = {A1,...,A,} and B = C(t1) = {Bi1,...,Bn}. Let
Bi(n) denote the image of B; under the natural bijection between B and
C(ty); then C(t,) = {Bi(n),...,Bn(n)}. Since the slope s of the cylinders
Aj; is not zero, their circumferences in the metric |w| and their vertical periods

are related by
c(Ai)=V1+ 3—2/ B. (5.5)
A

Here the notation means we integrate around an oriented closed geodesic in
A;.

Since any two of the cylinder systems (Bj(n)) are related by an affine
automorphism of (X,w), with suitable orientations we also have

dBﬂnD=:L()an=AndBﬂ, (5.6)

where A\, > 0 does not depend on j.

The cohomology class [Bj(n)] is represented by a closed leaf of the fo-
liation F(wy), which in turn represents a current in P(w,). On the other
hand, by equation (5.4) the amount of time the Teichmiiller geodesic ray
pn generated by w, spends in the compact set K C V 9 M, tends to
infinity. Thus by Theorem 5.3, the Hodge norm of the difference between
[Bj(n)]/||Bj(n)| and B, tends to zero. Since §, — (3, it follows that for all
j we have

[Bj (”)] 1
1Bty S HGR).
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Since [a A B =B]* =1, and a,, — «, it follows from equation (5.6) that
[Bj(n)] ~ ¢(Bj(n)) - [8] = Anc(Bj) - [5].

Combined with (5.5), this gives
i(4s, Bj(n)) = (Ai, Bj(n)) ~ Anc(Bj) /A‘ B =M1+ 57%) 7 e(A) e(B)),

and hence

Hm{I(y,)] = limmod(4;)i(As, Bj(n))] = [mod(A;) ¢(A;) ¢(B;)]
= [M(A) e(By)] = [R(a, )]

in P Hom(RZ,R4). This completes the proof that [I(0,)] — [R(a,b)] when-
ever g, — 00.

It follows that Z,(V) U Rap(V) is closed, and hence compact, in the
space of matrices up to scale. This union coincides with the closure of
Zap (V') because there exists a sequence o, — 00 in Sgp(V). [ |

Proof of Theorem 1.7. Since S(V) = SO(V)U(S}(V)), and T = I(S*(V)),
we have (T') = Z(V), so T = (T) UR(V) by Theorem 5.1. |

6 The algebra of a modular symbol

In this section we study the algebraic structure of the family of morphisms
Z(V) in more detail.

Let 0 be a modular symbol of degree 1 joining a pair of cusps (a,b) of V.
We begin by discussing general properties of the intersection matrix I(9) €
Hom(RZ RA). We then associate to § an algebra A of endomorphisms of
R4 @ RB, containing a group G and a distinguished element Q, and show:

Theorem 6.1 For any g € G, each nonzero block of the product

Iaa Iba
Qg = (6.1)
Iy Iy

represents the intersection matriz [I(7y)] of a degree 1 modular symbol.

Here [I44] € Zaa(V), [Lap) € Zap(V'), etc. As an application, we will show:
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Corollary 6.2 The space Z,o(V) contains [P + k2P?] for all integers k.

Here P = I(6)1(6*), where §* is the reverse of 6. This result will be used in
the next section to ratify the topological complexity of Z,,(V).

Properties of the intersection matrix. Let § = [z,y] € Su(V) be a
geodesic joining the pair of cusps a and b of V', and let (s,t) = (—1/z, —1/y)
be associated periodic slopes for (X,w). As usual we let

A=C(s)={A1,.... A} and B=C(t)={Bi,...,Bn}.

We also let J;; = i(A;, Bj), and let Ay and Ap be the diagonal matrices
whose entries are given by

m(s) = (a1,...,a,) and m(t) = (b1,...,bn)
respectively (see equation (1.1)). We then have
I(0) = AaJ and I(6*) = ApJ,
where 6" = [y, z]. Let
P =1(6)I(5*) = AaJApJ' € Hom(RA, R™Y).
Here are some basic properties these integral matrices enjoy.
Proposition 6.3 For any geodesic § joining a pair of cusps (a,b),
1. The matrices P, J and 1(0) have the same rank.
2. If I(6) has rank one, then
[1(5)] = [h(Ai)e(B,)] = [R(a,b)] € PHom(R”, RY).
3. The matriz P s a diagonalizable over R and Perron—Frobenius. In
particular its largest eigenvalue A1 > 0 is simple.

4. The heights of the cylinders (A;) give a Perron—Frobenius eigenvector
for P; that is,
Ph(A4;) = Mh(4;). (6.2)

5. The trace field K of SL(X,w) is given by Q(A1). In particular, the
rank of 1(0) is bounded below by the degree of the trace field.
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Proof. Note that P is conjugate over R to the symmetric matrix LL?,
where L = A}A/ 2J A}Bﬂ. It follows that P is diagonalizable over R, and that
P and L have the same rank, which agrees with the ranks of J and I(6).
The fact that ({J 4;) U (U B;) is connected implies that every entry of P is
positive for k> 0, and hence P is a Perron—Frobenius matrix.

Let 6 € [0, 7] be the angle between the slopes s and ¢. Since the cylinders
Bj cut A; into a family of parallelograms, their heights and circumferences
are related by

c(Ai)sin® = > " i(A;, Bj)h(B;) = Jh(B;).

The same identity holds with the roles of A and B reversed. Coupled with
the fact that A 4c(A;) is a positive multiple of h(A;), it follows that the vector
h(A;) lies in the image of A4J, and ¢(Bj) lies in the image of its transpose.
Thus [AaJ] = [hi(A)c(Bj)] when J has rank one. Similar reasoning gives
equation (6.2).

The final statement regarding trace fields follows from [Mc2, Cor 4.3].
It is a combination of two facts: first, the product ¢ = Tger gives an
affine pseudo—Anosov automorphism of (X, w) with Q(tr Dv) = Q(A1); and
second, Q(D1) coincides with the trace field of SL(X,w) whenever the affine
group of (X,w) contains a pseudo—Anosov element v [KS, Theorem 28|.

The algebra associated to a modular symbol. Using the matrices
above, we can now naturally associate to the modular symbol § the algebra

A =R[Q, 74, 75] C End(R* & R?), (6.3)

where m4 and mp denote projection onto the first and second factors of
R4 @ RE respectively, and

(0 10\ [ 0 AaT\
Q_<I(5*) o>_<ABJt o) (64)

G = (Ty,Tg) C A

Let

denote the multiplicative group generated by the unipotent matrices
Ty=1+74Q and Tp =1+ Q. (6.5)

The main result of this section produces, from A, a large supply of intersec-
tion matrices.
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Proof of Theorem 6.1. Let

A I
A= 4 0 , S= 0 J and R = 0 .
0 Ap -Jt 0 0 —I

Note that conjugation of A by R sends @ to

0 AyJ
"= RQR = AS = ,
@ @ (—ABJt 0 )

leaves G invariant, and keeps the blocks of the matrices appearing in (6.1) the
same up to sign. Thus it suffices to prove the Theorem with () replaced by
@’ in the statement of the result and in the definition (6.5) of the generators
of G.

The advantage is that, with a suitable choice of parallel orientations, .J;;
represents the homological intersection number (A;, B;). Therefore, under
the natural map

m:RY@RP - H|(X,R)

these orientations determine, we have
(1(Ch),m(Cy)) = C1SCy

for any pair of weighted cylinders systems C; € R4 @ RB. In other words,
S is the pullback of the intersection form on H;(X,R). In addition, the
unipotent transformations T4 and T are compatible with the fundamental
twists 74,75 € AffT (X, w), in the sense that

T(TAC) = 1an(C) and w(TgC) = m7(C)

for all C' (see equation (3.3)). It follows that, for any g € G, there exists a
¢ € AffT(X,w) such that w(gC) = ¢(n(C)) for all C € R* G RE, and hence

Qg = (ai<Ai:¢Ai> ai<Aia¢)Bj>)'
bj(Bj, dAi) bi(Bj, ¢B;)

Since (A4;) and (Bj;) are given parallel orientations, the orientations of their
images under ¢ are also parallel, and hence their homological and geometric
intersection numbers agree, up to sign. It follows that each matrix block
gives an intersection matrix of the form I(7), up to scale, provided it is
nonzero. |
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Proof of Corollary 6.2. For brevity let U = I(§) and U’ = I(§*), so
P = UU’'. We then have, for any integer k,

o U\( 1 o\(I kU
TET; =
OT5Ta (U/ 0><ka I)(O [)

_ (kUU U+ KUU'U
U’ kU'U '

Applying the preceding result to the upper right—hand corner, we find that
[U + K*UU'U) € Zp(V).

Multiplying by U’ € Z,(V) on the right gives [P + k*P?] € Z,q(V). [ |

7 Cylinders and closed geodesics
Let us define the rank of a pair of cusps (a,b) by
p(a,b) = max{rank I () : = joins a to b},
and the rank of a single cusp by
pla) = max pla, b) (7.1)
By Proposition 6.3, we have

p(a,b) > deg(K/Q)

where K is the trace field of SL(X,w). In particular, if V has a cusp of rank
one, then K = Q.

Let A = C(s) = {A1,...,An} be the cylinder system attached to a
periodic slope s. In this section we study the space

T(A) = [i(4;, C)] € PR,

where C' ranges over all closed geodesics with slope different from s. We will
show:

Theorem 7.1 Assume SL(X,w) is lattice. Then either:

29



1. TI(A) is homeomorphic to w” + 1, D*TI(A) = {[c(4;)]}, and the rest
of I(A) lies in PQ?; or

2. II(A) consists of the single point [c(A;)], and the corresponding cusp
of V has rank one.

As we will see, Theorem 1.8 follows easily. The more precise statement
above will be used in §8 to deduce our main results on limit measures.
Derived sets. We will prove Theorem 7.1 under Condition 1.5; the gen-
eral case can be handled using Theorem 3.1, since passing to a finite index
subgroup of Afft(X,w) does not change II(A).

The idea of the proof is to propagate the topology of S(V) = w¥ first to
the space of matrices Z(V'), and then to the space of matrix columns II(A).

We begin by recalling a basic fact about derived sets: if f:Y — Z is a
continuous surjective map between compact sets, then

D'(Z) ¢ f(D'(Y)) (7.2)

for i = 1,2,3...,00. In other words, topological complexity can only de-
crease under proper continuous maps. This yields:

Lemma 7.2 For any pair of cusps (a,b), we have
D®(Zp(V)) C Rap(V).

Proof. Let Y be the one—point compactification of | J52, 8% (V) & w*, with
D>®(Y) = {oo} the compactifying point, and let Z = Z,;(V'). Then Y and
Z are compact, we have

Z = Iab(v) U Rab(‘/)? (73)

and by Theorem 5.1, if we extend the definition of the intersection matrix by
setting I(c0) = Rgyp, we obtain a continuous map I : Y — Z. The Lemma
then follows from equation (7.2) with i = co. [ |

The orbit of a geodesic. To study the topology of II(A) it is useful to
consider, for a given closed geodesic C' C X, the locus

(4, 0) = {[a: - (A, 6 - O} € PRA,

where ¢ ranges over all elements of Aff™(X,w) such that these intersection
numbers are nonzero, and m(s) = (a1, ..., ay).
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Let t be the slope of C, and let B = C(t) = (B, ..., By,) be the corre-
sponding cylinder system. We then have C' C By, for a unique index k. Let
(a,b) be the cusps of V' corresponding to the slopes (s,t), and define

7, : PHom(R? RA) — PR
by 1, (M;j) = [M;]. Tt is then easy to see that
(A, C) = my (T (V). (7.4)
Indeed, S'(V) is dense in S(V), and for each « connecting a to b we have
T(1(7)) = lai - i(A;, ¢ - By)
for some affine automorphism ¢.

Lemma 7.3 We have D*II(A,C) C {[h(A;)]}, and every other point in
(A, C) lies in PQA.

Proof. Since mi(Rap) = [h(A;)], the rest of II( A, C) is given by m¢(Zap(V)) C
PQ4 by equation (7.3). The calculation of D®TI(A, B) follows from equa-
tion (7.2) and Lemma 7.2. [ |

To produce some topological complexity inside II(A, C'), we will use:

Lemma 7.4 Let S C G be a semigroup in a metrizable topological group G.
Suppose the derived set DS is nonempty. Then D'S # 0 for all i > 0.

Proof. Suppose y € DS. Then S contains a sequence of distinct elements
x) such that xp — y. Since left multiplication on G is a homeomorphism,
and 3,8 C S, it follows that 2y € DS for all k and hence y?> € D?S. By
similarly reasoning, y* € D'S, and hence DS # () for all k > 0. [ |

Theorem 7.5 IfII(A,C) consists of more than one point, then it is home-
omorphic to w* + 1.

Proof. Suppose II(A4, C) contains a vector [v] # [h(A4;)]. Let us begin by
noting that Z,, (V') is a semigroup, and by (7.4) we have

Too(V) - [v] C (4, O). (7.5)
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We will use a suitable semigroup S C Z,,(V') to produce a copy of w® in
II(A, C).

By equation (7.4), we have [v] = mi(I(0)) for some modular symbol
0. Since I is continuous and modular symbols of degree one are dense, we
may assume that o is a single geodesic § running from a to b, and that
v=1(0)i =0, v#0.

As in §6, let

P =1(8)I(0*) € Tyu(V).

By Corollary 6.2, the semigroup S = Z,,(V) contains [P?] and [Py] = [P +
k2 P?] for all k> 0.

Since v is in the image of I1(6), it is also in the image of P. Thus we can
write v = e; + -+ + €5 as a sum of distinct eigenvectors for P, satisfying
Pe; = M\je; # 0. Since P is a Perron—Frobenius operator, and v is a non—
negative vector, we may assume that A; is the largest eigenvalue for P, and
hence [e1] = [h(A;)] # [v]. Thus s > 2 and the other eigenvalues satisfy
A; # A1 by the Perron—Frobenius theorem.

Let R4 = Vy @ Vi, where Vp = R® is the span of ey, ..., es, and V; is the
unique P—invariant complement to V. Note that v = vy € Vjy with respect
to this splitting.

Let Gy = (R*)*~! be the subgroup of PGL(V}) consisting of invertible
matrices which are diagonal for the basis (e1,...,es). Let Sy C Go be the
semigroup obtained by intersecting S|Vp with Gp. Since A; # A2, we have a
convergent sequence of distinct elements [Py|Vp] — [P%|Vo] in So. Thus Sp
contains a copy of w* by Lemma 7.4.

Note that the map Gy — PR# given by

g [g-vo] € PVy C PRA
is a homeomorphism to its image. It follows that
[So - vo] € PV, c PR
contains a copy of w*. But we have [Sy-vo] = [S-v] C II(A, C) by equation
(7.5), so II(A, C) contains a copy of w* as well.

Since II(A, C) is compact, this implies that D*°II(A,C) is nonempty,
and hence we have I1(A,C) = w* + 1 by Lemma 7.3. [ |

Proof of Theorem 7.1. Let A4 be the diagonal matrix with entries
m(s) = (a;). Since the set of maximal cylinders in (X, |w|) falls into finitely
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many orbits under the action of Aff™(X,w), we can choose closed geodesics
C4,...,Cs such that

S
m(A) = AL JTI(A, Cy).

1
The desired statements then follow by applying Lemma 7.3 and Theorem
7.5 to each term on the right. Note that if TI(A) is a single point, then
the columns of every matrix I(y) € Zy (V') are all proportional to a single
vector, for every b; hence I(7) has rank one, and therefore a has rank one.
[ |

Proof of Theorem 1.8. We have T\, = Z,,(V), and when (a, b) has rank
one Zy, (V) = Rap(V) is a single point. Now suppose (a, b) has rank two or
more. By Theorem 7.5 we can find k and C such that

II(4, C) = ﬂk(zab(v)) =w” + 1

Since Z, (V) is compact, D>®Z,; (V) is nonempty, and hence equal to the
singleton R,,(V) by Lemma 7.2. In particular, the closure of Z, (V) is
homeomorphic to w® + 1. [ |

Remark. The related concept of homological dimension — the dimension
of the span in H'(X,R) of the cylinders at a given slope s — is considered
in [Fo, Def. 1.4].

8 Limiting measures and currents
In this section we study the space of currents
Z(w) ={limC,/L(Cy) : L(C,) — o0 and 6(C,) — 0}

that arise as limits of closed, oriented geodesics, and prove Theorems 1.1,
1.2, 1.3 and 1.4.

Normalize so that w = a+i/3 satisfies [y |w|> = 1. Under the assumption
that SL(X,w) is a lattice, we will show:

Theorem 8.1 Suppose the horizontal foliation F(w) of X is periodic. Then
either:

1. We have Z(w) = w¥ + 1 and D*Z(w) = {B}; or
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2. All geodesics with slopes tending to zero equidistribute on X, Z(w) =
{B}, and the cusp at oo for SL(X,w) has rank one.

(Rank is defined by equation (7.1).) We will also see that the natural map
Z(w) = HY(X,R)

is injective, and that each current in Z(w) is a linear combination of the
currents 3|A;. The corresponding results on measures follow easily.

Remark. When F(w) is not periodic, it is uniquely ergodic by the Veech
dichotomy, and hence Z(w) = {8}.

Currents. As in §5, let P(w) denote the cone of closed, positive currents
carried by F(w), and let

denote its linear span. Let us say a current £ is normalized if

L) = ’/Xg/\w’ =1.

For example, o and S are normalized currents. The space of normalized
currents in P(w) is compact.

Let C be an oriented, closed geodesic for (X, |w]|). Its length and angle
with respect to w are characterized by the relation

[ = L) explio )

C

and C determines a normalized closed current of integration
C/L(C) € P(e7?C)y).

Limits of closed geodesics. Suppose the horizontal foliation F(w) is
periodic. Let A = C(0) = {A;,...,A,} be the corresponding cylinder
decomposition of X.

Each A; determines a closed, positive current 5| 4; € P(w), which repre-
sents a diffuse linear combination of the closed geodesics foliating A;. Note
that L(5|A;) = area(A;) in the metric |w|.

We now associate, to every closed geodesic C' with 6(C') # 0, the current
in P(w) given by:

A0) = 3 Sl
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as well as the normalized current
Z(C) = 2(C)/L(2(C)).

These currents account for all limits of periodic cycles. More precisely, we
have:

Theorem 8.2 The currents of the form Z(C) are dense in Z(w).

Lemma 8.3 If0(Cy) — 0, then the currents C,,/L(Cy,) and zZ(C,,) have the
same limit in Z(w).

Proof. Note that L(Cy,) — oo, since 8(Cy,) # 0. Let s, be the slope of C,,.
Then for each cylinder A;, C,, N A; consists of i(A;, Cp,) segments spiraling
evenly from one end of the cylinder to the other. Thus the current Cy,|A4; is
nearly a multiple of 3| A;. To determine this multiple, note that L(C,,|4;) =
(1/sn)h(4;)i(A;, Cr) + O(1), while L(B|A;) = area(4;) = h(A;)c(4;). Thus
Cp, = >(Cy|4;) is well approximated by the current

slnz Z<f(z:4f)'n) (B14;) = Z(scnn)'

Since L(C,) — oo, the difference between C,,/L(C),) and z(C,,) tends to
Z€ro as n — oo. |

Proof of Theorem 8.2. Let C be any closed geodesic with nonzero slope.
Let
T4 € AFH (X, w)

be the fundamental twist associated to the cylinder system A;, and let C,, =
74(C). Then 60,(C) — 0, but 2(Cp) = 2(C) for all n since i(A;, 74(C)) =
i(A;, C). It follows that

2(C) =limC,/L(Cy) € Z(w).
Conversely, if ¢ = lim C,,/L(C},,) € Z(w) with 8(C),) — 0, then z(C),)/L(2(Cy))

converges to £ by Lemma 8.3. Hence currents of the form z(C)/L(z(C)) are
dense in Z(w). [ |
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Proof of Theorem 8.1. Define a linear map w : R4 — Py (w) by

w(v) =Y vie(A:) TN (BlA)). (8.1)

Since the forms f|A; are linearly independent, this map is injective. Let
@(v) = w(v)/L(w(v)) when L(w(v)) # 0. Then @ : PRA --» P(w) satisfies

w(i(4;, 0)) = 2(C)

for all closed geodesics C' with 6(C) # 0. Since w(v) is continuous and
injective on the compact set TI(A4) = {i(4;, C)} € PRA, Theorem 8.2 implies
that

w:(A) = Z(w) (8.2)

is a homeomorphism. To complete the proof, observe that w(c(A4;)) = B,
and apply Theorem 7.1 on II(A). [ |

Proposition 8.4 If SL(X,w) is a lattice, then the natural map Z(w) —
HY(X,R) is injective.

Proof. We may assume F(w) is periodic, since otherwise Z(w) is a single
point. By replacing i(A;, C) with (A;, C) in the definition of z(C'), we obtain
a linear map

2 HY(X,R) = Py(w)

whose image contains Z(w). Note that [8]|4;] = h(4;)[A;] € H'(X,R); thus
(2/(C),C) =) mod(A;)(4;,C)* > 0.

Now suppose [2/(C1)] = [¢/(C2)] in H(X,R). Setting C = C; — Cy, we
conclude from the equation above that (A4;,Cy) = (4;,Cy) for all 4, and
hence 2/'(C1) = 2/(Cs) as currents. Thus the image of 2’ maps injectively
into H'(X,R), so the same is true for Z(w). [ |

Remark. It is also known that P(w) maps injectively into H'(X, R) when-
ever F(w) has a dense leaf [Mc5, Prop. 3.3].

Proof of Theorems 1.2. Our aim is to describe the space of limit measures
My for a period slope s. We may assume that s = 0. There is a natural
identification between 2-currents and measures on X, satisfying

aAB=]w? and Re(e ) AC = pe,
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where p¢ is arclength measure on an oriented closed geodesic C, itself con-
sidered as a current of integration in the wedge product above. It follows
easily from these observations that the map £ — a A £ gives a homeomor-
phism

Z(w) = M().

Theorem 1.2 is then immediate from Theorem 8.1, using the fact that the
trace field of SL(X,w) is Q whenever V' has a cusp of rank one. |

Proof of Theorem 1.3. We now wish to describe the measures in M. As
above we can assume s =0 and A = C(0) = {4;,..., A, }.

First, observe that i(A;,C) = |(A;, C)| for any closed geodesic C. Thus
vectors of the form v = [i4;,C] with C a closed geodesic are dense in
II(A), and every v € II(A) has this form for some cohomology class C. By
Theorem 7.1, we can even assume that C' is a rational cohomology class,
provided v # [c(A4;)].

To complete the proof, we simply transport these observations to M),
using the fact that 7i(C) = a A @(|(4;, C)|) and a A @W(c(A;)) = |w|*. (Here
i and w are normalized versions of the functions u(C') and w(v) defined in
equations (1.3) and (8.1).) [ |

Proof of Theorem 1.4. Let K denote the thick part of V. For simplicity
suppose 6(Cy,) — 0, Cy, is oriented and C,,/L(Cy,) = & € Z(w).

The proof that C), is uniformly distributed if T,, = L(v, N K) — oo
follows the same lines as the proof that o, — R(V) if L(o, N K) — oc.
Indeed, in this case we have [¢] = [3] in H'(X,R) by Theorem 5.3, and hence
¢ = B by Proposition 8.4. Therefore the measures pc, /L(C,) converges to
aA B =|wl? so C, is uniformly distributed in X.

We now prove the converse, under the provision that the trace field
of SL(X,w) is not Q. Suppose T, does not tend to infinity. Pass to a
subsequence such that supT,, < oo, and let A = C(0) = {44,...,A,}. We
can then choose a sequence of modular symbols ¢, such that L(c, N K) =
T, + O(1) is also bounded, and v, = [mod(A4;) - i(4;,C,)] is a column of
the matrix I(o,,). Since the space of modular symbols with bounded length
in the thick part of V' is compact, after passing to a subsequence we have
on, = o € §(V), and hence v, converges to a column v of the rational
matrix I(o). If the sequence C),, were uniformly distributed, we also have
v = [h(A;)] € PQ4, which is impossible when the trace field is irrational. B
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Proof of Theorem 1.1. As in Veech’s original papers [V1], [V2], one can
relate billiard trajectories in the regular polygon P, to periodic geodesics for
the form w = dx/y on the curve X defined by 2 = 2™ — 1 (or a finite cover
of X). The desired results then follow from Theorem 1.2. The condition
n # 3,4 or 6 insures that the trace field of SL(X,w) is irrational. |

9 Square—tiled surfaces

In this section we discuss the limit measures on square—tiled surfaces (X,w).
Using the results of §8, Theorem 1.2 can easily be refined to:

Theorem 9.1 For any periodic slope s associated to a cusp a of V', we have
My =2 w” 4+ 1 if a has rank two or more; otherwise, My consists of a single
point.

Corollary 9.2 Provided SL(X,w) is a lattice, the following are equivalent:
1. All cusps of V.=H/SL(X,w) have rank one.

2. Every sequence of closed geodesics Cy, on (X, |w|) with lengths tending
to infinity is equidistributed.

We will discuss two well-known examples, showing the variety of behav-
iors that can occur.

Square—tiled surfaces. Let (E,dz) = (C,dz)/Z[i] € QM; denote the
square torus. For g > 2, we say (X,w) € QM, is a square-tiled surface if
the relative periods of w are contained in Z[i]. In this case, integration of w

gives a canonical map
m: X = FE,

branched only over z = 0, such that 7*(dz) = w. The preimages of the
vertical and horizontal loops through z = 0 on E cut X into d = deg(mw)
unit squares. Conversely, if (X,w) can be assembled out of unit squares, it
is a square—tiled surface.

It is known [GJ] that when SL(X, w) is a lattice, the following are equiv-
alent: (i) the trace field of SL(X,w) is Q; (ii) SL(X,w) is conjugate to a
subgroup of SLg(Z); (iii) the orbit GL; (R) - (X,w) contains a square-tiled
surface.
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Figure 4. Periodic geodesics near slopes s =0 and s = 1.

I. The square L. Consider a symmetric L-shaped polygon P made up of
three squares. By identifying parallel edges, we obtain a square—tiled surface
(X,w) € QM3 (2) with

s = (325 4)) < s

The corresponding Teichmiiller curve V' = H/SL(X,w) is the (2,00, 00)
orbifold; in the terminology of [Mcl], it is the Weierstrass curve Wp C Ma
for discriminant D = 9. This is the simplest square-tiled surface of genus
g>1.

For this example, Theorem 9.1 implies:

M,,q is a single point when p and q are both odd; otherwise,
My =¥ + 1.

To see this, note that V' has two cusps, a and b, corresponding to the slopes
1 and 0 respectively. The first cusp has rank one — indeed, C'(1) is a single
cylinder; and the corresponding slopes are the ratios of odd integers p/q.
The second has rank two; for example, the horizontal and vertical cylinder
systems A and B of (X,w) satisfy

, (11
Z(Ai,Bj) = <1 0) .

By Theorem 9.1, all closed geodesics with slopes s, — 1 are uniformly
distributed, but some with slopes s,, — 0 are not; see Figure 4.

II. The quaternion surface. Our second example is a surface (X,w) of
genus 3 tiled by 8 squares, studied in [HS], [FMZ, Figure 6], [Mo2] and [Mc3,
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Figure 5. Genus 3 with Aut(X,w) the quaternion group of order 8.

§8]. It arises as a characteristic branched cover of the square torus F, with
deck group the quaternion group @ of order 8. All affine automorphisms of
F fixing zero lift to X; thus

SL(X,w) 2 SLy(2),

and the corresponding Teichmiiller curve V' is the (2,3, 00) orbifold, with a
unique cusp a.

As can be seen in Figure 5, (X, w) decomposes into two horizontal cylin-
ders A = C(0) = {A1, Az}; in fact, the core curves of A; and Ag are homol-
ogous. Since V has only one cusp, the same is true for all periodic slopes,
and hence the cusp a has rank one. For example, the horizontal and vertical

cylinder systems satisfy
2 2
i(A;, Bj) = .
ws=(2)

For this square—tiled surface, Theorem 9.1 implies:

Every sequence of closed geodesics with L(Cy,) — oo is uniformly
distributed on (X,w).

Conditions for rank one. In the first example, it is the fact that there

a unique cylinder with slope s = 1 that creates a rank one cusp for V.
However this mechanism cannot make all cusps rank one.
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Proposition 9.3 There is no square—tiled surface with just a single cylinder
i every periodic direction.

Proof. By the general theory of covering spaces, such a surface (X, w) is
specified by a homomorphism p : w1 (E*) — Sy from the fundamental group
of a once—punctured square torus £* to the symmetric group. We can write
m(E*) = Z *xZ = {(a,b), where a and b represent a pair of simple geodesics
on E* crossing in a single point. Then a™b is also represented by a simple
geodesic, for all n € Z. The condition on cylinders implies that p sends
every simple geodesic to a transitive permutation. In particular, if p sends
(a,b) to (a, B) in Sy, then o, 5 and o™ must be transitive for all n. But by
transitivity, there exists an n > 0 such that o (3(1)) = 1, and hence o”f is
not transitive. |

Question. Can one classify the square—tiled surfaces with all cusps of rank
one?

Question. For a general 1-form (X,w), what can one say about the sub-
space of Hi(X,R) spanned by the classes [C] of closed geodesics?

10 Pairs of multicurves

In this section we recall Thurston’s multicurve construction and prove Theo-
rem 1.9. Thurston’s construction was already used implicitly in §6; for more
background, see [Th2], [Mc2, §4] and [HL].

Encoding complex geodesics. Let f: V — M, be the complex geodesic
generated by a holomorphic 1-form (X, w) with [ |w|> = 1. Assume m (V)
is nonelementary and that V has at least one cusp.

Recall that equation (1.14) gives a natural map

7:SHV) = MLY(Z) x MLY(Z)/ Mod,,

defined by
T(7) = (a, B) = <Zai ALY by Bj) ;

which records the topological configurations of the cylinder systems deter-
mined by a pair of periodic slopes.

Thurston’s construction allows one to recover the complex geodesic f :
V — Mg, and the modular symbol v, from the pair of integral laminations
(o, 8). In particular, any Teichmiiller curve can be described by purely
topological data; for examples, see e.g. [Lei], [Mc2] and [Ho.
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Geometry Topology

(X7w) + Y ! <Zaz AZ’ZbJ B]>
& (0 AT
= Q_<A3Jt 0)
N

(Y,n) + [0,00] ~—— Q (Z;) =1 (Zz)

Figure 6. Complex geodesics and Thurston's construction.

From topology to geometry. Here is a sketch of Thurston’s construction,
summarized in Figure 6.

The pair of integral laminations («, ) determine an integral matrix
Q, whose blocks AsJ and AgJ! come from the intersection matrix J =
i(A;, Bj), and the diagonal matrices Ay = (a;) and Ap = (bj). These
blocks are in fact identical to the intersection matrices I(7) and I(y*); cf.
equation (6.4).

The matrix @ has a positive eigenvector h = (h 4, hp) which is unique up
to scale. There is then a unique 1-form (Y, ) such that C(0) = A, C() =
B, and (h(A;),h(Bj)) = (ha,hp). The form (Y,n) can be constructed
explicitly by placing a rectangle ([0, h;] x [0, h;],dz) at each crossing of A;
and Bj, and then gluing them together when two crossings are joined by an
edge. Suitably scaling h, one can also arrange that fY In? = 1.

The difference between (X,w) and (Y, n) is that the components of A; N
Bj are parallelograms in the first case and rectangles in the second. By
straightening these parallelograms, one can easily show that

SLa(R) - (X, w) = SLa(R) - (¥, ).

In particular, (Y,n) and (X,w) generate the same Teichmiiller curve f :
V= M,.

Proof of Theorem 1.9. The periodic slopes (0, 00) for (Y,n) also deter-
mine a geodesic joining a pair of cusps of V, allowing one to recover the
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original modular symbol v as well. Consequently 7 is injective. Thus modu-
lar symbols of degree 1 on the complex geodesic f : V — M, are in bijection
with the pairs of multicurves (a, §) which encode it. [ |

The intersection matrix, reprise. Since the intersection matrices I(7)
and I(v*) allow one to construct @, they record important algebraic infor-
mation about Thurston’s construction [Mc2, §4]. For example, one can show

that
SL<xn>3<Dm,DTB>:<(3 ‘f)(_lﬂ (1])>

where A = p? is the leading eigenvalue of the Perron-Frobenius matrix
P = I(v)I(~*). In particular, the trace field of SL(X,w) is given by Q(\).
Since P is conjugate to a real symmetric matrix, this field is totally real.

Note that V' can be presented by Thurston’s construction as soon as
S1(V) is nonempty. Thus for any (X,w) € QM,, we have:

If SL(X,w) is nonelementary and contains a parabolic element,
then its trace field is totally real.

See [HL, Thm 1.1].

Pseudo—Anosov maps and quadratic differentials. The original pur-
pose of Thurston’s construction was to provide a rich source of examples
of pseudo—Anosov maps, namely the affine maps ¢ in (74,75) such that
| tr Dyp| > 2. It is still not known which number fields Q(\) arise from the
expansion factors A\ of pseudo—Anosov maps [Th4].

Thurston’s construction implicitly uses the inverse of the natural map

L:QTg — MLy x MLy,

which records the horizontal and vertical foliations of a marked quadratic
differential. However the inverse is not applied to («, 3); rather it is applied
to the pair (3 hsA;, Y h;Bj) constructed using an eigenvector for (). The
map ¢ is injective and its image is the space of pairs of measured laminations
(o, B) that bind the surface ¥,; cf. [Le] and [GM, Theorem 3.1]
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A Appendix: Modular symbols and the Weil-Petersson
metric

For some additional perspective on modular symbols, in this Appendix we
give a short proof of:

Theorem A.1 Let L C R denote the set of lengths of all Weil-Petersson
geodesics in My that begin and end at the cusp. Then L is well-ordered,

and we have
L= (L) =2 w®.

Here (L) is the additive semigroup generated by L.
Proof. Let V = M ; = H/SLy(Z) be the moduli space of hyperbolic Rie-

mann surface of genus one with one cusp, endowed with the Weil-Petersson
metric. It is well-known that the corresponding metric on 77 ; = H is neg-
atively curved, convex, and incomplete; and that its completion is given
by

H* = HUPY(Q).

Moreover H*/SLa(Z) 2 V = Mi 1 U {p} is a compact metric space, with
a single added point p corresponding to My3. Near p, My is well-
approximated metrically by the surface of revolution in R? obtained by
spinning the curve y? = 23 about the z—axis. (See e.g. [Wol].)

Let £(x,y) denote the length of the unique Weil-Petersson geodesic in H
joining a given pair of distinct points z,y € P1(Q). Since ¢(gz, gy) = {(z,y)
for all g € SLy(Z), this length gives a map

0:SY V) =R
Extending the definition to all modular symbols by

Uy xym) = > 0(7),

we obtain a functor ¢ : S(V) — R; this means simply that (o * 7) =
{(o) + £(T). Note that L = £(S*(V)).
We now make two geometric observations. Suppose v, — 0 = d1%- - -xp,
in S(V). Then:
(o) < limsup £(yn),

since length can only be lost in the geometric limit. On the other hand, we
also have

(o) > U(n) (A1)
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for all n sufficiently large. Indeed, for all n > 0, a representative 7/, of the
homotopy class of 7y, on M; 1 can be obtained by cutting off J; at distance €
from p, and then connecting J; to §;1.1 with a curve that spirals finitely many
times around the cusp. Due to the shape of the cusp in the Weil-Petersson
metric, these spirals each add length on the order of ¢3/2 <« e. Choosing €
sufficiently small, we obtain £(v,) < ¢(v],) < £(0).

Combining these two observations, we find £(v,) — ¢(0) as n — oo. It
follows easily that the functor ¢ : S(V)) — R is continuous, and comparison
to hyperbolic length shows that ¢ is proper.

Let S = U2, S%V). By basic properties of modular symbols (§2),
we have S = S1(V) = (S}(V)); and hence, by the properties of ¢ just
established, we also have L = (L). Equation (A.1) implies that L is well-
ordered.

It remains to show that L is homeomorphic to w®; equivalently, that
D>®(L) = () but D™*(L) # 0 for all finite n. The first point follows from the
fact that ¢ is proper and D*°(S) = (); while the second follows from equation
(A.1), which implies that D"(L) contains £(S™"*1(V)). [ |

Remark. A related result, valid for all M, ,, is announced in [BB, Theorem
1.5].
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