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ABSTRACT. We give a simple quantitative condition, involving the “mapping content” of Azzam–Schul,
that implies that a Lipschitz map from a Euclidean space to a metric space must be close to factoring
through a tree. Using results of Azzam–Schul and the present authors, this gives simple checkable
conditions for a Lipschitz map to have a large piece of its domain on which it behaves like an orthogonal
projection. The proof involves new lower bounds and continuity statements for mapping content, and
relies on a “qualitative” version of the main theorem recently proven by Esmayli–Hajłasz.

1. INTRODUCTION

The goal of this paper is to explain a link between two questions that one can ask about a Lipschitz
mapping from a Euclidean space into a metric space. We first describe these questions philosophically,
and then give precise details.

The first question is: Are there suitable coordinates on which f looks like a simple orthogonal
projection? From a geometric perspective, the nice properties of such a projection are that the fibers of
the mapping are parallel and are parametrized in a uniform way by Euclidean spaces of the expected
dimension.

As one cannot expect every Lipschitz map to look like a projection in coordinates, we ask instead:

Question 1.1. Are there large pieces of the domain on which the restriction of f admits such a change
of coordinates?

In other words, we are looking for a large piece of the domain on which we have a (non-smooth)
implicit function theorem. This question was explored in detail recently in [1, 10, 5], as we make
precise and explain further below.

It turns out that there are highly non-trivial mappings – first discovered by Kaufman [13] – that
fail to admit any such pieces at all. Kaufman’s example is a Lipschitz map of [0, 1]3 onto [0, 1]2 that
nonetheless fails in a precise way to behave like an orthogonal projection R3 → R2 on any set of
positive measure.

Kaufman’s example provides the link to our second question, because it factors through a tree.

Definition 1.2. A metric tree is a geodesic metric space in which every geodesic triangle is isometric
to a tripod.
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We say that a Lipschitz map f : X → Y factors through a tree if there is a metric tree T and two
Lipschitz maps g : X → T and h : T → Y such that f = h ◦ g.

If the two maps h and g are both L-Lipschitz, we say that f factors through a tree by L-Lipschitz
maps.

Thus, the second question we ask about a given Lipschitz map f is:

Question 1.3. How can we tell whether f factors through a tree, or (taking the quantitative viewpoint)
is close to factoring through a tree?

Our initial motivation for this question was to understand whether Kaufman-type examples are the
only ones that can provide negative answers to Question 1.1 in low-dimensional situations.

Maps that factor through trees are degenerate in some topological ways. As a simple illustration,
the restriction of such a map to any Jordan curve in the domain must fail to be injective. Nonetheless,
such mappings can exhibit unexpected geometric complexity, as shown by Kaufman’s example, whose
behavior is quite surprising in view of the one-dimensionality of trees. Further examples of mappings
that factor through trees and nonetheless have “large” images appear in [1, Section 2].

It turns out that the answers to both Questions 1.1 and 1.3 are governed by the same quantity, the
so-called “(n,m)-mapping content” first introduced in [1].

Definition 1.4. Let n,m be non-negative integers and let E ⊆ Q0 = [0, 1]n+m be a set. We define the
“(n,m)-mapping content” of f on E as

Hn,m
∞ (f, E) := inf

∑
Qi

Hn
∞(f(Qi))side(Qi)

m,

where the infimum is taken over all coverings {Qi} of E by dyadic cubes with disjoint interiors in Q0.

Here Hn
∞ refers to the n-dimensional Hausdorff content, defined in subsection 2.3.

Remark 1.5. We note that this definition of Hn,m
∞ is precisely that used in [5]. It differs slightly from

that stated in [1, Equation (1.3)] in that the infimum is over coverings by dyadic cubes rather than
arbitrary cubes, although the results in [1] really only require dyadic cubes. The two definitions are
weakly comparable, in the sense that if one quantity is small than the other is small; this follows from
[5, Corollary E].

The quantity Hn,m
∞ serves in some sense as a “coarse” (and metric) analog of the L1-norm of the

n-dimensional Jacobian of f , defined as the product of the n largest singular values of the derivative of
f . Thus, a mapping with small Hn,m

∞ might be viewed as highly compressing n-dimensional volumes
on some scales. This must be interpreted with care, however, given Kaufman’s example, which has
H2,1

∞ = 0 but maps onto the unit square [0, 1]2. This is discussed further in [5, Section 3].
When n = 2, the present authors made the following conjecture in [5, Conjecture 1.13]:

Conjecture 1.6 ([5]). Let Q0 = [0, 1]2+m and let f : Q0 → ℓ∞ be a 1-Lipschitz mapping.
• (Qualitative version) If H2,m

∞ (f,Q0) = 0, then f factors through a tree.
• (Quantitative version) For every ϵ > 0, there is a δ = δ(ϵ,m) with the following property: If
H2,m

∞ (f,Q0) < δ, then there is a 1-Lipschitz map g : Q0 → ℓ∞ that factors through a tree and
satisfies supQ0

∥g − f∥∞ < ϵ.
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This conjecture was inspired by the techniques of [16] and the evidence of Kaufman’s example,
which provides a negative answer to Question 1.1, factors through a tree, and has H2,1

∞ equal to zero.
The same properties hold for the examples in [1, Section 2]. Essentially, the conjecture asks whether
Kaufman-type examples are the only examples of mappings with small mapping content, and hence
mappings providing negative answers to Question 1.1, in the case n = 2.

Remark 1.7. In the case n ≤ 1 or m = 0, mappings from [0, 1]n+m with vanishing or small Hn,m
∞ are

easy to characterize, while in the case n > 2 the problem appears difficult due to the constructions of
topologically non-trivial low-rank Lipschitz mappings in [16, 9]. Thus, the case n = 2 that we address
here is simply the first remaining open problem in a long list. This is discussed further in [5, Section
1.4].

Recently, Esmayli–Hajłasz [6] showed that a mapping with H2,m
∞ equal to zero must factor through

a tree, answering the qualitative cases of Question 1.3 and, equivalently, Conjecture 1.6. (This is the
equivalence “(e) ⇔ (a)” in [6, Theorem 1.1], combined with their Remark 1.2.)

Theorem 1.8 (Esmayli–Hajłasz [6]). Let Q0 = [0, 1]2+m and f : Q0 → Y be a Lipschitz map into a
metric space. Then H2,m

∞ (f,Q0) = 0 if and only if f factors through a tree. Moreover, in this case, if
f is 1-Lipschitz then f factors through a tree by 1-Lipschitz maps.

Motivated by the more quantitative concerns of [1, 5], we use Theorem 1.8 to prove a quantitative
stability theorem: maps with small, but not necessarily vanishing, mapping content must be close to
factoring through trees.

Our main theorem in this paper is the following, completely resolving Question 1.3 and finishing
the proof of Conjecture 1.6.

Theorem A. Let m be a non-negative integer. For every ϵ > 0, there is a δ = δ(ϵ,m) > 0 with the
following property: Let f : Q0 := [0, 1]2+m → ℓ∞ be a 1-Lipschitz map. If H2,m

∞ (f,Q0) < δ, then
there is a 1-Lipschitz map g : Q0 → ℓ∞ such that

sup
x∈Q0

∥g(x)− f(x)∥∞ < ϵ

and g factors through a tree by 1-Lipschitz maps.
Conversely, for every ϵ′ > 0, there is a δ′ = δ(ϵ′,m) > 0 such that if f, g : Q0 := [0, 1]2+m → ℓ∞

are 1-Lipschitz maps, g factors through a tree by 1-Lipschitz maps, and

sup
x∈Q0

∥g(x)− f(x)∥∞ < δ′,

then H2,m
∞ (f,Q0) < ϵ′.

Remark 1.9. As every separable metric space embeds isometrically in ℓ∞, the restriction in Conjec-
ture 1.6 and Theorem A that the target space is ℓ∞ is no restriction at all; it simply allows for a cleaner
statement.

Without the restriction to n = 2 in Theorem A, the result is false, as alluded to in Remark 1.7. On
the other hand, the assumption n = 2 enters this paper only through Theorem 1.8, so our methods in
fact show the following in all dimensions.
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Theorem B. For every n,m and ϵ > 0, there is a δ = δ(ϵ, n,m) > 0 with the following property: If
f : Q0 := [0, 1]n+m → ℓ∞ is a 1-Lipschitz map and Hn,m

∞ (f,Q0) < δ, then there is a 1-Lipschitz map
g : Q0 → ℓ∞ such that

sup
x∈Q0

∥g(x)− f(x)∥∞ < ϵ

and Hn,m
∞ (g,Q0) = 0.

Conversely, for every ϵ′ > 0, there is a δ′ = δ(ϵ′, n,m) > 0 such that if f, g : Q0 := [0, 1]n+m → ℓ∞

are 1-Lipschitz maps, Hn,m
∞ (g,Q0) = 0, and

sup
x∈Q0

∥g(x)− f(x)∥∞ < δ′,

then Hn,m
∞ (f,Q0) < ϵ′.

Thus, attempts at higher-dimensional generalizations of Theorem A could perhaps first proceed by
attempting to characterize maps with vanishing mapping content in higher dimensions. Progress on
this appears in [7, Corollary 7.22].

Before proceeding with more precise motivation and a description of the remaining results of the
paper, we explicitly state a simple corollary of Theorem A which does not require the notion of map-
ping content. This is just the case m = 0, in which case H2,m

∞ (f,Q0) is simply H2
∞(f(Q0)), the

standard 2-dimensional Hausdorff content of the image of f . Thus:

Corollary 1.10. For every ϵ > 0, there is a δ = δ(ϵ) > 0 with the following property: Let f : Q0 :=
[0, 1]2 → ℓ∞ be a 1-Lipschitz map. If H2

∞(f(Q0)) < δ, then there is a map g : Q0 → ℓ∞ such that

sup
x∈Q0

∥g(x)− f(x)∥∞ < ϵ

and g factors through a tree.

In other words, a 1-Lipschitz map from a square can only compress 2-dimensional content insofar
as it is close to factoring through a tree.

1.1. Motivation from geometric measure theory: “Hard Sard sets”. As motivation, we now ex-
plain more precisely the connection between our results and Question 1.1.

A classical result in geometric measure theory says that for a Lipschitz map f : Rn+m → Rn, the
pre-image of Hn–almost every point of f(Rn+m) is m-rectifiable. (See, e.g., [8, Theorem 3.2.22].)
That is, almost every fiber of f can be covered by Lipschitz images of m-dimensional Euclidean space,
up to m-dimensional measure zero.

As with many problems in geometric measure theory, there is a natural quantitative follow-up ques-
tion: is it possible to parametrize these fibers (or at least a large fraction of them) in a uniform way?
More specifically, is it possible to rearrange the domain (or at least a large fraction of it) so that the
fibers are parallel m-planes?

The canonical example of a map whose fibers are parallel m-planes is a simple orthogonal projec-
tion, which connects this to Question 1.1. The recent works [1, 10, 5] all explore this question. We
first make more precise, with a definition from [1, 5], what we mean by “straightening out” or “making
parallel” the fibers of a mapping.
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FIGURE 1. A schematic diagram of a Hard Sard set in the case n = m = 1. The map
g straightens out the (blue) fibers of f and the (red) transverse curves on which f is
bi-Lipschitz.

Definition 1.11. Let Q0 = [0, 1]n+m and f : Q0 → Y be a Lipschitz map into a metric space. Let
E ⊆ Q0 = [0, 1]n+m and g : E → Rn+m be a bi-Lipschitz mapping. We call (E, g) a Hard Sard pair
for f if there is a constant CLip such that the following conditions hold.

Write points of Rn+m as (x, y) with x ∈ Rn and y ∈ Rm. Let F = f ◦ g−1. We ask that:

(i) g extends to a globally CLip-bi-Lipschitz homeomorphism from Rn+m to Rn+m.
(ii) If (x, y) and (x′, y′) are in g(E), then F (x, y) = F (x′, y′) if and only if x = x′.

(iii) The map (x, y) 7→ (F (x, y), y) is CLip-bi-Lipschitz on the set g(E). In particular, for all y ∈ Rm,
the restriction F |(Rn×{y})∩g(E) is CLip-bi-Lipschitz.

If E ⊆ Q0 is a set and there exists a mapping g : Rn+m → Rn+m satisfying (i)-(iii) for E, then we call
E a Hard Sard set for f .

We think of g as a globally bi-Lipshitz change of coordinates that “straightens out” the fibers of f |E .
Since the linear projection mapping π(x, y) = x on Q0 satisfies all the properties requested for the
map F = f ◦ g−1 on g(E) in Definition 1.11, we interpret Definition 1.11 as saying that f “looks like
a projection” when restricted to E, up to globally a bi-Lipschitz change of coordinates g. See Figure
1.

The motivation for both of the above definitions was Theorem I of Azzam and the second author in
[1]. That result was improved in [5] to the following theorem.

Theorem 1.12 (Theorem A of [5]). Let Q0 be the unit cube in Rn+m and let f : Q0 → X be a 1-
Lipschitz map into a metric space X with Hn(f(Q0)) ≤ 1. Given any γ > 0, we can write Q0 =
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E1 ∪ · · · ∪EM ∪G, where Ei are Hard Sard sets for f and Hn,m
∞ (f,G) < γ. The constant M and the

constants CLip associated to the Hard Sard pairs (Ei, gi) depend only on n, m, and γ.

This theorem and [1, Theorem I] can be viewed as “quantitative implicit function theorems” for
Lipschitz maps into metric spaces. Compare also with the qualitative theorem of [10].

Thus, in combination with Theorem 1.12 (or Theorem I of [1]), our Theorem A immediately implies
the following.

Corollary 1.13. Let Q0 be the unit cube in R2+m and let f : Q0 → ℓ∞ be a 1-Lipschitz map with
Hn(f(Q0)) ≤ 1.

If

sup
x∈Q0

∥g(x)− f(x)∥∞ ≥ ϵ

for all mappings g : Q0 → ℓ∞ that factor through trees, then f admits a Hard Sard set E with
Hn+m(E) > γ, where γ > 0 depends only on m and ϵ.

Proof. By Theorem A, we have Hn,m
∞ (f,Q0) bounded below depending only on ϵ. By Theorem 1.12,

f then admits a Hard Sard set E with Hn,m
∞ (f, E) (and the associated constants) bounded below. The

Hn+m-measure of E is then comparable to Hn,m
∞ (f, E) by [5, Lemma 3.5]. □

1.2. Additional results on mapping content: lower bounds and continuity. Theorem A will fol-
low from Theorem 1.8 and a new lower bound (Theorem C) and continuity statement (Theorem D) for
mapping content, which apply for general n,m ∈ N. For the remainder of the document, we will fix
n,m non-negative integers. We will write Q0 = [0, 1]n+m and points of Rn+m as (x, y) where x ∈ Rn

and y ∈ Rm. Later on, we will specialize to the case n = 2 to prove Theorem A.
Our theorem on lower-bounding mapping content is an extension of a result of Kinneberg [14,

Corollary 4.2]. Kinneberg’s result gives a simple way to lower bound the Hausdorff content Hd
∞(f([0, 1]d))

of the image of a continuous map defined on the unit cube, and we extend his methods to apply to the
mapping content Hn,m

∞ .
Continuing to set Q0 = [0, 1]n+m, we let

(1.1) (F1, F
′
1), (F2, F

′
2), . . . , (Fn+m, F

′
n+m)

denote all the pairs of opposite faces of ∂Q0. Thus,

Fk = {(t1, t2, . . . , tk−1, 0, tk+1, . . . , tn+m) : ti ∈ [0, 1]}

and
F ′
k = {(t1, t2, . . . , tk−1, 1, tk+1, . . . , tn+m) : ti ∈ [0, 1]}.

Theorem C. Let f : Q0 → Y be a continuous map into a metric space. Then

(1.2) Hn,m
∞ (f,Q0) ≥

n∏
k=1

distY (f(Fk), f(F
′
k)).
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Moreover, the same lower bound holds for the quantity Ĥn,m
∞ defined in (2.1):

(1.3) Ĥn,m
∞ (f,Q0) ≥

n∏
k=1

distY (f(Fk), f(F
′
k)).

The quantity Ĥn,m
∞ is a variant of Hn,m

∞ introduced in [5, Section 1.4.2] that is more convenient in
some circumstances; see (2.1) below.

Remark 1.14. In the case m = 0, we have Hn,m
∞ (f,Q0) = Hn

∞(f(Q0)), so this agrees with [14,
Corollary 4.2]. Indeed, our proof follows the same path as Kinneberg’s proof, including relying on his
[14, Proposition 4.1].

Remark 1.15. Of course, the fact that we use only the first n pairs of sides in Theorem C is irrelevant,
as one can always reduce to this case.

Theorem C is of interest in its own right, providing a simple lower bound for mapping content which
then implies the existence of Hard Sard sets as described above. In this paper, it will be used to prove
a continuity statement for mapping content.

For this, we will use the following notion of distance for Lipschitz maps into arbitrary metric spaces,
which is essentially an ad hoc notion of Gromov-Hausdorff convergence which suffices for our pur-
poses.

Definition 1.16. Let f : Q0 → Y and g : Q0 → Z be continuous functions onto metric spaces Y and
Z. For ϵ > 0, we will say that dist(f, g) < ϵ if there are isometric embeddings

ιY : Y → ℓ∞ and ιZ : Z → ℓ∞

such that
sup
x∈Q0

∥ιY (f(x))− ιZ(g(x))∥∞ < ϵ.

Remark 1.17. To be concrete and avoid technicalities, we assume in the definition of dist that Y and
Z are the full images of f and g, respectively, hence the word “onto” in the definition. Of course, one
can always reduce to this case.

Our continuity statement for mapping content is then the following result.

Theorem D. Let Q0 = [0, 1]n+m. Let fi : Q0 → Yi be a sequence of 1-Lipschitz maps onto metric
spaces Yi, and f : Q0 → Y another 1-Lipschitz map onto a metric space Y . Assume that dist(fi, f) →
0 as n → ∞. Then

Hn,m
∞ (f,Q0) = 0 if and only if Hn,m

∞ (fi, Q0) → 0 as i → ∞.

Theorem D will then combine with Theorem 1.8 to prove Theorem A by a compactness argument.

Acknowledgments. The authors thank Behnam Esmayli and Piotr Hajłasz for comments, and for
sharing an early draft of [6].
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2. PRELIMINARIES

2.1. Dyadic cubes. We write Q0 for the unit cube in Rd, with d generally understood from context,
i.e.,

Q0 = [0, 1]d.

We write ∆ for the collection of all dyadic cubes Q ⊆ Q0, and ∆k for the collection of those dyadic
cubes with side length 2−k.

If Q ∈ ∆, we write side(Q) for the side-length of Q. Thus, side(Q) = 2−k if and only if Q ∈ ∆k.
If Q ∈ ∆ and C > 0, we write CQ for a cube with the same center but C times the side length.

In particular, if C is an odd positive integer, then CQ is a union of Cd distinct cubes of the same side
length as Q.

Lastly, we call a collection of cubes “almost-disjoint” if they have disjoint interiors. Such collec-
tions arise in the definition of Hn,m

∞ .

2.2. Metric derivatives. Let X be a metric space and f : Rd → X a 1-Lipschitz function. We will
use results from [5], which rely on results and notation from [2], which were in turn inspired by the
idea of metric differentiability in [15].

For a cube Q ⊆ Rd let

mdf (Q) :=
1

side(Q)
inf
∥·∥

sup
x,y∈Q

|d(f(x), f(y))− ∥x− y∥| ,

where the infimum is taken over all seminorms ∥ · ∥ on Rd. If the function f is understood, we will
simply write md(Q). The quantity mdf (Q) measures how well the pullback of the distance in X
under f can be approximated by a seminorm in Q. For metric space valued functions, it serves as a
replacement for measuring “deviation from linearity”. This quantity is appealing because of the result
of [2], which is a quantitative differentiation result for Lipschitz mappings into metric spaces:

Theorem 2.1 ([2], Theorem 1.1). Let X be a metric space and f : Rd → X a 1-Lipschitz function.
Let ϵ > 0 and C0 > 0. Then ∑

{|Q| : Q ∈ ∆,mdf (C0Q) > ϵ} ≤ Cϵ,d.

The constant Cϵ,d depends only on ϵ, C0, and d but not on the space X or the function f .

Here |Q| refers to the d-dimensional Lebesgue measure of Q. While we do not use Theorem 2.1
directly below, it is behind the proof of Lemma 5.1 from [5].

For a cube Q, we let ∥ · ∥Q denote a seminorm that gives rise to the infimum in the definition above
of md (repressing f in the notation). The existence of a minimizer follows from the observation that
the norm is determined by its unit ball, and such sets are compact under the Hausdorff metric.

2.3. Content, measure, and variations. We use |E| to denote the Lebesgue measure of a subset E
of some Euclidean space, with the dimension understood from context.
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For a subset A of a metric space X , the k-dimensional Hausdorff content Hk
∞(A) is a well-used

notion (see, e.g., [11, Chapter 8]) and is defined as follows:

Hk
∞(A) = inf

∑
U∈U

diam(U)k,

where the infimum is taken over all open covers U of A. (Small modifications of the definition, e.g.
to use covers by balls or arbitrary sets, yield comparable quantities.) The quantity Hk

∞ is countably
sub-additive, but not in general a measure.

The notion of mapping content Hn,m
∞ was defined above in Definition 1.4. As discussed in [1, 5],

Hn,m
∞ serves in some sense as a “coarse” substitute for the L1-norm of the n-dimensional Jacobian of

f .
In [5, Section 1.4.2], a variation of mapping content was defined that uses arbitrary sets in the cover,

rather than dyadic cubes.

(2.1) Ĥn,m
∞ (f, A) = inf

∑
i

Hn
∞(f(Si))diam(Si)

m,

where the infimum is over all countable covers {Si} of A by arbitrary subsets of Q0. It is immediately
clear that

(2.2) Ĥn,m
∞ (f, A) ≲n,m Hn,m

∞ (f, A),

As discussed in [5], we do not know if the reverse inequality holds in (2.2). We do however know
that if Ĥn,m

∞ (f, A) = 0 then Hn,m
∞ (f, A) = 0. Indeed we have the following more quantitative state-

ment.

Theorem 2.2 (Corollary E of [5]). For each δ > 0, there is a δ′ > 0 with the following property:
If f : Q0 → X is a 1-Lipschitz mapping into a metric space, and A ⊆ Q0 has

Hn,m
∞ (f, A) ≥ δ,

then
Ĥn,m

∞ (f, A) ≥ δ′.

The number δ′ depends only on δ, n, and m.

3. FACTS ABOUT SEMINORMS

Here we collect some lemmas about seminorms that we need, the main goal being Lemma 3.2
below.

Lemma 3.1. Let ∥ · ∥ be a seminorm on Rn+m. Then there is a linear map A : Rn+m → Rn+m such
that |Av| ≈ ∥v∥ for all v ∈ Rn+m. The implied constant depends only on n, m.

Proof. Let
V = (ker(∥ · ∥))⊥ = ({v : ∥v∥ = 0})⊥ ,

a subspace of Rn+m with some dimension k ∈ {0, . . . , n+m}.
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Let A0 : Rn+m → Rn+m be the orthogonal projection onto V . Notice that ∥A0w∥ = ∥w∥ for all
w ∈ Rn+m, and that ∥ · ∥ is a a norm when restricted to V .

Let K ⊂ V be the unit ball of ∥ · ∥. A theorem of F. John says (see e.g. [3]) that there is an
ellipsoid E ⊂ K and such that K ⊂ kE, where k is the dimension of V . Let T be the linear map
taking E to the unit ball of Rk, viewed as embedded in Rn+m. Then for any unit vector v ∈ V we
have 1 ≤ |T (v)| ≤ k, and thus, setting A = T ◦ A0 we have for all w ∈ Rn+m that ∥w∥ = ∥A0w∥ ≤
|Aw| ≤ k∥A0w∥ = k∥w∥. Since k ≤ n+m this completes the proof. □

The following fact about seminorms is now a consequence of Lemma 3.1 and the singular value
decomposition of matrices.

Lemma 3.2. Let ∥ · ∥ be a seminorm on Rn+m. Suppose that there is an n-dimensional subspace
P ⊆ Rn+m and a constant δ > 0 such that

∥v∥ ≥ δ|v| for all v ∈ P.

Then there is an orthonormal basis {v1, . . . , vn+m} of Rn+m such that∥∥∥∥∥
n+m∑
i=1

aivi

∥∥∥∥∥ ≳ δ
n∑

i=1

|ai|

for all choices of a1, . . . , an+m in R. The implied constant depends only on n, m.

Proof. Let A : Rn+m → Rn+m be as in Lemma 3.1.
Let A = USV ∗ denote the singular value decomposition of A, with singular values σ1 ≥ · · · ≥

σn+m. Thus, U and V ∗ are orthogonal (n+m)×(n+m) matrices and S is a diagonal (n+m)×(n+m)
matrix with the singular values along the diagonal. The max-min characterization of singular values
says that the nth largest singular value, σn, can be computed by

σn = max
dim(T )=n

min
0̸=x∈T

|Ax|
|x|

≳ max
dim(T )=n

min
0̸=x∈T

∥x∥
|x|

,

where the maximum is over all subspaces T of dimension n in Rn+m.
Taking T = P , we obtain

σn ≳ δ > 0,

with implied constant depending only on n,m.
For i = 1, . . . , n+m, let vi = (V ∗)−1(ei), where {ei} is the standard basis of Rn+m. Then for any

choice of a1, . . . , an+m in R, we have∥∥∥∥∥
n+m∑
i=1

aivi

∥∥∥∥∥ ≳

∣∣∣∣∣A
(

n+m∑
i=1

aivi

)∣∣∣∣∣
=

∣∣∣∣∣
n+m∑
i=1

aiSei

∣∣∣∣∣
≳ δ

n∑
i=1

|ai|,
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with implied constants depending only on n and m. □

4. LOWER BOUNDS FOR MAPPING CONTENT

This section is devoted to the proof of Theorem C.

4.1. A result of Kinneberg. We describe here the set-up of Kinneberg [14, Section 4] which we
require.

Let g : [0, 1]d → X be a continuous map into a metric space. Let {Ui}i∈I be an open cover of
g([0, 1]d). A “chain” of open sets from this collection is a finite sequence Ui1 , Ui2 , . . . , UiT such that
consecutive sets intersect. We say that the chain connects two subsets E,F ⊆ g([0, 1]d) if E intersects
Ui1 and F intersects UiT .

For each 1 ≤ k ≤ d, let
wk : I → [0,∞)

be a “weight function” defined on the sets of the cover.
For subsets E,F ⊆ g([0, 1]d), their “combinatorial distance” with respect to the above choices is

defined as

distwk
(E,F ) = inf

T∑
t=1

wk(it),

where the infimum is taken over all chains Ui1 , . . . , UiT connecting E to F .
Proposition 4.1 of [14] is then the following:

Proposition 4.1 (Kinneberg [14]). For any continuous g : [0, 1]d → X and any open cover {Ui}I and
weight functions wk as defined above, we have

(4.1)
∑
i∈I

(
d∏

k=1

wk(i)

)
≥

d∏
k=1

distwk
(g(Fk), g(F

′
k)).

Recall that {Fk, F
′
k} denote opposite faces of the boundary of the unit cube, as defined in (1.1).

4.2. The proof of Theorem C.

Proof of Theorem C. We will prove the second statement (1.3) of Theorem C, and then indicate the
minor modifications needed to obtain the first statement (1.2).

Let f be as in the statement of the theorem. Let {Si}i∈I be an arbitrary cover of Q0 by sets Si. For
each i ∈ I , let {U i

j}j∈Ji be an arbitrary open cover of f(Si). Fix η > 0 arbitrary.
For each i ∈ I and j ∈ Ji, let

V i
j = U i

j ×Nη(Projy(Si)) ⊆ Y × [0, 1]m.

Here Projy denotes the map (x, y) 7→ y from [0, 1]n+m to [0, 1]m, and Nη(·) denotes the open η-
neighborhood of a set in [0, 1]m. The purpose of taking the neighborhood Nη in [0, 1]m is just to
ensure that each set V i

j is open.
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We now define weights wk(i, j) ∈ [0,∞) for 1 ≤ k ≤ n+m, i ∈ I , and j ∈ Ji.

wk(i, j) =

{
diam(U i

j) 1 ≤ k ≤ n

diam(Si) + 2η n+ 1 ≤ k ≤ n+m

We will apply Proposition 4.1 to the function h : Q0 → Y × [0, 1]m defined by h(x, y) = (f(x, y), y).
We equip Y × [0, 1]m with the metric dY×[0,1]m defined as dY×[0,1]m((p, t), (q, s)) = max{dY (p, q), |t−
s|}. In this application, the open cover of Proposition 4.1 will be {V i

j }, and the weights wk(i, j) will
be as defined above. The left-hand side of (4.1) is then

(4.2)
∑
i∈I

∑
j∈JI

n+m∏
k=1

wk(i, j) =
∑
i∈I

(∑
j∈Ji

diam(U i
j)

n

)
(diam(Si) + 2η)m.

After taking the infimum over all choices of {Si}, {U i
j}, and η, this yields exactly Ĥn,m

∞ (f,Q0).
We now lower bound the right-hand side of (4.1). First, for 1 ≤ k ≤ n, we have

distwk
(h(Fk), h(F

′
k)) = inf{

∑
t

wk(V
it
jt
) : {V it

jt
} connects h(Fk), h(F

′
k)}

= inf{
∑
t

diam(U i
j) : {V it

jt
} connects h(Fk), h(F

′
k)}

≥ inf{
∑
t

diam(U i
j) : {U it

jt
} connects f(Fk), f(F

′
k)}

≥ distY (f(Fk), f(F
′
k)).

Next, consider n+ 1 ≤ k ≤ n+m. Let

A = {(y1, . . . , yk−n−1, 0, yk−n+1, . . . , ym} ⊆ [0, 1]m

and
B = {(y1, . . . , yk−n−1, 1, yk−n+1, . . . , ym} ⊆ [0, 1]m.

We then have

distwk
(h(Fk), h(F

′
k)) = inf{

∑
t

wk(V
it
jt
) : {V it

jt
} connects h(Fk), h(F

′
k)}

= inf{
∑
t

(diam(Si) + 2η) : {V it
jt
} connects h(Fk), h(F

′
k)}

≥ inf{
∑
t

(diam(Si) + 2η) : {Nη(Projk(Si))} connects A,B}

≥ 1

It follows that the right-hand side of (4.1) is bounded below by
n∏

k=1

distY (f(Fk), f(F
′
k)),
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independently of the choice of sets {Si}, open sets {U i
j}, and η > 0. Taking the infimum over all these

choices, we obtain (1.3).
The proof of (1.2) is the same, with the following minor modifications: The sets Si are replaced

by almost-disjoint dyadic cubes Qi. The role of the open sets U j
i and parameter η > 0 remain the

same. The weight wk(i, j) is the same as before if 1 ≤ k ≤ n and changes to side(Qi) + 2η if
n+ 1 ≤ k ≤ n+m.

With these modifications, taking the infimum over all collections {Qi}, {U i
j}, and parameters η > 0

in the analog of (4.2) yields Hn,m
∞ (f,Q0), and the calculations with the modified weights wk(i, j) yield

the same lower bound. □

Theorem C will enter the proof of Theorem D through the following corollary.

Corollary 4.2. Let f : Q0 → Y be 1-Lipschitz and c, η > 0. Let Q ⊆ Q0 be a cube, and let ∥ · ∥ be a
seminorm such that

|d(f(x), f(y))− ∥x− y∥| < ηside(3Q) for all x, y ∈ 3Q.

Suppose that there is an n-plane P ⊆ Rn+m such that ∥v∥ ≥ c|v| for all v ∈ P .
If η is sufficiently small, depending only on n,m, c, then

Hn,m
∞ (f,Q) ≳ |Q|,

with implied constant depending only on n, m, and c.

Proof. Let v1, . . . , vn+m be an orthonormal basis of Rn+m “adapted” to ∥ · ∥, as provided by Lemma
3.2. Let Q′ ⊆ Q be a rotated cube with side(Q′) ≈n,m side(Q) oriented along the axes v1, . . . , vn+m.
Let {(Fk, F

′
k)}n+m

k=1 denote the pairs of opposite faces of Q′.
Let 1 ≤ k ≤ n and let x ∈ Fk, x

′ ∈ F ′
k. Let v = x′ − x. Writing v =

∑n+m
i=1 aivi in the new basis,

we have ak ≳ side(Q). By choice of seminorm,

d(f(x), f(x′)) ≥ ∥v∥ − 3ηside(Q).

By Lemma 3.2, ∥v∥ ≳ c|ak| ≳ cside(Q), with implied constant depending only on n,m. Thus, if η is
chosen sufficiently small depending on n, m, and c, then d(f(x), f(x′)) is bounded below away from
zero by aside(Q), for some constant a depending only on n, m, and c.

This proves that
dist(f(Fk), f(F

′
k)) ≥ aside(Q) for 1 ≤ k ≤ n,

and therefore by statement (1.3) of Theorem C (rescaled and rotated to apply to Q′) that

Ĥn,m
∞ (f,Q′) ≳ |Q′|,

with implied constant depending on n, m, and c.
Therefore, we have

Hn,m
∞ (f,Q) ≳n,m Ĥn,m

∞ (f,Q) ≥ Ĥn,m
∞ (f,Q′) ≳n,m,c |Q′| ≳n,m |Q|.

□
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5. ZERO MAPPING CONTENT PASSES TO THE LIMIT

This section is devoted to the proof of Theorem D. We begin with some lemmas. The first is Lemma
7.3 of [5] (stated in a slightly different way).

Lemma 5.1. Given δ > 0, there is a constant c > 0, depending only on n, m, and δ, with the following
property.

Let Q0 = [0, 1]n+m and let f : Q0 → Y be 1-Lipschitz. Suppose that Hn,m
∞ (f,Q0) = δ > 0 and

η > 0. Then there is a cube Q ⊆ Q0 such that

mdf (3Q) < η

and an n-plane P in Rn+m such that

(5.1) ∥v∥Q ≥ c|v| for all v ∈ P.

Moreover, the size of the cube Q can be bounded below by a constant depending only on n, m, δ, and
η.

Remark 5.2. In fact, the proof in [5] shows that P can be chosen to be a coordinate plane, though we
do not need this here.

Proof of Theorem D. Let {fi : Q0 → Yi} and f : Q0 → Y be as in the statement of Theorem D.
Suppose first that Hn,m

∞ (f,Q0) = δ > 0; we will show that Hn,m
∞ (fi, Q0) → 0.

Let c > 0, depending on δ, n,m, be as in Lemma 5.1. Let η be chosen sufficiently small, depending
on n,m, c, as required by Corollary 4.2.

By Lemma 5.1, we may find a cube Q ⊆ Q0 such that

mdf (3Q) < η/10

and such that there is an n-plane P as in (5.1), with respect to a seminorm ∥ · ∥Q on Rn+m such that

|d(f(x), f(y))− ∥x− y∥Q| <
η

10
side(3Q) for all x, y ∈ 3Q.

Choose i0 sufficiently large so that dist(fi, f) < η
10

side(Q) for all i ≥ i0. The same seminorm ∥·∥Q
satisfies

|d(fi(x), fi(y))− ∥x− y∥Q| <
3η

10
side(3Q) for all x, y ∈ 3Q and i ≥ i0

It follows from Corollary 4.2 that
Hn,m

∞ (fi, Q) ≳n,m,δ |Q|
for all i sufficiently large, which contradicts the assumption that Hn,m

∞ (fi, Q0) → 0.
For the converse statement, we continue to assume that dist(fi, f) → 0, but now we suppose that

Hn,m
∞ (f,Q0) = 0 and that Hn,m

∞ (fi, Q0) does not tend to zero. In that case, passing to a subsequence
(which we rename {fi} to keep the notation the same) yields δ > 0 such that Hn,m

∞ (fi, Q0) ≥ δ > 0.
Exactly as before, we set c = c(δ, n,m) > 0 as in Lemma 5.1 and η = η(n,m, c) sufficiently small as
required by Corollary 4.2.



LOWER BOUNDS ON MAPPING CONTENT AND QUANTITATIVE FACTORIZATION THROUGH TREES 15

It follows that for each i, there is a dyadic cube Qi ⊆ Q0 and an n-plane Pi as in (5.1), with respect
to a seminorm ∥ · ∥i on Rn+m such that

|d(fi(x), fi(y))− ∥x− y∥i| <
η

10
side(3Qi) for all x, y ∈ 3Qi.

Moreover, Lemma 5.1 guarantees that side(Q) ≥ s0, for some s0 depending only on n,m, δ, η, and
hence n,m, δ.

Choose any i sufficiently large so that dist(f, fi) < ηs0/10 ≤ ηside(Qi)/10. The same seminorm
∥ · ∥i satisfies

|d(f(x), f(y))− ∥x− y∥i| <
3η

10
side(3Q) for all x, y ∈ 3Qi and i ≥ i0

It therefore again follows from Corollary 4.2 that

Hn,m
∞ (f,Q0) ≥ Hn,m

∞ (f,Qi) ≳n,m,δ |Qi| > 0

contradicting the assumption that Hn,m
∞ (f,Q0) = 0.

□

6. PROOFS OF THEOREM B AND THEOREM A

In this section, we prove the two approximation theorems, Theorems B and A. The latter will be an
immediate corollary of the former and Theorem 1.8.

We first need a Gromov-Hausdorff type compactness lemma.

Lemma 6.1. Fix d ∈ N. Let fi : [0, 1]d → Yi be a sequence of 1-Lipschitz mappings onto metric
spaces Yi. Then there is a 1-Lipschitz mapping f : [0, 1]d → Y onto a metric space and a subsequence
{fik} such that

dist(fik , f) → 0.

Proof. We will first use Gromov’s compactness theorem (see [4, Theorem 7.4.15]) to argue that a
subsequence of the spaces Yi converge in the Gromov-Hausdorff topology. First of all, each Yi has

(6.1) diam(Yi) ≤ diam([0, 1]d) =
√
d uniformly in i,

as a 1-Lipschitz image of the unit cube. Second of all, for every ϵ > 0, let N(X, ϵ) be the maximal size
of an ϵ-separated set in a metric space X . Observing that the pre-image of an ϵ-separated set under a
1-Lipschitz map is again ϵ-separated, we have

(6.2) N(Yi, ϵ) ≤ N([0, 1]d, ϵ) ≲ ϵ−d uniformly in i.

The properties (6.1) and (6.2) of the sequence {Yi} imply that the sequence contains a Gromov-
Hausdorff convergent subsequence, by [4, Theorem 7.4.15]. For convenience, let us continue to label
this subsequence {Yi}.

We may now find isometric embeddings ιi : Yi → ℓ∞ and a compact subset Y ⊆ ℓ∞ such that

dHaus(ιi(Yi), Y ) → 0,

where dHaus denotes the Hausdorff distance in ℓ∞. (See [12, Proposition 2.8].)
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By a standard diagonalization argument, we may now extract a subsequence {fik} of our original
sequence and a 1-Lipschitz map f : Q0 → Y such that

sup
Q0

∥ιik ◦ fik − f∥∞ → 0.

It follows that
dist(fik , f) → 0.

□

We will also use the following simple fact.

Lemma 6.2. Let f : Q0 → Y and ϕ : Y → Z be 1-Lipschitz maps. Then

Hn,m
∞ (ϕ ◦ f,Q0) ≤ Hn,m

∞ (f,Q0).

Proof. This follows immediately from the definition of mapping content and the fact that

Hn
∞(ϕ(f(Q))) ≤ Hn

∞(f(Q))

for every cube Q. □

Proof Theorem B. We begin with the first statement in the theorem: small mapping content implies
close to factoring through a tree. Suppose that the first statement in the theorem were false. There
would then be an ϵ > 0 and a sequence fi : Q0 → ℓ∞ of 1-Lipschitz maps such that

Hn,m
∞ (fi, Q0) → 0

but

(6.3) sup
Q0

∥fi − g∥∞ ≥ ϵ

for all i and all 1-Lipschitz maps g : Q0 → ℓ∞ with Hn,m
∞ (g,Q0) = 0.

By Lemma 6.1, there is a 1-Lipschitz map f from Q0 onto a metric space Y such that

dist(fi, f) → 0.

By Theorem D, we have Hn,m
∞ (f,Q0) = 0.

Choose i large such that dist(fi, f) < ϵ, and write Yi = fi(Q0). There are isometric embeddings

ι : Yi → ℓ∞

and
ι′ : Y → ℓ∞

such that
sup
Q0

∥ι ◦ fi − ι′ ◦ f∥∞ < ϵ.

Let j : ι(Yi) → Yi ⊆ ℓ∞ be the inverse of ι. We may extend j to a 1-Lipschitz map from ℓ∞ to
itself. Let g = j ◦ ι′ ◦ f . Note that, like f , g is a 1-Lipschitz map with Hn,m

∞ (g,Q0) = 0, by Lemma
6.2.
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In addition,

sup
Q0

∥fi − g∥∞ = sup
Q0

∥j ◦ ι ◦ fi − j ◦ ι′ ◦ f∥∞

≤ sup
Q0

∥ι ◦ fi − ι′ ◦ f∥∞

< ϵ

This contradicts (6.3) and so completes the proof of the first half of Theorem B.
We now consider the second, converse statement. Suppose that the second statement in the theorem

were false. There would then be an ϵ > 0 and two sequences fi, gi : Q0 → ℓ∞ of 1-Lipschitz maps
such that

• supQ0
∥fi − gi∥∞ → 0,

• Hn,m(gi, Q0) = 0 for each i, and
• Hn,m

∞ (fi, Q0) ≥ ϵ for each i and some fixed ϵ > 0.
By passing to a subsequence, we may again assume that there is a 1-Lipschitz map f : Q0 → Y such
that dist(fi, f) → 0.

There are isometric embeddings ιi : fi(Q0) → ℓ∞, ι : f(Q0) → ℓ∞ such that

sup
Q0

∥ιi ◦ fi − ι ◦ f∥.

As before, we may extend ιi and ι to be 1-Lipschitz maps defined on all of ℓ∞. Let j be the inverse of
ι|f(Q0), extended to be a 1-Lipschitz map on ℓ∞.

It follows that

sup
Q0

∥f − j ◦ ιi ◦ gi∥∞ = sup
Q0

∥j ◦ ι ◦ f − j ◦ ιi ◦ gi∥∞

≤ sup
Q0

∥ι ◦ f − ιi ◦ gi∥∞

≤ sup
Q0

∥ι ◦ f − ιi ◦ fi∥∞ + sup
Q0

∥ιi ◦ fi − ιi ◦ gi∥∞

≤ sup
Q0

∥ι ◦ f − ιi ◦ fi∥∞ + sup
Q0

∥fi − gi∥∞

→ 0

Therefore, dist(f, j ◦ ιi ◦ gi) → 0. Since Hn,m
∞ (gi, Q0) = 0 for each i, the same holds for ιi ◦ gi by

Lemma 6.2. It follows from Theorem D that Hn,m
∞ (f,Q0) = 0.

Again by Theorem D, we must therefore have Hn,m
∞ (fi, Q0) → 0, but this contradicts one of the

defining properties of fi. □

Proof of Theorem A. The theorem now follows immediately from Theorem B and Theorem 1.8. □
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