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Abstract

We discuss the length ch,n of the longest directed cycle in the sparse random digraph
D, »,p = ¢/n, c constant. We show that for large c there exists a function f (c) such that
Ecm/n — f(¢) a.s. The function f(c) =1 — S22, pr(c)e ¢ where py is a polynomial
in c. We are only able to explicitly give the values p1, po2, although we could in principle
compute any pg.

1 Introduction

In this paper we consider the length chyn of the longest cycle in the random digraph D, ,,,p =
¢/n where we will assume that c is a sufficiently large constant. Here D, , is the random
subgraph of the complete digraph K, obtained by including each of the n(n — 1) edges
independently with probability p. Most of the literature on long cycles has been concerned
with the length L., of the longest cycle in the random graph G,, ,. It was shown by Frieze [9]
that wh.p. L., > (1—(c+1+4¢e.)e “)n where . — 0 as ¢ — oco. Using the elegant coupling
argument of McDiarmid [14] we see that this implies that w.h.p. L., > (1—(c+1+e.)e )n.
This was improved by Krivelevich, Lubetzky and Sudakov [13] who showed that w.h.p.
Lepn > (1= (242.)e °)n. Recently, Anastos and Frieze [1] have shown that if ¢ is sufficiently
large then w.h.p. L., ~ f(c)n as n — oo, for some function f(c)’.

In this paper we use the ideas of [1] and show that w.h.p. Ec,n R~ f(c)n and compute the first
few terms of f(c) =1 — 77, pr(c)e ™ where pi(c) is a polynomial in ¢ for k > 1. Le. we
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prove a scaling limit for Ec,n. The important point here is that we establish high probability
errors that tend to zero with n, regardless of c.

Let K denote the giant strong component of D,, ,,, as discovered by Karp [12]. We consider a
process that builds a large Hamiltonian subgraph of K;. Our aim is to construct (something
close) to a copy of the random graph Dj_;, 5_ou as a large subgraph of K. In the random
graph Dy_n x—out €ach v € [n] independently chooses k in-neighbors and &k outneighbors to
make a digraph with ~ 2kn random edges. It has been shown by Cooper and Frieze [5],
6] that Dy_n k—out is Hamiltonian w.h.p. provided that & > 2. Taking k = 5 as opposed
to k = 2 will greatly simplify the discussion. In order to do this, we will construct D,
as the union of two independent copies D,cq, Dyiye 0f D, 4 where 1 —p = (1 — q)2 so that
q= 5+ O(n=%). One copy will have red edges and the other copy will have blue edges. A
red edge (v, w) will be assoiciated with the vertex v and a blue edge (v, w) will be associated
with the vertex w. In this way, the vertex v will be incident to a random number of red
out-edges and to a random number of blue in-edges. These edge sets will be independent by
construction. We say in the following that w is a blue in-neighbor of v if (w, v) is an edge of
Dypue and that w is a red out-neighbor of v if (v, w) is an edge of D,.c4.

We construct a sequence of sets Sy = (0, 51, Ss, ..., S C K, as follows: suppose now that we
have constructed Sy, £ > 0. We construct Sy, from S, via one of two cases:

Construction of Sy,

Case a: If there is a vertex v € Sy that has at most four blue in-neighbors outside S, then
we add the blue in-neighbors of v outside Sy to Sy to make Sy, ;. Similarly, if there is a vertex
v € Sy that has at most four red out-neighbors outside S, then we add the red out-neighbors
of v outside Sy to Sy to make Sy, .

Case b: If there is a vertex v € K; \ Sy that has at most four blue in-neighbors in K; \ Sy
then we add v and the blue in-neighbors of v to Sy to make Sy,;. Similarly, if there is a
vertex v € K; \ Sy that has at most four red out-neighbors in K \ S, then we then we add
v and the red out-neighbors of v to Sy to make Sy, 1.

St is the set we end up with when there are no more vertices to add. We note that Sy,
is well-defined and does not depend on the order of adding vertices. Indeed, suppose we

have two distinct outcomes O = vy, vy, ...,v, and Oy = wy,ws.,...,ws. Assume without
loss of generality that there exists ¢ which is the smallest index such that w; ¢ O;. Then,
X ={wy,wy,...,wi1} € O ={vy,v9,...,v,.}. If w; invoked Case a or Case b then w; has at

most 4 blue in-neighbors or at most 4 red out- neighbors in K7\ X hence in K;\O; C K7\ X.
This contradicts the fact that w; ¢ O;. Otherwise w; was added to X because there exists
a vertex u € X such that w; is a blue in-neighbor (or a red out-neighbor respectively) of u
and u has at most 4 blue in-neigbors (red out-neighbors resp.) in K; \ X. Thus u € O; has
at most 4 blue in-neigbors (red out-neighbors resp.) in K; \ X C K; \ X. Once again, this
contradicts the fact that w; ¢ O;.

We will argue below in Section 1.1 that w.h.p. the graph I'y underlying the digraph Dj
induced by S7, is a forest plus a few small components (the graph underlying a digraph is
obtained by ignoring orientation). Each tree in I'y, will w.h.p. have at most logn vertices



and w.h.p. I';, will have o(n) vertices lying on non-tree components. From now on, when we
refer to trees, they are either trees of I';, or digraphs whose underlying graphs are trees of
I'y.

Notation 1: Let 7 denote the set of trees in I'z. Each tree T of 'y, will appear as a digraph
TinD 1, when we take account of orientation. For T eT let 73T be the set of vertex disjoint
packings of properly oriented paths in T where we allow only paths whose start vertex has
in-neighbors in K; \ V(T') and whose end vertex has red out-neighbors in K3 \ V/(T)). Here
we allow paths of length 0, so that a single vertex with neighbors in K; \ V(f) counts as a
path. For P € Py let n(f, P) be the number of vertices in T that are not covered by P. Let
o(T) = ming s n(T, P) and Q(T) € P denote a set of paths that leaves ¢(T') vertices of T

uncovered i.e. satisfies n(T, O(T)) = ¢(T).

We will prove

Theorem 1.1. Let p = ¢/n where ¢ > 1 is a sufficiently large constant. Then w.h.p.

Leg = V(K| =Y o(T). (1)

TeT

The RHS of (1), modulo the o(n) vertices that are spanned by non-tree components in I'y,
is clearly an upper bound on the largest directed cycle in K;. Any cycle must omit at least
qb(f) vertices from each T' € 7. On the other hand, as we show below, w.h.p. there is cycle
H that spans V* = (K1 \ Sp) UUper V(Q(T)). The length of H is equal to the RHS of (1).

The size of K is well-known. Let x be the unique solution of ze™® = ce ¢ in (0,1). Then
w.h.p. (see e.g. [10], Theorem 13.2),

N 2
K| ~ (1 - —) n. 2)
c
Equation (4.5) of Erdés and Rényi [8] tells us that
O k=1

v il
k=1

(ce ) = ce™ + e + O(cPe ™). (3)

We will argue below that w.h.p., as ¢ grows, that
Z O(T) = (e % + 0(Fe>))n. (4)
TeT

The term c?e~%n arises from vertices of out-degree one sharing a common out-neighbor or

vertices of in-degree one sharing a common in-neighbor.

We therefore have the following improvement to the estimate in [13].
Corollary 1.2. W.h.p., as ¢ grows,
IS (1 —2e7¢— (¢ +2c—1)e > = O(’e %)) n. (5)
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Note the term 2e~¢ — e~2¢ accounts for vertices of in- or out-degree 0. In principle we can
compute more terms than what is given in (5). We claim next that there exists some function

—

f(c) such that the sum in (1) is concentrated around f(c)n. In other words, the sum in (1)

—

has the form ~ f(c)n w.h.p.

—

Theorem 1.3. (a) There ezists a function f(c) such that for any fized € > 0, there exists
ne such that forn > n.,

Henl _fio) < ©)
) i
L;L’n — flo) a.s.

We will show that taking ¢ > 200 in Theorems 1.1 and 1.3 suffices.

We will prove Theorem 1.3 in Section 3. We are grateful to a reviewer for pointing out that
L.n/n— f(c)in L",r > 1 because L.,/n is an a.s. bounded random variable.

1.1 Structure of Dy:

We first bound the size of S;. We need the following lemma on the density of small sets.

Lemma 1.4. W.h.p., every set S C [n] of size at most ng = n/100c® contains less than
3|S|/2 edges in D,,,.

Proof. The expected number of sets invalidating the claim can be bounded by
20 (s(s— 1)\ ren32 SN [ne [2se\*? cy3/2 ’
= < == R
;(s)( 3s/2 )(n) _; s (3) <n>
"0/ 5/2(90)3/261/2 °
=3 (&) — o(1).

s 33/2p,1/2

]

Now consider the construction of S7,. Let A C K be the set of the vertices with blue in-degree

less than D = 30 or red out-degree less than D in K. Let S§ = (AUN,(A)UN,.(A))NSL C Si,

where Ny(A) is the set of blue in-neighbors of vertices in A and N,.(A) is the set of red out-

neighbors of vertices in A. If we start with Sy = S{ and run the process for constructing

I';, then we will produce the same Sy, as if we had started with Sy = (). This is because,

as we have sh]g)wn, the order of adding vertices does not matter. Now w.h.p. there are at
2c”e” ¢

most np = *5—n vertices of blue in-degree at most D or red out-degree at most D, (see




for example Theorem 3.3 of [10] that deals with the same question as it relates to degrees in

Ghp)-

Now suppose that the process runs for another £ rounds. Then Sy contains at least kD edges
and at most Dnp + 5k vertices. This is because round k adds at most five new vertices to
Sk and the k vertices that take the role of v have either (i) blue in-degree at least D with
all blue in-neighbors in Sy or (i) red out-degree at least D with all red out-neighbors in Sk.
If k£ reaches 2np then

€(Sk) > 2DTLD . §

So, by Lemma 1.4, we can assert that w.h.p. the process runs for less than 2np rounds and,

2cPe—c

D!
The last inequality holds for ¢ > 200 and D = 30.

V(Tp)| < (D + 10)np = (D + 10) n < 2(D +10) (%)D ne~® < ne~%. (7

We note the following properties of Sy. Let
Vi=K;\ Sy and Vo = {v € S, : v has at least one blue in-neighbor and at least one red

out-neighbor in Vi }.
Then,

G1 Each vertex v € S\ V5 has no blue in-neighbors or no red out-neighbors in ;.

G2 Each v € V] U V5 has at least five blue in-neighbors and five red out-neighbors in V;.

Now consider a component K of I';. Let Cyp = Co(K) = {vy,vq,...,vr} denote the set of
vertices in K that are v in some step in the construction of Dy, indexed by the round in
which they are added. Since a vertex may invoke some step in the construction of Dy at
most twice we have,

|Co(K)[ = L/2. (8)
At the same time, at each step the set |K \ Co(K)| may grow by at most 4 and so
[K\ Co(K)| < 4L < 8|Co(K)|- (9)
Hence K|
[Co(FK)| = =5 (10)

We next show that w.h.p., only a small component K can satisfy (10). K will have at
least |K|/9 vertices for which either there are no blue in-neghbors outside K or no red out-
neighbors outside of K. It will also contain a spanning tree in the graph undelying D, ,. So,
the expected number of components of size k < ne~¢/? that satisfy this condition is at most

(D ()" (o) = (0-5)7) = () () o
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< 5 (2 ) —o(n2), (1)
if ¢ > 200 and k& > logn.

So, we can assume that all components are of size at most logn. Then the expected number
of vertices on components that are not trees is bounded by

S G () < (050" < v () e

O

IN

©
BN

—

L (210/9061—0/20)k —0(1).

IN

k=

[\

The Markov inequality implies that w.h.p. such components span at most logn = o(n)
vertices.

2 Proof of Theorem 1.1

For T € 71, let X7 be the set obtained by contracting each path P of Q(f) to a vertex vp
with blue in-neighbors in V; equal to the blue in-neighbors in V; of the start vertex of P and
red out-neighbors in V; equal to the red out-neighbors in V; of the end vertex of P. Note
that the colors of the internal edges of a path P do not play a role here. Let X = Uzer Xr.
By construction, the digraph induced by V; contains a copy of Ds_p 5w With N = |V]]
vertices. Indeed, the blue edges contributing the 5-in edges and the red edges contributing
the 5-out edges. For each v € Vj, the blue in-neighbors form a random set of size at least
five, independent of the other vertices in V. Similarly for the red out-neighbors.

We let D* be the digraph with vertex set V" =V U X*and a copy of Ds_in5-out 00 V7 and
for each x € X* five red edges joining x to V; and five blue edges from V; to x.

Our next task is to prove that the random digraph D* defined in the previous section contains
a Hamilton cycle. Let H denote such a cycle through V;*. We obtain a Hamilton cycle of V*
(defined following Theorem 1.1) by uncontracting each path P of Q(f) This will complete
the proof of Theorem 1.1. Our proof of the existence of H will be very similar to the proof
in Cooper and Frieze [7]. It doesn’t really offer any new technical insights and so we have
placed the proof into an appendix.

3 Proof of Theorem 1.3

For T € T we let vo(f ) denote the set of vertices in T that do not have neighbors outside 7.
For v € Ky we let ¢p(v) = ¢(T)/|vo(T)| if v € vo(T) for some T € T and ¢(v) = 0 otherwise.

6



Thus

Hence (1) can be rewritten as,

Ec,n ~ |Kl| - Z Qb(U) (12)

veKq

Let k1 = ki(e, ¢) be the smallest positive integer such that

o0

Z (6921106_0/5)k < g

k=k1—1

Note that for ¢ < 1/2 and and ¢ > 200, we have

30 1
k’l S —IOg—. (13)
C g
as
Z (692116676/5)16 < 2((692110)5/c671>7610g5 < 2((69211200)5/20067576IOgE < g
k=ki1—1

To begin let K 5,5 denote the complete bipartite digraph with ten vertices, five in each part
of the partition. The arcs inside K, 5,5 are consider to have both colors, red and blue. For
v € K let D, be the digraph consisting of the vertices of D = D,, ,, = Dyjye U D,¢q that are
within distance k; from v, where for every vertex u in the k; neighborhood of v we introduce
a new copy of I?5,5 and join u to each vertex of the same one part of the bipartition of its }?5,5
by a blue in-arc and a red out-arc from u. Distance here is graph distance in the undirected
graph underlying D. We consider the algorithm for the construction of I';, on G, the graph

—.

underlying D,. Let K.,z 4, Viy, Spw, vo(T') be the corresponding sets/quantities.

For atree T € S Lo let F(T) be equal to |T| minus the maximum number of vertices that can
be covered by a set of vertex disjoint paths with endpoints in V5, (we allow paths of length

0). For v € Ky, if v belongs to some tree T' € S, set flv) = f(f)/vo,v(f), otherwise set

—

f(v) =0.

Forv € Ky let t(v) =1ifv e Vi orifv € Sy and in I'z, v lies in a component with at most
ki — 2 vertices in I'f. Set t(v) = 0 otherwise. Observe that if ¢(v) = 1 then ¢(v) = f(v).

—

Otherwise |¢p(v) — f(v)] < 1.

By repeating the arguments used to prove (11) and (10) it follows that if (v) = 0 then v lies
on a subgraph spanned by some set of vertices K of size at most logn. In addition at least



(|K| —1)/9 vertices in K \ {v} either do not have blue in-neighbors or red out-neighbors
outside K. Thus the expected number of vertices v satisfying t(v) = 0 is bounded by

lofL >, < ) ( ) “(2p) 7 x <2 (1- g>(n_j)>k

k=k1—1 j=k
log?n e\ Ok

<o Z 9k (9_k> 2%k (9 )k =2 (2¢)k 1k eck/5
k= k1 1

O SRt
k=k1—1

A vertex v € [n] is good if the ith level of its Breadth First Search (BFS) neighborhood has
size at most 3(2¢)'k; /e for every i < k; and it is bad otherwise. Here the BFS is done on the
graph underlying D. Because the expected size of the i** neighborhood is ~ (2¢)* we have
by the Markov inequality that v is bad with probability at most (1 + 0(1))e/3 < /2 and so
the expected number of bad vertices is bounded by en/2. Thus

E(Z(b(v)— 3 f@)) <E(> 6w -3 fw) ) +E(
veV v is good veV veV
<E([ 3 16) - flo) +E< ) 1)

v is bad

> [l

v is bad

Let H. be the set of BFS neighborhoods that are good i.e. whose ith levels are of size at
most 3(2¢)’ky /e for every i < k;. Every element of H. corresponds to a pair (H, o) where
H is a digraph and o is a distinguished vertex of H, that is considered to be the root. Also
for v € K, let D(Ng, (v)) be the subdigraph induced by the k™ neighborhood of v. For
(H,om) € H. let int(H) be the set of vertices incident to the first k; — 1 neighborhoods of
og and let Aut(H,op) be the number of automorphisms of H that fix og. Note that each
good vertex v is associated with a pair (H, o) € H. from which we can compute f(v), since
f(v) = f(oy). Thus, if now
M = |E(K)|, N = |Ky],

E( 2 fwm

) Y Y pufon)

v k>1 (H, OH GHE
(D(Ng, (v)),v)=(H,0m)
|V (H)|=k



n+y Y >, pion f(om), (14)

v k>1 (H,om)EM.
H is a tree
(D(Np, (v)),v)=(H,0m)

|V (H)|=k
where pg o, is the probability (D(N, (v)),v) = (H,oy) in K;. We show in Section 3.1 that
k—1 2k
Dt o & I \#-2_© (15)
P Aut(H, o) \ M Ji(N)2k”

where f; is defined in (18) below and A satisfies (19) below.

Finally observe that with the exception of the o(n) term, all the terms in (14) are independent

of n. We let ( . o o
E Tk €
X % i ) Y 16)

k>1 (H,om) EHE
H is a tree

\V(H)|=k

Then for a fixed ¢, we see that f;(c) is monotone increasing as € — 0. This is simply because
‘H. grows. Furthermore, fz(c) < 1 and so the limit f (¢) = lim._,o f-(c) exists. Let S., be
the number of vertices in D, ,, (i) whose first k; neighborhoods are good and so total at most
4(2¢)* ky /e — 1 vertices, and (ii) span a cycle in the underlying graph. The o(n) term in (14)
is bounded by S. ,,. Hence, with s = 4(2¢)"k; /¢, the o(n) term is bounded by

s 1 ) 1
;Z(?Z) 2 (2) 2p S ; <en) (2]9) < 28(260) < log Z x eloss < 8_2’
which depends only on €.

This verifies part (a) of Theorem 1.3. For part (b), we prove, (see (30)),

Lemma 3.1. . .
]P)(‘Lc,n - ]E(Lc,n)’ >en+ n3/4) = O(TliQ).

Proof. To prove this we show that if v(H) is the number of copies of H in K; then H € H.
implies that
P(jv(H) —E(v(H))] 2 n*®) = O(n"?). (17)

The inequality follows from a version of Azuma’s inequality (see (30)), and the lemma follows
from taking a union bound over

F1(e0) ], 30 10g 130 1o 1
eXp{O (c 1<e,c>)}:exp{0 (c 2o
€

~ exp {o (W 2k °g”0g5>} — exp {O((1/6)*)}

€

graphs H. Note also that the o(n) term in (14) is bounded by S., and the probability that
this exceeds n'/? is certainly at most the RHS of (17). We will give details of our use of the
Azuma inequality in Section 3.1. O



Part (b) of Theorem 1.3 follows by letting ¢ — 0 and from the Borel-Cantelli lemma.

3.1 A Model of K,

K, induces a random digraph with minimum in-degree and out-degree at least one. K is
distributed as a random strongly connected digraph with N vertices and M edges. This
follows from the fact that each such digraph has the same number of extensions to a digraph
with n vertices and m edges where K is the unique giant strongly connected component.
Most vertices of K; will have in-degree and out-degree close to ¢, since c is large. It follows
from Theorem 3 of Cooper and Frieze [7] that a random digraph with this degree sequence
has a probability of being strongly connected that is asymptotic to e where 8 = 3(c) — 0
as ¢ — oo. It follows from this that we can model the digraph induced by K; as a random
digraph with N vertices and M edges. The probability of any event will be inflated by at
most (1 4 o(1))e? by conditioning on strong connectvity. We denote this model by D]j\[,}M.

3.1.1 Random Sequence Model

This is essentially a repeat of Section 3.1.1 of [1]. The differences are minor, but we feel
we need to include the argument. We must now take some time to explain the model we
use for Dﬁ}M. We use a variation on the pseudo-graph model of Bollobas and Frieze [3]
and Chvétal [4]. Given a sequence x = (1,9, ..., Tans) € [n]*M of 2M integers between 1
and N we can define a (multi)-digraph Dy = Dy(N, M) with vertex set [N] and edge set
{(x9i—1,9) : 1 <1 < M}. The in-degree dyx _(v) of v € [N] and the out-degree dy ;(v) of
v € [N] are given by

dx—(v) = [{J € [M] : x3; = v} | and dx 4 (v) = [{j € [M]: 2351 = v}].

If x is chosen randomly from [N]** then Dy is close in distribution to Dy . Indeed,
conditional on being simple, Dy is distributed as Dy . To see this, note that if Dy is
simple then it has vertex set [N] and M edges. Also, there are M! distinct equally likely
values of x which yield the same digraph.

Our situation is complicated by there being a lower bound of one on the minimum in-degree
and out-degree. So we let

INJFES, = {x € [N]* : dx 4 (j) = 1 for j € [N]}.

Let Dy be the multi-graph Dy for x chosen uniformly from [N]2}L . It is clear then that
conditional on being simple, Dy has the same distribution as DﬁIM. It is important therefore
to estimate the probability that this graph is simple. For this and other reasons, we need to
have an understanding of the degree sequence dy when x is drawn uniformly from [N]3L ;.
Let -
fid) =e* = 1. (18)
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Lemma 3.2. Let x be chosen randomly from [N]35,. Let Y;, Z;,j = 1,2,...,N be inde-
pendent copies of a truncated Poisson random wvariable P, where

At
P(P =t) = , t> 1.
KRN0
Here )\ satisfies
et M
o 19
R0 TN )

Then {dx,—(j)}jeiny is distributed as {Yj}jen) conditional on Y = 3. Y; = M and

{dx+(1)}jen) is distributed as {Z;}jen) conditional on Z =3, Z; = M.
Proof. This can be derived as in Lemma 4 of [2]. O
We note that w.h.p.

N >n(1 —2¢%?) and M € (1 £¢;)cN, (20)

where £, = ¢~ /3. The bound on N follows from (2) and (7) and the bound on M follows
from the fact that in G,,,,

IN(N —1
P(3S: S| = N,e(S) ¢ (1£e)N(N —1)p) < 2(}7;‘7) exp {—W} = o(1).
It follows from (19) and (20) and the fact that e*/f;(\) — 1 as ¢ — oo that for large c,
A=c(1+0(e). (21)

We note that the variance o2 of P is given by

52— AN+ 1)6’\f1()\) — /\262)“

()
Furthermore,
N 1
P Y,=M]| = 1+O(N o2 22
and

P <;2Yj =M — d) = g\/;r_N (1+0((d®+1)N"1o7?)). (23)

This is an example of a local central limit theorem. See for example, (5) of [2]. It follows by
repeated application of (22) and (23) that if k = O(1) and d3 + - - - + di = o(N) then

P(}fi:di,¢:1,2,.. MZY M) Hd.'jvdi@)' (24)

Let vx —(s) denote the number of vertices of in-degree s in Dy and let vy 4 (s) denote the
number of vertices of out-degree s in Dy.



Lemma 3.3. Suppose that log N = O((NX)Y/?). Let x be chosen randomly from [N]3%.
Then as in equation (7) of [2], we have that with probability 1 — o(N~10),

NN NN Y2
st () — = ‘ < 1—1—(_ ) log? N, 1< j <logN. (25
TRy ( fiTRey )
(j) =0, j=>logN. (26)
We can now show that Dy, x € [N]5i>1 is a good model for D . For this we only need to

show now that
P(Dy is simple) = Q(1). (27)
Again, this follows as in [2].

Given a tree H with k vertices of in-degrees yi, 4o, ..., yr and out-degrees zi, 2, ..., 2 and a
fixed vertex v we see that if py is the probability that D(Ny, (v)) = H in Dy then we have

N (k—1)! =
PH = (k’ — 1) Aut(H,og) . ;k .

A +df M k d_ d+' )
Z H d; 'dﬂ ( ><k B 1)!H d; d I NJ2k—2 (28)
dy 2y1,-.dy; >y, =1 fl i:l( i _yZ)( )
d +-+dy =D~
dfzzl 77777 d;:sz
df +++df =D+

i _yz d+_zz)'

N k—1 )\2k—2
~ (M) Aut(H, o) fr(A)* a4 %: =D~ 211
df +obdf =D*

/N 2\2k—2 2 (kAP 2
- <M> Aut(H, on) fr(A)* ( 2 (D — (k- 1))!) (29)

D=k-1

k-1
N 1 ﬁ )\2k72 62k)\
Aut(H, o) \ M fi1(N)2k
Explanation for (28): We use (24) to obtain the probability that the in-degrees and out-

-
degrees of [k] are dy,dy,...,d;,df. This accounts for the term []*_, pRTATEE ?;ﬁ;( N

here is that d; ,d} = O(logn), from (26). The contributions to the sum of D ,DT > klogn
can therefore be shown to be negligible. We use the fact that k is small to argue that w.h.p.
H is induced. We choose the vertices, other than v in (klf 1) ways and then % counts
the number of copies of H in K. We then choose the place in the sequence to put these
edges in (M )(k — 1)! ways. Finally note that the probability the y; occurrences of the

i (d7 =1)--(di —yi+1)
M#i

Implicit

1th vertex are as claimed is asymptotically equal to 4

d; 1d;! 1
factor Hz 1 (d; —y;)! (dzr—zz')! M2k—2 -

and this explains the
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Explanation for (29): We use the identity
> =t
dy!- - dy! '

It only remains to verify (17). It follows from the above that E(v(H) | M, N) = Q(N). We
first condition on a degree sequence x satisfying (25). Then we condition on no element log n
times or more in x . The latter occurs with probability

logn logn
O(nl/Qe’\%> = O(nl/Qe’\ (%) ) =0(n™?).

Interchanging two elements in a permutation can only change v(H) by (logn)® = n°® .
We can therefore apply Azuma’s inequality to show that

P(|v(H) —E(v(H))| > n%%) = O *""*") 1 O(n?) = O(n"?). (30)

(Specifically we can use Lemma 11 of Frieze and Pittel [11] or Section 3.2 of McDiarmid
[15].) This verifies (17).
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Proof that D* is Hamiltonian w.h.p.

The proof can be broken into three parts: suppose that |V;*| = N = N; + Ny where

(a)
(b)

(c)

Ny = [Vi| > N(1 — e ?).

Find a collection II; of O(log N) vertex disjoint directed cycles that cover V*.

Transform II; into a collection II, of vertex disjoint cycles such that each cycle is of

length at least Ny = ﬁggoxw

Break up Il and re-assemble it as a Hamilton cycle.

A.1 Constructing II;

Each vertex of D* is associated with five blue and five red edges. We randomly select three
of each color and make them light and the rest heavy. We let D3 be the digraph spanned
by the light edges. We now consider the bipartite graph H with bipartition made up of
two copies A, B of V" and an edge {v,w} iff (v,w) is a light edge. We show that w.h.p.
H contains a perfect matching. In the context of D* this gives us the collection of vertex
disjoint directed cycles that cover V;*. We refer to this as a permutation digraph. We will
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argue that w.h.p. the number of cycles in the collection is O(log N). The probability that
H has no perfect matching can be bounded by

N/2 _
ZZ/i i AW N, N, ﬁ 3k . ﬂ 3(N—k) @)
kq ko k— Kk k— ko N N
k=4 k1=0 ko=0
N/2e? L N/2 g

SEEE OO ELLOE

N/2€2 k1=0 k2=0

N/2e? 2k 3k N/2 3k
eN k eN k

<9 2 (0" v 9 2 v —1.5kx0.9
N Zk(k> (Nl) +Zk(k) (Nl)e

k=4 N/22

N/2e I N/2 0657, k

2 2 _

<2 ¢ (=t ) v2 3 () = o)

k=4 k=N/2¢2

Explanation for (31): we employ Hall’s theorem. We choose a set S C A of size k < N/2
and a set T C B also of size k. (No need to make |T'| = k—1 here.) We let k; = |SNV;| and
ke = |T'NV;i|. The number of ways of choosing these sets is given by the product of binomial
coefficients. We then estimate the probability that 7' 2 N(S). Each vertex in S N A has

3
probability at most (1’{,—21) of choosing all of its neighbors in V; N T, explaining the factor

3k 3
<]If[—2l) . Each vertex in B\ T has probability ( — %) of not choosing any neighbors in

3(N—Fk)
Vi NS, explaining the term (1 — J%) . In the third line of the above calculations we

used the fact that if & > N/2e? then ky > k — e “?n >k — e %2N/(1 — e=%/%) > 0.9k.

This deals with £ < N/2 and if £ > N/2 then B\ T and A\ S can take the place of S,T

respectively..

We now consider the number of cycles in cycle cover induced by a matching in H. Suppose we
write M = {(m(i),) : i € B} for some permutation m of A. Further let A = A; U Ay where
Ay ={ay,aq,...,ay,} corresponds to V; and Ax corresponds to X*. We assume an analogous
decomposition for B. Given a permutation m we let Bx(m) = {be€ B:m(b) € Ax} C
By. The set inclusion follows from the fact that vertices in Ax only have neighbors in Bj.
Suppose now that we assume after re-labelling that that A, B are disjoint copies of [Ny]
and that Bx(m), Ax are disjoint copies of [Ny]. Thus m induces a permutation of [Ns] and
a permutation of [Ny + 1, N]. We claim that conditional on this that m induces uniform
random permutations on these two sets. Suppose now that my, msy are two permutations that
satisfy m;([No]) = [INo] for @ = 1,2. For a permutation 7 of A that satisfies 7([/Va])) = [Na]
and graph H we let m(H) be obtained from H by replacing edge {7, j} by {7 (i), 7}. We note
that H and 7(H) have the same distribution. But then where 7(a) = my(m;*(a)) fora € A
we have

P(m(H) = my) = P(m(r(H)) = my) = P(m(H) = my), (32)

justifying our uniformity claim.
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Now a uniform random permutation on a set of size M has O(log M) cycles w.h.p. It follows
that w.h.p. the number of cycles induced by the matching constructed in H has O(log N)
cycles as claimed previously.

A.2 Constructing Il

We now show how to boost the minimum cycle size to at least Ny. We partition the cycles
of the permutation digraph II; into sets SMALL and LARGE, containing cycles C' of length
|C| < Np and |C| > Ny respectively. We define a Near Permutation Digraph (NPD) to be
a digraph obtained from a permutation digraph by removing one edge. Thus an NPD T’
consists of a path P(I') plus a permutation digraph PD(I') which covers [N]\ V(P(T)).

We now give an informal description of a process which removes a small cycle C from a
current permutation digraph IT. We start by choosing an (arbitrary) edge (vg, ug) of C' and
delete it to obtain an NPD I'y with Py = P(I'g) € P(ug,vo), where P(x,y) denotes the set
of paths from x to y in D. The aim of the process is to produce a large set S of NPD’s such
that for each I' € S, (i) P(I') has a least Ny edges and (ii) the small cycles of PD(I") are a
subset of the small cycles of TI. We will show that whp the endpoints of one of the P(I")’s
can be joined by an edge to create a permutation digraph with (at least) one less small cycle.

We have so far used six of the edges available at each vertex of D*, namely those in D3. We
now let D4 denote the 1-in, 1-out digraph associated with an unused fourth in- and out-edge
associated with each vertex of D*. Each vertex v € V* will be associated with a random
in-neighbor iny(v) and a random out-neighbor outs(v).

The basic step in an Qut-Phase of this process is to take an NPD I' with P(I") € P(uyg,v)
and to examine the edges of D, leaving v i.e. edges going out from the end of the path. Let
w be the terminal vertex of such an edge and assume that I' contains an edge (z,w). Then
I"=TU{(v,w)}\ {(x,w)} is also an NPD. I" is acceptable if (i) P(I") contains at least N,
edges and (ii) any new cycle created (i.e. in IV and not I') also has at least Ny edges.

If I contains no edge (z,w) then w = uy. We accept the edge if P has at least Ny edges. This
would (prematurely) end an iteration, by closing a cycle, although it is unlikely to occur.

We do not want to look at very many edges of D, in this construction and we build a tree
Ty of NPD’s in a natural breadth-first fashion where each non-leaf vertex I' € T|, gives rise
to NPD children I as described above. The construction of T ends when we first have
v = (\/N log N W leaves. The construction of Tj constitutes an Out-Phase of our procedure
to eliminate small cycles. Having constructed Ty we need to do a further In-Phase, which is
similar to a set of Out-Phases.

Then w.h.p. we close at least one of the paths P(I') to a cycle of length at least Ny. If
|C| > 4 and this process fails then we try again with a different independent edge of C' in
place of (ug, vp).
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We now increase the the formality of our description. We start Phase 2 with a permutation
digraph Ily and a general iteration of Phase 2 starts with a permutation digraph II whose
small cycles are a subset of those in Il;. Iterations continue until there are no more small
cycles. At the start of an iteration we choose some small cycle C' of II. There then follows
an Out-Phase in which we construct a tree Ty = To(I1, C') of NPD’s as follows: the root of
To is Ty which is obtained by deleting an edge (vg, ug) of C.

We grow Ty to a depth at most [1.51logn]. The set of nodes at depth ¢ is denoted by S;.
Let I' € S; and P = P(I') € P(uo,v). A potential child I of I, at depth ¢ + 1 is defined as
follows.

Let w be the terminal vertex of an edge directed from v in Dj.
Case 1. w is a vertex of a cycle C' € PD(I") with edge (z,w) € C'. Let I' =T U {(v,w)} \

{(z,w)}.
Case 2. w is a vertex of P(I'). Either w = ug, or (z,w) is an edge of P. In the former case
I'U{(v,w)} is a permutation digraph IT" and in the latter case we let I" = ' U {(v,w)} \

{(z, w)}.

In fact we only admit to S;; 1 those IV which satisfy the following conditions. We define a
set W of used vertices. Initially all vertices are unused i.e. W = (). Whenever we examine
an edge (v, w), we add both v and w to W. So if v ¢ W then out,(v) is still unconditioned
and iny(v) is a random member of a set U 2 V*\ W. We do not allow |W| to exceed N3/%.

C(i) The new cycle formed (Case 2 only) must have at least Ny vertices, and the path
formed (both cases) must either be empty or have at least Ny vertices. When the
path formed is empty we close the iteration and if necessary start the next with II'.

C(ii) z,w g W .

An edge (v, w) which satisfies the above conditions is described as acceptable.

We let S; be the set of endpoints of paths in §; that are not ug. If some NPD € §; is the
union of cycles then we are done with the given iteration. Thus we may assume otherwise
and therefore |S;| = |Sy|.

We also let S} = S, NV; and Si =S, \ St.
Lemma A.1. Let C € SMALL. Then, where v = (\/Nlog NW,

P(3t < [log, o v + 10001loglog N7 such that |S| € [v,3v]) = 1 — O((loglog N)*/log N).
Proof. We assume we stop an iteration, in mid-phase if necessary, when |S;| € [v,3v]. Let

us consider a generic construction in the growth of 7j. Thus suppose we are extending from
I and P(T") € P(ug,v).

We consider S, to be constructed in the following manner: we first examine outy(v),v € S;
in the order that these vertices were placed in S; to see if they produce acceptable edges.
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We then add in those vertices « ¢ W which arise from (z,w) with v = iny(w) € Sy, w ¢ W,
(to avoid conditioning problems).

Let Z(v) be the indicator random variable for (v, outs(v)) being unacceptable and let Z; =
> ves, Z(v). If Z(v) = 1 then either (i) outy(v) lies on P(I') and is too close to an endpoint;
this has probability bounded above by 2Ny /|Vi| < 401/log N, or (ii) the corresponding
vertex  is in W; this has probability bounded above by N3/4/|Vi| < 2N~Y4 or (iii) outs(v)
lies on a small cycle. Now in a random permutation the expected number of vertices on
cycles of length at most Ny is precisely Ny ([12]). Thus, by the Markov inequality, w.h.p. Ty
contains at most V; loglog N1/(21log N1) + N loglog No/(21og No) vertices on small cycles.
Condition on this event. Then P(Z(v) = 1) < 2loglog N/log N regardless of the history of
the process and so Z; is stochastically dominated by B(]S;|,2loglog N/log N).

Next let X (v) denote the number of vertices w in V*\ W such that iny(w) = v, x ¢ W
where (v, w) is acceptable and (z,w) € I' (if there is no such x then the iteration can end
early.) Let X; = > .o X(v). Now assuming [W| < N3/* we see that there are N’ =
N; — O(Nloglog N/log N) vertices w which would produce an acceptable edge provided
v =1iny(w) € S}. For these vertices in,(w) is a random choice from a set which contains S}
and so X; stochastically dominates B(N’,|S}|/N).

Summing 1 — Z(v) + X (v) over v € S; might seem to overestimate |S;;1]. In principle we
should subtract off the number Y; of vertices of S;,; that are counted more than once in
this sum. But these arise in two ways. First there are the pairs vy, v, € S; with outy(vy) =
out4(ve). Suppose we examine v; before vo. Then when we examine vy we find that out(ve) €
W and so we do not get a contribution to S;;;. Secondly there is the possibility of their
being vy, vy € Sy and w such that w = outy(v1) and ve = iny(w). But in this case w will only
be counted once as w € W when it is time for iny(w) to be examined. We can then write

|Sie1| = S| — Zi + X
Now let ty = [1000loglog N, t; = 10t¢, ta = [log; ¢ ¥ + 1000 loglog N, so = [1000loglog N
and s; = [1000log V1.
(a) P(Ft < ty:|Sy < spand Z; > 0) = O((loglog N)?/log N)
(b) P(| Uty St < 0.99] Uszsy Stl | 1Se] < sp for t < t5) = O((loglog N)3/log N).
(c) P32, Xi < s0| Sy # 0 and |S| < s for t < 1) = O((loglog N)?/log N).
(d) P(3t <ty :|SHq] <0.99]S41] | St > 5001loglogn) = O(1/log N).
(e) P(3t <t :500loglog N < |S;| < s1 and Z; > X;/100) = O(1/log N).
(f) P(3t <t;: Xy <|S/2] |S:| > 500loglog N) = O(1/log N).
(g) P(3t <ty :|S] < s and X; > 2s1) = O(N7?).
(h) P(3t; <t <ty:|SL.] <0.99Si1| ]S > s1) = O(N?).
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(i) P(Elt S t2 : |St’ Z S1 and |Xt - Zt - |StH Z ]St\/l(]) = O(N_2)

Explanations:- we use the following standard inequalities for the tails of the binomial
distribution:

P(|B(n,p) — np| > enp) < <
P(B(n,p) > anp) < (e/a)™. (34)

We let &,z € {a,b,...,i} be the low probability events described in (a)-(i) above.

(a) P(Z, > 0] |S;] <500loglog N) = O((loglog N)?/log N) by the Markov inequality.

(b) Conditioned on &, we have that | Ui<y, S| > to and Z; = 0 for ¢ < ¢5. Let vy, v, ... be
the order in which the vertices in U;<4,S; are examined. At step i with w = outy(v;)
we updated IV = I'U {(v;, w)} \ {(x,w)} and added = to U;<4,S:.  belongs to V; with
probability (1 + o(1))|NV1|/N > 0.999. The rest follows from (33).

(c) Conditioned on &, N &, we have that | U<y, S} > 0.99%. Thus >;°, X; dominates
B(0.99t,N", 1/N).

(d) Similar to (b).

(e) Condition on |Si| = s > 500loglog N and &;. Then Z;, > X,;/100 implies either that
(i) X; < s/10 < 0.99|S}[/10 or (ii) Z; > 10s. Both of these events have probability
O(1/(log N)3).

(f) Immediate from (33).

(g) Immediate from (33) and (34).

(h) Similar to (b).

(i) Similar to (c).

Assume the occurrence of (), E,. Then &, N &, implies that |§t| reaches size at least
500loglog N before t reaches to + 1. Once this happens, & N &; implies that [S;| then
grows geometrically with ¢ up to time ¢; at a rate of at least 1.49. Together with &, this

proves that at some stage between 1 and 1, |S;| reaches a size in the range [sg, 3s0]. £; then
implies that |S;| increases at a rate A € [1.9,2.1] from then on. The lemma follows. O

The total number of vertices added to W in this way throughout the whole of Phase 2 is
O(V|SMALL|) = o( N3*). (As we see later, we try this process once for C € SMALL, |C| <
3 and once or twice for C € SMALL,|C| > 4.)

Let t* denote the value of t when we stop the growth of T;. At this stage we have leaves I,
for i =1,...,v, each with a path of length at least Ny, (unless we have already successfully
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made a cycle). We now execute an In-Phase. This involves the construction of trees T;,i =
1,2,...v. Assume that P(I';) € P(ug,v;). We start with I'; and build 7; in a similar way to
Ty except that here all paths generated end with v;. This is done as follows: if a current NPD
I has P(T") € P(u,v;) then we consider adding an edge (w,u) € D, and deleting an edge
(w,x) € I'. Thus our trees are grown by considering edges directed into the start vertex of
each P(I") rather than directed out of the end vertex. Some technical changes are necessary
however.

We consider the construction of our v trees in two stages. First of all we grow the trees only
enforcing condition C(ii) of success and thus allow the formation of small cycles and paths.
We try to grow them to depth t5. The growth of the v trees can naturally be considered to
occur simultaneously. Let L;, denote the set of start vertices of the paths associated with
the nodes at depth ¢ of the i’th tree, i = 1,2...,v,0 =0,1,...,ts. Thus L,y = {ug} for all
t. We prove inductively that L;, = L, for all ¢,¢. In fact if L;, = L, then the acceptable
D, edges have the same set of initial vertices and since all of the deleted edges are Ds-edges
(enforced by C(ii)) we have L; 11 = L ¢41.

The probability that we succeed in constructing trees Ty,7T5,...T, is, by the analysis of
Lemma 3, 1 — O((loglog N)3/log N). Note that the number of nodes in each tree is
0(2.12Y) = O(N-™-).

We now consider the fact that in some of the trees some of the leaves may have been con-
structed in violation of C(i). We imagine that we prune the trees 71,75, ... T, by disallowing
any node that was constructed in violation of C(i). Let a tree be BAD if after pruning
it has less than v leaves and GOOD otherwise. Now an individual pruned tree has been
constructed in the same manner as the tree Ty obtained in the Out-Phase. (We have chosen
to to obtain v leaves even at the slowest growth rate of 1.9 per node.) Thus

- B (loglog N)3
P(T; is BAD) = O < N

and N

E(number of BAD trees) = O (M)

log N
and o
P(3 > 1/2 BAD trees) = O (%) |

Thus

P(3 < v/2 GOOD trees after pruning)
< P(failure to construct 71, Ts,...T,) + P(3 > v/2 BAD trees)

_0 (loglog N)3
B log N '

Thus with probability 1-O((loglog N)?/log N) we end up with v/2 sets of v paths, each of
length at least 100n/log N where the i’th set of paths all terminate in v;. From these paths
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keep only those whose other endpoint u lies in V. Then, similarly to the proof of property
(h) in Lemma A.1, w.h.p. from each set we keep at least 0.99v paths. The iny(v;) are still
unconditioned and hence

v/2
0.99
P(no Dy edge closes one of these paths) < <1 - V) = O(N~Y?).
n

Consequently the probability that we fail to eliminate a particular small cycle C' after break-
ing an edge is O((loglog N)3/log N). If |C| > 4 then we try once or twice using independent
edges of C' and so the probability we fail to eliminate a given small cycle C is certainly
O(((loglog N)3/log N)?) for |C] > 4 (remember that we calculated all probabilities condi-
tional on previous outcomes and assuming |W| < N3/4.)

Now the number of cycles of length 1,2 or 3 in D3 is asymptotically Poisson with mean O(1)
and so there are fewer than loglog N w.h.p. Hence, since whp |C| = O(log N),

Lemma A.2. The probability that Phase 2 fails to produce a permutation digraph with
minimal cycle length at least Ny is o(1).

At this stage we have shown that D* almost always contains a permutation digraph Il
in which the minimum cycle length is at least Ny. We shall refer to Il; as the Phase 2
permutation digraph.

A.3 Re-assembly

Let Ds be the 1-in,1-out digraph left unused by the construction in the previous two sections.

We will use the edges of Dj to break-up and re-assemble the cycles of Il; into a Hamilton

cycle. Let C1,Cs, ..., Cy be the cycles of 11y, and let ¢; = |C;NVy|, ¢1 < ¢ < --- < ¢ Note

that X* is an independent set of D* and so at least half the vertices of each C; are in V7. If
N

k =1 we can skip this phase, otherwise let a = g V- For each C; we consider selecting a set

of m; = 2[ %] + 1 vertices v € C; N V1, and deleting the edge (v,u) in II*. Let m = Zle m;
and re-label (temporarily) the broken edges as (v;, u;), i € [m] as follows: in cycle C; identify
the lowest numbered vertex x; which loses a cycle edge directed out of it. Put v; = z; and
then go round C; defining v, vs, ... v,,, in order. Then let v,,,+1 = z2 and so on. We thus
have m path sections P; € P(ug(;),v;) in Il for some permutation ¢. We see that ¢ is an
even permutation as all the cycles of ¢ are of odd length.

It is our intention to rejoin these path sections of Il to make a Hamilton cycle using Dy,
if we can. Suppose we can. This defines a permutation p where p(i) = j if P; is joined
to P; by (vs, ug(j)), where p € H,, the set of cyclic permutations on [m]. We will use the
second moment method to show that a suitable p exists w.h.p. A technical problem forces a
restriction on our choices for p. This will produce a variance reduction in a second moment
calculation.
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Given p define A = ¢p. In our analysis we will restrict our attention to p € Ry = {p € H,, :
¢p € Hy,}. If p € Ry then we have not only constructed a Hamilton cycle in Il U D5, but
also in the auzillary digraph A, whose edges are (i, A\(7)).

Lemma A.3. (m —2)! < |Ry| < (m —1)!

Proof. We grow a path 1,A(1),A*(1),...,A"(1)... in A, maintaining feasibility in the way
we join the path sections of Il at the same time.

We note that the edge (7, A(7)) of A corresponds in D5 to the edge (vs, ugp)). In choosing
A(1) we must avoid not only 1 but also ¢(1) since A(1) = 1 implies p(1) = 1. Thus there are
m — 2 choices for A(1) since ¢(1) # 1 from the definition of m;.

In general, having chosen A(1), A?(1),...,A"(1),1 < r < m — 3 our choice for \""'(1) is
restricted to be different from these choices and also 1 and ¢ where u, is the initial vertex
of the path terminating at vy-1) made by joining path sections of II. Thus there are either
m — (r+1) or m — (r + 2) choices for A"*!(1) depending on whether or not ¢ = 1.

Hence, when r = m — 3, there may be only one choice for N™~2(1), the vertex h say. After
adding this edge, let the remaining isolated vertex of A be w. We now need to show that we
can complete A, p so that A\, p € H,,.

Which vertices are missing edges in A at this stage? Vertices 1, w are missing in-edges, and
h,w out-edges. Hence the path sections of Il; are joined so that either

Uy —> Vpy Uy —> Uy OT UL —> Vyyy Uy — Up.

The first case can be (uniquely) feasibly completed in both A and Il by setting A(h) =
w, M(w) = 1. Completing the second case to a cycle in II; means that

A= (1,A(1),..., A" 2(1))(w) (35)

and thus A € H,,. We show this case cannot arise.

A = ¢p and ¢ is even implies that A and p have the same parity. On the other hand p € H,,
has a different parity to A in (35) which is a contradiction.

Thus there is a (unique) completion of the path in A. O

Let H stand for the union of the permutation digraph II; and Ds. We finish our proof by
proving

Lemma A.4. P(H does not contain a Hamilton cycle ) = o(1).

Proof. Let X be the number of Hamilton cycles in H obtainable by deleting edges as above,
rearranging the path sections generated by ¢ according to those p € Ry and if possible
reconnecting all the sections using edges of D5. We will use the inequality

E(X)?
P(X >0) > E(X2)°

(36)
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Probabilities in (36) are thus with respect to the space of Dj choices.

Now the definition of the m; yields that

2N 2N

— —k<m<—+k

a a
and so

(1.99)log N < m < (2.01) log N.
Also log N
k<2 >199and 2> L 1<i<k
200 m; — 2.01

Let €2 denote the set of possible cycle re-arrangements. w € () is a success if Ds contains
the edges needed for the associated Hamilton cycle. Let b; be the number of deleted edges
(vi,u;) with u; ¢ Vi and b= 3" b;. Observe that if u; € V4 then (v;,u;) € E(Ds) \ E(Dy)
with probability 1 — (1 - Nil)2 while if u; ¢ V; then (v;, u;) € E(Ds)\ E(D,) with probability
e

For a fixed a > 0 we have

ne?>N-N>b> > b>a Y [C]

Jibj>alCy| jibj>alCy|

Putting o = 10~ we see that at most 1000ne~? < e=%/3N vertices lie on a cycle C; with
more than 0.001|C;| vertices that do not lie in V. Therefore b is stochasticly dominated by
(14 o(1))(e=3m + Bin((1 — e~*/3)m, 1072). Hence P(b > 0.01m) = o(1). Thus,

E(X) = Z P(w is a success)

weN

m—b(w) w
(6
weN Nl Nl

m k
2 —0.01m Ci
> (1—o0(1)) (E) 2 -P(b < 0.01m)(m — 2)! 11 (m)
- 1—o(1) /2m\™ ﬁ ¢yl /12 - 2m3 [c; 9—0.01m
— omym \eNi) 43 mlH1/2m) /or
(1 — o(1))(2m)™/398e=k12 Lo \™ 2/ e N o
> [1(—oe ) o
m\/m 6N1 il (]_OQ)TI’LZ
(L= o(1))@m) ™ (2m\"™ [ ea  \"_ Ly
> —_— ] 27
= nt/1200, /m eN, 2.01 x 1.02
> (1- 0(1))<27T)_m/398 3.98 \" 9—0.01m
- NP0 m 2.0502
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> N3, (37)

Let A, A’ be two sets of selected edges which have been deleted in II; and whose path sections
have been rearranged into Hamilton cycles according to p, p’ respectively. Let B, B’ be the
corresponding sets of edges which have been added to make the Hamilton cycles. What is
the interaction between these two Hamilton cycles?

Let s = |AN Al and t = |[BN B'|. Now t < s since if (v,u) € BN B’ then there must be
a unique (0,u) € AN A" which is the unique Ily-edge into u. We claim that ¢ = s implies
t =s=mand (4,p) = (A, p). (This is why we have restricted our attention to p € R,.)
Suppose then that ¢ = s and (v;,u;) € AN A", Now the edge (vi,urs)) € B and since t = s
this edge must also be in B’. But this implies that (vu),urs)) € A" and hence in AN A’
Repeating the argument we see that (vyk(), ure()) € AN A’ for all £ > 0. But A is cyclic and
so our claim follows.

We adopt the following notation. Let < s,¢ > denote |[AN A’| = s and |[BN B'| =t. So

E(X?) < E<X>+<1+0(1>)Z(N%)m 2 (N%)m

AeQ A’GQ
B'NB=0

+(1 4 0(1)) Z( )mii > (Nl)mt

AeQ s=2 t=1 A’eQ
<s,t>
= E(X)+ E; + E; say. (38)
Clearly
By < (14 0(1))E(X)2 (39)

For given p, how many p’ satisfy the condition < s, >? Previously |R,| > (m — 2)! and
now given < s,t >, |Ry(s,t)| < (m —t — 1)!, (consider fixing ¢ edges of A’).
Thus

By < E(X)? ii(s) [ . H Lo ’C’” (”)] (”Zn;:)ll)! (%)t

o1++op=s i=1

For the above expression observe that given ANA’ there are (i) choices for BNB'. Thereafter
given A and o; there are (’:‘) ways to choose AN A" N C; and (f;’L___TZ?) ways to choose the
rest of B, N C;.

Now
() .
() = ()

< (1+0(1)) ("C"”—) exp {_—“<‘2’m‘ ”}
. (.a - (0~




k 2 2
Zai > 5 for o1 + -+ -0 = s,
i1 le - 2m
b o; k
55
— 2m; 2
=1
and
k
> 1) -(7)
. g; S '
o1+t or=s i=1
Hence
m s—1 s t
E, % s s 2.01 m\ (m—t—1)! (N,
< (1 1))ek/? 2 b A AR e
s < 0o 3 (e} () () 5t (5

< wranEE ()l -5} (2 5 (3)

S () S () ()
< (vo) () 30 (LMoo
= o B (40)

To verify that the RHS of (40) is o(1) we can split the summation into

5 Lg/fJ ((2.01)N1 eXp{_S/2m}>sl

2a s!

and

2a sl

= (2.01) Ny exp{—s/2m}\° 1
s- > 5
s=|m/4|+1
Ignoring the term exp{—s/2m} we see that

. L(.5025z)5°f“’3NJ ((1.005) log N)*
L < s!

s=2

— 0( N9/ 10)
since this latter sum is dominated by its last term.

Finally, using exp{—s/2m} < e~/® for s > m/4 we see that

S, < N(1+o(1))1.005)e—1/8 < N9/10.
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The result follows from (36) to (40).
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