
Perspective
https://doi.org/10.1038/s41559-021-01526-9

1Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA. 2Departamento de Botánica, Instituto de Biología, Universidad 
Nacional Autónoma de México (UNAM), Mexico City, Mexico. ✉e-mail: bgaut@uci.edu

Climate change contributes to the loss of biodiversity1–6, high-
lighting a pressing need to identify how populations respond 
to climate change and to use this information to conserve 

species. To date, these needs have been addressed primarily using 
species distribution models (SDMs)7–9. The principal goals of SDMs 
are to identify climatic factors that define the geographical distri-
bution of a species and then to predict shifts in the distributions 
of species over time and space as a function of climate change8–10. 
However, at their most basic, SDMs assume that all individuals and 
populations within a species are equivalent, and they ignore the 
potential for evolution. The forces that affect evolution are complex, 
and SDMs are not able to incorporate this complexity1,11,12.

Recent research, prompted by a series of landmark studies13–15, 
has integrated landscape genomic data with global circulation mod-
els that project future climatic conditions. This work recognizes that 
the response of populations to climate change can vary across a spe-
cies’ range and also emphasizes the potential importance of local 
adaptation to specific environments. However, the evolutionary fate 
of species does not rely on adaptation alone, because evolution is a 
function of many interacting factors16. The integration of evolution-
ary forces beyond adaptation may help to predict the fate of species, 
provide additional insights into evolutionary dynamics, and ulti-
mately guide conservation and management17–20.

In this Perspective, we have two goals: (1) to argue that addi-
tional evolutionary forces should be incorporated into predicting 
the response of species to climate change, and (2) to make con-
crete suggestions to achieve that end. To do so, we begin by briefly 
reviewing SDMs and the emerging synthesis of landscape genom-
ics, local adaptation and climate projections. These topics have been 
reviewed recently18,21–24, but we cover them here to lay a foundation 
for our proposed extensions. Some of these reviews have mentioned 
the need to consider additional evolutionary processes such as gene 
flow in predictions of species’ responses to climate change18,23,24, 

but they have not suggested potential solutions. Accordingly, in the 
second part of this Perspective we discuss three evolutionary pro-
cesses—gene flow, population dispersal and genetic load—and sug-
gest ways to build them into a framework for assessing the climate 
change vulnerability of populations. We illustrate our suggestions 
using an exemplar dataset from the wild plant species teosinte (Zea 
mays ssp. mexicana; hereafter mexicana) and provide code to per-
form all analyses. By providing background information, examples 
and code, we intend for this work to be accessible for researchers 
who seek to consolidate landscape genomics into their work or, con-
versely, for population genomicists who want to merge their data 
with climate projections. We conclude by proposing a conceptual 
framework to evaluate the responses of species to climate change.

Genetic structure and species distribution models
Correlative SDMs have been widely used to estimate the distribu-
tion of species across space and time. In essence, the climatic con-
ditions in which a species occurs are used to construct a model of 
the species’ ecological niche that is then projected into geographi-
cal space. The use and misuse of SDMs has been reviewed previ-
ously1,8,10,16; here we provide a brief overview to highlight pertinent 
information. The theory behind SDMs can be summarized with the 
BAM diagram8,25, which depicts the geographical distribution of a 
species in three components: suitable areas in terms of biotic fac-
tors (B), abiotic factors (A) and areas that are accessible through 
migration (M) (Fig. 1a). The intersection among these components 
(GO) characterizes regions in geographical space that are suitable for 
positive population growth. In the context of climate change, SDMs 
forecast how GO will change under future environmental condi-
tions by comparing present-day and future models. To achieve this, 
SDMs rely on several simplifying assumptions8,26,27, primarily that 
(1) all the abiotically suitable areas also represent a suitable biotic 
environment, including biotic interactions and interactors (A ≈ B); 
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(2) species’ distributions are in equilibrium to environmental con-
ditions; and (3) all the accessible space will be fully (and equally) 
occupied by a species.

The BAM model also assumes that all populations respond to 
climate change similarly. In other words, the projection of SDMs 
into different time periods assumes both niche conservation and 
spatial homogeneity of populations relative to climate and other 
biotic factors8,27. The problem with the assumption of homogene-
ity is it ignores how genetic factors affect the way a species (or its 
populations) interacts with B, A and M across both space and time. 
Ultimately, the probability of survival and dispersal across space and 
time is a function of environmental suitability and of the adaptive 
landscape. SDMs omit the latter and implicitly assume that genetic 
heterogeneity acts only to generate random and spatially uncorre-
lated noise between species’ occurrence and the environment.

One advance has been to incorporate spatial genetic structure 
into SDMs28,29 by (1) identifying genetic clusters using standard 
population genetics methods30–32; (2) building SDMs for individual 
clusters; and (3) comparing the per-cluster SDMs between the pres-
ent and future to predict species’ responses to climate change22,33–36. 
We illustrate this approach using the mexicana dataset, which con-
sists of 33,454 SNPs from 348 individuals representing 23 popula-
tions from regions of Central Mexico37,38 (Markdown 1, available 
in Supplementary Information). Genetic clustering (Markdown 
2 Supplementary Information) indicates that populations can be 
divided roughly into two groups (Fig. 1b): a northern cluster (N) 
from warmer lowland regions and a southern cluster (S) in cooler 
highland regions. However, note that few populations consist 

of genetic components that are solely attributable to one cluster, 
emphasizing that clustering is inherently approximate. We next 
constructed SDMs for each cluster separately using data from the 
WorldClim database39 that averages the climate over the recent past 
(1970–2010; Markdowns 1 and 2, Supplementary Information). The 
results show that the present-day SDMs for the two genetic clus-
ters predict different areas of potential distribution (Fig. 1c), sug-
gesting that the two clusters occupy non-overlapping areas of the 
available climatic space. Importantly, differences between the clus-
ters are magnified when SDMs are projected to the year 2070 (Fig. 
1d) because the future projected distribution is expected to increase 
slightly in area for the warm-adapted northern cluster but decline 
markedly for the cold-adapted southern cluster.

Similar to previous studies12,14,22,33,35, the mexicana example sup-
ports the idea that different genetic clusters (or populations) vary 
in their relationships with environmental conditions (but see ref. 
28). By doing so, this example illustrates one of the many limita-
tions of SDMs and the BAM model, specifically, the assumption 
that all populations are identical and will respond similarly to cli-
mate change. We nonetheless embrace the intellectual construct 
of the BAM model, especially its emphasis on overlapping criteria 
to consider the fate of a species. Below we will introduce a similar 
conceptual model that incorporates population-level evolutionary 
processes.

Incorporating local adaptation
The identification of genetic clusters provides additional resolution 
to SDMs, but they treat landscape genomic data as binary, static  
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Fig. 1 | Genetic structure and species distribution models. a, The BAM model—a theoretical construction that integrates the biotic, abiotic and migration 
potential of species. GO indicates the intersection in geographical space where population growth is positive. b, Genetic clustering of mexicana identifies 
two genetic clusters (K = 2), the southern cluster (blue) and the northern cluster (red). The bars are ordered by the mean annual temperature (MAT) in 
which populations grow. c,d, SDMs project the geographical range of southern (blue) and northern (red) genetic clusters in the present (c) and future 
(2070) (d).
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predictors of inclusion in a cluster. This approach ignores the fact 
that genomic data are a rich source of information about evolution-
ary processes. More specifically, the frequencies of alleles across 
populations contain clues about the genetics of adaptation to cli-
mate40,41. The basic adaptive premise is simple: if a single SNP (for 
example, an A to G variant) is at a low frequency in one popula-
tion but at a high frequency in a second population, the SNP may 
contribute to adaptation in the local environment of one or both 
populations. Evidence for local adaptation is strengthened when 
the observed allele frequency differences between populations 
exceed the expectation on the basis of genetic drift and when allele 
frequencies are correlated with bioclimatic variables such as tem-
perature, precipitation or other factors. However, it is important to 
accentuate that neutral and selective forces often covary in space, so 
that variant frequencies are shaped by evolutionary processes other 
than selection, including population history, drift and gene flow. 
For example, another potential explanation for the A to G variant is 
that allelic frequencies track an historical split between populations, 
rather than adaptation, and therefore reflect the combined effects of 
population history and genetic drift.

If the goal is to incorporate adaptation into predictions about 
the fate of populations under climate change, one approach is to 
filter genomic data to identify a subset of SNPs that is particularly 
likely to contribute to local adaptation. This filtering step can be 
completed using standard population genetic tools30,42–44 that iden-
tify SNPs with allele frequency patterns that are not easily attrib-
utable to population structure and genetic drift45–48. For example, 
one method (bayescenv42) calculates genetic divergence among 
populations and then partitions individual SNPs into one of three 
classes: (1) neutral SNPs that reflect population history; (2) SNPs 
that do not fit the inferred pattern of population history (and are 
therefore likely to have been affected by forces beyond demogra-
phy and drift); and (3) SNPs that also associate with environmental 
data, suggesting they are particularly strong candidates for contrib-
uting to local adaptation. Such methods can be applied either on 
their own or in combination. For example, Aguirre-Liguori et al.38 
applied two separate tools42,43 to the mexicana dataset and identi-
fied a set of 32 putatively adaptive (or candidate) SNPs from both 
methods (Markdown 3.1, Supplementary Information). It is worth 
mentioning that this filtering step may not be able to discriminate 
between causative SNPs that contribute to adaptive change and vari-
ants that are linked to adaptive SNPs. Moreover, the filtering step 
contains an inherent trade-off between retaining a high number of 
SNPs, including numerous false positives, or tolerating a high rate 
of false negatives to focus on a particularly robust set of candidates. 
We suspect that the use of two filtering methods, as applied to mexi-
cana, leans towards the latter but, more generally, procedures can be 
altered depending on project objectives (reviewed in ref. 23).

Once identified, candidate SNPs are used to predict how popula-
tion frequencies will shift under climate change.

This is done by building a model that identifies nonlinear asso-
ciations between allele frequencies and environmental variables and 
then using those associations to project allele frequencies into the 
future, on the basis of predicted changes in bioclimatic variables. 
To address these steps, while efficiently handling the potential for 
massive amounts of data, researchers have turned to machine learn-
ing algorithms, such as gradient forest (GF)13 and random forest14. 
As explained in recent publications13,23,24,49, the goal of GF is to take 
SNP allele frequencies (as response variables) and climatic data 
(as predictors) to identify environmental gradients that associate 
with genetic variation and also to determine how allele frequen-
cies turnover along that gradient13,18,23. To illustrate the approach, 
we applied GF to the 32 candidate mexicana SNPs and to a separate 
set of 500 neutral reference SNPs for comparison (Markdown 3.2, 
Supplementary Information) using contemporary bioclimatic data 
as predictors. On the basis of these analyses, the allele frequencies 

of candidate SNPs across populations are most strongly correlated 
with one climatic variable (BIO9, the mean temperature of the dri-
est quarter) but also with others (Fig. 2a). A graph of BIO9 against 
projected allelic frequencies (Fig. 2b) demonstrates that: (1) candi-
date SNPs have a stronger association with BIO9 than the reference 
SNPs, providing some reassurance that the former reflect some fea-
ture of local adaptation to climate; (2) allelic frequencies for candi-
date SNPs turnover in regions in which BIO9 ranges between ~14 
and 16 °C; and (3) candidate SNPs differ substantially in frequency 
between northern and southern populations (Fig. 2b).

The turnover functions make an implicit suggestion—if south-
ern populations are located where BIO9 temperatures increase 
above ~14 °C in the future, then the frequencies of the adaptive 
alleles are expected to increase over time. In fact, if these SNPs do 
underlie local adaptation, then the adaptive alleles need to increase 
in frequency for southern populations to survive. The expected dif-
ference between allele frequencies in the present and in the future, 
on the basis of all relevant bioclimatic variables, is the local genetic 
offset13,50. Populations with higher genetic offsets are expected to be 
more vulnerable to climate change because they must undergo more 
dramatic changes in adaptive allele frequencies to adapt.

Genetic offsets are calculated across geographical space on the 
basis of the output of GF models. GF reports the cumulative impor-
tance of each bioclimatic variable across the landscape. For a given 
location, the local genetic offset is calculated between the present 
observed climate and a predicted future climate, which is a fore-
cast from a global circulation model, by taking the Euclidean dis-
tance between the vectors of cumulative importance (Markdown 
3.3, Supplementary Information). The end result is the identifica-
tion of geographical regions in which the genetic space is predicted 
to be disrupted as a function of climate change. To illustrate this 
concept, we projected the genetic offset for mexicana populations 
using 2070 climate predictions (Fig. 2c), showing that the southern 
populations have higher average genetic offsets compared with the 
northern populations (Fig. 2d). These analyses suggest that north-
ern populations will generally be less vulnerable to climate change 
than southern populations, an observation that could be crucial for 
conservation efforts.

Although recommended23, it may be not necessary to identify 
candidate SNPs before GF analyses because one can infer turnover 
functions from an entire SNP dataset. However, if GF is applied to 
all SNPs (rather than to a subset of candidate SNPs), the inferred 
correlations may have little bearing on the process of local adapta-
tion51,52, because many SNPs are likely to covary in frequency among 
populations due to population structure. In this situation, genetic 
offsets will reflect expected shifts in neutral variation, confounding 
climate adaptation with the demographic history of populations. 
An alternative solution is to focus on a subset of SNPs based on 
an independent analysis53 or to perform a correction for popula-
tion structure before the GF analyses49. Whichever the case, it drives 
home a key point—some correction for population history is likely 
to be crucial.

All of these approaches are likely to have low statistical power 
to identify adaptive SNPs that covary with population structure23. 
In fact, one study of poplars has found that genetic offsets based 
on randomly selected SNPs predicted performance as well (or even 
slightly better) as sets of candidate SNPs49, reflecting either limi-
tations in the approach or that many adaptive SNPs covary with 
population structure in this system. Genetic offsets also omit biotic 
interactions, thereby probably underestimating the effect of climate 
change on the persistence of species54. Ultimately, more theoretical 
and experimental studies are needed to understand the utility and 
applicability of genetic offsets24. Nonetheless, incorporating adap-
tation into the framework of predicting species’ fate under climate 
change is likely to provide important insights into causal relation-
ships between genotypes and climate-related phenotypes and also 
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to aid management decisions based on putatively adaptive variants 
within populations.

Additional evolutionary processes
To date, local adaptation has been integrated into ~20 climate vul-
nerability studies across a broad taxonomic array of organisms23. 

These studies generally omit other evolutionary processes that will 
impact the fate of populations under climate change. The impor-
tance of including more evolutionary processes such as gene flow, 
population movement and genetic load has been mentioned in 
various reviews and papers18,21,23, but they have not been yet inte-
grated into a comprehensive strategy. These processes are likely to 
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Fig. 2 | Turnover functions and genetic offsets. a, The inferred correlation between SNPs and bioclimatic variables on the basis of a GF analysis of 32 
candidate SNPs. The bioclimatic variable in green (BIO9, the mean temperature in the driest quarter) has the strongest inferred correlation. The next four 
bioclimatic variables (BIO10, BIO5, BIO4 and BIO8), in rank of strongest contribution to the model, are represented in black. b, Allelic turnover functions 
relative to BIO9 (x axis), which is reported in °C. The y axis reflects the cumulative importance, which refers to the importance of SNPs in the GF models; it 
reflects the total amount of turnover in allele frequency across the temperature gradient13. The cumulative turnover for individual candidate SNPs is shown 
as thin grey lines. The solid black line indicates the turnover across all candidate SNPs; circles along this line represent populations arranged according 
to BIO9, with colours indicating their inclusion in the warm northern cluster (red) or the cold southern cluster (blue). The dashed line represents the 
average turnover across 500 reference SNPs that are not considered to be putatively adaptive. The superior performance of candidate SNPs is evidenced 
by the higher turnover values of the solid bold line (candidate SNPs) compared with the dotted line (reference SNPs). c, Genetic offset estimated across 
the landscape, based on the 32 candidate SNPs. Darker hues indicate higher genetic offset (higher expected vulnerability to climate change). The y and x 
axes represent latitude and longitude, respectively. The circles represent individual populations, with colours indicating their inclusion in the cold southern 
cluster (blue) or the warmer northern cluster (red). d, Estimated genetic offsets combined across all populations within the colder southern cluster (blue; 
n = 12) and warmer northern cluster (red; n = 11). The predicted genetic offset is higher, on average (two-sided t-test, t = 9.87; d.f. = 17.53, P < 0.001), for 
populations from the south.
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affect the pace of species’ adaptation and colonization under cli-
mate change18, but not always positively. Below we discuss the pos-
sible impacts of these processes and review ways to integrate them 
into the framework of landscape genomics and predicting species’ 
responses to climate change.

Gene flow. Gene flow refers to the genetic exchange between exist-
ing populations. A fascinating feature of this exchange is that it can 
either speed the process of adaptation, by introducing favourable 
alleles from one population to another55–63, or slow adaptation by con-
tributing non-adaptive alleles from one population to another64–68. 
Adaptive gene flow can have major effects on the geographical range 
of a species. One interesting example of adaptive gene flow is from 
mexicana into maize (Zea mays ssp. mays), which helped to expand 
high-altitude cultivation of the crop57. Remarkably, gene flow in the 
reverse direction has also been adaptive, because gene flow from 
maize into mexicana has enabled the latter to expand its geographi-
cal range as an introduced weed in Europe62.

Maladaptation has been studied less than adaptation, but mal-
adaptive alleles can also be introduced into a population. This occurs 
when there is gene flow between populations that are adapted to dif-
ferent conditions; an allele from a population in one environment 
will lead to hybrid and introgressed individuals with reduced fitness 
in the second environment65,66,68–71. Another way to state the point is 
to say that maladaptive gene flow reverses the divergence of popula-
tions caused by local adaptation72,73. Maladaptive gene flow may be 
particularly important when there are populations adapted to the 
edges of a species’ environmental niche. If there are larger, older 
populations in the centre of the niche, then gene flow may predomi-
nate from the centre, potentially swamping locally adapted alleles in 
the ‘edge’ populations65,66,74. Although it has not been studied exten-
sively, there are interesting examples of maladaptive gene flow. One 
comes from a study of two morphs of walking stick insects (Timema 
cristinae), where gene flow between the two morphs increased rates 
of predation on both75.

The important point is that gene flow should be considered 
when trying to predict the fate of populations because it may either 
accelerate or decelerate the pace of adaptation. But how should 
one proceed? Fortunately, population genetics has several existing 
useful tools to evaluate gene flow. We illustrate one analysis here 
based on coalescent simulations76,77 (Markdown 4, Supplementary 
Information). The simulations are fit to features of the observed data 
and output estimates of effective population size (Ne), the migration 
rate per generation (m) between populations and their product Nem 
(Fig. 3a). Under equilibrium conditions, Nem reflects the average 
number of individuals that move between populations each genera-
tion; a value of Nem > 1 is sufficient to homogenize populations over 
the long term assuming no countervailing evolutionary forces78. A 
key feature of Nem estimates based on this method is that they are 
directional, that is, gene flow to and from a population can be esti-
mated separately. Other common methods to estimate Nem—such 
as traditional FST statistics79,80—do not provide directional insights.

For the purposes of illustration, we implemented this approach 
on two mexicana populations—one southern (population South 2) 
and one northern (population North 4). The goal was to assess 
whether these focal populations receive an influx of warmer-adapted 
alleles from northern populations or are inundated with maladap-
tive alleles from the south. We estimated migration into South 2 and 
North 4 from every other population in the dataset. The Nem esti-
mates indicate that most populations contribute alleles to North 4 
through gene flow (Fig. 3b). However, northern populations con-
tribute to North 4 at much higher rates than southern populations, 
suggesting that North 4 is unlikely to be swamped by maladaptive 
gene flow from the south.

By contrast, the South 2 population receives more gene flow from 
populations that are adapted to colder climates (Fig. 3c), but it also 

receives substantive levels of gene flow from several northern popu-
lations at a Nem of ~1. The difficult question is whether putatively 
adaptive gene flow from the north will overcome more frequent 
gene flow from southern populations. Here the selection coeffi-
cient (s) of adaptive alleles is key, because maladaptive gene flow is 
expected to swamp the population if the benefit of adaptive alleles 
is less than roughly half the rate of maladaptive migration (that is, 
s < ~0.5m)81,82. Because the s of adaptive alleles is not known, except 
in rare exceptions where they have been determined experimen-
tally15, it is difficult to predict the outcome of competing gene flow 
into a population like South 2. It is also difficult to know whether 
additional, unsampled populations could contribute to South 2 and 
whether Nem estimates, which integrate over genetic history, will 
be accurate in the future. Finally, at least one study has shown that 
maladaptive and adaptive gene flow can be ‘self-cancelling’ and 
may therefore not impede divergence among populations due to 
local adaptation83. We nonetheless argue that gene flow is impor-
tant for interpreting population vulnerability because it can have 
implications both for a population’s response to climate change and 
for potential management strategies—for example, introducing 
pre-adaptive genetic diversity into vulnerable populations55,84.

Population dispersal. Gene flow refers to the exchange of genes 
between existing populations, but some populations may need to 
move (or disperse) to a new location to survive2,3,85. As concrete 
examples, 102 montane moth species have increased their average 
altitude by 67 m along a transect on Mount Kinabalu in Borneo over 
a span of 42 years86. Similarly, more than 2,000 species of animals 
and plants have moved to either higher elevations or more extreme 
latitudes in response to climate change85.

Dispersal is a potential mechanism for the persistence of spe-
cies, but few studies have used landscape genomic data to examine 
this phenomenon in the context of climate change predictions. One 
example focuses on pearl millet in Africa; Rhoné et al.53 identified 
landraces with high predicted genomic offsets as potential risks for 
crop failure. They then searched for landraces that have low pre-
dicted genetic offsets in the location of predicted failure. The most 
likely replacement landraces were geographically distant from the 
location of crop failure—that is, >1,000 km away on average. This 
study highlights the need for human-mediated, long-distance dis-
persal of landraces to avoid climate-related failures of the pearl 
millet crop. Gougherty et al.50 also used genetic offsets to study the 
dispersal potential of wild poplar populations. They predicted that 
populations at the centre of the species’ distribution will need to 
move shorter distances to maintain low genetic offsets in the future, 
as compared with populations at the edge of the distribution.

Both of these studies identified putative locations for movement 
on the basis of genetic offsets, but they did not estimate the cost 
of dispersal across the landscape. In the field of landscape genom-
ics, the calculation of costs has usually relied on circuit theory to 
calculate the ‘resistance’ or ‘current’ of potential movement and to 
estimate least-cost paths between locations87. For example, Razgour 
et al.35 measured the migration potential of two bat species between 
two distinct locations. By focusing on features that correlate with 
the current geographical distribution of species—specifically forest 
cover and slope—they assessed whether an endangered population 
could be replaced by the migration of an existing, less-endangered 
population. They concluded that landscape connectivity was not 
sufficient for an existing warm-adapted population to replace an 
endangered population. Similarly, Aguirre-Liguori et al.88 used 
landscape resistance to predict potential areas of dispersion for wild 
Zea populations, based on present and future SDMs.

Circuit theory has been used in the field of landscape genet-
ics to estimate the cost of migration across specific distances and 
routes. However, cost has been based on outputs from SDMs or from 
environmental data given physiological knowledge (for example,  
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thermal niche thresholds), without utilizing landscape genomic data. 
One approach is to identify potentially habitable future locations 
for an existing population, based on genetic offsets50,53, and then to 
evaluate the feasibility of potential migration routes to those habit-
able locations. The latter step requires a matrix that estimates the 
cost of movement from an existing location to all other potentially 
habitable locations in the future. Here we illustrate this approach by 
using turnover functions to determine whether movement from one 
location to another entails high ‘landscape resistance’, as reflected 
by high genetic offsets, or low resistance, which represents a corri-
dor for potential population movement. In this framework, the total 
landscape resistance between a current location and a future settle-
ment site is therefore a summation of the offsets across the landscape 
paths between the locations. A nice feature of this approach is that 
GF is used to weight bioclimatic variables to genetic patterns and 
is then employed to estimate the dispersal costs. Depending on the 
goals of the analysis and the weights, resistance between geographi-
cal sites can be based on all bioclimatic variables, on only uncorre-
lated variables or on a single variable (for example, BIO9). In Fig. 4a, 
we show the estimation of landscape resistance for the South 2 popu-
lation of mexicana (Markdown 5, Supplementary Information). The 
resulting map suggests, as expected, that distant dispersal is less 
probable than nearby movement. It also suggests possible dispersal 
routes to the east and west but not to the north and south.

This approach also permits comparisons among populations. 
For example, we compared the number of habitable regions within 
20 km of each sampled mexicana population, suggesting that some 
populations (for example, North 9 and South 7) have few available 
dispersal routes (Fig. 4b). Nonetheless, this approach based on 
genetic offsets cannot define the limit to dispersal—that is, when are 
offsets, resistances and geographical distances simply too much for 
a population to disperse? This question cannot be answered without 
detailed information about the physiology, phenotypic plasticity, 
environmental tolerances and movement capabilities of a specific 
study organism16. This approach also does not include dispersal by 
wind, water or biological vectors. Their effects can be substantive; 

for example, a recent meta-analysis found that stronger wind pat-
terns between populations are negatively correlated with genetic 
differentiation89. One potential solution to the problem of wind and 
water dispersal is to estimate predicted settlement areas on the basis 
of genetic offsets and then use wind and water current models to 
identify the most probable routes of dispersal.

Genomic load. Finally, we discuss genomic load, which refers to 
the presence of genetic variants that reduce the fitness of a popula-
tion relative to a local fitness optimum. These deleterious genetic 
variants are targeted by purifying selection. However, forces such 
as genetic drift and linked selection limit the efficacy of purifying 
selection, so that deleterious mutations can increase in frequency. 
Drift is higher in small populations, and—although the relation-
ship among load, population size and history can be complex90,91—
the reduced efficacy of selection can accelerate rates of population 
extinction92. It is therefore reasonable to surmise, as a first approxi-
mation, that the potential for a population to respond to climate 
change is inversely related to its load21.

Load is difficulty to study, because its estimation requires knowl-
edge about the fitness effects of specific variants. Lacking such 
information, empirical studies have focused on measuring genetic 
variants that are predicted to have deleterious effects, including 
variants that alter amino acids (particularly with non-conserved 
biochemical properties or that alter protein structure), introduce 
premature stop mutations or modify sequence motifs that have been 
otherwise highly conserved over evolutionary time93–95. Studies have 
shown that these measures can correlate with phenotype96 and also 
that deleterious variants may increase in specific populations—for 
example, some inbreeding populations92 and species with histo-
ries of genetic bottlenecks90,91. There has also been some focus on 
populations that are on the edges of a species’ geographical distri-
bution97–99 or that expand a species’ range100,101. In both cases, load 
tends to be higher than for populations near to the centre of the 
species’ range, with evidence for associated fitness decreases in edge 
populations102.
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Fig. 3 | Gene flow into focal populations. a, The model used to compare gene flow between a pair of populations, using the two focal populations (South 2 
and North 4) as an example. The model includes parameters for the population size (N) of each population, directional migration rates (m) between 
populations and a divergence time. We have labelled migration as adaptive and maladaptive because generally gene flow from populations in the cold 
southern cluster with high genetic offsets will be maladaptive relative to gene flow from populations in the warm northern cluster. b, Estimates of gene 
flow (Nem) into population North 4 from other sampled populations. Red distributions represent estimates from populations in the warm northern 
cluster, whereas blue distributions represent estimates from populations in the cold southern cluster. c, Summary of gene flow into population South 2, as 
described in b. In b and c, the dashed line represents Nem = 1, above which gene flow can homogenize allele frequencies between populations.
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Given the relevance of load and the fact that it can be approxi-
mated from genomic data, it is puzzling that it has not been incor-
porated into genetic predictions of the effects of climate change67. 
However, the concept has not been fully ignored as genetic offsets 
have been discussed as a measure of maladaptation23,50—that is, 
populations with high offsets will be maladapted in the future if 
they do not have time to adapt. This interpretation of maladaptation 
touches on genomic load but is incomplete. In theory, two popula-
tions can have identical genetic offsets based on adaptive SNPs but 
markedly different loads depending on the distribution of delete-
rious SNPs (and structural variants103) throughout the remainder 
of the genome. To illustrate this concept empirically, we estimated 
the load for mexicana populations (Markdown 6.1, Supplementary 

Information) using a measure that compares the proportion and 
population frequency of non-synonymous SNPs to synonymous 
SNPs104. We found that the southern populations have higher esti-
mated loads, on average, compared with northern populations (Fig. 
4c). Moreover, two southern populations (Fig. 4d) have similar 
genetic offsets but markedly different estimated loads. Assuming 
that load is correlated inversely with fitness, one expects that the 
population with higher load is vulnerable to climate change.

This approach considers only genomic load in the present, with-
out reference to how it may change in relation to future climate. The 
challenge is that load is not deterministic and is therefore difficult to 
predict. However, if load is associated with another variable that is 
predictable, then it may be possible to roughly assess future trends. 
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The central abundance hypothesis (CAH)74 is useful in this context 
because it predicts that environmental conditions are less ideal at 
the edges of the geographical distribution of a species and also that 
populations at edges have lower effective sizes and higher load than 
populations in the centre65. Although the CAH does not apply uni-
versally70, it does hold in some cases. For example, genomic load 
is higher at the geographical limits of Arabidopsis lyrata97, suggest-
ing that founder events at the geographical limits, along with gene 
surfing105, have caused deleterious mutations to accumulate on the 
expanding range21. To illustrate this concept, we have analysed how 
load for individual mexicana populations is correlated with the 
distance from the niche centroid106, focusing on the northern and 
southern groups separately. For both groups, there is a positive and 
significant trend between load and the distance from the niche cen-
troid (Fig. 4e).

When the CAH holds, as it seems to do for the northern and 
southern mexicana groups, the question of load can be simpli-
fied to the following: if climate changes in the future, is a popula-
tion expected to be farther from the projected centroid? If so, it is 
expected to have increased genetic load. For example, most mexi-
cana populations are expected to be farther from the niche cen-
troid in the future than they are now. However, the effect is more 
pronounced for northern populations, suggesting that they are  

particularly likely to be subjected to evolutionary forces that pro-
duce genetic load (Markdown 6.2, Supplementary Information).

We recognize that this is, at best, a gross approximation of how 
load will change under future climates, but this discussion brings 
up one of the paradoxical features of populations and their pre-
dicted responses to climate change: the fate of small populations at 
the edge of species’ geographical ranges21,97. These populations are 
expected to experience higher genetic drift (and therefore potential 
for higher genetic load). They may also be swamped by maladap-
tive gene flow from populations in the niche centroid and may be 
in locations nearer to extreme environments that limit their migra-
tion potential65,106. Yet, it is precisely these populations that are also 
evolving adaptively to new climatic factors, because they are often 
climatic outliers38,55. It is this give and take among adaptation and 
potentially contravening forces such as gene flow, dispersal and load 
that is not yet adequately integrated into the framework of land-
scape genomics and predictions about population vulnerability 
under climate change.

An integrated framework
The synthesis of genetic adaptation with climate change models is 
a remarkable advance, because it explicitly recognizes that popula-
tions are not homogenous across the landscape13,14,107,108. However, 
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current approaches do not yet capture most of the complexities of 
the evolutionary process, some of which may be as important as 
adaptation18. We argue that additional processes can and should be 
considered to predict the fate of populations and species in the face 
of a changing environment. To support that argument, we reviewed 
three such processes—gene flow, dispersal and genetic load—in the 
context of climate change.

Of course, it is important to bring separate analyses together into 
an integrated whole. An integrated framework should synthesize 
levels of risk based on factors such as SDMs, genetic variation and 
landscape resistance35. But how can one perform this integration? 
One simple approach is a conceptual extension of the BAM model, 
in which the components of the Venn diagram represent manifold 
outcomes from different analyses. To demonstrate, we introduce the 
FOLDS model, which is named after the five features discussed in 
this Perspective: gene flow, genetic offsets, genetic load, dispersal and 
SDMs (Fig. 5). By applying empirical thresholds to all five features 
(Fig. 5), we have assessed the empirical distribution of populations 
in the FOLDS model. Of 23 populations, only one passed all five 
empirical thresholds, suggesting that it is the most likely to survive 
climate change without human intervention (Fig. 5). However, 7 out 
of 23 populations had low genetic offsets and high dispersal capabili-
ties, despite being located in regions that are not predicted as hab-
itable in the future by SDMs (Fig. 5; Markdown 7, Supplementary 
Information). We predict that these populations are likely to survive 
climate change, based on the weight of evolutionary evidence.

A useful feature of the FOLDS model is its flexibility; theoreti-
cally, it can synthesize an unlimited number of components, each 
component can be weighted on the basis of project objectives and 
thresholds can be varied to assess effects on the robustness of con-
clusions. Although imperfect, FOLDS may help to fuel this rapidly 
growing field, which needs to continue to expand in at least three 
directions. The first is experimental validations of predicted genetic 
offsets23,24,49,51, which are beginning to appear49,53 but still nascent. 
A second is further consideration of evolutionary processes, along 
with more complete measurement of genetic variants. An example 
of the latter is structural variants, which have not been integrated 
systematically into landscape genomics but are common, often 
unlinked to SNPs and clearly affect phenotypes91,103. Finally, we are 
intrigued about including additional features into FOLDS, includ-
ing human impacts such as urbanization, susceptibility to distur-
bance (for example, fire or flood) and biotic interactions. It will 
be especially exciting to integrate landscape genomic data among 
interacting set of species—for example, pathogens, predators, vec-
tors and hosts—or perhaps complete community assemblages.

Data availability
The exemplar mexicana data used in all analyses are available at 
Zenodo (https://doi.org/10.5281/zenodo.4746517).

Code availability
The Markdown file is available as Supplementary Information. 
All R code is also available at Zenodo (https://doi.org/10.5281/
zenodo.4746517).

Received: 5 February 2021; Accepted: 5 July 2021;  
Published online: 9 August 2021

References
	1.	 Foden, W. B. et al. Climate change vulnerability assessment of species. 

Wiley Interdiscip. Rev. Clim. Change 10, e551 (2019).
	2.	 Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. 

Nature 421, 37–42 (2003).
	3.	 Parmesan, C. Ecological and evolutionary responses to recent climate 

change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
	4.	 Walther, G.-R. et al. Ecological responses to recent climate change. Nature 

416, 389–395 (2002).

	5.	 Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. 
Climate-driven changes in the composition of New World plant 
communities. Nat. Clim. Change 10, 965–970 (2020).

	6.	 Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal 
the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 
117, 4211–4217 (2020).

	7.	 Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much 
does climate change threaten European forest tree species distributions? 
Glob. Change Biol. 24, 1150–1163 (2018).

	8.	 Peterson, A. T. et al. Ecological Niches and Geographic Distributions 
(Princeton Univ. Press, 2011).

	9.	 Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. 
Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 
10, 1446 (2019).

	10.	 Fourcade, Y., Besnard, A. G. & Secondi, J. Evaluating interspecific niche 
overlaps in environmental and geographic spaces to assess the value of 
umbrella species. J. Avian Biol. 48, 1563–1574 (2017).

	11.	 Feeley, K. J., Rehm, E. M. & Machovina, B. perspective: The responses of 
tropical forest species to global climate change: acclimate, adapt, migrate, or 
go extinct? Front. Biogeogr. 4, 69–84 (2012).

	12.	 Razgour, O. et al. An integrated framework to identify wildlife populations 
under threat from climate change. Mol. Ecol. Resour. 18, 18–31 (2018).

	13.	 Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets 
community-level modelling of biodiversity: mapping the genomic landscape 
of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

	14.	 Exposito-Alonso, M. et al. Genomic basis and evolutionary potential for 
extreme drought adaptation in Arabidopsis thaliana. Nat. Ecol. Evol. 2, 
352–358 (2018).

	15.	 Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R. & Weigel, D. 
Natural selection on the Arabidopsis thaliana genome in present and future 
climates. Nature 573, 126–129 (2019).

	16.	 Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation 
planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).

	17.	 Brown, J. L. et al. Predicting the genetic consequences of future climate 
change: the power of coupling spatial demography, the coalescent, and 
historical landscape changes. Am. J. Bot. 103, 153–163 (2016).

	18.	 Waldvogel, A. et al. Evolutionary genomics can improve prediction of 
species’ responses to climate change. Evoution Lett. 4, 4–18 (2019).

	19.	 Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future 
of conservation genetics. Nat. Rev. Genet. 11, 697–709 (2010).

	20.	 Barbosa, S. et al. Integrative approaches to guide conservation decisions: 
using genomics to define conservation units and functional corridors. Mol. 
Ecol. 27, 3452–3465 (2018).

	21.	 Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate 
change. Ecography 42, 1280–1297 (2019).

	22.	 Hällfors, M. H. et al. Addressing potential local adaptation in species 
distribution models: Implications for conservation under climate change. 
Ecol. Appl. 26, 1154–1169 (2016).

	23.	 Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, 
S. R. Genomic prediction of (mal)adaptation across current and future 
climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).

	24.	 Rellstab, C., Dauphin, B. & Exposito-Alonso, M. Prospects and limitations 
of genomic offset in conservation management. Evol. Appl. 14,  
1202–1212 (2021).

	25.	 Soberón, J. M. Niche and area of distribution modeling: a population 
ecology perspective. Ecography 33, 159–167 (2010).

	26.	 Araújo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope 
modeling. Ecology 93, 1527–1539 (2012).

	27.	 Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. 
Niches, models, and climate change: assessing the assumptions and 
uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).

	28.	 Collart, F., Hedenäs, L., Broennimann, O., Guisan, A. & Vanderpoorten, A. 
Intraspecific differentiation: Implications for niche and distribution 
modelling. J. Biogeogr. 48, 415–426 (2020).

	29.	 Benito Garzón, M., Robson, T. M. & Hampe, A. ΔTraitSDMs: species 
distribution models that account for local adaptation and phenotypic 
plasticity. N. Phytol. 222, 1757–1765 (2019).

	30.	 Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for 
association between loci and environmental gradients using latent factor 
mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).

	31.	 Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population 
structure using multilocus genotype data. Genetics 155, 945–959 (2000).

	32.	 Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE 
algorithm for individual ancestry estimation. BMC Bioinform. 12,  
246 (2011).

	33.	 Ikeda, D. H. et al. Genetically informed ecological niche models improve 
climate change predictions. Glob. Change Biol. 23, 164–176 (2017).

	34.	 Jay, F. et al. Forecasting changes in population genetic structure of alpine 
plants in response to global warming. Mol. Ecol. 21, 2354–2368 (2012).

Nature Ecology & Evolution | VOL 5 | October 2021 | 1350–1360 | www.nature.com/natecolevol1358

https://doi.org/10.5281/zenodo.4746517
https://doi.org/10.5281/zenodo.4746517
https://doi.org/10.5281/zenodo.4746517
http://www.nature.com/natecolevol


PerspectiveNATure ECOlOgy & EvOluTiOn

	35.	 Razgour, O. et al. Considering adaptive genetic variation in climate change 
vulnerability assessment reduces species range loss projections. Proc. Natl 
Acad. Sci. USA 116, 10418–10423 (2019).

	36.	 Gotelli, N. J. & Stanton-Geddes, J. Climate change, genetic markers and 
species distribution modelling. J. Biogeogr. 42, 1577–1585 (2015).

	37.	 Pyhäjärvi, T., Hufford, M. B., Mezmouk, S. & Ross-Ibarra, J. Complex 
patterns of local adaptation in teosinte. Genome Biol. Evol. 5, 1594–1609 
(2013).

	38.	 Aguirre-Liguori, J. A. et al. Connecting genomic patterns of local adaptation 
and niche suitability in teosintes. Mol. Ecol. 26, 4226–4240 (2017).

	39.	 Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution 
climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

	40.	 Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 
7, 1225–1241 (2004).

	41.	 Leimu, R. & Fischer, M. A meta-analysis of local adaptation in plants. PLoS 
ONE 3, e4010 (2008).

	42.	 de Villemereuil, P. & Gaggiotti, O. E. A new FST-based method to uncover 
local adaptation using environmental variables. Methods Ecol. Evol. 6, 
1248–1258 (2015).

	43.	 Coop, G. M., Witonsky, D., Di Rienzo, A. & Pritchard, J. K. Using 
environmental correlations to identify loci underlying local adaptation. 
Genetics 185, 1411–1423 (2010).

	44.	 Gautier, M. Genome-wide scan for adaptive divergence and association 
with population-specific covariates. Genetics 201, 1555–1579 (2015).

	45.	 De Mita, S. et al. Detecting selection along environmental gradients: 
analysis of eight methods and their effectiveness for outbreeding and selfing 
populations. Mol. Ecol. 22, 1383–1399 (2013).

	46.	 Schoville, S. D. et al. Adaptive genetic variation on the landscape: methods 
and Cases. Annu. Rev. Ecol. Evol. Syst. 43, 23–43 (2012).

	47.	 Tiffin, P. & Ross-Ibarra, J. Advances and limits of using population genetics 
to understand local adaptation. Trends Ecol. Evol. 29, 673–680 (2014).

	48.	 Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing 
methods for detecting multilocus adaptation with multivariate genotype–
environment associations. Mol. Ecol. 27, 2215–2233 (2018).

	49.	 Fitzpatrick, M. C., Chhatre, V. E., Soolanayakanahally, R. Y. & Keller, S. R. 
Experimental support for genomic prediction of climate maladaptation 
using the machine learning approach Gradient Forests. Mol. Ecol. Resour. 
https://doi.org/10.1111/1755-0998.13374 (2021).

	50.	 Gougherty, A. V., Keller, S. R. & Fitzpatrick, M. C. Maladaptation, 
migration and extirpation fuel climate change risk in a forest tree species. 
Nat. Clim. Change 11, 166–171 (2021).

	51.	 Fitzpatrick, M. C., Keller, S. R. & Lotterhos, K. E. Comment on ‘Genomic 
signals of selection predict climate-driven population declines in a 
migratory bird’. Science 361, eaat7279 (2018).

	52.	 Booker, T. R., Yeaman, S. & Whitlock, M. C. Variation in recombination 
rate affects detection of outliers in genome scans under neutrality. Mol. 
Ecol. 29, 4274–4279 (2020).

	53.	 Rhoné, B. et al. Pearl millet genomic vulnerability to climate change in 
West Africa highlights the need for regional collaboration. Nat. Commun. 
11, 5274 (2020).

	54.	 Bascompte, J., García, M. B., Ortega, R., Rezende, E. L. & Pironon, S. 
Mutualistic interactions reshuffle the effects of climate change on plants 
across the tree of life. Sci. Adv. 5, eaav2539 (2019).

	55.	 Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the 
rear edge matters. Ecol. Lett. 8, 461–467 (2005).

	56.	 Sexton, J. P., Strauss, S. Y. & Rice, K. J. Gene flow increases fitness at the 
warm edge of a species’ range. Proc. Natl Acad. Sci. USA 108, 11704–11709 
(2011).

	57.	 Hufford, M. B. et al. The genomic signature of crop-wild introgression in 
maize. PLoS Genet. 9, e1003477 (2013).

	58.	 Pease, J. B., Haak, D. C., Hahn, M. W. & Moyle, L. C. Phylogenomics 
reveals three sources of adaptive variation during a rapid radiation. PLoS 
Biol. 14, e1002379 (2016).

	59.	 Figueiró, H. V. et al. Genome-wide signatures of complex introgression and 
adaptive evolution in the big cats. Sci. Adv. 3, e1700299 (2017).

	60.	 Bontrager, M. & Angert, A. L. Gene flow improves fitness at a range edge 
under climate change. Evol. Lett. 3, 55–68 (2019).

	61.	 Todesco, M. et al. Massive haplotypes underlie ecotypic differentiation in 
sunflowers. Nature 584, 602–607 (2020).

	62.	 Le Corre, V., Siol, M., Vigouroux, Y., Tenaillon, M. I. & Délye, C. Adaptive 
introgression from maize has facilitated the establishment of teosinte as a 
noxious weed in Europe. Proc. Natl Acad. Sci. USA 117, 25618–25627 (2020).

	63.	 Oziolor, E. et al. Adaptive introgression enables evolutionary rescue from 
extreme environmental pollution. Science 364, 455–457 (2019).

	64.	 Bolnick, D. I. & Nosil, P. Natural selection in populations subject to a 
migration load. Evolution 61, 2229–2243 (2007).

	65.	 Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across 
species’ geographical ranges: the central-marginal hypothesis and beyond. 
Mol. Ecol. 17, 1170–1188 (2008).

	66.	 Sexton, J. P., McInyre, P. J., Angert, A. L. & Rice, K. J. Evolution and 
ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40,  
415–436 (2009).

	67.	 Brady, S. P. et al. Causes of maladaptation. Evol. Appl. 12, 1229–1242 (2019).
	68.	 Micheletti, S. J. & Storfer, A. Mixed support for gene flow as a constraint to 

local adaptation and contributor to the limited geographic range of an 
endemic salamander. Mol. Ecol. 29, 4091–4101 (2020).

	69.	 Sagarin, R. D. & Gaines, S. D. The ‘abundant centre’ distribution: to what 
extent is it a biogeographical rule? Ecol. Lett. 5, 137–147 (2002).

	70.	 Sagarin, R. D., Gaines, S. D. & Gaylord, B. Moving beyond assumptions to 
understand abundance distributions across the ranges of species. Trends 
Ecol. Evol. 21, 524–530 (2006).

	71.	 Fedorka, K. M., Winterhalter, W. E., Shaw, K. L., Brogan, W. R. & 
Mousseau, T. A. The role of gene flow asymmetry along an environmental 
gradient in constraining local adaptation and range expansion. J. Evol. Biol. 
25, 1676–1685 (2012).

	72.	 Nosil, P., Harmon, L. J. & Seehausen, O. Ecological explanations for 
(incomplete) speciation. Trends Ecol. Evol. 24, 145–156 (2009).

	73.	 Cenzer, M. L. Adaptation to an invasive host is driving the loss of a native 
ecotype. Evolution 70, 2296–2307 (2016).

	74.	 Hengeveld, R. & Haeck, J. The distribution of abundance. I. Measurements. 
J. Biogeogr. 9, 303–316 (1982).

	75.	 Farkas, T. E., Mononen, T., Comeault, A. A., Hanski, I. & Nosil, P. 
Evolution of camouflage drives rapid ecological change in an insect 
community. Curr. Biol. 23, 1835–1843 (2013).

	76.	 Excoffier, L. & Foll, M. fastsimcoal: a continuous-time coalescent simulator 
of genomic diversity under arbitrarily complex evolutionary scenarios. 
Bioinformatics 27, 1332–1334 (2011).

	77.	 Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. 
Robust demographic inference from genomic and SNP data. PLoS Genet. 9, 
e1003905 (2013).

	78.	 Wright, S. The roles of mutation, inbreeding, crossbreeding and  
selection in evolution. In Proc. Sixth International Congress of Genetics  
Vol. 1, 356–366 (1932).

	79.	 Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of 
population structure. Evolution 38, 1358–1370 (1984).

	80.	 Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. 
Ann. Hum. Genet. 47, 253–259 (1983).

	81.	 Yeaman, S. & Otto, S. P. Establishment and maintenance of adaptive genetic 
divergence under migration, selection, and drift. Evolution 65, 2123–2129 
(2011).

	82.	 Feder, J. L., Flaxman, S. M., Egan, S. P., Comeault, A. A. & Nosil, P. 
Geographic mode of speciation and genomic divergence. Annu. Rev. Ecol. 
Evol. Syst. 44, 73–97 (2013).

	83.	 Endler, J. Gene Flow and population differentiation. Science 179, 243–250 
(1973).

	84.	 Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate 
change and the conservation value of range-edge populations. Ecol. Evol. 5, 
4315–4326 (2015).

	85.	 Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid 
range shifts of species associated with high levels of climate warming. 
Science 333, 1024–1026 (2011).

	86.	 Chen, I. C. et al. Elevation increases in moth assemblages over 42 years on 
a tropical mountain. Proc. Natl Acad. Sci. USA 106, 1479–1483 (2009).

	87.	 McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory 
to model connectivity in ecology, evolution, and conservation. Ecology 89, 
2712–2724 (2008).

	88.	 Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P. & Eguiarte, L. E. 
Climate change is predicted to disrupt patterns of local adaptation in wild 
and cultivated maize. Proc. R. Soc. B 286, 20190486 (2019).

	89.	 Kling, M. M. & Ackerly, D. D. Global wind patterns shape genetic 
differentiation, asymmetric gene flow, and genetic diversity in trees. Proc. 
Natl Acad. Sci. USA 118, e2017317118 (2021).

	90.	 Henn, B. M. et al. Distance from sub-Saharan Africa predicts mutational load 
in diverse human genomes. Proc. Natl Acad. Sci. USA 113, 440–449 (2016).

	91.	 Gaut, B. S., Seymour, D. K., Liu, Q. & Zhou, Y. Demography and its effects 
on genomic variation in crop domestication. Nat. Plants 4, 512–520 (2018).

	92.	 Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
	93.	 Choi, Y., Sims, G., Murphy, S., Miller, J. & Chan, A. Predicting the 

functional effect of amino acid substitutions and indels. PLoS ONE 7, 
e46688 (2012).

	94.	 Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect 
protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

	95.	 Davydov, E. et al. Identifying a high fraction of the human genome to  
be under selective constraint using GERP++. PLoS Comput. Biol. 6, 
e1001025 (2010).

	96.	 Yang, J. et al. Incomplete dominance of deleterious alleles contributes 
substantially to trait variation and heterosis in maize. PLoS Genet. 13, 
e1007019 (2017).

Nature Ecology & Evolution | VOL 5 | October 2021 | 1350–1360 | www.nature.com/natecolevol 1359

https://doi.org/10.1111/1755-0998.13374
http://www.nature.com/natecolevol


Perspective NATure ECOlOgy & EvOluTiOn

	97.	 Willi, Y., Fracassetti, M., Zoller, S. & Van Buskirk, J. Accumulation of 
mutational load at the edges of a species range. Mol. Biol. Evol. 35,  
781–791 (2018).

	98.	 Koski, M. H., Layman, N. C., Prior, C. J., Busch, J. W. & Galloway, L. F. 
Selfing ability and drift load evolve with range expansion. Evol. Lett. 3, 
500–512 (2019).

	99.	 Micheletti, S. J. & Storfer, A. A test of the central-marginal hypothesis using 
population genetics and ecological niche modelling in an endemic 
salamander (Ambystoma barbouri). Mol. Ecol. 24, 967–979 (2015).

	100.	 Peischl, S. & Excoffier, L. Expansion load: recessive mutations and the role 
of standing genetic variation. Mol. Ecol. 24, 2084–2094 (2015).

	101.	 Braasch, J. & Barker, B. S. Expansion history and environmental  
suitability shape effective population size in a plant invasion. Mol. Ecol. 28, 
2546–2558 (2019).

	102.	 Perrier, A., Sánchez-Castro, D. & Willi, Y. Expressed mutational load 
increases toward the edge of a species’ geographic range. Evolution 74, 
1711–1723 (2020).

	103.	 Zhou, Y. et al. The population genetics of structural variants in grapevine 
domestication. Nat. Plants 5, 965–979 (2019).

	104.	 Peischl, S., Kirkpatrick, M. & Excoffier, L. Expansion load and  
the evolutionary dynamics of a species range. Am. Nat. 185,  
81–93 (2015).

	105.	 Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range 
expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).

	106.	 Lira-Noriega, A. & Manthey, J. D. Relationship of genetic diversity  
and niche centrality: a survey and analysis. Evolution 68,  
1082–1093 (2014).

	107.	 Bay, R. A. et al. Genomic signals of selection predict climate-driven 
population declines in a migratory bird. Science 359, 83–86 (2018).

	108.	 Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an 
endangered southwestern songbird. Ecol. Lett. 21, 1085–1096 (2018).

	109.	 Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the 
visualization of intersecting sets and their properties. Bioinformatics 33, 
2938–2940 (2017).

Acknowledgements
The study was supported by a UC-Mexus postdoctoral fellowship to J.A.A.-L., National 
Science Foundation grant no. 1741627 to B.S.G. and CONACyT Ciencia de Frontera 
2019 grant no. 263962 to S.R.-B.

Author contributions
J.A.A.-L., S.R.-B. and B.S.G shaped ideas and content, discussed the results and wrote 
the manuscript. J.A.A.-L. wrote the code, and S.R.-B. and J.A.A.-L. constructed the 
Markdown file.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41559-021-01526-9.

Correspondence should be addressed to B.S.G.

Peer review information Nature Ecology & Evolution thanks Matthew Fitzpatrick, 
Ann-Marie Waldvogel and the other, anonymous, reviewer(s) for their contribution to 
the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© Springer Nature Limited 2021

Nature Ecology & Evolution | VOL 5 | October 2021 | 1350–1360 | www.nature.com/natecolevol1360

https://doi.org/10.1038/s41559-021-01526-9
http://www.nature.com/reprints
http://www.nature.com/natecolevol

	The evolutionary genomics of species’ responses to climate change

	Genetic structure and species distribution models

	Incorporating local adaptation

	Additional evolutionary processes

	Gene flow. 
	Population dispersal. 
	Genomic load. 

	An integrated framework

	Acknowledgements

	Fig. 1 Genetic structure and species distribution models.
	Fig. 2 Turnover functions and genetic offsets.
	Fig. 3 Gene flow into focal populations.
	Fig. 4 Predicting potential areas of future dispersal.
	Fig. 5 The FOLDS integrated framework.




