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Climate change is a threat to biodiversity. One way that this threat manifests is through pronounced shifts in the geographi-
cal range of species over time. To predict these shifts, researchers have primarily used species distribution models. However,
these models are based on assumptions of niche conservatism and do not consider evolutionary processes, potentially limiting
their accuracy and value. To incorporate evolution into the prediction of species' responses to climate change, researchers have
turned to landscape genomic data and examined information about local genetic adaptation using climate models. Although
this is an important advancement, this approach currently does not include other evolutionary processes—such as gene flow,
population dispersal and genomic load—that are critical for predicting the fate of species across the landscape. Here, we briefly
review the current practices for the use of species distribution models and for incorporating local adaptation. We next discuss
the rationale and theory for considering additional processes, reviewing how they can be incorporated into studies of spe-
cies' responses to climate change. We summarize with a conceptual framework of how manifold layers of information can be
combined to predict the potential response of specific populations to climate change. We illustrate all of the topics using an
exemplar dataset and provide the source code as potential tutorials. This Perspective is intended to be a step towards a more

comprehensive integration of population genomics with climate change science.

lighting a pressing need to identify how populations respond

to climate change and to use this information to conserve
species. To date, these needs have been addressed primarily using
species distribution models (SDMs)"’. The principal goals of SDMs
are to identify climatic factors that define the geographical distri-
bution of a species and then to predict shifts in the distributions
of species over time and space as a function of climate change®"°.
However, at their most basic, SDMs assume that all individuals and
populations within a species are equivalent, and they ignore the
potential for evolution. The forces that affect evolution are complex,
and SDMs are not able to incorporate this complexity™''%.

Recent research, prompted by a series of landmark studies'*~"%,
has integrated landscape genomic data with global circulation mod-
els that project future climatic conditions. This work recognizes that
the response of populations to climate change can vary across a spe-
cies’ range and also emphasizes the potential importance of local
adaptation to specific environments. However, the evolutionary fate
of species does not rely on adaptation alone, because evolution is a
function of many interacting factors'®. The integration of evolution-
ary forces beyond adaptation may help to predict the fate of species,
provide additional insights into evolutionary dynamics, and ulti-
mately guide conservation and management'”*.

In this Perspective, we have two goals: (1) to argue that addi-
tional evolutionary forces should be incorporated into predicting
the response of species to climate change, and (2) to make con-
crete suggestions to achieve that end. To do so, we begin by briefly
reviewing SDMs and the emerging synthesis of landscape genom-
ics, local adaptation and climate projections. These topics have been
reviewed recently'®”'~*, but we cover them here to lay a foundation
for our proposed extensions. Some of these reviews have mentioned
the need to consider additional evolutionary processes such as gene
flow in predictions of species’ responses to climate change'®**,

( : limate change contributes to the loss of biodiversity'~, high-

but they have not suggested potential solutions. Accordingly, in the
second part of this Perspective we discuss three evolutionary pro-
cesses—gene flow, population dispersal and genetic load—and sug-
gest ways to build them into a framework for assessing the climate
change vulnerability of populations. We illustrate our suggestions
using an exemplar dataset from the wild plant species teosinte (Zea
mays ssp. mexicana; hereafter mexicana) and provide code to per-
form all analyses. By providing background information, examples
and code, we intend for this work to be accessible for researchers
who seek to consolidate landscape genomics into their work or, con-
versely, for population genomicists who want to merge their data
with climate projections. We conclude by proposing a conceptual
framework to evaluate the responses of species to climate change.

Genetic structure and species distribution models

Correlative SDMs have been widely used to estimate the distribu-
tion of species across space and time. In essence, the climatic con-
ditions in which a species occurs are used to construct a model of
the species” ecological niche that is then projected into geographi-
cal space. The use and misuse of SDMs has been reviewed previ-
ously"*'*!% here we provide a brief overview to highlight pertinent
information. The theory behind SDMs can be summarized with the
BAM diagram®*, which depicts the geographical distribution of a
species in three components: suitable areas in terms of biotic fac-
tors (B), abiotic factors (A) and areas that are accessible through
migration (M) (Fig. 1a). The intersection among these components
(G,) characterizes regions in geographical space that are suitable for
positive population growth. In the context of climate change, SDMs
forecast how G, will change under future environmental condi-
tions by comparing present-day and future models. To achieve this,
SDMs rely on several simplifying assumptions®**, primarily that
(1) all the abiotically suitable areas also represent a suitable biotic
environment, including biotic interactions and interactors (A ~ B);
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Fig. 1| Genetic structure and species distribution models. a, The BAM model—a theoretical construction that integrates the biotic, abiotic and migration
potential of species. G, indicates the intersection in geographical space where population growth is positive. b, Genetic clustering of mexicana identifies
two genetic clusters (K=2), the southern cluster (blue) and the northern cluster (red). The bars are ordered by the mean annual temperature (MAT) in
which populations grow. ¢,d, SDMs project the geographical range of southern (blue) and northern (red) genetic clusters in the present (¢) and future

(2070) (d).

(2) species’ distributions are in equilibrium to environmental con-
ditions; and (3) all the accessible space will be fully (and equally)
occupied by a species.

The BAM model also assumes that all populations respond to
climate change similarly. In other words, the projection of SDMs
into different time periods assumes both niche conservation and
spatial homogeneity of populations relative to climate and other
biotic factors®”’. The problem with the assumption of homogene-
ity is it ignores how genetic factors affect the way a species (or its
populations) interacts with B, A and M across both space and time.
Ultimately, the probability of survival and dispersal across space and
time is a function of environmental suitability and of the adaptive
landscape. SDMs omit the latter and implicitly assume that genetic
heterogeneity acts only to generate random and spatially uncorre-
lated noise between species’ occurrence and the environment.

One advance has been to incorporate spatial genetic structure
into SDMs*** by (1) identifying genetic clusters using standard
population genetics methods™-% (2) building SDMs for individual
clusters; and (3) comparing the per-cluster SDMs between the pres-
ent and future to predict species’ responses to climate change®>**~*°.
We illustrate this approach using the mexicana dataset, which con-
sists of 33,454 SNPs from 348 individuals representing 23 popula-
tions from regions of Central Mexico™** (Markdown 1, available
in Supplementary Information). Genetic clustering (Markdown
2 Supplementary Information) indicates that populations can be
divided roughly into two groups (Fig. 1b): a northern cluster (N)
from warmer lowland regions and a southern cluster (S) in cooler
highland regions. However, note that few populations consist
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of genetic components that are solely attributable to one cluster,
emphasizing that clustering is inherently approximate. We next
constructed SDMs for each cluster separately using data from the
WorldClim database’ that averages the climate over the recent past
(1970-2010; Markdowns 1 and 2, Supplementary Information). The
results show that the present-day SDMs for the two genetic clus-
ters predict different areas of potential distribution (Fig. 1c), sug-
gesting that the two clusters occupy non-overlapping areas of the
available climatic space. Importantly, differences between the clus-
ters are magnified when SDMs are projected to the year 2070 (Fig.
1d) because the future projected distribution is expected to increase
slightly in area for the warm-adapted northern cluster but decline
markedly for the cold-adapted southern cluster.

Similar to previous studies'>'**>*>%, the mexicana example sup-
ports the idea that different genetic clusters (or populations) vary
in their relationships with environmental conditions (but see ref.
). By doing so, this example illustrates one of the many limita-
tions of SDMs and the BAM model, specifically, the assumption
that all populations are identical and will respond similarly to cli-
mate change. We nonetheless embrace the intellectual construct
of the BAM model, especially its emphasis on overlapping criteria
to consider the fate of a species. Below we will introduce a similar
conceptual model that incorporates population-level evolutionary
processes.

Incorporating local adaptation
The identification of genetic clusters provides additional resolution

to SDMs, but they treat landscape genomic data as binary, static
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predictors of inclusion in a cluster. This approach ignores the fact
that genomic data are a rich source of information about evolution-
ary processes. More specifically, the frequencies of alleles across
populations contain clues about the genetics of adaptation to cli-
mate***!. The basic adaptive premise is simple: if a single SNP (for
example, an A to G variant) is at a low frequency in one popula-
tion but at a high frequency in a second population, the SNP may
contribute to adaptation in the local environment of one or both
populations. Evidence for local adaptation is strengthened when
the observed allele frequency differences between populations
exceed the expectation on the basis of genetic drift and when allele
frequencies are correlated with bioclimatic variables such as tem-
perature, precipitation or other factors. However, it is important to
accentuate that neutral and selective forces often covary in space, so
that variant frequencies are shaped by evolutionary processes other
than selection, including population history, drift and gene flow.
For example, another potential explanation for the A to G variant is
that allelic frequencies track an historical split between populations,
rather than adaptation, and therefore reflect the combined effects of
population history and genetic drift.

If the goal is to incorporate adaptation into predictions about
the fate of populations under climate change, one approach is to
filter genomic data to identify a subset of SNPs that is particularly
likely to contribute to local adaptation. This filtering step can be
completed using standard population genetic tools****=** that iden-
tify SNPs with allele frequency patterns that are not easily attrib-
utable to population structure and genetic drift*~*. For example,
one method (bayescenv*’) calculates genetic divergence among
populations and then partitions individual SNPs into one of three
classes: (1) neutral SNPs that reflect population history; (2) SNPs
that do not fit the inferred pattern of population history (and are
therefore likely to have been affected by forces beyond demogra-
phy and drift); and (3) SNPs that also associate with environmental
data, suggesting they are particularly strong candidates for contrib-
uting to local adaptation. Such methods can be applied either on
their own or in combination. For example, Aguirre-Liguori et al.*
applied two separate tools*>*’ to the mexicana dataset and identi-
fied a set of 32 putatively adaptive (or candidate) SNPs from both
methods (Markdown 3.1, Supplementary Information). It is worth
mentioning that this filtering step may not be able to discriminate
between causative SNPs that contribute to adaptive change and vari-
ants that are linked to adaptive SNPs. Moreover, the filtering step
contains an inherent trade-off between retaining a high number of
SNPs, including numerous false positives, or tolerating a high rate
of false negatives to focus on a particularly robust set of candidates.
We suspect that the use of two filtering methods, as applied to mexi-
cana, leans towards the latter but, more generally, procedures can be
altered depending on project objectives (reviewed in ref. *°).

Once identified, candidate SNPs are used to predict how popula-
tion frequencies will shift under climate change.

This is done by building a model that identifies nonlinear asso-
ciations between allele frequencies and environmental variables and
then using those associations to project allele frequencies into the
future, on the basis of predicted changes in bioclimatic variables.
To address these steps, while efficiently handling the potential for
massive amounts of data, researchers have turned to machine learn-
ing algorithms, such as gradient forest (GF)" and random forest'*.
As explained in recent publications'******, the goal of GF is to take
SNP allele frequencies (as response variables) and climatic data
(as predictors) to identify environmental gradients that associate
with genetic variation and also to determine how allele frequen-
cies turnover along that gradient'>'*. To illustrate the approach,
we applied GF to the 32 candidate mexicana SNPs and to a separate
set of 500 neutral reference SNPs for comparison (Markdown 3.2,
Supplementary Information) using contemporary bioclimatic data
as predictors. On the basis of these analyses, the allele frequencies
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of candidate SNPs across populations are most strongly correlated
with one climatic variable (BIO9, the mean temperature of the dri-
est quarter) but also with others (Fig. 2a). A graph of BIO9 against
projected allelic frequencies (Fig. 2b) demonstrates that: (1) candi-
date SNPs have a stronger association with BIO9 than the reference
SNPs, providing some reassurance that the former reflect some fea-
ture of local adaptation to climate; (2) allelic frequencies for candi-
date SNPs turnover in regions in which BIO9 ranges between ~14
and 16°C; and (3) candidate SNPs differ substantially in frequency
between northern and southern populations (Fig. 2b).

The turnover functions make an implicit suggestion—if south-
ern populations are located where BIO9 temperatures increase
above ~14°C in the future, then the frequencies of the adaptive
alleles are expected to increase over time. In fact, if these SNPs do
underlie local adaptation, then the adaptive alleles need to increase
in frequency for southern populations to survive. The expected dif-
ference between allele frequencies in the present and in the future,
on the basis of all relevant bioclimatic variables, is the local genetic
offset'**. Populations with higher genetic offsets are expected to be
more vulnerable to climate change because they must undergo more
dramatic changes in adaptive allele frequencies to adapt.

Genetic offsets are calculated across geographical space on the
basis of the output of GF models. GF reports the cumulative impor-
tance of each bioclimatic variable across the landscape. For a given
location, the local genetic offset is calculated between the present
observed climate and a predicted future climate, which is a fore-
cast from a global circulation model, by taking the Euclidean dis-
tance between the vectors of cumulative importance (Markdown
3.3, Supplementary Information). The end result is the identifica-
tion of geographical regions in which the genetic space is predicted
to be disrupted as a function of climate change. To illustrate this
concept, we projected the genetic offset for mexicana populations
using 2070 climate predictions (Fig. 2¢), showing that the southern
populations have higher average genetic offsets compared with the
northern populations (Fig. 2d). These analyses suggest that north-
ern populations will generally be less vulnerable to climate change
than southern populations, an observation that could be crucial for
conservation efforts.

Although recommended”, it may be not necessary to identify
candidate SNPs before GF analyses because one can infer turnover
functions from an entire SNP dataset. However, if GF is applied to
all SNPs (rather than to a subset of candidate SNPs), the inferred
correlations may have little bearing on the process of local adapta-
tion®*?, because many SNPs are likely to covary in frequency among
populations due to population structure. In this situation, genetic
offsets will reflect expected shifts in neutral variation, confounding
climate adaptation with the demographic history of populations.
An alternative solution is to focus on a subset of SNPs based on
an independent analysis™ or to perform a correction for popula-
tion structure before the GF analyses®. Whichever the case, it drives
home a key point—some correction for population history is likely
to be crucial.

All of these approaches are likely to have low statistical power
to identify adaptive SNPs that covary with population structure®.
In fact, one study of poplars has found that genetic offsets based
on randomly selected SNPs predicted performance as well (or even
slightly better) as sets of candidate SNPs*, reflecting either limi-
tations in the approach or that many adaptive SNPs covary with
population structure in this system. Genetic offsets also omit biotic
interactions, thereby probably underestimating the effect of climate
change on the persistence of species™. Ultimately, more theoretical
and experimental studies are needed to understand the utility and
applicability of genetic offsets*. Nonetheless, incorporating adap-
tation into the framework of predicting species’ fate under climate
change is likely to provide important insights into causal relation-
ships between genotypes and climate-related phenotypes and also
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Fig. 2 | Turnover functions and genetic offsets. a, The inferred correlation between SNPs and bioclimatic variables on the basis of a GF analysis of 32
candidate SNPs. The bioclimatic variable in green (BIO9, the mean temperature in the driest quarter) has the strongest inferred correlation. The next four
bioclimatic variables (BIO10, BIO5, BIO4 and BIO8), in rank of strongest contribution to the model, are represented in black. b, Allelic turnover functions
relative to BIO9 (x axis), which is reported in °C. The y axis reflects the cumulative importance, which refers to the importance of SNPs in the GF models; it
reflects the total amount of turnover in allele frequency across the temperature gradient®. The cumulative turnover for individual candidate SNPs is shown
as thin grey lines. The solid black line indicates the turnover across all candidate SNPs; circles along this line represent populations arranged according

to BIO9, with colours indicating their inclusion in the warm northern cluster (red) or the cold southern cluster (blue). The dashed line represents the
average turnover across 500 reference SNPs that are not considered to be putatively adaptive. The superior performance of candidate SNPs is evidenced
by the higher turnover values of the solid bold line (candidate SNPs) compared with the dotted line (reference SNPs). ¢, Genetic offset estimated across
the landscape, based on the 32 candidate SNPs. Darker hues indicate higher genetic offset (higher expected vulnerability to climate change). The y and x
axes represent latitude and longitude, respectively. The circles represent individual populations, with colours indicating their inclusion in the cold southern
cluster (blue) or the warmer northern cluster (red). d, Estimated genetic offsets combined across all populations within the colder southern cluster (blue;
n=12) and warmer northern cluster (red; n=11). The predicted genetic offset is higher, on average (two-sided t-test, t=9.87; d.f. =17.53, P< 0.001), for
populations from the south.

to aid management decisions based on putatively adaptive variants  These studies generally omit other evolutionary processes that will

within populations. impact the fate of populations under climate change. The impor-
tance of including more evolutionary processes such as gene flow,
Additional evolutionary processes population movement and genetic load has been mentioned in

To date, local adaptation has been integrated into ~20 climate vul-  various reviews and papers'®*>*, but they have not been yet inte-
nerability studies across a broad taxonomic array of organisms”. grated into a comprehensive strategy. These processes are likely to
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affect the pace of species’ adaptation and colonization under cli-
mate change'®, but not always positively. Below we discuss the pos-
sible impacts of these processes and review ways to integrate them
into the framework of landscape genomics and predicting species’
responses to climate change.

Gene flow. Gene flow refers to the genetic exchange between exist-
ing populations. A fascinating feature of this exchange is that it can
either speed the process of adaptation, by introducing favourable
alleles from one population to another®-*, or slow adaptation by con-
tributing non-adaptive alleles from one population to another®-.
Adaptive gene flow can have major effects on the geographical range
of a species. One interesting example of adaptive gene flow is from
mexicana into maize (Zea mays ssp. mays), which helped to expand
high-altitude cultivation of the crop”. Remarkably, gene flow in the
reverse direction has also been adaptive, because gene flow from
maize into mexicana has enabled the latter to expand its geographi-
cal range as an introduced weed in Europe®.

Maladaptation has been studied less than adaptation, but mal-
adaptive alleles can also be introduced into a population. This occurs
when there is gene flow between populations that are adapted to dif-
ferent conditions; an allele from a population in one environment
will lead to hybrid and introgressed individuals with reduced fitness
in the second environment®>**%”!. Another way to state the point is
to say that maladaptive gene flow reverses the divergence of popula-
tions caused by local adaptation’”’. Maladaptive gene flow may be
particularly important when there are populations adapted to the
edges of a species’ environmental niche. If there are larger, older
populations in the centre of the niche, then gene flow may predomi-
nate from the centre, potentially swamping locally adapted alleles in
the ‘edge’ populations®“*”*. Although it has not been studied exten-
sively, there are interesting examples of maladaptive gene flow. One
comes from a study of two morphs of walking stick insects (Timema
cristinae), where gene flow between the two morphs increased rates
of predation on both”.

The important point is that gene flow should be considered
when trying to predict the fate of populations because it may either
accelerate or decelerate the pace of adaptation. But how should
one proceed? Fortunately, population genetics has several existing
useful tools to evaluate gene flow. We illustrate one analysis here
based on coalescent simulations’*”” (Markdown 4, Supplementary
Information). The simulations are fit to features of the observed data
and output estimates of effective population size (N,), the migration
rate per generation (m) between populations and their product N,m
(Fig. 3a). Under equilibrium conditions, N reflects the average
number of individuals that move between populations each genera-
tion; a value of Nm > 1 is sufficient to homogenize populations over
the long term assuming no countervailing evolutionary forces™. A
key feature of N,m estimates based on this method is that they are
directional, that is, gene flow to and from a population can be esti-
mated separately. Other common methods to estimate N,m—such
as traditional Fj; statistics”>**—do not provide directional insights.

For the purposes of illustration, we implemented this approach
on two mexicana populations—one southern (population South2)
and one northern (population North4). The goal was to assess
whether these focal populations receive an influx of warmer-adapted
alleles from northern populations or are inundated with maladap-
tive alleles from the south. We estimated migration into South 2 and
North4 from every other population in the dataset. The N,m esti-
mates indicate that most populations contribute alleles to North 4
through gene flow (Fig. 3b). However, northern populations con-
tribute to North4 at much higher rates than southern populations,
suggesting that North 4 is unlikely to be swamped by maladaptive
gene flow from the south.

By contrast, the South 2 population receives more gene flow from
populations that are adapted to colder climates (Fig. 3¢), but it also
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receives substantive levels of gene flow from several northern popu-
lations at a N,m of ~1. The difficult question is whether putatively
adaptive gene flow from the north will overcome more frequent
gene flow from southern populations. Here the selection coeffi-
cient (s) of adaptive alleles is key, because maladaptive gene flow is
expected to swamp the population if the benefit of adaptive alleles
is less than roughly half the rate of maladaptive migration (that is,
s<~0.5m)"%, Because the s of adaptive alleles is not known, except
in rare exceptions where they have been determined experimen-
tally", it is difficult to predict the outcome of competing gene flow
into a population like South 2. It is also difficult to know whether
additional, unsampled populations could contribute to South2 and
whether N,m estimates, which integrate over genetic history, will
be accurate in the future. Finally, at least one study has shown that
maladaptive and adaptive gene flow can be ‘self-cancelling’ and
may therefore not impede divergence among populations due to
local adaptation®. We nonetheless argue that gene flow is impor-
tant for interpreting population vulnerability because it can have
implications both for a population’s response to climate change and
for potential management strategies—for example, introducing
pre-adaptive genetic diversity into vulnerable populations™**.

Population dispersal. Gene flow refers to the exchange of genes
between existing populations, but some populations may need to
move (or disperse) to a new location to survive*>. As concrete
examples, 102 montane moth species have increased their average
altitude by 67 m along a transect on Mount Kinabalu in Borneo over
a span of 42 years*. Similarly, more than 2,000 species of animals
and plants have moved to either higher elevations or more extreme
latitudes in response to climate change®.

Dispersal is a potential mechanism for the persistence of spe-
cies, but few studies have used landscape genomic data to examine
this phenomenon in the context of climate change predictions. One
example focuses on pearl millet in Africa; Rhoné et al.*’ identified
landraces with high predicted genomic offsets as potential risks for
crop failure. They then searched for landraces that have low pre-
dicted genetic offsets in the location of predicted failure. The most
likely replacement landraces were geographically distant from the
location of crop failure—that is, >1,000km away on average. This
study highlights the need for human-mediated, long-distance dis-
persal of landraces to avoid climate-related failures of the pearl
millet crop. Gougherty et al.” also used genetic offsets to study the
dispersal potential of wild poplar populations. They predicted that
populations at the centre of the species’ distribution will need to
move shorter distances to maintain low genetic offsets in the future,
as compared with populations at the edge of the distribution.

Both of these studies identified putative locations for movement
on the basis of genetic offsets, but they did not estimate the cost
of dispersal across the landscape. In the field of landscape genom-
ics, the calculation of costs has usually relied on circuit theory to
calculate the ‘resistance’ or ‘current’ of potential movement and to
estimate least-cost paths between locations®’. For example, Razgour
et al.”” measured the migration potential of two bat species between
two distinct locations. By focusing on features that correlate with
the current geographical distribution of species—specifically forest
cover and slope—they assessed whether an endangered population
could be replaced by the migration of an existing, less-endangered
population. They concluded that landscape connectivity was not
sufficient for an existing warm-adapted population to replace an
endangered population. Similarly, Aguirre-Liguori et al.*® used
landscape resistance to predict potential areas of dispersion for wild
Zea populations, based on present and future SDMs.

Circuit theory has been used in the field of landscape genet-
ics to estimate the cost of migration across specific distances and
routes. However, cost has been based on outputs from SDMs or from
environmental data given physiological knowledge (for example,
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Fig. 3 | Gene flow into focal populations. a, The model used to compare gene flow between a pair of populations, using the two focal populations (South 2
and North 4) as an example. The model includes parameters for the population size (N) of each population, directional migration rates (m) between
populations and a divergence time. We have labelled migration as adaptive and maladaptive because generally gene flow from populations in the cold
southern cluster with high genetic offsets will be maladaptive relative to gene flow from populations in the warm northern cluster. b, Estimates of gene
flow (N,m) into population North 4 from other sampled populations. Red distributions represent estimates from populations in the warm northern

cluster, whereas blue distributions represent estimates from populations in the cold southern cluster. ¢, Summary of gene flow into population South 2, as
described in b. In b and ¢, the dashed line represents N,m = 1, above which gene flow can homogenize allele frequencies between populations.

thermal niche thresholds), without utilizing landscape genomic data.
One approach is to identify potentially habitable future locations
for an existing population, based on genetic offsets™*, and then to
evaluate the feasibility of potential migration routes to those habit-
able locations. The latter step requires a matrix that estimates the
cost of movement from an existing location to all other potentially
habitable locations in the future. Here we illustrate this approach by
using turnover functions to determine whether movement from one
location to another entails high ‘landscape resistance; as reflected
by high genetic offsets, or low resistance, which represents a corri-
dor for potential population movement. In this framework, the total
landscape resistance between a current location and a future settle-
ment site is therefore a summation of the offsets across the landscape
paths between the locations. A nice feature of this approach is that
GF is used to weight bioclimatic variables to genetic patterns and
is then employed to estimate the dispersal costs. Depending on the
goals of the analysis and the weights, resistance between geographi-
cal sites can be based on all bioclimatic variables, on only uncorre-
lated variables or on a single variable (for example, BIO9). In Fig. 4a,
we show the estimation of landscape resistance for the South 2 popu-
lation of mexicana (Markdown 5, Supplementary Information). The
resulting map suggests, as expected, that distant dispersal is less
probable than nearby movement. It also suggests possible dispersal
routes to the east and west but not to the north and south.

This approach also permits comparisons among populations.
For example, we compared the number of habitable regions within
20km of each sampled mexicana population, suggesting that some
populations (for example, North9 and South 7) have few available
dispersal routes (Fig. 4b). Nonetheless, this approach based on
genetic offsets cannot define the limit to dispersal—that is, when are
offsets, resistances and geographical distances simply too much for
a population to disperse? This question cannot be answered without
detailed information about the physiology, phenotypic plasticity,
environmental tolerances and movement capabilities of a specific
study organism'®. This approach also does not include dispersal by
wind, water or biological vectors. Their effects can be substantive;
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for example, a recent meta-analysis found that stronger wind pat-
terns between populations are negatively correlated with genetic
differentiation®. One potential solution to the problem of wind and
water dispersal is to estimate predicted settlement areas on the basis
of genetic offsets and then use wind and water current models to
identify the most probable routes of dispersal.

Genomic load. Finally, we discuss genomic load, which refers to
the presence of genetic variants that reduce the fitness of a popula-
tion relative to a local fitness optimum. These deleterious genetic
variants are targeted by purifying selection. However, forces such
as genetic drift and linked selection limit the efficacy of purifying
selection, so that deleterious mutations can increase in frequency.
Drift is higher in small populations, and—although the relation-
ship among load, population size and history can be complex™'—
the reduced efficacy of selection can accelerate rates of population
extinction®”. It is therefore reasonable to surmise, as a first approxi-
mation, that the potential for a population to respond to climate
change is inversely related to its load*'.

Load is difficulty to study, because its estimation requires knowl-
edge about the fitness effects of specific variants. Lacking such
information, empirical studies have focused on measuring genetic
variants that are predicted to have deleterious effects, including
variants that alter amino acids (particularly with non-conserved
biochemical properties or that alter protein structure), introduce
premature stop mutations or modify sequence motifs that have been
otherwise highly conserved over evolutionary time*-°. Studies have
shown that these measures can correlate with phenotype™ and also
that deleterious variants may increase in specific populations—for
example, some inbreeding populations” and species with histo-
ries of genetic bottlenecks””'. There has also been some focus on
populations that are on the edges of a species’ geographical distri-
bution” or that expand a species’ range'*>'". In both cases, load
tends to be higher than for populations near to the centre of the
species’ range, with evidence for associated fitness decreases in edge
populations'®.
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Fig. 4 | Predicting potential areas of future dispersal. a, The map shows the focal population (South 2) as a cross (x). Possible dispersal paths to new
locations are coloured, with lower costs in yellow and higher costs in darker and warmer colours. The grey background indicates the predicted genetic
offsets for future climate forecasts, with darker colours indicating higher offsets. b, The number of potential areas (grid cells in the map) that can be
colonized within a 20 km radius for each population. Populations with fewer predicted settlement areas have fewer dispersal options. The two focal
populations from Fig. 3 (South 2 and North 4) are indicated in bold. ¢, The estimated genomic load, as measured for populations in the cold southern
cluster (blue) and warm northern cluster (red). The difference between clusters is not significant (two-sided t-test, t=1.69; d.f. =18.15, P=0.1). d,

The relationship between the estimated genomic load (y axis) and genetic offset (x axis) measured between the present and future climate forecasts
(r’=0.121; P=0.057; F=4.03 with Tand 21d.f.). The individual circles represent populations in the cold southern cluster (blue) and warm northern
cluster (red); the South 2 and South 11 populations have similar offsets but very different genomic loads. e, The estimated genomic load plotted for each
population as a function of the distance from the niche centroid of either the cold southern or the warm northern clusters. The correlation is significantly

positive (r?=0.295; P=0.007; F=8.79 with 1and 21d.f.).

Given the relevance of load and the fact that it can be approxi-
mated from genomic data, it is puzzling that it has not been incor-
porated into genetic predictions of the effects of climate change®.
However, the concept has not been fully ignored as genetic offsets
have been discussed as a measure of maladaptation®**—that is,
populations with high offsets will be maladapted in the future if
they do not have time to adapt. This interpretation of maladaptation
touches on genomic load but is incomplete. In theory, two popula-
tions can have identical genetic offsets based on adaptive SNPs but
markedly different loads depending on the distribution of delete-
rious SNPs (and structural variants'®”) throughout the remainder
of the genome. To illustrate this concept empirically, we estimated
the load for mexicana populations (Markdown 6.1, Supplementary
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Information) using a measure that compares the proportion and
population frequency of non-synonymous SNPs to synonymous
SNPs'*. We found that the southern populations have higher esti-
mated loads, on average, compared with northern populations (Fig.
4c). Moreover, two southern populations (Fig. 4d) have similar
genetic offsets but markedly different estimated loads. Assuming
that load is correlated inversely with fitness, one expects that the
population with higher load is vulnerable to climate change.

This approach considers only genomic load in the present, with-
out reference to how it may change in relation to future climate. The
challenge is that load is not deterministic and is therefore difficult to
predict. However, if load is associated with another variable that is
predictable, then it may be possible to roughly assess future trends.
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to identify populations that are at risk due to specific factors—for example, populations that lack dispersal opportunities but have favourable gene flow,
offsets, load, dispersal and SDMs. The colours in the Venn diagram map the 23 mexicana populations based on the following thresholds: more estimated
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20 km and presence in future SDMs. In addition to the Venn diagram, we visualized the intersection of sets and their size using an UpSetR plot'®?, for which
the connected coloured dots indicate multiple overlapping features. The histogram shows the corresponding number of mexicana populations that have
specific combinations of features. The text on the right provides verbal interpretation of sets of feature combinations.

The central abundance hypothesis (CAH)™ is useful in this context
because it predicts that environmental conditions are less ideal at
the edges of the geographical distribution of a species and also that
populations at edges have lower effective sizes and higher load than
populations in the centre®. Although the CAH does not apply uni-
versally”, it does hold in some cases. For example, genomic load
is higher at the geographical limits of Arabidopsis lyrata”, suggest-
ing that founder events at the geographical limits, along with gene
surfing'®, have caused deleterious mutations to accumulate on the
expanding range”'. To illustrate this concept, we have analysed how
load for individual mexicana populations is correlated with the
distance from the niche centroid'”®, focusing on the northern and
southern groups separately. For both groups, there is a positive and
significant trend between load and the distance from the niche cen-
troid (Fig. 4e).

When the CAH holds, as it seems to do for the northern and
southern mexicana groups, the question of load can be simpli-
fied to the following: if climate changes in the future, is a popula-
tion expected to be farther from the projected centroid? If so, it is
expected to have increased genetic load. For example, most mexi-
cana populations are expected to be farther from the niche cen-
troid in the future than they are now. However, the effect is more
pronounced for northern populations, suggesting that they are
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particularly likely to be subjected to evolutionary forces that pro-
duce genetic load (Markdown 6.2, Supplementary Information).

We recognize that this is, at best, a gross approximation of how
load will change under future climates, but this discussion brings
up one of the paradoxical features of populations and their pre-
dicted responses to climate change: the fate of small populations at
the edge of species’ geographical ranges®>”. These populations are
expected to experience higher genetic drift (and therefore potential
for higher genetic load). They may also be swamped by maladap-
tive gene flow from populations in the niche centroid and may be
in locations nearer to extreme environments that limit their migra-
tion potential®>'®. Yet, it is precisely these populations that are also
evolving adaptively to new climatic factors, because they are often
climatic outliers®™. It is this give and take among adaptation and
potentially contravening forces such as gene flow, dispersal and load
that is not yet adequately integrated into the framework of land-
scape genomics and predictions about population vulnerability
under climate change.

An integrated framework

The synthesis of genetic adaptation with climate change models is
a remarkable advance, because it explicitly recognizes that popula-
tions are not homogenous across the landscape'*'*'*"!%, However,
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current approaches do not yet capture most of the complexities of
the evolutionary process, some of which may be as important as
adaptation'. We argue that additional processes can and should be
considered to predict the fate of populations and species in the face
of a changing environment. To support that argument, we reviewed
three such processes—gene flow, dispersal and genetic load—in the
context of climate change.

Of course, it is important to bring separate analyses together into
an integrated whole. An integrated framework should synthesize
levels of risk based on factors such as SDMs, genetic variation and
landscape resistance®. But how can one perform this integration?
One simple approach is a conceptual extension of the BAM model,
in which the components of the Venn diagram represent manifold
outcomes from different analyses. To demonstrate, we introduce the
FOLDS model, which is named after the five features discussed in
this Perspective: gene flow, genetic offsets, genetic load, dispersal and
SDMs (Fig. 5). By applying empirical thresholds to all five features
(Fig. 5), we have assessed the empirical distribution of populations
in the FOLDS model. Of 23 populations, only one passed all five
empirical thresholds, suggesting that it is the most likely to survive
climate change without human intervention (Fig. 5). However, 7 out
of 23 populations had low genetic offsets and high dispersal capabili-
ties, despite being located in regions that are not predicted as hab-
itable in the future by SDMs (Fig. 5; Markdown 7, Supplementary
Information). We predict that these populations are likely to survive
climate change, based on the weight of evolutionary evidence.

A useful feature of the FOLDS model is its flexibility; theoreti-
cally, it can synthesize an unlimited number of components, each
component can be weighted on the basis of project objectives and
thresholds can be varied to assess effects on the robustness of con-
clusions. Although imperfect, FOLDS may help to fuel this rapidly
growing field, which needs to continue to expand in at least three
directions. The first is experimental validations of predicted genetic
offsets****>*!, which are beginning to appear**’ but still nascent.
A second is further consideration of evolutionary processes, along
with more complete measurement of genetic variants. An example
of the latter is structural variants, which have not been integrated
systematically into landscape genomics but are common, often
unlinked to SNPs and clearly affect phenotypes’'*. Finally, we are
intrigued about including additional features into FOLDS, includ-
ing human impacts such as urbanization, susceptibility to distur-
bance (for example, fire or flood) and biotic interactions. It will
be especially exciting to integrate landscape genomic data among
interacting set of species—for example, pathogens, predators, vec-
tors and hosts—or perhaps complete community assemblages.

Data availability
The exemplar mexicana data used in all analyses are available at
Zenodo (https://doi.org/10.5281/zenodo.4746517).

Code availability
The Markdown file is available as Supplementary Information.
All R code is also available at Zenodo (https://doi.org/10.5281/
zenodo.4746517).
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