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Abstract

We discuss the length Lc,n of the longest cycle in a sparse random graph Gn,p,
p = c/n, c constant. We show that for large c there exists a function f(c) such
that Lc,n/n → f(c) a.s. The function f(c) = 1 −∑∞

k=1 pk(c)e
−kc where pk(c) is a

polynomial in c. We are only able to explicitly give the values p1, p2, although we
could in principle compute any pk. We see immediately that the length of the longest
path is also asymptotic to f(c)n w.h.p.

1 Introduction

There are several basic questions that can be asked in the context of a class of graphs. E.g.
what is the chromatic number? Is the graph Hamiltonian? Another such basic question is
the following: how long is the longest cycle? In this paper we study this question in relation
to the sparse random graph Gn,p, p = c/n for a constant c > 0. Thus, let Lc,n denote the
length of the longest cycle in the random graph Gn,c/n. Erdős [10] conjectured that if c > 1
then w.h.p. Lc,n ≥ `(c)n where `(c) > 0 is independent of n. This was proved by Ajtai,
Komlós and Szemerédi [1] and in a slightly weaker form by de la Vega [26] who proved
that if c > 4 log 2 then f(c) = 1 − O(c−1). See also Suen [25]. Although this answered
Erdős’s question it only gives us a lower bound for the length of the longest cycle. Bollobás
[4] realised that for large c one could find a large path/cycle w.h.p. by concentrating on a
large subgraph with large minimum degree and demonstrating Hamiltonicity. In this way he
showed that `(c) ≥ 1− c24e−c/2. This was then improved by Bollobás, Fenner and Frieze [7]
to `(c) ≥ 1− c6e−c and then by Frieze [15] to `(c) ≥ 1− (1 + εc)(1 + c)e−c where εc → 0 as
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c→ ∞. This last result is optimal up to the value of εc, as there are w.h.p. (1+c)e
−cn+o(n)

vertices of degree 0 or 1.

The basic open question to this point, is at to whether or not there exists a function f(c)
such that w.h.p. the Lc,n = (1+ εn)f(c)n where εn → 0 as n→ 0. And what is f(c). In this
paper we establish the existence of f(c) for large c and give a method of computing it to
arbitrary accuracy. We note that this is one case of a fundamental extremal random variable
where the existence of a scaling limit has not previously been shown to exist and does not
appear to be susceptible to the interpolation method as in Bayati, Gamarnik and Tetali [3].

Let p = c/n and let G = Gn,p. We will assume throughout that c is sufficiently large. To
approximate the length of the longest path we construct a cycle C and then argue that w.h.p.
its length is equal to Lc,n − O(log n). It is well known, see for example Chapter 2 of [18]
that w.h.p. G consists of a unique linear size giant component C1 plus a collection of smaller
components of size bounded by O(log n). So to look for a long cycle, we must look inside
C1. Now, no vertex of degree one or less can be in a cycle and so we remove such vertices
from consideration. This may create more vertices of degree one and so we continue until
we have a subgraph with minimum degree at least two. This will be C2, it is the 2-core of
the giant component C1 and consists of all the vertices in C1 that are in at least one cycle.

C2 has minimum degree at least two, but it is unlikely to be Hamiltonian. One reason is
because there are a large number of triples of degree two vertices that share a common
neighbor. Given this, we first identify C3,ext, a large subgraph of C2 of minimum degree 3.
C3,ext can be proven to be Hamiltonian, a fact that we use as a starting point. To construct
an even longer cycle we consider how paths in C2 \ C3,ext can be inserted into a Hamilton
cycle in C3,ext. Indeed, in Section 3, we show that given a fixed set of vertex disjoint paths
whose endpoints are adjacent to C3,ext and cover a set of vertices Vpaths we can find a cycle
that spans V (C3,ext) ∪ Vpaths. By considering a suitable set of paths such that Vpaths is
(almost) maximized we find a long cycle in C2. The length of the longest path in Gn,c/n

differs from the length of this cycle O(log n) w.h.p. The reason for the latter statement is
that Lc,n − (|Vpaths|+ |C3,ext|) will be bounded by the size of the first and last component in
Gn,p \ C3,ext that a longest path traverses plus the number of vertices found in the non-tree
components of C2 \C3,ext. The latter two quantities, as seen by Lemmas 2.6 and 2.7 sum up
to O(log n) w.h.p.

Notation 1.1. Let C3,ext be the maximal subgraph of C2 such that (i) every vertex in C3,ext

has at least 3 neighbors in C3,ext and (ii) every vertex in C2 \ C3,ext that is adjacent to a
vertex in C3,ext has at least 3 neighbors in C3,ext. Note that if S1, S2 are two sets satisfying
(i) and (ii) then S1 ∪ S2 also satisfies (i), (ii) and so C3,ext is well-defined.

We let Γ be the induced subgraph of C2 spanned V (C2) \ V (C3,ext).

In Section 2, we study the structure of Γ by considering a peeling process that constructs
C3,ext as in the papers [4], [7] and [15].

Notation 1.2. Let T denote the set of trees in Γ. For a tree T ∈ T let PT be the set of path
packings of T where we allow only paths whose start- and end- vertex have neighbors in C3,ext.
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Here by a path packing we mean a set of vertex disjoint paths in which we also allow paths of
length 0. So a single vertex with neighbors in C3,ext counts as a path. For P ∈ PT let n(T, P )
be the number of vertices in T that are not covered by P . Let φ(T ) = minP∈PT

n(T, P ) and
Q(T ) ∈ PT denote a set of paths that leaves φ(T ) vertices of T uncovered i.e. satisfies
n(T,Q(T )) = φ(T ). Finally we let Q(T ) = ∪T∈T Q(T ).

Observe that any cycle in C2 fails to span at least
∑

T∈T φ(T ) vertices in the tree components
of Γ. Hence it spans at most |V (C2)| −

∑

T∈T φ(T ) vertices in C2. By finding a cycle in C2

that spans exactly this many vertices we prove,

Theorem 1.3. Let p = c/n where c > 1 is a sufficiently large constant. Then w.h.p.

− 1 ≤ Lc,n −
[

|V (C2)| −
∑

T∈T

φ(T )

]

≤ 3 log n. (1)

Notation 1.4. If A = A(n), B = B(n) then we write A ≈ B if A = (1+ o(1))B as n→ ∞.

The size of C2 is well-known. Let x be the unique solution of xe−x = ce−c in (0, 1). Then
w.h.p. (see e.g. [18], Lemma 2.16),

|C2| ≈ (1− x)
(

1− x

c

)

n.

|E(C2)| ≈
(

1− x

c

)2 c

2
n.

Equation (4.5) of Erdős and Rényi [11] tells us that

x =
∞
∑

k=1

kk−1

k!
(ce−c)k = ce−c + c2e−2c + 3c3e−3c/2 +O(c4e−4c).

Hence,

|C2| = (1− (c+ 1)e−c − c2e−2c−c2(c+ 1)e−3c/2 +O(c4e−4c))n. (2)

We will argue in Section 4 that w.h.p., as c grows, that

∑

T∈T

φ(T ) =
c6e−3c

36
+O(c6e−4c)n. (3)

We therefore have the following improvement to the estimate in [15].

Corollary 1.5. W.h.p., as c grows, we have that

Lc,n =
(

1− (c+ 1)e−c − c2e−2c − c2(c+ 1)e−3c/2− c6e−3c/36 +O(c6e−4c)
)

n. (4)
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Note the term (c + 1)e−c which accounts for vertices of degree 0 or 1. In principle we can
compute more terms than what is given in (4). We claim next that there exists some function
f(c) such that the sum in (1) is concentrated around f(c)n w.h.p.

Theorem 1.6. Let p = c/n where c > 1 is a sufficiently large constant.

(a) There exists a function f(c) such that for any ε > 0, there exists nε such that for n ≥ nε,
∣

∣

∣

∣

E[Lc,n]

n
− f(c)

∣

∣

∣

∣

≤ ε. (5)

(b)
Lc,n
n

→ f(c) a.s. (6)

Beginning with Theorem 1.3 we will prove Theorem 1.6 in Section 5. The proof of Theorem
1.3 is given in Section 3. In Section 2 we study the components of Γ.

2 Structure of Γ

To construct C3,ext we consider a peeling process that sequentially removes vertices from C2

as described below. We let S0 = ∅, S1, S2, . . . , SL ⊆ C2 be the sequence of vertex sets that
have been removed by the steps/iterations of the process. Thus L is the number of iterations
of the process and C3,ext is shown in Lemma 2.1 to be the graph spanned by V (C2) \ SL.

Algorithm Γ-Construction
Let S0 = ∅. Suppose now that we have constructed S`, ` ≥ 0. We construct S`+1 from S`
via one of two cases:

Case a: If there is v ∈ S` that has exactly one or two neighbors W in C2 \ S`, then we add
W to S` to make S`+1.
Case b: If there is a vertex v ∈ C2 \ S` that has at most two neighbors in C2 \ S` then we
define S`+1 to be S` plus v plus the neighbors of v in C2 \ S`.

If none of the two above cases apply we let the current vertex set be SL and we terminate
the algorithm.

Lemma 2.1. Let SL be the set of vertices output by the above algorithm. Then, C3,ext and
Γ are the graphs spanned by V (C2) \ SL and SL respectively.

Proof. First observe that since the algorithm terminates after L steps we see that there does
not exist v ∈ V (C2) \ SL such that either (i) v has fewer than 3 neighbors in V (C2) \ SL or
(ii) v is adjacent to a vertex V (C2) that has fewer than 3 neighbors in V (C2) \ SL. Since
V (C3,ext) spans the maximal such subgraph we have that V (C2) \ SL ⊆ V (C3,ext).
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Now assume that C2 \ SL 6= V (C3,ext) and let w be the first vertex in V (C3,ext) that was
removed from C3,ext and let i be the corresponding iteration i.e. w /∈ Si but w ∈ Si+1. Then
either (i) w invoked Case b or (ii) a neighbor of w invoked Case a of the above algorithm.
For (i) we have C3,ext ⊂ C2 \ Si implies N(w) ∩ C3,ext ⊂ N(w) ∩ (C2 \ Si). Hence w has at
least 3 neighbors in C2 \Si and at step i it did not invoke Case b. For (ii) let u ∈ N(w)∩Si.
Then N(u) ∩ C3,ext ⊂ N(u) ∩ (C2 \ Si) and so u has at least 3 neighbors in C2 \ Si and so
u did not invoke Case a. Hence we have a contradiction and V (C3,ext) = V (C2 \ SL) and
V (Γ) = SL.

Lemma 2.2. SL does not depend on the order of adding vertices.

Proof. The proof of Lemma 2.1 can be adapted to prove this. We assume there are two
possibilities S, S ′ for SL and let w be the first vertex of S ′ not in S. The argument of Lemma
2.1 can then be repeated.

In Lemma 2.4 we bound the size of V (Γ) = SL. For its proof we need the following lemma
on the density of small sets.

Lemma 2.3. W.h.p., every set S ⊆ [n] of size at most n0 = n/10c3 contains less than 3|S|/2
edges in Gn,p.

Proof. The expected number of sets invalidating the claim can be bounded by

n0
∑

s=4

(

n

s

)(
(

s
2

)

3s/2

)

( c

n

)3s/2

≤
n0
∑

s=4

(

ne

s
·
(se

3

)3/2

·
( c

n

)3/2
)s

=

n0
∑

s=4

(

e5/2c3/2s1/2

33/2n1/2

)s

= o(1).

Lemma 2.4. Let p = c/n where c > 1 is a sufficiently large constant. Then w.h.p.

|V (Γ)| ≤ ne−c/2. (7)

Proof. Consider the construction of SL. Let A be the set of the vertices in C2 with degree
less than D = 100 and let S ′

0 = (A ∪ N(A)) ∩ SL ⊆ SL. If we start with S0 = S ′
0 and run

the process for constructing Γ then we will produce the same SL as if we had started with
S0 = ∅, see Lemma 2.2. Now w.h.p. there are at most nD = 2cDe−c

D!
n vertices of degree at

most D in Gn,p, (see for example Theorem 3.3 of [18]) and so |S ′
0| ≤ DnD.

Now suppose that the process runs for another k rounds and let vi be the vertex that invokes
either Case a or Case b at the ith iteration of the Construction of Γ. Then v1, v2, . . . , vk are
all distinct, none of them belongs to A and the sets N(v1), N(v2), . . . , N(vk) belong to SL.
Because vi /∈ A we have |N(vi)| ≥ D for i ∈ [k]. In addition at the ith iteration at most
three new vertices are added to Si. Thus Sk has a least (

∑

i∈[k] |N(vi)|)/2 ≥ kD/2 edges and

at most |S ′
0|+ 3k ≤ DnD + 3k vertices.
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If k reaches 4nD then,
e(Sk)

|Sk|
≥ 4DnD

2
· 1

(D + 12)nD
>

3

2
.

As DnD + 3 × 4nD ≤ n/10c3, from Lemma 2.3, we can assert that w.h.p. the process runs
for less than 4nD rounds and,

|V (Γ)| ≤ (D + 12)nD ≤ ne−c/2.

We note the following properties of SL = V (Γ). Let

V1 = V (C2) \ SL and V2 = {v ∈ SL : v has at least one neighbor in V1} .

Then,

G1 Each vertex v ∈ SL \ V2 has no neighbors in V1.

G2 Each v ∈ V1 ∪ V2 has at least 3 neighbors in V1.

Given the definition of V2, for a component K of Γ we define υ0(K) as

υ0(K) = V (K) \ V2.

Hence υ0(K) consists of the vertices in V (K) with no neighbors in V1. We prove the following
lemma.

Lemma 2.5. W.h.p. each component K of Γ satisfies

|υ0(K)| ≥ |V (K)|
3

. (8)

Proof. We will prove that for 0 ≤ i ≤ L and each component K spanned by Si,

|υ0,i(K)| ≥ |V (K)|
3

. (9)

Here v0,i(K) is taken to be the number of vertices in V (K) with no neigbors in C2 \ K.
Taking i = L in (9) yields (8). We proceed by an induction on i.

S0 = ∅ and so for i = 0, (9) is satisfied by every component spanned by S0. Suppose that at
step i = `, (9) is satisfied by every component spanned by S`.

At step `+1, assume that v invokes either Case a or Case b. In both cases S`+1 = S`∪
(

{v}∪
N(v)

)

. The addition of the new vertices into S` could merge components K1, K2, . . . , Kr into
one component K ′ while adding at most 3 vertices. Hence 3+

∑

j∈[r] |Ki| ≥ |K ′|. In addition
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every vertex that contributed to v0,`(Kj), j = 1, 2, . . . , r now contributes towards v0,`+1(K
′).

Also v has neighbors outside S` but no neighbors outside S`+1. The inductive hypothesis
implies that υ0,`(Kj) ≥ |Kj|/3 for j ∈ [r]. Thus,

υ0,`+1(K
′) ≥ 1 +

∑

j∈[r]

υ0,`(Kj) ≥ 1 +
1

3

∑

j∈[r]

|Kj| ≥ 1 +
|K ′| − 3

3
=

|K ′|
3
.

And so (9) continues to hold for all the components spanned by S`+1.

We show next that w.h.p., only a small component K can satisfy (8).

Lemma 2.6. Let p = c/n where c > 1 is a sufficiently large constant. Then w.h.p. the tree
components of Gn,p \ C3,ext, hence of Γ, are bounded in size by log n.

Proof. Let K be a tree component of Γ and K ′ the component of Gn,p \C3,ext that contains
K ⊂ C2. Then K

′ \K ⊂ Gn,p \C2 and K ⊂ C2 imply that K ′ \K consists of trees (or small
unicyclic components) that are connected to C2 via a single vertex that belongs to K and
hence these trees are not adjacent to V (C3,ext). Thus (9) implies that K ′ contains at least
|K|/3 + |K ′ \K| ≥ |K ′|/3 vertices that are not adjacent to V (Gn,p) \K.

Thus the probability a tree component of Gn,p \C3,ext, hence of Γ, contains more than log n
vertices is bounded by

∑

k≥logn

(

n

k

)

kk−2
( c

n

)k−1
(

k

k/3

)

(

1− c

n

)k(n−k)/3

≤
∑

k≥logn

(ne

k

)k

kk−2
( c

n

)k−1

2ke−ck/6 (10)

≤
∑

k≥logn

n

ck2
(

2ce1−c/6
)k

= o(1).

Explanation for (10): We first choose K ′ in
(

n
k

)

ways, then choose a spanning tree of

K ′ in kk−2 ways and then choose a subset K1 of size k/3 in
(

k
k/3

)

ways. K1 consists of the

vertices in V (K ′) with no neighbor outside V (K ′).

So, we can assume that all tree components are of size at most log n.

Lemma 2.7. Let p = c/n where c > 1 is a sufficiently large constant. Then w.h.p. the
non-tree components in either Gn,p \ C3,ext or Γ, span at most log n vertices.

Proof. Every non-tree of component of V (Gn,p) \C3,ext contains a cycle. It is either disjoint
from the giant component C1 or it intersects C2 and contains a non-tree component of
Γ. Thus we can bound both quantities in question by the expected number of vertices of
V (Gn,p) \C3,ext on components that are not trees. Similarly to Lemma 2.6 we have that the
latest is bounded by
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∑

k≥3

k

(

n

k

)

kk−2

(

k

2

)

( c

n

)k
(

k

k/3

)

(

1− c

n

)k(N2−k)/3

≤
∑

k≥3

k
(

2ce1−c/6
)k

= O(1).

(11)

The kk−2
(

k
2

)

in the above expression bounds the number of spanning unicyclic graphs on k
vertices that can be decomposed into a spanning tree and an edge.

Markov’s inequality implies that w.h.p. such components span at most log n vertices.

3 Proof of Theorem 1.3

Notation 3.1. For T ∈ T , let MT be the matching on V2 obtained by replacing each path
of Q(T ) of length at least 1 by an edge joining its endpoints. The internal vertices of such
paths are removed. We let M

∗ =
⋃

T∈T MT . Let I(T ) denote the internal vertices of the
paths Q(T ) and I∗ =

⋃

T∈T I(T ) and V
∗
2 = V2 \ I∗. We let Γ∗

1 be the subgraph of G induced
by V1. We also let Γ∗

2 be the bipartite graph with vertex partition V1, V
∗
2 and all edges {e ∈

E(G) : e ∈ V1 × V ∗
2 }. Finally let Γ∗ = Γ∗

1 ∪ Γ∗
2 ∪M

∗ and V ∗ = V1 ∪ V ∗
2 = V (Γ∗).

Theorem 3.2. W.h.p. there is a Hamilton cycle H∗ in Γ∗ that contains all the edges of M∗

This section is devoted to the proof of Theorem 3.2. We begin by giving an outline of the
proof and then we show how Theorem 1.3 follows. Following this, we prove Theorem 3.2.

Outline of proof To prove Theorem 3.2 we begin by partitioning Γ∗ into 2 subgraphs,
the blue and the green subgraphs denoted by Γ∗

b and Γ∗
g respectively. The blue graph will

have “nice” expansion properties while the green graph will be distributed uniformly among
a set of graphs G. Then, in Section 3.6 we use a modification of a double counting argument
that was first used in [13] to bound the number of graphs G ∈ G such that G∗

b ∪ G is not
Hamiltonian. The specific version is from [14]. Given the decomposition of Γ∗ into Γ∗

b and
Γ∗
g if Γ

∗ is not Hamiltonian then one may further decompose the edges of the green graph Γ∗
g

into two subgraphs, the yellow and red subgraphs denoted by Γ∗
y and Γ∗

r respectively, such
that (i) the yellow edges form a set of paths and (ii) a longest path in Γ∗ is spanned by the
blue and yellow edges. Then we argue, using Pósa rotations, that there is a large set of edges
E ′ none of which belongs to E(Γ∗

b) ∪ E(Γ∗
y) such for every e ∈ E ′ the subgraph spanned

{e} ∪ E(Γ∗
b) ∪ E(Γ∗

y) either spans a path longer than the one spanned by Γ∗
b ∪ Γ∗

y hence
by Γ∗ or it is Hamiltonian. Pósa rotations (introduced in Section 3.5 ), define a procedure
that starts with a longest path in a graph and produces many pairs of vertices that are the
endpoints of longest paths. Hence, E ′∩E(Γ∗

r) = ∅ which will imply that for each possible set
of yellow edges there are only a small number of sets of red edges such that Γ∗

b ∪Γ∗
y∪Γ∗

r = Γ∗

is not Hamiltonian.

We finish this subsection by proving Theorem 1.3.
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Proof of Theorem 1.3: Let H∗ be the Hamilton cycle given in Theorem 3.2. Replacing
the edges in M

∗ with the corresponding paths in Q(T ) gives a cycle in Gn,p of size |V (C2)|−
∑

T∈T φ(T ). Hence, Lc,n ≥ |V (C2)| −
∑

T∈T φ(T ).

On the other hand let Plongest be a longest path in Gn,p and P1, P2, . . . , Pa be its sub-
paths that are spanned by Gn,p \ C3,ext in the order that they appear. Then the endpoints
of P2, P3, . . . , Pa−1 are adjacent to V1 and therefore P2, P3, . . . , Pa−1 do not cover at least
∑

T∈T φ(T ) vertices that are spanned by the tree components of C2 \ C3,ext (see notation
1.2). Each of P1, Pa may traverse vertices in a single component of Gn,p \ C3,ext. Thus
|Plongest| is bounded by above by |C2| −

∑

T∈T φ(T ) plus twice the size of the maximum
component of Gn,p \ C3,ext plus the number of vertices in Γ that do not belong to a tree
component of Γ. Lemmas 2.6 and 2.7 imply that the last two quantities sum to at most
3 log n.

3.1 Structure of Γ∗
1

Suppose now that |V1| = N and that V1 contains M edges. The construction of Γ does not
involve the edges inside V1, but we do know that that Γ∗

1 has minimum degree at least 3.
The distribution of Γ∗

1 will be that of GV1,M subject to this degree condition, viz. the random
graph Gδ≥3

V1,M
which is sampled uniformly from the set Gδ≥3

V1,M
, the set of graphs with vertex

set V1, M edges and minimum degree at least 3. This is because, we can replace Γ∗
1 by any

graph in Gδ≥3
V1,M

without changing Γ. By the same token, we also know that each v ∈ V ∗
2 has

at least 3 random neighbors in V1. We have that

N ≥ n(1− 2e−c/2) and M ∈ (1± ε1)cN

2
, (12)

where ε1 = c−1/3. The bound on N follows from (2) and (7) and the bound on M follows
from the fact that in Gn,p,

Pr

(

∃S : |S| = N, e(S) /∈ (1± ε1)

(

N

2

)

p

)

≤ 2

(

n

N

)

exp

{

−ε
2
1N(N − 1)p

3

}

= o(1).

The inequality follows from the Chernoff bound for the Binomial distribution.

3.2 Partitioning/Coloring G = Gn,p and Γ∗

In this section we describe how to color/partition the edges of both G = Gn,p and Γ∗. We
first color most of the edges of G light blue, dark blue or green. This will induce a partial
coloring of E(Γ∗) which we then extend to a complete coloring of E(Γ∗). We denote the
resultant blue and green subgraphs in G by Γb,Γg respectively (an edge is blue if it is either
dark or light blue). We later show that the blue graph has expansion properties while the
green graph has suitable randomness.
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Notation 3.3. For a graph G and vertex sets A,B ⊆ V (G) we write

A : B = {{a, b} ∈ E(G) : a ∈ A, b ∈ B} .

Every vertex v ∈ V1 independently chooses min
{

degV1(v), 100
}

neighbors in V1 and we color
the chosen edges light blue. Then we color every edge in V ∗

2 : V1 light blue. Thereafter
we independently color (re-color) every edge of G dark blue with probability 1/2000. This
coloring is done independently of the structure of Γ∗. Finally we color green all the uncolored
edges that are contained in V1. (Some of the edges of G will remain uncolored and play no
significant role in the proof.)

The above coloring satisfies the following properties:

(C1) Every vertex in V1 ∪ V ∗
2 is joined to at least 3 vertices in V1 by a blue edge.

(C2) In G, every dark blue edge appears independently with probability p
2000

.

(C3) Given the degree sequence dg of Γg, every graph H with vertex set V1 and degree
sequence dg is equally likely to be Γg.

We can justify C3 as follows: Amending G by replacing Γg by any other graph Γ′
g with

vertex set V1 and the same degree sequence and executing our construction of SL will result
in the same set SL and sets V1, V

∗
2 . So, each possible Γ′

g has the same set of extensions to
Gn,p and as such is equally likely.

Now given Γb,Γg ⊂ G we color the edges in Γ∗ as follows. Every edge in Γ∗ that exists in
G inherits its color from the coloring in G. Every edge in M

∗ ⊆ E(Γ∗) is colored light blue.
We let Γ∗

b ,Γ
∗
g be the blue and the green subgraphs of Γ∗. Observe that Γ∗

g = Γg, hence Γ∗
g

satisfies property (C3) as well.

3.3 Expansion of Γ∗
b

We wish to estimate the probability that small sets have relatively few neighbors in the
graph Γ∗

b . For S ⊆ V ∗ = V1 ∪ V ∗
2 we let

Nb(S) = {w ∈ V1 \ S : ∃v ∈ S with {v, w} ∈ E(Γ∗
b)}

= {w ∈ V1 \ S : ∃v ∈ S with {v, w} ∈ E(Γb)} .

We have slightly abused notation here since Nb(S) is implicitly defined in both G and Γ∗ in
the same way.

It is shown in [6] and also in [16] that if S is the set of endpoints of longest paths created
by Pósa rotations (see Section 3.5) then S ∪ N(S) is connected and contains at least two
distinct cycles hence, at least |S|+|N(S)|+1 edges. Hence the condition (iii) in the following
lemma.
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Lemma 3.4. W.h.p. there does not exist S ⊂ V ∗ of size |S| ≤ n/4 and (i) |Nb(S)| ≤ 2|S|,
(ii) S ∪Nb(S) is connected in Gn,p and (iii) S ∪Nb(S) spans at least |S|+ |Nb(S)|+1 edges
in Gn,p.

Proof. Assume that the above fails for some set S.
Case 1: |S| ≤ n1 = n/(100c3).
Let t = |Nb(S)|. We will suppose first that S contains at least s/10 vertices of degree at
least 100. In this case S ∪ NS has cardinality at most s + t ≤ 3s and contains at least
5s > 3(s+ t)/2 edges, contradicting Lemma 2.3.

On the other hand, if there are at least 9s/10 vertices in S of degree at most 99 then
there are at least 3(s + t)/10 vertices of degree at most 99 in a connected subgraph of size
s0 ≤ s+t ≤ 3n1. In addition that subgraph spans at least s+t+1 edges. But the probability
of this occurring in Gn,p is at most

3n1
∑

k=1

(

n

k

)

kk−2

(
(

k
2

)

2

)

pk+1

(

k

3k/10

)

(

99
∑

`=1

(

n− k

`

)

p`(1− p)n−k−`

)3k/10

≤
3n1
∑

k=1

(ne

k

)k

kk+2
( c

n

)k+1

2ke−3kc/20 ≤
3n1
∑

k=1

ck2

n
·
(

2ce1−3c/20
)k

= o(1).

This completes the proof for Case 1.

Case 2: n1 < |S| ≤ n/4.
The choice of the sets V1, V

∗
2 conditions Gn,p. To get around this, we describe a larger event

ES in G = Gn,p that (a) occurs as a consequence of there being a set S with small expansion
and (b) only occurs with probability o(1). This event involves an arbitrary choice for V1, V

∗
2 .

Let T = Nb(S) and W = NG(S) \Nb(S), that is T and W are the neighborhoods of S in G
inside and outside of V1 respectively. Then the following event ES must hold. There exist
S, T,W such that, where s = |S|, t = |T | and w = |W |,

(i) t ≤ 2s.

(ii) w ≤ n0 = ne−3c/5, where n0 is a bound on |V (Γ)|+ |V (G \ C2)| (see (2) and (7)).

(iii) No vertex in S is connected to a vertex in V \ (S ∪ T ∪W ) by a dark blue edge.

(iv) S ∪NS spans at least s+ t edges (at least s+ t+ 1 in fact).

Thus,

Pr(ES | s, t, w)

≤
(

n

s

)(

n

t

)(

n

w

)(
(

s+t
2

)

s+ t

)

swps+t+w
(

1− p

2000

)s(n−s−t−w)
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≤
(en

s

)s (en

t

)t (en

w

)w
(

e(s+ t)

2

)s+t

sw
( c

n

)s+t+w

exp
{

− p

2000

(sn

5

)}

≤ (ec)2(s+t)
(

s+ t

2s

)s(
s+ t

2t

)t
(ecs

w

)w

exp
{

− cs

105

}

≤ (ec)6s exp

{

s · t− s

2s

}

exp

{

t · s− t

2t

}(

ecs

n0

)n0

exp
{

− cs

105

}

≤ (ec)6s(ce1−c/3)se
−c/3

exp
{

− cs

105

}

=

(

(ec)6(ce1−c/3)e
−c/3

e−c/10
5

)s

.

At the 5th line we used s+t
2s

= 1 + t−s
2s

≤ exp
{

t−s
2s

}

and w ≤ n0 ≤ 100c3e−c/2s ≤ e−c/3s.
Hence

Pr(∃S : ES) ≤ n

n/4
∑

s=n/(100c3)

2s
∑

t=0

(

(ec)6(ce1−c/3)e
−c/3

e−c/10
5

)s

= o(1).

3.4 The Degrees of the Green Subgraph

Lemma 3.5. W.h.p. at least 99n/100 vertices in V1 have green degree at least c/50. In
addition every set S ⊂ V1 of size at least n/4 has total green degree at least cn/250.

Proof. At most 100n edges are colored light blue and thereafter the Chernoff bounds imply
that w.h.p. at most (1 + ε)cn/4000 edges are colored dark blue, for some arbitrarily small
positive ε. The degree of a fixed vertex in Gn,p is asymptotically Poisson with mean c (see
[18], Chapter 3). So, the probability that a vertex has degree less than c/4 in Gn,p is bounded

by 2e−cλc/4

c/4!
< 1/1000. Azuma’s inequality or the Chebyshev inequality can be employed to

show that w.h.p. there are at most n/1000 vertices of degree less than c/4 in Gn,p. Therefore
every set of n/100 vertices is incident with at least [(n/100−n/1000)c/4]/2 edges. And hence
with at least [(n/100− n/1000)c/4]/2− (1 + ε)cn/4000− 100n ≥ c/50 · n/100 green edges.
Thus in every set of vertices of size at least n/100 there exists a vertex that is incident to
c/50 green edges, proving the first part of our Lemma.

It follows that w.h.p. every set of size n/4 has total green degree at least
(n

4
− n

100

)

× c

50
>

cn

250
.

3.5 Pósa Rotations

Pósa Rotations [24] are a standard tool in the analysis of Hamilton cycles in random graphs,
see for example [18], Chapter 6.2. It is a procedure that starts with a longest path and
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outputs many pairs of vertices that are the endpoints of longest paths. Here we marginally
modify the standard argument.

We say that a path/cycle P in Γ∗ is compatible if for every {v, w} ∈ M
∗ either P contains the

edge {v, w} or V (P ) ∩ {v, w} = ∅. Our aim therefore is to show that w.h.p. Γ∗ contains a
compatible Hamilton cycle. Suppose that Γ∗ is not Hamiltonian and that P = (v1, v2, . . . , vs)
is a longest compatible path in some graph Γ′

b, Γ
∗
b ⊆ Γ′

b ⊆ Γ∗. If {vs, vi} ∈ E(Γ∗
b) and vi ∈ V1

then the path P ′ = (v1, v2, . . . , vi, vs, vs−1, . . . , vi+1) is said to be obtained from P by an
acceptable rotation with v1 as the fixed endpoint. We also call vi the pivot vertex, the edges
{vs, vi}, {vi, vi+1} the pivot edges and the edge {vs, vi} the inserting edge. Observe that even
though we are searching for the longest path in Γ′

b we only allow the insertion of edges from
Γ∗
b . In addition, since P is compatible and {vi, vi+1} /∈ M

∗ (since vi ∈ V1) then P ′ is also
compatible.

Let END′
b(P, v1) be the set of vertices that are endpoints of paths that are obtainable

from P by a sequence of acceptable rotations with v1 as the fixed endpoint. Then, for
v ∈ END′

b(P, v1) we let END
′
b(Pv, v) be defined similarly. Here Pv is a path with endpoints

v1, v obtainable from P by a sequence of acceptable rotations.

Pósa’s lemma states that |Nb(END
′
b(P, v1))| < 2|END′

b(P, v1)| in the case where M
∗ = ∅

(see for example Lemma 6.6.of [18]). Arguing as in the proof of Pósa’s lemma we see that

|Nb(END
′
b(P, v1))| < 2|END′

b(P, v1)|. (13)

Indeed, assume otherwise. Then there exist vertices vi, u ∈ V (P ) such that u ∈ END′
b(P, v1),

vi ∈Nb(u) ⊆ V1, vi−1, vi+1 /∈ END′
b(P, v1). vi ∈ V1 implies that neither of {vi−1, vi} , {vi, vi+1}

belongs to M
∗ and the edge {u, vi} can be used by an acceptable rotation with v1 as the

fixed endpoint that “rotates out” u. Any such rotation will create a path with either vi−1 or
vi+1 as a new endpoint, say vi−1. Hence vi−1 ∈ END′

b(P, v1) resulting in a contradiction.

Lemma 3.6. Let Γ′
b be any graph satisfying Γ∗

b ⊆ Γ′
b ⊆ Γ∗. W.h.p. for every path P of

maximal length in Γ′
b and an endpoint v of P we have that |END′

b(Pv, v)| ≥ n/4.

Proof. We will show that S = END′
b(Pv, v) satisfies (i), (ii), (iii) of Lemma 3.4. For this

let R = R(Pv, v) be the set of pivot points and ER = ER(P ) be the set of pivot edges. It
is shown in [6] (Lemma 5) and also in [16] (Lemma 2.1) that if S is the set of endpoints
created by Pósa rotations then ER spans a connected subgraph on S ∪R that consists of at
least |S|+ |R \ S|+ 1 edges.

The key observation is that if v is the pivot vertex of an acceptable rotation then, by
definition, the associated pivot edges do not belong to M

∗. Consequently every edge in ER
belongs to E(Γ) \M∗ ⊆ E(Gn,p). This would not have necessarily been true if ER contained
an edge ofM∗. Finally, Nb(S)\R ⊂ V1 and therefore (Nb(S)\R) : S spans at least |Nb(S)\R|
edges in E(Γ) \ M

∗ ⊆ E(Gn,p). Hence Nb(S) ∪ S is connected in Gn,p and spans at least
(|S|+ |R \ S|+ 1) + |Nb(S) \ R| = |S|+ |Nb(S)|+ 1 edges. This verifies conditions (ii) and
(iii) of Lemma 3.4. Finally (13) implies condition (i).

13



From Lemma 3.6 we see that w.h.p. |END′
b(Pv, v)| ≥ n/4 for all v ∈ END′

b(P, v1). We let

END′
b(P ) = END′

b(P, v1) ∪
⋃

v∈END′

b(P,v1)

END′
b(Pv, v).

3.6 Coloring argument

We use a modification of a double counting argument that was first used in [13]. The specific
version is from [14]. Given a two edge-colored Γ∗, we choose for each v ∈ V1, an incident
edge ξv = {v, ηv} where ηv ∈ V1 ∪ V ∗

2 . We color ξv yellow if it is not already colored blue.
We then color the rest of the green edges red. We denote the yellow and red subgraphs of
Γ∗
g by Γ∗

y and Γ∗
r respectively. There are at most Π =

∏

v∈V1
d(v) choices for ξ = (ξv, v ∈ V1).

Let G(dg) be the set of graphs with degree sequence dg and Φ = |G(dg)|. For a fixed set
of yellow edges, defined by ξ, we let dξ

g be the degree sequence of the red graph and G(dξ
g)

be the set of graphs with degree sequence dξ
g . Thus given dg and conditional on ξ, Γ∗

r is a
random member of G(dξ

g). In addition, since every red graph can be extended to a green
graph via the addition of the yellow edges, we have that Φξ ≤ Φ where Φξ denotes |G(dξ

g)| .

For a graph Γ, Γ = Γ∗ or Γ∗
b ∪ Γ∗

y we let `(Γ) denote the length of the longest compatible
path in Γ.

We now reveal Γ∗
b . For given ξ and Γ∗

r ∈ G(dξ
g) we let a(ξ,Γ∗

r) = 1 if H1,H2,H3 below hold,
and equal to 0 otherwise:

H1 : Γ∗ is not Hamiltonian.

H2 : `(Γ∗
b ∪ Γ∗

y) = `(Γ∗).

H3 : With Γ′
b = Γ∗

b ∪ Γ∗
y, for every path P of maximal length in Γ′

b and an endpoint v of P
we have that |END′

b(Pv, v)| ≥ n/4.

Let πH̄ be the probability that Γ∗ is not Hamiltonian.

Lemma 3.7.

πH̄ ≤

∑

ξ

∑

Γ∗

r∈G(d
ξ
g)

a(ξ,Γ∗
r)

Φ
+ o(1). (14)

Proof. The o(1) term accounts for the probability that H3 fails which is related to the already
revealed Γ∗

b and by Lemma 3.6 is o(1). If H3 is satisfied and Γ∗ is not Hamiltonian then Γ∗
g

belongs to
GH̄ = {Γ′ ∈ G(dg) : Γ∗

b ∪ Γ′ is not Hamiltonian}.
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If Γ∗
g belongs to GH̄ then there exists ξ such that a(ξ,Γ∗

r) = 1. Indeed, let P = (v1, v2, . . . , vr)
be a longest path in Γ∗. Then we simply let ξvi be the edge {vi, vi+1} for 1 ≤ i < r. Since
Γ∗
g is a random member of G(dg), it follows that

πH̄ ≤ |GH̄ |
Φ

+ o(1) ≤

∑

ξ

∑

Γ∗

r∈G(d
ξ
g)

a(ξ,Γ∗
r)

Φ
+ o(1).

For fixed ξ we let Pξ be a fixed longest path in Γ∗
b ∪ Γ∗

y and πξ be the probability that a
random element of G(dξ

g) does not include a pair {x, y} where y ∈ END′
b(Pξ, x). It follows

that
∑

ξ

∑

Γ∗

r∈G(d
ξ
g)

a(ξ,Γ∗
r) ≤

∑

ξ

Φξπξ ≤ ΦΠmax
ξ
πξ. (15)

Lemma 3.8.
max

ξ
πξ ≤ e−cn/10

6

.

Proof. This is an exercise in the use of the configuration model of Bollobás [5]. Let W =
[2Mg] where Mg is the number of green edges and let W1,W2, . . . ,WN be a partition of W
where |Wv| = dΓ∗

g
(v), v ∈ V1. The elements ofW will be referred to as configuration points or

just as points. A configuration F is a partition ofW intoMg pairs. Next define ψ : W → [N ]
by x ∈ Wψ(x). Given F , we let γ(F ) denote the (muti)graph with vertex set V1 and an edge
{ψ(x), ψ(y)} for all {x, y} ∈ F . We say that γ(F ) is simple if it has no loops or multiple
edges. Suppose that we choose F at random. The properties of F that we need are

P1 IfG1, G2 ∈ Gdg thenPr(γ(F ) = G1 | γ(F ) is simple) = Pr(γ(F ) = G2 | γ(F ) is simple).

P2 Pr(γ(F ) is simple) = Ω(1).

These are well established properties of the configuration model, see for example Chapter
11 of [18]. Note that P2 uses the fact that w.h.p. Gδ≥3

V1,M
(and hence Γ∗

g) has an exponential
tail, as shown for example in [17].

Given all this, in the context of the configuration model, we have the following simple
consequence of a random pairing of W .

max
ξ
πξ ≤ max

ξ
O(1)×

∏

v∈END′

b(Pξ)











1−

dΓ∗

g
(v)

∑

w∈END′

b(Pv ,v)

dΓ∗

g
(w)

2M











1

2

(16)
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≤ max
ξ
O(1)× exp



















−

∑

v∈END′

b(Pξ)

dΓ∗

g
(v)

∑

w∈END′

b(Pv ,v)

dΓ∗

g
(w)

4M



















. (17)

The O(1) factor is 1/Pr(γ(F ) is simple) and bounds the effect of the conditioning. We take
the square root to account for the possibility that w ∈ END′

b(Pv, v) and v ∈ END′
b(Pw, w).

Lemma 3.5 implies that at least n/4 − n/100 out of the at least n/4 vertices in END′
b(P )

have dΓ∗

g
(v) ≥ c/50. Also, for such v the set END′

b(Pv, v) ∪ {v} is of size at least n/4 and
so has total degree at least cn/250. Thus from (17), it follows that

max
ξ
πξ ≤ O(1)× exp

{

−
c
50

· (n
4
− n

100
) · cn

250

4M

}

≤ e−cn/10
6

.

The Arithmetic-Geometric-mean inequality implies that

Π ≤
∏

v∈V1

d(v) ≤
(
∑

v∈V d(v)

N

)N

≤ (2c)n. (18)

It then follows from Lemmas 3.7, 3.8 and from (18) that for sufficiently large c

πH ≤ (2c)n · e−cn/106 + o(1) = o(1),

and this completes the proof of Theorem 3.2.

4 Proof of (3)

We are not able at this time to give a simple estimate of
∑

T∈T φ(T ) as a function of c.
We will have to make do with (3). On the other hand,

∑

T∈T φ(T ) can be approximated to
within arbitrary accuracy, using the argument in Section 5.

We work in Gn,p. Observe that a tree T is spanned by C2 and satisfies φ(T ) > 0 only if (i) it
has a vertex with at least 3 neighbors in V (Γ)\V2 each having degree at least 2 in T and (ii)
all the vertices of T of degree 1 belong to V2. Here we are using that no vertex in V (T )∩ V2
contributes to φ(T ) as it can be considered as an individual path of length 0.

The smallest such tree is T ′ the tree on seven vertices that consists of three paths of length
two with a common endpoint. In addition every tree T satisfying (i) and (ii) and intersects
V (Γ) \ V2 in exactly 3 vertices has T ′ as a subtree. Since φ(T ′) = 1 we have in Gn,p, as in
the proof of Lemma 10,

E

(

∑

T∈T

φ(T )

)

= n

(

n− 1

3

)(

n− 4

3

)

p6(1− p)3(n−7)
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+O

(

∑

k≥7

k ·
(

n

k

)

kk−2pk−1(1− p)(n−k)max{4,k/3}

)

≈ c6e−3n

36
+
∑

k≥7

(ne

k

)k

kk−1
( c

n

)k−1

exp

{

−c(1− k/n)max

{

4,
k

3

}}

=
c6e−3n

36
+O(c6e−4c)n. (19)

In the first line we used that every tree that contributes to E
(
∑

T∈T φ(T )
)

either satisfies
υ0(T ) = 3 and spans a copy of T ′ or satisfies both υ0(T ) ≥ 4 and (8) i.e. υ0(T ) ≥ |T |/3. We
obtain (3) from (19).

5 Proof of Theorem 1.6

For v ∈ C2 we let φ(v) = φ(T )/|υ0(T )| if v ∈ υ0(T ) for some T ∈ T and φ(v) = 0 otherwise.
(Recall that υ0(T ) = V (T ) \ V2.) Thus

∑

T∈T

φ(T ) =
∑

v∈C2

φ(v).

Hence (1) can be rewritten as,

Lc,n ≈ |C2| −
∑

v∈C2

φ(v). (20)

To prove Theorem 1.6 we show that there for every ε > 0 there exists a set of vertices
Sε of size |Sε| ≥ (1 − ε)|C2| such that for every v ∈ Sε we can evaluate correctly φ(v)
via a procedure described later on. This evaluation will be based on the first k = k(ε),
neighborhoods of v. Hence the distribution of

∑

v∈C2
φ(v) can be tied to the distribution of

the first k neighborhoods of a random vertex which we then relate to the expected number
of appearances of small subgraphs in C2.

Let ε > 0. Let k1 = k1(ε, c) be the smallest positive integer such that

∞
∑

k=k1−1

(e323ce−c/4)k <
ε

3
.

Note that for large c, we have

k1 ≤
2

c
log

1

ε
. (21)

Notation 5.1. For v ∈ C2 let Nk(v) (and N≤k(v) respectively) be the set of vertices in V (C2)
that are in distance exactly k (at most k respectively) from v in C2.
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For v ∈ C2 let Gv be the graph that is formed as follows: Starting with the graph spanned
by N≤k(w) for every vertex w ∈ Nk(v) we introduce Kw

3,3, a copy of K3,3, and we join
w to each vertex of the same part of the bipartition of Kw

3,3. We consider the algorithm
for the construction of Γ on Gv and let C2,v,Γv, V1,v, V2,v, SL,v, υ0,v(T ) be the corresponding
sets/quantities.

For a tree T ∈ SL,v let f(T ) be equal to |T | minus the maximum number of vertices that can
be covered by a set of vertex disjoint paths with endpoints in V2,v (we allow paths of length
0). For v ∈ C2,v, if v belongs to some tree T ∈ SL,v set f(v) = f(T )/υ0,v(T ), otherwise set
f(v) = 0.

For v ∈ C2 let t(v) = 1 if v ∈ V1 or if v ∈ SL and in Γ, v lies in a component with at most
k1 − 2 vertices that are not connected to V1 in G. Set t(v) = 0 otherwise. Observe that if
t(v) = 1 then φ(v) = f(v). Otherwise |φ(v)− f(v)| ≤ 1.

Lemma 5.2. The expected number of vertices v satisfying t(v) = 0 is bounded by εn
3
.

Proof. By repeating the arguments used to prove (10) and (8) it follows that if t(v) = 0 then
v lies on a component C of size at most log n. In addition at least max{|V (C)|/3, k1 − 1}
vertices in V (C) are not adjacent to any C2-vertex outside V (C). So,

E(|{v : t(v) = 0}|) ≤
log2 n
∑

k=k1−1

3k
∑

j=k

(

n

j

)(

j

k

)

jj−2pj−1(1− p)k(n−j)

≤ n

log2 n
∑

k=k1−1

3k
( e

3k

)3k

23k(3k)3k−2ck−1e−ck/4

≤ n

∞
∑

k=k1−1

(e323ce−c/4)k <
εn

3
.

Notation 5.3. A vertex v ∈ [n] is ε-good if Ni(v) ≤ 3cik1/ε for every i ≤ k1 and it is ε bad
otherwise.

Lemma 5.4.

E

(∣

∣

∣

∣

∣

∑

v∈V

φ(v)−
∑

v is ε-good

f(v)

∣

∣

∣

∣

∣

)

≤ εn.

Proof. Because the expected size of the ith neighborhood of every vertex in G is ≈ ci we
have by the Markov inequality that v is ε-bad with probability at most ≈ ε/3k1 and so the
expected number of ε-bad vertices is bounded by εn/2. Thus,

E

(∣

∣

∣

∣

∣

∑

v∈V

φ(v)−
∑

v is ε-good

f(v)

∣

∣

∣

∣

∣

)

≤ E

(∣

∣

∣

∣

∣

∑

v∈V

φ(v)−
∑

v∈V

f(v)

∣

∣

∣

∣

∣

)

+ E

(∣

∣

∣

∣

∣

∑

v is ε-bad

f(v)

∣

∣

∣

∣

∣

)
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≤ E





∣

∣

∣

∣

∣

∣

∑

v:t(v)=0

|φ(v)− f(v)

∣

∣

∣

∣

∣

∣



+ E

(

∑

v is ε-bad

1

)

≤ E





∑

v:t(v)=0

1



+
εn

2

≤ εn

3
+
εn

2
< εn.

Let Hε be the set of pairs (H, oH) where H is a graph, oH is a distinguished vertex of H,
that is considered to be the root, every vertex in V (H) is at distance at most k1 from oH and
all the neighborhoods of oH are ε-good. For v ∈ C2 let G(Nk1(v)) be the subgraph induced
by the k1

th neighborhood of v in C2. For (H, oH) ∈ Hε let Aut(H, oH) be the number of
automorphisms of H that fix oH . Note that each ε-good vertex v is associated with a pair
(H, oH) ∈ Hε from which we can compute f(v), since f(v) = f(oH). Let

fε(c) =
∑

k≥1

∑

(H,oH)∈Hε

H is a tree

f(oH)

Aut(H, oH)

(

N2

2M2

)k−1

λ2k−2f2(kλ)

f2(λ)k
. (22)

Lemma 5.5. Let M2 = |E(C2)| and N2 = |C2|. Then

E

(

∑

v is ε-good

f(v)

∣

∣

∣

∣

M2, N2

)

= o(n) + fε(c)n.

Proof.

E

(

∑

v is ε-good

f(v)

∣

∣

∣

∣

M2, N2

)

=
∑

v

∑

k≥1

∑

(H,oH)∈Hε

(G(Nk1
(v)),v)=(H,oH)

|V (H)|=k

ρH,oHf(oH)

= o(n) +
∑

v

∑

k≥1

∑

(H,oH)∈Hε

H is a tree
(G(Nk1

(v)),v)=(H,oH)

ρH,oHf(oH), (23)

where ρH,σH is the probability (G(Nk1(v)), v) = (H, oH) in C2. The o(n) term in (23) is an
upper bound on the number of vertices v such that N≤k(v) spans a cycle in G, hence in C2.

We show in Section 5.1 that

ρH,oH ≈ 1

Aut(H, oH)

(

N2

2M2

)k−1

λ2k−2 ekλ

f2(λ)k
, (24)

where fk is defined in (28) below and λ satisfies (29) below.
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Proof of part (a) of Theorem 1.6: fε(c) is monotone increasing as ε→ 0. This is simply
because Hε grows. Furthermore, fε(c) ≤ 1 and so the limit f(c) = limε→0 fε(c) exists.

Let ε′ > 0. Take ε sufficiently small such that max {|fε(c)− f(c)|, ε} ≤ ε′/3. Theorem 1.3
and Lemmas 5.4 and 5.5 imply that for sufficiently large n,

∣

∣

∣

∣

E[Lc,n]

n
− f(c)

∣

∣

∣

∣

≤
∣

∣

∣

∣

E

(∣

∣

∣

∣

∑

v∈V φ(v)−
∑

v is ε-good f(v)

n

∣

∣

∣

∣

)∣

∣

∣

∣

+ |fε(c)− f(c)|+ o(1) ≤ ε.

Proof of part (b) of Theorem 1.6: For a graph G let C2(G) be the 2-core of its largest
component. We let G be the set of graphs on n vertices and with at most n2p edges such
that for G ∈ G the following holds:

(i) the largest component in G \ C2(G) is of size at most log n.

(ii) at most log n vertices lie in a non-tree component in G \ C2(G).

(iii) the length of the largest path in G satisfies (1).

Theorem 1.3 and Lemmas 2.6 and 2.7 imply that Pr(Gn,p /∈ G) = o(1). Hence

E(Lc,n) = E(Lc,n|Gn,p ∈ G) + o(n). (25)

We now implement an edge exposure martingale to reveal Gn,p, conditioned that it belongs
to G and |E(Gn,p| = m: let e1, e2, . . . , e2m be chosen randomly from

(

n
2

)m
.

Now let e1, e2, . . . , em and e′1, e
′
2, . . . , e

′
m be two edge sequences that differ in a single edge say

ei 6= e′i such that the corresponding graphs G and G′ belong to G. Then, G, G′ differ in at
most 4 components (the ones containing a vertex in ei ∪ e′i) and therefore conditions (i)-(iii)
imply that the length of the longest paths in G,G′ differ by at most 1+3 log n+8 log n. The
1 and 3 log n originate from (1), a 4 log n term accounts for the difference in the size of the
2-cores and a 4 log n term for the difference in at most 4 components outside the 2-cores.
Azuma’s inequality (see Lemma 11 of Frieze and Pittel [20] or Section 3.2 of McDiarmid
[22]) implies that

Pr

[

∣

∣Lc,n − E[Lc,n|Gn,p ∈ G]
∣

∣

∣

∣

∣

∣

Gn,p ∈ G ≥ n0.8

]

≤ e−0.5n. (26)

(25), (26) and part (a) of Theorem 1.6 imply that for ε > 0 and sufficiently large n,

Pr

[∣

∣

∣

∣

Lc,n
n

− f(c)

∣

∣

∣

∣

≥ ε

]

≤ e−0.5n. (27)

(6) follows from (27) and the Borel-Cantelli lemma.
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5.1 A Model of C2

It is known that given M2, N2 that, up to relabeling vetices, C2 is distributed as Gδ≥2
N2,M2

(see

for example the first section of [20]). The random graph Gδ≥2
N2,M2

is chosen uniformly from

Gδ≥2
N2,M2

which is the set of graphs with vertex set [N2], M2 edges and minimum degree at
least two. From now, we replace M2, N2 by M,N respectively.

5.1.1 Random Sequence Model

We must now take some time to explain the model we use for Gδ≥2
N,M . We use a variation

on the pseudo-graph model of Bollobás and Frieze [8] and Chvátal [9]. Given a sequence
x = (x1, x2, . . . , x2M) ∈ [n]2M of 2M integers between 1 and N we can define a (multi)-graph
Gx = Gx(N,M) with vertex set [N ] and edge set {(x2i−1, x2i) : 1 ≤ i ≤ M}. The degree
dx(v) of v ∈ [N ] is given by

dx(v) = | {j ∈ [2M ] : xj = v} |.

If x is chosen randomly from [N ]2M then Gx is close in distribution to GN,M . Indeed,
conditional on being simple, Gx is distributed as GN,M . To see this, note that if Gx is simple
then it has vertex set [N ] and M edges. Also, there are M !2M distinct equally likely values
of x which yield the same graph.

Our situation is complicated by there being a lower bound of 2 on the minimum degree. So
we let

[N ]2Mδ≥2 = {x ∈ [N ]2M : dx(j) ≥ 2 for j ∈ [N ]}.
Let Gx be the multi-graph Gx for x chosen uniformly from [N ]2Mδ≥2. It is clear then that

conditional on being simple, Gx has the same distribution as Gδ≥2
N,M . It is important therefore

to estimate the probability that this graph is simple. For this and other reasons, we need to
have an understanding of the degree sequence dx when x is drawn uniformly from [N ]2Mδ≥2.
Let

fk(λ) = eλ −
k−1
∑

i=0

λi

i!
(28)

for k ≥ 0.

Lemma 5.6. Let x be chosen randomly from [N ]2Mδ≥2. Let Zj, j = 1, 2, . . . , N be independent
copies of a truncated Poisson random variable P, where

Pr(P = t) =
λt

t!f2(λ)
, t ≥ 2.

Here λ satisfies
λf1(λ)

f2(λ)
=

2M

N
. (29)

Then {dx(j)}j∈[N ] is distributed as {Zj}j∈[N ] conditional on Z =
∑

j∈[n] Zj = 2M .
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Proof. This can be derived as in Lemma 4 of [2].

It follows from (12) and (29) and the fact that f1(λ)/f2(λ) → 1 as c→ ∞ that for large c,

λ = c
(

1 +O(ce−c)
)

. (30)

We note that the variance σ2 of P is given by

σ2 =
λ(eλ − 1)2 − λ3eλ

f 2
2 (λ)

.

Furthermore,

Pr

(

N
∑

j=1

Zj = 2M

)

=
1

σ
√
2πN

(1 +O(N−1σ−2)) (31)

and

Pr

(

N
∑

j=2

Zj = 2M − d

)

=
1

σ
√
2πN

(

1 +O((d2 + 1)N−1σ−2)
)

. (32)

This is an example of a local central limit theorem. See for example, (5) of [2] or (3) of [17].
It follows by repeated application of (31) and (32) that if k = O(1) and d21+ · · ·+d2k = o(N)
then

Pr

(

Zi = di, i = 1, 2, . . . , k |
N
∑

j=1

Zj = 2M

)

≈
k
∏

i=1

λdi

di!f2(λ)
. (33)

Let νx(s) denote the number of vertices of degree s in Gx.

Lemma 5.7. Suppose that logN = O((Nλ)1/2). Let x be chosen randomly from [N ]2Mδ≥2.
Then as in equation (7) of [2], we have that with probability 1− o(N−10),

∣

∣

∣

∣

νx(j)−
Nλj

j!f2(λ)

∣

∣

∣

∣

≤
(

1 +

(

Nλj

j!f2(λ)

)1/2
)

log2N, 2 ≤ j ≤ logN. (34)

νx(j) = 0, j ≥ logN. (35)

We can now show Gx, x ∈ [n]2mδ≥2 is a good model for Gδ≥2
n,m. For this we only need to show

now that
Pr(Gx is simple) = Ω(1). (36)

Again, this follows as in [2].

Given a tree H with k vertices of degrees z1, z2, . . . , zk and a fixed vertex v we see that if ρH
is the probability that G(Nk1(v)) = H in Gx then we have

ρH,oH ≈
(

N

k − 1

)

(k − 1)!

Aut(H, oH)
×
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∞
∑

D=2k−2

∑

d1≥z1,...,dk≥zk
d1+···+dk=D

k
∏

i=1

λdi

di!f2(λ)
·
(

M

k − 1

)

2k−1(k − 1)! ·
k
∏

i=1

di!

(di − zi)!

1

(2M)2k−2

(37)

≈
(

N

2M

)k−1
λ2k−2

Aut(H, oH)f2(λ)k

∞
∑

D=2k−2

∑

d1≥z1,...,dk≥zk
d1+···+dk=D

k
∏

i=1

λdi−zi

(di − zi)!

=

(

N

2M

)k−1
λ2k−2

Aut(H, oH)f2(λ)k

∞
∑

D=2k−2

(kλ)D−2(k−1)

(D − 2(k − 1))!
(38)

≈ 1

Aut(H, oH)

(

N

2M

)k−1

λ2k−2 ekλ

f2(λ)k
.

Explanation for (37): We use (33) to obtain the probability that the degrees of [k] are

d1, . . . , dk. This explains the product
∏k

i=1
λdi

di!f2(λ)
. Implicit here is that di = O(log n), from

(35). The contribution to the degree sum D for D ≥ 2k log n can therefore be shown to be
negligible. We use the fact that k is small to argue that w.h.p. H is induced. We choose
the vertices, other than v in

(

N
k−1

)

ways and then (k−1)!
Aut(H,oH)

counts the number of copies of

H in Kk. We then choose the place in the sequence to put these edges in
(

M
k−1

)

2k−1(k − 1)!
ways. Finally note that the probability the zi occurrences of the ith vertex are as claimed is
asymptotically equal to di(di−1)···(di−zi+1)

(2M)zi
and this explains the factor

∏k
i=1

di!
(di−zi)!

1
(2M)2k−2 .

Explanation for (38): We use the identity
∑

d1,...,dk
d1+···+dk=D

D!

d1! · · · dk!
= kD.

6 Summary and open problems

We have derived an expression for the length of the longest path in Gn,p that holds for large c
w.h.p. It would be interesting to have a more algebraic expression. Also, we could no doubt
make this proof algorithmic, by using the arguments of Frieze and Haber [17]. It would be
more interesting to do the analysis for small c > 1. Applying the coupling of McDiarmid [21]
we see that the random digraph Dn,p, p = c/n contains a path at least as long as that given
by the R.H.S. of (4). It should be possible to improve this, just as Krivelevich, Lubetzky
and Sudakov [19] did for the earlier result of [15].

References
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