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Abstract

We discuss the length L., of the longest cycle in a sparse random graph G, p,
p = ¢/n, c constant. We show that for large ¢ there exists a function f(c) such
that Le,/n — f(c) a.s. The function f(c) = 1 — 370, pr(c)e " where pi(c) is a
polynomial in c¢. We are only able to explicitly give the values pp,p2, although we
could in principle compute any pi. We see immediately that the length of the longest
path is also asymptotic to f(c)n w.h.p.

1 Introduction

There are several basic questions that can be asked in the context of a class of graphs. E.g.
what is the chromatic number? Is the graph Hamiltonian? Another such basic question is
the following: how long is the longest cycle? In this paper we study this question in relation
to the sparse random graph G, ,,p = ¢/n for a constant ¢ > 0. Thus, let L., denote the
length of the longest cycle in the random graph G,, ... Erdés [10] conjectured that if ¢ > 1
then w.h.p. L., > ¢(c)n where {(c) > 0 is independent of n. This was proved by Ajtai,
Komlés and Szemerédi [1] and in a slightly weaker form by de la Vega [26] who proved
that if ¢ > 4log?2 then f(c) = 1 — O(c™'). See also Suen [25]. Although this answered
Erdés’s question it only gives us a lower bound for the length of the longest cycle. Bollobas
[4] realised that for large ¢ one could find a large path/cycle w.h.p. by concentrating on a
large subgraph with large minimum degree and demonstrating Hamiltonicity. In this way he
showed that £(c) > 1 — c**e¢~2. This was then improved by Bollobés, Fenner and Frieze [7]
to £(c) > 1 — c%e~¢ and then by Frieze [15] to £(c) > 1 — (1 +&.)(1 + ¢)e ¢ where &, — 0 as
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¢ — 00. This last result is optimal up to the value of e., as there are w.h.p. (1+c)e “n+o(n)
vertices of degree 0 or 1.

The basic open question to this point, is at to whether or not there exists a function f(c)
such that w.h.p. the L., = (14¢,)f(c)n where ¢, — 0 as n — 0. And what is f(c). In this
paper we establish the existence of f(c) for large ¢ and give a method of computing it to
arbitrary accuracy. We note that this is one case of a fundamental extremal random variable
where the existence of a scaling limit has not previously been shown to exist and does not
appear to be susceptible to the interpolation method as in Bayati, Gamarnik and Tetali [3].

Let p = ¢/n and let G = G,,,. We will assume throughout that c is sufficiently large. To
approximate the length of the longest path we construct a cycle C' and then argue that w.h.p.
its length is equal to L., — O(logn). It is well known, see for example Chapter 2 of [18]
that w.h.p. G consists of a unique linear size giant component C; plus a collection of smaller
components of size bounded by O(logn). So to look for a long cycle, we must look inside
C1. Now, no vertex of degree one or less can be in a cycle and so we remove such vertices
from consideration. This may create more vertices of degree one and so we continue until
we have a subgraph with minimum degree at least two. This will be Cs, it is the 2-core of
the giant component C and consists of all the vertices in C'; that are in at least one cycle.

C5 has minimum degree at least two, but it is unlikely to be Hamiltonian. One reason is
because there are a large number of triples of degree two vertices that share a common
neighbor. Given this, we first identify Cs.,, a large subgraph of Cy of minimum degree 3.
C3 ¢zt can be proven to be Hamiltonian, a fact that we use as a starting point. To construct
an even longer cycle we consider how paths in Cy \ Cj .+ can be inserted into a Hamilton
cycle in (s ¢,¢. Indeed, in Section 3, we show that given a fixed set of vertex disjoint paths
whose endpoints are adjacent to Cs .+ and cover a set of vertices Vp.s we can find a cycle
that spans V(C5ept) U Vians. By considering a suitable set of paths such that Vuus is
(almost) maximized we find a long cycle in Cy. The length of the longest path in G, ./,
differs from the length of this cycle O(logn) w.h.p. The reason for the latter statement is
that L., — (|Vpatns| +1C5.ex¢|) Will be bounded by the size of the first and last component in
Ghp \ Csert that a longest path traverses plus the number of vertices found in the non-tree
components of Cy \ C5 .. The latter two quantities, as seen by Lemmas 2.6 and 2.7 sum up
to O(logn) w.h.p.

Notation 1.1. Let Cj ..y be the mazimal subgraph of Cy such that (i) every vertex in Cs ey
has at least 3 neighbors in Csep and (i) every vertex in Cy \ Cs e that is adjacent to a
vertex in Cs ey has at least 3 neighbors in Cs . Note that if S1,S2 are two sets satisfying

(i) and (ii) then S; U Sy also satisfies (i), (ii) and so Cs et is well-defined.

We let I' be the induced subgraph of Cy spanned V (C3) \ V(C5 eat)-

In Section 2, we study the structure of I' by considering a peeling process that constructs
Cs.ezt as in the papers [4], [7] and [15].

Notation 1.2. Let T denote the set of trees in I'. For a tree T' € T let Pr be the set of path
packings of T where we allow only paths whose start- and end- vertex have neighbors in Cs eyy.
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Here by a path packing we mean a set of vertex disjoint paths in which we also allow paths of
length 0. So a single vertex with neighbors in Cs epe counts as a path. For P € Pr let n(T, P)
be the number of vertices in T' that are not covered by P. Let ¢(T) = minpep,. n(T, P) and
Q(T) € Pr denote a set of paths that leaves ¢(T) vertices of T uncovered i.e. satisfies
n(T,Q(T)) = ¢(T). Finally we let Q(T) = UrerQ(T).

Observe that any cycle in C; fails to span at least ) . ¢(1") vertices in the tree components
of I'. Hence it spans at most |V (Cy)| — > e ¢(T) vertices in Cy. By finding a cycle in Cy
that spans exactly this many vertices we prove,

Theorem 1.3. Let p = ¢/n where ¢ > 1 is a sufficiently large constant. Then w.h.p.

1S Loy - [IVCI - S 0(1)]| < 310gin 1)

TeT

Notation 1.4. If A= A(n), B = B(n) then we write A~ B if A= (1+0(1))B as n — oo.

The size of Cy is well-known. Let = be the unique solution of ze™* = ce™¢ in (0,1). Then
w.h.p. (see e.g. [18], Lemma 2.16),

|Cs] =~ (1 —x) (1 — E) n.
c
2
|E(Cy)| ~ (1 - f) n.
c
Equation (4.5) of Erdés and Rényi [11] tells us that

kk—l
k!

T = (ce™)F = ce ™ + e + 3™ /2 + O(c*e ™).

[e.e]
k=1
Hence,

1Cy)l = (1= (c+1De ¢ = e ~c(c+1)e /2 + O(c*e™))n. (2)

We will argue in Section 4 that w.h.p., as ¢ grows, that

6 ,—3c

> ol =—;

TeT

+ O(Pe™*)n. (3)

We therefore have the following improvement to the estimate in [15].

Corollary 1.5. W.h.p., as ¢ grows, we have that

Leyn = (1 —(c+De*—cfe® — e+ 1)e /2 — Pe™/36 + 0(666_46)) n. (4)



Note the term (¢ + 1)e~® which accounts for vertices of degree 0 or 1. In principle we can
compute more terms than what is given in (4). We claim next that there exists some function
f(c) such that the sum in (1) is concentrated around f(c)n w.h.p.

Theorem 1.6. Let p = ¢/n where ¢ > 1 is a sufficiently large constant.

(a) There exists a function f(c) such that for any e > 0, there ezists n. such that for n > n.,

Benl o < 5)
(b) ,
;L’n — f(c) a.s. (6)

Beginning with Theorem 1.3 we will prove Theorem 1.6 in Section 5. The proof of Theorem
1.3 is given in Section 3. In Section 2 we study the components of I'.

2 Structure of I

To construct Cs ., we consider a peeling process that sequentially removes vertices from Cs
as described below. We let Sy = 0,5, 5,,...,5; € Cy be the sequence of vertex sets that
have been removed by the steps/iterations of the process. Thus L is the number of iterations
of the process and Cj ., is shown in Lemma 2.1 to be the graph spanned by V(Cs) \ Sy.

Algorithm I'-Construction
Let Sp = (). Suppose now that we have constructed Sy, £ > 0. We construct Spy; from Sy
via one of two cases:

Case a: If there is v € S, that has exactly one or two neighbors W in Cs \ S, then we add
W to Sy to make Sy, ;.

Case b: If there is a vertex v € Cy \ Sy that has at most two neighbors in Cy \ S, then we
define Sy;1 to be S; plus v plus the neighbors of v in Cy \ S;.

If none of the two above cases apply we let the current vertex set be Sp and we terminate
the algorithm.

Lemma 2.1. Let Sp, be the set of vertices output by the above algorithm. Then, Cs .y and
[ are the graphs spanned by V(Cs) \ S, and S respectively.

Proof. First observe that since the algorithm terminates after L steps we see that there does
not exist v € V(Cy) \ S, such that either (i) v has fewer than 3 neighbors in V' (C5) \ S, or
(i) v is adjacent to a vertex V(C3) that has fewer than 3 neighbors in V(Cs) \ Sr. Since
V(Cs5 ext) spans the maximal such subgraph we have that V(Cs) \ S C V(Csext)-
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Now assume that Cy \ S # V(C5.¢) and let w be the first vertex in V' (Cs.,¢) that was
removed from Cj5.,; and let i be the corresponding iteration i.e. w ¢ S; but w € S;;;. Then
either (i) w invoked Case b or (ii) a neighbor of w invoked Case a of the above algorithm.
For (i) we have Cj .y C Cy \ S; implies N(w) N Cs.pe C N(w) N (Cy \ S;). Hence w has at
least 3 neighbors in Cy \ S; and at step i it did not invoke Case b. For (ii) let u € N(w)NS;.
Then N(u) N Csepe € N(u) N (Co\ S;) and so u has at least 3 neighbors in Cy \ S; and so
u did not invoke Case a. Hence we have a contradiction and V(C5eq.) = V(Co \ S1) and
V() = SL. O

Lemma 2.2. S} does not depend on the order of adding vertices.
Proof. The proof of Lemma 2.1 can be adapted to prove this. We assume there are two

possibilities S, S’ for Sy, and let w be the first vertex of S’ not in S. The argument of Lemma
2.1 can then be repeated. O

In Lemma 2.4 we bound the size of V(I') = Sy. For its proof we need the following lemma
on the density of small sets.
Lemma 2.3. W.h.p., every set S C [n] of size at most ng = n/10¢> contains less than 3|S|/2

edges i Gy, .

Proof. The expected number of sets invalidating the claim can be bounded by

() (=S ()" () =X () =0
[l

Lemma 2.4. Let p = ¢/n where ¢ > 1 is a sufficiently large constant. Then w.h.p.

V()] < ne~/2. (7)

Proof. Consider the construction of S;. Let A be the set of the vertices in Cy with degree
less than D = 100 and let S) = (AU N(A)) NS, C 5. If we start with Sy = S}, and run
the process for constructing I' then we will produce the same S, as if we had started with
So = 0, see Lemma 2.2. Now w.h.p. there are at most np = Qc%ﬁ%n vertices of degree at
most D in G, (see for example Theorem 3.3 of [18]) and so |S)| < Dnp.

Now suppose that the process runs for another k£ rounds and let v; be the vertex that invokes
either Case a or Case b at the ith iteration of the Construction of I'. Then vy, vs, ..., vy are
all distinct, none of them belongs to A and the sets N(vy), N(v2), ..., N(vg) belong to Sg.
Because v; ¢ A we have |[N(v;)| > D for i € [k]. In addition at the ith iteration at most
three new vertices are added to S;. Thus Sy has a least (3, [V (vi)|)/2 = kD/2 edges and
at most |S{| 4+ 3k < Dnp + 3k vertices.



If k reaches 4np then,
€<Sk) N 4DnD 1 3

. > —.
|Sk| - 2 (D—|—12)nD 2
As Dnp + 3 x 4np < n/10c¢%, from Lemma 2.3, we can assert that w.h.p. the process runs
for less than 4np rounds and,

V(D) < (D +12)np < ne” /2.

We note the following properties of S;, = V(I'). Let
Vi =V(Cy) \ S and Vo, = {v € Sp : v has at least one neighbor in V;}.

Then,

G1 Each vertex v € Sy \ V4 has no neighbors in V7.

G2 Each v € V; UV, has at least 3 neighbors in V.

Given the definition of V5, for a component K of " we define vy(K) as
vo(K) =V(K)\ Va.

Hence vg(K) consists of the vertices in V (K') with no neighbors in V;. We prove the following
lemma.

Lemma 2.5. W.h.p. each component K of I' satisfies

()] = L ®)

Proof. We will prove that for 0 < ¢ < L and each component K spanned by S;,

V)
[voi(K)| = —5— (9)
Here vo;(K) is taken to be the number of vertices in V(K) with no neigbors in Cy \ K.

Taking i = L in (9) yields (8). We proceed by an induction on i.

So = 0 and so for ¢ = 0, (9) is satisfied by every component spanned by Sy. Suppose that at
step i = £, (9) is satisfied by every component spanned by S,.

At step £+ 1, assume that v invokes either Case a or Case b. In both cases Sy, = SyU ({v} U
N (v)) The addition of the new vertices into Sy could merge components K, Ko, ..., K, into
one component K’ while adding at most 3 vertices. Hence 343, [K;[ > [K'|. In addition
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every vertex that contributed to vg¢(Kj), j = 1,2,...,7 now contributes towards vg ¢+1 (K’).
Also v has neighbors outside Sy but no neighbors outside Syy;. The inductive hypothesis
implies that vo,(K;) > |K;|/3 for j € [r]. Thus,

1 |K'| -3 |K'|
uo,m(K/)21+Zvo,g(Kj)21+§Z!Kj|21+ e
Jelr] J€lr]
And so (9) continues to hold for all the components spanned by Spy1. O]

We show next that w.h.p., only a small component K can satisfy (8).

Lemma 2.6. Let p = ¢/n where ¢ > 1 is a sufficiently large constant. Then w.h.p. the tree
components of Gy, \ Cs ext, hence of I', are bounded in size by logn.

Proof. Let K be a tree component of I' and K’ the component of Gy, ,, \ C3 .+ that contains
K C Cy. Then K'\ K C G,,\ Cy and K C C; imply that K’ \ K consists of trees (or small
unicyclic components) that are connected to Cy via a single vertex that belongs to K and
hence these trees are not adjacent to V(Csep). Thus (9) implies that K’ contains at least
|K|/3+|K'\ K| > |K'|/3 vertices that are not adjacent to V(G,,,) \ K.

Thus the probability a tree component of G,,, \ C5 cqt, hence of T', contains more than logn
vertices is bounded by

> (e () () -9 2 () () e a0

k>logn k>logn

< Z cnﬁ (QCel_C/G)k = o(1).

k>logn

Explanation for (10): We first choose K’ in (Z) ways, then choose a spanning tree of
K’ in kF=2 ways and then choose a subset K; of size k/3 in (k];3) ways. K consists of the
vertices in V' (K’) with no neighbor outside V' (K”). O

So, we can assume that all tree components are of size at most log n.

Lemma 2.7. Let p = ¢/n where ¢ > 1 is a sufficiently large constant. Then w.h.p. the
non-tree components in either G, , \ Cser or I', span at most logn vertices.

Proof. Every non-tree of component of V (G, ;) \ Cs ¢t contains a cycle. It is either disjoint
from the giant component C) or it intersects Cy and contains a non-tree component of
I'. Thus we can bound both quantities in question by the expected number of vertices of
V(Gnp) \ Csexe on components that are not trees. Similarly to Lemma 2.6 we have that the
latest is bounded by



()6 (9 (L) (- 9" < Sty <o
(11)

The kF2 (’;) in the above expression bounds the number of spanning unicyclic graphs on k
vertices that can be decomposed into a spanning tree and an edge.

Markov’s inequality implies that w.h.p. such components span at most logn vertices. O

3 Proof of Theorem 1.3

Notation 3.1. For T € T, let My be the matching on Vo obtained by replacing each path
of Q(T) of length at least 1 by an edge joining its endpoints. The internal vertices of such
paths are removed. We let M* = Jpor My. Let I(T) denote the internal vertices of the
paths Q(T) and I* = Jyper I(T) and V5 = Vo \ I*. We let I'} be the subgraph of G induced
by Vi. We also let T} be the bipartite graph with vertex partition Vi, Vs and all edges {e €
E(G):ee Vi x V). Finally let T* =T UTSUM* and V* =V, UV, = V(™).

Theorem 3.2. W.h.p. there is a Hamilton cycle H* in I'* that contains all the edges of M*

This section is devoted to the proof of Theorem 3.2. We begin by giving an outline of the
proof and then we show how Theorem 1.3 follows. Following this, we prove Theorem 3.2.

Outline of proof To prove Theorem 3.2 we begin by partitioning ['* into 2 subgraphs,
the blue and the green subgraphs denoted by I'j and I'; respectively. The blue graph will
have “nice” expansion properties while the green graph will be distributed uniformly among
a set of graphs G. Then, in Section 3.6 we use a modification of a double counting argument
that was first used in [13] to bound the number of graphs G € G such that G; U G is not
Hamiltonian. The specific version is from [14]. Given the decomposition of I'* into I'; and
[} if I'* is not Hamiltonian then one may further decompose the edges of the green graph I']
into two subgraphs, the yellow and red subgraphs denoted by I'; and I'} respectively, such
that (i) the yellow edges form a set of paths and (ii) a longest path in I'* is spanned by the
blue and yellow edges. Then we argue, using Pdsa rotations, that there is a large set of edges
E' none of which belongs to E(I';) U E(I';) such for every e € E' the subgraph spanned
{e} U E(I';) U E(I;) either spans a path longer than the one spanned by I'; U T'; hence
by I'* or it is Hamiltonian. Pdsa rotations (introduced in Section 3.5 ), define a procedure
that starts with a longest path in a graph and produces many pairs of vertices that are the
endpoints of longest paths. Hence, E'N E(I") = () which will imply that for each possible set
of yellow edges there are only a small number of sets of red edges such that I'y UT", UT = T™
is not Hamiltonian.

We finish this subsection by proving Theorem 1.3.
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Proof of Theorem 1.3: Let H* be the Hamilton cycle given in Theorem 3.2. Replacing
the edges in M* with the corresponding paths in Q(7) gives a cycle in G,,, of size |V (Cs)| —

ZTGT ¢(T) Hence7 LC,n > |V(02>| - ZTeT ¢(T)

On the other hand let P45 be a longest path in G, and P, P,..., P, be its sub-
paths that are spanned by G,,;, \ C . in the order that they appear. Then the endpoints
of P, P3,..., P, 1 are adjacent to V; and therefore P, P3,..., P, 1 do not cover at least
Y rer @(T') vertices that are spanned by the tree components of Cy \ Cscp (see notation
1.2). Each of Py, P, may traverse vertices in a single component of G, \ Cs.. Thus
| Piongest| is bounded by above by [Ch| — > ;.7 ¢(T') plus twice the size of the maximum
component of Gy, \ Csepr plus the number of vertices in I' that do not belong to a tree
component of I'. Lemmas 2.6 and 2.7 imply that the last two quantities sum to at most
3logn. O]

3.1 Structure of I']

Suppose now that |V;| = N and that V} contains M edges. The construction of I' does not
involve the edges inside V;, but we do know that that I'] has minimum degree at least 3.
The distribution of I'] will be that of Gy, ys subject to this degree condition, viz. the random
graph G%PJ’V[ which is sampled uniformly from the set g@f%, the set of graphs with vertex
set Vi, M edges and minimum degree at least 3. This is because, we can replace I'] by any
graph in G%ﬁw without changing I'. By the same token, we also know that each v € V5 has

at least 3 random neighbors in V;. We have that

(1 + 81)CN

N >n(l-— 26_0/2) and M € 5 ,

(12)
where £; = ¢~ /3. The bound on N follows from (2) and (7) and the bound on M follows
from the fact that in G, ,,

Pr (35 S| = N, e(S) ¢ (1 :I:al)(];[)p) < 2(2) exp {—w} — o(1).

The inequality follows from the Chernoff bound for the Binomial distribution.

3.2 Partitioning/Coloring G = G, and I'*

In this section we describe how to color/partition the edges of both G = G,,,, and I'*. We
first color most of the edges of G light blue, dark blue or green. This will induce a partial
coloring of E(I'*) which we then extend to a complete coloring of E(I'™*). We denote the
resultant blue and green subgraphs in G by I'y, I'; respectively (an edge is blue if it is either
dark or light blue). We later show that the blue graph has expansion properties while the
green graph has suitable randomness.



Notation 3.3. For a graph G and vertex sets A, B C V(G) we write
A:B={{a,b} € E(G):a€ Abe B}.

Every vertex v € V; independently chooses min {degv1 (v), 100} neighbors in V; and we color

the chosen edges light blue. Then we color every edge in V5 : Vi light blue. Thereafter

we independently color (re-color) every edge of G dark blue with probability 1/2000. This

coloring is done independently of the structure of I'*. Finally we color green all the uncolored

edges that are contained in V;. (Some of the edges of G will remain uncolored and play no
significant role in the proof.)

The above coloring satisfies the following properties:

(C1) Every vertex in V; U V5" is joined to at least 3 vertices in V; by a blue edge.
(C2) In G, every dark blue edge appears independently with probability 5.

(C3) Given the degree sequence d, of I'y,
sequence d, is equally likely to be I'y.

every graph H with vertex set V; and degree

We can justify C3 as follows: Amending G by replacing I'y by any other graph I'j with
vertex set Vi and the same degree sequence and executing our construction of Sy, will result
in the same set S;, and sets Vi, V. So, each possible F; has the same set of extensions to
G and as such is equally likely.

Now given I',,I'y C G we color the edges in I' as follows. Every edge in I'* that exists in
G inherits its color from the coloring in G. Every edge in M* C E(I™) is colored light blue.
We let I}, I"; be the blue and the green subgraphs of I'*. Observe that I'; = I'y, hence I
satisfies property (C3) as well.

3.3 Expansion of [}

We wish to estimate the probability that small sets have relatively few neighbors in the
graph I';. For S CV* =V, U VS we let

No(S) ={we Vi \S:3ve s with {v,w} e E(I})}
={weV;\S:Jves with {v,w} e E(y)}.

We have slightly abused notation here since Ny (.S) is implicitly defined in both G and T™* in
the same way.

It is shown in [6] and also in [16] that if S is the set of endpoints of longest paths created
by Pésa rotations (see Section 3.5) then S U N(S) is connected and contains at least two
distinct cycles hence, at least |S|+|N(S)|+1 edges. Hence the condition (iii) in the following
lemma.
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Lemma 3.4. W.h.p. there does not exist S C V* of size |S| < n/4 and (i) |[Ny(S)| < 2|5,
(11) SU Ny (S) is connected in Gy, and (iii) S U Ny(S) spans at least |S|+ |Ny(S)| + 1 edges
in Ghp.

Proof. Assume that the above fails for some set 5.

Case 1: |S| < ny =n/(100c3).

Let t = |Ny(S)|. We will suppose first that S contains at least s/10 vertices of degree at
least 100. In this case S U Ng has cardinality at most s +¢ < 3s and contains at least
5s > 3(s + t)/2 edges, contradicting Lemma 2.3.

On the other hand, if there are at least 9s/10 vertices in S of degree at most 99 then
there are at least 3(s + t)/10 vertices of degree at most 99 in a connected subgraph of size
sg < s+t < 3ny. In addition that subgraph spans at least s+t+1 edges. But the probability
of this occurring in G, is at most

3, L 99 3k/10
N\ k—2 (2) k+1 k n—~k\ , _o\n—k—¢
2 (k)k (2 )p (Bk/lo) (Z( ¢ )P
=1 /=1
3ng 3n1
ne ok < Mk —3ke/20 ck? ] 1-3c/20\F __
< ,;:1 ( k) k (n) 2% < kgﬂ " (2ce ) =o(1).

This completes the proof for Case 1.

Case 2: n; < |S| < n/4.

The choice of the sets Vi, V5" conditions G, ,. To get around this, we describe a larger event
Es in G = G, , that (a) occurs as a consequence of there being a set S with small expansion
and (b) only occurs with probability o(1). This event involves an arbitrary choice for V;, V5.

Let T'= Ny(S) and W = Ng(S) \ Np(S), that is " and W are the neighborhoods of S in G
inside and outside of V; respectively. Then the following event £s must hold. There exist
S, T,W such that, where s = |S|,t = |T'| and w = |W|,

(i
(ii

(iii

= ne 3% where ng is a bound on |V (I)| + |V (G \ Ca)| (see (2) and (7)).

) t
) w
) No vertex in S is connected to a vertex in V' \ (SUT U W) by a dark blue edge.
(iv) SU Ng spans at least s +t edges (at least s +¢ + 1 in fact).

Thus,

Pr(&s | s,t,w)

e (o g

11



<G5 G o ()
< (ec)2s+) (s+t) < tt) GCS)w { 16035}

< (ec)® exp{ t_s}exp{t S—t} <e;05> oexp{_lc_;}

< (ec)%(ce! /3y eXp{ } B <<60)6(c 1‘6/3)“/36—0/105)8,

At the 5th line we used £t = 1+ &% < exp {&2} and w < ng < 100c’e™/2s < e™/3s.
Hence

10°

n/4

PI‘(EIS . gs) <n Z Z ( GC 1—6/3)66/36—0/105) _ 0(1)

s=n/(100c3) t=0

3.4 The Degrees of the Green Subgraph

Lemma 3.5. W.h.p. at least 99n/100 vertices in Vi have green degree at least ¢/50. In
addition every set S C Vi of size at least n/4 has total green degree at least cn/250.

Proof. At most 100n edges are colored light blue and thereafter the Chernoff bounds imply
that w.h.p. at most (1 + €)cn/4000 edges are colored dark blue, for some arbitrarily small
positive €. The degree of a fixed vertex in G, is asymptotically Poisson with mean c (see
[18], Chapter 3). So, the probability that a vertex has degree less than ¢/4 in Gy, is bounded

by 26;;2‘!6 LS /1000. Azuma’s inequality or the Chebyshev inequality can be employed to

show that w.h.p. there are at most n,/1000 vertices of degree less than ¢/4 in G, ,. Therefore
every set of n/100 vertices is incident with at least [(n/100—n/1000)c/4]/2 edges. And hence
with at least [(1n/100 — n/1000)c/4]/2 — (1 + €)en /4000 — 100n > ¢/50 - n/100 green edges.
Thus in every set of vertices of size at least /100 there exists a vertex that is incident to
¢/50 green edges, proving the first part of our Lemma.

It follows that w.h.p. every set of size n/4 has total green degree at least

<7’L n ) C cn
—— X = > —.
4 100 50 250

3.5 Posa Rotations

Pésa Rotations [24] are a standard tool in the analysis of Hamilton cycles in random graphs,
see for example [18], Chapter 6.2. It is a procedure that starts with a longest path and
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outputs many pairs of vertices that are the endpoints of longest paths. Here we marginally
modify the standard argument.

We say that a path/cycle P in T'* is compatible if for every {v,w} € M* either P contains the
edge {v,w} or V(P) N {v,w} = 0. Our aim therefore is to show that w.h.p. T'* contains a
compatible Hamilton cycle. Suppose that I'* is not Hamiltonian and that P = (vq, vg, ..., vs)
is a longest compatible path in some graph I';, I'; C 'y C ' If {v,,v;} € E(I'y) and v; € V}
then the path P' = (vy,vq,...,0; Vs, Vs 1,...,0;41) 18 said to be obtained from P by an
acceptable rotation with v, as the fixed endpoint. We also call v; the pivot vertex, the edges
{vs, v; }, {vi, vi11} the pivot edges and the edge {vs, v;} the inserting edge. Observe that even
though we are searching for the longest path in I'j we only allow the insertion of edges from
I';. In addition, since P is compatible and {v;,v;11} ¢ M* (since v; € V;) then P’ is also
compatible.

Let END;(P,v1) be the set of vertices that are endpoints of paths that are obtainable
from P by a sequence of acceptable rotations with v; as the fixed endpoint. Then, for
v e END;(P,v,) welet END;(P,,v) be defined similarly. Here P, is a path with endpoints
v1, v obtainable from P by a sequence of acceptable rotations.

Pésa’s lemma states that |Ny(END;(P,vy))| < 2|END;(P,v;)| in the case where M* =
(see for example Lemma 6.6.0f [18]). Arguing as in the proof of Pésa’s lemma we see that

INJ(END,(P,w,))| < 2|END}(P,v,)]. (13)

Indeed, assume otherwise. Then there exist vertices v;, u € V(P) such that u € EN D, (P, vy),
v; € Np(u) C Vi, vi-1,vi01 € END;(P,vq). v; € Vi implies that neither of {v;_1,v;} , {vi, vis1}
belongs to M* and the edge {u,v;} can be used by an acceptable rotation with v; as the
fixed endpoint that “rotates out” w. Any such rotation will create a path with either v;_; or
v;+1 as a new endpoint, say v;—;. Hence v;_y € ENDj(P, vy) resulting in a contradiction.

Lemma 3.6. Let I, be any graph satisfying Iy C Iy C I'. W.h.p. for every path P of
mazimal length in ', and an endpoint v of P we have that |ENDj(P,,v)| > n/4.

Proof. We will show that S = END;(P,,v) satisfies (i), (ii), (iii) of Lemma 3.4. For this
let R = R(P,,v) be the set of pivot points and Er = Eg(P) be the set of pivot edges. It
is shown in [6] (Lemma 5) and also in [16] (Lemma 2.1) that if S is the set of endpoints
created by Pdsa rotations then Er spans a connected subgraph on S U R that consists of at
least [S| + |R\ S| + 1 edges.

The key observation is that if v is the pivot vertex of an acceptable rotation then, by
definition, the associated pivot edges do not belong to M*. Consequently every edge in Er
belongs to E(I') \ M* C E(G,, ). This would not have necessarily been true if Er contained
an edge of M*. Finally, N,(S)\ R C V; and therefore (NV,(S)\ R) : S spans at least | N, (S)\ R|
edges in E(I') \ M* C E(G,,). Hence N,(S)U S is connected in G,,, and spans at least
(IS + R\ S|+ 1)+ |No(S) \ R| = |S| 4+ |Np(S)| + 1 edges. This verifies conditions (ii) and
(iii) of Lemma 3.4. Finally (13) implies condition (i). O
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From Lemma 3.6 we see that w.h.p. |[END;(P,,v)| > n/4 for all v € END;(P,v;). We let

ENDj(P)=ENDy(P,v)U | J  ENDy(P,v).

vEEND; (Pyv1)

3.6 Coloring argument

We use a modification of a double counting argument that was first used in [13]. The specific
version is from [14]. Given a two edge-colored I'*, we choose for each v € V}, an incident
edge & = {v,m,} where n, € V1 UV,". We color &, yellow if it is not already colored blue.
We then color the rest of the green edges red. We denote the yellow and red subgraphs of

I by I'; and I’ respectively. There are at most IT =[], d(v) choices for § = (&,,v € V}).

Let G(d,) be the set of graphs with degree sequence d, and ® = |G(d,)|. For a fixed set
of yellow edges, defined by &, we let d£ be the degree sequence of the red graph and G (dg)
be the set of graphs with degree sequence dg Thus given d,; and conditional on &, I} is a
random member of G (dg). In addition, smce every red graph can be extended to a green
graph via the addition of the yellow edges, we have that ®; < ® where ;¢ denotes |G(d5)] .

For a graph I', I' = I or I'; UT"; we let /(') denote the length of the longest compatible
path in I'.

We now reveal T';. For given £ and T'; € G(d%) we let a(£,T;) = 1 if H1,H2,H3 below hold,

and equal to 0 otherwise:

H1 : I' is not Hamiltonian.

H2 (T uTy) = (T).

H3 : With I'; = T'; U T, for every path P of maximal length in I'; and an endpoint v of P
we have that |END;(P,,v)| > n/4.

Let mg be the probability that I'* is not Hamiltonian.

2. 2 al&Ty)

¢ TIieg(ds)
®

Lemma 3.7.

g < +o(1). (14)

Proof. The o(1) term accounts for the probability that H3 fails which is related to the already
revealed I'; and by Lemma 3.6 is o(1). If H3 is satisfied and I'* is not Hamiltonian then I’

belongs to
Gg ={I" € G(d,) : T'; UT" is not Hamiltonian}.
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If I'; belongs to G then there exists £ such that a(€, ;) = 1. Indeed, let P = (vy,vg, ..., v,)
be a longest path in I'*. Then we simply let &, be the edge {v;,v;41} for 1 < i < r. Since
I'; is a random member of G(d,), it follows that

2. 2 al&Ty)

¢ Iyegds)
- P

+o(1).

]

For fixed & we let P¢ be a fixed longest path in I'; UT, and m¢ be the probability that a
random element of G(d%) does not include a pair {x,y} where y € ENDj(Pe, ). It follows

that
Z Z a(g,I) < Z(I)yrg < ®I1 mAX Te. (15)

€ ryeg(df) 3

Lemma 3.8.

max mg < e—en/10°
'3

Proof. This is an exercise in the use of the configuration model of Bollobds [5]. Let W =
[2M,] where M, is the number of green edges and let Wy, Ws, ..., Wy be a partition of W
where |[W,| = dr:(v),v € V1. The elements of W will be referred to as configuration points or
just as points. A configuration F is a partition of W into M, pairs. Next define ¢ : W — [N]
by © € Wy (. Given F', we let v(F') denote the (muti)graph with vertex set Vi and an edge
{(x),¥(y)} for all {z,y} € F. We say that «(F) is simple if it has no loops or multiple
edges. Suppose that we choose F' at random. The properties of F' that we need are

P1 If G, Gy € Gg, then Pr(y(F) = Gy | y(F) is simple) = Pr(y(F) = Ga | 7(F) is simple).
P2 Pr(y(F) is simple) = Q(1).
These are well established properties of the configuration model, see for example Chapter

11 of [18]. Note that P2 uses the fact that w.h.p. G%’?}w (and hence I';) has an exponential
tail, as shown for example in [17].

Given all this, in the context of the configuration model, we have the following simple
consequence of a random pairing of W.

) Y den))’

weEND! (P,,v)
< O(1) x 1-— ° 16
maxme < maxO(1) x  [] = (16)
veEN D} (P¢)
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E dr; (U) E dr; (w)
vEEND}(Pg) wWEEN D) (Py,v)
< O(1 — ’ . 17
< max O(1) x exp = (17)

The O(1) factor is 1/ Pr(y(F) is simple) and bounds the effect of the conditioning. We take
the square root to account for the possibility that w € END;(P,,v) and v € END;(P,, w).

Lemma 3.5 implies that at least n/4 —n/100 out of the at least n/4 vertices in EN D;(P)
have dr:(v) > ¢/50. Also, for such v the set END;(P,,v) U {v} is of size at least n/4 and
so has total degree at least cn/250. Thus from (17), it follows that

C n cn

mgaxﬂg < O(1) x exp {—% (G ;j\?) ' ﬁ} < gmen/10°,

The Arithmetic-Geometric-mean inequality implies that
d N
< I dw) < (%) < (20" (18)
veWVy
It then follows from Lemmas 3.7, 3.8 and from (18) that for sufficiently large ¢
T < (20)" - e 4 o(1) = o(1),

and this completes the proof of Theorem 3.2.

4 Proof of (3)

We are not able at this time to give a simple estimate of » ;. ¢(T) as a function of c.
We will have to make do with (3). On the other hand, ) ;. #(1) can be approximated to
within arbitrary accuracy, using the argument in Section 5.

We work in G,,,. Observe that a tree T" is spanned by C5 and satisfies ¢(7") > 0 only if (i) it
has a vertex with at least 3 neighbors in V(I') \ V5 each having degree at least 2 in 7" and (ii)
all the vertices of T of degree 1 belong to V5. Here we are using that no vertex in V/(7T') NV,
contributes to ¢(T") as it can be considered as an individual path of length 0.

The smallest such tree is T” the tree on seven vertices that consists of three paths of length
two with a common endpoint. In addition every tree T" satisfying (i) and (ii) and intersects
V(I') \ V2 in exactly 3 vertices has 7" as a subtree. Since ¢(7”) = 1 we have in G,,,, as in
the proof of Lemma 10,

2 (T;M)) =" )" -
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n - - n—k) max

k>T7
6 ,—3

c’e™’n ne\xk ., 7c\k-1 k
Rl ey

6,-3
- 26 ° O(fe™*)n. (19)

In the first line we used that every tree that contributes to E (ZTET ng(T)) either satisfies
vo(T') = 3 and spans a copy of 1" or satisfies both vy(7") > 4 and (8) i.e. vo(T") > |T|/3. We
obtain (3) from (19).

5 Proof of Theorem 1.6

For v € Cy we let ¢(v) = ¢(T)/|vo(T)| if v € vo(T') for some T € T and ¢(v) = 0 otherwise.
(Recall that vy(T) = V(T) \ Va.) Thus

D o1 = b(v).

TeT veCy

Hence (1) can be rewritten as,

Lew = |Ca| = ) ¢(v). (20)

veCy

To prove Theorem 1.6 we show that there for every € > 0 there exists a set of vertices
Se of size | > (1 — €)|Cy| such that for every v € S, we can evaluate correctly ¢(v)
via a procedure described later on. This evaluation will be based on the first £ = k(e),
neighborhoods of v. Hence the distribution of » . #(v) can be tied to the distribution of
the first £ neighborhoods of a random vertex which we then relate to the expected number
of appearances of small subgraphs in Cs.

Let € > 0. Let k1 = k1(e, ¢) be the smallest positive integer such that

e}

Z (e323ce M)k < %

k=k1—1

Note that for large ¢, we have

2. 1
ki < Zlog - (21)
C 19

Notation 5.1. Forv € Cy let Ni(v) (and N<i(v) respectively) be the set of vertices in V (Cs)
that are in distance exactly k (at most k respectively) from v in Cy.
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For v € Cy let GG, be the graph that is formed as follows: Starting with the graph spanned
by Nep(w) for every vertex w € Ni(v) we introduce K, a copy of K33, and we join
w to each vertex of the same part of the bipartition of K3’;. We consider the algorithm
for the construction of I' on G, and let Cy,, 'y, Vi, Vo, Spvs Vou(T) be the corresponding
sets/quantities.

For a tree T' € Sp,, let f(7T') be equal to || minus the maximum number of vertices that can
be covered by a set of vertex disjoint paths with endpoints in V5, (we allow paths of length
0). For v € Cy,, if v belongs to some tree T' € S, set f(v) = f(T)/vo,(T), otherwise set

f(v) =0.

Forv e Cylet t(v) =1ifv e Vjorif v € Sp and in I', v lies in a component with at most
ki1 — 2 vertices that are not connected to V; in G. Set t(v) = 0 otherwise. Observe that if
t(v) = 1 then ¢(v) = f(v). Otherwise |¢p(v) — f(v)] < 1.

Lemma 5.2. The expected number of vertices v satisfying t(v) = 0 is bounded by %'

Proof. By repeating the arguments used to prove (10) and (8) it follows that if ¢(v) = 0 then
v lies on a component C' of size at most logn. In addition at least max{|V (C)|/3,k — 1}
vertices in V' (C') are not adjacent to any Cy-vertex outside V(C'). So,

E(|{v:t(v) =0}]) < kin Z( )( ) “2pi=1(1 _ pykn=d)

k=ki—1 j=k

]

Notation 5.3. A vertex v € [n] is e-good if N;(v) < 3c'ky /e for every i < ki and it is € bad

otherwise.
E ( ) < en.

Proof. Because the expected size of the i* neighborhood of every vertex in G is ~ ¢ we
have by the Markov inequality that v is e-bad with probability at most ~ ¢/3k; and so the
expected number of e-bad vertices is bounded by en/2. Thus,

) )

E(Z¢(v)— > f(v)) §E<Z¢<v)—2f(v) ) +E<

veV v is e-good veV veV

Lemma 5.4.

d o)=Y f

veV v s €-good

Y f

v is e-bad
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<E[| D Ié() - fv) +E( > 1)

v is e-bad

v:t(v)=0
€n 4 €n <
— —_ €n
- 3 2

]

Let H. be the set of pairs (H,op) where H is a graph, oy is a distinguished vertex of H,
that is considered to be the root, every vertex in V(H) is at distance at most k; from oy and
all the neighborhoods of oy are e-good. For v € Cy let G(Ny, (v)) be the subgraph induced
by the k™ neighborhood of v in Cy. For (H,oy) € H. let Aut(H,ox) be the number of
automorphisms of H that fix og. Note that each e-good vertex v is associated with a pair
(H,on) € H. from which we can compute f(v), since f(v) = f(og). Let

f(on) Ny \* 70 oo fa(kA)
; Hc;)@{ Aut(H, o )(2M2) . fa(NF (22)

Lemma 5.5. Let My = |E(Cy)| and Ny = |Cy|. Then

E( S i

v is e-good

N2> =o(n) + f-(c)n.

Proof.

E( > fw)

v is e-good

NZ) = Z Z Z pH,on(OH)

v k>1 (H,o1)EH-e
(G(Ngy (v)v)=(H,0m1)
|V(H)|=k

EDYY > pHoyf(0r),  (23)

v k>1 (H,op)EH,
H is a tree
(G(Ni, (v),v)=(H,om)

where pp o, is the probability (G(N,(v)),v) = (H,o0y) in Cy. The o(n) term in (23) is an
upper bound on the number of vertices v such that N<(v) spans a cycle in G, hence in Cs.

We show in Section 5.1 that

og ~ A - 24
PHon ™= 2ut(H, on) (2M2> F(V)F (24
where f, is defined in (28) below and A satisfies (29) below. O
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Proof of part (a) of Theorem 1.6: f.(c) is monotone increasing as e — 0. This is simply
because H. grows. Furthermore, f.(c) <1 and so the limit f(c) = lim._,o f-(c) exists.

Let € > 0. Take € sufficiently small such that max {|f.(c) — f(c)|,e} < &'/3. Theorem 1.3
and Lemmas 5.4 and 5.5 imply that for sufficiently large n,

. ’E (’ e 80) = Ly i cgona S (0)

n

— f(c)

' E[Lcn]

n

)|+ 60 - st o <=

[]

Proof of part (b) of Theorem 1.6: For a graph G let C5(G) be the 2-core of its largest
component. We let G be the set of graphs on n vertices and with at most n?p edges such
that for G € G the following holds:

(i) the largest component in G \ Cy(G) is of size at most log n.
(ii) at most logn vertices lie in a non-tree component in G \ Cy(G).

(iii) the length of the largest path in G satisfies (1).

Theorem 1.3 and Lemmas 2.6 and 2.7 imply that Pr(G,, ¢ G) = o(1). Hence

E(L.,) = E(L.,|Gnp € G) + o(n). (25)

We now implement an edge exposure martingale to reveal G,, ,, conditioned that it belongs

to G and |E(G,,,| = m: let ey, eq,. .., ea, be chosen randomly from (g)m

Now let ey, e9,...,¢e, and €], €5, ..., e be two edge sequences that differ in a single edge say
e; # €, such that the corresponding graphs G and G’ belong to G. Then, G, G’ differ in at
most 4 components (the ones containing a vertex in e; U e}) and therefore conditions (i)-(iii)
imply that the length of the longest paths in G,G’ differ by at most 1+ 3logn + 8logn. The
1 and 3logn originate from (1), a 4logn term accounts for the difference in the size of the
2-cores and a 4logn term for the difference in at most 4 components outside the 2-cores.
Azuma’s inequality (see Lemma 11 of Frieze and Pittel [20] or Section 3.2 of McDiarmid
[22]) implies that

Pr [}Lw — E[Lep|Ghyp € g]}‘Gw, eg> nO-S} < 705, (26)

(25), (26) and part (a) of Theorem 1.6 imply that for € > 0 and sufficiently large n,

L
Pr l “— flo)| > e} < e (27)
n
(6) follows from (27) and the Borel-Cantelli lemma. O
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5.1 A Model of ()

It is known that given My, Ny that, up to relabeling vetices, C is distributed as G?VZQ?MQ (see

for example the first section of [20]). The random graph G}E?MQ is chosen uniformly from

gf\%?% which is the set of graphs with vertex set [Ns], My edges and minimum degree at
least two. From now, we replace My, No by M, N respectively.

5.1.1 Random Sequence Model

We must now take some time to explain the model we use for G‘;\%ﬁ. We use a variation
on the pseudo-graph model of Bollobds and Frieze [8] and Chvétal [9]. Given a sequence
X = (11, Zo, ..., maps) € [n]*M of 2M integers between 1 and N we can define a (multi)-graph
Gx = Gx(N, M) with vertex set [N] and edge set {(zg9;_1,%9) : 1 < i < M}. The degree
dx(v) of v € [N] is given by

dx(v) = [{j € 2M] : z; = v} |.

If x is chosen randomly from [N ]2M then Gy is close in distribution to Gn . Indeed,
conditional on being simple, G is distributed as Gy . To see this, note that if G is simple
then it has vertex set [N] and M edges. Also, there are M!2M distinct equally likely values
of x which yield the same graph.

Our situation is complicated by there being a lower bound of 2 on the minimum degree. So
we let

[N]3Y, = {x € [N]*M : dx(j) > 2 for j € [N]}.
Let Gy be the multi-graph Gy for x chosen uniformly from [N]2%. Tt is clear then that
conditional on being simple, Gx has the same distribution as G‘;VZ]%/[. It is important therefore
to estimate the probability that this graph is simple. For this and other reasons, we need to
have an understanding of the degree sequence dy when x is drawn uniformly from [N]2%,.

Let '
= -3 2 (28)
for k > 0.

Lemma 5.6. Let x be chosen randomly from [N](%Jg2 Let Z;,5 =1,2,..., N be independent
copies of a truncated Poisson random variable P, where

At
Pr(P:t):t!f2(/\), t>2.
Here \ satisfies )
Afi(A)  2M
BN TN .

Then {dx(j)}jein) is distributed as {Z;}jen) conditional on Z =3\ Z;j = 2M.
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Proof. This can be derived as in Lemma 4 of [2]. O

It follows from (12) and (29) and the fact that fi(\)/f2(A) — 1 as ¢ — oo that for large c,
A=c(1+0(ce™)). (30)
We note that the variance o2 of P is given by

s Aer —1)2 = N3

o =

f2(N)
Furthermore,
il 1
ZH(;?@MO—?_%N(+OW'J)) (31)
and
al 1 2 -1 _—2
r(j;Z] —d):gm(HO((d +1)N"'o7?)). (32)

This is an example of a local central limit theorem. See for example, (5) of [2] or (3) of [17].
It follows by repeated application of (31) and (32) that if £ = O(1) and d2 +- - - +d3 = o(N)

then
A
Pr|Zi=d.i=1,2....k|S 2 =2M , 33
( 'Z ) ~1 a7 %)

Let vx(s) denote the number of vertices of degree s in Gx.

Lemma 5.7. Suppose that log N = O((NX)Y/?). Let x be chosen randomly from [N]3%.
Then as in equation (7) of [2], we have that with probability 1 — o(N~10),

N N\ 12
ve(j) =0, j>logA. (35)

We can now show Gy, x € [n]3Z, is a good model for G272, For this we only need to show
now that

Pr(Gy is simple) = Q(1). (36)
Again, this follows as in [2].

Given a tree H with k vertices of degrees 21, 29, . .., 2 and a fixed vertex v we see that if py
is the probability that G(Ng, (v)) = H in Gy then we have

(N k=D
Pion =\ 1 Aut(H,op)
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M\ Eody 1
> 2 Mage (M) w0 Mg

D=2k—2 di1>2z1,...,d >z 1=1 i=1
dy+- +dk D
(37)
N k—1 /\2k 2 )\d —zi
=2k—2 dy>z1,..., dk>zk2 1
di+--+dp=
N O\ k1 2\2k—2 0 E\)P—2(k-1)
(N yo Y (38)
oM ) Aut(H, o) fo(N)F (D—2(k—1))!

D=2k—-2

~ 1 NAMT \2k—2 e

Explanation for (37): We use (33) to obtain the probability that the degrees of [k] are
dy,...,d;. This explains the product HZ 1T 'f ( 5 Implicit here is that d; = O(logn), from
(35). The contribution to the degree sum D for D > 2klogn can therefore be shown to be
negligible. We use the fact that k is small to argue that w.h.p. H is induced. We choose

the vertices, other than v in (k]l[ 1) ways and then 1411(5(;;2;) counts the number of copies of

H in K. We then choose the place in the sequence to put these edges in (k]\fl) 2k 1(k —1)!
ways. Finally note that the probability the z; occurrences of the ith vertex are as claimed is

asymptotically equal to di(di_g"]\})dji_ziﬂ) and this explains the factor Hle —CE'Z i ATz - M)lgk 5

Explanation for (38): We use the identity

6 Summary and open problems

We have derived an expression for the length of the longest path in G, , that holds for large ¢
w.h.p. It would be interesting to have a more algebraic expression. Also, we could no doubt
make this proof algorithmic, by using the arguments of Frieze and Haber [17]. It would be
more interesting to do the analysis for small ¢ > 1. Applying the coupling of McDiarmid [21]
we see that the random digraph D,, ,, p = ¢/n contains a path at least as long as that given
by the R.H.S. of (4). It should be possible to improve this, just as Krivelevich, Lubetzky
and Sudakov [19] did for the earlier result of [15].
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