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Abstract

We consider the geodesic of the directed last passage percolation with iid exponential
weights. We find the explicit one-point distribution of the geodesic location joint with
the last passage times, and its limit as the parameters go to infinity under the KPZ
scaling.

Mathematics Subject Classification 60K35 - 82C22

1 Introduction

In recent 20 years, there has been a huge progress towards to understanding a universal
class of random growth models, the so-called Kardar—Parisi—Zhang (KPZ) universality
class[1,2,4,21,27,28,30,31, 34, 37, 38]. Very recently, studies about the geodesics
of these models started to appear [3, 6, 7, 9, 17, 19, 22, 23, 25, 26]. However, the
explicit distributions of the geodesic are still not well understood. As far as we know,
the only known related results are the distribution of the geodesic endpoint location
[16, 33, 36].

This is the first paper of an ongoing project to investigate the limiting distributions
of the geodesics in one representative model, the directed last passage percolation with
exponential weights, using the methods in integrable probability. We obtain the finite
time one-point distribution of the geodesic location joint with the last passage times, see
Theorem 1.1. We are also able to find the large time limit of this distribution function,
see Theorem 1.3. We remark that our results are for the point-to-point geodesic. In the
follow-up papers, we will consider the point-to-point and point-to-line geodesics using
a different approach, and the multi-point distributions of the point-to-point geodesic.
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The limiting distributions obtained in this paper are expected to be universal for
all models in the KPZ universality class. See [23] for more discussions related to the
geodesics.

Below we introduce the main results of the paper. We start from a short description
of the model.

The directed last passage percolation is defined on the lattice set Z>. We assign
to each integer site p € Z? an i.i.d. exponential random variable w(p) with mean 1.
Assume that p and q are two lattice points satisfying q — p € Z2>0, i.e., the point q
lies in the upper right direction of p. The last passage time from p to q is

Lp(q) == m;lew(r), (1.1)

rem

where the maximum is over all possible up/right lattice paths from p to q.

Since the random variables w(r)’s are continuous, the last passage time Lp(q)
in (1.1) is almost surely obtained at a unique up/right lattice path, which we call the
geodesic from p to q and denote Gp(q).

Note that the two neighboring sites r and ry withr. —r € {(0, 1), (1, 0)} are on
the geodesic Gy (q), if and only if the sites p, r,ry, q satisfyr —p,q —ry € Zio,
and the last passage times Lp(r) and Ly, (q) satisfy

Lp(r) + Lr, (@) = Lp(q). (1.2)
Throughout this paper, we always use r4 to denote the lattice point following r in the
geodesic.
1.1 Finite time joint probabilities of geodesic location and last passage times
The first main result of this paper is about the joint probability that a fixed pair of

neighboring sites r and r’ are on the geodesic Gp(q), and the two last passage times
Lp(r), Ly (q) lie in some intervals.

Theorem 1.1 Setp = (1, 1), = (M, N). Supposer = (m,n) andr’ = (m + 1, n),
with m, n satisfying | <m < M — land 1 < n < N. Assume that t|, t2, €1, €2 are
all positive real numbers. We have

P(r,x' € Gp(q), Lp(r) € [t1, 11 + €11, Ly (q) € [12, 12 + €2])

1 +€) nh+er
= / / p(s1, s2;m,n, M, N)dsadsy, (1.3)
1 n

where the function p(s1, s2; m,n, M, N) is defined in (1.7). Similarly, ifr = (m, n)
and ¥’ = (m,n + 1), with m, n satisfying 1 <m < Mand1 <n < N — 1, the
formula (1.3) holds with p(sy, s2; m,n, M, N) replaced by p(s1, s2; n,m, N, M).

Remark 1.2 By setting 1| = 1, = 0 and €] = €, = 00, one can explicitly evaluate the
double integral of the right hand side of (1.3) and derive a formula for the probability of
r, 1’ € Gp(q). See (1.11). However, we are not able to directly perform the asymptotics
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analysis of this formula under the KPZ scaling, the scaling of most interests to us. In
fact, the formula (1.11) is obtained after changing the order of a double integral and
a summation. However, such a change of order is not allowed in the corresponding
limiting distribution formula (1.17) so we do not expect (1.11) has a limit of the same
structure.

Moreover, it is not very surprising that the geodesic information is intertwisted with
the last passage times. In fact, it has been proved that the geodesic Gp(q) becomes
more rigid (or localized) around its expected location when the last passage time
Lp(q) becomes very large [5, 32]. On the other hand, it is not concentrated around
any deterministic curve when the last passage time becomes very small [8].

The proof of Theorem 1.1 is given in Sect. 2.

1.2 The probability density function p(sy, s2; m, n, M, N)

We first introduce three notations. Suppose W = (w1, ..., wk) € C* is a vector, we
denote
AWy = [] @j—w. (1.4)
I<i<j<k
IfW = (wy,...,wg) € Ckand W = (wi,...,w,’(,) e C¥ are two vectors, we
denote
kK
AW; Wy =[] —wi. (1.5)
i=1i=1
Finally, if f : C — C is a function and W = (wy, ..., wx) € Ck is a vector, or
W = {wji, ..., wr} with each element w; € C, we write
k
fW) =TT fw). (1.6)

i=1

Throughout this paper, we allow the empty product and define it to be 1.

We need to introduce six contours. Suppose X1 out, 21 and X i, are three nested
contours, from outside to inside, enclosing —1 but not 0. Similarly, Xg oy, £r and
2R, in are three nested contours, from outside to inside, enclosing 0 but not —1. We
further assume that the contours enclosing —1 are disjoint from those enclosing 0. In
other words, the two outermost contours X, oy and XR oyt do not intersect. All the
closed contours throughout this paper are counterclockwise oriented. See Fig. 1 for
an illustration of these contours.

We also introduce the notation of an integral along a small loop around a point zq

in the complex plane
7{ f(2)dz :=/ f(2)dz,
20 lz—zo|=¢€

where f(z) is an arbitrary meromorphic function defined in a neighborhood of zo and
€ is a sufficiently small constant.
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Fig. 1 Tllustration of the iR
contours: the three contours

around —1 from outside to

inside are Xy, oyt, X, and Xy i

respectively, and the three

contours around 0 from outside R
to inside are ¥R out. XR and

YR.in Tespectively

The probability density function p(sy, s2; m, n, M, N) is defined to be

cm,n, M, N) = dz L @ s s M,N

p(s1,s2;m,n, M, N) := Om Z W ki.kr (25 81, 82;m,n, M, N)
ki, ko>1

(1.7)

with

Ty ko (25 81, 82, m,n, M, N)

L el
1l =2z Jyy,, 27i 1 =27 Jsg o 270

w® [ d? . \Ki
TS o))
i1 /L 21 Jyg 27‘[1 z
SOV s) H(UP; 57)
VD51 fa(VO; 52)
(AU (A O AWUD; VYAV D; UD)
(A(U(@; V(@)))z ' AUD; UDYA(VD; yQ2)y°

. H(U(l), U(2); V(l), V(2))

(1.8)

=1

where the vectors U® = (uge), ...,u,({i)) and VO = (vgz) ) vkl)) for ¢ € {1, 2},
the functions fi, f» are defined by

fi(w;s) == (w+ DH~"w"e’™,

1.9
Fo(w; s) 1= (w4 1)y~ MAmyN-ngsw, (1.9)

and the function H is defined by

H(U(l), U(Z); V(l), V(Z))

L& . 2 by kO
R L (@D 2 ( )
) Z(uil Yi, ) = Z(u Vi ) 1+ 1_[ (1) 1_[ (2)
i1=1 ir=1 i1= 14 ir= 1Y
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k

-3 () ) 3 (R )

i1=1
ki (1) ko (2)

1—]_[ (1)]_[ (2) ) (1.10)

11—1 ir= 1V

N =

We remark that the formula (1.7) has a very similar structure with the two-
point distribution formula of TASEP in [31] (with step initial condition), except
that we have different z factors in the integral, and that we have an extra factor
H(U(l), U@ v y@) See equations (2) and (16) in [31]. It is not hard to prove
that Ty, x, becomes zero when ki or ko becomes large, hence the formula (1.7) only
involves finite many nonzero terms in the summation and is well defined.!

Finally, by exchanging the integral and summations, and using the identity

oo frUY;s) _ foW90) 1 © _ ,©
Jo EvTandse = Fvmg ) since Re(v; " — u;,”) < 0 due to the
t(/: 1

4 i
locations of the contours, we obtain

o0 o0
P(r,r' € Gp(q)) = /(; /0 p(s1, so;m,n, M, N)ds;ds,

dz 1
:ygh(l——) 2 Gz Tasa e M. (LD

where

Ty ko (z;myn, M, N)

. 1_[ 1 f dui1 7 / dulgll)
o l—z )5, 2ni 11—z ][5 27

L e
1 -z )5y, 2mi I =2z Jeg o 2mi

I'1n fact, we can view the integrand of (1.8) as a function of v and V(2), which equals to
the product of the following three terms: AVIYAVD), a Cauchy-type factor cvD. v@y =
A( yd ))A ( V(z))/A(V(]); \% (2)) (see the definition in (2.48)), and some function which is meromorphic for
(0)

each Vi, with a possible pole at 0 but the degree of this pole is at most max{n, N —n+1}. Note that expand-

. 1 _ 2 _
ing the ﬁrst term A(VIHA (V@) gives a sum of terms ]_[1551 <k (vé()el))/<1 4 Hlslzskz (vj(r()[z))k2 )
over permutations o € Sg; and 7 € S, , here S; denotes the permutation group of {1, 2, ..., k}. If ky is
large enough (the case when k» is large is similar), for example if k; > N, the integrand is analytic for
vfrl()b at 0 by checking the degrees. So when we integrate v(l()l), the only possible nontrivial contribution

is from the residues v’ () = ;2) if vj ) lies inside the contour of v’ ()) due to the Cauchy-type factor.

2

However, if we further integrate v we find each residue contribution is also zero by checking the degree

of v(iz) whichisky — 1 —n — (N —n+1) = k; — N > 0. We remark that the proof does not rely on

the explicit formula of H or the variable z, and it is similar to the argument for the two-point distribution
formula of TASEP (see Remark 2.8 of [31]) where they do not have the factor H.
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e a®  a® N
'1_[/ 2 / 2 '(1_Z)k2<1__)
=1 ¥ 471 Jyp 271 zZ

AWUD0 AU 0) 1
AWD:0 LV 0 T Y @l — o)

ig=1

2 2 5
CHUD, u®, vy y@y. 1_[ (AU®))* (A(V©))

o (AU v©))
A(U(l); V(z))A(V(l); U(2))
CAUD, U AVD; V@Y

(1.12)

1.3 Limiting joint distribution of geodesic location and last passage times

For any two lattice points p = (p1,p2) and q = (qy, q2) satisfying p; < q; and
P2 < q2, we define

2
dp,@) = (Var —p1 + & —p2) (1.13)

which is the leading term of the last passage time from p to q when q — p = (q1 —
P1, 92 — p2) becomes large in the region {(r;,13) : 0 < cr; < 12 < ¢'r1} for some
positive constants ¢; and c¢;. See [27, Theorem 1.2].

We say a geodesic Gp (q) exits aset A ata pointr, if and only if the geodesic intersects
A and r is the last point of the intersection, i.e.,r € Gp(q) N A andry € Gyp(q) \ A.

Theorem 1.3 Suppose « > 0, y € (0, 1) are fixed constants. Assume x1, x2, xi , xé
are four real numbers satisfying x| > x| and x, < x}. Let

M = [aN]’
m = [yaN + x1o*3(1 + Ja)?* N3],
n=[yN+xe” P+ VN2, (1.14)

ml — []/(XN —|—x§(x2/3(1 + «/&)2/3N2/3],
n' =[yN + xha 31 + Ja)?P NP3,

where [x] denotes the largest integer which is smaller than or equal to x. Suppose
is an up/left lattice path from (m, n) to (m’, n'). Then

Gu.n(M, N) intersects ,
. and L(1,1y(p) = d((1,1),p) +t; -~ /o(1 + Ja)*P N1/,
lim PP ’ ~1/6 43 n1/3
N—o0 ande+(M9N)zd(p+s(MsN))+t2a (1+\/&) N )
where p denotes the exit point of G1,1y(M, N) on 7

(1.15)
exists and is independent of the choice of . The limit equals to
xXy—x| oo oo
/ / / p(s1, 82, X; y)dsads;dx, (1.16)
X2—X] t1 t
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Fig.2 The.thick path denotes F1-~T--rAa-rT--T1-1-r 9(MN)
the geodesic G(j 1)(M, N). The [ S R T R A

thin lattice path denotes 7. The
star-shaped point is the exit
point ofg(lql)(M, N) on m, and
the square-shaped point is the
next point on Gy 1)(M, N) after
the exit point

where the joint probability density function p(s1, S2, X; y) is defined in (1.22).

See Fig. 2 for an illustration. The proof of Theorem 1.3 is provided in Sect. 3.

We expect that the geodesic is around a straight line from (1, 1) to (M, N). The line
is of slope ™! &~ N /M. Then x» — x| and x, — x} can be viewed as (after appropriate
scaling) the shifts of (m, n) and (m’, n’) away from the line. Similarly, in the density
function p(sy, s2, X; ¥), X can be viewed as the shift of the exit point p away from the
line. See Fig. 4 at the beginning of Sect. 3 for an illustration.

It might look surprising at a first glance that the limiting distribution is independent
of 7, but only depends on the locations of the endpoints. Here we provide an intuitive
explanation. Suppose we have a different up/left lattice path 7z’ from (m, n) to (m’, n’).
For any point q € 7, we can find a unique point q' € 7’ such thatq — q’' € {(ay, y) :
y € R}. Note that the distance between q and q’ is at most of order O (N%/3) < o(N).
By the uniform slow decorrelation of the directed last passage percolation [18, 20],
N7 (L@ —d((1,1), @) = N7 (Lay(q) —d((1, 1),q)) converges to 0
in probability as N — oo. Moreover, with appropriate scaling, the limiting process
of the last passage times from (1, 1) (and from (M, N) similarly) to the points of
has the same law as that to the points of 7r’. Therefore we expect the limit of (1.15) is
independent of 7. This probabilistic argument is heuristic but it might be possible to
make it rigorous. In this paper, we will use an analytical way to show this independence
instead. See the argument after Proposition 3.1 in Sect. 3.

Note that the geodesic G(1,1)(M, N) intersects a rectangle with vertices (m, n),
(m,n"), m’,n’) and (m’, n) if and only if G(1,1)(M, N) intersects a lattice path from
(m, n) to (m’, n’). Thus by setting t|, t, — —oo we immediately have

Nlim P (G(1,1y(M, N) intersects the rectangle with vertices (m, n), (m,n’), (m’, n")
—> 00

and (m’, n))

xy—x| oo poo
= / / / p(si, s2, X; ¥)dsads;dx.
X2—X1 —00 J —00

Now we discuss an application of Theorem 1.3.

(1.17)
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Corollary 1.4 Let AV and AAQ) be two independent Airy, processes. Denote the
parabolic Airy, processes AP (x) = A (x) — x>, £ = 1,2. Suppose y € (0, 1)
is a fixed constant. Denote

A X A X
7T = argmax, <y1/3A(1) <m> +(1=p)PA® <2(1 _ )/)2/3)> :

Then p(s1, 2, X; y) is the joint probability density function of y /3 A (2;/3) ,(1—
PAA® (3T and T

2=y

We remark that in the language of the directed last passage percolation, 7 corre-
sponds to the limiting location of one point on the geodesic, while y /3. A (2VL2/3)

and (1 —yp)1/3 A (2(1 _Ty)z /3) correspond to the limiting last passage times from this

point to the two end points respectively. See the proof below for more details.

Proof Denote 7 the line {(x, y) : x +y = 2y N}. It is known [28] that the processes
of the last passage times from (1, 1) (or (N, N)) to the points on 7 after appropriate
scaling converge to two independent parabolic Airy; processes as N — 0o0. More
explicitly, for any constant K,

L N —2718B3xN23 N +2713xN2/3) —4yN A X
a.ny 14 ) =N s 4 <_>

24/3N1/3 2]/2/3
x| < K (1.18)
and
L(yN72_1/3xN2/3,yN+2—A'1/3xN2/3)(Nv N) - 4(1 - V)N N (1 _ )/)1/3A(2)
24/3N1/3
X
(z7m)- m=x Y

as N — o0. Both processes are tight in the space of continuous functions on [— K, K]
(see [24, Theorem 2.3] for example). Note that the geodesic passes through a point
q on the line 7 if and only if L 1)(q) + Lq(N, N) reaches the maximum. And the
probability that this intersection point q lies outside of {(y N — 271/3xN?/3 yN +
2-183xN23) 1 x| < K} decays exponentially as N — oo and K becomes large (see
[12, Proposition 2.1] for example). Also note that the argmax 7 is unique since it
represents the geodesic location in the limiting directed landscape and the geodesic
is unique (see [23]). Using the above facts, we conclude that the location of the
intersection of G(1,1)(N, N) and 7, the argmax of the left hand side of (1.18)+(1.19),
converges to 7. Now we apply Theorem 1.3 with @ = 1 and use the facts that

x2
22/3y

day(yN —27'3xN?3 y N +2713xN?) =4y N + N3 +o(1)
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and

2
X
Ay N—2-13xN23 y N+2-13xN23) (N, N) = 4(1 — y)N + mN1/3 +o(1).

Corollary 1.4 follows immediately.

The explicit distribution of 7 was an interesting open problem in the community
before, see [21, Problem 14.4(a)] for example. Our result above resolves this problem.
It is also possible to apply this result and the formula of p(sy, sz, X; ) to obtain
some properties of the directed landscape, the limiting four-parameter random field
of the directed last passage percolation. For example, in a follow-up paper [32] we
proved that when the height of the directed landscape at a point is sufficiently large,
the geodesic to this point is rigid and the location has a Gaussian distribution under
appropriate scaling.

We remark that the density function p(sy, sz, X; ¥) can be related to the well-

known GUE Tracy—Widom distribution. Note that the max of y!/3 A (27/)(2/3) +
(1—y)'BA® ( )2/3> satisfies

1/3 2(1) _ B X _
]P(Teaﬂg{ A <2y2/3>+(1 y) /" A <2(1_y)2/3)}58)—FGUE(S),

where Fgyg(s) is the GUE Tracy—Widom Elistribution. See [10, 11] for more details.
By applying the Corollary 1.4 and noting A® (x) = A® (x) — x2, we have

x2
/ dx // dsidsop <s1 + — , X; y) = Fgue(s). (1.20)
S1+S2=<s 4(1 - )

One might be able to obtain the tail estimates for the geodesic using the for-
mula (1.3). After a preliminary calculation, we have the following conjecture.

Conjecture 1.5 Let M, N and m, n be numbers satisfying the scaling (3.1) in Theo-
rem 1.3, then

1

6(y (1 —y))3?
(1.21)

Nlim P (Q(U)(M, N) lies above (m, n)) — =X 00 ith ¢ =
—00

when X = x3 — x1 becomes large.

It also might be possible to obtain a more accurate estimate from this formula. We
leave it as a future project.

1.4 The limiting density function p(sq, s2, X; ¥)

The limiting density function p(si, sz, X; ¥) has a similar structure as the finite time
probability density function p(si, s2; m, n, M, N). Before we write down the formula,
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Fig.3 TIllustration of the

iR
contours: the three contours in
the left half plane from left to
right are I'p_ i, 'L, and 'L oyt
respectively, and the three ? R
contours in the right half plane 0
from left to right are I'r out, 'R

and I'g jp respectively

we introduce some contours. Suppose I'L in, ['L and I'L oy are three disjoint contours
on the left half plane each of which starts from e 2""/300 and ends to ¢>""/300. Here
I'L.in is the leftmost contour and I'L oy is the rightmost contour. The index “in” and
“out” refer to the relative location compared with —oo. Similarly, suppose I'r in, I'R
and I'r oy are three disjoint contours on the right half plane each of which starts
from e~ "/300 and ends to ¢™/300. Here the index “in” and “out” refer to the relative
location compared with +00, hence I'R ip is the rightmost contour and I'r oy 1S the
leftmost contour. See Fig. 3 for an illustration of these contours.
The probability density function p(si, s2, X; ) is defined to be

( ) f——iz—— D ) (122
p(S1, 82, X5 YY) ‘= 1 2 2 k1,ko \Z5 S1, 82, X; ¥V .
0 2mi(l — z) Mt (k1'ko!)

with

Tk ko (25 81,82, X5 )

_ ﬁ 1 / dgi(ll) - z / dgi(ll)
. l—z)r, 271 11—z )5, 27

1 1

1 / dnl(|) B VA / d)’]l(])

1l =2z Jpy,, 27i I =27 Jrgon 27l
ka @) @ K
'Hf T / P (1~ g (1_l>1

i1 JTL 2i Jpy 2mi z
f1"; sDREP; s)
fim®; sHH M5 52)

2 2

2 (AED) (A0 AED; y@) A0 £

NNt ,,<e)))2 AGED; ) A@D; @)

HED, gD 6@ @)

(1.23)

where the vectors E“) = (él(e), R éi(f)) and 27“) = (nie), el nff)) for ¢ € {1, 2},
the functions f1, f; are defined by
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2
f1(g:s) :=GXp<——§ 78 +< _4_> )

(1.24)
b9 men (U520 s b (s 1))
4(1 - )
and the function H is defined by
HED, 10562, 5@ = Lsi o 1s2 Lg;s, (1.25)
12 4 3

with

ki

s =6 a055202) = 3 (60) - (1)) - 35 (&)’ -

i=1 ir=1

(1))
(1.26)

Remark 1.6 It can be directly verified that T is symmetric on X, i.e., it satisfies
Tk, ko (25 81,82, X5 ¥) = Tk ky (25 81, 82, —X; ¥). In fact, one can see it clearly by
changing variables 5(15) nl(f) and n(g) —S(Z) forl <iy <kgand € =1, 2.

One can prove that the summation is absolutely convergent in (1.22) due to the
super-exponential decay of f; along the integral contours. The proof is similar to that
of Lemma 3.3 so we omit it.

2 Finite time formulas and proof of Theorem 1.1
2.1 Outline of the proof

Theorem 1.1 states two formulas for different locations of r’. The Eq. (1.3) holds
whenr’ = (m + 1, n), i.e., when r’ is at the same row as r. The case when r’ is at the
same column as r follows by switching the rows and columns of the model. Thus it is
sufficient to show the Eq. (1.3) withr’ = (m + 1, n).

The proof involves a few computations and identities. We would like to split the
proof into three steps, each of which ends with an identity about the probability density
function p(s1, s2; m, n, M, N). We will outline the steps and state these main identities
in this subsection and leave their proofs in subsequent subsections.

In the first step, we obtain a formula for p(sy, s2; m, n, M, N). The main idea is to
convert the desired probability to a sum of the product of two transition probabilities,
and evaluate the sum explicitly. There are two types of transition probabilities for
the exponential directed last passage percolation. One is the transition probability by
viewing its equivalent model, the so-called TASEP, as a Markov process with respect
to time [35]. The second one is the transition probability by viewing the model as a
Markov chain along one dimension on the space [29]. It turns out that only the later
one can be used to find an exact formula for p(sy, s2; m,n, M, N). If one uses the
transition probabilities of TASEP instead, there will be an O(1) error on the finite time
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formulas but the resulting limit probability densities p(si, s2, X; ) is the same. We
will consider this approach in a follow-up paper.

Using the transition probability formula of [29] and a summation identity for the
product of two eigenfunctions, we obtain the following proposition.

Proposition 2.1 We have the following formula for p(s1, s2; m,n, M, N)

p(si,s2;m,n, M, N)
w®

_ (1) N
(—I)N(N 1)/2 f- / / 12 |
- A (W)
(N2 2mwiz" 1_[ Di=r, 27t1 !_[ D=k, 2mi

OV s
A( (2)) f1< (1))J;2(W(2))_ Z (—1lite (w ) L

n—1 _ ()
0=l ( g)) PRILN

1 2 1 2
dec|C, (w w) + D, (w2 ]y s, @.1)
ir#Ll

Here the radii of the contours satisfy R > R> > 1. The vectors W and W® are
defined by
1 1 2 2
wh =@ L w(), w®=w?, . wd).

R~ecall our conventions A(W) and f(W) as in (1.4) and (1.6). The functions ﬂ and
fo are defined by

fiw) == w ™ Nw+ D™, fw) = (w+ 1)~ MmeSrtw (59

The functions C and D appearing in the determinant are defined by

z wT_leslwl 1 w'f“eslw1
Co(wy, wp) == po | , (2.3)
wp —wywy eSIW2 —wp W w;y T es1v2
and
z wi 1 wiebitsw
Dy(wy, wp) ' = ———— + ) 2.4)

—wi+wawy  wy — wy w) ebrtsIw

The proof of Proposition 2.1 is provided in the next Sect. 2.2.

It seems that the formula (2.1) is not suitable for asymptotic analysis by the fol-
lowing two reasons. The first reason is that this formula involves some unneeded
information. Note that the two terms in D,(wp, wp) have factors (w; /wg)l and
(wy/ wz)N whose exponents 1 and N indeed represent the bounds of the possible
locations of the geodesic. However, we expect that the geodesic only fluctuates of
order N%/3 around its expected location. In other words, changing the far endpoints
1 and N will not affect the asymptotics. Therefore, D,(w1, w2) should not appear
in the limit and we need to reformulate (2.1) and remove the term D,(w;, wy). The
second reason is that the formula (2.1) contains some determinants of size O(N),
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One-point distribution of the geodesic in directed last...

such as the Vandermonde determinants A (W(l)) and A (W(z)), and the determinant
det(C, + D). It is typically hard to find the asymptotics of these determinants when
the size N — oo. We will need to rewrite it to a formula which is more suitable for
asymptotic analysis.

In the second step, we take the term D,(w;, w») away at the cost of changing the
integral contours, and then evaluate the summation over £1, £2. We obtain

Proposition 2.2 The Eq. (2.1) is equivalent to

p(s1,s2;m,n, M, N)

_ 1 ?g(l—z)N_zdzlﬂ[ dw§,1)+ 1 / dw,-(ll)
(N2 Jo  2miz" -z /s, 2ni 1—zJg, 27i

1=

1_[/ dw<2> ; (1)> 4 (W(2)> (A (W(l)))Z(A (W(Z)))z

—_

2711 A (WP, wh)
ir=1
N 2)
: (H (WO w®) + Aozt g (w®; W(1)>> 2.5)
) N (]) ) k) .
Hilzl wi|
where the contours Loy, X, and iy are three nested closed contours, from outside
to inside, all of which enclose both 0 and —1. The vectors w .= (w(l) e, wl(\p)
and WP = (wiz), e, wfg)). The functions

fiw) := (w4 )Mw N fw) = (w4 DTy (2,6)

and

ﬁ(w;w’>:=§(lzwi—i2,w;/) S(Ze-Ter) e

l/

for any vectors W = (..., w;,..)and W = (..., wlf,, ...) of finite sizes.

We remark that the idea of changing the integral contours plays a key role in this
computation. It results in a compact formula which effectively removes the terms
including the information of the geodesic bounds. Formulas from similar summations
(for product of two eigenfunctions in TASEP as we did in the proof of Proposition 2.1)
without including the information of the summation bounds were also obtained in the
periodic version of the directed last passage percolation [13—15] and its large period
limit [31]. Heuristically, in the periodic model it turned out that the upper bound (in the
previous period) cancels out the lower bound (in the current period) in the summation.
While in this paper, we construct contours Xj, and ¥, which play similar roles as
different periods: integral of the terms involving the upper bound along one contour
cancels that involving the lower bound along the other contour.

The proof of Proposition 2.2 is provided in Sect. 2.3.
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In the last step, we rewrite the formula (2.5) in the form with a structure similar to
a Fredholm determinant expansion, which is the formula (1.7).

Proposition 2.3 The formula (2.5) is equivalent to (1.7).

The proof of Proposition 2.3 is provided in Sect. 2.4. It involves an extension
of a Cauchy-type summation formula in [31]. We first convert the integral into dis-
crete summations over a so-called Bethe roots, then reformulate the summation as
a Fredholm-determinant-like expansion, and finally convert the discrete summation
back into integrals. It would be nice to see a more direct proof for Proposition 2.3 but
it seems quite complicated considering the differences between the two formulas.

2.2 Proof of Proposition 2.1

As we mentioned in the previous subsection, we need a transition probability formula
by viewing the directed last passage percolation as a Markov chain. Such a formula
was obtained in [29] for the geometric directed last passage percolation, which is a
discrete version of the model we are considering in this paper. We will introduce the
model below. Then we will show how to compute an analogous probability for the
geodesic in the geometric model, and take the limit to get the results for exponential
directed last passage percolation.

The geometric last passage percolation model is defined as follows. We assign to
each site p € Z2 an i.i.d. geometric random variables w(p) with parameter ¢ € (0, 1)

Pw(p) =i) = (1 —q)q', i=0,1,2,... (2.8)

for each integer site p. Note that if we take ¢ = 1 — € and let € — 0, ew(p) converges
to an exponential random variable.

Similar to (1.1), if a lattice point q lies in the upper right direction of another lattice
point p, we define the last passage time from p to q as

Gp(q) := max Z W(r), (2.9)

rem

where the maximum is over all possible up/right lattice paths from p to q. We remark
that the maximal path is not necessary unique in this model. We call these maximal
paths the geodesics from p to q.

We consider the following event

Ganm,n) + GupyinyM, N) = Gaq,1 (M, N),
A=1Ganlm,n) =x, . (2.10)
Gunt1i,my(M,N) =y.

Here x and y are nonnegative integers. As we mentioned before, there may be more

than one geodesic. The event A means that there is one geodesic that passes through
the two points (m, n) and (m + 1, n), and these two points split the last passage time
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One-point distribution of the geodesic in directed last...

Gq,1H(M, N) into two parts G(1,1y(m,n) = x and G(p41,,)(M, N) = y. Later we
will show

Lemma 2.4 We have

P (A)
w?

:(—1)N<N1>/2(1—‘1)MN?§ 1—[/
(N2 2miz" <1>| R 2711

N dw®

]_[/(2)|:R22—7;21A (W(U)A(W(Z))
2
2 (Wa)) (W(2>) Z (—1yhr+e

X n
(1) ()

x+1 n—1
£1,0=1 ( g) + 1) (wg))
1 2 1 2
det[C,wf), w) + Dol w2, @.11)
i2#L

vghere the radii Ry and Ry are distinct and both larger than 1. The functions F | and
F> are defined by

Fiw) = w+D" " w ™ Nw+1—¢)™, FBw) = (w+1)" DM qqp1—g)~Mm,
(2.12)

. r [ 0\ _ () @Y _
Recall the conventions Fy (W( )) and A(W( )) = ]_[i>j (wi —w; ) = det

1N

|:(wa) >'I i| as introduced in (1.4) and (1.6). Finally, the functions C, and D,
i,j=1

are given by

z w?*l(wl + l)x-i-l 1 n+1(w1 +1)*
Co(wy, wr) == S S| 1
wp— w2 w, (wy+ 1Y —wirt w2 wy" (wy 4+ 1D)FT
(2.13)
and
z wi (w2 + 1) 1 wh (wy + ¥+
D, (wy, wp) = : + - L (2.14)
—wi + wy w2 wr —w2 - wy (wy + ¥y

We postpone the proof of this lemma later in this subsection. Assuming Lemma 2.4,
we are ready to prove Proposition 2.1. Below we write A as A(x, y) in (2.10) to
emphasize the parameters x and y. As we mentioned before, if we take ¢ = 1 — € and
lete — 0, the geometric directed last passage percolation becomes an exponential one.
More explicitly, ew(p) converges to an exponential random variable in distribution as
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€ — 0. Moreover, for any fixed interval I1 = [t1,t] + €1] and I, = [f2, 12 + €2], we
have

51 5 Ga,nim,n) + Gopy1y(M, N) = G(1,1)(M, N),
U U A (* 7) =P eGu,1y(m,n) € I,
s1€ly spely EG(m+1,”)(M,N) € 12.

(2.15)
converges as € — 0 to the analogous probability that in the exponential directed
last passage percolation, the geodesic G1,1y(M, N) passes through two points (m, n)
and (m + 1, n), and the analogous last passage times satisfy L 1y(m,n) € I; and
Lni1,0)(M, N) € I. In other words, the limit of (2.15) is the left hand side of (1.3).
We remark that although it is possible that there are more than one geodesics in the
geometric last passage percolation, after taking the small € limit the chance of getting
more geodesics becomes zero.

Now we evaluate the limit of (2.15). The left hand side of (2.15) is

> peac = [ [ 5P )t @10

iecly,jecl

where due(s) = 66562. We will prove

1
lim _ZP(A(SI/E’ S2/6)) zp(sl9 s2;m9n7M5 N) (217)
e—0 €

uniformly on I; x I, with p(sy, so; m,n, M, N) defined in (2.1). Then by using
the continuity of the function p(sy, s2; m, n, M, N) we immediately obtain that the
limit of (2.15) equals to fl] f,z p(s1,s2; m,n, M, N)ds,ds,. Hence we prove Propo-
sition 2.1.

Now we prove (2.17). We insert ¢ = 1 — €, x = sy/e, and y = s2/€ in (2.11).
Note that all other parameters are fixed, and s; € I, sp € [ are nonnegative. We
observe that the exponents of (w.(l> + 1) for each 1 < i; < N in the integrand are
at least m — 1 4+ min{x, 1} > m — 1 > 0, and the exponents of (w(z) + 1) for each
1 <ip <Nareatleastx +y+ M —m — max{x + 1, x + y} >M m—1>0.
Therefore the integrand is analytic at —1 for each w(l) and wl.(zz). There are possible
poles at0 and ¢ — 1 = —e both of which are close to O as € — 0. We hence can deform
the contours sufficiently close to the origin. More precisely, we replace Ry and R; by
5R1 and eRz where R1, Rz are distinct constants and both larger than 1, and change

variables wl.(l) = ewl.(ll) and wl.(zz) = ewfzz). Then

A (Wa)) (W<2>) NIV=D A (W(n) A (Wa))’

Fiw) =" @~ b + D7 + 0(e) = e VT (f1 () + O(e)),

Fa(w) = e M (@ + M0 1 O(e)) = e M () + Oe)),

(w + 1))6 w' = ¢ (An S|W +O(€)), (w+ l)x wn—l — En—l(ﬁ}n—leslﬁ) +O(€)),
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z ﬁ);'_les“i’l 1 ﬁ)’f“ s1i
C 3 = ~ ~ ° ~ ~ ~ N N O 1
A w2) €(y — ) @y lesin " e(=1 + 1) pytlesiz o
=€ 1 (C,(ih1, ) + O(e)),
" AN L (s1+52)i1
z w1 1 wye
Dy(wyi, wp) = ——5——— - — = — — + O(1
2(wi, w2) e(—wi +wp) wy e(w — wy) ﬁ)é\'g(sl-i-sz)wz M
= e 1D, (i1, ) + O(e)). (2.18)

We remind thatdw = edw. Therefore by inserting these leading terms, we heuristically
obtain that

1
lirrz) —ZIP’(A(sl /€, 52/€)) = the right hand side of (2.1). (2.19)
e—~>0 €

On the other hand, since all other parameters are fixed and the contours |u§§11)| =R

and |zi)l.(22) | = éz are of finite size, if we insert the above estimates (2.18) with the error

terms into (2.11), all the terms involving O(¢) are uniformly bounded by Ce for some
constant C, and there are only finitely many such terms. Therefore the Eq. (2.19) holds
uniformly. This proves (2.17).
The remaining part of this subsection is to prove Lemma 2.4.
Denote
G(m) = (G(Ll)(m, 1),...,G(1,1)(m,N)) (2.20)

the vector of the last passage times from the site (1, 1) to (m, i), 1 <i < N.
Our starting point is the following remarkable formula for the distribution of G (m).

Theorem 2.5 ([29, Theorem 2.1]) Suppose X = (x1,...,xy) € Zgo satisfies x| <
Xy < --- < xp, then

N
P(G(m) = X) = det [(1 —q)" (w + 1)x«/+m*1wj*id—w] )

lw|=R an(w + 1-— q)m i,j=l1

where R > 1 is any constant.

Note that the contour is of radius R > 1 in the above theorem. This restriction
will be kept throughout the proof of Lemma 2.4 and finally lead to the requirements
Ry >1land Ry > 1.

The original theorem of [29, Theorem 2.1] considered the finite-step transition
probabilities from any column to another, and for any x; < --- < xy without assuming
x1 > 0. For our purpose we only need this simpler version. The assumption that x; > 0
comes from the fact that all random variables w(p) are nonnegative. Moreover, we
use the contour integral formula in the above determinant for later computations. This
formula is equivalent to the original version by combining the equations (9) and (25)
in [29].

Denote _

Gm+1) = (Gms1,n(M,N), ..., Goms1,n) (M, N)).
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Note that, by flipping the sites (i, j) — (—i, —j) and shifting the site (=M, —N) to
(1, 1), G(m + 1) has the same distribution as

(Ga,n(M —m,N),Ga,ny(M —m,N = 1),...,Ga, (M —m,1)).

Therefore, by applying Theorem 2.5 we have

P(G(m+1)=y) = det [(1—q)M—m/|| R(w+1)yN+lff+M—m—1wf—"
wl=

dw N
2ri(w + 1 —g)M—m i|i,j:1
forany ¥ = (y1.....yy) € Z" satisfying y; > yp = --- > yy > 0.

Note that G(M) and G (m + 1) are independent since they are defined on the lattices
Ziciy x Ziand Z>, 41 X Z respectively. Also note the event A is equivalent to the event
that G 1y(m, n) = x, Gont1,mym,N) = ¥, and G 1(m, i) + G+1,i)(M, N) <
Gi,1)(M, N) = x+y forall other i’s. Thus by combining Theorem 2.5 and the above
formula for G(m + 1), we obtain

P(4) =Y P(Gm) = X)P(Gon+1)=Y)

. dw 1V
= (1= "N Y det [ / (w+ D5 = 41 —q)""—"’.]
| 2 i,j=1

w|=R 1 e
) A Me——1 . i—i —Mam dw N
- det (w+ DIV TM=m=ly, i =ty + 1 — g)=M*m — ,
lw|=R 2mi i j=1
(2.21)
where the summation is running over all possible X = (x1,...,xy) € ZN and
Y=01,...,yn) € N satisfying
O<x;<---<xy, y1>2-->2ynv =0,
xi+yi <x+y, foralli=1,..., N, (2.22)

andx, =x, y, = y.

We will consider the above summation in two steps. First, we fix X satisfying 0 <
x1 <--- <xy <x+yand x, = x, and take the sum over Y satisfying (2.22). Note
that only the last determinant in (2.21) contains Y. We formulate such a summation
in the following lemma.

Lemma2.6 Suppose 0 < x| <--- <xy <x+ Yy, x, = x and y, = y. Assume that
F (w) is a function which is analytic on |w| > R and satisfies |F (w)| — 0 uniformly

as |w| — oo. Then
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X+y—xy x+y—xy-—1 X+y—Xp41 X+y—Xp—1 X+y—x|
ynv=0 YN-1=YN Yn+1=Yn4+2 Yn—1=Y Y=y
N
det [/ w4+ DY w™ ”’F(w)—]
lw|=R il iy

N
= det [/ (w + 1)X+yx.f+‘.f#nwf+"‘.f#nF(w)d—w}
wl=R 2wl o

Proof of Lemma 2.6 Due to the linearity of determinant, we can take the summation

of the columns inside the determinant. Foreach j =1,...,n—1,n+1,...,N —1,
we have
X+y—x;
2 / -+ DY ) S
Yji=Yj+1 lwl=R

:/ (w + 1)x+y—Xj+1w—j—1+iF(w)d_w
lw|=R 2mi
Lo d
_/ (w+ 1Y F ) 2
|lw|=R 2mi

where the second term matches the corresponding entry in the (j + 1)-th column.
Therefore we can remove this term without changing the determinant. For the sum-
mation over yy, we have a similar identity where the second term becomes

: d
/ w N Fw) = =0
|lw|=R 2

by deforming the contour to infinity. We complete the proof by combining the above
summations.

Now we come back to (2.21). We reorder the rows and columns in the second
determinant by replacingi —- N+ 1—iand j — N + 1 — j, and apply Lemma 2.6
with F(w) = (w + DM 1w + 1 — g)~ M+ We have

. dw 1V
(w+ D w4 1 — q)ﬂ"—“’}
2mi _

P(A) = (1 — g)MV Zdet [/
|

w|=R i1
- det |:/ (w + 1)7xj+x+y+M7m71j=Nw7j71+,-+1j=n
|w|=R
N
d
(w+1—q)M+m_w.:| i
2mi |, .4
L, ]=
(2.23)

where the summationis overall0 < x; <--- <xy <x + y with x,, = x.
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In the next step, we consider the sum over X in (2.23). We first apply the following
Cauchy-Binet/Andreief’s formula in (2.23)

N

det |:/ ﬁ(z)gj(z)dM(Z)}

ij=1

1
=i / . / det [ﬁ (Zj)];\’]j:1 det [gi (Zj)];\,]jzl du(zy)...du(zy).

We also relabel the variables to avoid confusions. Recall the functions F 1 and ﬁg
defined in (2.12). We have

. dw 1V
det |:/ (w+ DXLyl =i + 1 — q)_m—w_]
lw|=R 2mi]; o

N 1) AN
1 dw;” - X J
i1, S () e (w7 1) ()|
Ti=1 |w,' |:R1 i,j:l
NN
aer| ()]

i,j=1

and
—x; M—m—1; —j—14i+1; —Mm QW N
det (w + D7HryEMEm=limy g ==t e 4 1 — g) =M —
lw|=R 2mi
N (2)
_ Ll—[/ dw;
N! i1 \u),@\:Rz 2mi

-1y
det |:(wi(2)) ] .
i j=1

Thus we write

ij=1

. —xi—1;_ —j+l_yN
P () aer | (1) () ]

i,j=1

1—gmy X dw" dw® .
P(A) = (_1)N(N71)/2% l_[/ i / =i f (W(1)>
WH2 2 =Ry 2710 @ =k, 271

23 (W(2>) A (W<‘>) A (W<2>) .S (W(”, W(2>) , (2.24)

where W) = (wgl),...,wg\})), w@ = (wiz), ...,wj(\%)). We also rewrote

j—1N
det [(wfe)) } = A (W®) for both £ = 1, 2. Finally, the function
inj=1
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M. @ W Y (D) N
(w0 w?) = Zdet( +1) () .
L, ]=

det |:(wi(2) n 1)—xj—lj:n (wi(z))—jﬂjn]zv 025,

i j=l

where the summation is over all 0 < x; < --- < xy < x + y with fixed x, = x.

Note that the summation over X only appears in the function S (W(l); W(Z)). Our
goal in this step is to evaluate this summation explicitly. We remark that this summation
without the extra 1;_, in the exponents can be simplified to a compact formula if all
the coordinates of W satisfy a so-called Bethe equation, see [14, Proposition 5.2].
However, here we do not have the Bethe roots structure for the coordinates and the
resulting formulas are more complicated.

To proceed, we need an identity to expand the determinants in (2.25). By using the
Laplace expansion in multiple columns of the determinant, we have the identity

det [Ai»j]?’ljzl = Z(_l)@-l—nAz’n Z (_1)#(1,])

4 hub={1,...,N}\{¢}
[Iy|=n—1,|2|=N—n

det [Al’/] iel det [Al,/] iel s
1<j<n-1 n+l1<j<N
where

#(11, I>) := the number of pairs (i1, i2) € I} x I such thati; > is. (2.26)

We apply the above identity in (2.25) and change the order of summations. This leads
to

(M (1)
+ 1) (w )
S(W(U W(Z)) 3 (=it ( 4 b
Pyns o) | x+1 (2) n—1
1,6> Wy + w,
Z (- 1)#(,0) ,2<1))+#(,<2) 12

PurP=(1,...N)\(e1)
IPULP =1, .N\{&2)
1V =11 1=n—1
1P 1=117 |=N—n

%
[Ties (wi )

S 1 2 1 2
2—();150,): (Wl(u)w W(a))) Sx.x+y (W;(l)), W,(a)))
Mo (o) z

(2.27)

where for simplification we use the notation W; for the vector with coordinates w;’s
satisfying i € I. More explicitly, W; = (w;,, wi,, ..., w;) forany I = (iy, ..., ix).
The function
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Sep(W.W)i= Y det[wi+DVw]]

asx)<--=xp<b

) det [(w; + 1)~ (w;)‘f]

<i,j= I=<i,j<k

for any a < b and vectors W and W’ of the same size. Here k is the size of W and W',
w;’s and w}’s are the coordinates of W and W' respectively.

We have the following identity to simplify S, » (W, W’).
Lemma 2.7 ([14]) We have

k
S W, W) = i(w; + 1) 1 kw: 4+ 1)b+!
Sap(W, W) = det[ w;(w; + 1) wi (w; + 1)

—w; + w}, ‘ w, (w), + Dl w —w), . (wi)kw!, + 1)b i
(2.28)
Proof of Lemma 2.7 The main technical part of the summation was included in [14].
Here we simply mention how to arrive (2.28) using the known results in [14].
In [14], the authors introduced a similar sum H,(W; W), where W and W’ both
are of size N. See equation (5.6) in [14]. It reads

Hy(W: W'y = 3 det [(w; + 1)*f(w;)f]

a—l=x1<---<xy<a+L—-N-1

det [(w,» F )Y w;f]

l<i,j<N

1<i,j<N

Here we emphasize that x; = a — 1 is fixed in this summation. We also remark that
the original definition of H,(W; W') assumes that the coordinates of W and W' are
roots of the so-called Bethe equation, but we will only cite the identities in §5.1-5.3
in [14] where the Bethe roots properties are not used.

The equation (5.44) in [14] can be viewed as a difference of two terms. We apply
Lemma 5.9 of [14] for each term and rewrite the equation as

N
1 w, (w!, + )41 1 W/ )N (w!, + 1)4+L=N
H, (W, W) = det _ B T o
wi —w),  wi(w; + D472 —w +w), wN (w; + DetloN-1 i
N
dot| L w4 D 1 )N (w), + DN
—de . ,
wi —wl, wi(w; + D7 —wp +wl, wN (w; + 1etLoN-1 i

We replacea + L — N — 1 by b, and then a — 1 by a, and get

> det[aw] + 17 )]

det [ (uw; + D)™
I<i,j=N I=i,j=N
a=x|<-<xN=b

N
I R RS N A s Vi
= de . :
wi —wl, wi(w; + D —w 4w, wlw +D0 |
N
dot | L wiwf £ D R Vi
— de . :
wi—wp, wiwi D —wtw w1 |
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So far x; = a is fixed. Now by summing the above identity for all x| from a to b, we
get

N
Sy p (W W) = det | 1 W@ D L Ve + DM
a,b s =de Y . a—1 e / N (. b
Wi Wi wl(wl + 1) w; + w; w; (w; + 1) _1
N
det 1 w!, (w), + P! 1 W)V (w], + 1!
_de ) . .
wi —w,  wi(w; + 1P —w; +w;, wl (w; + 1P i

It is not hard to see that the second determinant is zero by using the fact that (u”" —
v")/(u — v) is a polynomial of # and v of degree n — 1. One can also find a detailed
proof in [14], see the last equations in [14,p. 648]. Therefore we obtain a formula for
S’a,b(W/ , W) with a single determinant. By switching W and W', and replace the size
N by k, we obtain (2.28).

Now we apply Lemma 2.7 to (2.27). We also use the identity

Yo (=)D de (A, j)]ier, det[Biz, j)]ien

LUJi=(1,...L} Ji€Ji J2€02
JlU”L={1,...,L}
[ |=|I|=n—1

|1 |=12i=L—n+1

fdet [zA(i, j) + B(i, j)IF

LI=lomign’

which follows from the multilinearity of the determinant on the rows and the Cauchy-
Binet formula. It can also be derived from Lemma 5.9 of [14]. Then we arrive at

S(WOiw®) = 3 (phe (w8 +1) ()’

x+1 n—1
£1.0>1 (w((,j) + 1) (wg))
m(, @ Y m wH
% dz det z Wi, (wiz +1> I z (w ) ( +1>
e )
0 2miz" _wi(ll) +wl§22) wl(zz) (l) w (w 2))n 1 ( @ N 1)
2
m n+1 ) x ) (1) x+y+1
i (") (i +1) L () ()

. -+ .
RO) @ N o O @ N N iy
Wyt w;, (wl.(z)) (wlfz) + 1) Wi -~ Wy (wl.(z)) (wlfz) + 1) f
ir £l

(2.29)
By inserting this formula to (2.24), we obtain Lemma 2.4.
2.3 Proof of Proposition 2.2
In this subsection, we prove Proposition 2.2. There are two main steps in the proof. In

the first step we will deform the contours and get rid of term D, in (2.1). In the second
step we will evaluate the summation over €1 and £;.
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2.3.1 Step 1: Deforming the contours

We first realize that

7 wa_leslwl 1 qu'leslwl
CZ(w17w2)+DZ(wlvw2) = n—1 Vl+1
Wy — w2 wy eS1W2 —wWp Wy, estw2
7 w 1 w{Ve(SH-Sz)U)l

—wi+wrwr  w —w; wé\’g(ﬂﬂz)wz

does not have a pole at w; = w». Hence the integrand in (2.1) only has poles at 0 and

(O
;, integrals as

1 1
dwl.(ll) -7 dwi(l) 1 dwi(l)

M i — =+ . (2.30)
=k 27l 1=z )5, 2ni - 1-zJs, 27i

integrals as

—1. Furthermore, we can rewrite the w

and the wl.(zz)

dwi(zz) dwi(zz)
[ Se=[ 52 @31
|wi2 |=R> 1 b)) 21

without changing the value of (2.1). After we change the order of summation and
integrals, we have

p(s1,s2;m,n, M, N)
N(N—1)/2 d N dwV dw'V
:(_l) % z Z (_1)l|+52 —Z / Ly + 1 / £
(N2 0 2miz" 1—zJs  2mi 1—zJs. 2mi
61,22:1 out in
1)
2) (MW" siwy (1 )]
[ L) (= [ S o
s 2mi (wg))n—leslwg) H£l 1=z Js,, 2mi l—zJy, 2mi
dw.(z)
2 1) 2\ 7 MY z (2)
1_[/2 2mi A<W >A(W )fl(w )fz(w )
2

s o o) 1 o ) e

Although this rewriting seems simple, it turns out with these changes, we can drop
the term D, in the integrand, following from the lemma below.

Lemma 2.8 Suppose X and ¥’ are contours on the complex plane, du(w) and dp’ (w”)
are two measures on these contours respectively. Suppose C(w, w") and D(w, w')
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One-point distribution of the geodesic in directed last...

are two complex-valued functions on ¥ x X', and B(wy, ..., wy; w},..., wy) isa
complex-valued function defined on £V x (X)N. Assume that

/ZN/E)N|B(w1,.. wN,wl,.. wN)|

(}c<wl, wh)| + [P, g(,))‘)]_[ldu(wi)llﬁ[IdM’(w{»/)I<oo
i=1 i=1 i'=1

(2.33)
for each permutation o € Sy. We further assume that

/ / B(wi, ..., wy; wi, ..., wy)D(w;, w;)du(w)du' (w,) =0  (2.34)
s Jy

forany 1 <i,i" < N, and any wy € %, € # i, any wy, € X', £’ # i’. Then we have

/N/ NB(wl,...,wN;w/l,...,w;V)
=N Jm)

N N
det [Cwi, w)) + D(wi, wi)]_y [T dmtwn) T dw'(wp)

i=1 i'=1

= Bwi,...,wy;w, ..., w
/ZN/;Z)N ( 1 N 1 N)

N N
-det [C (w;, w;,)]f.\f’.,:l [ [dwws) [T dw' ). (2.35)
i=1 =1

Proof of Lemma 2.8 We expand the determinants on both sides of (2.35), then by (2.33)
we can change the order of the integral and the determinant expansions. It turns out all
the terms that appear on the left side but not the right side have some factor D (w;, wlf )
in the integrand and hence these terms are zero by the assumption (2.34). This proves
the identity.

In order to apply Lemma 2.8 in (2.32), we need to check the assumptions. All
of these assumptions are obvious except for the assumption (2.34), which we verify
below. We need to show

—7 / dwl.(ll)+ 1 / dwl.(ll)
1—1z Sout 2mi 1—2z Sin 2mi

dw?

—2 A (wO)A (W) /i (WD) /o (W) D, (0, w®
) 2mi 2 i’

equals to zero. If we insert the formulas of fl and fz (see (2.2)) and D, (see (2.4)) in
the above formula, we only need to prove
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—z/ dw1+ 1 / dwq dw,
1—z Sout 2mi 1—2z Sin 2mi 227Ti

G1(w)Ga(w)wy N (wy + 1) 7" (wy 4 1) M Fmelsis2)w2

1 N ,(s1+s2)w)
( R Y w1 € =0 (2.36)

—w] + w2 w2 wi] — wy wéve(51+52)w2

for some polynomials G1and G of degree N — 1. Using a simple residue computation,
we have

d d
/ 2:1/ ﬂGl(wl)Gz(wz)wl (Wi + D)7 (wy + 1)~ MHmelrts2w
Zout

=0,
—wj + w2 wz

d d )
/ Z:i / ﬂGl(wl)Gﬂwz)wl (w1 + 1) (wy + 1)~ MHm i
Zln

—w1 —wi +wy wr w2

—Z/ —Gl(w)Gz(w)w Nw 4+ 1) Mes1ts2w,

dw dw
f . / 261w Gaww ™ (wy 4 1) 7" (wy + 1)~ MHm it
Sout 27 Jy 27i

e(?1+€2)w1

w] — W) w e(51+52)w2

/ _Gl(w)Gz(w)w_N(w T+ 1)y MGitsw

d d
/ Zii | S G oty oy 17" g 1)
zln

w] N o(s1+s2)wy

w|p — wo w2 e(Sl+52)w2

(2.36) follows immediately.
Thus we can apply Lemma 2.8 in (2.32). After we remove the term D,, we exchange
the integral and summation again and obtain

p(st,s2;m,n, M, N)
(VD2 ?g dz ﬁ — / w1 / dw)’
(N2 0 2miz" l—zJg,, 271  1-zJg, 2ni
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N dw® N
[ / 27;21 A (W(l)> A (W(2)> fi (W(l)) A (W(Z)) 3 (it
ir=1 z el

n M

(wg)) . m Q@

o T el O [CZ (win - Wi )]i;#l,- (2.37)
(wlz ) e o ir#lo

2.3.2 Step 2: Evaluating the summation

Recall the formula of C, in (2.3). We can write

wie ™! z wy 1 w
Co(wi, wy) = —— ).
wze w] — Wy wq —w1 + w2 wy

We insert this formula in (2.37). Recall the formulas of fi, > in (2.2), and fl, fg
in (2.6). We arrive at

p(s1,s25m,n, M, N)
(—HNV=D2 g, N, dw| 1 dw("
(N2 %)zmzn H 1—2[;%{ omi | 1—2/Zin 27i
l—[/ 212 A W(l)) (W(z)) A1<W(1>) A <W<2>) Z (=D
1

ir=1 l1,0=1

(2) (1)
det| — 2 Ui +; i (2.38)
B2 B Y L (Y SR B2 -

Wi, i i Wi i Wi

1%

Compare the above formula with (2.5). Note the following Cauchy determinant
formula

N
AW AWE) g [
A (W2, wh) w® _ DO

iz i i1,ir=1

We see that (2.5) follows from (2.38) and Lemma 2.9 below. This completes the proof
of Proposition 2.2.
The remaining part of this subsection is the next lemma and its proof.

Lemma 2.9 Suppose X = (x1,...,xy)andY = (y1, ..., YN) are two vectors in cN
satisfying x; # yj forall 1 <i, j < N. Suppose z is an arbitrary complex number.

Then we have the following identity
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1 Xp —YyjXi =X +YjYj

N
a,b=

(—1)“+hybdet[ 2 Y ﬁ}
i_;éa
J

N N
. - 1
=(1—z)N? H(X;Y)+z| |&H(Y;X) det|: ] ,
X Yj — Xi ij=1

i=1""

where H is defined in (2.7).

Proof of Lemma 2.9 We first use the identity

z y 1 x X 1 z 1 z Yy
24 S=(1-2=- — I =
X—yXx —x—+yy y —x+y l1l—zx 1-—z

and write the left hand side of (2.39) as

Vo & y? 1 z 1 Z Yy
A=V T Y (=D)L det - —— = .
Eyi aé Xa _xi+yj l—ZXi I—inz i};éu

! J#b
(2.40)

Thus the Eq. (2.39) is equivalent to, by setting u = —z/(1 — z),

N R N yg R 1 N
=—<(u—1)]_[ﬁH(x; Y) +u[[ LAY X)) ~det|: } .
=1 i=1 i Yi—Xidij=1
(2.41)
The proof of (2.41) is tedious while the strategy is quite straightforward. Below
we will show the proof but omit some details which are direct to check. We remark
that the strategy was applied to a much simpler identity in [14, Lemma 5.5], but this
identity (2.41) is much more complicated.
Before we prove (2.41), we need to prepare some easier identities. We denote

N N
X(w) =] Jw—x), Yw):=]]w-w),

i=1 i=1

and introduce
Y (xqa) X (yp)
(Xa — yp) X' (x)Y' ()’

~
S
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One-point distribution of the geodesic in directed last...

where p, g are both integers. It is not hard to verify, by using the Cauchy determinant
formula, that

N

—} /det[—] .
—X; + y] ?;ab —X; +y] i j=1

‘ (2.42)
j

N
Cpg= Z (—D)*xfy] det|:
a,b=1

One can evaluate C), 4 by converting the sum as a residue computation of an integral
on the complex plane. As an illustration, we show how to obtain C_j >, then we will
list all the C,, ; values we will use later without providing proofs, see Table 1.

We consider a double integral

/ / Y Y@X(y)  dx dy
Iyl=Rs Jixl=r, X (x — )XY (y) 27i 271’

where Ry > Ry > max;{|x;|+|yi|}. Note that we can deform the x-contour to infinity
and the integral becomes zero. Hence the above double integral is zero. On the other
hand, we can change the order of integrals and evaluate the y-integral first. It gives a
sum over all roots of Y (y):

0=/ S Vh YOX(Gp)  dx
ek = (&= ) XY () 271

Then we exchange the summation and integral, and evaluate the x-integral by com-
puting the residues within the contour. Note that x = yj, is not a pole. We get

N

Y(0) X ()
X(0) 2 Y' ()

0=C_12— (2.43)

b=1

We need to continue to evaluate the summation in (2.43). We have, by a residue
computation,

XN:be(Yb) :/ yX(y)Ly
Y'(yp) lyl=R, = Y () 2mi

b=1

N
1 BN d A
- / v+ =20 —x+ S A +067) ) 52 = HXY),
IyI=R> ) y 2mi

where we evaluated the integral by expanding the integrand for large y. Here the

function H is defined in 2.7).
By inserting the above formula to (2.43), we obtain

Coia=]] %ﬁ(x; Y).
. 1
1

@ Springer



Z.Liu

Table 1 Values of some C), 4 expressions

Expression Value Expression Value

Xi

Co,—1 1— "
i

Vi
C_12 [[- A0
. i
1

i

. i
C_1p —1+1f[x—; C_11-Coo (1—1'[x) Z(x,- )
1 1 14

Cio0 —H(Y; X) Co.2 — C1.1 =Y i =y HX:Y)
i

N ; 1 1
Co.1 H(X;Y) C21 —H]‘[% (1—Z(x—y)2(xi—yi>)
i 1 1 1 i

i

Using similar calculations, we can find all C), ; for small p, g values. In Table 1 we

list some C), , identities we will use in the proof of (2.41). We remark that the proof

of these identities are analogous to that of C_ > without adding extra difficulties.
We need to evaluate

1 17V . l , 1 1
T L (W S U S e .
—Xi +y; Xidj j=1 —Xi +Yj ij=1 Pt Xa —Xi +Vj ;?:;;7

By applying (2.42) and finding the C_; ¢ value in Table 1, we get

N N
1 1 1
det| ——— 4t u— —det| —— (1+4uC_y )
—Xi tyj Xi Jj j=1 —Xi + il j=

1 N N
ca[ U (o)

(2.44)
Then we evaluate

N N
1 1y 1 1
det ——i—u—+u—2 =det| —— +u—
—Xi +Yj Xi X; Pl —Xxi +; Xid; =1
o Vb 1 1
+u Z(—])“*b—zdet |:—+u—]. )
abel Xy —Xi +Y; Xi l'ia
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We insert (2.44) in the above equation and obtain

1 1 y
det| —— +u— +u)—
—X; +y; Xi x2 i j=1

1

N
1 Vi a+be 1
=det| ——— l—u+ +u(l— 1 —
) [—xz'ﬂj] ~1( ' ul_[ ) e Z( : xq X V) Ji#a

i,j= i= 1 a,b=1 J%b

27 Vi a+b 1 1
+ 1 _
! 1_[ Z( ) Xa |:_xi+yjj|i;éa
J#b

1—1 bab=1

N
1
=det| —— 17u+un—+u(17u)C 21+u21_[ C 1,0
=X +yj

i,j=1 i=1 1*1
(2.45)
By inserting the values of C_» 1 and C_ o and simplifying the expression, we obtain

N N
det ;—i-ui—i-uy—é = det #
ity i Y dij=1 AR P

1—2u(1—ﬁ[1)ycj)— Z)Hzi2<g_*>z(%—m+u (l_[xi—‘)

i=1""i=1 i1

Finally we are ready to prove (2.41). Inserting (2.46), we can write

N
1 1
(- 1ath bdet R —+u%
1 Xa —Xi +y; Xi i#a
J#b

2
N
l .
E - l)aH’yhdet | e - E) ¢ x“||y’—
Pt —X; + Y |i#a Yb i i
@ Jj#b =

a,

t—l

—(u—uz)xfalﬂl& -— +§:<f—f> —xa+Yb+§:(xi_)’i)
Yo%\ Xa - :

i=1

We apply (2.42) and rewrite the above equation as

N N
1 1 1 1 i

> (- )"*“bdt — tu —+uy—§ Jdet| ——— +u—+uL

pd —xi +y; X; 7&” —X; +y; Xi X

Xa
a,b=1

((l—u) +u(l—u)l_[yl)c 1z+ul_[)’ (1—u+u Hi’)cl,o

1

—u(l _M)H% (lel —Zyll) (sz‘ - Zyi) Co,1
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—u(l —M)H% (in —Zyi) Co,o +u —u)l_[% (in —Zyi) Co1.
—u(l—u)l_[% (ZXI—Z;) Coa +u(l —u)l_[% (Z;—Z;) Cri.

(2.47)

By checking the values of Table 1, and noting that (Zi(x,- — yl-))2 = HX;Y) +
H(Y; X),wecan simplify the above expression. It turns out, after a careful but straight-
forward calculation, the u? term vanishes, and the remaining terms match the right
hand side of (2.41). We hence complete the proof.

2.4 Proof of Proposition 2.3

In this subsection, we prove Proposition 2.3. Note that the Eq. (2.5) involves a Cauchy
determinant factor

N
A(WD)A (WD) LN V-D/2 g 1
A(W@;wh) w® _ p® :

i2 it dip =1

which is of size N, while the formula (1.7) is analogous to a Fredholm determinant
expansion. So Proposition 2.3 can be interpreted as an identity between a Cauchy
determinant of large size and a Fredholm-determinant-like expansion. Our strategy
contains three steps. First, we rewrite the formula (2.5) to a summation on discrete
spaces with summand having similar Cauchy determinant structures. This rewriting
involves a generalized version of an identity in [31]. In the second step, we reformulate
the summation to a Fredholm-determinant-like expansion on the same discrete space.
We remark that similar calculation were considered in [13, 14] but our summand is
more involved. Finally, we verify that the expansion indeed matches (1.7) using the
identity obtained in the first step.

Below we will first introduce a generalized version of an identity in [31], the Propo-
sition 4.3 of [31]. Then we prove Proposition 2.3 using the above strategy.

2.4.1 A Cauchy-type summation identity

We introduce a few concepts before we state the results. We will mainly follow [31,
Section 4] but add a small generalization.

Suppose W = (wy, ..., w,) € C"and W' = (w}, ..., w;l,) € C" are two vectors
without overlapping coordinates, i.e., they satisfy w; # w/, forall i, i". We define

AW)AW'
CW; W= % (2.48)

and call it a Cauchy-type factor. Note that when n = n’, C(W; W') equals to a Cauchy
determinant det [1/(w; — wlf,)]?i/zl multiplied by a sign factor (—1)"=D/2 We
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One-point distribution of the geodesic in directed last...

remark that we allow empty product and view it as 1 in the above definition. For
example, when n’ = 0, we have C(W; W) = A(W).

Similar as in (2.27), we use the convention that W; = (w;,, ..., w;,) for any index
set I = {iy,...,ix} where 1l <i; < --- < iy < n.In other words, W is the vector
formed by the coordinates with indices in /.

We denote

D) ={z:|zl <r}, andDp(r) ={z:0 < |z] < r}.

And we omit r when r = 1,1i.e.,D = ID(1) and Dy = Dy(1).
Suppose g (w) is a function which is analytic in a certain bounded region D. Denote

R,={weD:qgw)=7z}. (2.49)

Assume that Ry # . In other words, there is at least one root of g(w) within D.
We also assume that rpy,x is a positive constant such that U e, R; = {w € D :
lg(w)| < rmax} lies within a compact subset of D, and {w € D : |¢g(w)| = r} for all
0 < |r| < rmax consists of [Rg| non-intersecting simply connected contours around
the points in Ry. It is easy to see that with these assumptions ¢'(w) # 0 for all
w e {w e D:|g(w)| < rmax}. We remark that in the original setting of [31], they
assumed Ry = {0} or {—1}. Here we drop this assumption.
We will consider a Cauchy-type summation, which involves an expression

—1
k k+1
H (W(]), cees W(z); 205 -+ Ze—l) = |:1_[ C (W]((k)); W;(k+l;):|
k=1

A (W<”, WOz, ZH) , (2.50)

where W®) = (wik), o w,(,l,i)> € C",1 < k < ¢, such that W& and W&+D do not

have overlapping coordinates for 1 < k < £ — 1. I® and J® are arbitrary subsets
of {1,...,ng}forl <k < ¢ —1and?2 < k < £ respectively. The function A is
analytic for all wﬁ? € D\ Ro, 1 < jix <ng,1 <k <, andforall (z9,...,2¢-1) €
D (rmax) X D¢~ Hence H is also analytic on (D\Ro)™ 1 x D (rmax) x D!, except
for having possible poles at wl.(f) = wl.(f:rll) forsomei; € I® andiyy € I*TD, which
comes from the Cauchy-type factors. We remark that the function H also depends on
the index sets /®, J*+D | <k < ¢ —1.

Now we introduce the summation. We consider

l
Gz, ... 20-1) = Z Z |:l_[J(W(k))i|H(W(1),...,W([);ZO,...,ZE1)

wheRM w®eRr™ Lk=1
e

Z
1

(2.51)
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for (zo, ..., 2¢) € Do(rmax) X ID)f)_l, where the function
(w)
JW%:;WY (2.52)

Recall our convention J(W®) = [T0%  J (w). The variables 2;’s are defined by
S =207t zkets k=1, 0. (2.53)

Note the identity

S F)Hw) = ( / _ / )f(w)q(w) o
lg(w)|=C1 lg(w)|=C> q(w) —z 2mi

weR; q

where C; and C, are two positive constants satisfying C» < |z| < Cj such that
the function f(w) is analytic in {w : C» < |g(w)| < Ci}. The right hand side
is analytic as a function of z within C, < |z| < |Cy]. This identity implies that
ZweRz f(w)H (w) is also analytic as a function of z within C» < |z| < |Cq]|. Using
this fact we obtain that G(zg, ..., z¢—1) is analytic as a function of Z1, ..., Z; within
0 < |Z¢|l < -+ < |Z1] < rmax, and hence is analytic as a function of zg, ..., z¢—1 in
Do (rmax) X ]D)g_l. We remark that there are no poles from the Cauchy-type factor due
to the order of |Zx].

Our goal is to analytically extend the function G to D(rpayx) x D¢~ under certain
assumption. Below we introduce two more concepts related the assumption, then we
state the identity.

We call a sequence of variables w(k), wffjl), el wl.(k )a Cauchy chain with respect
to the vectors WD .., W® and index sets IV, J@ @ gO b g@O jf
w® o EHDY (&) D) W=D _ ,®
Wiy ik+1 ikt1 ik+2 iy _ iy

appears as a factor of the denominator in ]—[k C (Wl(fk)), Wﬁﬁ?) We allow any

single variable wff) to be a Cauchy chain as long as it is a coordinate of W®).

We say g(w) dominates H (W(l), e WO g ,Zg_l) if and only if the fol-
lowing function of w

qg(w)- A (W(l), e WOz zzq)‘w(k)_ D)y (2.55)
U SS Uy
isanalyticatany w € Ro when all other variables are fixed, here w(k), wkth w®)

Iyl 7777 Ty
is an arbitrary Cauchy chain with respectto W, ..., W® and 1V, J& 1@ (3)

1D O We remark that in [31], this concept was only deﬁned when Ro
contains one single point. Here we dropped this assumption.
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Proposition 2.10 Ifq(w) dominates H (W(l), WO 20, -+, Zg_l), then the func-
tion G(zg, ..., 2¢—1) can be analytically extended to D(rmax) X DL Moreover,
G(zo=0,21...,2¢—1) is independent of q(w), and it equals to

(k) (k)
1_[ 1_[ f dwik T / dwik
— 2k—1 Jx® 2mi 1 —zp—1 J® 2mi

k=2 ir=

(1)
H/m 2;1 H W(l) . ~7W(£);0,Z],~--,Z£71),
by

where Z(()i)[, . Eéﬁi, HION 2(2), ce Ei(f) are 20 — 1 nested contours in D each of

which encloses all the points in Ry.

Proof of Proposition 2.10 When R = {0}, this is exactly the same as [31, Proposition
4.3]. On the other hand, their proof does not use the fact Ry = {0}, see [31, Section
6]. Hence Proposition 2.10 follows from the same argument.

One can similarly consider a two-region version of the above result. Assume that
Dy, and Dy are two disjoint bounded regions on the complex plane. Let g(w) be a
function analytic in Dy U Dr and define

R.L={ueDL:qu) =z}, andR;r ={veDr:q) =z}

Assume that both R 1. and Ro r are nonempty. The analog of (2.50) is

H (U“), LLUuO vy @ Zg_l)

-1
— (k) (k+1) (k) .y, (k+1)
= |:1_[ ¢ (U1<k>v u (k+l)> ¢ <V1<k>’ Vj(k+l)>:|
k=1
: A (U(l)’ LRI U(E); V(l)’ ey V(Z); 205 -+ Z[*l) )

where A is analytic in Dy \ R . for each coordinate of U'®), and in Dg \ R g for each
coordinate of V%, 1 < k < ¢, and analytic for all (2o, ..., z¢) € D(rmax) x DL
The analog of (2.51) is

14
G@o, vz = ) ) [l_[J(U(k))J(V(k))}
DRI UOerT HE
21,
V(l)eR;;jﬁ V“)GR%R

H(U“),...,U“); v v ©g, ...,ZH)

for (zo, ..., z¢) € Do(rmax) X ]D)S_l. We can similarly define Cauchy chains in Dy,
and in Dg. We say ¢ (w) dominates H (UD, ..., U@; v . v ©O;zo, 000 70 )
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if
1 1
qgu) - A (U( )’ o U(Z); y( )7 e, V((); 20y -+ - s Zg_l) W _ h+D_ | _ @)
[/ ik+l - ik/ -
is analytic at any u € R, for any Cauchy chain in Dy, and
1 ¢ 1 ¢
q(v)-A(U( ) U9 vh v, Z07-~"Z€*1) W) _ 4D _ )
i 41 Lt

isanalytic atany v € Ro r for any Cauchy chain in Dr. The analog of Proposition 2.10
is as follows.

Proposition 2.11 Ifq(w) dominatesH (UWD, ..., UO; vID . v Oz z0),

then the function G(z0, ..., 2¢—1) can be analytically extended to D(rmax) X DL
Moreover, G(zo = 0,21 ..., 2¢—1) is independent of g(w), and it equals to
¢ n (k) (k) n (1)
l—[ ﬁ / dup” oz / ﬁ f du;,
kot L@ sy 2nt =z I3l 2m 50 2711
¢ g, (k) (k) n (1)
ey T }'R/
— (k i — (k) Q)
i 1 —zr—1 =0 2mi 1 k—1 2711 2711

H(U(l),..., v, v v©.0, 7 ...,2571),

where Eéﬁ)t Lo Eéﬁi L EI(‘D, Ei(f)L, .. E(fL are 20 — 1 nested contours in Dy,
each of which encloses all the points in Ry 1, and E(()f])t R> -~ Z(()i)t R> E](;), Ei(rlz)R’

, Ei(f)R are 2¢ — 1 nested contours in DR each of which encloses all the points in
RO’R

Proof of Proposition 2.11 The case when Ro . = {—1} and Ro r = {0} was the same
as [31, Proposition 4.4]. The proof for the more general case is also the same as the
proof of [31, Proposition 4.4], except that we apply Proposition 2.10 in this paper
instead of [31, Proposition 4.2].

2.4.2 Rewriting (2.5)
Now we want to apply Proposition 2.10 to Eq. (2.5) and rewrite the formula.
We first choose ¢(w) = w" (w + 1)X~N, where L is any fixed integer satisfying

L > M + N. Recall the formula (2.5). Let H (W®, W1; z;, zg = z) be a slight
modification of the integrand in (2.5). More precisely, let

H(W® Wiz 20) = (WO W) A(W, Wiz, 20),  256)
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One-point distribution of the geodesic in directed last...

where
A<W(2> w7, ZO)

=8 (0 (7)) ()

[1{( (W<1>; W@)) + 20 ﬁ w—)H (W(l); W<2))} . (2.57)

Note that when zo9 = z, H (W(z), w7, zg) is exactly the integrand of (2.5).
Assume D is a bounded region enclosing both 0 and —1. It is obvious that the function
A is well defined and analytic for all w(l) i(2) e D\ {1,0},1 <i < N, and for all
(z1, z0) € D(rmax) x D, here we choose

fmax = NV(L — N)E=N/LE. (2.58)

We remark that we have a different ordering of indices compared to the original
formulas (2.50) and (2.51). This is because we want to make the indices of fl and fz
more natural by using 1 to label the parameters appearing in the first part of the last
passage time and using 2 to label the parameters appearing in the second part of the last
passage time. On the other hand, we also want to make our indices in Propositions 2.10
and 2.11 consistent with [31] so the readers can compare the results easily. These
different orderings might be confusing but they only appear in this technical proof.
We will keep reminding readers if needed.

The sum we are considering is

Gz =y > J(WO) s (W) H (WO, Wiz z), 259

WO eRN wiheRN
) 21

where Zo» = z; and 21 = z1z0. We assume that z; € Dy(rmax) and zg € Dy hence
0 < |22] < 1Z1] < Tmax.

We need to verify that Proposition 2.10 is applicable for this function (2.59). All
other assumptions are trivial, except for the one that g (w) dominates H(W(z), w,

21, Zo). We verify it below.

There are only three types of Cauchy chains. The chains of single element wgl) or

(2 (2

w 2) and the chain of two elements w; ", (1) . For the first type of chains, we need to

verify g (wi(l )).A (W(Z), w. 21, Z()) is analytlc at0and —1. This follows from the fact

that fl (w)gw)w™' = (w + DHE=N="y"~1e51% 5 an entire function. Similarly we
can verify it for the second type of Cauchy chains. Finally, for the chain of two elements
()

i . i
w;s w,.(1 ), we need to show g (w).A (W, wh; 7y, z9) |w,f22)=w,f:)=w is analytic at —1

and 0. It follows from the fact that f1(w) f>(w)g(w) = (w + DHL=N-"Mbr+)w jg
entire.
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So we can apply Proposition 2.10, and obtain

N M (N (2)

—7 dw. 1 dw; dw_-

o i / i / i

G(0,z0 =12) H(I—ZLW 2 +1—Z T 271 ,-1_[1 s 27
N

i1=1

Sl ON 2 (o H))2 @))?
A (WO i (w) (A (VZ(W)/)(Z)(;AW((‘I")’) )

my_, w?
(H (W<1>;W<2))+Z ia=1 iy g(W(z%W(l))).

Hence we have an alternate expression for (2.5)

( ML) = s 9020 = 2 ew
. - =7)—. .
ps1, s2sm,n, M, (Ny)2 0 » 20 2miz"

2.4.3 Reformulation to a Fredholm-determinant-like expansion

In this subsubsection, we want to evaluate the summation (2.59) in a different way.
Recall g(w) = w™ (w + 1)L~ and R, are the roots of g(w) = z. This equation is
called the Bethe equation, and its roots are called the Bethe roots. It is known [13] that
when |z] < rpax = NN(L — N)L_N/LL, the set R, can be split into two different
subsets R, 1, and R; R satisfying |[R; 1| = L — N and |R; r| = N. Intuitively, each
rootin R; 1 (R;Rr, respectively) can be viewed as a continuous function of z starting
from —1 (0, respectively) when z = 0. We denote

DL = U‘Z|<rmaxRZsL’ and DR = U‘Z|<l‘maXRz,Ra (261)

and
grw)= [ w-w, and g.rw)= [] w-v) (262

MERZ'L UERZ_L

which will be used in later computations. Note that D, and DR are two disjoint bounded
regions, and g1 (w)g: r(w) = g(w) — z.

We will rewrite the summation (2.59) by treating wi(kk) € R; 1 and wi(f) € Rz R
separately. We first observe that, by checking the formulas (2.56) and (2.57), the
summand is invariant when we permute the coordinates of wW® k= 1,2. We also
observe that the summand is zero if any two coordinates of W®) are equal due to the
Cauchy-type factor. Therefore we only need to consider the summation for W ®) with
different coordinates.

Assume that nj coordinates in W® are chosen from R, L- Then the other N — ny
coordinates are chosen from R;, gr. Note that Rz, g has exactly N elements, hence
there are ny elements which do not appear in W®  We denote V&) = (vfk), ey v,(l],(())
the vector formed by these elements with any given order. We also denote U®) =
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One-point distribution of the geodesic in directed last...

(u Y‘), U ,(1]?) the vector formed by the coordinates of w® in Rz, 1- Note the invari-

ance property we observed above. We write

N
1
— (NN2 -
Z Z = (ND Z (n1H2(na))2 Z Z ’ (2.63)
W(z)eRg W(])ERZ n1,n2=0 U(2>ER;22_L U(I)ER;; L
2) o2 1) ol
v )ER&‘R v >e’R21_R

where the factors N!, ny! come from the number of ways to permute the coordinates
of WK, U® (and V®) respectively. Now we need to rewrite the summand in terms
of UM and V® k =1,2. Such a rewriting was mostly done in [13, 14] except for
one extra factor. We will write down the formulas without proofs except for the one
involving the extra factor.

Recall the notation conventions (1.4), (1.5) and (1.6). We write, by simply inserting
the coordinates,

R f(U®) J(Uu®
0 = _ . ®Y) = J (R -
fi (W )_ fe (V0) S (Rer) J<W )‘ J (V@) J(Ryg). k=12

We also have (see equation (4.43) of [14])

AUOPA(VE) d e (UY)
®)- v k)2
AUOTVOP (g1 (v®))

2
k —-1)/2
A <W( )) — (_I)N(N 1/ . 'qék,R (Rik,R)

and (see equation (4.44) of [14])

AU, UMY A (VO vD)
A (U(2); V<1)) A (V(2); U(l))
a5 (U?) g2, (UO)

qz,R (V(2)) 9z, R (V(l)) .

A (W(z); W(1)> = A (Rzr; Rz R)

We need to further rewrite the above expressions so that we can apply Proposition 2.11
later. Denote N
g r(W)/w™, w € Dy,

s )= {qz,mw)/(w +1EN, w e Dy,

It is easy to check that h(w; z) is analytic and nonzero for w € D, U DR and for
z € D(rmax ). Especially we have h(w; 0) = 1 for all w € Dy, UDR. See equation (50)
in [31] and the discussions below.

One can write (see equation (4.51) of [14])

oN

J()h(v; 2)

q.r(v) = . VETRR.
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and (see (4.49) of [14])

-z 7 -z
g L(v) (' +DEVh2)

CIZ,R(U/) = v e R R.

Note that A (Rz, r; Rz, R) = ¢z,.r (Rz,.r). After inserting all these formulas and
simplifying the expression, we end up with

T(wO) s (W) i (W) /o (w?) (A (WD) (a (W)’

A (W(Z); W(l))

Anéé\lfn

1
(Zo —z)N

2 (AWD))2 AV D))
= Ga@ vay

= K(22,21) -

k=1

Fe(UB; 51) ®. 3 ®. 5 (k) (k)
e G U R
. AU, vIHAWV @, gDy ' (1 —Z22/20)" (1 = 21/22)™
AU, UMAWV@; vy hUP; 2)H(VA; 2)h(UD; 22)h(VD; 22)
(2.64)

where the functions fi(w; sx) = fk(w)wN, k =1, 2, are defined in (1.9), and

]C(A R ) 1 l_[ (v 4 D)Myresiv 1 l_[ v+ 1)7M+m+L7NUN7nes2v
22, 21) = =z iy — —
4 VER:, & hv; 21) " VeR:, x h(v; 22)/b(v; 21)
_ N(L—1) (v+1)~"er 1
—evm 1 S 1w
UE,R'ﬁ],R ’ MEREI.L

(U + 1)—M+m+L—NeS2U

1_[ h(v; 22)/b(v; 21)

UEREZ‘R

1—[ 1

UERz, L u ="
(2.65)

We observe that K(Z2, Z1) is analytic for both z, € D and z; € Dy since b
is analytic and nonzero, and 7z~ [lier. v = (- Hi-t [Lier.. u~! is analytic for
z € Dy, . Moreover, we have (0, 0) = 1.

As we mentioned before, there is an extra factor in the summand of (2.63) which
comes from (2.57),

w?

A (WD w®) 42 ]_[ TH (W w).
i=1
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One-point distribution of the geodesic in directed last...

Here H is defined in (2.7). Recall that {wl.(k) 1 <i<N}=Rs;rU {ufk) 1<i<
md\ (v 11 < i < ng). We write, for each k, k" € {1, 2},

N ni ny

k k') k k K k .
E :( O —w ) § :( l(k) vi(k)) - Z (”52,) (k )) +81Ek) — S1GEw)
i=1 ir=1 =1

k/

and
N , ny
> (@ af2) = 3 (2 - @)
i=1 ir=1
nk/
- ((u“”) ~ 1“) >+Sz<zk> Sa().
in,=1
where
Si(3) = Z ko k=1,2 (2.66)
UER&R

is analytic in Z € Dy, . Moreover, it is easy to see that S;(0) = 0 for both k = 1, 2.
We also write

N (2)

<0 l—[ (1)

N w ) n (1) ny (2) 7(2s)
l_[_) l—[ (1)1_[ (2) 7T(21)’ (2.67)

11—1 ir= 1Y

N)l 2>

where
(_1)L—l

1
7(2) =< l—[ V= ————
. veR; R HMGRE.L u

is analytic in D . Moreover, it is easy to see that 7(0) = (=DHN-L,
Combing the above calculations we have

w®
(W“) W@)) +Zol_[ TH (Wa) W<2)) = AUDO, y?. yO y@. 2 2

i=1
(2.68)

for some function H which is analytlc for all u(l) u? e D, (1), v e Dr \ {0},

2 11 2
1<i1<n;,1<i;<npandforz;,z, €D Moreover, we have

T'max *

AHUY, u®; v v@:0,00= HUD, UD; v vP), (2.69)

where H is defined in (1.10).
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Now we combine (2.64) and (2.68), and note (2.63). Note Z1/z2 = zo. We have

(1 —z)"
(N‘)2g(zl’Z0)—0

e (1 —z5)" (1 — zp)™
ny,ny=0
Z Z C(u(2); U(l))C(VQ); V(l))

U(2>e72n2 UDeR?! L
2L 21,
V(Z)ER"2 V(”E’Rf]

AUDAVE) [P s0) PIRY
|: (AU ®; v K)))2 fk(V(k) ) (h(U ,Zk))

(b ®:20)” J(U(“)J(V“))}

hUD; 2DH(VD; Z2NHUD; 2)h(VID; 25)
(2.70)

T y@. vy y@.s 3
. |:A(U(2); VAV @, gDy HU™, U VI, ViZi 2y, 20) i|

2.4.4 Completing the proof

Now we are ready to complete the proof. We will take z; — 0 on both sides of (2.70).
Recall that we have already proven that G(z1, zo) is analytic for (z1, zo) € Dy,,,, x D
and G(0, zo) is well defined. For the right hand side, recall z; = z; and Z; = z)z0.
When z; — 0, both Z; and Z, go to 0. We also recall £(0, 0) = 1.

For the summand over U@, v® y® vy jtisa Cauchy type summation as
we discussed in Proposition 2.11. Our previous discussions on the functions h and H
implies that this summand satisfies the analyticity assumption. The proof that g (w)
dominates the corresponding factor in this summand is also similar to the previous
case discussed in Sect. 2.4.2. The only minor difference is that we have a factor
I—[ll v, (1) ]_[12 (v( )) Uin H but the proof does not change even with this factor. Hence

we know that this summation is also analytic for (z1, zg) € D
inserting z; = 0 in the equation, we obtain

x D. Moreover, by

T'max

(== _ i (1—2")" (1 =z

(n1)?(n2!)?

(N')2g(0 20) 0

ny,ny=0

1 1
1’2[ 1 / dufl) 20 / du 1(1)
NT=20 J5,, 271 1=20 J5,,, 27

i
(1) (1
1 / d ll _ <0 / d i
1— 20 SR.in 2mi 1-— 20 ZR.out 2mi
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One-point distribution of the geodesic in directed last...

wW® ; a?
1—[/ S / 27;2 cw®: yMyev®, vy
oL >

121

2 (AU AVDY)  [OUR; )
(AU®; vERN2 g vR; )

AUD; vVIHAWVD Dy gD, P v vy @271)

Inserting it in (2.60) and replacing ng, n1 by k1, k2, we obtain

ps1, s2;m, n, M, = -
0 21— )2 2 (hiths!)?

k (eY) )]

1_1[ 1 / d”n oz / du i

bl 1—zJs,, 2mi 1=z Jg o 27i
do?

1
1 / dv (1) , / .
1l =2z Jsg, 2mi 1 =27 Jyg o 27i

(2) (2)
oL 2m sp 2mi z VD5 (VP 52)
. H(U(l), U(Z); V(l), V(2))
(A(U(Z)))2 (A(V(l)))z A(U(l); V(2))A(V(1); U(2))
i (Ao vy AUDUD)AVO; VE)

(2.72)

Note that when k; = 0, the summand is analytic for z = 0 hence the integral of
z vanishes. When k, = 0, there is no u( ) or v( ) variable, hence the u( ) and v(l)
contours can be deformed to X1, and )Z)R respectlvely As a result, the z 1ntegral can

be separately written as

% dz 1 1>k| -1, k=1,
o 2mi(l — z)2 z) |0, ki =0,0rk >2.

However, it is direct to check that H(U(l), U(2); vy, V(2)) = 0 when k; = 1 and
ko = 0. Therefore the summand when k> = 0 also vanishes. Thus we can replace the
sum » =0 DY Dk, k,>1» and arrive at the formula (1.7).

3 Asymptotic analysis and proof of Theorem 1.3
In this section, we will perform asymptotic analysis for the formulas obtained in

Theorem 1.1 and prove Theorem 1.3. The main technical result of this section is as
follows.
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Proposition 3.1 Suppose o > 0, y € (0, 1) are fixed constants. Assume that

M = [aN],
m = [yaN + x1a23(1 + Ja)?3 N3,

n=1[yN+xe P01+ /)N,

1 =d((1,1), (m,n)+t -1 + Ja)*3N/3,
n=d((m+1,n),(M,N)+t a1+ Ja)*3N'/3,
ty=d((m.n+1),(M,N))+1t- o /1 + Ja)3N'/3,

3.1

for some real numbers x1, xo. Then

P ((m,n), (m +1,n) € Ga,1y(M, N), Li1,1y(m, n) > t1, Lgny1,0(M, N) > 1)
o0 o0
=a'P(1+ \/5)_2/3N_2/3/ / p(s1, 82, X = X2 — x1; ¥)dsodsy
5] t

+O(N" (log N)),
3.2)
and similarly

P((m,n), (m,n+1) € Gu1y(M, N), L,1y(m, n) > t1, Lonns1y(M, N) = 13)
o0 o0
=a 230+ «/a)_ZBN_Z/S/ f p(s1, 82, X = x2 — x1; y)dsads;
t1 t

+O(N"'log N)*)
(3.3)
as N becomes large, and the O(N~'(log N)°) errors are uniformly for x, x5 in any
given compact set and for ty, ty in any given set with a finite lower bound.

The proof of Proposition will be provided later in this section. Below we prove
Theorem 1.3 assuming Proposition 3.1.

Recall that 7 is an up/left lattice path from (m, n) to (m’, n’). See Fig. 4 for an
illustration. We first realize that there are different types of lattice points (a, b) € w
depending on whether (a + 1, ) and (a, b + 1) are on 7 or not. We call (a,b) € &
is a horizontal point if (a,b + 1) ¢ 7, and a vertical point if (@ + 1, b) ¢ m. Note
there are outer corners which are both horizontal and vertical points, and inner corners
which are neither horizontal nor vertical points. We also note that an exit point p must
be a horizontal point p = (a, b) with p1 = (a, b + 1), or a vertical point p = (a, b)
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One-point distribution of the geodesic in directed last...

Fig.4 An illustration of the

sum (3.4). The square-shaped

points are vertical points, and

the round-shaped points are

horizontal points. The sum can scaled x
be viewed as a Riemann sum

along the axis x, where the

horizontal points contribute to

the spring parts and the vertical

points contribute to the thick part

with p = (a + 1, b). We write

Ga,1y(M, N) intersects 7, and exits 7 at some point p = (a, b),
Pl and Lanp) =n =d((1, D, p)+t-a /(1 + Ja)* N7,
and Ly, (M, N) = 1ty =d(py, (M, N)) + 1t -~ V/O(1 + Ja)*3N1/3
(a,b)em is a vertical point
(a,b) € Ga,1y(M, N) and (a + 1,b) € G,1)(M, N),
P | and L(1.1)(a,b) = d((1, 1), (a, b)) +t; -a”V/o(1 + Ja)*P N/,
and Lg41,5)(M, N) > d((a +1,b), (M, N)) +ta -~ /(1 + Ja)*P N/

+ >
(a,b)em is a horizontal point
(a,b) € Ga,1)(M, N) and (a,b + 1) € G,1)(M, N),
P | and L1 1)(a,b) > d((1,1), (@, b)) +t; -a~ V(1 + Ja)*3N1/3,
and Ly p1y(M, N) > d((a, b+ 1), (M, N)) +ta -~ /(1 4 Ja)*3N1/3
(3.4

Now we apply Proposition 3.1 and view the right hand side of (3.4) as a Riemann
sum of the quantity ftfo ftzo p(s1, s2, X; y)dsads) overaninterval x € [xo—x1, xé—x{],
plus an error terms O(N ! (log N)’) x O(N?3) = OoN~1/3 (log N)3). See Fig. 4 for
an illustration. It is easy to see from the definition that f;l)o ft:o p(s1, 82, X; ¥)dsads
is continuous in x. Thus the Riemman sum converges to the desired integral in (1.16),
and we complete the proof of Theorem 1.3.

The remaining part of this section is the proof of Proposition 3.1. We first realize
that (3.3) and (3.2) are equivalent. In fact, if we switch rows and columns and replace
o by o~ ! in the Eq. (3.3), we obtain (3.2) with —x instead of x appearing on the right
hand side. Note that p(sy, sz, X; ¥) = p(s1, $2, —X; ¥), see Remark 1.6. We hence
obtain the equivalence of (3.3) and (3.2). It remains to prove one Eq. (3.2).

Using Theorem 1.1, we write the left hand side of (3.2) as

(m,n),m+1,n) € Ga,n(M, N),
Pl and L 1y(m,n) > 14,
and Lpq1,0)(M, N) > 1
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T dZ_ l_f (z;t1,tp;m,n, M, N) 3.5)
?é . § : 2 it b n. M. N, |
0 2mi(l —z)? s (k1'ka )2 kika 1, %2

where

fkl,kz(z; t1,tp;m,n, M, N)

o0 o0
=/ / Ty, ko (Z; 51, 52; m, n, M, N)dspdsy
5]

duP duP
_ 1_[ / ll _ Z / 11
l—z )y ;, 2mi l—zJy o 27i

i1=1

1 1

1 /- dvl.(l) oz / d”i(l)
=z Jsg;, 2mi 1 =27 Jygon 271

2 2

du dv; 1\ X
TS S ()
by i yg 2mi z

N (U<i>;t1)fz(U(§);t2) ' 1 : —HUO, U@y, v @)
AVO) AVEin) TR Tl — o)

2
2 (A(U‘“)) (A(V“))) AUD: v A D @)

1

. , 3.6
i (AUO; V(K)))z AUD; yOHYAv D, v ) (3-6)

with the functions f1(w; t1) and f>(w; f2) defined in (1.9), and the function H defined
by (1.10). We remark that in the above equation we evaluated the integral over s and
52 using the fact Reu(e) < Revi(f) due to the order of the contours.

Similarly, we can erte

S1, S2, X; Sa2ds N D) 2 2 5 ) ,» X5
t t ! ! 0 27Z l( — Z) (k ‘kl') b y
ki,ko>1
(3.;)

o0 o0
Tk (Z 1,0, X5 y) = f / Tk k, (Z; 81, 82, X; y)dsadsy
t t

~ 1’1[ I / i’ / dg "
- l—zJr, 27i 1=z )p,, 27i

i1=1

1 1
1 / ) / i)’
1 =2 Jrp;, 27 1 =2z Jrg o 27i

@ @
1—[/ Siz / nlz . Z)k2 l—l .
r, 2mi Jpy 2mi z

ir=1
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fED; WHhEP; v) 1
i @@ ) T i ¢ - )

ir=1

2
HED, £y 5@) ﬁ(A(Ew))) (A("(Z))y AED; g ARD; ED)
: ’ N . . s
(=1 (A@(@);n(z)))z A EP)AGD; @)

(3.8)

where the functions f;(¢; t) and f5(¢; t) are defined in (1.24), and the function H is
defined in (1.25). We remark that in the above calculations we exchanged the integrals
and the summations. We need to justify that they are exchangeable. It is tedious but
not hard to check that

/OO o0
n 19}
and
/'OO o0
8} 9]

for some constants C(z) and C(z) which only depend on z. Moreover, C(z) and C(z)
are both continuous in z (except at z = 0 or —1) hence they are uniformly bounded for
|z| =constant that lies in (0, 1). Here we omit the proof of these inequalities since it
is similar to that of Lemma 3.3. Using these inequalities we verify that the exchanges
of integrals and summations are valid and equations (3.5) and (3.7) hold.

To proceed, we need to compare (3.5) and (3.7) term by term and estimate their
difference. There is a need to see the dependence of the error on the parameters. We
will fix the contour of z to be a circle with fixed radius |z| € (0, 1). We also introduce
the following notation.

1
> T | T, 4o (25 51, 523 m, n, M, N)| |dsa|ldsi| < C(z) < 00
ki,ka>1 et
(3.9)

1
Z T | Tk, 1o (25 81, 82, %3 )| [dsaldsi | < C(z) < 00 (3.10)
k=1

Notation 3.2 we use the calligraphic font C (or C; with some index i) to denote a
positive constant term (independent of N ) satisfying the following three conditions:

(1) C is independent of k1 and k.
(2) C is continuous in z.
(3) C is continuous in t| and tp, and decays exponentially as t| — 00 or ty — 00.

Throughout this whole section, we will use C as described in Notation 3.2, and the
regular C as a constant independent of the parameters.
We will show the following two lemmas in subsequent subsections.

Lemma 3.3 We have the estimate

A ki/2,kp/2 ki +k
Ty ko (73 1, 12, %5 )| < 2622 (k) + ) KR 2+
forall ki, ky > 1, where Cy is a positive constant as described in Notation 3.2.
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Lemma 3.4 With the same assumptions as in Proposition 3.1, there is a constant C;
as described in Notation 3.2 such that

N3 0@ 11, 125 m,n, M, N) — ' P14 o) 72Ty 1, (2t 2, X y)

< kllﬂ/zkle/z(kl + k2)(kl+k2)/zclzq+k2N_l/3(log N)S
3.11)

forall ki, ky > 1 as N becomes sufficiently large.

Now we use these two lemmas to prove (3.2). We first use and realize that the right
hand side of (3.7) is uniformly bounded by

f

dz
2i(l — 2)2

Sf
0

where the last inequality is due to the Stirling’s approximation formula k! =

k*e=*/2mk for large k.

Similarly we know that

f

Z m ‘Tk. ko (Z; 1, 2, X5 )

3 Ry kg Rk < o,
kel K1tk2h

dz
2i(l — z)2

1 2/3
Z W‘N Ty ky (zi 11, 123 myn, M, N)

ki,ka>1
~a 1+ V@) T X )|

Sfi) dz Z

1 _ 2
2mi(l — z) el
(k1 ko) !

dz
27i(1 — 7)2

kkl/2 k2/2(k 4k )(k1+k2)/26k1+k2N—1/3(10g N)S < 00

for sufficiently large N.
Combining the above two estimates we also know the right hand side of (3.5)

multiplied by N?/3 is also uniformly bounded by the sum of the above two bounds

dz 1 .
Nm?g N2 Z —’Tk ozt tym,n, M N)‘
1 —_ 72 Vra 1)2 1,ko \ Ly L1502, 1L, 71, s
ol27i(1 —2)2| 4~ (kilka!)
_ & ka2l (k1 +42)/2

.(al/S(l+\/&)72/3CII<|+I<2+C§1+k2N71/3(10gN)5)

< Q.
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One-point distribution of the geodesic in directed last...

The above estimates imply that we can rewrite, using (3.5) and (3.7),

(m,n),(m+1,n) € Gq,1H)(M,N),
N?3P | and Lan(m,n) >,
and Lyy1,0)(M,N) > 1

o0 o0
— o'+ J&rz“/ / p(s1, 52, x: 7)dsads,
t to

dz 1 .
= N23T, st tim,n, M, N
fi) 27i(1 — z)2 kl%ﬂ (k1 'ko1)2 < k.o (25 11, B my )

—a' (1 4+ )Ty 1y (2 11, o, X5 V)) ,

dz

which is uniformly bounded by, using Lemma 3.4,
1 k1/2, ka)2 ki+k Ar—
k 1 k 2 k k (k|+k2)/zc 1+ 2N 1/3 loc N 5
—Zn’i(l 22 § e~ 5Tk + k2) 2 (log N)

fé W Rtk
= ON""log N)®)

for sufficiently large N. Thus (3.2) holds.
It remains to prove the two Lemmas 3.3 and 3.4. Note that if we did not

have the factors ——— 1 - and HUD U@, v v@) in the inte-
[Temr Xy (3 v,
grand of Ty, x,(z;t1,t2; m,n, M, N), and the factors 1 and H

ITe-s fo:l (51'(,56)*'71'(?)
(E(l), 5(2); 17(1), 77(2)) in the integrand of Tkl,kz (z; t1, t, X; y), the right hand sides
of both (3.5) and (3.7) could be viewed as expansions of Fredholm determinants, see
[31, Proposition 2.9]. They have similar structures as the expansion of the two-time
distribution formulas in TASEP. Moreover, the two lemmas above are indeed analo-
gous to Lemmas 7.1 and 7.2 in [31]. So it is not surprising that we can modify the
standard asymptotic analysis for Fredholm determinants to prove these two lemmas.
However, we do need some tedious calculations to incorporate the extra factors, and
much finer estimates in Lemmas 3.3 and 3.4 compared with the analogs in [31]. Our
proof will also be illustrative to prove similar statements in our follow-up papers.
We will prove the Lemmas 3.3 and 3.4 in the following two subsections.

3.1 Proof of Lemma 3.3

In this subsection we prove Lemma 3.3. Some estimates we use here will also appear
in the proof of the Lemmas 3.4 in the next subsection.
We first estimate the factor

2 2
BED, g0 £ 4O 2=1£[(A(E(D)) (A(m®)) 'A(g(l);n(Z))A(”(l);g(Z)).
o e=1 (A(g@;nw)))z AED ED)A@D; @)
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Observe that this factor is the product of the following three Cauchy determinants up
to a sign

1 1
By =det | ———75 ! o) — (—1yhta=D/2 A(ﬁ(()l))A(ﬂ( )
_ A Sy
$l-1 ) dir =i EYsntY)
i 1% OV A (@
B, = det 5@ ! ) = (—1)’<2(/<271)/2A(E (2))A(17 )
_ A Sy ]
| &, — 1), Jiynmt (&5 9#)
1 1
i — j, gi1 - s/'2
B3 = det
1 1
i~ My &
: 1<iy, j1<ki
- T 1<i, jo<ky

_ (—l)kl(k|71)/2+kz(kz+1)/2A(E(l))A("(l)) AEDAG®)
AED®)  AED: )
AED; yP)amD; @)
AED ED)AGD; @)

By applying the Hadamard’s inequality, we have

2SS e o kT !
1
Bi= [T |22 fa -] =" [l —

: (DY’
=1 ji=1 i1 dist(§; ")

where dist(§) denotes the shortest distance from the point & to the contours
I'C.outs 'L, T'Lin, I'R.out, 'R, 'R.in except for the one contour which & belongs to.
For example, if Si(ll) € I'L.out, then dist(Sl.(ll)) is the distance from El.(ll) to I'L U TR, out»
where we ignored the contours I't out, I'Lin, ['R, and I'r in since I'L oy is the contour
Si(ll) belongs to, and the other three contours are farther to the point éi(ll) compared
with 'L, and 'R out-

Similarly, we have

ko 1
B, < k/2<2/2 l_[ 0
P dlst(ni2 )
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One-point distribution of the geodesic in directed last...

and
ky

1 1
Bj < (ki + kp)17%2)/2 ]_[ 7 [l —a
= 1d15t(’7,1 )].2:1 dlst(gl.2 )

We combine the above estimates and obtain

BE 16,9 @)

ko k1 ko

< K22 ey ath 2 1—[ 1 I 1 ul 1 I 1

o dist@D) 2 dist(n) 2y dist(n')) 5,2y dist(E)
(3.12)
Now we consider the factor H(“g'(l) 0, ’9'(2) @) = Lz }‘S% — %8183 which
is defined in (1.25). We use the trivial bounds

() - () -

ir=1

()
=< ﬁ (1 + Iél.(11>|€> (1 + |n<1)|e> ﬁ (1 + |§i(22>|e> (1 + |n(2)|g)
i1:1

ir=1

1:[ 2 (1&"1) &1 (“))]k:[ (E2) & (n21), =123,

o= 1> () -

i1=1

where g1(y) := 1 + y + y> + y3. Note that gZ(y) < g*(y) for all y > 0. Thus
g 1 1

|H<s<“,n<”;§@,n<2>)|< |S|+ |S|+ |slsg|

k k>
1 1 2 2
< [T et (1gP1) ef (1) TT et (121) et (1n21).-
i1=1 ir=l1
(3.13)
Finally, we note that the locations of contours imply that Re(f;‘l.(f) ) < 0 for El.(f) €

'L UTL out UT'L in, and Re(nff)) > 0 for nl.(f) € 'R UT'R out UT'R in. Thus we have a
trivial bound

1 1 1 1
< . < .
— 1 1 2 2 - 1 2
Re(n(” —&M) Re® —£?) 7 Re!") Re(n?)

1 1
14+ 1+
( Re(ni“)) ( Re(—sf‘b)

1
nl 121( 1(51'(([) 77,( )

IA
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1 1
I+ —— 1+ ———
( Re(ni”)) ( Re(—s%)

ka

< ﬁ @ (&ﬂ”) @ (n,‘?) []e (%‘,f)) @ (nf?) . (3.14)

i=1 ir=1

where gz (w) := 1 + |[Re(w)|~! forall w € C \ iR.
Now we insert all the estimates (3.12), (3.13) and (3.14) in the Eq. (3.8) and obtain

2 ki1/2,ka/2
T 25 1, 2,0 )| < KFPHE 2 ey kg 42012

1 1
iz 1 dg”) g ldg"|
. H gy —h
=t 1 —z| Jr,, 2= 1 —z| Jr o 27
1 1
1 dn’1 g ldn! |
1 + 1
1 —z| TR 27 1 —2z| T'R.out 27
ke @) ®) k
.l‘[/ 'dgiz'f LU P
P 'L 2 I'r 2 V4
k1 ko
) ) @) ®)
: Hg<§j1 )g(’?[l )Hg<‘§,'2 )g(mz )
i1=1 ir=1
k1
k1/2, k)2 1
= K[ (e + k)1 HRI2 11— g2 |1 — - (GINGEN

k1/2;k2/2 1 frve
< kll/ k22/ 3 +k2)(k1+k2)/2 ( 1— ;)Cl,] + |1 _Z|C1Y2) , (3.15)

where
If1(¢5 gt Dga (@) /dist(©), ¢ € TLoow UL in,
o) — 1155t~ gl (1€ Dg2()/dist(§), ¢ € TRoout U TR,in,
If2(¢; )1l (1 Dga(¢) /dist(¢), ¢ €Ty,
f2(¢5 ) gt (g D2 () /dist(), ¢ € TR,
and
1 g®lds| |zl g(8)|d¢|
Cr1= <|1 —2 Jr, 27 LT ML 27 )
1 gldnl 1z g(n)ldn)
1 —z| Jrg, 27 11—z Jrgou 27 ’

([ e®ld] g(m)ldn)
a=([ 55 (25

@ Springer



One-point distribution of the geodesic in directed last...

We used the fact that g(¢) decays exponentially when ¢ goes to infinity along the
integration contours since all other factors are of polynomial order, dist(¢) is bounded
below, and the dominating factor |f¢| (or |f,” 3 decays super exponentially. By check-
ing the parameters appearing in f; (and hence in g), we find that both C; ; and C; »
satisfy the conditions described in Notation 3.2. Thus (3.15) implies Lemma 3.3 with
C = |l — %|C1,1 + 11 —z|Cy 2.

3.2 Proof of Lemma 3.4

The proof of Lemma 3.4 is more tedious. We separate the argument into three parts. In
the first part we illustrate the proof strategy and show that Lemma 3.4 can be reduced
to two other lemmas. In the remaining two parts we prove these lemmas respectively.

3.2.1 Proof strategy

Although the quantities f‘kl .k, and "I"kl .k, only depend on how the integration contours
are nested, we choose these contours explicitly to simplify our argument. The idea is
that we split each contour into two parts with one part making most of the contribution
in integration and the other part contributing an exponentially small error only.

We first choose the six contours appearing in the terms Tkl,kz- As we introduced
before, we assume I'L ou, I'L and I'L jn, from right to left, are three simple contours
in the left half plane from e=2"/300 to €?"1/300. Similarly, I'R,out, I'r and I'R in, from
left to right, are three simple contours in the right half plane from e~"/3 00 to e™/3 00.
For simplification, we assume that all these contours are symmetric about the real axis.

Each of the I'y contour above, x € {{L, out}, {L}, {L, in}, {R, out}, {R}, {R, in}},
can be split into two parts. One part is within the disk D(log V), the disk of radius
log N with center 0, and the other part is outside of this disk. We denote these two parts

FiN) and I‘ffrr). In other words, we have six contours within D(log N): F£N0)ut, F£N),

Fl(ivifl, Fg?lo)ut, Fl({N), and Fl({,vizl, and six contours outside of D(log N): F](jgrgt, F](frr) ,

(err) (err) (err) (err)
PLins TRoue TR and Ty gy
We now choose the six contours appearing in the terms Tj, r,. We let them all

intersect a neighborhood of the point

1
= 3.16
We 1_’_\/& ( )

where « is the constant in Proposition 3.1. We pick, foreach * € {{L, out}, {L}, {L, in},
{R, out}, {R}, {R, in}}, Z, to be the union of two parts £ and ™. The part =

lies in a neighborhood of w, and satisfies

M = e + a0 4+ Ja) NPT ke ({L, out}, {L}, {L, in}, {R, out},
{R}, {R, in}}. (3.17)

See the solid contours within the dashed circle in Fig. 5 for an illustration.
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Recall fi(w; 1) = (w4 D)™"w"e"™ and fr(w; 1) = (w + 1)~ MHmyN-rnew
with the parameters satisfying (3.1). A detailed calculation (see (3.29) and (3.30)
for example) indicate that f;(w; #;) behaves like a cubic-exponential function. More
explicitly, f;(w;t;) decays super-exponentially fast when w moves away from w,

along the contours Z(N) on the left, and grows super-exponentially fast along the

contours Ei ) on the right. Moreover, if we denote w and wi¥ the endpoints of
=™ using (3.29) and (3.30), we have | f; (W, 1)/ fi (we; )] < e=<102M’ when
wi? is on the left contours, and | f; (ws’; #;)/ fi (we, t;)| > ecUog M* when w is on
the right contours. Here ¢ is some positive constant uniformly for x in a compact
interval and t;, to with a lower bound.

In the next step, we will define the contours Zie”). Note that

fi(ws 1) = eV NH@FON) =g ) 1y = U=VINR@)FOWN)

where
h(w) = —alog(w + 1) + logw + (Vo + l)zw. (3.18)

It is standard to analyze Reh(w) for w € C and extend the contours ELN) to Eie”)
such that

max |fi(u; ;)] < min |fi(u; )|, i=1,2,%¢€ {{L,out}, {L}, {L, in}}
ueZiem uEZiN)

(3.19)
and

min | fi(v; )| > max |fi(v; )], i =1,2,% € {{R, out}, {R}, {R, in}}
veE( ™ veE( )

(3.20)
for sufficiently large N. See Fig. 5 for an illustration and the figure caption for more
explanation.

Combining with the bounds of f; at the endpoints of EiN) discussed above, we
have the following two estimates

max | fi(u: 1)/ fi(wei )] < min ([ fi(u; 1)/ fi (we: 1)

ueZ ueE
< =N’ 4 ¢ (L, out), {L}, {L, in}}, (3.21)
min | fi(v; t;)/ fi(we; )] = Inln |ﬁ(v 1)/ fi(we; )]
v62< UEE
M)’ o e (R, out}, {R}, (R, in}}. (3.22)

We remark that the contours we choose above are independent of the parameters
k1 and kj, hence the constant ¢ above is also independent of k1 and k.
With the contours we mentioned above, we can rewrite

Thy ko (zi 11, 2 m,n, M, N) = k1 kz(z n,t;m,n, M, N)+T,fer,2(z; 1, tp;m,n, M, N),
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One-point distribution of the geodesic in directed last...

0.6

0.4 ,

0.2

—0.2

—04 8

—0.6 — ! ! ! ! ! !
-1.2 -1 -0.8 -0.6 -0.4 —-0.2 0 0.2

Fig. 5 Illustration of the contours when o = 1. The dotted lines represent the level curve Reh(w) =
Reh(we). It consists of two closed contours and one infinite contour all of which pass the critical point
w¢. The complex plane thus is split into four parts, two of them marked with — signs have lower levels of
Reh(w), and the other two marked with + signs have higher levels of Re/(w). The three solid contours on
the left, from inside to outside, are X, jn, XL, 2L, out Tespectively. The three solid contours on the right,
from inside to outside, are XR jn, XR, and R out respectively. Each contour Xy is split into two parts. The

part within the dashed circle is E,(FN), and the remaining part is Ziem

where

Tk(ll?]k)z(z; tl’ t2; m, n, Mv N)
ki

—]—[ 1/ d(ll) Zf d<11>
o L=z Js™ 271 1—z /M 27i

i1=1

1 1

1 / dv 1(1) . / dv 1(1)

11—z EUV) 2mi 1—1z M 2mi
(2) 2

dv I
/ f Y S
(N) 2711 =M 27 zZ
ir=1 R

Ui HUP ) 1
fl(V(l) M LVIin) T2, 2k

(A(U(l))) (A(V(l))) A(U(l); V(Z))A(V(l); U(Z))
PR VN(CR V(E)))2 AUD; UD)YAWVD; vy

. GO @, yO O
(@—v(g)) HUY,U¥; v, vi¥)

ip=1 iy

(3.23)

Note that T; (N) has the same formula as Tk1 k, in (3.6) except that we replace all the
.. contours to ELN). Recall that we have %, = = U =™ Hence
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Tzt tim,n, M, N)
M

(D
ST, e L,
1—2z =4 2mi 11—z E(M 2mi

A Q=1

1
1 / dv l(l) z /‘ dv 1(11)
11—z E(A_) 2mi 1—z LIS 2mi

u? e
]_[ / / 2. (3.24)
(8) 2711 E](;A) 2mi

ir=1

where we did not write out the integrand which is the same as in (3.23), and the
summation is over all possible A’s each of which belongs to {N, err} and at least one
A is err. We also point out that we omit the indices of A in EiA): It indeed depends
on the choice of x and i1 or i7. Since we have 4k| + 2k, integration contours, we have
2%k1+2k2 _ 1 possible choices of A in the above summation.

Similarly we can write

> N
Thy ko (23 11, 2, X3 y) = T;(q Zz(l t, 0, X; ¥) +T,(§IT,<)2(Z; t, 0, X; ¥),

where Tk1 K (z; t1, t, X; ) has the same formula as (3.8) with all the integration

contours T',, replaced by '™, and T,(:’ k)z (z; 11, t2, X; ) is a summation of 2#%1+2k2 _ 1

terms each of which has the same formula as (3.8) except that the integration contours

are all replaced by T or T'®™ and at least one of the contours is replaced by '™ .
We will show the following two lemmas.

Lemma 3.5 With the same assumptions as in Proposition 3.1, there exists a constant
Ca.1 as described in Notation 3.2, such that

a B+ VNPT @ nimon, M N) =T, @ t,xiy)

< k]fl/zkéz/z(kl + kz)(kl+k2)/2612€31-i-k2N—1/3(10g N)S

forall ki, ky > 1 as N becomes sufficiently large.

Lemma 3.6 With the same assumptions as in Proposition 3.1, there exist two constants
Ca.3 and Cy 4 as described in Notation 3.2, such that

N2/3 ‘T(CIT)(Z t,tm,n, M, N)’ <kkl/2 k2/2(k +ky )(k]+k2)/2ck]+k2 —c-(InN)3 /2
and

5 01,3 = K1y kGl et

forall ki, ky > 1 as N becomes sufficiently large. Here the constant c is the same as
in (3.21) and (3.22).
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One-point distribution of the geodesic in directed last...

It is obvious that Lemmas 3.4 follows immediately by the above lemmas. In the
next two subsubsections we will prove Lemmas 3.5 and 3.6 respectively.

3.2.2 Proof of Lemma 3.5

We recall the formula (3.23) for YA"k(lNk)z We change the integration variables

WD = w, 4+ a0 4 o)y BN D,
Ui(ll) — w, +al/5(1 + \/5)—4/3]\,—1/3,}1(11),
u® = w4+ a0+ o)y HBNED,
v = we + a0+ V)N,

(3.25)

where w. = —(1 + /)~ ! is defined in (3.16), gl.(l“ € F](f\il)l U F](HIY())ut, él.(zz) € FIEN),
771'(11) € F}({Nigl U FI({Ngut, and 771'(22) € Fl({N). Note the relation between EiN) contours and

FiN) contours in (3.17). Thus we have

o P+ V) PNBTN) @n.im.n, M, N)

1
B =z Jr™ 27 1=z Jp™ 27

i=1 !

1 1
1 / ) f d;)”
1—z FI(QN|3| 2mi 1—1z ["(2)1 2mi

oul

k2 dg? dn®? ki
'1_[/ e / T (1o (1‘1)
=1 r™ 2mi Jr®™ 2mi z
CNEDiHED ) I
H@V:0) L0P:n) [T, fozl(gi(f) - nl.(f))
2
© ©y)?
-[:1(5(1)71’:(2);;7(1)’,7(2)).ﬁ (A(& )) (A(ﬂ )) .A(£(1)§ﬂ(z))A(ﬂ(1)§£(2>)’
(=1 (A(;;Uf);,,(e)))z AV EP)AMD; @)
(3.26)

where

Je @) = foul ) fewe ), o6 = fo )/ fewes 1),

H(E(l)’ ];-(2); 7’(1), 7,(2)) — a*2/3(1 + «/&)10/3N4/3H(U(1), U(Z); V(l), V(Z))
(3.27)
with the uff), vi(f) being viewed as functions of éi(f) and nff) as in (3.25). Note
that (3.26) equals to 'i“,((llviz (z; t1, ta, X; ) if we replace fg by f, and H by H, see (3.8)
for the formula of T, 4, and note that replacing the contours I' by r'™ in (3.8)

gives the formula of T, ", 1.
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Recall that f1(w; t1) = (w + 1) w" """ Note the scaling in (3.1). For all || <
log N, we have the following Taylor expansion

log (fiwe + @01 + Ve BN )/ fi(wes 1))
= —mlog (1 +a B30+ ﬁ)“/3;N—1/3>

+nlog (1 —al/%1 + ﬁ)’1/3§N’1/3) + a1 + Ja)y ™3 eNT13

1 1 1 _
=378 = S -t + (u — 4y —xl)z) £ +OW P og Ny,
(3.28)
and hence, using the fact cOWNTPog MY _ + ON"Y3(log N)H),

fitwe + @01+ Vay PFeNT ) = figs 1) - (14O og M) )
(3.29)
Note here the error term O(N~1/3 (log N )4) is uniformly for all |¢| < log N. Similarly,
forall [¢] <logN,

ftwe + @01+ Oy PeNT ) = HE5 1) - (14 OV og M)
(3.30)
Inserting the above estimates, we have

A AED ) 1ED wHhE: v)
A@D: )@ ) HGD; ORGP: 0)

(1 +c oA (log N)“)) :

(3.31)
where ¢; = 4 and we used the inequality

<(0+x)"-1=<2" (3.32)

[Ja+x)—-1

i=1

forall x1,...,x, € Cand x >~0 satisfying |x;| < x < 1.
Now we consider the term H. Recall the formulas of A in (1.10) and Sy in (1.26).
We have

HED, 6D, 0 3@y = 42831 4 Ja)! BN HWUD, y@; vy Dy @)
1 1
— 56*2 (s% - 52) N3 4+ e3NS, + (Eez(s% + Sy)N?3 — 63NSI>

ki (1) ko (2)

1_[ (1)1_[ (2)’

11111121

(3.33)
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One-point distribution of the geodesic in directed last...

where € := a!'/%(1 + \/a) /3. Note the following estimate

we + (14 Ja) lee N71/3

We

1 1
= exp (—GN_1/3§ - EEZN_2/3§2 — §e3N—1§3 + ON"*3(log N)4))
1 1
= exp (—eN_1/3§ —SENT - §E3N_1§3> (1 + ON"*3(log N)4))

for all |¢| < log N, where O(N~*/3(log N)*) is uniformly on ¢. Using the inequal-
ity (3.32), we obtain

ON M(Z)

ki )
l_[ (1)1_[ (2)

l1—1 ir= 1Y
—1/3 L 523 |
=exp|eN Sl+§e N Sz+§e N™'S3

(1 + R O(N43 (1og N)4)> . (3.34)

Note the trivial bound |S¢| < (k1 + k2)(log N)*. We have

exp (eN*1/3sl) _ Z —(eN” By <Y —(e(kl T k)N~ Blog N

n<3 n>4

1
= (NTPlog)t Y —(etki + k)"

n>4

S C]2<1+k2(N—1/3 log N)4,
where ¢y = e€. Thus
1 1
exp (eN7'3S)) = 1+eN~'3s, +EezN—2/3s%+6631\/—‘8?+c’2‘1+"20(1v—4/3(1og N*.

Similarly we have

1 1
exp <562N’2/352> =1+ 5621\,—2/352 + 013€1+k2@(N*4/3(10g N)4),
1 1
exp (563]\/*153) =1+ §e3N71$3 + C§'+k2(’) (Nfz(log N)6)
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for some positive constants c3 and c4. Inserting the above equations to (3.34), and then
combining (3.34) and (3.33), we obtain, after a careful calculation,

N 1 1 1 _
HED @D 5@y = ES‘} + ZS% — 35183+ STRONTB10g N)?)

— H(s(l)’ E(Z); 77(1)7 77(2)) + C/5€1+k2O(N—1/3(10g N)S)
(3.35)
for some positive constant cs.
Now we insert (3.31) and (3.35) into (3.26), and obtain

o B+ V) PNBTN @t nimon, MUN) =T, (24, b, xiy)
= RN B log MY Er + SO (log N E, (3.36)
+ (c1e)M12 O(N 3 (log N)°) Es,

where
1 1
. 1’2[ 1 / el / ag,
f_i N\1—z e 27i 1—z Jr™) 27
=
dn® dan M
1 i1 z i
1—-2z ./l“(N.) 21i 11—z /p&}ul 2
@) @
é‘;‘ dn. 1\ k1
H/ f b - (1--
(N) 27'[1 N 2mi z
fED; wHhE? ) 1

00 R0 ) 2 N & =

2
KD £y 4O, 131 (A(E“’)) (A(n“))) AGED: @)aGD: £®)
) j ’ o 1 ° M s
! =1 (A(g(ll); ,7(15)))2 AEDEGH)AGD; @)

(3.37)

with
HED, 8@ 9D 9@y, j=1,

KiED ;9D 9?) = _
1, j=2.

(3.38)

Note that these E; terms have similar structure with Tkl,kz (z; s1, S2, X; ¥), except

that the integration contours kaN) are subsets of ', appearing in the definition of
Tk, k2 (2; 81, 52, X; ). Recall (3.15) in the proof of Lemma 3.3. It is obvious that we

have the same upper bound if we use contours FiN) instead of I'y. Thus we obtain
|Ey| < kk]/zkk2/2(kl + kz)(k1+k2)/2011<1+k2.
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Similarly we have, by removing the factor g;*, which comes from the estimate of H,
in the inequality (3.15),

|E2| < k]fl/2k§2/2(k1 +k2)(kl+k2)/2(Ci)kl+k2’

where C| < Cisapositive constant satisfying the conditions described in Notation 3.2.
Combining the estimates of | E ;| with (3.36), we obtain Lemma 3.5.

3.2.3 Proof of Lemma 3.6

The proofs for the two estimates are similar, hence we only prove the estimate for
T @t nim.n, M. N).
Recall (3.24). We have

’f(m)(Z; t,tym,n, M, N))

ki,k2
1 1
/ jdut"| ’ z / jdut"|
_|_
Eﬁ; 2 1—12z El(fo)m 2

1 1
v Loz v
» 2 11—z » 2
2:R,m 2R,out

1

SH(E

1
1—12z

k (2) (2)

' 1—[ / |du;;”| / NN T “AUD ) AU )
ooy 2m Js 2w z HWVD ) (VD5 1)
=

. ! JHUO, U@y, ve)

2 k 0 _ . © ’ ' '
[Te= ‘Zif:l(uig — Y, ))
2 (AW (AVON | | Aaw®; vO A D; u®)
- (A(U“); V(Z)))z A(U(l); U(2))A(V(1); V(Z)) .
(3.39)
Recall the the sum is over all possible 241+2k2 _ | combinations of the contours,
except for the only one combination that all the contours are of the form ZiN) (i.e.,

near the critical point w.). Also recall that ¥, = EiN) U Eim). The right hand side
of (3.39) can be rewritten as

k1
1 1 1 1
1‘[/ |du§1)|+/ ldu | / |du,.(1)|+/ dvy,”|
il =1 EL,in 2L,oul z:R.in ):R,oul
k2
2 2
[T [, w2 [ a2
=17 ZL IR
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_ duV (1
1_[ (/ (N) il |+\/£(1v) |dui1 |>
Lm L,out

i1=1
(v av® L@ @
(/;(N_) |dvi1 |+‘/2(N) ) 1_[ /(N) lz /(N) |dvl’2 |1 (340)
R,in R,out ir=1

where we suppressed the factors and the integrand for simplifications since they do
not affect our argument here. Note the following simple inequality

[T+ —[Jai =D be] @ + b0
i i 14 il

for all nonnegative numbers a;, b;. We apply this inequality for a; = |, s and b; =
f e in (3.40). We find that (3.40) can be bounded by

k] k2
D (Bja+ 824853+ 8j4) + D (805 + ) - (3.41)
J1=1 =1

The quantities §; ; in the above equation are given by

= m m m
8]“1 \/;:(efr) |d ]l | 1_[ <x/2L,in |dull |+x/2L,out |dull |>

L.in II#JI
ki
1 1
I / |dv§1)|+/ jdvVp) -
=1 ZR.in R, out
1 1 1
8jis2 =/<m) ') T ([ Idu§,)|+/ |dufl)|>
L out i1#j1 2L,in 2L out
ki
1 1
I1 / |dvl.(1)|+/ o) -
i1=1 ZR,in ER,oul
1 1 1
8j1:3 Z/ o |V ()| 1_[ / |dM§1)|+/ |du§1)|
2L in =1 2L,in 2L, out
1 1
I / |dv§1>|+/ v ) -
inj) \7 ERin R out
1 1 1
8ji:a =/<m> dvj!| ]_[ (/ |du}1)|+/ |du}l>|>
L in i1=1 EL,in L. out
1 1
I / |dvl.(l)|+/ jdv 1) -
in#j \7 ERin R ou
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where - - - stands for 1_[12 1f2<1v> |dul2 Ifzuv) |dv( '], and

. (2) (2) (2)
812;5 - /(err) | 1_[ ldu |l_[/(N) Vi, ls

12#12 ir=1
o o ® el
s =+ [ 10021 TT1au2 T /(N) W2,
R ir= 1 # 2
1 1 1
where --- stands for 11_1 (szm u! )I +f>:L0ut ,(1) ) (fER . i(l)|

+ fER ot Idvi(ll)|>. Here we suppressed the factors and integrands in §;., for sim-

plifications: They are the same as in (3.39).
We have the following estimates:

Sie < kI 4 k) (THRIRERR NN < g <4 1 i <k,
(3.42)
and

. < kk1/2 kz/Z(k + kz)(k1+k2+4)/zck1+kzN —c(InN)3 . 5<0<6, 1< )<k,
(3.43)
for all k1, k2 > 1 and sufficiently large N, where C; 3 is a constant satisfying the
conditions described in Notation 3.2, and ¢ > 0 is a constant appearing in (3.21)
and (3.22). With these estimates, and noting that (k1 + k)3 < 21tk forall kg, ky >
0 and that Ne=<n M)’ o=c(nN)*/2 for qufficiently large N, we obtain Lemma 3.6
immediately.
It remains to show (3.42) and (3.43). We only prove one representative inequality
due to their similarity. Below we show (3.42) for j; =€ = 1.
We write down the full expression of 41.1,

e
2l Jsf 2w 5\ -2
ul 1
'H(1—z

[eY]
/ o ‘
)
=1 ZR.in 2

ki

(l)l

Loy S0 | L, )
Eﬁ) 2 1—z Eﬁ))m 2
dvf!| i o ldvg|
L5 ) ILS LS
1

AWUD; 1) HUP; 1)
AV ) VO )|

PO 1
1;1 = 1—

z

1—12z

1
1——
z

1 —z|P

<Z) b0
it [ i ? i)

A(U(())) (A(V(l)))
(AWO; v(i)))2

A(U(l); VYAV D, y@)
TAUD; UDYAWVD; vy |

(3.44)

‘H(U(l) U@,y V<2>)‘ l—[
=1
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Note that, due to the assumptions of the contours,

- = (1>1 ' <2>1 :
r@ﬂz“uﬁ—&%‘IMwl—wﬂlel—wN

ir=1 ip

We also use a looser bound for H, using the facts that all the contours are bounded
and away from O,

‘H(U(l), v, vy, V‘z))‘ <C- (ki +k)?

for all ki, ky > 1, where C is positive constant independent of ki, ko and all the
parameters. Now we use a similar argument as in Sect. 3.1 and obtain

R 1 ky+ky—2 1
b1 < €k h +k2)(’<'+’<2+“>/2('1 —|o+n —z|92) 63112 ‘1 - ;‘
1 z 1 3 2 2
‘ 1 / dury”| i@ )l / |2 12)l1du?)|
L=z Jsem 27 distwV) - Re!” —wo)l o 27 - distw'®) - Re@? — we)|’

(3.45)
where fo(w; tp) = fo(w; te)/ f(we; te) as introduced in (3.27), and 6;’s are given by

g 1 [fi(us t)lldu] 2] |1 Gz 1)1 du
AT Sy, 2 distw) -2 Sy, 27 - dist)

R |dv| Iz| |dv]

11 =2| Jegi 2 - | A1 (us 1)) -dist(v) 11 = 2] Jrg oy 270 - | £1 (vs 17)] - dist(v) )
/ | f2(u; 12)|]du| (/ |dv| )

. 2m - dist(u) R 27 - | o (vi )] - dist(v) )

0 1 |dv] n |z| |dv]
3 = = F
1=zl Jegin 20 - | f1(us 1] - dist(v) 1= 2] Jrg g 27 - [ f1(v5 11)] - dist(v)

(570 i)
Tk 27 - | o (v; )] - dist(v) )

and dist(w), for w € Xy in U . U 2 out U LR in U Zr U ZR out, is the distance
between w and the contours X jn U X1, U 2 out U ZR.in U XR U ZR_out except for
the one w belongs to. This dist(w) has a similar definition as dist(¢) in Sect. 3.1 but
with different contours.

We claim that all of the integrals appearing in 6; values are bounded by some
constant Cé; 5 satisfying the conditions described in Notation 3.2. For example, consider
the first integral in 6y,

/ |ﬁwmnmn_/ |ﬁwnmmm+/ | fi(uz 11)]|du]
s 2 - dist@)  Je® 27 - dist(u) s 27 - dist(u)
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where the first term is approximately, using (3.29),

o, MO [
rih dist®) rew  dist(€)

for some constant C’, and the second term is bounded above by, using (3.21),
C" . N3 . —cln N)3

for some constant C”, where the extra N'/3 comes from a possible large factor

1/dist(u). These two estimates confirm the claim for the first factor. Similarly we
have the claims for other factors. Thus we have

01.6,63 < C5 5.

Using the similar estimates, we can also obtain

(1) A ON
/ |du1 | |fl(u1 ;1) < C///IV2/3e—c(lnN)3
s 21 distw!V) - [Re(P — w,)|
and e @
|f2(u1 §12)||du] | marl/3pn
) ©) S CNT G
gL 27 - dist(u;”) - [Re(u}” — we)
where the extra N''/3 comes from a possible large factor 1/|Re(w — w,)|. Combing all

these estimates in (3.45), we obtain (3.42) for j; = ¢ = 1. Other estimates in (3.42)
and (3.43) are similar.
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