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Abstract
We consider the geodesic of the directed last passage percolation with iid exponential
weights. We find the explicit one-point distribution of the geodesic location joint with
the last passage times, and its limit as the parameters go to infinity under the KPZ
scaling.
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1 Introduction

In recent 20 years, there has been a huge progress towards to understanding a universal
class of randomgrowthmodels, the so-calledKardar–Parisi–Zhang (KPZ) universality
class [1, 2, 4, 21, 27, 28, 30, 31, 34, 37, 38]. Very recently, studies about the geodesics
of these models started to appear [3, 6, 7, 9, 17, 19, 22, 23, 25, 26]. However, the
explicit distributions of the geodesic are still not well understood. As far as we know,
the only known related results are the distribution of the geodesic endpoint location
[16, 33, 36].

This is the first paper of an ongoing project to investigate the limiting distributions
of the geodesics in one representative model, the directed last passage percolation with
exponential weights, using the methods in integrable probability. We obtain the finite
timeone-point distributionof the geodesic location jointwith the last passage times, see
Theorem 1.1. We are also able to find the large time limit of this distribution function,
see Theorem 1.3. We remark that our results are for the point-to-point geodesic. In the
follow-up papers, wewill consider the point-to-point and point-to-line geodesics using
a different approach, and the multi-point distributions of the point-to-point geodesic.
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The limiting distributions obtained in this paper are expected to be universal for
all models in the KPZ universality class. See [23] for more discussions related to the
geodesics.

Below we introduce the main results of the paper. We start from a short description
of the model.

The directed last passage percolation is defined on the lattice set Z2. We assign
to each integer site p ∈ Z

2 an i.i.d. exponential random variable w(p) with mean 1.
Assume that p and q are two lattice points satisfying q − p ∈ Z

2≥0, i.e., the point q
lies in the upper right direction of p. The last passage time from p to q is

Lp(q) := max
π

∑

r∈π

w(r), (1.1)

where the maximum is over all possible up/right lattice paths from p to q.
Since the random variables w(r)’s are continuous, the last passage time Lp(q)

in (1.1) is almost surely obtained at a unique up/right lattice path, which we call the
geodesic from p to q and denote Gp(q).

Note that the two neighboring sites r and r+ with r+ − r ∈ {(0, 1), (1, 0)} are on
the geodesic Gp(q), if and only if the sites p, r, r+,q satisfy r − p,q − r+ ∈ Z

2≥0,
and the last passage times Lp(r) and Lr+(q) satisfy

Lp(r) + Lr+(q) = Lp(q). (1.2)

Throughout this paper, we always use r+ to denote the lattice point following r in the
geodesic.

1.1 Finite time joint probabilities of geodesic location and last passage times

The first main result of this paper is about the joint probability that a fixed pair of
neighboring sites r and r′ are on the geodesic Gp(q), and the two last passage times
Lp(r), Lr′(q) lie in some intervals.

Theorem 1.1 Set p = (1, 1), q = (M, N ). Suppose r = (m, n) and r′ = (m + 1, n),
with m, n satisfying 1 ≤ m ≤ M − 1 and 1 ≤ n ≤ N. Assume that t1, t2, ε1, ε2 are
all positive real numbers. We have

P
(
r, r′ ∈ Gp(q), Lp(r) ∈ [t1, t1 + ε1], Lr′(q) ∈ [t2, t2 + ε2]

)

=
∫ t1+ε1

t1

∫ t2+ε2

t2
p(s1, s2;m, n, M, N )ds2ds1, (1.3)

where the function p(s1, s2;m, n, M, N ) is defined in (1.7). Similarly, if r = (m, n)

and r′ = (m, n + 1), with m, n satisfying 1 ≤ m ≤ M and 1 ≤ n ≤ N − 1, the
formula (1.3) holds with p(s1, s2;m, n, M, N ) replaced by p(s1, s2; n,m, N , M).

Remark 1.2 By setting t1 = t2 = 0 and ε1 = ε2 = ∞, one can explicitly evaluate the
double integral of the right hand side of (1.3) and derive a formula for the probability of
r, r′ ∈ Gp(q). See (1.11). However, we are not able to directly perform the asymptotics
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analysis of this formula under the KPZ scaling, the scaling of most interests to us. In
fact, the formula (1.11) is obtained after changing the order of a double integral and
a summation. However, such a change of order is not allowed in the corresponding
limiting distribution formula (1.17) so we do not expect (1.11) has a limit of the same
structure.

Moreover, it is not very surprising that the geodesic information is intertwisted with
the last passage times. In fact, it has been proved that the geodesic Gp(q) becomes
more rigid (or localized) around its expected location when the last passage time
Lp(q) becomes very large [5, 32]. On the other hand, it is not concentrated around
any deterministic curve when the last passage time becomes very small [8].

The proof of Theorem 1.1 is given in Sect. 2.

1.2 The probability density function p(s1, s2;m, n,M,N)

We first introduce three notations. Suppose W = (w1, . . . , wk) ∈ C
k is a vector, we

denote
�(W ) :=

∏

1≤i< j≤k

(w j − wi ). (1.4)

If W = (w1, . . . , wk) ∈ C
k and W ′ = (w′

1, . . . , w
′
k′) ∈ C

k′
are two vectors, we

denote

�(W ;W ′) :=
k∏

i=1

k′∏

i ′=1

(wi − w′
i ′). (1.5)

Finally, if f : C → C is a function and W = (w1, . . . , wk) ∈ C
k is a vector, or

W = {w1, . . . , wk} with each element wi ∈ C, we write

f (W ) :=
k∏

i=1

f (wi ). (1.6)

Throughout this paper, we allow the empty product and define it to be 1.
We need to introduce six contours. Suppose �L,out, �L and �L,in are three nested

contours, from outside to inside, enclosing −1 but not 0. Similarly, �R,out, �R and
�R,in are three nested contours, from outside to inside, enclosing 0 but not −1. We
further assume that the contours enclosing −1 are disjoint from those enclosing 0. In
other words, the two outermost contours �L,out and �R,out do not intersect. All the
closed contours throughout this paper are counterclockwise oriented. See Fig. 1 for
an illustration of these contours.

We also introduce the notation of an integral along a small loop around a point z0
in the complex plane ∮

z0
f (z)dz :=

∫

|z−z0|=ε

f (z)dz,

where f (z) is an arbitrary meromorphic function defined in a neighborhood of z0 and
ε is a sufficiently small constant.
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Fig. 1 Illustration of the
contours: the three contours
around −1 from outside to
inside are �L,out, �L and �L,in
respectively, and the three
contours around 0 from outside
to inside are �R,out, �R and
�R,in respectively

R

iR

0−1

The probability density function p(s1, s2;m, n, M, N ) is defined to be

p(s1, s2;m, n, M, N ) :=
∮

0

dz

2π i(1 − z)2
∑

k1,k2≥1

1

(k1!k2!)2 Tk1,k2(z; s1, s2;m, n, M, N )

(1.7)
with

Tk1,k2(z; s1, s2;m, n, M, N )

:=
k1∏

i1=1

(
1

1 − z

∫

�L,in

du(1)
i1

2π i
− z

1 − z

∫

�L,out

du(1)
i1

2π i

)

(
1

1 − z

∫

�R,in

dv(1)
i1

2π i
− z

1 − z

∫

�R,out

dv(1)
i1

2π i

)

·
k2∏

i2=1

∫

�L

du(2)
i2

2π i

∫

�R

dv(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1

· f1(U
(1); s1) f2(U (2); s2)

f1(V (1); s1) f2(V (2); s2) · H(U (1),U (2); V (1), V (2))

·
2∏

�=1

(
�(U (�))

)2 (
�(V (�))

)2
(
�(U (�); V (�))

)2 · �(U (1); V (2))�(V (1);U (2))

�(U (1);U (2))�(V (1); V (2))
, (1.8)

where the vectors U (�) = (u(�)
1 , . . . , u(�)

k�
) and V (�) = (v

(�)
1 , . . . , v

(�)
k�

) for � ∈ {1, 2},
the functions f1, f2 are defined by

f1(w; s) := (w + 1)−mwnesw,

f2(w; s) := (w + 1)−M+mwN−nesw,
(1.9)

and the function H is defined by

H(U (1),U (2); V (1), V (2))

:= 1

2

⎛

⎝
k1∑

i1=1

(u(1)
i1

− v
(1)
i1

) −
k2∑

i2=1

(u(2)
i2

− v
(2)
i2

)

⎞

⎠
2⎛

⎝1 +
k1∏

i1=1

v
(1)
i1

u(1)
i1

k2∏

i2=1

u(2)
i2

v
(2)
i2

⎞

⎠
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+ 1

2

⎛

⎝−
k1∑

i1=1

(
(u(1)

i1
)2 − (v

(1)
i1

)2
)

+
k2∑

i2=1

(
(u(2)

i2
)2 − (v

(2)
i2

)2
)
⎞

⎠

⎛

⎝1 −
k1∏

i1=1

v
(1)
i1

u(1)
i1

k2∏

i2=1

u(2)
i2

v
(2)
i2

⎞

⎠ . (1.10)

We remark that the formula (1.7) has a very similar structure with the two-
point distribution formula of TASEP in [31] (with step initial condition), except
that we have different z factors in the integral, and that we have an extra factor
H(U (1),U (2); V (1), V (2)). See equations (2) and (16) in [31]. It is not hard to prove
that Tk1,k2 becomes zero when k1 or k2 becomes large, hence the formula (1.7) only
involves finite many nonzero terms in the summation and is well defined.1

Finally, by exchanging the integral and summations, and using the identity∫∞
0

f�(U (�);s�)
f�(V (�);s�)ds� = f�(U (�);0)

f�(V (�);0) · 1∑k�
i�=1(v

(�)
i�

−u(�)
i�

)
since Re(v(�)

i�
− u(�)

i�
) < 0 due to the

locations of the contours, we obtain

P
(
r, r′ ∈ Gp(q)

) =
∫ ∞

0

∫ ∞

0
p(s1, s2;m, n, M, N )ds1ds2

=
∮

0

dz

2π i(1 − z)2
∑

k1,k2≥1

1

(k1!k2!)2 Tk1,k2(z;m, n, M, N ), (1.11)

where

Tk1,k2(z;m, n, M, N )

:=
k1∏

i1=1

(
1

1 − z

∫

�L,in

du(1)
i1

2π i
− z

1 − z

∫

�L,out

du(1)
i1

2π i

)

(
1

1 − z

∫

�R,in

dv(1)
i1

2π i
− z

1 − z

∫

�R,out

dv(1)
i1

2π i

)

1 In fact, we can view the integrand of (1.8) as a function of V (1) and V (2), which equals to
the product of the following three terms: �(V (1))�(V (2)), a Cauchy-type factor C(V (1); V (2)) =
�(V (1))�(V (2))/�(V (1); V (2)) (see the definition in (2.48)), and some functionwhich ismeromorphic for

each v
(�)
i�

with a possible pole at 0 but the degree of this pole is at most max{n, N −n+1}. Note that expand-
ing the first term�(V (1))�(V (2)) gives a sum of terms

∏
1≤�1≤k1

(v
(1)
σ (�1)

)k1−�1
∏

1≤�2≤k2
(v

(2)
π(�2)

)k2−�2

over permutations σ ∈ Sk1 and π ∈ Sk2 , here Sk denotes the permutation group of {1, 2, . . . , k}. If k1 is
large enough (the case when k2 is large is similar), for example if k1 > N , the integrand is analytic for

v
(1)
σ (1) at 0 by checking the degrees. So when we integrate v

(1)
σ (1), the only possible nontrivial contribution

is from the residues v
(1)
σ (1) = v

(2)
j if v

(2)
j lies inside the contour of v

(1)
σ (1) due to the Cauchy-type factor.

However, if we further integrate v
(2)
j we find each residue contribution is also zero by checking the degree

of v
(2)
j which is k1 − 1 − n − (N − n + 1) = k1 − N > 0. We remark that the proof does not rely on

the explicit formula of H or the variable z, and it is similar to the argument for the two-point distribution
formula of TASEP (see Remark 2.8 of [31]) where they do not have the factor H .
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·
k2∏

i2=1

∫

�L

du(2)
i2

2π i

∫

�R

dv(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1

· f1(U (1); 0) f2(U (2); 0)
f1(V (1); 0) f2(V (2); 0) · 1

∏2
�=1
∑k�

i�=1(u
(�)
i�

− v
(�)
i�

)

· H(U (1),U (2); V (1), V (2)) ·
2∏

�=1

(
�(U (�))

)2 (
�(V (�))

)2
(
�(U (�); V (�))

)2

· �(U (1); V (2))�(V (1);U (2))

�(U (1);U (2))�(V (1); V (2))
. (1.12)

1.3 Limiting joint distribution of geodesic location and last passage times

For any two lattice points p = (p1, p2) and q = (q1, q2) satisfying p1 ≤ q1 and
p2 ≤ q2, we define

d(p,q) :=
(√

q1 − p1 +√q2 − p2
)2

(1.13)

which is the leading term of the last passage time from p to q when q − p = (q1 −
p1, q2 − p2) becomes large in the region {(r1, r2) : 0 < cr1 < r2 < c′r1} for some
positive constants c1 and c2. See [27, Theorem 1.2].

We say ageodesicGp(q) exits a set A at a point r, if andonly if the geodesic intersects
A and r is the last point of the intersection, i.e., r ∈ Gp(q) ∩ A and r+ ∈ Gp(q) \ A.

Theorem 1.3 Suppose α > 0, γ ∈ (0, 1) are fixed constants. Assume x1, x2, x ′
1, x

′
2

are four real numbers satisfying x1 > x ′
1 and x2 < x ′

2. Let

M = [αN ],
m = [γαN + x1α

2/3(1 + √
α)2/3N 2/3],

n = [γ N + x2α
−1/3(1 + √

α)2/3N 2/3],
m′ = [γαN + x ′

1α
2/3(1 + √

α)2/3N 2/3],
n′ = [γ N + x ′

2α
−1/3(1 + √

α)2/3N 2/3],

(1.14)

where [x] denotes the largest integer which is smaller than or equal to x. Suppose π

is an up/left lattice path from (m, n) to (m′, n′). Then

lim
N→∞P

⎛

⎜⎜⎝

G(1,1)(M, N ) intersects π,

and L(1,1)(p) ≥ d((1, 1),p) + t1 · α−1/6(1 + √
α)4/3N 1/3,

and Lp+(M, N ) ≥ d(p+, (M, N )) + t2 · α−1/6(1 + √
α)4/3N 1/3,

where p denotes the exit point of G(1,1)(M, N ) on π

⎞

⎟⎟⎠

(1.15)
exists and is independent of the choice of π . The limit equals to

∫ x ′
2−x ′

1

x2−x1

∫ ∞

t1

∫ ∞

t2
p(s1, s2, x; γ )ds2ds1dx, (1.16)
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Fig. 2 The thick path denotes
the geodesic G(1,1)(M, N ). The
thin lattice path denotes π . The
star-shaped point is the exit
point of G(1,1)(M, N ) on π , and
the square-shaped point is the
next point on G(1,1)(M, N ) after
the exit point

(m,n)

(m ,n )

(1, 1)

(M,N)

where the joint probability density function p(s1, s2, x; γ ) is defined in (1.22).

See Fig. 2 for an illustration. The proof of Theorem 1.3 is provided in Sect. 3.
We expect that the geodesic is around a straight line from (1, 1) to (M, N ). The line

is of slope α−1 ≈ N/M . Then x2 − x1 and x ′
2 − x ′

1 can be viewed as (after appropriate
scaling) the shifts of (m, n) and (m′, n′) away from the line. Similarly, in the density
function p(s1, s2, x; γ ), x can be viewed as the shift of the exit point p away from the
line. See Fig. 4 at the beginning of Sect. 3 for an illustration.

It might look surprising at a first glance that the limiting distribution is independent
of π , but only depends on the locations of the endpoints. Here we provide an intuitive
explanation. Suppose we have a different up/left lattice path π ′ from (m, n) to (m′, n′).
For any point q ∈ π , we can find a unique point q′ ∈ π ′ such that q− q′ ∈ {(αy, y) :
y ∈ R}. Note that the distance between q and q′ is at most of order O(N 2/3) � o(N ).
By the uniform slow decorrelation of the directed last passage percolation [18, 20],
N−1/3(L(1,1)(q) − d((1, 1),q)) − N−1/3(L(1,1)(q′) − d((1, 1),q′)) converges to 0
in probability as N → ∞. Moreover, with appropriate scaling, the limiting process
of the last passage times from (1, 1) (and from (M, N ) similarly) to the points of π

has the same law as that to the points of π ′. Therefore we expect the limit of (1.15) is
independent of π . This probabilistic argument is heuristic but it might be possible to
make it rigorous. In this paper, wewill use an analytical way to show this independence
instead. See the argument after Proposition 3.1 in Sect. 3.

Note that the geodesic G(1,1)(M, N ) intersects a rectangle with vertices (m, n),

(m, n′), (m′, n′) and (m′, n) if and only if G(1,1)(M, N ) intersects a lattice path from
(m, n) to (m′, n′). Thus by setting t1, t2 → −∞ we immediately have

lim
N→∞P

(
G(1,1)(M, N ) intersects the rectangle with vertices (m, n), (m, n′), (m′, n′)

and (m′, n)
)

=
∫ x ′

2−x ′
1

x2−x1

∫ ∞

−∞

∫ ∞

−∞
p(s1, s2, x; γ )ds2ds1dx.

(1.17)
Now we discuss an application of Theorem 1.3.
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Corollary 1.4 Let A(1) and A(2) be two independent Airy2 processes. Denote the
parabolic Airy2 processes Â(�)(x) = A(�)(x) − x2, � = 1, 2. Suppose γ ∈ (0, 1)
is a fixed constant. Denote

T = argmaxx

(
γ 1/3Â(1)

(
x

2γ 2/3

)
+ (1 − γ )1/3Â(2)

(
x

2(1 − γ )2/3

))
.

Then p(s1, s2, x; γ ) is the joint probability density function of γ 1/3A(1)
(

T
2γ 2/3

)
, (1−

γ )1/3A(2)
(

T
2(1−γ )2/3

)
and T .

We remark that in the language of the directed last passage percolation, T corre-

sponds to the limiting location of one point on the geodesic, while γ 1/3A(1)
(

T
2γ 2/3

)

and (1−γ )1/3A(2)
(

T
2(1−γ )2/3

)
correspond to the limiting last passage times from this

point to the two end points respectively. See the proof below for more details.

Proof Denote π the line {(x, y) : x + y = 2γ N }. It is known [28] that the processes
of the last passage times from (1, 1) (or (N , N )) to the points on π after appropriate
scaling converge to two independent parabolic Airy2 processes as N → ∞. More
explicitly, for any constant K ,

L(1,1)(γ N − 2−1/3xN 2/3, γ N + 2−1/3xN 2/3) − 4γ N

24/3N 1/3 → γ 1/3Â(1)
(

x

2γ 2/3

)
,

|x| ≤ K (1.18)

and

L(γ N−2−1/3xN2/3,γ N+2−1/3xN2/3)(N , N ) − 4(1 − γ )N

24/3N 1/3 → (1 − γ )1/3Â(2)

(
x

2(1 − γ 2/3)

)
, |x| ≤ K (1.19)

as N → ∞. Both processes are tight in the space of continuous functions on [−K , K ]
(see [24, Theorem 2.3] for example). Note that the geodesic passes through a point
q on the line π if and only if L(1,1)(q) + Lq(N , N ) reaches the maximum. And the
probability that this intersection point q lies outside of {(γ N − 2−1/3xN 2/3, γ N +
2−1/3xN 2/3) : |x| ≤ K } decays exponentially as N → ∞ and K becomes large (see
[12, Proposition 2.1] for example). Also note that the argmax T is unique since it
represents the geodesic location in the limiting directed landscape and the geodesic
is unique (see [23]). Using the above facts, we conclude that the location of the
intersection of G(1,1)(N , N ) and π , the argmax of the left hand side of (1.18)+(1.19),
converges to T . Now we apply Theorem 1.3 with α = 1 and use the facts that

d(1,1)(γ N − 2−1/3xN 2/3, γ N + 2−1/3xN 2/3) = 4γ N + x2

22/3γ
N 1/3 + o(1)
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and

d(γ N−2−1/3xN2/3,γ N+2−1/3xN2/3)(N , N ) = 4(1 − γ )N + x2

22/3(1 − γ )
N 1/3 + o(1).

Corollary 1.4 follows immediately.

The explicit distribution of T was an interesting open problem in the community
before, see [21, Problem 14.4(a)] for example. Our result above resolves this problem.
It is also possible to apply this result and the formula of p(s1, s2, x; γ ) to obtain
some properties of the directed landscape, the limiting four-parameter random field
of the directed last passage percolation. For example, in a follow-up paper [32] we
proved that when the height of the directed landscape at a point is sufficiently large,
the geodesic to this point is rigid and the location has a Gaussian distribution under
appropriate scaling.

We remark that the density function p(s1, s2, x; γ ) can be related to the well-

known GUE Tracy–Widom distribution. Note that the max of γ 1/3Â(1)
(

x
2γ 2/3

)
+

(1 − γ )1/3Â(2)
(

x
2(1−γ )2/3

)
satisfies

P

(
max
x∈R

{
γ 1/3Â(1)

(
x

2γ 2/3

)
+ (1 − γ )1/3Â(2)

(
x

2(1 − γ )2/3

)}
≤ s

)
= FGUE (s),

where FGUE (s) is the GUE Tracy–Widom distribution. See [10, 11] for more details.
By applying the Corollary 1.4 and noting Â(�)(x) = A(�)(x) − x2, we have

∫

R

dx
∫∫

s1+s2≤s
ds1ds2p

(
s1 + x2

4γ
, s2 + x2

4(1 − γ )
, x; γ

)
= FGUE (s). (1.20)

One might be able to obtain the tail estimates for the geodesic using the for-
mula (1.3). After a preliminary calculation, we have the following conjecture.

Conjecture 1.5 Let M, N and m, n be numbers satisfying the scaling (3.1) in Theo-
rem 1.3, then

lim
N→∞P

(
G(1,1)(M, N ) lies above (m, n)

) = e−cx3+o(x) with c = 1

6(γ (1 − γ ))3/2
,

(1.21)
when x = x2 − x1 becomes large.

It also might be possible to obtain a more accurate estimate from this formula. We
leave it as a future project.

1.4 The limiting density function p(s1, s2, x;�)

The limiting density function p(s1, s2, x; γ ) has a similar structure as the finite time
probability density function p(s1, s2;m, n, M, N ). Beforewewrite down the formula,
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Fig. 3 Illustration of the
contours: the three contours in
the left half plane from left to
right are 
L,in, 
L and 
L,out
respectively, and the three
contours in the right half plane
from left to right are 
R,out, 
R
and 
R,in respectively

R

iR

0

we introduce some contours. Suppose 
L,in, 
L and 
L,out are three disjoint contours
on the left half plane each of which starts from e−2π i/3∞ and ends to e2π i/3∞. Here

L,in is the leftmost contour and 
L,out is the rightmost contour. The index “in” and
“out” refer to the relative location compared with −∞. Similarly, suppose 
R,in, 
R
and 
R,out are three disjoint contours on the right half plane each of which starts
from e−π i/3∞ and ends to eπ i/3∞. Here the index “in” and “out” refer to the relative
location compared with +∞, hence 
R,in is the rightmost contour and 
R,out is the
leftmost contour. See Fig. 3 for an illustration of these contours.

The probability density function p(s1, s2, x; γ ) is defined to be

p(s1, s2, x; γ ) :=
∮

0

dz

2π i(1 − z)2
∑

k1,k2≥1

1

(k1!k2!)2 Tk1,k2(z; s1, s2, x; γ ) (1.22)

with

Tk1,k2(z; s1, s2, x; γ )

:=
k1∏

i1=1

(
1

1 − z

∫


L,in

dξ (1)
i1

2π i
− z

1 − z

∫


L,out

dξ (1)
i1

2π i

)

(
1

1 − z

∫


R,in

dη(1)
i1

2π i
− z

1 − z

∫


R,out

dη(1)
i1

2π i

)

·
k2∏

i2=1

∫


L

dξ (2)
i2

2π i

∫


R

dη(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1

· f1(ξ
(1); s1)f2(ξ (2); s2)

f1(η(1); s1)f2(η(2); s2) · H(ξ (1), η(1); ξ (2), η(2))

·
2∏

�=1

(
�(ξ (�))

)2 (
�(η(�))

)2

(
�(ξ (�); η(�))

)2 · �(ξ (1); η(2))�(η(1); ξ (2))

�(ξ (1); ξ (2))�(η(1); η(2))
, (1.23)

where the vectors ξ (�) = (ξ
(�)
1 , . . . , ξ

(�)
i�

) and η(�) = (η
(�)
1 , . . . , η

(�)
i�

) for � ∈ {1, 2},
the functions f1, f2 are defined by
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f1(ζ ; s) := exp

(
−γ

3
ζ 3 − 1

2
xζ 2 +

(
s − x2

4γ

)
ζ

)
,

f2(ζ ; s) := exp

(
− (1 − γ )

3
ζ 3 + 1

2
xζ 2 +

(
s − x2

4(1 − γ )

)
ζ

)
,

(1.24)

and the function H is defined by

H(ξ (1), η(1); ξ (2), η(2)) = 1

12
S41 + 1

4
S22 − 1

3
S1S3 (1.25)

with

S� = S�(ξ
(1), η(1); ξ (2), η(2)) =

k1∑

i1=1

((
ξ

(1)
i1

)� −
(
η

(1)
i1

)�
)

−
k2∑

i2=1

((
ξ

(2)
i2

)� −
(
η

(2)
i2

)�
)

.

(1.26)

Remark 1.6 It can be directly verified that T is symmetric on x, i.e., it satisfies
Tk1,k2(z; s1, s2, x; γ ) = Tk1,k2(z; s1, s2,−x; γ ). In fact, one can see it clearly by
changing variables ξ

(�)
i�

= −η̃
(�)
i�

and η
(�)
i�

= −ξ̃
(�)
i�

for 1 ≤ i� ≤ k� and � = 1, 2.

One can prove that the summation is absolutely convergent in (1.22) due to the
super-exponential decay of f� along the integral contours. The proof is similar to that
of Lemma 3.3 so we omit it.

2 Finite time formulas and proof of Theorem 1.1

2.1 Outline of the proof

Theorem 1.1 states two formulas for different locations of r′. The Eq. (1.3) holds
when r′ = (m + 1, n), i.e., when r′ is at the same row as r. The case when r′ is at the
same column as r follows by switching the rows and columns of the model. Thus it is
sufficient to show the Eq. (1.3) with r′ = (m + 1, n).

The proof involves a few computations and identities. We would like to split the
proof into three steps, each of which ends with an identity about the probability density
function p(s1, s2;m, n, M, N ).Wewill outline the steps and state thesemain identities
in this subsection and leave their proofs in subsequent subsections.

In the first step, we obtain a formula for p(s1, s2;m, n, M, N ). The main idea is to
convert the desired probability to a sum of the product of two transition probabilities,
and evaluate the sum explicitly. There are two types of transition probabilities for
the exponential directed last passage percolation. One is the transition probability by
viewing its equivalent model, the so-called TASEP, as a Markov process with respect
to time [35]. The second one is the transition probability by viewing the model as a
Markov chain along one dimension on the space [29]. It turns out that only the later
one can be used to find an exact formula for p(s1, s2;m, n, M, N ). If one uses the
transition probabilities of TASEP instead, there will be anO(1) error on the finite time
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formulas but the resulting limit probability densities p(s1, s2, x; γ ) is the same. We
will consider this approach in a follow-up paper.

Using the transition probability formula of [29] and a summation identity for the
product of two eigenfunctions, we obtain the following proposition.

Proposition 2.1 We have the following formula for p(s1, s2;m, n, M, N )

p(s1, s2;m, n, M, N )

= (−1)N (N−1)/2

(N !)2
∮

0

dz

2π izn

N∏

i1=1

∫

|w(1)
i1

|=R1

dw(1)
i1

2π i

N∏

i2=1

∫

|w(2)
i2

|=R2

dw(2)
i2

2π i
�
(
W (1)

)

�
(
W (2)

)
· f̃1

(
W (1)

)
f̃2
(
W (2)

)
·

N∑

�1,�2=1

(−1)�1+�2

(
w

(1)
�1

)n
e
s1w

(1)
�1

(
w

(2)
�2

)n−1
e
s1w

(2)
�2

det
[
Cz

(
w

(1)
i1

, w
(2)
i2

)
+ Dz

(
w

(1)
i1

, w
(2)
i2

)]
i1 �=�1,
i2 �=�2

. (2.1)

Here the radii of the contours satisfy R1 > R2 > 1. The vectors W (1) and W (2) are
defined by

W (1) = (w
(1)
1 , . . . , w

(1)
N ), W (2) = (w

(2)
1 , . . . , w

(2)
N ).

Recall our conventions �(W ) and f (W ) as in (1.4) and (1.6). The functions f̃1 and
f̃2 are defined by

f̃1(w) := w−N (w + 1)−m, f̃2(w) := (w + 1)−M+me(s1+s2)w. (2.2)

The functions C and D appearing in the determinant are defined by

Cz(w1, w2) := z

w1 − w2

wn−1
1 es1w1

wn−1
2 es1w2

+ 1

−w1 + w2

wn+1
1 es1w1

wn+1
2 es1w2

, (2.3)

and

Dz(w1, w2) := z

−w1 + w2

w1

w2
+ 1

w1 − w2

wN
1 e(s1+s2)w1

wN
2 e(s1+s2)w2

. (2.4)

The proof of Proposition 2.1 is provided in the next Sect. 2.2.
It seems that the formula (2.1) is not suitable for asymptotic analysis by the fol-

lowing two reasons. The first reason is that this formula involves some unneeded
information. Note that the two terms in Dz(w1, w2) have factors (w1/w2)

1 and
(w1/w2)

N whose exponents 1 and N indeed represent the bounds of the possible
locations of the geodesic. However, we expect that the geodesic only fluctuates of
order N 2/3 around its expected location. In other words, changing the far endpoints
1 and N will not affect the asymptotics. Therefore, Dz(w1, w2) should not appear
in the limit and we need to reformulate (2.1) and remove the term Dz(w1, w2). The
second reason is that the formula (2.1) contains some determinants of size O(N ),
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such as the Vandermonde determinants �
(
W (1)

)
and �

(
W (2)

)
, and the determinant

det(Cz + Dz). It is typically hard to find the asymptotics of these determinants when
the size N → ∞. We will need to rewrite it to a formula which is more suitable for
asymptotic analysis.

In the second step, we take the term Dz(w1, w2) away at the cost of changing the
integral contours, and then evaluate the summation over �1, �2. We obtain

Proposition 2.2 The Eq. (2.1) is equivalent to

p(s1, s2;m, n, M, N )

= 1

(N !)2
∮

0

(1 − z)N−2dz

2π izn

N∏

i1=1

(
−z

1 − z

∫

�out

dw(1)
i1

2π i
+ 1

1 − z

∫

�in

dw(1)
i1

2π i

)

N∏

i2=1

∫

�

dw(2)
i2

2π i
f̂1
(
W (1)

)
f̂2
(
W (2)

) (�
(
W (1)

))2 (
�
(
W (2)

))2

�
(
W (2);W (1)

)

·
(
Ĥ
(
W (1);W (2)

)
+ z

∏N
i2=1 w

(2)
i2∏N

i1=1 w
(1)
i1

Ĥ
(
W (2);W (1)

))
, (2.5)

where the contours �out, �, and �in are three nested closed contours, from outside
to inside, all of which enclose both 0 and −1. The vectors W (1) := (w

(1)
1 , . . . , w

(1)
N )

and W (2) := (w
(2)
1 , . . . , w

(2)
N ). The functions

f̂1(w) := (w + 1)−mw−N+nes1w, f̂2(w) := (w + 1)−M+mw−nes2w, (2.6)

and

Ĥ
(
W ;W ′) := 1

2

(
∑

i

wi −
∑

i ′
w′
i ′

)2

− 1

2

(
∑

i

w2
i −

∑

i ′

(
w′
i ′
)2
)

(2.7)

for any vectors W = (. . . , wi , . . .) and W ′ = (. . . , w′
i ′ , . . .) of finite sizes.

We remark that the idea of changing the integral contours plays a key role in this
computation. It results in a compact formula which effectively removes the terms
including the information of the geodesic bounds. Formulas from similar summations
(for product of two eigenfunctions in TASEP as we did in the proof of Proposition 2.1)
without including the information of the summation bounds were also obtained in the
periodic version of the directed last passage percolation [13–15] and its large period
limit [31]. Heuristically, in the periodic model it turned out that the upper bound (in the
previous period) cancels out the lower bound (in the current period) in the summation.
While in this paper, we construct contours �in and �out which play similar roles as
different periods: integral of the terms involving the upper bound along one contour
cancels that involving the lower bound along the other contour.

The proof of Proposition 2.2 is provided in Sect. 2.3.
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In the last step, we rewrite the formula (2.5) in the form with a structure similar to
a Fredholm determinant expansion, which is the formula (1.7).

Proposition 2.3 The formula (2.5) is equivalent to (1.7).

The proof of Proposition 2.3 is provided in Sect. 2.4. It involves an extension
of a Cauchy-type summation formula in [31]. We first convert the integral into dis-
crete summations over a so-called Bethe roots, then reformulate the summation as
a Fredholm-determinant-like expansion, and finally convert the discrete summation
back into integrals. It would be nice to see a more direct proof for Proposition 2.3 but
it seems quite complicated considering the differences between the two formulas.

2.2 Proof of Proposition 2.1

As we mentioned in the previous subsection, we need a transition probability formula
by viewing the directed last passage percolation as a Markov chain. Such a formula
was obtained in [29] for the geometric directed last passage percolation, which is a
discrete version of the model we are considering in this paper. We will introduce the
model below. Then we will show how to compute an analogous probability for the
geodesic in the geometric model, and take the limit to get the results for exponential
directed last passage percolation.

The geometric last passage percolation model is defined as follows. We assign to
each site p ∈ Z

2 an i.i.d. geometric random variables w̃(p) with parameter q ∈ (0, 1)

P (w̃(p) = i) = (1 − q)qi , i = 0, 1, 2, . . . (2.8)

for each integer site p. Note that if we take q = 1− ε and let ε → 0, εw̃(p) converges
to an exponential random variable.

Similar to (1.1), if a lattice point q lies in the upper right direction of another lattice
point p, we define the last passage time from p to q as

Gp(q) := max
π

∑

r∈π

w̃(r), (2.9)

where the maximum is over all possible up/right lattice paths from p to q. We remark
that the maximal path is not necessary unique in this model. We call these maximal
paths the geodesics from p to q.

We consider the following event

A =
⎧
⎨

⎩

G(1,1)(m, n) + G(m+1,n)(M, N ) = G(1,1)(M, N ),

G(1,1)(m, n) = x,
G(m+1,n)(M, N ) = y.

⎫
⎬

⎭ . (2.10)

Here x and y are nonnegative integers. As we mentioned before, there may be more
than one geodesic. The event A means that there is one geodesic that passes through
the two points (m, n) and (m + 1, n), and these two points split the last passage time
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G(1,1)(M, N ) into two parts G(1,1)(m, n) = x and G(m+1,n)(M, N ) = y. Later we
will show

Lemma 2.4 We have

P (A)

= (−1)N (N−1)/2 (1 − q)MN

(N !)2
∮

0

dz

2π izn

N∏

i1=1

∫

|w(1)
i1

|=R1

dw(1)
i1

2π i

N∏

i2=1

∫

|w(2)
i2

|=R2

dw(2)
i2

2π i
�
(
W (1)

)
�
(
W (2)

)

F̃1
(
W (1)

)
F̃2
(
W (2)

) N∑

�1,�2=1

(−1)�1+�2

(
w

(1)
�1

+ 1
)x (

w
(1)
�1

)n

(
w

(2)
�2

+ 1
)x+1 (

w
(2)
�2

)n−1

det
[
Cz(w(1)

i1
, w

(2)
i2

) + Dz(w
(1)
i1

, w
(2)
i2

)
]
i1 �=�1
i2 �=�2

, (2.11)

where the radii R1 and R2 are distinct and both larger than 1. The functions F̃1 and
F̃2 are defined by

F̃1(w) := (w+1)m−1w−N (w+1−q)−m, F̃2(w) := (w+1)x+y+M−m(w+1−q)−M+m .

(2.12)

Recall the conventions F̃�

(
W (�)

)
and �

(
W (�)

) = ∏
i> j

(
w

(�)
i − w

(�)
j

)
= det

[(
w

(�)
i

) j−1
]N

i, j=1
as introduced in (1.4) and (1.6). Finally, the functions Cz and Dz

are given by

Cz(w1, w2) := z

w1 − w2
· wn−1

1 (w1 + 1)x+1

wn−1
2 (w2 + 1)x

+ 1

−w1 + w2
· wn+1

1 (w1 + 1)x

wn+1
2 (w2 + 1)x−1

(2.13)
and

Dz(w1, w2) := z

−w1 + w2
· w1(w2 + 1)

w2
+ 1

w1 − w2
· wN

1 (w1 + 1)x+y+1

wN
2 (w2 + 1)x+y

. (2.14)

We postpone the proof of this lemma later in this subsection. Assuming Lemma 2.4,
we are ready to prove Proposition 2.1. Below we write A as A(x, y) in (2.10) to
emphasize the parameters x and y. As we mentioned before, if we take q = 1− ε and
let ε → 0, the geometric directed last passage percolation becomes an exponential one.
More explicitly, εw̃(p) converges to an exponential random variable in distribution as

123



Z. Liu

ε → 0. Moreover, for any fixed interval I1 = [t1, t1 + ε1] and I2 = [t2, t2 + ε2], we
have

P

⎛

⎝
⋃

s1∈I1

⋃

s2∈I2
A
( s1

ε
,
s2
ε

)
⎞

⎠ = P

⎧
⎨

⎩

G(1,1)(m, n) + G(m+1,n)(M, N ) = G(1,1)(M, N ),

εG(1,1)(m, n) ∈ I1,
εG(m+1,n)(M, N ) ∈ I2.

⎫
⎬

⎭
(2.15)

converges as ε → 0 to the analogous probability that in the exponential directed
last passage percolation, the geodesic G(1,1)(M, N ) passes through two points (m, n)

and (m + 1, n), and the analogous last passage times satisfy L(1,1)(m, n) ∈ I1 and
L(m+1,n)(M, N ) ∈ I2. In other words, the limit of (2.15) is the left hand side of (1.3).
We remark that although it is possible that there are more than one geodesics in the
geometric last passage percolation, after taking the small ε limit the chance of getting
more geodesics becomes zero.

Now we evaluate the limit of (2.15). The left hand side of (2.15) is

∑

iε∈I1, jε∈I2
P(A(i, j)) =

∫

I1

∫

I2

1

ε2
P

(
A
( s1

ε
,
s2
ε

))
dμε(s2)dμε(s1), (2.16)

where dμε(s) = εδ s
ε
∈Z. We will prove

lim
ε→0

1

ε2
P(A(s1/ε, s2/ε)) = p(s1, s2;m, n, M, N ) (2.17)

uniformly on I1 × I2, with p(s1, s2;m, n, M, N ) defined in (2.1). Then by using
the continuity of the function p(s1, s2;m, n, M, N ) we immediately obtain that the
limit of (2.15) equals to

∫
I1

∫
I2
p(s1, s2;m, n, M, N )ds2ds1. Hence we prove Propo-

sition 2.1.
Now we prove (2.17). We insert q = 1 − ε, x = s1/ε, and y = s2/ε in (2.11).

Note that all other parameters are fixed, and s1 ∈ I1, s2 ∈ I2 are nonnegative. We
observe that the exponents of (w

(1)
i1

+ 1) for each 1 ≤ i1 ≤ N in the integrand are

at least m − 1 + min{x, 1} ≥ m − 1 ≥ 0, and the exponents of (w
(2)
i2

+ 1) for each
1 ≤ i2 ≤ N are at least x + y + M − m − max{x + 1, x + y} ≥ M − m − 1 ≥ 0.
Therefore the integrand is analytic at −1 for each w

(1)
i1

and w
(2)
i2

. There are possible
poles at 0 and q−1 = −ε both of which are close to 0 as ε → 0.We hence can deform
the contours sufficiently close to the origin. More precisely, we replace R1 and R2 by
ε R̂1 and ε R̂2 where R̂1, R̂2 are distinct constants and both larger than 1, and change
variables w

(1)
i1

= εŵ
(1)
i1

and w
(2)
i2

= εŵ
(2)
i2

. Then

�
(
W (1)

)
�
(
W (2)

)
= εN (N−1)�

(
Ŵ (1)

)
�
(
Ŵ (2)

)
,

F̃1(w) = ε−N−m(ŵ−N (ŵ + 1)−m + O(ε)) = ε−N−m( f̃1(ŵ) + O(ε)),

F̃2(w) = ε−M+m((ŵ + 1)−M+me(s1+s2)ŵ + O(ε)) = ε−M+m( f̃2(ŵ) + O(ε)),

(w + 1)x wn = εn(ŵnes1ŵ + O(ε)), (w + 1)x wn−1 = εn−1(ŵn−1es1ŵ + O(ε)),
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Cz(w1, w2) = z

ε(ŵ1 − ŵ2)
· ŵn−1

1 es1ŵ1

ŵn−1
2 es1ŵ2

+ 1

ε(−ŵ1 + ŵ2)
· ŵn+1

1 es1ŵ1

ŵn+1
2 es1ŵ2

+ O(1)

= ε−1(Cz(ŵ1, ŵ2) + O(ε)),

Dz(w1, w2) = z

ε(−ŵ1 + ŵ2)
· ŵ1

ŵ2
+ 1

ε(ŵ1 − ŵ2)
· ŵN

1 e(s1+s2)ŵ1

ŵN
2 e(s1+s2)ŵ2

+ O(1)

= ε−1(Dz(ŵ1, ŵ2) + O(ε)). (2.18)

We remind that dw = εdŵ. Therefore by inserting these leading terms,weheuristically
obtain that

lim
ε→0

1

ε2
P(A(s1/ε, s2/ε)) = the right hand side of (2.1). (2.19)

On the other hand, since all other parameters are fixed and the contours |ŵ(1)
i1

| = R̂1

and |ŵ(2)
i2

| = R̂2 are of finite size, if we insert the above estimates (2.18) with the error
terms into (2.11), all the terms involvingO(ε) are uniformly bounded by Cε for some
constantC , and there are only finitely many such terms. Therefore the Eq. (2.19) holds
uniformly. This proves (2.17).

The remaining part of this subsection is to prove Lemma 2.4.
Denote

G(m) = (G(1,1)(m, 1), . . . ,G(1,1)(m, N )
)

(2.20)

the vector of the last passage times from the site (1, 1) to (m, i), 1 ≤ i ≤ N .
Our starting point is the following remarkable formula for the distribution ofG(m).

Theorem 2.5 ([29, Theorem 2.1]) Suppose X = (x1, . . . , xN ) ∈ Z
N≥0 satisfies x1 ≤

x2 ≤ · · · ≤ xN , then

P (G(m) = X) = det

[
(1 − q)m

∫

|w|=R
(w + 1)x j+m−1w j−i dw

2π i(w + 1 − q)m

]N

i, j=1

,

where R > 1 is any constant.

Note that the contour is of radius R > 1 in the above theorem. This restriction
will be kept throughout the proof of Lemma 2.4 and finally lead to the requirements
R1 > 1 and R2 > 1.

The original theorem of [29, Theorem 2.1] considered the finite-step transition
probabilities fromany column to another, and for any x1 ≤ · · · ≤ xN without assuming
x1 ≥ 0. For our purposewe only need this simpler version. The assumption that x1 ≥ 0
comes from the fact that all random variables w̃(p) are nonnegative. Moreover, we
use the contour integral formula in the above determinant for later computations. This
formula is equivalent to the original version by combining the equations (9) and (25)
in [29].

Denote
G̃(m + 1) = (G(m+1,1)(M, N ), . . . ,G(m+1,N )(M, N )

)
.
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Note that, by flipping the sites (i, j) → (−i,− j) and shifting the site (−M,−N ) to
(1, 1), G̃(m + 1) has the same distribution as

(
G(1,1)(M − m, N ),G(1,1)(M − m, N − 1), . . . ,G(1,1)(M − m, 1)

)
.

Therefore, by applying Theorem 2.5 we have

P

(
G̃(m + 1) = Y

)
= det

[
(1 − q)M−m

∫

|w|=R
(w + 1)yN+1− j+M−m−1w j−i

dw

2π i(w + 1 − q)M−m

]N

i, j=1

for any Y = (y1, . . . , yN ) ∈ Z
N satisfying y1 ≥ y2 ≥ · · · ≥ yN ≥ 0.

Note thatG(M) and G̃(m+1) are independent since they are defined on the lattices
Z≤m ×Z and Z≥m+1 ×Z respectively. Also note the event A is equivalent to the event
that G(1,1)(m, n) = x , G(m+1,n)(M,N ) = y, and G(1,1)(m, i) + G(m+1,i)(M, N ) ≤
G(1,1)(M, N ) = x+ y for all other i’s. Thus by combining Theorem 2.5 and the above
formula for G̃(m + 1), we obtain

P(A) =
∑

P (G(m) = X)P
(
G̃(m + 1) = Y

)

= (1 − q)MN
∑

det

[∫

|w|=R
(w + 1)x j+m−1w j−i (w + 1 − q)−m dw

2π i

]N

i, j=1

· det
[∫

|w|=R
(w + 1)yN+1− j+M−m−1w j−i (w + 1 − q)−M+m dw

2π i

]N

i, j=1

,

(2.21)
where the summation is running over all possible X = (x1, . . . , xN ) ∈ Z

N and
Y = (y1, . . . , yN ) ∈ Z

N satisfying

0 ≤ x1 ≤ · · · ≤ xN , y1 ≥ · · · ≥ yN ≥ 0,

xi + yi ≤ x + y, for all i = 1, . . . , N ,

and xn = x, yn = y.

(2.22)

We will consider the above summation in two steps. First, we fix X satisfying 0 ≤
x1 ≤ · · · ≤ xN ≤ x + y and xn = x , and take the sum over Y satisfying (2.22). Note
that only the last determinant in (2.21) contains Y . We formulate such a summation
in the following lemma.

Lemma 2.6 Suppose 0 ≤ x1 ≤ · · · ≤ xN ≤ x + y, xn = x and yn = y. Assume that
F(w) is a function which is analytic on |w| ≥ R and satisfies |F(w)| → 0 uniformly
as |w| → ∞. Then
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x+y−xN∑

yN=0

x+y−xN−1∑

yN−1=yN

· · ·
x+y−xn+1∑

yn+1=yn+2

x+y−xn−1∑

yn−1=y

· · ·
x+y−x1∑

y1=y2

det

[∫

|w|=R
(w + 1)y j w− j+i F(w)

dw

2π i

]N

i, j=1

= det

[∫

|w|=R
(w + 1)x+y−x j+1 j �=nw− j+i−1 j �=n F(w)

dw

2π i

]N

i, j=1

.

Proof of Lemma 2.6 Due to the linearity of determinant, we can take the summation
of the columns inside the determinant. For each j = 1, . . . , n − 1, n + 1, . . . , N − 1,
we have

x+y−x j∑

y j=y j+1

∫

|w|=R
(w + 1)y j w− j+i F(w)

dw

2π i

=
∫

|w|=R
(w + 1)x+y−x j+1w− j−1+i F(w)

dw

2π i

−
∫

|w|=R
(w + 1)y j+1w− j−1+i F(w)

dw

2π i
,

where the second term matches the corresponding entry in the ( j + 1)-th column.
Therefore we can remove this term without changing the determinant. For the sum-
mation over yN , we have a similar identity where the second term becomes

∫

|w|=R
w−N−1+i F(w)

dw

2π i
= 0

by deforming the contour to infinity. We complete the proof by combining the above
summations.

Now we come back to (2.21). We reorder the rows and columns in the second
determinant by replacing i → N + 1− i and j → N + 1− j , and apply Lemma 2.6
with F(w) = (w + 1)M−m−1(w + 1 − q)−M+m . We have

P(A) = (1 − q)MN
∑

det

[∫

|w|=R
(w + 1)x j+m−1w j−i (w + 1 − q)−m dw

2π i

]N

i, j=1

· det
[ ∫

|w|=R
(w + 1)−x j+x+y+M−m−1 j=N w− j−1+i+1 j=n

(w + 1 − q)−M+m dw

2π i

]N

i, j=1

,

(2.23)
where the summation is over all 0 ≤ x1 ≤ · · · ≤ xN ≤ x + y with xn = x .
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In the next step, we consider the sum over X in (2.23). We first apply the following
Cauchy-Binet/Andreief’s formula in (2.23)

det

[∫
fi (z)g j (z)dμ(z)

]N

i, j=1

= 1

N !
∫

· · ·
∫

det
[
fi (z j )

]N
i, j=1 det

[
gi (z j )

]N
i, j=1 dμ(z1) . . . dμ(zN ).

We also relabel the variables to avoid confusions. Recall the functions F̃1 and F̃2
defined in (2.12). We have

det

[∫

|w|=R
(w + 1)x j+m−1w j−i (w + 1 − q)−m dw

2π i

]N

i, j=1

= 1

N !
N∏

i=1

∫

|w(1)
i |=R1

dw(1)
i

2π i
F̃1
(
W (1)

)
det

[(
w

(1)
i + 1

)x j (
w

(1)
i

) j]N

i, j=1

det

[(
w

(1)
i

)N− j
]N

i, j=1

and

det

[∫

|w|=R
(w + 1)−x j+x+y+M−m−1 j=N w− j−1+i+1 j=n (w + 1 − q)−M+m dw

2π i

]N

i, j=1

= 1

N !
N∏

i=1

∫

|w(2)
i |=R2

dw(2)
i

2π i
F̃2
(
W (2)

)
det

[(
w

(1)
i + 1

)−x j−1 j=N
(
w

(1)
i

)− j+1 j=N
]N

i, j=1

det

[(
w

(2)
i

) j−1
]N

i, j=1
.

Thus we write

P(A) = (−1)N (N−1)/2 (1 − q)MN

(N !)2
N∏

i=1

∫

|w(1)
i |=R1

dw(1)
i

2π i

∫

|w(2)
i |=R2

dw(2)
i

2π i
F̃1
(
W (1)

)

F̃2
(
W (2)

)
· �
(
W (1)

)
�
(
W (2)

)
· S
(
W (1),W (2)

)
, (2.24)

where W (1) =
(
w

(1)
1 , . . . , w

(1)
N

)
, W (2) =

(
w

(2)
1 , . . . , w

(2)
N

)
. We also rewrote

det

[(
w

(�)
i

) j−1
]N

i, j=1
= �

(
W (�)

)
for both � = 1, 2. Finally, the function
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One-point distribution of the geodesic in directed last…

S
(
W (1);W (2)

)
:=
∑

X

det

[(
w

(1)
i + 1

)x j (
w

(1)
i

) j]N

i, j=1

det

[(
w

(2)
i + 1

)−x j−1 j=n
(
w

(2)
i

)− j+1 j=n
]N

i, j=1
, (2.25)

where the summation is over all 0 ≤ x1 ≤ · · · ≤ xN ≤ x + y with fixed xn = x .
Note that the summation over X only appears in the function S

(
W (1);W (2)

)
. Our

goal in this step is to evaluate this summation explicitly.We remark that this summation
without the extra 1 j=n in the exponents can be simplified to a compact formula if all
the coordinates of W (�) satisfy a so-called Bethe equation, see [14, Proposition 5.2].
However, here we do not have the Bethe roots structure for the coordinates and the
resulting formulas are more complicated.

To proceed, we need an identity to expand the determinants in (2.25). By using the
Laplace expansion in multiple columns of the determinant, we have the identity

det
[
Ai, j

]N
i, j=1 =

∑

�

(−1)�+n A�,n

∑

I1∪I2={1,...,N }\{�}
|I1|=n−1,|I2|=N−n

(−1)#(I ,J )

det
[
Ai, j

]
i∈I1

1≤ j≤n−1
det
[
Ai, j

]
i∈I2

n+1≤ j≤N
,

where

#(I1, I2) := the number of pairs (i1, i2) ∈ I1 × I2 such that i1 > i2. (2.26)

We apply the above identity in (2.25) and change the order of summations. This leads
to

S
(
W (1);W (2)

)
=

∑

�1,�2≥1

(−1)�1+�2

(
w

(1)
�1

+ 1
)x (

w
(1)
�1

)n

(
w

(2)
�2

+ 1
)x+1 (

w
(2)
�2

)n−1

∑

I (1)
1 ∪I (1)

2 ={1,...,N }\{�1}
I (2)
1 ∪I (2)

2 ={1,...,N }\{�2}
|I (1)
1 |=|I (2)

1 |=n−1

|I (1)
2 |=|I (2)

2 |=N−n

(−1)#(I
(1)
1 ,I (1)

2 )+#(I (2)
1 ,I (2)

2 )

∏
i∈I (1)

2

(
w

(1)
i

)n

∏
i∈I (2)

2

(
w

(2)
i

)n Ŝ0,x
(
W (1)

I (1)
1

,W (2)

I (2)
1

)
Ŝx,x+y

(
W (1)

I (1)
2

,W (2)

I (2)
2

)
,

(2.27)
where for simplification we use the notation WI for the vector with coordinates wi ’s
satisfying i ∈ I . More explicitly, WI = (wi1, wi2 , . . . , wik ) for any I = (i1, . . . , ik).
The function
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Ŝa,b
(
W ,W ′) :=

∑

a≤x1≤···≤xk≤b

det
[
(wi + 1)x j w j

i

]

1≤i, j≤k
det
[
(w′

i + 1)−x j (w′
i )

− j
]

1≤i, j≤k

for any a ≤ b and vectorsW andW ′ of the same size. Here k is the size ofW andW ′,
wi ’s and w′

i ’s are the coordinates of W and W ′ respectively.
We have the following identity to simplify Ŝa,b

(
W ,W ′).

Lemma 2.7 ([14])We have

Ŝa,b(W ,W ′) = det

[
1

−wi + w′
i ′

· wi (wi + 1)a

w′
i ′ (w

′
i ′ + 1)a−1 + 1

wi − w′
i ′

· wk
i (wi + 1)b+1

(w′
i ′ )

k(w′
i ′ + 1)b

]k

i,i ′=1

.

(2.28)

Proof of Lemma 2.7 The main technical part of the summation was included in [14].
Here we simply mention how to arrive (2.28) using the known results in [14].

In [14], the authors introduced a similar sum Ha(W ;W ′), where W and W ′ both
are of size N . See equation (5.6) in [14]. It reads

Ha(W ;W ′) =
∑

a−1=x1≤···≤xN≤a+L−N−1

det
[
(w′

i + 1)x j (w′
i )

j
]

1≤i, j≤N

det
[
(wi + 1)−x j w

− j
i

]

1≤i, j≤N
.

Here we emphasize that x1 = a − 1 is fixed in this summation. We also remark that
the original definition of Ha(W ;W ′) assumes that the coordinates of W and W ′ are
roots of the so-called Bethe equation, but we will only cite the identities in §5.1-5.3
in [14] where the Bethe roots properties are not used.

The equation (5.44) in [14] can be viewed as a difference of two terms. We apply
Lemma 5.9 of [14] for each term and rewrite the equation as

Ha(W ,W ′) = det

[
1

wi − w′
i ′

· w′
i ′ (w

′
i ′ + 1)a−1

wi (wi + 1)a−2 + 1

−wi + w′
i ′

· (w′
i ′ )

N (w′
i ′ + 1)a+L−N

wN
i (wi + 1)a+L−N−1

]N

i,i ′=1

− det

[
1

wi − w′
i ′

· w′
i ′ (w

′
i ′ + 1)a

wi (wi + 1)a−1 + 1

−wi + w′
i ′

· (w′
i ′ )

N (w′
i ′ + 1)a+L−N

wN
i (wi + 1)a+L−N−1

]N

i,i ′=1

.

We replace a + L − N − 1 by b, and then a − 1 by a, and get

∑

a=x1≤···≤xN≤b

det
[
(w′

i + 1)x j (w′
i )

j
]

1≤i, j≤N
det
[
(wi + 1)−x j w

− j
i

]

1≤i, j≤N

= det

[
1

wi − w′
i ′

· w′
i ′(w

′
i ′ + 1)a

wi (wi + 1)a−1 + 1

−wi + w′
i ′

· (w′
i ′)

N (w′
i ′ + 1)b+1

wN
i (wi + 1)b

]N

i,i ′=1

− det

[
1

wi − w′
i ′

· w′
i ′(w

′
i ′ + 1)a+1

wi (wi + 1)a
+ 1

−wi + w′
i ′

· (w′
i ′)

N (w′
i ′ + 1)b+1

wN
i (wi + 1)b

]N

i,i ′=1

.
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So far x1 = a is fixed. Now by summing the above identity for all x1 from a to b, we
get

Ŝa,b(W
′,W ) = det

[
1

wi − w′
i ′

· w′
i ′ (w

′
i ′ + 1)a

wi (wi + 1)a−1 + 1

−wi + w′
i ′

· (w′
i ′ )

N (w′
i ′ + 1)b+1

wN
i (wi + 1)b

]N

i,i ′=1

− det

[
1

wi − w′
i ′

· w′
i ′ (w

′
i ′ + 1)b+1

wi (wi + 1)b
+ 1

−wi + w′
i ′

· (w′
i ′ )

N (w′
i ′ + 1)b+1

wN
i (wi + 1)b

]N

i,i ′=1

.

It is not hard to see that the second determinant is zero by using the fact that (un −
vn)/(u − v) is a polynomial of u and v of degree n − 1. One can also find a detailed
proof in [14], see the last equations in [14,p. 648]. Therefore we obtain a formula for
Ŝa,b(W ′,W ) with a single determinant. By switching W and W ′, and replace the size
N by k, we obtain (2.28).

Now we apply Lemma 2.7 to (2.27). We also use the identity

∑

I1∪J1={1,...,L}
J1∪J2={1,...,L}
|I1|=|I2|=n−1

|J1|=|J2|=L−n+1

(−1)#(I1,J1)+#(I2,J2) det [A(i1, j1)] i1∈I1
j1∈J1

det [B(i2, j2)] i2∈I2
j2∈J2

=
∮

0
det [zA(i, j) + B(i, j)]Li, j=1

dz

2π izn
,

which follows from the multilinearity of the determinant on the rows and the Cauchy-
Binet formula. It can also be derived from Lemma 5.9 of [14]. Then we arrive at

S
(
W (1);W (2)

)
=

∑

�1,�2≥1

(−1)�1+�2

(
w

(1)
�1

+ 1
)x (

w
(1)
�1

)n

(
w

(2)
�2

+ 1
)x+1 (

w
(2)
�2

)n−1

∮

0

dz

2π izn
det

⎡

⎢⎣
z

−w
(1)
i1

+ w
(2)
i2

·
w

(1)
i1

(
w

(2)
i2

+ 1
)

w
(2)
i2

+ z

w
(1)
i1

− w
(2)
i2

·
(
w

(1)
i1

)n−1 (
w

(1)
i1

+ 1
)x+1

(
w

(2)
i2

)n−1 (
w

(2)
i2

+ 1
)x

+ 1

−w
(1)
i1

+ w
(2)
i2

·
(
w

(1)
i1

)n+1 (
w

(1)
i1

+ 1
)x

(
w

(2)
i2

)n+1 (
w

(2)
i2

+ 1
)x−1 + 1

w
(1)
i1

− w
(2)
i2

·
(
w

(1)
i1

)N (
w

(1)
i1

+ 1
)x+y+1

(
w

(2)
i2

)N (
w

(2)
i2

+ 1
)x+y

⎤

⎥⎦
i1 �=�1
i2 �=�2

.

(2.29)

By inserting this formula to (2.24), we obtain Lemma 2.4.

2.3 Proof of Proposition 2.2

In this subsection, we prove Proposition 2.2. There are two main steps in the proof. In
the first step we will deform the contours and get rid of term Dz in (2.1). In the second
step we will evaluate the summation over �1 and �2.
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2.3.1 Step 1: Deforming the contours

We first realize that

Cz(w1, w2) + Dz(w1, w2) = z

w1 − w2

wn−1
1 es1w1

wn−1
2 es1w2

+ 1

−w1 + w2

wn+1
1 es1w1

wn+1
2 es1w2

+ z

−w1 + w2

w1

w2
+ 1

w1 − w2

wN
1 e(s1+s2)w1

wN
2 e(s1+s2)w2

does not have a pole at w1 = w2. Hence the integrand in (2.1) only has poles at 0 and
−1. Furthermore, we can rewrite the w

(1)
i1

integrals as

∫

|w(1)
i1

|=R1

dw(1)
i1

2π i
= −z

1 − z

∫

�out

dw(1)
i1

2π i
+ 1

1 − z

∫

�in

dw(1)
i1

2π i
(2.30)

and the w
(2)
i2

integrals as

∫

|w(2)
i2

|=R2

dw(2)
i2

2π i
=
∫

�

dw(2)
i2

2π i
(2.31)

without changing the value of (2.1). After we change the order of summation and
integrals, we have

p(s1, s2;m, n, M, N )

= (−1)N (N−1)/2

(N !)2
∮

0

dz

2π izn

N∑

�1,�2=1

(−1)�1+�2

⎛

⎝ −z

1 − z

∫

�out

dw(1)
�1

2π i
+ 1

1 − z

∫

�in

dw(1)
�1

2π i

⎞

⎠

∫

�

dw(2)
�2

2π i

(
w

(1)
�1

)n
e
s1w

(1)
�1

(
w

(2)
�2

)n−1
e
s1w

(2)
�2

∏

i1 �=�1

⎛

⎝ −z

1 − z

∫

�out

dw(1)
i1

2π i
+ 1

1 − z

∫

�in

dw(1)
i1

2π i

⎞

⎠

∏

i2 �=�2

∫

�

dw(2)
i2

2π i
· �
(
W (1)

)
�
(
W (2)

)
f̃1
(
W (1)

)
f̃2
(
W (2)

)

det
[
Cz

(
w

(1)
i1

, w
(2)
i2

)
+ Dz

(
w

(1)
i1

, w
(2)
i2

)]
i1 �=�1,
i2 �=�2

. (2.32)

Although this rewriting seems simple, it turns out with these changes, we can drop
the term Dz in the integrand, following from the lemma below.

Lemma 2.8 Suppose� and�′ are contours on the complex plane, dμ(w) and dμ′(w′)
are two measures on these contours respectively. Suppose C(w,w′) and D(w,w′)
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are two complex-valued functions on � × �′, and B(w1, . . . , wN ;w′
1, . . . , w

′
N ) is a

complex-valued function defined on �N × (�′)N . Assume that
∫

�N

∫

(�)N

∣∣B(w1, . . . , wN ;w′
1, . . . , w

′
N )
∣∣

·
N∏

i=1

(∣∣∣C(wi , w
′
σ(i))

∣∣∣+
∣∣∣D(wi , w

′
σ(i))

∣∣∣
) N∏

i=1

|dμ(wi )|
N∏

i ′=1

∣∣dμ′(w′
i ′)
∣∣ < ∞

(2.33)
for each permutation σ ∈ SN . We further assume that

∫

�

∫

�′
B(w1, . . . , wN ;w′

1, . . . , w
′
N )D(wi , w

′
i ′)dμ(wi )dμ

′(w′
i ′) = 0 (2.34)

for any 1 ≤ i, i ′ ≤ N, and any w� ∈ �, � �= i , any w′
�′ ∈ �′, �′ �= i ′. Then we have

∫

�N

∫

(�)N
B(w1, . . . , wN ;w′

1, . . . , w
′
N )

· det [C(wi , w
′
i ′) + D(wi , w

′
i ′)
]N
i,i ′=1

N∏

i=1

dμ(wi )

N∏

i ′=1

dμ′(w′
i )

=
∫

�N

∫

(�)N
B(w1, . . . , wN ;w′

1, . . . , w
′
N )

· det [C(wi , w
′
i ′)
]N
i,i ′=1

N∏

i=1

dμ(wi )

N∏

i ′=1

dμ′(w′
i ). (2.35)

Proof of Lemma 2.8 Weexpand the determinants on both sides of (2.35), then by (2.33)
we can change the order of the integral and the determinant expansions. It turns out all
the terms that appear on the left side but not the right side have some factor D(wi , w

′
i ′)

in the integrand and hence these terms are zero by the assumption (2.34). This proves
the identity.

In order to apply Lemma 2.8 in (2.32), we need to check the assumptions. All
of these assumptions are obvious except for the assumption (2.34), which we verify
below. We need to show

(
−z

1 − z

∫

�out

dw(1)
i1

2π i
+ 1

1 − z

∫

�in

dw(1)
i1

2π i

)

∫

�

dw(2)
i2

2π i
�
(
W (1)

)
�
(
W (2)

)
f̃1
(
W (1)

)
f̃2
(
W (2)

)
Dz

(
w

(1)
i1

, w
(2)
i2

)

equals to zero. If we insert the formulas of f̃1 and f̃2 (see (2.2)) and Dz (see (2.4)) in
the above formula, we only need to prove
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( −z

1 − z

∫

�out

dw1

2π i
+ 1

1 − z

∫

�in

dw1

2π i

)∫

�

dw2

2π i

G̃1(w1)G̃2(w2)w
−N
1 (w1 + 1)−m(w2 + 1)−M+me(s1+s2)w2

(
z

−w1 + w2

w1

w2
+ 1

w1 − w2

wN
1 e(s1+s2)w1

wN
2 e(s1+s2)w2

)
= 0 (2.36)

for some polynomials G̃1 and G̃2 of degree N−1.Using a simple residue computation,
we have

∫

�out

dw1

2π i

∫

�

dw2

2π i
G̃1(w1)G̃2(w2)w

−N
1 (w1 + 1)−m(w2 + 1)−M+me(s1+s2)w2

z

−w1 + w2

w1

w2
= 0,

∫

�in

dw1

2π i

∫

�

dw2

2π i
G̃1(w1)G̃2(w2)w

−N
1 (w1 + 1)−m(w2 + 1)−M+me(s1+s2)w2

z

−w1 + w2

w1

w2

= z
∫

�

dw

2π i
G̃1(w)G̃2(w)w−N (w + 1)−Me(s1+s2)w,

∫

�out

dw1

2π i

∫

�

dw2

2π i
G̃1(w1)G̃2(w2)w

−N
1 (w1 + 1)−m(w2 + 1)−M+me(s1+s2)w2

1

w1 − w2

wN
1 e(s1+s2)w1

wN
2 e(s1+s2)w2

=
∫

�

dw

2π i
G̃1(w)G̃2(w)w−N (w + 1)−Me(s1+s2)w,

∫

�in

dw1

2π i

∫

�

dw2

2π i
G̃1(w1)G̃2(w2)w

−N
1 (w1 + 1)−m(w2 + 1)−M+me(s1+s2)w2

1

w1 − w2

wN
1 e(s1+s2)w1

wN
2 e(s1+s2)w2

= 0.

(2.36) follows immediately.
Thuswe can apply Lemma 2.8 in (2.32). After we remove the term Dz, we exchange

the integral and summation again and obtain

p(s1, s2;m, n, M, N )

= (−1)N (N−1)/2

(N !)2
∮

0

dz

2π izn

N∏

i1=1

(
−z

1 − z

∫

�out

dw(1)
i1

2π i
+ 1

1 − z

∫

�in

dw(1)
i1

2π i

)
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N∏

i2=1

∫

�

dw(2)
i2

2π i
�
(
W (1)

)
�
(
W (2)

)
f̃1
(
W (1)

)
f̃2
(
W (2)

) N∑

�1,�2=1

(−1)�1+�2

(
w

(1)
�1

)n
e
s1w

(1)
�1

(
w

(2)
�2

)n−1
e
s1w

(2)
�2

det
[
Cz

(
w

(1)
i1

, w
(2)
i2

)]
i1 �=�1,
i2 �=�2

. (2.37)

2.3.2 Step 2: Evaluating the summation

Recall the formula of Cz in (2.3). We can write

Cz(w1, w2) = wn
1e

s1w1

wn
2e

s1w2
·
(

z

w1 − w2

w2

w1
+ 1

−w1 + w2

w1

w2

)
.

We insert this formula in (2.37). Recall the formulas of f̃1, f̃2 in (2.2), and f̂1, f̂2
in (2.6). We arrive at

p(s1, s2;m, n, M, N )

= (−1)N (N−1)/2

(N !)2
∮

0

dz

2π izn

N∏

i1=1

(
−z

1 − z

∫

�out

dw(1)
i1

2π i
+ 1

1 − z

∫

�in

dw(1)
i1

2π i

)

N∏

i2=1

∫

�

dw(2)
i2

2π i
�
(
W (1)

)
�
(
W (2)

)
f̂1
(
W (1)

)
f̂2
(
W (2)

) N∑

�1,�2=1

(−1)�1+�2w
(2)
�2

det

[
z

w
(1)
i1

− w
(2)
i2

w
(2)
i2

w
(1)
i1

+ 1

−w
(1)
i1

+ w
(2)
i2

w
(1)
i1

w
(2)
i2

]

i1 �=�1,
i2 �=�2

. (2.38)

Compare the above formula with (2.5). Note the following Cauchy determinant
formula

�
(
W (1)

)
�
(
W (2)

)

�
(
W (2);W (1)

) = (−1)N (N−1)/2 det

[
1

w
(2)
i2

− w
(1)
i1

]N

i1,i2=1

.

We see that (2.5) follows from (2.38) and Lemma 2.9 below. This completes the proof
of Proposition 2.2.

The remaining part of this subsection is the next lemma and its proof.

Lemma 2.9 Suppose X = (x1, . . . , xN ) and Y = (y1, . . . , yN ) are two vectors in CN

satisfying xi �= y j for all 1 ≤ i, j ≤ N. Suppose z is an arbitrary complex number.
Then we have the following identity
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N∑

a,b=1

(−1)a+b yb det

[
z

xi − y j

y j
xi

+ 1

−xi + y j

xi
y j

]

i �=a
j �=b

= (1 − z)N−2

(
Ĥ(X; Y ) + z

N∏

i=1

yi
xi
Ĥ(Y ; X)

)
det

[
1

y j − xi

]N

i, j=1
,

(2.39)

where Ĥ is defined in (2.7).

Proof of Lemma 2.9 We first use the identity

z

x − y

y

x
+ 1

−x + y

x

y
= (1 − z)

x

y
·
(

1

−x + y
− z

1 − z

1

x
− z

1 − z

y

x2

)

and write the left hand side of (2.39) as

(1 − z)N−1
N∏

i=1

xi
yi

N∑

a,b=1

(−1)a+b y
2
b

xa
det

[
1

−xi + y j
− z

1 − z

1

xi
− z

1 − z

y j
x2i

]

i �=a
j �=b

.

(2.40)
Thus the Eq. (2.39) is equivalent to, by setting u = −z/(1 − z),

N∑

a,b=1

(−1)a+b y
2
b

xa
det

[
1

−xi + y j
+ u

1

xi
+ u

y j
x2i

]

i �=a
j �=b

= −
(

(u − 1)
N∏

i=1

yi
xi
Ĥ(X; Y ) + u

N∏

i=1

y2i
x2i

Ĥ(Y ; X)

)
· det

[
1

y j − xi

]N

i, j=1
.

(2.41)
The proof of (2.41) is tedious while the strategy is quite straightforward. Below

we will show the proof but omit some details which are direct to check. We remark
that the strategy was applied to a much simpler identity in [14, Lemma 5.5], but this
identity (2.41) is much more complicated.

Before we prove (2.41), we need to prepare some easier identities. We denote

X(w) :=
N∏

i=1

(w − xi ), Y (w) :=
N∏

i=1

(w − yi ),

and introduce

Cp,q =
n∑

a,b=1

x p
a y

q
b

Y (xa)X(yb)

(xa − yb)X ′(xa)Y ′(yb)
,
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where p, q are both integers. It is not hard to verify, by using the Cauchy determinant
formula, that

Cp,q =
N∑

a,b=1

(−1)a+bx p
a y

q
b det

[
1

−xi + y j

]

i �=a
j �=b

/
det

[
1

−xi + y j

]N

i, j=1
. (2.42)

One can evaluateCp,q by converting the sum as a residue computation of an integral
on the complex plane. As an illustration, we show how to obtain C−1,2, then we will
list all the Cp,q values we will use later without providing proofs, see Table 1.

We consider a double integral

∫

|y|=R2

∫

|x |=R1

y2

x

Y (x)X(y)

(x − y)X(x)Y (y)

dx

2π i

dy

2π i
,

where R1 > R2 > maxi {|xi |+|yi |}. Note that we can deform the x-contour to infinity
and the integral becomes zero. Hence the above double integral is zero. On the other
hand, we can change the order of integrals and evaluate the y-integral first. It gives a
sum over all roots of Y (y):

0 =
∫

|x |=R1

N∑

b=1

y2b
x

Y (x)X(yb)

(x − yb)X(x)Y ′(yb)
dx

2π i
.

Then we exchange the summation and integral, and evaluate the x-integral by com-
puting the residues within the contour. Note that x = yb is not a pole. We get

0 = C−1,2 − Y (0)

X(0)

N∑

b=1

yb
X(yb)

Y ′(yb)
. (2.43)

We need to continue to evaluate the summation in (2.43). We have, by a residue
computation,

N∑

b=1

yb
X(yb)

Y ′(yb)
=
∫

|y|=R2

y
X(y)

Y (y)

dy

2π i

=
∫

|y|=R2

y

(
1 + 1

y

N∑

i=1

(yi − xi ) + 1

y2
Ĥ(X; Y ) + O(y−3)

)
dy

2π i
= Ĥ(X; Y ),

where we evaluated the integral by expanding the integrand for large y. Here the
function Ĥ is defined in (2.7).

By inserting the above formula to (2.43), we obtain

C−1,2 =
∏

i

yi
xi
Ĥ(X; Y ).
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Table 1 Values of some Cp,q expressions

Expression Value Expression Value

C0,−1 1 −
∏

i

xi
yi

C−1,2
∏

i

yi
xi

Ĥ(X; Y )

C−1,0 −1 +
∏

i

yi
xi

C−1,1 − C0,0

⎛

⎝1 −
∏

i

yi
xi

⎞

⎠
∑

i

(xi − yi )

C1,0 −Ĥ(Y ; X) C0,2 − C1,1 −
∑

i

(xi − yi )Ĥ(X; Y )

C0,1 Ĥ(X; Y ) C−2,1 −1 +
∏

i

yi
xi

⎛

⎝1 −
∑

i

(
1

xi
− 1

yi

)∑

i

(xi − yi )

⎞

⎠

Using similar calculations, we can find all Cp,q for small p, q values. In Table 1 we
list some Cp,q identities we will use in the proof of (2.41). We remark that the proof
of these identities are analogous to that of C−1,2 without adding extra difficulties.

We need to evaluate

det

[
1

−xi + y j
+ u

1

xi

]N

i, j=1
= det

[
1

−xi + y j

]N

i, j=1
+u

N∑

a,b=1

(−1)a+b 1

xa
det

[
1

−xi + y j

]

i �=a
j �=b

.

By applying (2.42) and finding the C−1,0 value in Table 1, we get

det

[
1

−xi + y j
+ u

1

xi

]N

i, j=1
= det

[
1

−xi + y j

]N

i, j=1

(
1 + uC−1,0

)

= det

[
1

−xi + y j

]N

i, j=1

(
1 + u

(
−1 +

N∏

i=1

yi
xi

))
.

(2.44)
Then we evaluate

det

[
1

−xi + y j
+ u

1

xi
+ u

y j
x2i

]N

i, j=1

= det

[
1

−xi + y j
+ u

1

xi

]N

i, j=1

+u
N∑

a,b=1

(−1)a+b yb
x2a

det

[
1

−xi + y j
+ u

1

xi

]

i �=a
j �=b

.
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We insert (2.44) in the above equation and obtain

det

[
1

−xi + y j
+ u

1

xi
+ u

y j

x2i

]N

i, j=1

= det

[
1

−xi + y j

]N

i, j=1

⎛

⎝1 − u + u
N∏

i=1

yi
xi

⎞

⎠+ u(1 − u)

N∑

a,b=1

(−1)a+b yb
x2a

det

[
1

−xi + y j

]

i �=a
j �=b

+ u2
N∏

i=1

yi
xi

N∑

a,b=1

(−1)a+b 1

xa
det

[
1

−xi + y j

]

i �=a
j �=b

= det

[
1

−xi + y j

]N

i, j=1

⎛

⎝1 − u + u
N∏

i=1

yi
xi

+ u(1 − u)C−2,1 + u2
N∏

i=1

yi
xi
C−1,0

⎞

⎠ .

(2.45)
By inserting the values of C−2,1 and C−1,0 and simplifying the expression, we obtain

det

[
1

−xi + y j
+ u

1

xi
+ u

y j

x2i

]N

i, j=1

= det

[
1

−xi + y j

]N

i, j=1

·
⎡

⎢⎣1 − 2u

⎛

⎝1 −
N∏

i=1

yi
xi

⎞

⎠− (u − u2)
N∏

i=1

yi
xi

N∑

i=1

(
1

xi
− 1

yi

) N∑

i=1

(xi − yi ) + u2

⎛

⎝
N∏

i=1

yi
xi

− 1

⎞

⎠
2
⎤

⎥⎦ .

(2.46)
Finally we are ready to prove (2.41). Inserting (2.46), we can write

N∑

a,b=1

(−1)a+b y
2
b
xa

det

[
1

−xi + y j
+ u

1

xi
+ u

y j

x2i

]

i �=a
j �=b

=
N∑

a,b=1

(−1)a+b y
2
b
xa

det

[
1

−xi + y j

]

i �=a
j �=b

·
⎡

⎢⎣1 − 2u

⎛

⎝1 − xa
yb

N∏

i=1

yi
xi

⎞

⎠+ u2

⎛

⎝ xa
yb

N∏

i=1

yi
xi

− 1

⎞

⎠
2

−(u − u2)
xa
yb

N∏

i=1

yi
xi

⎛

⎝− 1

xa
+ 1

yb
+

N∑

i=1

(
1

xi
− 1

yi

)⎞

⎠

⎛

⎝−xa + yb +
N∑

i=1

(xi − yi )

⎞

⎠

⎤

⎦ .

We apply (2.42) and rewrite the above equation as

N∑

a,b=1

(−1)a+b y
2
b
xa

det

[
1

−xi + y j
+ u

1

xi
+ u

y j

x2i

]

i �=a
j �=b

/
det

[
1

−xi + y j
+ u

1

xi
+ u

y j

x2i

]N

i, j=1

=
⎛

⎝(1 − u)2 + u(1 − u)
∏

i

yi
xi

⎞

⎠C−1,2 + u
∏

i

yi
xi

⎛

⎝1 − u + u ·
∏

i

yi
xi

⎞

⎠C1,0

−u(1 − u)
∏

i

yi
xi

⎛

⎝
∑

i

1

xi
−
∑

i

1

yi

⎞

⎠

⎛

⎝
∑

i

xi −
∑

i

yi

⎞

⎠C0,1
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−u(1 − u)
∏

i

yi
xi

⎛

⎝
∑

i

xi −
∑

i

yi

⎞

⎠C0,0 + u(1 − u)
∏

i

yi
xi

⎛

⎝
∑

i

xi −
∑

i

yi

⎞

⎠C−1,1

−u(1 − u)
∏

i

yi
xi

⎛

⎝
∑

i

1

xi
−
∑

i

1

yi

⎞

⎠C0,2 + u(1 − u)
∏

i

yi
xi

⎛

⎝
∑

i

1

xi
−
∑

i

1

yi

⎞

⎠C1,1.

(2.47)

By checking the values of Table 1, and noting that
(∑

i (xi − yi )
)2 = Ĥ(X; Y ) +

Ĥ(Y ; X), we can simplify the above expression. It turns out, after a careful but straight-
forward calculation, the u2 term vanishes, and the remaining terms match the right
hand side of (2.41). We hence complete the proof.

2.4 Proof of Proposition 2.3

In this subsection, we prove Proposition 2.3. Note that the Eq. (2.5) involves a Cauchy
determinant factor

�
(
W (1)

)
�
(
W (2)

)

�
(
W (2);W (1)

) = (−1)N (N−1)/2 det

[
1

w
(2)
i2

− w
(1)
i1

]N

i1,i2=1

,

which is of size N, while the formula (1.7) is analogous to a Fredholm determinant
expansion. So Proposition 2.3 can be interpreted as an identity between a Cauchy
determinant of large size and a Fredholm-determinant-like expansion. Our strategy
contains three steps. First, we rewrite the formula (2.5) to a summation on discrete
spaces with summand having similar Cauchy determinant structures. This rewriting
involves a generalized version of an identity in [31]. In the second step, we reformulate
the summation to a Fredholm-determinant-like expansion on the same discrete space.
We remark that similar calculation were considered in [13, 14] but our summand is
more involved. Finally, we verify that the expansion indeed matches (1.7) using the
identity obtained in the first step.

Belowwewill first introduce a generalized version of an identity in [31], the Propo-
sition 4.3 of [31]. Then we prove Proposition 2.3 using the above strategy.

2.4.1 A Cauchy-type summation identity

We introduce a few concepts before we state the results. We will mainly follow [31,
Section 4] but add a small generalization.

Suppose W = (w1, . . . , wn) ∈ C
n and W ′ = (w′

1, . . . , w
′
n′) ∈ C

n′
are two vectors

without overlapping coordinates, i.e., they satisfy wi �= w′
i ′ for all i, i

′. We define

C(W ;W ′) = �(W )�(W ′)
�(W ;W ′)

(2.48)

and call it a Cauchy-type factor. Note that when n = n′, C(W ;W ′) equals to a Cauchy
determinant det

[
1/(wi − w′

i ′)
]n
i,i ′=1 multiplied by a sign factor (−1)n(n−1)/2. We
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remark that we allow empty product and view it as 1 in the above definition. For
example, when n′ = 0, we have C(W ;W ′) = �(W ).

Similar as in (2.27), we use the convention thatWI = (wi1, . . . , wik ) for any index
set I = {i1, . . . , ik} where 1 ≤ i1 < · · · < ik ≤ n. In other words, WI is the vector
formed by the coordinates with indices in I .

We denote

D(r) := {z : |z| < r}, and D0(r) = {z : 0 < |z| < r}.

And we omit r when r = 1, i.e., D = D(1) and D0 = D0(1).
Suppose q(w) is a function which is analytic in a certain bounded regionD. Denote

Rz = {w ∈ D : q(w) = z} . (2.49)

Assume that R0 �= ∅. In other words, there is at least one root of q(w) within D.
We also assume that rmax is a positive constant such that ∪z∈D(rmax)Rz = {w ∈ D :
|q(w)| ≤ rmax} lies within a compact subset of D, and {w ∈ D : |q(w)| = r} for all
0 < |r | < rmax consists of |R0| non-intersecting simply connected contours around
the points in R0. It is easy to see that with these assumptions q ′(w) �= 0 for all
w ∈ {w ∈ D : |q(w)| < rmax}. We remark that in the original setting of [31], they
assumed R0 = {0} or {−1}. Here we drop this assumption.

We will consider a Cauchy-type summation, which involves an expression

H
(
W (1), . . . ,W (�); z0, . . . , z�−1

)
:=
[

�−1∏

k=1

C
(
W (k)

I (k);W (k+1)
J (k+1)

)]

·A
(
W (1), . . . ,W (�); z0, . . . , z�−1

)
, (2.50)

whereW (k) =
(
w

(k)
1 , . . . , w

(k)
nk

)
∈ C

nk , 1 ≤ k ≤ �, such thatW (k) andW (k+1) do not

have overlapping coordinates for 1 ≤ k ≤ � − 1. I (k) and J (k) are arbitrary subsets
of {1, . . . , nk} for 1 ≤ k ≤ � − 1 and 2 ≤ k ≤ � respectively. The function A is
analytic for all w(k)

jk
∈ D \ R0, 1 ≤ jk ≤ nk, 1 ≤ k ≤ �, and for all (z0, . . . , z�−1) ∈

D(rmax)×D
�−1.HenceH is also analytic on (D\R0)

n1+···+n�×D(rmax)×D
�−1, except

for having possible poles atw(k)
ik

= w
(k+1)
ik+1

for some ik ∈ I (k) and ik+1 ∈ I (k+1), which
comes from the Cauchy-type factors. We remark that the functionH also depends on
the index sets I (k), J (k+1), 1 ≤ k ≤ � − 1.

Now we introduce the summation. We consider

G(z0, . . . , z�−1) =
∑

W (1)∈Rn1
ẑ1

· · ·
∑

W (�)∈Rn�
ẑ�

[
�∏

k=1

J (W (k))

]
H
(
W (1), . . . ,W (�); z0, . . . , z�−1

)

(2.51)
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for (z0, . . . , z�) ∈ D0(rmax) × D
�−1
0 , where the function

J (w) := q(w)

q ′(w)
. (2.52)

Recall our convention J (W (k)) =∏nk
a=1 J (w

(k)
a ). The variables ẑk’s are defined by

ẑk = z0z1 . . . zk−1, k = 1, . . . , �. (2.53)

Note the identity

∑

w∈Rz

f (w)H(w) =
(∫

|q(w)|=C1

−
∫

|q(w)|=C2

)
f (w)q(w)

q(w) − z

dw

2π i
, (2.54)

where C1 and C2 are two positive constants satisfying C2 < |z| < C1 such that
the function f (w) is analytic in {w : C2 < |q(w)| < C1}. The right hand side
is analytic as a function of z within C2 < |z| < |C1|. This identity implies that∑

w∈Rz
f (w)H(w) is also analytic as a function of z within C2 < |z| < |C1|. Using

this fact we obtain that G(z0, . . . , z�−1) is analytic as a function of ẑ1, . . . , ẑ� within
0 < |ẑ�| < · · · < |ẑ1| < rmax, and hence is analytic as a function of z0, . . . , z�−1 in
D0(rmax) ×D

�−1
0 . We remark that there are no poles from the Cauchy-type factor due

to the order of |ẑk |.
Our goal is to analytically extend the function G to D(rmax) × D

�−1 under certain
assumption. Below we introduce two more concepts related the assumption, then we
state the identity.

We call a sequence of variablesw
(k)
ik

, w
(k+1)
ik+1

, . . . , w
(k′)
ik′ aCauchy chainwith respect

to the vectors W (1), . . . ,W (�) and index sets I (1), J (2), I (2), J (3), . . . , I (�−1), J (�), if

(
w

(k)
ik

− w
(k+1)
ik+1

)
·
(
w

(k+1)
ik+1

− w
(k+2)
ik+2

)
· · · · ·

(
w

(k′−1)
ik′−1

− w
(k′)
ik′

)

appears as a factor of the denominator in
∏�−1

k=1 C
(
W (k)

I (k);W (k+1)
J (k+1)

)
. We allow any

single variable w
(k)
ik

to be a Cauchy chain as long as it is a coordinate of W (k).

We say q(w) dominates H
(
W (1), . . . ,W (�); z0, . . . , z�−1

)
if and only if the fol-

lowing function of w

q(w) · A
(
W (1), . . . ,W (�); z0, . . . , z�−1

)∣∣∣
w

(k)
ik

=w
(k+1)
ik+1

=···=w
(k′)
ik′ =w

(2.55)

is analytic at anyw ∈ R0 whenall other variables arefixed, herew
(k)
ik

, w
(k+1)
ik+1

, . . . , w
(k′)
ik′

is an arbitrary Cauchy chain with respect to W (1), . . . ,W (�) and I (1), J (2), I (2), J (3),

. . . , I (�−1), J (�). We remark that in [31], this concept was only defined when R0
contains one single point. Here we dropped this assumption.
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Proposition 2.10 If q(w) dominatesH
(
W (1), . . . ,W (�); z0, . . . , z�−1

)
, then the func-

tion G(z0, . . . , z�−1) can be analytically extended to D(rmax) × D
�−1. Moreover,

G(z0 = 0, z1 . . . , z�−1) is independent of q(w), and it equals to

�∏

k=2

nk∏

ik=1

[
1

1 − zk−1

∫

�
(k)
in

dw(k)
ik

2π i
− zk−1

1 − zk−1

∫

�
(k)
out

dw(k)
ik

2π i

]

n1∏

i1=1

∫

�(1)

dw(1)
i1

2π i
H
(
W (1), . . . ,W (�); 0, z1, . . . , z�−1

)
,

where �
(�)
out, . . . , �

(2)
out, �

(1), �
(2)
in , . . . , �

(�)
in are 2� − 1 nested contours in D each of

which encloses all the points inR0.

Proof of Proposition 2.10 WhenR0 = {0}, this is exactly the same as [31, Proposition
4.3]. On the other hand, their proof does not use the fact R0 = {0}, see [31, Section
6]. Hence Proposition 2.10 follows from the same argument.

One can similarly consider a two-region version of the above result. Assume that
DL and DR are two disjoint bounded regions on the complex plane. Let q(w) be a
function analytic in DL ∪ DR and define

Rz,L = {u ∈ DL : q(u) = z}, and Rz,R = {v ∈ DR : q(v) = z}.

Assume that both R0,L and R0,R are nonempty. The analog of (2.50) is

H
(
U (1), . . . ,U (�); V (1), . . . , V (�); z0, . . . , z�−1

)

:=
[

�−1∏

k=1

C
(
U (k)

I (k)
L

;U (k+1)

J (k+1)
L

)
C
(
V (k)

I (k)
R

; V (k+1)

J (k+1)
R

)]

· A
(
U (1), . . . ,U (�); V (1), . . . , V (�); z0, . . . , z�−1

)
,

whereA is analytic inDL\R0,L for each coordinate ofU (k), and inDR\R0,R for each
coordinate of V (k), 1 ≤ k ≤ �, and analytic for all (z0, . . . , z�) ∈ D(rmax) × D

�−1.
The analog of (2.51) is

G(z0, . . . , z�−1) =
∑

U (1)∈Rn1,L
ẑ1,L

V (1)∈Rn1,R
ẑ1,R

· · ·
∑

U (�)∈Rn�,L
ẑ�,L

V (�)∈Rn�,R
ẑ�,R

[
�∏

k=1

J (U (k))J (V (k))

]

H
(
U (1), . . . ,U (�); V (1), . . . , V (�); z0, . . . , z�−1

)

for (z0, . . . , z�) ∈ D0(rmax) × D
�−1
0 . We can similarly define Cauchy chains in DL

and inDR. We say q(w) dominatesH
(
U (1), . . . ,U (�); V (1), . . . , V (�); z0, . . . , z�−1

)
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if

q(u) · A
(
U (1), . . . ,U (�); V (1), . . . , V (�); z0, . . . , z�−1

)∣∣∣
u(k)
ik

=u(k+1)
ik+1

=···=u(k′)
ik′ =u

is analytic at any u ∈ R0,L for any Cauchy chain in DL, and

q(v) · A
(
U (1), . . . ,U (�); V (1), . . . , V (�); z0, . . . , z�−1

)∣∣∣
v

(k)
ik

=v
(k+1)
ik+1

=···=v
(k′)
ik′ =v

is analytic at any v ∈ R0,R for anyCauchy chain inDR. The analog of Proposition 2.10
is as follows.

Proposition 2.11 If q(w)dominatesH
(
U (1), . . . ,U (�); V (1), . . . , V (�); z0, . . . , z�−1

)
,

then the function G(z0, . . . , z�−1) can be analytically extended to D(rmax) × D
�−1.

Moreover, G(z0 = 0, z1 . . . , z�−1) is independent of q(w), and it equals to

�∏

k=2

nk,L∏

ik=1

[
1

1 − zk−1

∫

�
(k)
in,L

du(k)
ik

2π i
− zk−1

1 − zk−1

∫

�
(k)
out,L

du(k)
ik

2π i

] n1,L∏

i1=1

∫

�
(1)
L

du(1)
i1

2π i

�∏

k=2

nk,R∏

ik=1

[
1

1 − zk−1

∫

�
(k)
in,R

dv(k)
ik

2π i
− zk−1

1 − zk−1

∫

�
(k)
out,R

dv(k)
ik

2π i

] n1,R∏

i1=1

∫

�
(1)
R

dv(1)
i1

2π i

H
(
U (1), . . . ,U (�); V (1), . . . , V (�); 0, z1 . . . , z�−1

)
,

where �
(�)
out,L, . . . , �

(2)
out,L, �

(1)
L , �

(2)
in,L, . . . , �

(�)
in,L are 2� − 1 nested contours in DL

each of which encloses all the points in R0,L, and �
(�)
out,R, . . . , �

(2)
out,R, �

(1)
R , �

(2)
in,R,

. . . , �
(�)
in,R are 2� − 1 nested contours in DR each of which encloses all the points in

R0,R.

Proof of Proposition 2.11 The case when R0,L = {−1} and R0,R = {0} was the same
as [31, Proposition 4.4]. The proof for the more general case is also the same as the
proof of [31, Proposition 4.4], except that we apply Proposition 2.10 in this paper
instead of [31, Proposition 4.2].

2.4.2 Rewriting (2.5)

Now we want to apply Proposition 2.10 to Eq. (2.5) and rewrite the formula.
We first choose q(w) = wN (w + 1)L−N , where L is any fixed integer satisfying

L ≥ M + N . Recall the formula (2.5). Let H
(
W (2),W (1); z1, z0 = z

)
be a slight

modification of the integrand in (2.5). More precisely, let

H
(
W (2),W (1); z1, z0

)
= C

(
W (2);W (1)

)
A
(
W (2),W (1); z1, z0

)
, (2.56)

123
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where

A
(
W (2),W (1); z1, z0

)

:= �
(
W (1)

)
�
(
W (2)

)
f̂1
(
W (1)

)
f̂2
(
W (2)

)

[
Ĥ
(
W (1);W (2)

)
+ z0

N∏

i=1

w
(2)
i

w
(1)
i

Ĥ
(
W (1);W (2)

)]
. (2.57)

Note that when z0 = z, H
(
W (2),W (1); z1, z0

)
is exactly the integrand of (2.5).

AssumeD is a bounded region enclosing both 0 and−1. It is obvious that the function
A is well defined and analytic for all w(1)

i , w
(2)
i ∈ D \ {1, 0}, 1 ≤ i ≤ N , and for all

(z1, z0) ∈ D(rmax) × D, here we choose

rmax = NN (L − N )L−N/LL . (2.58)

We remark that we have a different ordering of indices compared to the original
formulas (2.50) and (2.51). This is because we want to make the indices of f̂1 and f̂2
more natural by using 1 to label the parameters appearing in the first part of the last
passage time and using 2 to label the parameters appearing in the second part of the last
passage time. On the other hand, we also want tomake our indices in Propositions 2.10
and 2.11 consistent with [31] so the readers can compare the results easily. These
different orderings might be confusing but they only appear in this technical proof.
We will keep reminding readers if needed.

The sum we are considering is

G(z1, z0) =
∑

W (2)∈RN
ẑ2

∑

W (1)∈RN
ẑ1

J
(
W (1)

)
J
(
W (2)

)
H
(
W (2),W (1); z1, z0

)
, (2.59)

where ẑ2 = z1 and ẑ1 = z1z0. We assume that z1 ∈ D0(rmax) and z0 ∈ D0 hence
0 < |ẑ2| < |ẑ1| < rmax.

We need to verify that Proposition 2.10 is applicable for this function (2.59). All

other assumptions are trivial, except for the one that q(w) dominatesH
(
W (2),W (1);

z1, z0
)
. We verify it below.

There are only three types of Cauchy chains. The chains of single element w(1)
i1

or

w
(2)
i2

, and the chain of two elements w
(2)
i2

, w
(1)
i1

. For the first type of chains, we need to

verify q(w
(1)
i1

)A
(
W (2),W (1); z1, z0

)
is analytic at 0 and−1. This follows from the fact

that f̂1(w)q(w)w−1 = (w + 1)L−N−mwn−1es1w is an entire function. Similarly we
can verify it for the second type ofCauchy chains. Finally, for the chain of two elements
w

(2)
i2

, w
(1)
i1

, we need to show q(w)A
(
W (2),W (1); z1, z0

)∣∣
w

(2)
i2

=w
(1)
i1

=w
is analytic at−1

and 0. It follows from the fact that f̂1(w) f̂2(w)q(w) = (w + 1)L−N−Me(s1+s2)w is
entire.
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So we can apply Proposition 2.10, and obtain

G(0, z0 = z) =
N∏

i1=1

(
−z

1 − z

∫

�out

dw(1)
i1

2π i
+ 1

1 − z

∫

�in

dw(1)
i1

2π i

)
N∏

i2=1

∫

�

dw(2)
i2

2π i

f̂1
(
W (1)

)
f̂2
(
W (2)

) (�
(
W (1)

))2 (
�
(
W (2)

))2

�
(
W (2);W (1)

)

·
(
Ĥ
(
W (1);W (2)

)
+ z

∏N
i2=1 w

(2)
i2∏N

i1=1 w
(1)
i1

Ĥ
(
W (2);W (1)

))
.

Hence we have an alternate expression for (2.5)

p(s1, s2;m, n, M, N ) = 1

(N !)2
∮

0
G(0, z0 = z)

(1 − z)N−2dz

2π izn
. (2.60)

2.4.3 Reformulation to a Fredholm-determinant-like expansion

In this subsubsection, we want to evaluate the summation (2.59) in a different way.
Recall q(w) = wN (w + 1)L−N and Rz are the roots of q(w) = z. This equation is
called the Bethe equation, and its roots are called the Bethe roots. It is known [13] that
when |z| < rmax = NN (L − N )L−N/LL , the set Rz can be split into two different
subsets Rz,L and Rz,R satisfying |Rz,L| = L − N and |Rz,R| = N . Intuitively, each
root inRz,L (Rz,R, respectively) can be viewed as a continuous function of z starting
from −1 (0, respectively) when z = 0. We denote

DL = ∪|z|<rmaxRz,L, and DR = ∪|z|<rmaxRz,R, (2.61)

and
qz,L(w) =

∏

u∈Rz,L

(w − u), and qz,R(w) =
∏

v∈Rz,L

(w − v) (2.62)

whichwill be used in later computations.Note thatDL andDR are twodisjoint bounded
regions, and qz,L(w)qz,R(w) = q(w) − z.

We will rewrite the summation (2.59) by treating w
(k)
ik

∈ Rẑk ,L and w
(k)
ik

∈ Rẑk ,R
separately. We first observe that, by checking the formulas (2.56) and (2.57), the
summand is invariant when we permute the coordinates of W (k), k = 1, 2. We also
observe that the summand is zero if any two coordinates of W (k) are equal due to the
Cauchy-type factor. Therefore we only need to consider the summation forW (k) with
different coordinates.

Assume that nk coordinates inW (k) are chosen fromRẑk ,L. Then the other N − nk
coordinates are chosen from Rẑk ,R. Note that Rẑk ,R has exactly N elements, hence

there are nk elements which do not appear inW (k). We denote V (k) = (v
(k)
1 , . . . , v

(k)
nk )

the vector formed by these elements with any given order. We also denote U (k) =
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(u(k)
1 , . . . , u(k)

nk ) the vector formed by the coordinates ofW (k) inRẑk ,L. Note the invari-
ance property we observed above. We write

∑

W (2)∈RN
ẑ2

∑

W (1)∈RN
ẑ1

= (N !)2
N∑

n1,n2=0

1

(n1!)2(n2!)2
∑

U (2)∈Rn2
ẑ2,L

V (2)∈Rn2
ẑ2,R

∑

U (1)∈Rn1
ẑ1,L

V (1)∈Rn1
ẑ1,R

, (2.63)

where the factors N !, nk ! come from the number of ways to permute the coordinates
of W (k), U (k) (and V (k)) respectively. Now we need to rewrite the summand in terms
of U (k) and V (k), k = 1, 2. Such a rewriting was mostly done in [13, 14] except for
one extra factor. We will write down the formulas without proofs except for the one
involving the extra factor.

Recall the notation conventions (1.4), (1.5) and (1.6). We write, by simply inserting
the coordinates,

f̂k
(
W (k)

)
= f̂k

(
U (k)

)

f̂k
(
V (k)

) · f̂k
(
Rẑk ,R

)
, J

(
W (k)

)
= J

(
U (k)

)

J
(
V (k)

) ·J (Rẑk ,R
)
, k = 1, 2.

We also have (see equation (4.43) of [14])

�
(
W (k)

)2 = (−1)N (N−1)/2�
(
U (k)

)2
�
(
V (k)

)2

�
(
U (k); V (k)

)2
q2ẑk ,R

(
U (k)

)

(
q ′
ẑk ,R

(
V (k)

))2 · q ′
ẑk ,R

(
Rẑk ,R

)

and (see equation (4.44) of [14])

�
(
W (2);W (1)

)
= �

(
Rẑ2,R;Rẑ1,R

) �
(
U (2);U (1)

)
�
(
V (2); V (1)

)

�
(
U (2); V (1)

)
�
(
V (2);U (1)

)

· qẑ1,R
(
U (2)

)
qẑ2,R

(
U (1)

)

qẑ1,R
(
V (2)

)
qẑ2,R

(
V (1)

) .

We need to further rewrite the above expressions so that we can apply Proposition 2.11
later. Denote

h(w; z) :=
{
qz,R(w)/wN , w ∈ DL,

qz,L(w)/(w + 1)L−N , w ∈ DR.

It is easy to check that h(w; z) is analytic and nonzero for w ∈ DL ∪ DR and for
z ∈ D(rmax). Especially we have h(w; 0) = 1 for all w ∈ DL ∪DR. See equation (50)
in [31] and the discussions below.

One can write (see equation (4.51) of [14])

q ′
z,R(v) = vN

J (v)h(v; z) , v ∈ Rz,R.
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and (see (4.49) of [14])

qz,R(v′) = z′ − z

qz,L(v′)
= z′ − z

(v′ + 1)L−Nh(v′; z) , v′ ∈ Rz′,R.

Note that �
(
Rẑ2,R;Rẑ1,R

) = qẑ1,R
(
Rẑ2,R

)
. After inserting all these formulas and

simplifying the expression, we end up with

J
(
W (1)

)
J
(
W (2)

)
f̂1
(
W (1)

)
f̂2
(
W (2)

) (�
(
W (1)

))2 (
�
(
W (2)

))2

�
(
W (2);W (1)

)

= K(ẑ2, ẑ1) · ẑn1 ẑ
N−n
2

(ẑ2 − ẑ1)N

·
[

2∏

k=1

(�(U (k)))2(�(V (k)))2

(�(U (k); V (k)))2

· fk(U
(k); sk)

fk(V (k); sk) ·
(
h(U (k); ẑk)

)2 ·
(
h(V (k); ẑk)

)2 · J (U (k))J (V (k))

]

·
[

�(U (2); V (1))�(V (2);U (1))

�(U (2);U (1))�(V (2); V (1))
· (1 − ẑ2/ẑ1)n1(1 − ẑ1/ẑ2)n2

h(U (2); ẑ1)h(V (2); ẑ1)h(U (1); ẑ2)h(V (1); ẑ2)

]
,

(2.64)

where the functions fk(w; sk) = f̂k(w)wN , k = 1, 2, are defined in (1.9), and

K(ẑ2, ẑ1) = 1

ẑn1

∏

v∈Rẑ1,R

(v + 1)−mvnes1v

h(v; ẑ1) · 1

ẑN−n
2

∏

v∈Rẑ2,R

(v + 1)−M+m+L−NvN−nes2v

h(v; ẑ2)/h(v; ẑ1)

= (−1)N (L−1)
∏

v∈Rẑ1,R

(v + 1)−mes1v

h(v; ẑ1)
∏

u∈Rẑ1,L

1

un

∏

v∈Rẑ2,R

(v + 1)−M+m+L−N es2v

h(v; ẑ2)/h(v; ẑ1)
∏

u∈Rẑ2,L

1

uN−n
.

(2.65)
We observe that K(ẑ2, ẑ1) is analytic for both ẑ2 ∈ Drmax and ẑ1 ∈ Drmax since h
is analytic and nonzero, and z−1∏

v∈Rz,R
v = (−1)L−1∏

u∈Rz,L
u−1 is analytic for

z ∈ Drmax . Moreover, we have K(0, 0) = 1.
As we mentioned before, there is an extra factor in the summand of (2.63) which

comes from (2.57),

Ĥ
(
W (1);W (2)

)
+ z0

N∏

i=1

w
(2)
i

w
(1)
i

Ĥ
(
W (2);W (1)

)
.
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Here Ĥ is defined in (2.7). Recall that {w(k)
i : 1 ≤ i ≤ N } = Rẑk ,R ∪ {u(k)

i : 1 ≤ i ≤
nk} \ {v(k)

i : 1 ≤ i ≤ nk}. We write, for each k, k′ ∈ {1, 2},

N∑

i=1

(
w

(k)
i − w

(k′)
i

)
=

nk∑

ik=1

(
u(k)
ik

− v
(k)
ik

)
−

nk′∑

i ′
k′=1

(
u(k′)
i ′
k′

− v
(k′)
i ′
k′

)
+ S1(ẑk) − S1(ẑk′)

and

N∑

i=1

(
(w

(k)
i )2 − (w

(k′)
i )2

)
=

nk∑

ik=1

(
(u(k)

ik
)2 − (v

(k)
ik

)2
)

−
nk′∑

i ′
k′=1

(
(u(k′)

i ′
k′

)2 − (v
(k′)
i ′
k′

)2
)

+ S2(ẑk) − S2(ẑk′),

where
Sk(ẑ) :=

∑

v∈Rẑ,R

vk, k = 1, 2 (2.66)

is analytic in ẑ ∈ Drmax . Moreover, it is easy to see that Sk(0) = 0 for both k = 1, 2.
We also write

z0

N∏

i=1

w
(2)
i

w
(1)
i

= ẑ1
ẑ2

N∏

i=1

w
(2)
i

w
(1)
i

=
n1∏

i1=1

v
(1)
i1

u(1)
i1

n2∏

i2=1

u(2)
i2

v
(2)
i2

· π(ẑ2)

π(ẑ1)
, (2.67)

where

π(ẑ) := 1

ẑ

∏

v∈Rẑ,R

v = (−1)L−1
∏

u∈Rẑ,L
u

is analytic in Drmax . Moreover, it is easy to see that π(0) = (−1)N−1.
Combing the above calculations we have

Ĥ
(
W (1);W (2)

)
+ z0

N∏

i=1

w
(2)
i

w
(1)
i

Ĥ
(
W (1);W (2)

)
= H̃(U (1),U (2); V (1), V (2); ẑ1, ẑ2)

(2.68)
for some function H̃ which is analytic for all u(1)

i1
, u(2)

i2
∈ DL, v

(1)
i1

, v
(2)
i2

∈ DR \ {0},
1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, and for ẑ1, ẑ2 ∈ Drmax . Moreover, we have

H̃(U (1),U (2); V (1), V (2); 0, 0) = H(U (1),U (2); V (1), V (2)), (2.69)

where H is defined in (1.10).
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Now we combine (2.64) and (2.68), and note (2.63). Note ẑ1/ẑ2 = z0. We have

1

(N !)2G(z1, z0)
(1 − z0)N

zn0

= K(ẑ2, ẑ1)
N∑

n1,n2=0

(1 − z−1
0 )n1(1 − z0)n2

(n1!)2(n2!)2
∑

U (2)∈Rn2
ẑ2,L

V (2)∈Rn2
ẑ2,R

∑

U (1)∈Rn1
ẑ1,L

V (1)∈Rn1
ẑ1,R

C(U (2);U (1))C(V (2); V (1))

·
[

2∏

k=1

(�(U (k)))(�(V (k)))

(�(U (k); V (k)))2
· fk(U (k); sk)
fk(V (k); sk) ·

(
h(U (k); ẑk)

)2

·
(
h(V (k); ẑk)

)2 · J (U (k))J (V (k))

]

·
[
�(U (2); V (1))�(V (2);U (1)) · H̃(U (1),U (2); V (1), V (2); ẑ1, ẑ2)

h(U (2); ẑ1)h(V (2); ẑ1)h(U (1); ẑ2)h(V (1); ẑ2)

]
.

(2.70)

2.4.4 Completing the proof

Now we are ready to complete the proof. We will take z1 → 0 on both sides of (2.70).
Recall that we have already proven that G(z1, z0) is analytic for (z1, z0) ∈ Drmax × D

and G(0, z0) is well defined. For the right hand side, recall ẑ2 = z1 and ẑ1 = z1z0.
When z1 → 0, both ẑ1 and ẑ2 go to 0. We also recall K(0, 0) = 1.

For the summand over U (2), V (2),U (1), V (1), it is a Cauchy type summation as
we discussed in Proposition 2.11. Our previous discussions on the functions h and H̃
implies that this summand satisfies the analyticity assumption. The proof that q(w)

dominates the corresponding factor in this summand is also similar to the previous
case discussed in Sect. 2.4.2. The only minor difference is that we have a factor∏

i1 v
i (1)1

∏
i2(v

(2)
i2

)−1 in H̃ but the proof does not change even with this factor. Hence

we know that this summation is also analytic for (z1, z0) ∈ Drmax × D. Moreover, by
inserting z1 = 0 in the equation, we obtain

1

(N !)2G(0, z0)
(1 − z0)N

zn0
=

N∑

n1,n2=0

(1 − z−1
0 )n1(1 − z0)n2

(n1!)2(n2!)2
n1∏

i1=1

(
1

1 − z0

∫

�L,in

du(1)
i1

2π i
− z0

1 − z0

∫

�L,out

du(1)
i1

2π i

)

(
1

1 − z0

∫

�R,in

dv(1)
i1

2π i
− z0

1 − z0

∫

�R,out

dv(1)
i1

2π i

)

123
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·
n2∏

i2=1

∫

�L

du(2)
i2

2π i

∫

�L

dv(2)
i2

2π i
C(U (2);U (1))C(V (2); V (1))

2∏

k=1

(�(U (k)))(�(V (k)))

(�(U (k); V (k)))2
· fk(U (k); sk)
fk(V (k); sk)

·�(U (2); V (1))�(V (2);U (1)) · H(U (1),U (2); V (1), V (2)). (2.71)

Inserting it in (2.60) and replacing n0, n1 by k1, k2, we obtain

p(s1, s2;m, n, M, N ) =
∮

0

dz

2π i(1 − z)2
∑

k1,k2≥0

1

(k1!k2!)2
k1∏

i1=1

(
1

1 − z

∫

�L,in

du(1)
i1

2π i
− z

1 − z

∫

�L,out

du(1)
i1

2π i

)

(
1

1 − z

∫

�R,in

dv(1)
i1

2π i
− z

1 − z

∫

�R,out

dv(1)
i1

2π i

)

·
k2∏

i2=1

∫

�L

du(2)
i2

2π i

∫

�R

dv(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1
· f1(U (1); s1) f2(U (2); s2)
f1(V (1); s1) f2(V (2); s2)

· H(U (1),U (2); V (1), V (2))

·
2∏

�=1

(
�(U (�))

)2 (
�(V (�))

)2
(
�(U (�); V (�))

)2 · �(U (1); V (2))�(V (1);U (2))

�(U (1);U (2))�(V (1); V (2))
. (2.72)

Note that when k1 = 0, the summand is analytic for z = 0 hence the integral of
z vanishes. When k2 = 0, there is no u(2)

i2
or v

(2)
i2

variable, hence the u(1)
i1

and v
(1)
i1

contours can be deformed to �L and �R respectively. As a result, the z integral can
be separately written as

∮

0

dz

2π i(1 − z)2

(
1 − 1

z

)k1
=
{

−1, k1 = 1,

0, k1 = 0, or k1 ≥ 2.

However, it is direct to check that H(U (1),U (2); V (1), V (2)) = 0 when k1 = 1 and
k2 = 0. Therefore the summand when k2 = 0 also vanishes. Thus we can replace the
sum

∑
k1,k2≥0 by

∑
k1,k2≥1, and arrive at the formula (1.7).

3 Asymptotic analysis and proof of Theorem 1.3

In this section, we will perform asymptotic analysis for the formulas obtained in
Theorem 1.1 and prove Theorem 1.3. The main technical result of this section is as
follows.
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Proposition 3.1 Suppose α > 0, γ ∈ (0, 1) are fixed constants. Assume that

M = [αN ],
m = [γαN + x1α

2/3(1 + √
α)2/3N 2/3],

n = [γ N + x2α
−1/3(1 + √

α)2/3N 2/3],
t1 = d((1, 1), (m, n)) + t1 · α−1/6(1 + √

α)4/3N 1/3,

t2 = d((m + 1, n), (M, N )) + t2 · α−1/6(1 + √
α)4/3N 1/3,

t ′2 = d((m, n + 1), (M, N )) + t2 · α−1/6(1 + √
α)4/3N 1/3,

(3.1)

for some real numbers x1, x2. Then

P
(
(m, n), (m + 1, n) ∈ G(1,1)(M, N ), L(1,1)(m, n) ≥ t1, L(m+1,n)(M, N ) ≥ t2

)

= α1/3(1 + √
α)−2/3N−2/3

∫ ∞

t1

∫ ∞

t2
p(s1, s2, x = x2 − x1; γ )ds2ds2

+ O(N−1(log N )5),

(3.2)
and similarly

P
(
(m, n), (m, n + 1) ∈ G(1,1)(M, N ), L(1,1)(m, n) ≥ t1, L(m,n+1)(M, N ) ≥ t ′2

)

= α−2/3(1 + √
α)−2/3N−2/3

∫ ∞

t1

∫ ∞

t2
p(s1, s2, x = x2 − x1; γ )ds2ds1

+ O(N−1(log N )5)

(3.3)
as N becomes large, and the O(N−1(log N )5) errors are uniformly for x1, x2 in any
given compact set and for t1, t2 in any given set with a finite lower bound.

The proof of Proposition will be provided later in this section. Below we prove
Theorem 1.3 assuming Proposition 3.1.

Recall that π is an up/left lattice path from (m, n) to (m′, n′). See Fig. 4 for an
illustration. We first realize that there are different types of lattice points (a, b) ∈ π

depending on whether (a + 1, b) and (a, b + 1) are on π or not. We call (a, b) ∈ π

is a horizontal point if (a, b + 1) /∈ π , and a vertical point if (a + 1, b) /∈ π . Note
there are outer corners which are both horizontal and vertical points, and inner corners
which are neither horizontal nor vertical points. We also note that an exit point pmust
be a horizontal point p = (a, b) with p+ = (a, b + 1), or a vertical point p = (a, b)
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One-point distribution of the geodesic in directed last…

Fig. 4 An illustration of the
sum (3.4). The square-shaped
points are vertical points, and
the round-shaped points are
horizontal points. The sum can
be viewed as a Riemann sum
along the axis x, where the
horizontal points contribute to
the spring parts and the vertical
points contribute to the thick part

(m,n)

(m ,n )

scaled x

with p+ = (a + 1, b). We write

P

⎛

⎝
G(1,1)(M, N ) intersects π, and exits π at some point p = (a, b),
and L(1,1)(p) ≥ t1 = d((1, 1),p) + t1 · α−1/6(1 + √

α)4/3N 1/3,

and Lp+(M, N ) ≥ t2 = d(p+, (M, N )) + t2 · α−1/6(1 + √
α)4/3N 1/3

⎞

⎠

=
∑

(a,b)∈π is a vertical point

P

⎛

⎝
(a, b) ∈ G(1,1)(M, N ) and (a + 1, b) ∈ G(1,1)(M, N ),

and L(1,1)(a, b) ≥ d((1, 1), (a, b)) + t1 · α−1/6(1 + √
α)4/3N 1/3,

and L(a+1,b)(M, N ) ≥ d((a + 1, b), (M, N )) + t2 · α−1/6(1 + √
α)4/3N 1/3

⎞

⎠

+
∑

(a,b)∈π is a horizontal point

P

⎛

⎝
(a, b) ∈ G(1,1)(M, N ) and (a, b + 1) ∈ G(1,1)(M, N ),

and L(1,1)(a, b) ≥ d((1, 1), (a, b)) + t1 · α−1/6(1 + √
α)4/3N 1/3,

and L(a,b+1)(M, N ) ≥ d((a, b + 1), (M, N )) + t2 · α−1/6(1 + √
α)4/3N 1/3

⎞

⎠ .

(3.4)
Now we apply Proposition 3.1 and view the right hand side of (3.4) as a Riemann

sumof the quantity
∫∞
t1

∫∞
t2

p(s1, s2, x; γ )ds2ds1 over an interval x ∈ [x2−x1, x ′
2−x ′

1],
plus an error termsO(N−1(log N )5)×O(N 2/3) = O(N−1/3(log N )5). See Fig. 4 for
an illustration. It is easy to see from the definition that

∫∞
t1

∫∞
t2

p(s1, s2, x; γ )ds2ds1
is continuous in x. Thus the Riemman sum converges to the desired integral in (1.16),
and we complete the proof of Theorem 1.3.

The remaining part of this section is the proof of Proposition 3.1. We first realize
that (3.3) and (3.2) are equivalent. In fact, if we switch rows and columns and replace
α by α−1 in the Eq. (3.3), we obtain (3.2) with −x instead of x appearing on the right
hand side. Note that p(s1, s2, x; γ ) = p(s1, s2,−x; γ ), see Remark 1.6. We hence
obtain the equivalence of (3.3) and (3.2). It remains to prove one Eq. (3.2).

Using Theorem 1.1, we write the left hand side of (3.2) as

P

⎛

⎝
(m, n), (m + 1, n) ∈ G(1,1)(M, N ),

and L(1,1)(m, n) ≥ t1,
and L(m+1,n)(M, N ) ≥ t2

⎞

⎠
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=
∮

0

dz

2π i(1 − z)2
∑

k1,k2≥1

1

(k1!k2!)2 T̂k1,k2(z; t1, t2;m, n, M, N ), (3.5)

where

T̂k1,k2 (z; t1, t2;m, n, M, N )

=
∫ ∞
t1

∫ ∞
t2

Tk1,k2 (z; s1, s2;m, n, M, N )ds2ds1

=
k1∏

i1=1

⎛

⎝ 1

1 − z

∫

�L,in

du(1)
i1

2π i
− z

1 − z

∫

�L,out

du(1)
i1

2π i

⎞

⎠

⎛

⎝ 1

1 − z

∫

�R,in

dv(1)
i1

2π i
− z

1 − z

∫

�R,out

dv(1)
i1

2π i

⎞

⎠

·
k2∏

i2=1

∫

�L

du(2)
i2

2π i

∫

�R

dv(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1

· f1(U
(1); t1) f2(U (2); t2)

f1(V (1); t1) f2(V (2); t2)
· 1
∏2

�=1
∑k�

i�=1(u
(�)
i�

− v
(�)
i�

)
· H(U (1),U (2); V (1), V (2))

·
2∏

�=1

(
�(U (�))

)2 (
�(V (�))

)2

(
�(U (�); V (�))

)2 · �(U (1); V (2))�(V (1);U (2))

�(U (1);U (2))�(V (1); V (2))
, (3.6)

with the functions f1(w; t1) and f2(w; t2) defined in (1.9), and the function H defined
by (1.10). We remark that in the above equation we evaluated the integral over s1 and
s2 using the fact Reu(�)

i�
< Rev(�)

i�
due to the order of the contours.

Similarly, we can write

∫ ∞

t1

∫ ∞

t2
p(s1, s2, x; γ )ds2ds1 =

∮

0

dz

2π i(1 − z)2
∑

k1,k2≥1

1

(k1!k2!)2 T̂k1,k2(z; t1, t2, x; γ )

(3.7)
with

T̂k1,k2(z; t1, t2, x; γ ) =
∫ ∞

t1

∫ ∞

t2
Tk1,k2(z; s1, s2, x; γ )ds2ds1

=
k1∏

i1=1

(
1

1 − z

∫


L,in

dξ (1)
i1

2π i
− z

1 − z

∫


L,out

dξ (1)
i1

2π i

)

(
1

1 − z

∫


R,in

dη(1)
i1

2π i
− z

1 − z

∫


R,out

dη(1)
i1

2π i

)

·
k2∏

i2=1

∫


L

dξ (2)
i2

2π i

∫


R

dη(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1
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· f1(ξ
(1); t1)f2(ξ (2); t2)

f1(η(1); t1)f2(η(2); t2) · 1
∏2

�=1
∑k�

i�=1(ξ
(�)
i�

− η
(�)
i�

)

·H(ξ (1), ξ (2); η(1), η(2)) ·
2∏

�=1

(
�(ξ (�))

)2 (
�(η(�))

)2

(
�(ξ (�); η(�))

)2 · �(ξ (1); η(2))�(η(1); ξ (2))

�(ξ (1); ξ (2))�(η(1); η(2))
,

(3.8)

where the functions f1(ζ ; t) and f2(ζ ; t) are defined in (1.24), and the function H is
defined in (1.25). We remark that in the above calculations we exchanged the integrals
and the summations. We need to justify that they are exchangeable. It is tedious but
not hard to check that
∫ ∞

t1

∫ ∞

t2

∑

k1,k2≥1

1

(k1!k2!)2
∣∣Tk1,k2(z; s1, s2;m, n, M, N )

∣∣ |ds2||ds1| < C(z) < ∞
(3.9)

and
∫ ∞

t1

∫ ∞

t2

∑

k1,k2≥1

1

(k1!k2!)2
∣∣Tk1,k2(z; s1, s2, x; γ )

∣∣ |ds2||ds1| < C(z) < ∞ (3.10)

for some constants C(z) and C(z) which only depend on z. Moreover, C(z) and C(z)
are both continuous in z (except at z = 0 or−1) hence they are uniformly bounded for
|z| =constant that lies in (0, 1). Here we omit the proof of these inequalities since it
is similar to that of Lemma 3.3. Using these inequalities we verify that the exchanges
of integrals and summations are valid and equations (3.5) and (3.7) hold.

To proceed, we need to compare (3.5) and (3.7) term by term and estimate their
difference. There is a need to see the dependence of the error on the parameters. We
will fix the contour of z to be a circle with fixed radius |z| ∈ (0, 1). We also introduce
the following notation.

Notation 3.2 we use the calligraphic font C (or Ci with some index i) to denote a
positive constant term (independent of N) satisfying the following three conditions:

(1) C is independent of k1 and k2.
(2) C is continuous in z.
(3) C is continuous in t1 and t2, and decays exponentially as t1 → ∞ or t2 → ∞.

Throughout this whole section, we will use C as described in Notation 3.2, and the
regular C as a constant independent of the parameters.

We will show the following two lemmas in subsequent subsections.

Lemma 3.3 We have the estimate
∣∣∣T̂k1,k2(z; t1, t2, x; γ )

∣∣∣ ≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2Ck1+k2

1

for all k1, k2 ≥ 1, where C1 is a positive constant as described in Notation 3.2.
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Lemma 3.4 With the same assumptions as in Proposition 3.1, there is a constant C2
as described in Notation 3.2 such that

∣∣∣N 2/3T̂k1,k2(z; t1, t2;m, n, M, N ) − α1/3(1 + √
α)−2/3T̂k1,k2(z; t1, t2, x; γ )

∣∣∣

≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2Ck1+k2

2 N−1/3(log N )5

(3.11)
for all k1, k2 ≥ 1 as N becomes sufficiently large.

Now we use these two lemmas to prove (3.2). We first use and realize that the right
hand side of (3.7) is uniformly bounded by

∮

0

∣∣∣∣
dz

2π i(1 − z)2

∣∣∣∣
∑

k1,k2≥1

1

(k1!k2!)2
∣∣∣T̂k1,k2(z; t1, t2, x; γ )

∣∣∣

≤
∮

0

∣∣∣∣
dz

2π i(1 − z)2

∣∣∣∣
∑

k1,k2≥1

1

(k1!k2!)2 k
k1/2
1 kk2/22 (k1 + k2)

(k1+k2)/2Ck1+k2
1 < ∞,

where the last inequality is due to the Stirling’s approximation formula k! ≈
kke−k

√
2πk for large k.

Similarly we know that

∮

0

∣∣∣∣
dz

2π i(1 − z)2

∣∣∣∣
∑

k1,k2≥1

1

(k1!k2!)2
∣∣∣N 2/3T̂k1,k2(z; t1, t2;m, n, M, N )

−α1/3(1 + √
α)−2/3T̂k1,k2(z; t1, t2, x; γ )

∣∣∣

≤
∮

0

∣∣∣∣
dz

2π i(1 − z)2

∣∣∣∣
∑

k1,k2≥1

1

(k1!k2!)2 k
k1/2
1 kk2/22 (k1 + k2)

(k1+k2)/2Ck1+k2
2 N−1/3(log N )5 < ∞

for sufficiently large N .
Combining the above two estimates we also know the right hand side of (3.5)

multiplied by N 2/3 is also uniformly bounded by the sum of the above two bounds

N 2/3
∮

0

∣∣∣∣
dz

2π i(1 − z)2

∣∣∣∣
∑

k1,k2≥1

1

(k1!k2!)2
∣∣∣T̂k1,k2(z; t1, t2;m, n, M, N )

∣∣∣

≤
∮

0

∣∣∣∣
dz

2π i(1 − z)2

∣∣∣∣
∑

k1,k2≥1

1

(k1!k2!)2 k
k1/2
1 kk2/22 (k1 + k2)

(k1+k2)/2

·
(
α1/3(1 + √

α)−2/3Ck1+k2
1 + Ck1+k2

2 N−1/3(log N )5
)

< ∞.
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The above estimates imply that we can rewrite, using (3.5) and (3.7),

N 2/3
P

⎛

⎝
(m, n), (m + 1, n) ∈ G(1,1)(M, N ),

and L(1,1)(m, n) ≥ t1,
and L(m+1,n)(M, N ) ≥ t2

⎞

⎠

− α1/3(1 + √
α)−2/3

∫ ∞

t1

∫ ∞

t2
p(s1, s2, x; γ )ds2ds1

=
∮

0

dz

2π i(1 − z)2
∑

k1,k2≥1

1

(k1!k2!)2
(
N 2/3T̂k1,k2(z; t1, t2;m, n, M, N )

−α1/3(1 + √
α)−2/3T̂k1,k2(z; t1, t2, x; γ )

)
,

which is uniformly bounded by, using Lemma 3.4,

∮

0

∣∣∣∣
dz

2π i(1 − z)2

∣∣∣∣
∑

k1,k2≥1

1

(k1!k2!)2 k
k1/2
1 kk2/22 (k1 + k2)

(k1+k2)/2Ck1+k2
2 N−1/3(log N )5

= O(N−1/3(log N )5)

for sufficiently large N . Thus (3.2) holds.
It remains to prove the two Lemmas 3.3 and 3.4. Note that if we did not

have the factors 1∏2
�=1

∑k�
i�=1(u

(�)
i�

−v
(�)
i�

)
and H(U (1),U (2); V (1), V (2)) in the inte-

grand of Tk1,k2(z; t1, t2;m, n, M, N ), and the factors 1∏2
�=1

∑k�
i�=1(ξ

(�)
i�

−η
(�)
i�

)
and H

(ξ (1), ξ (2); η(1), η(2)) in the integrand of T̂k1,k2(z; t1, t2, x; γ ), the right hand sides
of both (3.5) and (3.7) could be viewed as expansions of Fredholm determinants, see
[31, Proposition 2.9]. They have similar structures as the expansion of the two-time
distribution formulas in TASEP. Moreover, the two lemmas above are indeed analo-
gous to Lemmas 7.1 and 7.2 in [31]. So it is not surprising that we can modify the
standard asymptotic analysis for Fredholm determinants to prove these two lemmas.
However, we do need some tedious calculations to incorporate the extra factors, and
much finer estimates in Lemmas 3.3 and 3.4 compared with the analogs in [31]. Our
proof will also be illustrative to prove similar statements in our follow-up papers.

We will prove the Lemmas 3.3 and 3.4 in the following two subsections.

3.1 Proof of Lemma 3.3

In this subsection we prove Lemma 3.3. Some estimates we use here will also appear
in the proof of the Lemmas 3.4 in the next subsection.

We first estimate the factor

B(ξ (1), η(1); ξ (2), η(2)) :=
2∏

�=1

(
�(ξ (�))

)2 (
�(η(�))

)2

(
�(ξ (�); η(�))

)2 · �(ξ (1); η(2))�(η(1); ξ (2))

�(ξ (1); ξ (2))�(η(1); η(2))
.
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Observe that this factor is the product of the following three Cauchy determinants up
to a sign

B1 = det

⎡

⎣ 1

ξ
(1)
i1

− η
(1)
j1

⎤

⎦
k1

i1, j1=1

= (−1)k1(k1−1)/2 �(ξ (1))�(η(1))

�(ξ (1); η(1))
,

B2 = det

⎡

⎣ 1

ξ
(2)
i2

− η
(2)
j2

⎤

⎦
k2

i2, j2=1

= (−1)k2(k2−1)/2 �(ξ (2))�(η(2))

�(ξ (2); η(2))
,

B3 = det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

· · · 1

ξ
(1)
i1

− η
(1)
j1

· · · · · · 1

ξ
(1)
i1

− ξ
(2)
j2

· · ·

...
...

...
...

· · · 1

η
(2)
i2

− η
(1)
j1

· · · · · · 1

η
(2)
i2

− ξ
(2)
j2

· · ·

...
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1≤i1, j1≤k1
1≤i2, j2≤k2

= (−1)k1(k1−1)/2+k2(k2+1)/2 �(ξ (1))�(η(1))

�(ξ (1); η(1))
· �(ξ (2))�(η(2))

�(ξ (2); η(2))
·

�(ξ (1); η(2))�(η(1); ξ (2))

�(ξ (1); ξ (2))�(η(1); η(2))
.

By applying the Hadamard’s inequality, we have

|B1| ≤
k1∏

i1=1

√√√√√
k1∑

j1=1

∣∣∣ξ (1)
i1

− η
(1)
j1

∣∣∣
−2 ≤ kk1/21

k1∏

i1=1

1

dist(ξ (1)
i1

)
,

where dist(ξ) denotes the shortest distance from the point ξ to the contours

L,out, 
L, 
L,in, 
R,out, 
R, 
R,in except for the one contour which ξ belongs to.
For example, if ξ

(1)
i1

∈ 
L,out, then dist(ξ
(1)
i1

) is the distance from ξ
(1)
i1

to 
L ∪ 
R,out,
where we ignored the contours 
L,out, 
L,in, 
R, and 
R,in since 
L,out is the contour
ξ

(1)
i1

belongs to, and the other three contours are farther to the point ξ
(1)
i1

compared
with 
L and 
R,out.

Similarly, we have

B2 ≤ kk2/22

k2∏

i2=1

1

dist(η(2)
i2

)
,
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One-point distribution of the geodesic in directed last…

and

B3 ≤ (k1 + k2)
(k1+k2)/2

k1∏

j1=1

1

dist(η(1)
j1

)

k2∏

j2=1

1

dist(ξ (2)
j2

)
.

We combine the above estimates and obtain

∣∣∣B(ξ (1), η(1); ξ (2), η(2))

∣∣∣

≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2

k1∏

i1=1

1

dist(ξ (1)
i1

)

k2∏

i2=1

1

dist(η(2)
i2

)

k1∏

j1=1

1

dist(η(1)
j1

)

k2∏

j2=1

1

dist(ξ (2)
j2

)
.

(3.12)
Now we consider the factor H(ξ (1), η(1); ξ (2), η(2)) = 1

12S
4
1 + 1

4S
2
2 − 1

3S1S3 which
is defined in (1.25). We use the trivial bounds

|S�| =
∣∣∣∣∣∣

k1∑

i1=1

((
ξ

(1)
i1

)� −
(
η

(1)
i1

)�
)

−
k2∑

i2=1

((
ξ

(2)
i2

)� −
(
η

(2)
i2

)�
)∣∣∣∣∣∣

≤
k1∏

i1=1

(
1 + |ξ (1)

i1
|�
) (

1 + |η(1)
i1

|�
) k2∏

i2=1

(
1 + |ξ (2)

i2
|�
) (

1 + |η(2)
i2

|�
)

≤
k1∏

i1=1

g1
(
|ξ (1)
i1

|
)
g1
(
|η(1)

i1
|
) k2∏

i2=1

g1
(
|ξ (2)
i2

|
)
g1
(
|η(2)

i2
|
)

, � = 1, 2, 3,

where g1(y) := 1 + y + y2 + y3. Note that g21(y) ≤ g41(y) for all y ≥ 0. Thus

|H(ξ (1), η(1); ξ (2), η(2))| ≤ 1

12
|S41| + 1

4
|S22| + 1

3
|S1S3|

≤
k1∏

i1=1

g41
(
|ξ (1)
i1

|
)
g41
(
|η(1)

i1
|
) k2∏

i2=1

g41
(
|ξ (2)
i2

|
)
g41
(
|η(2)

i2
|
)

.

(3.13)
Finally, we note that the locations of contours imply that Re(ξ (�)

i�
) < 0 for ξ

(�)
i�

∈

L ∪ 
L,out ∪ 
L,in, and Re(η

(�)
i�

) > 0 for η
(�)
i�

∈ 
R ∪ 
R,out ∪ 
R,in. Thus we have a
trivial bound

∣∣∣∣∣
1

∏2
�=1
∑k�

i�=1(ξ
(�)
i�

− η
(�)
i�

)

∣∣∣∣∣ ≤ 1

Re(η(1)
1 − ξ

(1)
1 )

· 1

Re(η(2)
1 − ξ

(2)
1 )

≤ 1

Re(η(1)
1 )

· 1

Re(η(2)
1 )

≤
(
1 + 1

Re(η(1)
1 )

)(
1 + 1

Re(−ξ
(1)
1 )

)
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(
1 + 1

Re(η(2)
1 )

)(
1 + 1

Re(−ξ
(2)
1 )

)

≤
k1∏

i1=1

g2
(
ξ

(1)
i1

)
g2
(
η

(1)
i1

) k2∏

i2=1

g2
(
ξ

(2)
i2

)
g2
(
η

(2)
i2

)
, (3.14)

where g2(w) := 1 + |Re(w)|−1 for all w ∈ C \ iR.
Now we insert all the estimates (3.12), (3.13) and (3.14) in the Eq. (3.8) and obtain

∣∣∣T̂k1,k2(z; t1, t2, x; γ )

∣∣∣ ≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2

·
k1∏

i1=1

(
1

|1 − z|
∫


L,in

|dξ (1)
i1

|
2π

+ |z|
|1 − z|

∫


L,out

|dξ (1)
i1

|
2π

)

(
1

|1 − z|
∫


R,in

|dη(1)
i1

|
2π

+ |z|
|1 − z|

∫


R,out

|dη(1)
i1

|
2π

)

·
k2∏

i2=1

∫


L

|dξ (2)
i2

|
2π

∫


R

|dη(2)
i2

|
2π

· |1 − z|k2
∣∣∣∣1 − 1

z

∣∣∣∣
k1

·
k1∏

i1=1

g
(
ξ

(1)
i1

)
g
(
η

(1)
i1

) k2∏

i2=1

g
(
ξ

(2)
i2

)
g
(
η

(2)
i2

)

= kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2 |1 − z|k2

∣∣∣∣1 − 1

z

∣∣∣∣
k1
Ck11,1C

k2
1,2

≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2

(∣∣∣∣1 − 1

z

∣∣∣∣ C1,1 + |1 − z| C1,2
)k1+k2

, (3.15)

where

g(ζ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|f1(ζ ; t1)|g41(|ζ |)g2(ζ )/dist(ζ ), ζ ∈ 
L,out ∪ 
L,in,

|f1(ζ ; t1)−1|g41(|ζ |)g2(ζ )/dist(ζ ), ζ ∈ 
R,out ∪ 
R,in,

|f2(ζ ; t2)|g41(|ζ |)g2(ζ )/dist(ζ ), ζ ∈ 
L,

|f2(ζ ; t2)−1|g41(|ζ |)g2(ζ )/dist(ζ ), ζ ∈ 
R,

and

C1,1 =
(

1

|1 − z|
∫


L,in

g(ξ)|dξ |
2π

+ |z|
|1 − z|

∫


L,out

g(ξ)|dξ |
2π

)

(
1

|1 − z|
∫


R,in

g(η)|dη|
2π

+ |z|
|1 − z|

∫


R,out

g(η)|dη|
2π

)
,

C1,2 =
(∫


L

g(ξ)|dξ |
2π

)(∫


R

g(η)|dη|
2π

)
.
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We used the fact that g(ζ ) decays exponentially when ζ goes to infinity along the
integration contours since all other factors are of polynomial order, dist(ζ ) is bounded
below, and the dominating factor |f�| (or |f−1

� |) decays super exponentially. By check-
ing the parameters appearing in f� (and hence in g), we find that both C1,1 and C1,2
satisfy the conditions described in Notation 3.2. Thus (3.15) implies Lemma 3.3 with
C1 = ∣∣1 − 1

z

∣∣ C1,1 + |1 − z| C1,2.

3.2 Proof of Lemma 3.4

The proof of Lemma 3.4 is more tedious. We separate the argument into three parts. In
the first part we illustrate the proof strategy and show that Lemma 3.4 can be reduced
to two other lemmas. In the remaining two parts we prove these lemmas respectively.

3.2.1 Proof strategy

Although the quantities T̂k1,k2 and T̂k1,k2 only depend on how the integration contours
are nested, we choose these contours explicitly to simplify our argument. The idea is
that we split each contour into two parts with one part making most of the contribution
in integration and the other part contributing an exponentially small error only.

We first choose the six contours appearing in the terms T̂k1,k2 . As we introduced
before, we assume 
L,out, 
L and 
L,in, from right to left, are three simple contours
in the left half plane from e−2π i/3∞ to e2π i/3∞. Similarly, 
R,out, 
R and 
R,in, from
left to right, are three simple contours in the right half plane from e−π i/3∞ to eπ i/3∞.
For simplification, we assume that all these contours are symmetric about the real axis.

Each of the 
∗ contour above, ∗ ∈ {{L, out}, {L}, {L, in}, {R, out}, {R}, {R, in}},
can be split into two parts. One part is within the disk D(log N ), the disk of radius
log N with center 0, and the other part is outside of this disk.We denote these two parts



(N )∗ and 

(err)∗ . In other words, we have six contours within D(log N ): 
(N )

L,out, 

(N )
L ,



(N )
L,in, 


(N )
R,out, 


(N )
R , and 


(N )
R,in, and six contours outside of D(log N ): 


(err)
L,out, 


(err)
L ,



(err)
L,in , 


(err)
R,out, 


(err)
R , and 


(err)
R,in .

We now choose the six contours appearing in the terms T̂k1,k2 . We let them all
intersect a neighborhood of the point

wc := − 1

1 + √
α

, (3.16)

whereα is the constant in Proposition 3.1.Wepick, for each∗ ∈ {{L, out}, {L}, {L, in},
{R, out}, {R}, {R, in}},�∗ to be the union of two parts�

(N )∗ and �
(err)∗ . The part�(N )∗

lies in a neighborhood of wc and satisfies

�(N )∗ = wc + α1/6(1 + √
α)−4/3N−1/3
(N )∗ , ∗ ∈ {{L, out}, {L}, {L, in}, {R, out},

{R}, {R, in}}. (3.17)

See the solid contours within the dashed circle in Fig. 5 for an illustration.
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Recall f1(w; t1) = (w + 1)−mwnet1w and f2(w; t2) = (w + 1)−M+mwN−net2w

with the parameters satisfying (3.1). A detailed calculation (see (3.29) and (3.30)
for example) indicate that fi (w; ti ) behaves like a cubic-exponential function. More
explicitly, fi (w; ti ) decays super-exponentially fast when w moves away from wc

along the contours �
(N )∗ on the left, and grows super-exponentially fast along the

contours �
(N )∗ on the right. Moreover, if we denote w

ep∗ and w
ep∗ the endpoints of

�
(N )∗ , using (3.29) and (3.30), we have | fi (wep∗ , ti )/ fi (wc; ti )| ≤ e−c(log N )3 when

w
ep∗ is on the left contours, and | fi (wep∗ ; ti )/ fi (wc, ti )| ≥ ec(log N )3 when w

ep∗ is on
the right contours. Here c is some positive constant uniformly for x in a compact
interval and t1, t2 with a lower bound.

In the next step, we will define the contours �
(err)∗ . Note that

f1(w; t1) = eγ Nh(w)+O(N2/3), f2(w; t2) = e(1−γ )Nh(w)+O(N2/3),

where
h(w) = −α log(w + 1) + logw + (

√
α + 1)2w. (3.18)

It is standard to analyze Reh(w) for w ∈ C and extend the contours �
(N )∗ to �

(err)∗
such that

max
u∈�

(err)∗
| fi (u; ti )| ≤ min

u∈�
(N )∗

| fi (u; ti )|, i = 1, 2, ∗ ∈ {{L, out}, {L}, {L, in}}
(3.19)

and

min
v∈�

(err)∗
| fi (v; ti )| ≥ max

v∈�
(N )∗

| fi (v; ti )|, i = 1, 2, ∗ ∈ {{R, out}, {R}, {R, in}}
(3.20)

for sufficiently large N . See Fig. 5 for an illustration and the figure caption for more
explanation.

Combining with the bounds of fi at the endpoints of �
(N )∗ discussed above, we

have the following two estimates

max
u∈�

(err)∗
| fi (u; ti )/ fi (wc; ti )| ≤ min

u∈�
(N )∗

| fi (u; ti )/ fi (wc; ti )|

≤ e−c(ln N )3, ∗ ∈ {{L, out}, {L}, {L, in}}, (3.21)

min
v∈�

(err)∗
| fi (v; ti )/ fi (wc; ti )| ≥ min

v∈�
(N )∗

| fi (v; ti )/ fi (wc; ti )|

≥ ec(ln N )3, ∗ ∈ {{R, out}, {R}, {R, in}}. (3.22)

We remark that the contours we choose above are independent of the parameters
k1 and k2, hence the constant c above is also independent of k1 and k2.

With the contours we mentioned above, we can rewrite

T̂k1,k2 (z; t1, t2;m, n, M, N ) = T̂ (N )
k1,k2

(z; t1, t2;m, n, M, N ) + T̂ (err)
k1,k2

(z; t1, t2;m, n, M, N ),
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Fig. 5 Illustration of the contours when α = 1. The dotted lines represent the level curve Reh(w) =
Reh(wc). It consists of two closed contours and one infinite contour all of which pass the critical point
wc . The complex plane thus is split into four parts, two of them marked with − signs have lower levels of
Reh(w), and the other two marked with + signs have higher levels of Reh(w). The three solid contours on
the left, from inside to outside, are �L,in, �L, �L,out respectively. The three solid contours on the right,
from inside to outside, are �R,in, �R, and �R,out respectively. Each contour �∗ is split into two parts. The

part within the dashed circle is �
(N )∗ , and the remaining part is �

(err)∗

where

T̂ (N )
k1,k2

(z; t1, t2;m, n, M, N )

=
k1∏

i1=1

(
1

1 − z

∫

�
(N )
L,in

du(1)
i1

2π i
− z

1 − z

∫

�
(N )
L,out

du(1)
i1

2π i

)

(
1

1 − z

∫

�
(N )
R,in

dv(1)
i1

2π i
− z

1 − z

∫

�
(N )
R,out

dv(1)
i1

2π i

)

·
k2∏

i2=1

∫

�
(N )
L

du(2)
i2

2π i

∫

�
(N )
R

dv(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1

· f1(U
(1); t1) f2(U (2); t2)

f1(V (1); t1) f2(V (2); t2) · 1
∏2

�=1
∑k�

i�=1(u
(�)
i�

− v
(�)
i�

)
· H(U (1),U (2); V (1), V (2))

·
2∏

�=1

(
�(U (�))

)2 (
�(V (�))

)2
(
�(U (�); V (�))

)2 · �(U (1); V (2))�(V (1);U (2))

�(U (1);U (2))�(V (1); V (2))
. (3.23)

Note that T̂ (N )
k1,k2

has the same formula as T̂k1,k2 in (3.6) except that we replace all the

�∗ contours to �
(N )∗ . Recall that we have �∗ = �

(N )∗ ∪ �
(err)∗ . Hence
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T̂ (err)
k1,k2

(z; t1, t2;m, n, M, N )

=
∑

�

k1∏

i1=1

(
1

1 − z

∫

�
(�)
L,in

du(1)
i1

2π i
− z

1 − z

∫

�
(�)
L,out

du(1)
i1

2π i

)

(
1

1 − z

∫

�
(�)
R,in

dv(1)
i1

2π i
− z

1 − z

∫

�
(�)
R,out

dv(1)
i1

2π i

)

·
k2∏

i2=1

∫

�
(�)
L

du(2)
i2

2π i

∫

�
(�)
R

dv(2)
i2

2π i
· · · (3.24)

where we did not write out the integrand which is the same as in (3.23), and the
summation is over all possible �’s each of which belongs to {N , err} and at least one
� is err. We also point out that we omit the indices of � in �

(�)∗ : It indeed depends
on the choice of ∗ and i1 or i2. Since we have 4k1 + 2k2 integration contours, we have
24k1+2k2 − 1 possible choices of � in the above summation.

Similarly we can write

T̂k1,k2(z; t1, t2, x; γ ) = T̂(N )
k1,k2

(z; t1, t2, x; γ ) + T̂(err)
k1,k2

(z; t1, t2, x; γ ),

where T̂(N )
k1,k2

(z; t1, t2, x; γ ) has the same formula as (3.8) with all the integration

contours
∗ replaced by

(N )∗ , and T̂(err)

k1,k2
(z; t1, t2, x; γ ) is a summation of 24k1+2k2 −1

terms each of which has the same formula as (3.8) except that the integration contours
are all replaced by 


(N )∗ or 

(err)∗ and at least one of the contours is replaced by 


(err)∗ .
We will show the following two lemmas.

Lemma 3.5 With the same assumptions as in Proposition 3.1, there exists a constant
C2,1 as described in Notation 3.2, such that

∣∣∣α−1/3(1 + √
α)2/3N 2/3T̂ (N )

k1,k2
(z; t1, t2;m, n, M, N ) − T̂(N )

k1,k2
(z; t1, t2, x; γ )

∣∣∣

≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2Ck1+k2

2,1 N−1/3(log N )5

for all k1, k2 ≥ 1 as N becomes sufficiently large.

Lemma 3.6 With the same assumptions as in Proposition 3.1, there exist two constants
C2,3 and C2,4 as described in Notation 3.2, such that

N 2/3
∣∣∣T̂ (err)

k1,k2
(z; t1, t2;m, n, M, N )

∣∣∣ ≤ kk1/21 kk2/22 (k1+k2)
(k1+k2)/2Ck1+k2

2,3 ·e−c·(ln N )3/2,

and
∣∣∣T̂(err)

k1,k2
(z; t1, t2, x; γ )

∣∣∣ ≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2Ck1+k2

2,4 · e−c·(ln N )3/2

for all k1, k2 ≥ 1 as N becomes sufficiently large. Here the constant c is the same as
in (3.21) and (3.22).
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It is obvious that Lemmas 3.4 follows immediately by the above lemmas. In the
next two subsubsections we will prove Lemmas 3.5 and 3.6 respectively.

3.2.2 Proof of Lemma 3.5

We recall the formula (3.23) for T̂ (N )
k1,k2

. We change the integration variables

u(1)
i1

= wc + α1/6(1 + √
α)−4/3N−1/3ξ

(1)
i1

,

v
(1)
i1

= wc + α1/6(1 + √
α)−4/3N−1/3η

(1)
i1

,

u(2)
i2

= wc + α1/6(1 + √
α)−4/3N−1/3ξ

(2)
i2

,

v
(2)
i2

= wc + α1/6(1 + √
α)−4/3N−1/3η

(2)
i2

,

(3.25)

where wc = −(1 + √
α)−1 is defined in (3.16), ξ

(1)
i1

∈ 

(N )
L,in ∪ 


(N )
L,out, ξ

(2)
i2

∈ 

(N )
L ,

η
(1)
i1

∈ 

(N )
R,in ∪ 


(N )
R,out, and η

(2)
i2

∈ 

(N )
R . Note the relation between �

(N )∗ contours and



(N )∗ contours in (3.17). Thus we have

α−1/3(1 + √
α)2/3N 2/3T̂ (N )

k1,k2
(z; t1, t2;m, n, M, N )

=
k1∏

i1=1

(
1

1 − z

∫



(N )
L,in

dξ (1)
i1

2π i
− z

1 − z

∫



(N )
L,out

dξ (1)
i1

2π i

)

(
1

1 − z

∫



(N )
R,in

dη(1)
i1

2π i
− z

1 − z

∫



(N )
R,out

dη(1)
i1

2π i

)

·
k2∏

i2=1

∫



(N )
L

dξ (2)
i2

2π i

∫



(N )
R

dη(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1

· f̃1(ξ
(1); t1) f̃2(ξ (2); t2)

f̃1(η(1); t1) f̃2(η(2); t2)
· 1
∏2

�=1
∑k�

i�=1(ξ
(�)
i�

− η
(�)
i�

)

· H̃(ξ (1), ξ (2); η(1), η(2)) ·
2∏

�=1

(
�(ξ (�))

)2 (
�(η(�))

)2

(
�(ξ (�); η(�))

)2 · �(ξ (1); η(2))�(η(1); ξ (2))

�(ξ (1); ξ (2))�(η(1); η(2))
,

(3.26)
where

f̃�(ξ
(�)
i�

; ti ) = f�(u
(�)
i�

; ti )/ f�(wc; ti ), f̃�(η
(�)
i�

; ti ) = f�(v
(�)
i�

; ti )/ f�(wc; ti ),
H̃(ξ (1), ξ (2); η(1), η(2)) = α−2/3(1 + √

α)10/3N 4/3H(U (1),U (2); V (1), V (2))

(3.27)
with the u(�)

i�
, v

(�)
i�

being viewed as functions of ξ
(�)
i�

and η
(�)
i�

as in (3.25). Note

that (3.26) equals to T̂(N )
k1,k2

(z; t1, t2, x; γ ) if we replace f̃� by f� and H̃ by H, see (3.8)

for the formula of T̂(k1,k2) and note that replacing the contours 
∗ by 

(N )∗ in (3.8)

gives the formula of T̂(N )
(k1,k2)

.
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Recall that f1(w; t1) = (w + 1)−mwnet1w. Note the scaling in (3.1). For all |ζ | ≤
log N , we have the following Taylor expansion

log
(
f1(wc + α1/6(1 + √

α)−4/3ζN−1/3; t1)/ f1(wc; t1)
)

= −m log
(
1 + α−1/3(1 + √

α)−1/3ζN−1/3
)

+ n log
(
1 − α1/6(1 + √

α)−1/3ζN−1/3
)

+ t1α
1/6(1 + √

α)−4/3ζN−1/3

= −1

3
γ ζ 3 − 1

2
(x2 − x1)ζ

2 +
(
t1 − 1

4γ
(x2 − x1)

2
)

ζ + O(N−1/3(log N )4),

(3.28)
and hence, using the fact eO(N−1/3(log N )4) = 1 + O(N−1/3(log N )4),

f̃1(wc + α1/6(1 + √
α)−4/3ζN−1/3; t1) = f1(ζ ; t1) ·

(
1 + O(N−1/3(log N )4)

)
.

(3.29)
Note here the error termO(N−1/3(log N )4) is uniformly for all |ζ | ≤ log N . Similarly,
for all |ζ | ≤ log N ,

f̃2(wc + α1/6(1 + √
α)−4/3ζN−1/3; t2) = f2(ζ ; t2) ·

(
1 + O(N−1/3(log N )4)

)
.

(3.30)
Inserting the above estimates, we have

f̃1(ξ
(1); t1) f̃2(ξ (2); t2)

f̃1(η(1); t1) f̃2(η(2); t2)
= f1(ξ

(1); t1)f2(ξ (2); t2)
f1(η(1); t1)f2(η(2); t2)

(
1 + ck1+k2

1 O(N−1/3(log N )4)
)

,

(3.31)
where c1 = 4 and we used the inequality

∣∣∣∣∣

n∏

i=1

(1 + xi ) − 1

∣∣∣∣∣ ≤ (1 + x)n − 1 ≤ 2nx (3.32)

for all x1, . . . , xn ∈ C and x > 0 satisfying |xi | ≤ x < 1.
Now we consider the term H̃ . Recall the formulas of H in (1.10) and S� in (1.26).

We have

H̃(ξ (1), ξ (2); η(1), η(2)) = α−2/3(1 + √
α)10/3N 4/3H(U (1),U (2); V (1), V (2))

= 1

2
ε−2

(
S21 − S2

)
N 2/3 + ε−3NS1 +

(
1

2
ε−2(S21 + S2)N

2/3 − ε−3NS1

)

·
k1∏

i1=1

v
(1)
i1

u(1)
i1

k2∏

i2=1

u(2)
i2

v
(2)
i2

,

(3.33)
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where ε := α1/6(1 + √
α)−1/3. Note the following estimate

wc + (1 + √
α)−1εζN−1/3

wc

= exp

(
−εN−1/3ζ − 1

2
ε2N−2/3ζ 2 − 1

3
ε3N−1ζ 3 + O(N−4/3(log N )4)

)

= exp

(
−εN−1/3ζ − 1

2
ε2N−2/3ζ 2 − 1

3
ε3N−1ζ 3

)(
1 + O(N−4/3(log N )4)

)

for all |ζ | ≤ log N , where O(N−4/3(log N )4) is uniformly on ζ . Using the inequal-
ity (3.32), we obtain

k1∏

i1=1

v
(1)
i1

u(1)
i1

k2∏

i2=1

u(2)
i2

v
(2)
i2

= exp

(
εN−1/3S1 + 1

2
ε2N−2/3S2 + 1

3
ε3N−1S3

)

(
1 + ck1+k2

1 O(N−4/3(log N )4)
)

. (3.34)

Note the trivial bound |S�| ≤ (k1 + k2)(log N )�. We have

∣∣∣∣∣∣
exp

(
εN−1/3S1

)
−
∑

n≤3

1

n! (εN
−1/3S1)

n

∣∣∣∣∣∣
≤
∑

n≥4

1

n! (ε(k1 + k2)N
−1/3 log N )n

≤ (N−1/3 log N )4
∑

n≥4

1

n! (ε(k1 + k2))
n

≤ ck1+k2
2 (N−1/3 log N )4,

where c2 = eε . Thus

exp
(
εN−1/3S1

) = 1+εN−1/3S1+ 1

2
ε2N−2/3S21+ 1

6
ε3N−1S31+ck1+k2

2 O(N−4/3(log N )4).

Similarly we have

exp

(
1

2
ε2N−2/3S2

)
= 1 + 1

2
ε2N−2/3S2 + ck1+k2

3 O(N−4/3(log N )4),

exp

(
1

3
ε3N−1S3

)
= 1 + 1

3
ε3N−1S3 + ck1+k2

4 O (N−2(log N )6
)
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for some positive constants c3 and c4. Inserting the above equations to (3.34), and then
combining (3.34) and (3.33), we obtain, after a careful calculation,

H̃(ξ (1), ξ (2); η(1), η(2)) = 1

12
S41 + 1

4
S22 − 1

3
S1S3 + ck1+k2

5 O(N−1/3(log N )5)

= H(ξ (1), ξ (2); η(1), η(2)) + ck1+k2
5 O(N−1/3(log N )5)

(3.35)
for some positive constant c5.

Now we insert (3.31) and (3.35) into (3.26), and obtain

α−1/3(1 + √
α)2/3N 2/3T̂ (N )

k1,k2
(z; t1, t2;m, n, M, N ) − T̂(N )

k1,k2
(z; t1, t2, x; γ )

= ck1+k2
1 O(N−1/3(log N )4)E1 + ck1+k2

5 O(N−1/3(log N )5)E2

+ (c1c5)
k1+k2O(N−2/3(log N )9)E2,

(3.36)

where

E j =
k1∏

i1=1

⎛

⎝ 1

1 − z

∫



(N )
L,in

dξ(1)
i1

2π i
− z

1 − z

∫



(N )
L,out

dξ(1)
i1

2π i

⎞

⎠

⎛

⎝ 1

1 − z

∫



(N )
R,in

dη(1)
i1

2π i
− z

1 − z

∫



(N )
R,out

dη(1)
i1

2π i

⎞

⎠

·
k2∏

i2=1

∫



(N )
L

dξ(2)
i2

2π i

∫



(N )
R

dη(2)
i2

2π i
· (1 − z)k2

(
1 − 1

z

)k1

· f1(ξ
(1); t1)f2(ξ (2); t2)

f1(η(1); t1)f2(η(2); t2)
· 1
∏2

�=1
∑k�

i�=1(ξ
(�)
i�

− η
(�)
i�

)

· K j (ξ
(1), ξ (2); η(1), η(2)) ·

2∏

�=1

(
�(ξ (�))

)2 (
�(η(�))

)2

(
�(ξ (�); η(�))

)2 · �(ξ (1); η(2))�(η(1); ξ (2))

�(ξ (1); ξ (2))�(η(1); η(2))
,

(3.37)
with

K j (ξ
(1), ξ (2); η(1), η(2)) =

{
H(ξ (1), ξ (2); η(1), η(2)), j = 1,

1, j = 2.
(3.38)

Note that these E j terms have similar structure with T̂k1,k2(z; s1, s2, x; γ ), except

that the integration contours 

(N )∗ are subsets of 
∗ appearing in the definition of

T̂k1,k2(z; s1, s2, x; γ ). Recall (3.15) in the proof of Lemma 3.3. It is obvious that we
have the same upper bound if we use contours 


(N )∗ instead of 
∗. Thus we obtain

|E1| ≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2Ck1+k2

1 .
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Similarly we have, by removing the factor g14, which comes from the estimate of H,
in the inequality (3.15),

|E2| ≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2)/2(C′

1)
k1+k2 ,

whereC′
1 ≤ C1 is a positive constant satisfying the conditions described inNotation 3.2.

Combining the estimates of |E j | with (3.36), we obtain Lemma 3.5.

3.2.3 Proof of Lemma 3.6

The proofs for the two estimates are similar, hence we only prove the estimate for
T̂ (err)
k1,k2

(z; t1, t2;m, n, M, N ).
Recall (3.24). We have

∣∣∣T̂ (err)
k1,k2

(z; t1, t2;m, n, M, N )

∣∣∣

≤
∑

�

k1∏

i1=1

(∣∣∣∣
1

1 − z

∣∣∣∣
∫

�
(�)
L,in

|du(1)
i1

|
2π

+
∣∣∣∣

z

1 − z

∣∣∣∣
∫

�
(�)
L,out

|du(1)
i1

|
2π

)

(∣∣∣∣
1

1 − z

∣∣∣∣
∫

�
(�)
R,in

|dv(1)
i1

|
2π

+
∣∣∣∣

z

1 − z

∣∣∣∣
∫

�
(�)
R,out

|dv(1)
i1

|
2π

)

·
k2∏

i2=1

∫

�
(�)
L

|du(2)
i2

|
2π

∫

�
(�)
R

|dv(2)
i2

|
2π

· |1 − z|k2
∣∣∣∣1 − 1

z

∣∣∣∣
k1

·
∣∣∣∣∣
f1(U (1); t1) f2(U (2); t2)
f1(V (1); t1) f2(V (2); t2)

∣∣∣∣∣

· 1
∏2

�=1

∣∣∣
∑k�

i�=1(u
(�)
i�

− v
(�)
i�

)

∣∣∣
·
∣∣∣H(U (1),U (2); V (1), V (2))

∣∣∣

·
2∏

�=1

∣∣∣∣∣

(
�(U (�))

)2 (
�(V (�))

)2
(
�(U (�); V (�))

)2

∣∣∣∣∣ ·
∣∣∣∣∣
�(U (1); V (2))�(V (1);U (2))

�(U (1);U (2))�(V (1); V (2))

∣∣∣∣∣ .

(3.39)
Recall the the sum is over all possible 24k1+2k2 − 1 combinations of the contours,

except for the only one combination that all the contours are of the form �
(N )∗ (i.e.,

near the critical point wc). Also recall that �∗ = �
(N )∗ ∪ �

(err)∗ . The right hand side
of (3.39) can be rewritten as

k1∏

i1=1

(∫

�L,in

|du(1)
i1

| +
∫

�L,out

|du(1)
i1

|
)(∫

�R,in

|dv(1)
i1

| +
∫

�R,out

|dv(1)
i1

|
)

k2∏

i2=1

∫

�L

|du(2)
i2

|
∫

�R

|dv(2)
i2

|
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−
k1∏

i1=1

(∫

�
(N )
L,in

|du(1)
i1

| +
∫

�
(N )
L,out

|du(1)
i1

|
)

(∫

�
(N )
R,in

|dv(1)
i1

| +
∫

�
(N )
R,out

|dv(1)
i1

|
)

k2∏

i2=1

∫

�
(N )
L

|du(2)
i2

|
∫

�
(N )
R

|dv(2)
i2

|, (3.40)

where we suppressed the factors and the integrand for simplifications since they do
not affect our argument here. Note the following simple inequality

∏

i

(ai + bi ) −
∏

i

ai ≤
∑

�

b�

∏

i �=�

(ai + bi )

for all nonnegative numbers ai , bi . We apply this inequality for ai = ∫
�

(N )∗
and bi =∫

�
(err)∗

in (3.40). We find that (3.40) can be bounded by

k1∑

j1=1

(
δ j1;1 + δ j1;2 + δ j1;3 + δ j1;4

)+
k2∑

j2=1

(
δ j2;5 + δ j2;6

)
. (3.41)

The quantities δ j,i in the above equation are given by

δ j1;1 =
∫

�
(err)
L,in

|du(1)
j1

|
∏

i1 �= j1

(∫

�L,in

|du(1)
i1

| +
∫

�L,out

|du(1)
i1

|
)

k1∏

i1=1

(∫

�R,in

|dv(1)
i1

| +
∫

�R,out

|dv(1)
i1

|
)

· · ·

δ j1;2 =
∫

�
(err)
L,out

|du(1)
j1

|
∏

i1 �= j1

(∫

�L,in

|du(1)
i1

| +
∫

�L,out

|du(1)
i1

|
)

k1∏

i1=1

(∫

�R,in

|dv(1)
i1

| +
∫

�R,out

|dv(1)
i1

|
)

· · ·

δ j1;3 =
∫

�
(err)
L,in

|dv(1)
j1

|
k1∏

i1=1

(∫

�L,in

|du(1)
i1

| +
∫

�L,out

|du(1)
i1

|
)

∏

i1 �= j1

(∫

�R,in

|dv(1)
i1

| +
∫

�R,out

|dv(1)
i1

|
)

· · ·

δ j1;4 =
∫

�
(err)
L,in

|dv(1)
j1

|
k1∏

i1=1

(∫

�L,in

|du(1)
i1

| +
∫

�L,out

|du(1)
i1

|
)

∏

i1 �= j1

(∫

�R,in

|dv(1)
i1

| +
∫

�R,out

|dv(1)
i1

|
)

· · ·

123



One-point distribution of the geodesic in directed last…

where · · · stands for∏k2
i2=1

∫
�

(N )
L

|du(2)
i2

| ∫
�

(N )
R

|dv(2)
i2

|, and

δ j2;5 = · · ·
∫

�
(err)
L

|du(2)
j2

|
∏

i2 �= j2

|du(2)
i2

|
k2∏

i2=1

∫

�
(N )
R

|dv(2)
i2

|,

δ j2;6 = · · ·
∫

�
(err)
R

|dv(2)
j2

|
k2∏

i2=1

|du(2)
i2

|
∏

i2 �= j2

∫

�
(N )
R

|dv(2)
i2

|,

where · · · stands for
∏k1

i1=1

(∫
�L,in

|du(1)
i1

| + ∫
�L,out

|du(1)
i1

|
) (∫

�R,in
|dv(1)

i1
|

+ ∫
�R,out

|dv(1)
i1

|
)
. Here we suppressed the factors and integrands in δ j;� for sim-

plifications: They are the same as in (3.39).
We have the following estimates:

δ j1;� ≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2+4)/2Ck1+k2

2,3 Ne−c(ln N )3 , 1 ≤ � ≤ 4, 1 ≤ j1 ≤ k1,
(3.42)

and

δ j2;� ≤ kk1/21 kk2/22 (k1 + k2)
(k1+k2+4)/2Ck1+k2

2,3 Ne−c(ln N )3, 5 ≤ � ≤ 6, 1 ≤ j2 ≤ k2,
(3.43)

for all k1, k2 ≥ 1 and sufficiently large N , where C2,3 is a constant satisfying the
conditions described in Notation 3.2, and c > 0 is a constant appearing in (3.21)
and (3.22).With these estimates, and noting that (k1+k2)3 ≤ e2(k1+k2) for all k1, k2 ≥
0 and that Ne−c(ln N )3 � e−c(ln N )3/2 for sufficiently large N , we obtain Lemma 3.6
immediately.

It remains to show (3.42) and (3.43). We only prove one representative inequality
due to their similarity. Below we show (3.42) for j1 = � = 1.

We write down the full expression of δ1;1,

δ1;1 =
∣∣∣∣

1

1 − z

∣∣∣∣
∫

�
(err)
L,in

|du(1)
1 |

2π
·

k1∏

i1=2

(∣∣∣∣
1

1 − z

∣∣∣∣
∫

�
(�)
L,in

|du(1)
i1

|
2π

+
∣∣∣∣

z

1 − z

∣∣∣∣
∫

�
(�)
L,out

|du(1)
i1

|
2π

)

·
k1∏

i1=1

(∣∣∣∣
1

1 − z

∣∣∣∣
∫

�
(�)
R,in

|dv(1)
i1

|
2π

+
∣∣∣∣

z

1 − z

∣∣∣∣
∫

�
(�)
R,out

|dv(1)
i1

|
2π

)
·

k2∏

i2=1

∫

�L

|du(2)
i2

|
2π

∫

�R

|dv(2)
i2

|
2π

· |1 − z|k2
∣∣∣∣1 − 1

z

∣∣∣∣
k1

·
∣∣∣∣∣
f1(U (1); t1) f2(U (2); t2)
f1(V (1); t1) f2(V (2); t2)

∣∣∣∣∣ ·
1

∏2
�=1

∣∣∣
∑k�

i�=1(u
(�)
i�

− v
(�)
i�

)

∣∣∣

·
∣∣∣H(U (1),U (2); V (1), V (2))

∣∣∣ ·
2∏

�=1

∣∣∣∣∣

(
�(U (�))

)2 (
�(V (�))

)2
(
�(U (�); V (�))

)2

∣∣∣∣∣ ·
∣∣∣∣∣
�(U (1); V (2))�(V (1);U (2))

�(U (1);U (2))�(V (1); V (2))

∣∣∣∣∣ .

(3.44)
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Note that, due to the assumptions of the contours,

1
∏2

�=1

∣∣∣
∑k�

i�=1(u
(�)
i�

− v
(�)
i�

)

∣∣∣
≤ 1

|Re(u(1)
1 − wc)|

· 1

|Re(u(2)
1 − wc)|

.

We also use a looser bound for H , using the facts that all the contours are bounded
and away from 0,

∣∣∣H(U (1),U (2); V (1), V (2))

∣∣∣ ≤ C · (k1 + k2)
2

for all k1, k2 ≥ 1, where C is positive constant independent of k1, k2 and all the
parameters. Now we use a similar argument as in Sect. 3.1 and obtain

δ1;1 ≤ C · kk1/21 kk2/22 (k1 + k2)
(k1+k2+4)/2

(∣∣∣∣1 − 1

z

∣∣∣∣ θ1 + |1 − z| θ2
)k1+k2−2

θ3 · |1 − z| ·
∣∣∣∣1 − 1

z

∣∣∣∣

·
∣∣∣∣

1

1 − z

∣∣∣∣
∫

�
(err)
L,in

|du(1)
1 |

2π

| f̃1(u(1)
1 ; t1)|

dist(u(1)
1 ) · |Re(u(1)

1 − wc)|
·
∫

�L

| f̃2(u(2)
1 ; t2)||du(2)

1 |
2π · dist(u(2)

1 ) · |Re(u(2)
1 − wc)|

,

(3.45)
where f̃�(w; t�) = f�(w; t�)/ f (wc; t�) as introduced in (3.27), and θi ’s are given by

θ1 =
(

1

|1 − z|
∫

�L,in

| f̃1(u; t1)||du|
2π · dist(u)

+ |z|
|1 − z|

∫

�L,out

| f̃1(u; t1)||du|
2π · dist(u)

)

·
(

1

|1 − z|
∫

�R,in

|dv|
2π · | f̃1(v; t1)| · dist(v)

+ |z|
|1 − z|

∫


R,out

|dv|
2π · | f̃1(v; t1)| · dist(v)

)
,

θ2 =
(∫

�L

| f̃2(u; t2)||du|
2π · dist(u)

)(∫

�R

|dv|
2π · | f̃2(v; t2)| · dist(v)

)
,

θ3 =
(

1

|1 − z|
∫

�R,in

|dv|
2π · | f̃1(v; t1)| · dist(v)

+ |z|
|1 − z|

∫


R,out

|dv|
2π · | f̃1(v; t1)| · dist(v)

)

·
(∫

�R

|dv|
2π · | f̃2(v; t2)| · dist(v)

)
,

and dist(w), for w ∈ �L,in ∪ �L ∪ �L,out ∪ �R,in ∪ �R ∪ �R,out, is the distance
between w and the contours �L,in ∪ �L ∪ �L,out ∪ �R,in ∪ �R ∪ �R,out except for
the one w belongs to. This dist(w) has a similar definition as dist(ζ ) in Sect. 3.1 but
with different contours.

We claim that all of the integrals appearing in θi values are bounded by some
constantC′

2;3 satisfying the conditions described inNotation 3.2. For example, consider
the first integral in θ1,

∫

�L,in

| f̃1(u; t1)||du|
2π · dist(u)

=
∫

�
(N )
L,in

| f̃1(u; t1)||du|
2π · dist(u)

+
∫

�
(err)
L,in

| f̃1(u; t1)||du|
2π · dist(u)

,
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where the first term is approximately, using (3.29),

C ′ ·
∫



(N )
L,in

|f1(ξ ; t1)||dξ |
dist(ξ)

≤ C ′ ·
∫


L,in

|f1(ξ ; t1)||dξ |
dist(ξ)

for some constant C ′, and the second term is bounded above by, using (3.21),

C ′′ · N 1/3 · e−c(ln N )3

for some constant C ′′, where the extra N 1/3 comes from a possible large factor
1/dist(u). These two estimates confirm the claim for the first factor. Similarly we
have the claims for other factors. Thus we have

θ1, θ2, θ3 ≤ C′
2,3.

Using the similar estimates, we can also obtain

∫

�
(err)
L,in

|du(1)
1 |

2π

| f̃1(u(1)
1 ; t1)|

dist(u(1)
1 ) · |Re(u(1)

1 − wc)|
≤ C ′′′N 2/3e−c(ln N )3

and ∫

�L

| f̃2(u(2)
1 ; t2)||du(2)

1 |
2π · dist(u(2)

1 ) · |Re(u(2)
1 − wc)|

≤ C ′′′N 1/3C′′
2,3,

where the extra N 1/3 comes from a possible large factor 1/|Re(w−wc)|. Combing all
these estimates in (3.45), we obtain (3.42) for j1 = � = 1. Other estimates in (3.42)
and (3.43) are similar.
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