
sensors

Article

EE-ACML: Energy-Efficient Adiabatic CMOS/MTJ Logic for
CPA-Resistant IoT Devices †

Zachary Kahleifeh 1 and Himanshu Thapliyal 1,2,*

����������
�������

Citation: Kahleifeh, Z.; Thapliyal, H.

EE-ACML: Energy-Efficient Adiabatic

CMOS/MTJ Logic for CPA-Resistant

IoT Devices. Sensors 2021, 21, 7651.

https://doi.org/10.3390/s21227651

Academic Editor: Pak Kwong Chan

Received: 12 September 2021

Accepted: 15 November 2021

Published: 18 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA;
zachary.kahleifeh@uky.edu

2 Department of Electrical Engineering and Computer Science, University of Tennessee,
Knoxville, TN 37996, USA

* Correspondence: hthapliyal@ieee.org
† This paper is an extended version of our paper published in Kahleifeh, Z.; Thapliyal, H. Low-Energy and

CPA-Resistant Adiabatic CMOS/MTJ Logic for IoT Devices. In Proceedings of the 2021 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA, 7–9 July 2021; pp. 314–319.

Abstract: Internet of Things (IoT) devices have strict energy constraints as they often operate on
a battery supply. The cryptographic operations within IoT devices consume substantial energy
and are vulnerable to a class of hardware attacks known as side-channel attacks. To reduce the
energy consumption and defend against side-channel attacks, we propose combining adiabatic logic
and Magnetic Tunnel Junctions to form our novel Energy Efficient-Adiabatic CMOS/MTJ Logic
(EE-ACML). EE-ACML is shown to be both low energy and secure when compared to existing
CMOS/MTJ architectures. EE-ACML reduces dynamic energy consumption with adiabatic logic,
while MTJs reduce the leakage power of a circuit. To show practical functionality and energy savings,
we designed one round of PRESENT-80 with the proposed EE-ACML integrated with an adiabatic
clock generator. The proposed EE-ACML-based PRESENT-80 showed energy savings of 67.24% at
25 MHz and 86.5% at 100 MHz when compared with a previously proposed CMOS/MTJ circuit.
Furthermore, we performed a CPA attack on our proposed design, and the key was kept secret.

Keywords: adiabatic logic; magnetic tunnel junction; correlation power analysis attack; side-channel
attacks; low energy IoT; adiabatic clock generator

1. Introduction

Internet of Things (IoT) devices are necessary for the functions of modern life. IoT
devices have a wide range of uses from the manufacturing sector [1] to everyday consumer
products [2]. Many of these IoT devices are battery operated and thus reduced energy
consumption is key to extending the use of these devices. Furthermore, many of these IoT
devices, such as medical devices, transmit and store sensitive data thus making them prime
targets for hardware attacks [3]. Flying ad hoc networks must be energy-efficient to remain
mobile and functioning for long periods of time [4]. Further, the communication testbeds
for these networks are a potential point for hardware attacks. One form of hardware
attack IoT devices face is a side-channel attack. Side-channel attacks look to exploit secure
information through a device’s side channels such as power consumption [5], timing [6], etc.
Defense mechanisms against side-channel attacks can cause drastic energy increases; thus,
the ideal solution should reduce energy consumption while defending against side-channel
attacks [7,8].

Novel design techniques such as adiabatic logic are promising to both reduce energy
consumption and defend against a type of side-channel attack known as power analysis at-
tacks [9]. Adiabatic logic reduces the dynamic energy consumption of a circuit by recycling
stored charge in the load capacitor back into the clock to be used again [10]. Furthermore,
dual-rail adiabatic circuits can be designed so that the circuits are balanced and power
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consumption remains uniform preventing information leakage [9]. Figure 1 shows the
categories of countermeasures against Correlation Power Analysis Attacks (CPA).

Circuit Level Countermeasures

CMOS Based Adiabatic Based

SABL

WDDL

DTL

DDPL

EE-SPFAL

CSSAL

SPGAL

EE-ACML (Proposed)

(Kumar and Thapliyal, 2016)

(Kumar and Thapliyal, 2016)

(Monteiro et. al, 2013)

(Tiri et. al, 2002)

(Tiri et. al, 2004)

(Moradi et. al, 2009)

(Bucci et. al, 2011)

Power Analysis Countermeasures

Algorithm Level Countermeasures

Figure 1. Correlation Power Analysis Countermeasures [7–9,11–14].

Along with adiabatic logic, novel devices such as Magnetic Tunnel Junctions (MTJs)
can also be used to design low energy and secure circuits [15]. MTJs are nonvolatile storage
units that have low standby power, high integration density, and easy compatibility with
CMOS [16–18]. MTJs can be added to CMOS structures to form nonvolatile ultra-low
energy circuits [19].

In this article, we propose a novel hybrid adiabatic CMOS/MTJ logic named Energy-
Efficient Adiabatic CMOS/MTJ Logic (EE-ACML). To demonstrate energy savings of EE-
ACML integrated with an adiabatic clock generator, we designed one round of PRESENT.
PRESENT is a lightweight encryption algorithm making it an ideal candidate for IoT
devices. In our EE-ACML implementation of PRESENT, we showed that our circuit
had energy savings of 67.24% at 25 MHz and 86.5% at 100 MHz when compared with a
previously proposed CMOS/MTJ circuit. We have also shown that our proposed EE-ACML
PRESENT implementation remains secure with the adiabatic clock generator implemented
by performing a Correlation Power Analysis Attack (CPA) and determining the key was
not revealed. A preliminary version of this paper appeared in [20].

This article is organized as follows: Section 2 discusses the necessary background
information including adiabatic logic, power analysis attacks, MTJs, and CMOS/MTJ
circuits. Section 3 discusses our proposed Energy-Efficient Adiabatic CMOS/MTJ Logic
(EE-ACML) and our implementation of PRESENT. Section 4 discusses the simulation results
of our proposed and comparison circuits. Section 5 discusses the CPA attack performed on
the proposed circuit. Section 6 concludes the paper.

2. Background

In this section, we will cover the background information necessary to understand
the proposed Energy-Efficient Adiabatic CMOS/MTJ Logic (EE-ACML). This section will
discuss adiabatic logic, power analysis attacks, Magnetic Tunnel Junctions (MTJs), and
adiabatic clock generators.

2.1. Adiabatic Logic and Power Analysis Attacks

Adiabatic logic is an emerging design technique for designing low-energy circuits [10].
Adiabatic logic lowers energy consumption by recycling current stored within an adiabatic
circuit’s load capacitor back into the clock. An adiabatic clock generator uses capacitors
and inductors as storage elements for the recovered energy. The recovered energy is then
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reused in the next clock cycle thus reducing the energy of the circuit. The energy dissipated
in an adiabatic circuit is given by:

Ediss =
RC
T

CV2
dd (1)

where T is the period of the adiabatic clock, C is the capacitive load of the output, and
Vdd is the max voltage of the adiabatic clock, i.e., 1 V. By Equation (1), if the clock period
T is greater than RC then the energy consumption will be lower than a standard CMOS
circuit. Energy savings can be increased by increasing the period of the clock such that it
is much greater than RC. Figure 2 illustrates the structure of an adiabatic circuit and its
charging/discharging of the load capacitors.

Evaluate

Evaluate

OUT

OUT

CL

CL

IN

VPC

Charge/Recover

Charge/Recover

Figure 2. General Structure of Adiabatic Logic Circuits.

Side-channel attacks attempt to steal information from a device’s inherent charac-
teristics such as power consumption [5], timing [6], etc. In this article, we will focus on
side-channel attacks in the form of power analysis attacks. Of the power analysis attacks,
the Correlation Power Analysis Attack (CPA) is widely used because of its ability to target
both symmetric and nonsymmetric cryptographic algorithms [21]. Different inputs of a
circuit will result in different power consumption [5]. With this information, an attacker
can measure hundreds of thousands of power profiles with controlled inputs to steal the
secure encryption key. Masking and elimination are two methods to defend against power
analysis attacks [22]. Masking aims to minimize correlation between data and power
consumption such as in the proposed Bus-Invert Coding [23]. To defend against the CPA
attack, we designed our circuits using a technique known as elimination [22]. Elimination
aims to remove any variations in power consumption, so that each operation has uniform
power consumption and thus no information leakage. An example of uniform power
consumption can be seen in Figure 3, which shows the uniform current of a two and
four-phase adiabatic gate.
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Figure 3. Uniform current consumption of an adiabatic logic gate.

2.2. Magnetic Tunnel Junctions and CMOS/MTJ Hybrid Circuits

Magnetic Tunnel Junction (MTJ) is an emerging device that can be used to design
low-energy and secure circuits. MTJs have numerous advantages such as ultra-low leakage
power, high integration density, and easy compatibility with CMOS. The structure of the
MTJ consists of two ferromagnetic (FM) layers and an oxide layer that acts as a barrier [24].
In most applications, one FM is layer is fixed while the other FM layer either takes a parallel
orientation or an antiparallel orientation with respect to the fixed layer [25]. The structure
of the MTJ device can be seen in Figure 4 with the bottom of the FM layer being fixed
and the top FM layer has an antiparallel orientation for logic 0 or a parallel orientation for
logic 1. The logic state of the MTJ is determined by the resistance of the device. A parallel
magnetization (RP) has lower resistance while an antiparallel magnetization (RAP) has a
higher resistance [26]. An important metric when discussing the reliability of an MTJ is the
tunnel magnetoresistance ratio (TMR). The TMR is the difference in resistance between the
two states and is defined as TMR = (RAP − RP)/RP.

Logic 1

Logic 0

I MTJ

I MTJ

Figure 4. Structure of Magnetic Tunnel Junction (MTJ) with parallel and antiparallel states shown.

MTJ integration with CMOS structures has been implemented in previous work [16].
Figure 5 shows the generalized form of an existing version of a CMOS/MTJ circuit. The
architecture contains the following components: a Pre-Charged Sense Amplifier (PCSA),
a dual-rail CMOS logic tree, an MTJ array, and a writing circuit to switch the state of the
MTJs when the inputs are changed. CMOS/MTJ circuits that switch frequently are not
energy-efficient because of the substantial energy required to write to the MTJs [27].
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Figure 5. Generalized form of CMOS/MTJ circuits.

The operation of the PCSA can be explained through the existing PCSA-based CMOS/MTJ
XOR gate (Figure 6) [16,28]. The PCSA has two stages depending on whether the clock is at
logic 0 or logic 1. When CLK is at logic 0, MP3 and MP4 are both on and thus the outputs
are pre-charged to logic 1. When CLK is at logic 1, MN3 is turned on and the outputs begin
discharging to ground. One MTJ will be in the parallel state and the other MTJ will be in
the antiparallel state, this results in a difference in resistance and thus the discharge speed
will be faster through one MTJ. As an example, let us assume MTJ1 is in parallel mode and
MTJ2 is in antiparallel mode. In this case, RMTJ2 > RMTJ1 and as a result more current will
flow through MTJ1 than in MTJ2. When the XOR node reaches the turn-on voltage of MP2,
XNOR will be charged to logic 1 and XOR will be discharged to logic 0 through MN1.

Figure 6. Hybrid CMOS-MTJ XOR circuit [16,28].

2.3. Adiabatic Clock Generator

This section will discuss the adiabatic Power Clock Generator (PCG) which is used
to operate EE-ACML. The PCG used to operate our proposed circuit is shown in [29].
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The PCG consists of an external inductor and the load of the adiabatic circuit resulting
in an RLC resonant circuit. The structure of the two-phase clock generator is shown in
Figure 7. The PCG structure contains two PMOS and two NMOS transistors with four
control signals.

EE-ACML and many other CPA resistant adiabatic circuits rely on discharge signals to
defend against power analysis attacks. Discharge signals are used to ensure both outputs
have no remaining charge before the next cycle begins. The discharge signals are placed
when their respective clock signals are at GND. The discharge signals play an important
role in lowering the correlation between the power and logic operation. Thus, in a previous
work we developed a novel way for discharge and discharge to have a dual-function:
(i) Control signals for the clock generator (ii) discharge the load capacitors of the adiabatic
logic circuit [30]. This duality allows for a reduced number of external signals and simpler
designs. The timing diagram of the external control signals is shown in Figure 8.

a b
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Discharge

b

=

Discharge

Vdd

Vpc Vpc
L

C C

Adiabatic Circuit
Adiabatic Circuit

E1 E2
C L

C
L

R
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L

Figure 7. Structure of two-phase adiabatic clock generator [29].
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Figure 8. Signals used to control operation of Power Clock Generator (PCG).

2.4. Security Parameters for CPA Resistant Circuits

We will use two parameters to evaluate the security of our proposed design, Normal-
ized Energy Deviation and Normalized Standard Deviation. The first parameter Normal-
ized Energy Deviation (NED) is defined as

NED = (Emax − Emin)/Emax (2)
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NED is the normalized difference between the minimum and maximum energy
consumption within a set of possible energy consumption per bit transition. Normalized
Standard Deviation (NSD), is defined as

NSD =
σe

E
(3)

where σe is the standard deviation of the energy dissipated by the circuit per input transition,
and E is the average energy dissipation. The NSD tells us the standard deviation of each
energy value from the average energy. Lower NED and NSD values indicate less variation
in power consumption and thus less information leakage.

3. Proposed Energy-Efficient Adiabatic CMOS/MTJ Logic (EE-ACML)

This section introduces the generic structure of our proposed Energy-Efficient Adia-
batic CMOS/MTJ Logic (EE-ACML) and its operation. The proposed AND/NAND gate
circuit can be seen in Figure 9. We can see that the structure consists of an adiabatic clock
connected to a 2P2N Sense Amplifier. T1-T4 make up the NMOS only evaluation network
connected to two MTJs (MTJ1 and MTJ2) with parallel and antiparallel configurations.
Finally, transistors T5 and T6 are used to discharge any current stored in the load capacitors
at the end of a clock cycle (When VPC is 0). A single EE-ACML gate requires two signals to
operate correctly, a two-phase adiabatic clock and a discharge signal. When more than two
gates are cascaded together, EE-ACML requires two sinusoidal clocks 180◦ out of phase as
well as two discharge signals in phase with the respective clocks. The complete adiabatic
clocking waveform used to operate EE-ACML is shown in Figure 10.

GND

MP2

MTJ1

CL CL

MTJ2B
B

T1 T2 T3 T4A A A A

writing

circuit

writing

circuit

VPC

MP1

NAND
AND

T5 T6

Discharge

GND

MN1
MN2

Sense Amplifier 

Dual-Rail

CMOS Logic

Discharge 

Figure 9. Proposed Energy-Efficient Adiabatic CMOS/MTJ AND/NAND gate.
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Figure 10. CPA-resistant two-phase adiabatic logic clocking scheme used in EE-ACML [30].

3.1. Proposed Adiabatic CMOS/MTJ Operation

This section will explain the operation of EE-ACML. The operation will be explained
with the AND/NAND gate seen in Figure 9.

3.1.1. Discharge Stage

At the start, we assume that A = 1, MTJ1/B = 1, discharge = 1, and VPC = 0. The
operation is illustrated in Figure 11a. When the discharge signal is 1, T5 and T6 are on,
and MP2 is connected to ground through T1 and T5. When MP2 is on, AND follows VPC,
which is currently 0. When AND is at 0, MP1 is also turned on, and NAND is also at 0.

3.1.2. Evaluation Phase

In this phase, the inputs remain at their current values. Discharge is now 0, and VPC
begins to rise from 0 to 1. The operation of this stage is illustrated in Figure 11b. AND and
NAND both rise with VPC; however, due to the difference in resistance between MTJ1 and
MTJ2, one path will conduct more current. In this case, MTJ1 has lower resistance, and
thus more current will flow through MP1. This will cause MP2 to turn off and MN2 to
turn on. AND will rise with VPC to its peak value, while NAND will pull down to logic 0
through MN2.

3.1.3. Recover Phase

The operation of this stage is illustrated in Figure 11c. In this phase, VPC begins to
drop from VDD to GND. At this point, AND is at VDD and thus has a higher potential
than VPC. Current will begin to travel from the high potential node to the low potential
node at VPC. Current is stored in the inductors and capacitors that make up the clock to be
reused again in the next cycle, and thus energy is recovered. At the end of the phase, the
discharge signal will go to VDD to remove any remaining charge in the load capacitors.
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Figure 11. Operation of the proposed Energy-Efficient Adiabatic CMOS/MTJ AND/NAND gate.
(a) Discharge stage of operation; discharge = 1, VPC = 0, A = 1, B = 1. (b) Evaluation phase of
operation; VPC = 0 -> 1, discharge = 0, A = B = 1. (c) Recovery phase of operation; VPC = 1 -> 0,
discharge = 0, A = B = 1.

3.2. Low Energy and Secure EE-ACML PRESENT Implementation

To show the energy efficiency and security of our proposed EE-ACML, we use the
lightweight block cipher PRESENT as a case study [31]. Battery-operated IoT devices
have tight energy and area constraints; thus, the lightweight PRESENT is an ideal choice
for these devices. In this article, we demonstrate the energy efficiency and security of
our proposed design using the 80-bit version of PRESENT. PRESENT has 31 rounds and
consists of three stages: add round key, substitution layer, and permutation layer. Here, we
design one round to demonstrate energy efficiency and security.
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3.2.1. Substitution Box

One of the components of PRESENT is the substitution box (S-box), which performs a
nonlinear substitution. When implemented with CMOS, the S-box is prone to Correlation
Power Analysis Attacks (CPA). Thus, we implemented the S-box with the proposed EE-
ACML. In applications where data switch frequently, the energy consumption of MTJ-based
circuits is high as a result of the write energy [27]. With this in mind, we designed our
S-box using a Look-Up-Table (LUT)-based structure, so we only had to write to the MTJs
once. The structure of the proposed S-box is shown in Figure 12. The MTJs contains the
outputs to the S-box, which are constant, and thus do not need to be switched [31].

MP2

CL CL

VPC

MP1

S0S0

GND

MN1 MN2

GND

T5 T6

Discharge

Sense Amplifier

CMOS Logic

Discharge

MTJ Array

Figure 12. Proposed EE-ACML Look-Up-Table (LUT).

3.2.2. Add Round Key (XOR) Layer

Another component of PRESENT is the add round key layer, which consists of an
array of XOR gates. The CMOS/MTJ implementation of PRESENT utilizes a CMOS/MTJ-
based XOR gate and thus cannot switch data often unless it pays a large energy penalty.
In our implementation, we designed our XOR gate using 2-EE-SPFAL [32]. 2-EE-SPFAL
is a recently proposed two-phase CPA resistant adiabatic circuit. The two-phase clocking
scheme allows for 2-EE-SPFAL to work in tandem with EE-ACML. Utilizing the 2-EE-
SPFAL XOR gate means we can switch data frequently without having to worry about high
energy consumption. The 2-EE-SPFAL XOR gate can be seen in Figure 13.
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Figure 13. 2-EE-SPFAL XOR Gate used to implement the add round key stage of PRESENT [30].

4. Results

This section presents the results of EE-ACML with the clock generator implemented.
Simulations were performed using Cadence Spectre simulator with 45nm standard CMOS
technology. We designed our circuits such that the MTJ switching was at a minimum;
thus, we modeled our MTJs using a resistor. The resistance was determined by the models
provided in [33] and the parameters shown in Table 1.

Table 1. Magnetic Tunnel Junction parameters used in simulations.

Parameter Description Value

tsl Thickness of free layer 1.3 nm
a Length of surface long axis 40 nm
b Width of surface short axis 40 nm

tox Thickness of the Oxide barrier 0.85 nm
TMR Tunnel Magneto Resistance ratio 150%
RA Resistance Area Product 5 Ωµ2

Area MTJ layout surface 40 nm × 40 nm × π/4
Rp Parallel resistance 6.21 kΩ
Rap Antiparallel resistance 18.64 kΩ

4.1. Analysis of the Energy-Efficiency of the Proposed EE-ACML with Integrated Power
Clock Generator

In this section, we examine the effect the adiabatic power clock generator has on
EE-ACML. In our first study, we examined the effects of change in frequency and inductor
on energy per cycle. In this analysis, the capacitor was kept constant while the inductor
was changed based on Equation (4).

f =
1

2π
√

L C
2

(4)

The capacitor and inductor values used in our simulations are shown in Table 2.
The results of our analysis can be seen in Figure 14 and in Table 3. At 25 MHz and a
capacitor and inductor value of 351.67 fF and 230.49 µH, our proposed circuit consumed
157.81 fJ/Cycle, while the CMOS/MTJ implementation consumed 482.0 fJ/Cycle. This
resulted in 67.25% energy savings between the two implementations of PRESENT. At
100 MHz and an inductor value of 14.40 µH, our proposed circuit consumed 459.56 fJ/Cycle,
which resulted in energy savings of 86.58%.
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Table 2. One round of PRESENT inductor and capacitor values at various frequencies.

Frequency Capacitor (fF) Inductor (µH)

12.5 M 351.67 921.96
25 M 351.67 230.49
50 M 351.67 57.62

100 M 351.67 14.40

Table 3. One round of PRESENT energy per cycle (fJ/Cycle) of EE-ACML and CMOS/MTJ [16].

Frequency Proposed EE-ACML CMOS/MTJ [16] Energy Savings (%)

12.5 M 162.25 491.56 66.99
25 M 157.81 482.00 67.25
50 M 114.71 465.62 75.36

100 M 61.19 459.56 86.58
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86.5%

Figure 14. Energy per cycle comparison between proposed EE-ACML and CMOS/MTJ.

In our next study, we kept a constant frequency and varied the capacitor and inductor
values to determine the effect on energy per cycle. Different values of inductors and
capacitors resulted in varying power consumption of the RLC clock generator, which can
be seen in Equation (5). Equation (5) gives the power consumption of a resonant RLC
circuit in which L and ω0 vary with inductance and capacitance.

Pavg =
V2Rω2

R2ω2 + L2(ω2 − ω2
0)

2
(5)

Thus, we theorize that the energy per cycle trend seen in Figure 15 is a result of the
changing capacitors and inductors and thus the power of the RLC circuit.

The adiabatic clock generator can also affect the security of our adiabatic CMOS/MTJ
circuit. We varied the inductor and capacitor to determine the effect it has on Normalized
Energy Deviation and Normalized Standard Deviation. The results can be seen in Figure 16.
From Figure 16, we can see that the NED and NSD values peak at certain inductor and
capacitor values. We theorize that this is a result of the RLC power clock generator having
higher power consumption at these inductor and capacitor values thus causing more
variation in overall power consumption. We conclude that there is a certain capacitor and
inductor value that will result in a more robust countermeasure against CPA attacks.
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Figure 15. Effect of different inductor and capacitor values on energy consumption.
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Figure 16. Effect of changing capacitor and inductor on NED and NSD.

4.2. Device Count of Proposed Energy-Efficient Adiabatic CMOS/MTJ Logic

The area consumption is an important metric when designing integrated circuits for
IoT devices; thus, in this section, we will present the device count of EE-ACML.

Table 4 shows the device count for various CMOS, CMOS/MTJ, and EE-ACML
circuits. We can see that the EE-ACML AND/NAND gate has one less transistor than
the CMOS/MTJ-based AND/NAND gate. The CMOS/MTJ substitution box has 4 extra
transistors when compared to the EE-ACML substitution box.

We also recorded the number of transistors for one round of PRESENT. The CMOS/MTJ
implementation of PRESENT has 4 fewer transistors than the EE-ACML implementation.
This is because the CMOS/MTJ implementation uses the CMOS/MTJ XOR/XNOR gate
while the EE-ACML implementation uses the 2-EE-SPFAL-based XOR/XNOR gate, which
has more transistors. The tradeoff of using the MTJ-based XOR/XNOR gate is it cannot be
switched frequently without consuming substantial energy. EE-ACML uses fewer transis-
tors than the CMOS implementation of PRESENT. This is because Flip-Flops are added to
each CMOS output to synchronize the outputs.
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Table 4. Device counts of various CMOS, CMOS/MTJ, and EE-ACML-based circuits.

Logic Family Logic Gate Transistor Count

EE-ACML

NAND 10
XOR 10
SBOX 264
1-Round PRESENT 4996

CMOS/MTJ [16]

NAND 11
XOR 11
SBOX 268
1-Round PRESENT 4992

CMOS

NAND 4
XOR 8
SBOX 216
1-Round PRESENT 5120

4.3. Analysis of Security of the Proposed EE-ACML S-Box

In this article, we simulate and record the energy numbers of the PRESENT substitu-
tion box in order to calculate the Normalized Energy Deviation (NED) and Normalized
Standard Deviation (NSD) values. Our simulations and results are with the adiabatic clock
generator implemented. Table 5 shows the NED and NSD values for EE-ACML as well as
a CMOS/MTJ S-box [16] and a purely adiabatic circuit 2-Energy Efficient-Secure Positive
Feedback Adiabatic Logic (2-EE-SPFAL) [30]. From Table 5 we can see that our proposed
adiabatic CMOS/MTJ circuit consumes average energy of 41.6 fJ, while the CMOS/MTJ
implementation consumes 78.2 fJ, and the 2-EE-SPFAL circuit consumes 35.2fJ at 12.5 MHz.
Furthermore, our proposed S-box has a NED value of 0.0011 and an NSD value of 0.002,
both lower than the CMOS/MTJ and 2-EE-SPFAL implementation of the PRESENT S-box.

Table 5. Normalized Energy Deviation and Normalized Standard Deviation values for EE-ACML-
based S-box.

Parameter Proposed EE-ACML CMOS/MTJ [16] 2-EE-SPFAL [30]

Emin( f J) 41.4 77.3 34.2
Emax( f J) 41.9 79.1 36.3
Eavg( f J) 41.6 78.2 35.2
NED 0.011 0.022 0.056
NSD 0.002 0.006 0.012

5. Correlation Power Analysis Attack on EE-ACML-Based PRESENT

In this section, we will demonstrate EE-ACML-based PRESENT resilience against
a CPA attack. The adiabatic clock generator was implemented again to determine if the
circuit remained secure. As the key is used for the operation of the substitution box, it was
used as the attack point. The CPA attack was performed by following the steps described
in [34]. The simulation was performed at 12.5 MHz with a key value of 2 (0010)b. In the
field, CPA attacks usually require hundreds of thousands of traces to steal encryption keys
as a result of electrical noise and other nonideal factors. However, in our simulations we
required fewer traces, because the noise factors were not present. To demonstrate the ability
of our CPA attack, we performed one on a CMOS-based PRESENT circuit and determined
that the key could be stolen [20]. We used the same CPA attack on the EE-ACML-based
PRESENT to confirm the CPA-resistant ability of EE-ACML.

In our attack on the CMOS-based PRESENT, we utilized 160 traces and were able
to steal the encryption key. Figure 17a shows a successful CPA attack against the CMOS
implemented PRESENT S-box for a key value of 2. The Measurements to Disclosure (MTD)
was five traces. In our attack on the EE-ACML-based PRESENT we used 16,000 traces
and were unable to retrieve the key. Figure 17b shows an unsuccessful attack when the



Sensors 2021, 21, 7651 15 of 17

key value is 2, where the attack produced a guess of 1. The unsuccessful CPA attack on
EE-ACML-based PRESENT shows it is a promising solution to defending against power
analysis attacks on IoT devices.
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Figure 17. Correlation power analysis performed on EE-ACML implementation of PRESENT-80.
(a) Successful CPA attack on CMOS-based implementation of PRESENT S-box with key = 2. (b) Un-
successful CPA attack on EE-ACML-based implementation of PRESENT S-box with key = 2.

6. Discussion and Conclusions

In this article, an adiabatic CMOS/MTJ architecture known as Energy-Efficient Adia-
batic CMOS/MTJ Logic (EE-ACML) was presented and shown to be both energy efficient
and secure. An adiabatic clock generator was implemented to show energy savings, se-
curity, and reliability remained. The novel circuit provided substantial energy savings
when compared to a CMOS/MTJ circuit found in the literature [16]. As a case study, we
constructed one round of PRESENT and showed our circuit remained energy efficient. Our
circuit consumed 156.81 fJ/Cycle, which amounts to 67.25% energy savings when com-
pared to the CMOS/MTJ implementation. To demonstrate secure operation we performed
a Correlation Power Analysis attack on our EE-ACML-based PRESENT circuit and showed
that the key remained secret.
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Our work demonstrates the effectiveness of both adiabatic logic and magnetic tunnel
junctions in designing low-energy and secure circuits. The low energy consumption
makes the novel circuits ideal candidates to be implemented within battery-constrained
IoT devices. The implementation of an adiabatic clock generator also aids in proving
our proposed circuits’ ability to remain energy efficient and secure. To further scrutinize
the security of our device, machine learning-based CPA attacks can be performed on our
design to determine the resilience [35]. Machine learning-based CPA attacks require fewer
traces and higher test accuracy.
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