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Abstract. The relaxation time limit of the one-point distribution of the spatially periodic totally asymmetric simple exclusion process
is expected to be the universal one point distribution for the models in the KPZ universality class in a periodic domain. Unlike the
infinite line case, the limiting one point distribution depends non-trivially on the scaled time parameter. We study several properties of
this distribution for the case of the periodic step and flat initial conditions. We show that the distribution changes from a Tracy–Widom
distribution in the small time limit to the Gaussian distribution in the large time limit, and also obtain right tail estimate for all time.
Furthermore, we establish a connection to integrable differential equations such as the KP equation, coupled systems of mKdV and
nonlinear heat equations, and the KdV equation.

Résumé. Il est attendu que la limite du temps de relaxation pour la distribution à un point du processus d’exclusion simple totalement
asymétrique et périodique en espace est la distribution à un point de la classe universelle KPZ en domaine périodique. Contrairement
au cas de la ligne infinie, la distribution à un point dépend de façon non-triviale des paramètres d’échelle en temps. Nous étudions
plusieurs propriétés de cette distribution dans le cas des lois initiales à pas périodiques et plates. Nous montrons que la distribution
change de la loi de Tracy–Widom dans la limite en temps petits à la loi Gaussienne en temps grands, et nous obtenons aussi une
estimée de queue pour tous les temps. De plus, nous établissons une relation avec les équations différentielles intégrables telles que les
équations KP, les systèmes couplés mKdV et équations de la chaleur non-linéaires, et l’équation KdV.
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1. Introduction

The scaled height field of the models in the KPZ universality class is expected to converge to a universal field in the large
time limit. The limit, the KPZ fixed point, was constructed recently by Matetski, Quastel and Remenik, [32] and also by
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Fig. 1. The density profile and particle configuration for periodic step initial condition when ρ = 1/2.

Dauvergne, Ortmann and Virag [17]. For the so-called step initial condition, the one-point marginal FKPZ of the KPZ
fixed point is given by (see, for example, [5,7,15,28,42]) the scaled GUE Tracy–Widom distribution

FKPZ(x; τ, γ ) = FGUE

(
x

τ 1/3
+ γ 2

4τ 4/3

)
, (1.1)

where τ, γ, x denote the time, location, and height parameters, respectively. From its expression it is apparent that FKPZ
is invariant under the KPZ re-scaling (τ, γ, x) �→ (α3τ,α2γ,αx) for all α > 0.

In this paper, we study the analogue of the GUE Tracy–Widom distribution which arises when the infinite line is
changed to a periodic domain. The spatial periodicity introduces the following new feature. Let L denote the period and t

the time. For the models in the KPZ universality class, the height functions at two locations at the same time are critically
correlated if the distance is O(t2/3). Hence, in the periodic case, all points are critically correlated if t = O(L3/2), which is
called the relaxation time scale. Since the periodicity effect should diminish when t � L3/2 and amplify when t � L3/2,
the scaled time parameter τ = tL−3/2 measures the effect of the periodicity. As a result, the relaxation time limit of the
one-point distribution depends on τ non-trivially and it is not invariant under the KPZ re-scaling.

The relaxation time limit (for both one-point and multi-point distributions) was evaluated1 for the periodic totally
asymmetric simple exclusion process (TASEP) in [8–10,31,38]. Assume the periodic step initial condition; this means that
for the fixed density of particles ρ ∈ (0,1), we impose at time 0 that consecutive ρL are sites occupied, the next (1 −ρ)L

unoccupied sites, and this pattern repeats, see Figure 1. The one-point distribution converges, as t = O(L3/2) → ∞, to a
distribution F independent of ρ. This limit was computed explicitly in a physics work [38] and a rigorous work [8], and
it takes the form2

F(x; τ, γ ) =
∮

exA1(z)+τA2(z)+2B(z) det(I−Kz)
dz

2πiz
. (1.2)

The contour is a small circle enclosing the origin in the complex plane. The functions A1,A2,B are given in terms of
polylog functions, and they are independent of the physical parameters τ, γ and x. The last term in the integral is a
Fredholm determinant, and the operator Kz = Kz(x, γ, τ ) depends on all the physical parameters x, γ, τ and also on the
integration variable z. All these objects are introduced explicitly in Section 2.2.

It was shown that F is a distribution function. Since it is a limit for a model in a periodic domain, the distribution
function F(x; τ, γ ) is periodic in γ , and its period is normalized so that F(x; τ, γ + 1) = F(x; τ, γ ). The function F

is expected to be the universal relaxation time limit of the one-point distribution of the KPZ universality in a periodic
domain for the periodic step initial condition. In other words, it is expected to be the marginal of the periodic KPZ fixed
point. The goal of this paper is to study several properties of F(x; τ, γ ).

1.1. Analytic structure of F and FKPZ

The invariance of FKPZ through the KPZ re-scaling tells us that FKPZ can be recast as a function of one single variable,
namely (1.1), and all one needs to know about FKPZ is encoded in FGUE. In contrast, its periodic counterpart F does not
enjoy the same invariance and truly depends on the three parameters (τ, γ, x).

For a better comparison between F and FKPZ, we unwrap the dependence of FKPZ on the parameters (τ, γ, x) from
FGUE. Using the representation (1.1) the distribution FKPZ takes the form

FKPZ(x; τ, γ ) = det(I−KKPZ)L2(0,∞) = det(I−A−γAγ )L2(0,∞), (1.3)

1See [16,20,24–26,36,37] for other properties of periodic models in the KPZ universality class.
2We follow the formula of [8]. The formula obtained in [38] has a different form but recently [39] verified that the two formulas are equivalent.



250 J. Baik, Z. Liu and G. L. F. Silva

Fig. 2. The left picture is an example of the contour �− . The right picture is the discrete set S− .

where KKPZ =A−γAγ , with Aγ being the operator acting on L2(0,∞) with the kernel Aγ ,

Aγ (s, t) = Aγ (s + x + t)

and

Aγ (s) =Aγ (s; τ) := e
γ 3

12τ
+ γ s

2τ

τ 1/3
Ai

(
s

τ 1/3
+ γ 2

4τ 4/3

)
= 1

2πi

∫
�−

e− τ
3 u3+ γ

2 u2+su du. (1.4)

Here Ai denotes the Airy function. Note that the function Aγ satisfies the KPZ scaling invariance: Aγ (s; τ) =
α−1Aα2γ (αs;α3τ). The kernel for the product operator KKPZ is

KKPZ(s, t) =
∫ ∞

0
A−γ (s + x + u)Aγ (u + x + t) du, s, t ≥ 0.

In (1.4), �− is any unbounded oriented contour from e−iθ1∞ to eiθ2∞ for some θ1, θ2 ∈ (π/2,5π/6); see Figure 2.
Let us now turn to a representation of F . The definition (1.2) obtained in [8] involves the operator Kz which acts on

the discrete space 	2(S−), with (see Figure 2)3

S− = S−(z) := {w ∈C | e−w2/2 = z,Rew < 0
}= {w = −√−2 log z + 4πik, k ∈ Z}. (1.5)

This set is a discrete subset of the hyperbola

�− = �−(z) = {w ∈ C | ∣∣e−w2/2
∣∣= |z|,Rew < 0

}= {w ∈ C | Re
(
w2)= −2 log |z|,Rew < 0

}
,

which we could use for (1.4). Our first result is the following.

Lemma 1.1. The identity

det(I−Kz)	2(S−) = det(I−T−γTγ )L2(0,∞)

holds true, where Tγ : L2(0,∞) → L2(0,∞) is the trace class operator defined by its kernel

Tγ (s, t) := Tγ (s + x + t), Tγ (s) = Tγ (s; τ, z) :=
∑
ξ∈S−

e− τ
3 ξ3+ γ

2 ξ2+sξ−Q(ξ)

−ξ
, (1.6)

where Q(ξ) is a polylog integral whose formula is given in (2.3).

3The elements of the larger set S(z) := {w ∈ C | e−w2/2 = z} that contains S− are called Bethe roots since they arise in the Bethe ansatz analysis for
the periodic TASEP.
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We emphasize that Q(ξ) does not depend on any of the parameters τ, γ, x and z. Its exact expression is not relevant at
the moment. We also note that Tγ depends on z through the set S− = S−(z). Using the above lemma, (1.2) updates to

F(x; τ, γ ) =
∮

exA1(z)+τA2(z)+2B(z) det(I−T−γTγ )L2(0,∞)

dz

2πiz
, (1.7)

where the kernel for the product T−γTγ is

(s, t) �→
∫ ∞

0
T−γ (s + x + u)Tγ (u + x + t) du, s, t ≥ 0. (1.8)

If we were to neglect the term Q in (1.6), the formula of Tγ (s) would be

∑
ξ∈S−

e− τ
3 ξ3+ γ

2 ξ2+sξ

−ξ
. (1.9)

The set S− is a discrete subset of �−. The spacing between two neighboring points of S− is approximately 2πi
−ξ

. Hence,
(1.9) is a discretization of the rescaled Airy function Aγ in (1.4), and this discretization depends on the variable z because
S− = S−(z). Consequently, the formula (1.7) of F is a linear superposition of modified (due to Q) discrete versions of
FKPZ(x; τ, γ ).

The formula (1.9) is a sum over a discrete set, so it is not invariant under the KPZ rescaling. However, the discrete set
explains the spatial periodicity: observing that e−ξ2/2 = z for ξ ∈ S− the identities

Tγ+1(s) = z−1Tγ (s) and T−γ−1(s) = zTγ (s),

follow, and hence the product kernel (1.8) is invariant under γ �→ γ + 1.

1.2. Integrable differential equations

In the previous subsection, we discussed Airy-like operator formulas for det(I−Kz) and det(I−KKPZ). In Lemmas 2.2
and 2.3 we will show that both determinants also admit a representation in terms of so-called IIKS-integrable operators,
and these in turn can be canonically associated to Riemann–Hilbert problems. Exploring the connection of Riemann–
Hilbert problems with integrable differential equations we obtain the next result.

Theorem 1.2. The second log derivatives of the Fredholm determinants of Kz and KKPZ decompose as

∂xx log det(I−KKPZ) = PKPZ(τ, γ, x)RKPZ(τ, γ, x) and ∂xx log det(I−Kz) = Pper(τ, γ, x)Rper(τ, γ, x),

where (p, r) = (PKPZ,RKPZ) or (Pper,Rper) is a solution to the following two systems of differential equations.

1. As a function of τ and x, they satisfy a system of coupled modified Korteweg–de Vries (mKdV) equations4{
3pτ + pxxx + 6prpx = 0,

3rτ + rxxx + 6prrx = 0.
(1.10)

2. As a function of γ and x, they satisfy a system of coupled nonlinear heat equations{
pγ = −pxx − 2p2r,

rγ = rxx + 2pr2.
(1.11)

Finally, the symmetry property

p(γ ) = −r(−γ ) (1.12)

also holds.

4The scale τ �→ 3τ changes the equations to more standard form pτ + pxxx + 6prpx = 0 and rτ + rxxx + 6prrx = 0.
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The coupled systems and the symmetry (1.12) imply that p itself solves non-local differential equations

3pτ (γ ) + pxxx(γ ) − 6p(γ )p(−γ )px(γ ) = 0 (1.13)

and

pγ (γ ) + pxx(γ ) − 2p(γ )2p(−γ ) = 0. (1.14)

For the particular case when γ = 0, which will be discussed in Theorem 8.4 for the periodic TASEP with flat initial
condition, Equation (1.13) becomes the defocusing mKdV equation5 3pτ + pxxx − 6p2px = 0.

It is simple to show (see Section 7.3) that the compatibility of the two systems (1.10)–(1.11) yield

Corollary 1.3 (KP equation). The second log derivative of the Fredholm determinants

Uper(τ, γ, x) = ∂xx log det(I−Kz), UKPZ(τ, γ, x) = ∂xx log det(I−KKPZ)

are solutions to the second Kadomtsev–Petviashvili (KP-II) equation6

12uγγ + (12uτ + 12uux + uxxx)x = 0. (1.15)

For u = UKPZ, Corollary 1.3 was obtained recently by Quastel and Remenik [40]. The relation (1.1) tells us that UKPZ
is a self-similar solution to (1.15),

UKPZ(τ, γ, x) = τ−3/2φ0

(
x

τ 1/3
+ γ 2

4τ 4/3

)
,

for some function φ0. Equation (1.15), in turn, gives us that φ0 = −φ2, where φ solves the second Painlevé equation,
from which one can recover the Painlevé formula of FGUE [41].

The above result is new for u = Uper. In this case, the results should be interpreted as that the equations hold for
(τ, γ, x) and z in a neighborhood of (τ0, γ0, x0) and z0 in which det(I−Kz) 	= 0. The complement of the zero set of this
Fredholm determinant is an open set of full measure since the Fredholm determinant is an analytic function of these four
variables. Assuming that the solution exists for all x and decays to 0 sufficiently fast as x → ∞, the function F can be
written as

F(x; τ, γ ) =
∮

exA1(z)+τA2(z)+2B(z)E(x, τ, γ ; z) dz

2πiz
,

E(τ, γ, x; z) := exp

(∫ ∞

x

(y − x)Uper(τ, γ, y; z) dy

)
,

where Uper(τ, γ, x; z) is a complex solution of the KP equation with the initial condition determined by z. This is a
periodic analogue of the Painlevé formula of FGUE.

The solutions Uper,Pper and Rper above are infinite dimensional solitons (with complex velocities) since the associated
Riemann–Hilbert problem is discrete; see Section 7. This way, F is a superposition of (the tau function of the) solutions
integrated over a parameter z which determines the initial/boundary condition of the solution. In contrast, the purely
continuous nature of the associated Riemann–Hilbert problem for UKPZ,PKPZ,RKPZ indicate that these solutions are not
solitons.

The KP equation was first introduced by Kadomtsev and Petviashvili [29] in 1970 and it is an universal model for
the study of two-dimensional shallow water waves that generalize the mKdV equation to two spatial dimensions. The
connection between the KP equation and the KPZ universality class was first observed by Quastel and Remenik in [40].
They considered the one-time/multi-location marginals of the KPZ fixed point on the infinite line with general initial
condition, and proved that a log derivative of the distribution can be expressed in terms of a matrix KP equation. This
result was used to find large deviation results and also further extended in [30]. As mentioned before, if we consider the

5The scale τ �→ 3τ transform the equation to the standard form pτ +pxxx −6p2px = 0. If the sign of the nonlinear term changes, pτ +pxxx +6p2px =
0, the equation becomes the focusing mKdV equation instead of the defocusing mKdV equation.
6The scaled function v(τ, γ, x) = 2u(12τ,±2γ, x) changes the equation to more standard form 3λvγ γ + (vτ +6vvx +vxxx)x with λ = 1. The equation
with λ = −1 is called the KP-I equation.
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one-point function and step initial condition, Quastel–Remenik’s result is Corollary 1.3 for u = UKPZ.7 In the context of
periodic TASEP, Prolhac [39] noticed that ∂xx det(I−Kz) is “a reminiscent of soliton solutions for the KP equation”, and
that the analogue Fredholm determinant for the flat initial condition is connected to the KdV equation. Our Corollary 1.3
establishes a precise connection for ∂xx det(I − Kz) with the KP equation, and in Corollary 8.5 we rediscover Prolhac’s
observation for the flat initial condition.

Solutions of integrable systems consisting of infinitely many solitons have attracted a great deal of recent interest, see
for instance [21,23] and the references therein.

We used the connection to an IIKS-integrable operator to derive integrable differential equations for the step initial
condition. This connection extends to the flat initial condition as well. However, it is not clear if it extends to general
initial conditions. Nonetheless, the authors in [30,40] used differential identities of the kernel to derive the KP equation
for general initial conditions. As pointed out in [40], this method had appeared in several papers in the past, among
which are the papers [34,35] that derive the KP equation for a general class of kernels. It is straightforward to check
that the general result of [34] is applicable to the kernel T−γTγ for the periodic case and gives an alternative proof for
Corollary 1.3. Indeed, it can be used to derive the KP equation for general initial conditions for the periodic case. To
state the result briefly, we recall that in [10] an extension of (1.2) was obtained for periodic TASEP with general initial
condition satisfying certain technical assumptions. The limiting distribution takes the form

Fic(x; τ, γ ) =
∮

Eic(z)e
xA1(z)+τA2(z)+2B(z) det

(
I−K

ic
z

) dz

2πiz
, (1.16)

where the operator Kic
z depends on z, x, γ, τ , and also on the initial condition. All these quantities will be discussed in

Section 2.5 below.

Theorem 1.4. The function

u = Uic(τ, γ, x) := ∂xx det log
(
I−K

ic
z

)
solves the KP equation (1.15).

The analysis just discussed in this subsection can be extended to multi-time, multi-location distributions, and the results
will be announced elsewhere.

1.3. Asymptotic properties of F

We also study in detail the distribution (1.2) in various asymptotic regimes.

1.3.1. Large time limit
The function F depends non-trivially on τ . We consider the large τ limit first.

Theorem 1.5 (Large τ limit). For each fixed x ∈ R and γ ∈ R,

lim
τ→∞F

(
−τ + π1/4

√
2

xτ 1/2; τ, γ
)

= 1√
2π

∫ x

−∞
e− y2

2 dy.

This result was conjectured in [8, (4.14)] and the above theorem confirms it. This is a natural result to expect since
heuristically the model degenerates to a one dimensional random growth model along the time direction when t � L3/2

in the periodic TASEP. However, the proof using the formula of F turns out to be technical. The leading non-trivial
contribution to the Fredholm determinant comes from the trace of Kz. We then still need to analyze the integral over
z. To evaluate this integral asymptotically using the method of steepest-descent, it turned out that we need to consider
an analytic continuation of polylog functions on a Riemann surface and the main contribution comes from a boundary
point on a new sheet of the Riemann surface. Recently motivated by the same function F(x; τ, γ ), Prolhac [39] studied
Riemann surfaces associated to general polylog functions. In this paper, we carry out the analytic continuation directly
for polylog functions of positive half integer index.

7The paper [40] used the notation γ �→ 2γ so that the KP equation takes the form 3uγγ + (12uτ + 12uux + uxxx)x = 0.
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1.3.2. Small time limit
Next result is the small τ limit.

Theorem 1.6 (Small τ limit for γ = 0). For every x0 ∈R, there exist constants C,c, ε > 0 and τ0 > 0 such that∣∣F (τ 1/3x; τ,0
)− FGUE(x)

∣∣≤ Ce−ετ−2/3
e−c(x−x0), 0 < τ < τ0, x ≥ x0.

In particular,

lim
τ→0

F
(
τ 1/3x; τ,0

)= FGUE(x)

uniformly for x ≥ x0.

When τ is small, the periodicity effect becomes small, and hence in the limit τ → 0 we expect that the periodic model
reduces to the non-periodic model on the line. Recall that the initial condition is given by periodic step initial condition.
Hence, if the model were the TASEP on the infinite line, the locations at which the initial density profile changes from 0
to 1 generate shocks. At a shock location, the large time limit of the one-point distribution is not given by FGUE but F 2

GUE
(see, for example, [22]). Based on this observation, it was conjectured in [8, (4.13)] that

lim
τ→0

F

(
τ 1/3x − γ 2

4τ
; τ, γ
)

=
{

FGUE(x), − 1
2 < γ < 1

2 ,

(FGUE(x))2, γ = 1
2 .

(1.17)

The above result confirms this conjecture when γ = 0. The proof consists of showing that a conjugated version of the op-
erator Kz converges to the Airy operator, and that exA1(z)+τA2(z)+2B(z) converges to 1 when z is scaled appropriately. The
convergence to the Airy kernel becomes substantially complicated when γ 	= 0. Although we believe that our arguments
could be improved to analyze the case when γ is sufficiently small, it is not yet clear how to extend the analysis to the
case when |γ | is close to 1/2.

1.3.3. Right tail estimate
We also study the right tail of the distribution function F . Recall that it is periodic in γ with period 1, so it is enough to
consider γ ∈ (−1/2,1/2].

Theorem 1.7 (Right tail estimate). For every fixed τ > 0 and γ , there is a constant c > 0 such that

1 − F(x; τ, γ ) =
(

1 − FGUE

(
x

τ 1/3
+ γ 2

4τ 4/3

))(
1 +O
(
e−cx1/2))

for −1

2
< γ <

1

2

and

1 − F(x; τ, γ ) = 2

(
1 − FGUE

(
x

τ 1/3
+ γ 2

4τ 4/3

))(
1 +O
(
e−cx1/2))

for γ = 1

2

as x → ∞.

The above result implies that

1 − F

(
τ 1/3x − γ 2

4τ
; τ, γ
)

=
{

(1 − FGUE(x))(1 +O(e−cx1/2
)), − 1

2 < γ < 1
2 ,

(1 − FGUE(x)2)(1 +O(e−cx1/2
)), γ = 1

2 ,

as x → ∞. This result is consistent with the conjectured small τ limit (1.17).
At this stage we cannot compare the above result with the large τ limit in Theorem 1.5, as in order to make the

parameters in the same form we would need to consider the left tail as x → −∞, which we do not pursue in this paper.

1.4. Flat initial condition

If the periodic TASEP starts with the flat initial condition, the limit of the one point distribution takes a slightly different
form. All of the above results have an analogue for the flat initial condition which we discuss in Section 8.
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1.5. Organization of the paper

In Section 2 we state the definition of the function F(x; τ, γ ) and obtain alternative representations for it. Lemma 1.1
and Theorem 1.4 are also proven in Section 2. Section 3 discusses several analytic continuation properties of the polylog
function, which we use in Section 4 to evaluate the large τ limit. These two sections are the most technical part of this
paper. We obtain the small τ limit in Section 5 and the right tail estimate in Section 6. The connection to integrable
differential equations is discussed in Section 7. The flat initial condition is discussed in Section 8. Some proofs for
auxiliary results used in Section 7 are given in Appendix A and B.

2. One point distribution

2.1. Periodic TASEP with step initial condition

We first review the limit theorem of the one point distribution of the periodic TASEP. Let N and L be the number of
particles and fundamental period, respectively, where 0 < N < L. Consider the situation when L,N → ∞ with density of
particles N/L → ρ ∈ (0,1). We take the periodic step initial condition; at time zero, each of the sites −N + 1, . . . ,−1,0
is occupied by a particle and the sites 1, . . . ,L − N are empty, and this pattern is extended periodically with period L.
We denote by H(j, t) the height function at site j at time t . At j = 0, it is defined to be 2 times the number of particles
that have moved from the site 0 to 1 up to time t . For j ≥ 1, it is defined to be H(j, t) = H(0, t) +∑j

k=1(1 − 2ηk(t))

where ηk(t) is the occupation variable that takes value 1 if the site j is occupied and value 0 if it is empty at time t . For
j ≤ −1, it is defined to be H(j, t) =H(0, t) −∑0

k=j+1(1 − 2ηk(t)).

It was shown8 in [8, Theorem 3.4]9 that with the scale of the position and time given by

s = γL, t = τ
L3/2

√
ρ(1 − ρ)

for parameters γ ∈ (− 1
2 , 1

2 ] and τ > 0, we have the limit theorem

lim
L→∞P

(H(t (1 − 2ρ) + s, t) − (1 − 2ρ)s − (1 − 2ρ + 2ρ2)t

−2ρ1/2(1 − ρ)1/2L1/2
≤ x

)
= F(x; τ, γ ) (2.1)

for any fixed x ∈ R. The function F(x; τ, γ ) is the one in (1.2) and we describe it explicitly in the next subsection. Note
that the height at time t is evaluated at the location j = t (1 − 2ρ) + s, where s measures the relative distance from
the location t (1 − 2ρ). The reason for this shift is that the periodic step initial condition generate shocks that travel at
speed 1 − 2ρ, and we consider the moving frame along the shock direction. Also note that the time, relative position, and
average-adjusted height have orders O(L3/2), O(L), and O(L1/2), which are consistent with the 3 : 2 : 1 KPZ scale, and
the time and period are related as t =O(L3/2) which is the relaxation time scale.

2.2. Definition of the one point distribution function

We define the function F(x; τ, γ ) in (1.2) explicitly. Let Lis be the polylog function; see Section 3 for their properties.
Set

A1(z) := − 1√
2π

Li3/2(z), A2(z) := − 1√
2π

Li5/2(z), B(z) := 1

4π

∫ z

0

(Li1/2(y))2

y
dy. (2.2)

To introduce the operator Kz, first define the function

Q(ξ) :=
√

2

π

∫ ξ

−∞
Li1/2
(
e−s2/2)ds for

3π

4
< arg ξ <

5π

4
, (2.3)

8It was also shown in a non-rigorous paper [38].
9Theorem 3.4 of [8] states the result in terms of the current, but it is easy to translate the results in terms of the height function. Furthermore, the limit

in Theorem 3.4 of [8] is given as F(τ1/3x; τ, γ ), but in this paper, we use a slightly different scaling, which has the effect of changing τ1/3x to x. See
Theorem 2.1 of [9] for the explicit statement in terms of the height function.
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where the path of integration is contained in the sector arg(s) ∈ (3π/4,5π/4) so that e−s2/2 ∈ C \ [1,∞), and as such the
polylog is well defined. Alternatively, the representation

Q(ξ) = −
∫ i∞

−i∞
log(1 − e−ξ2/2eu2/2)

u − ξ

du

πi
,

3π

4
< arg ξ <

5π

4
, (2.4)

also holds (see [8, (4.8)]). The function Q is analytic in the sector.
We set, for 3π/4 < arg ξ < 5π/4,

�(ξ) = �(ξ ; τ, x) = −1

3
τξ3 + xξ − Q(ξ) (2.5)

and define the integral operator Kz acting on functions over S− via the kernel

Kz(ξ1, ξ2) = Kz(ξ1, ξ2; τ, γ, x) =
∑
η∈S−

e�(ξ1)+�(η)+ γ
2 (ξ2

1 −η2)

ξ1η(ξ1 + η)(η + ξ2)
, ξ1, ξ2 ∈ S−, (2.6)

where S− is the discrete set defined in (1.5). Note that the kernel depends on z since the set S− depends on z. Due to the
growth properties of �, it is direct to check that the series definition of the Fredholm determinant det(I − Kz) is well-
defined even though the kernel does not decay fast enough as ξ2 → ∞ on S−. It is also direct to check that det(I−Kz) is
analytic in 0 < |z| < 1.

Definition 2.1. The function in (1.2) is defined by

F(x; τ, γ ) =
∮

exA1(z)+τA2(z)+2B(z) det(I−Kz)
dz

2πiz
, (2.7)

where the contour is a circle |z| = R with 0 < R < 1, oriented counterclockwise.

It was shown in [8] that F(x; τ, γ ) is a distribution function, and it satisfies the spatial periodicity F(x; τ, γ + 1) =
F(x; τ, γ ).

The above kernel can be conjugated to a symmetric kernel (using the same notation)

Kz(ξ1, ξ2) =
∑
η∈S−

e
1
2 �(ξ1)+�(η)+ 1

2 �(ξ2)+ γ
4 (ξ2

1 −2η2+ξ2
2 )

√−ξ1
√−η(ξ1 + η)(η + ξ2)

√−η
√−ξ2

, ξ1, ξ2 ∈ S−, (2.8)

without changing the Fredholm determinant, and this kernel properly defines a trace class operator Kz : 	2(S−) → 	2(S−)

(see Section 2.3). This kernel is symmetric but not self-adjoint since it is complex-valued.

2.3. Proof of Lemma 1.1

Lemma 1.1 claims that det(I−Kz)	2(S−) = det(I− T−γTγ )L2(0,∞) with Tγ being the operator on L2(0,∞) defined by
the kernel (1.6). The rest of this subsection proves this claim.

From the formula (2.8), Kz is the product of two operators

Kz = JJ
T , (2.9)

where J : 	2(S−) → 	2(S−) has the kernel

J(ξ, η) = e
1
2 (�(ξ)+�(η))+ γ

4 (ξ2−η2)

√−ξ(ξ + η)
√−η

, ξ, η ∈ S−. (2.10)

The operator JT : 	2(S−) → 	2(S−) is obtained from J from the kernel

JT (η, ξ ;γ ) = J(ξ, η;γ ) = J(η, ξ ;−γ ). (2.11)
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Fig. 3. The left picture is the set � = �+ ∪ �− . In the right picture, the sets S+ and S− are represented by the squares and the dots, respectively. The
dashed curves are the hyperbolas. Compare this figure with Figure 2.

Using the identity 1
η+ξ

= − ∫∞
0 es(η+ξ) ds that holds for η, ξ ∈ S−, we can write

J= −G−γG
T
γ , (2.12)

where Gγ : L2(0,∞) → 	2(S−) is the operator defined by the kernel

Gγ (ξ, s) = e
1
2 �(ξ)− γ

4 ξ2+sξ

√−ξ
for ξ ∈ S− and s ∈ (0,∞).

It is immediate that Gγ is Hilbert–Schmidt. Consequently, J,JT and Kz are all trace class operators. From the decompo-
sitions above,

det(I−Kz) = det
(
I− JJ

T
)= det

(
I−G−γG

T
γ GγG

T−γ

)= det
(
I−G

T
γ GγG

T−γG−γ

)
.

Setting Tγ =GT−γG−γ , we find that Tγ is trace class and its kernel is (1.6). This proves Lemma 1.1.

2.4. Integrable operator formula

There is another representation for det(I−KKPZ) as well as det(I−Kz). These representations will be used in Section 7
when we derive integrable differential equations.

For |z| < 1, recall the set S− in (1.5), and also let �− be an unbounded oriented contour from e−iθ1∞ to eiθ2∞ for
some θ1, θ2 ∈ (π/2,5π/6). Define (see Figure 3)

S = S(z) := S+ ∪ S− with S+ := −S−, and

� := �+ ∪ �− with �+ := −�−.
(2.13)

In addition, set

V (u) = V (u; τ, γ, x) := −τ

3
u3 + γ

2
u2 + xu, u ∈C, (2.14)

and denote by σ3 the third Pauli matrix,

σ3 :=
(

1 0
0 −1

)
, so in particular, e± 1

2 V (u)σ3 =
(

e± 1
2 V (u) 0

0 e∓ 1
2 V (u)

)
.

Lemma 2.2. Let χ+ and χ− be the indicator functions of S+ and S−, respectively, and define vector functions

�f (u) = e− 1
2 V (u)σ3 �f0(u) and �g(u) = e

1
2 V (u)σ3 �g0(u),
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with

�f0(u) =
⎛⎜⎝ e

1
2 Q(u)√

u
χ+(u)

e
− 1

2 Q(u)√−u
χ−(u)

⎞⎟⎠ and �g0(u) =
⎛⎜⎝− e

− 1
2 Q(u)√−u

χ−(u)

e
1
2 Q(u)√

u
χ+(u)

⎞⎟⎠ .

Then

det(I−Kz)	2(S−) = det(I−H)	2(S),

where H is the trace class operator acting on 	2(S) with kernel

H(u, v) = �f (u)T �g(v)

u − v
, u 	= v, and H(u,u) = 0. (2.15)

Proof. Recall that Kz = JJT in (2.9) where J : 	2(S−) → 	2(S−) has the kernel J given by (2.10). Noting that
S+ = −S−, we set W : 	2(S+) → 	2(S−) to be the reflection operator defined by (Wh)(u) = h(−u) and write Kz = J1J2,
where J1 = JW : 	2(S+) → 	2(S−) and J2 = WT JT : 	2(S−) → 	2(S+). Since S− and S+ are disjoint, we have
	2(S−) ⊕ 	2(S+) = 	2(S− ∪ S+), and

det(I−Kz)	2(S−) = det

(
I−
(

0 J1
J2 0

))
	2(S−)⊕	2(S+)

= det(I−H)	2(S−∪S+),

where H is the operator on 	2(S− ∪ S+) with the kernel

H(u, v) = χ+(u)J2(u, v)χ−(v) + χ−(u)J1(u, v)χ+(v)

= χ+(u)
e

1
2 �(v)− 1

2 �(u)+ γ
4 (v2−u2)

√
u
√−v(v − u)

χ−(v) + χ−(u)
e

1
2 �(u)− 1

2 �(v)+ γ
4 (u2−v2)

√−u
√

v(u − v)
χ+(v)

for u,v ∈ S+ ∪ S−. Because J is trace class and W is bounded, the operator H is trace class. The result now follows by
inserting the formula �(ξ) = − 1

3τξ3 + xξ − Q(ξ) (see (2.5)). �

There is an analogue to the previous result for det(I−KKPZ). For the case when τ = 1 and γ = 0, the next result is a
particular instance of a known representation for the Airy2 process [11,12].

Lemma 2.3. Let χ�+ and χ�− be the characteristic functions of the contours �+ and �− in (2.13). Define the vector
functions

�a(u) = e− 1
2 V (u)σ3 �a0(u), �b(u) = e

1
2 V (u)σ3 �b0(u), with a0(u) =

(
χ�+(u)

−χ�−(u)

)
, b0(u) =

(
χ�−(u)

χ�+(u)

)
.

Then,

det(I−KKPZ)L2(0,∞) = det(I− F)L2(�),

where F : L2(�) → L2(�) acts with kernel

F(u, v) = 1

2πi

�a(u)T b(v)

u − v
, u 	= v, and F(u,u) = 0. (2.16)

Proof. The definition of the kernel Aγ in (1.4) gives the decomposition Aγ = BT
γ Bγ , where Bγ : L2(0,∞) → L2(�−)

acts with kernel

Bγ (η, v) = 1√
2πi

e
1
2 V (η)+ηv, η ∈ �−, v > 0,

where V is given in (2.14). Manipulating the Fredholm determinants,

det(I−KKPZ)L2(0,∞) = det(I−A−γAγ )L2(0,∞) = det
(
I−BγB

T−γB−γB
T
γ

)
L2(�)

= det
(
I−BB

T
)
L2(�)

,
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where B = BγB
T−γ . The rest of the proof follows exactly as in the proof of Lemma 2.2: the role of Kz is played by BBT

and the operator J is now B. �

The form (2.15) or (2.16) of the kernels is saying that the operators F and H are IIKS-integrable, which is a class of
operators that was first singled out by Its, Izergin, Korepin and Slavnov [27]. In Section 7 we discuss and explore this
structure in detail.

2.5. The periodic TASEP with general initial condition: Proof of Theorem 1.4

The distribution function (1.16) was obtained in [10] in the context of periodic TASEP, and extends (2.1) to a large class
of initial conditions. The prefactor Eic(z) in (1.16) depends on the initial condition and also on the variable z but is
independent of the parameters x, τ and γ . The operator Kic

z : 	2(S−) → 	2(S−) is a generalization of Kz and acts with
kernel10

Kic
z (ξ1, ξ2) =

∑
η∈S−

χic(−η, ξ2)
e

1
2 �(ξ1)+�(η)+ 1

2 �(ξ2)+ γ
4 (ξ2

1 −2η2+ξ2
2 )

√−ξ1
√−η(ξ1 + η)(η + ξ2)

√−η
√−ξ2

, ξ1, ξ2 ∈ S−, (2.17)

where χic(−η, ξ2) = χic(−η, ξ2; z) depends on the initial condition and on the parameter z but not on x, γ, τ .
The class of initial conditions for which this formula is valid is stated in rather technical terms, and verifying that a

given initial condition falls into this class may be involved, even if the initial condition is simple. The formulation of
Kic

z as above is enough for our purposes, so we refer the reader to [10] for more details on these conditions. It is worth
mentioning that this setting just introduced is valid for the step, flat and step-flat initial conditions.

Similarly as in (2.9), we write

K
ic
z = JJ

ic,

where J : 	2(S−) → 	2(S−) is as in (2.9) and Jic : 	2(S−) → 	2(S−) is defined by the kernel

Jic(ξ, η) = χic(−ξ, η)JT (ξ, η) = χic(−ξ, η)J(η, ξ), ξ, η ∈ S−.

We take advantage of the same decomposition (2.12) and manipulate

det
(
I−K

ic
z

)= det
(
I+G−γG

T
γ J

ic)= det
(
I−T

ic),
where Tic : L2(0,∞) → L2(0,∞) is the product Tic = −GT

γ J
icG−γ and has kernel

Tic(u, v) = −
∑

ξ,η∈S−

χic(−η, ξ)

ξ(ξ + η)η
e�(ξ)+�(η)+ γ

2 (ξ2−η2)+uη+vξ , u, v > 0.

It is convenient to rescale the kernel and consider the auxiliary operator

T̂
ic = T̂

ic(τ, γ, x) = −T
ic(−3τ,2γ, x), (2.18)

which has explicit kernel

T̂ic(u, v) = T̂ic(u, v; τ, γ, x) =
∑

η,ξ∈S−

χic(−ξ, η)eQ(ξ)+Q(η)

ξ(ξ + η)η
eτ(ξ3+η3)+γ (ξ2−η2)+(u+x)ξ+(v+x)η, u, v > 0.

In particular, the differential identities

∂xT̂ic = ∂uT̂ic + ∂vT̂ic, ∂γ T̂ic = ∂uuT̂ic − ∂vvT̂ic, ∂τ T̂ic = ∂uuuT̂ic + ∂vvvT̂ic.

are of straightforward verification. By [34, Theorem 3.1], these identities imply that û = ∂xx log det(I+ T̂ic) satisfies the
KP equation in the form

3ûγ γ + (̂uxxx + 12ûûx − 4ûτ )x = 0. (2.19)

10The original formulation in [10] is a modified version of (2.6), which can then be conjugated to (2.17).
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In the definition of T̂ic(u, v; τ, γ, x) we should only consider τ < 0 to ensure the series is convergent. On the other
hand, the KP equation is an evolution equation in the time variable τ , so naturally with τ > 0. Nevertheless, we are safe
to apply [34, Theorem 3.1] here also for τ < 0, as the arguments therein are of algebraic nature, relying on τ solely as a
variable without physical meaning and no restriction on its sign. Having in mind (2.18), Theorem 1.4 now follows from
(2.19).

3. Analytic continuation of polylog functions

The formula (2.7) of F(x; τ, γ ) involves polylog functions Li1/2(z),Li3/2(z) and Li5/2(z). In the first subsection, we
summarize some basic properties of polylog functions used in this paper. In the remaining subsections, we establish some
analytic continuation properties of polylog functions and their combinations. The results of this section will be used only
in Section 4.3 for the large τ limit of F(x; τ, γ ).

Throughout this paper, log z denotes the principal branch of the logarithmic function with branch cut along (−∞,0],
and zα denotes zα = eα log z.

3.1. Polylog functions

For Re s > 0, the polylog function is defined by the series

Lis(z) :=
∞∑

k=1

zk

ks
, |z| < 1, (3.1)

and it extends analytically using the integral representation

Lis(z) = z

�(s)

∫ ∞

0

t s−1

et − z
dt, z ∈ C \ [1,∞). (3.2)

From this representation, Paulsen [33, Proposition 3] showed that if s is not an integer, then

Lis(z) = �(1 − s)(− log z)s−1 + ζ(s) +
∞∑

n=1

(z − 1)n
n∑

m=1

S
(m)
n ζ(s − m)

n! as z → 1, (3.3)

where ζ is the Riemann zeta function and S
(m)
n are the Stirling numbers of the first kind.

Observe that the function f (t) = (−t)s−1 has branch cut along (0,+∞) and it satisfies the identity

(−t)s−1+ − (−t)s−1− = 2i|t |s−1 sin(πs), t > 0,

where f±(t) denotes the limit of f (t ± iε) as ε ↘ 0. Thus, for s ∈ C satisfying s /∈ Z and Re(s) > 0, we can rewrite the
integral representation (3.2) as a complex contour integral given by

Lis(z) = −�(1 − s)z

2πi

∫
�

(−t)s−1

et − z
dt, z ∈ C \ [1,∞), (3.4)

where we used the reflection formula �(s) sin(πs) = π
�(1−s)

. Here, � is an unbounded contour that starts and ends at
+∞, lies in the strip {t ∈ C : | Im t | < π}, encircles the positive axis with counterclockwise orientation, and separates the
point log z from the interval [0,∞), see Figure 4.

3.2. Analytic continuation

Define the set

R1 =C \ ((−∞,0] ∪ [1,∞)
)
.

Let R2 be another copy of R1 and define a (non-compact two sheeted) Riemann surface R by gluing R1 and R2 along
only [1,∞), see Figure 5. The only branch point11 of the surface is z = 1 and the local parameter near z = 1 is given by

11The Riemann surface R here is bordered. We could extend R to a non-compact Riemann surface without boundaries which is the fundamental

covering surface for the polylog. In this extended surface 0(2) would also be a branch point. Hence we sometimes refer to 0(2) loosely as a branch point.
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Fig. 4. The contours � and �̃ used in the integral representations of Lis and Fs .

Fig. 5. The two sheets R1 and R2 that constitute the Riemann surface R. They are glued along the interval [1,+∞) but not along (−∞,0].

z − 1 = w2, w ∈ C. For j = 1,2, we occasionally use the notation p(j) to denote the point on the sheet Rj that projects
onto p ∈ C. This notion is well defined as long as p /∈ (−∞,0) ∪ (1,∞). In particular, 1(1) = 1(2) so we simply write
1(j) = 1 ∈R in this case.

Define the function

u0(z) := −(−2 log z)1/2, z ∈R1. (3.5)

From the choice of the branch of the logarithm and the square root, u0(z) is analytic in R1. This function is one of the
Bethe roots, see (1.5). This particular Bethe root will play an important role in the large τ limit. Note that u0+(x) =
−u0−(x) for x > 1.

Lemma 3.1. The function

U0(z) :=
{

u0(z), z ∈R1,

−u0(z), z ∈R2
(3.6)

is analytic on R. The only zero of U0 is the branch point z = 1, which is a simple zero. As a consequence, 1
U0(z)

is a
meromorphic function on R with a simple pole at z = 1 and no other poles.

Proof. The analytic properties of U0 are straightforward to check. The fact that U0 has a simple zero at z = 1 is easily
verified using the local coordinates z − 1 = w2. �

Now consider the polylog Lis . For the rest of this section, we assume that s is a positive half integer,

s ∈ Z+ 1

2
, s > 0,

which is the case relevant to our purposes. We use the formula (3.4) to extend the polylog to the Riemann surface R. To
this end, we introduce an auxiliary function

Ps(z) =
∫

�̃

(−t)s−1

et − z
dt, z ∈ C \ (−∞,0],
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where �̃ is a contour going from +∞ + i0 to +∞ − i0, encircling both the segment [0,+∞) and the point log z, and
being contained in the horizontal strip | Im t | < π ; see Figure 4. The condition z /∈ (−∞,0] implies that log z is in the
horizontal strip | Im t | < π , and hence we can indeed choose such a contour �̃ contained in the horizontal strip | Im t | < π .
Note that unlike Lis(z), the function Ps(z) is analytic across the segment [1,∞). Given a point z ∈ R1, deforming the
contour � in (3.4) to �̃ we obtain the identity∫

�

(−t)s−1

et − z
dt = Ps(z) − 2πi Res

t=log z

(
(−t)s−1

et − z

)
= Ps(z) − 2πi

(− log z)s−1

z
.

Hence, writing log z in terms of u0(z) in (3.5), we get

Lis(z) = −�(1 − s)

2πi
zPs(z) + 21−s�(1 − s)

(−u0(z)
)2s−2 for z ∈R1. (3.7)

This formula implies the following extension result.

Lemma 3.2. Assume that 2s is a positive odd integer. The function

Ls(z) :=
{

Lis(z) for z ∈ R1,

Lis(z) − 22−s�(1 − s)(−u0(z))
2s−2 for z ∈ R2,

(3.8)

is analytic on R for s 	= 1
2 . For s = 1

2 , L1/2 is meromorphic with a simple pole at z = 1 and no other poles.

Proof. We set Ls(z) = −�(1−s)z
2πi

Ps(z) + 21−s�(1 − s)(−U0(z))
2s−2 where U0(z) given by (3.6). Using (−1)2s−2 = −1

and (3.7), we observe that this function is equal to (3.8) on each sheet. For s = 1/2, we note that (−U0(z))
2s−2 =

− 1
U0(z)

. �

3.3. Extension of the functions f1 and f2

In the asymptotic analysis of F(x; τ, γ ) as τ → ∞ in the next section, we need to extend several functions involving
polylog to the Riemann surface R. These functions are defined below as f1, f2, and E and appear later in (4.9). In this
subsection we discuss the analytic extension and properties of f1 and f2, and postpone the discussion of E to the next
subsection.

The functions f1(z) and f2(z) are given by

f1(z) := 1√
2π

Li3/2(z) − 1√
2π

Li5/2(z) − 2u0(z) − 2

3
u0(z)

3, f2(z) := 2u0(z) − 1√
2π

Li3/2(z).

Define

f1(z) := 1√
2π

L3/2(z) − 1√
2π

L5/2(z) − 2U0(z) − 2

3
U0(z)

3

and

f2(z) := 2U0(z) − 1√
2π

L3/2(z).

These functions are analytic on R. They satisfy f1 = f1 and f2 = f2 on the first sheet R1. For later use, we state the
formula on the second sheet explicitly. Using (3.6) and (3.8), and �(−1/2) = −2

√
π and �(−3/2) = 4

√
π/3, we find

the following.

Lemma 3.3. The functions f1 and f2 are analytic on R and satisfy

f1(z) = 1√
2π

Li3/2(z) − 1√
2π

Li5/2(z) and f2(z) = − 1√
2π

Li3/2(z) for z ∈R2.

In addition, the functions f1 and f2 have continuous boundary values f1(z± i0) and f2(z± i0) for z on the interval (−∞,0)

in the boundary of R1.
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3.4. Extension of the function E

We now consider the function

E(z) := e2B(z)−2Q(u0(z)).

Changing the variables in the definition (2.3) of Q and using u′
0(t) = −1/(tu0(t)),

Q
(
u0(z)
)=√ 2

π

∫ u0(z)

−∞
Li1/2
(
e−y2/2)dy = −

√
2

π

∫ z

0

Li1/2(t)

tu0(t)
dt for 0 < |z| < 1 with z /∈ (−1,0),

where the integration contour for the second integral is in the same domain as z. Combined with the definition (2.2) of B ,
we have

2B(z) − 2Q
(
u0(z)
)= 1

2π

∫ z

0

Li1/2(t)

t

(
Li1/2(t) + 25/2√π

u0(t)

)
dt (3.9)

for 0 < |z| < 1 with z /∈ (−1,0).
Define the function

g(z) := L1/2(z)

2πz

(
L1/2(z) + 25/2√π

U0(z)

)
for z ∈R. (3.10)

On the first sheet R1 this function agrees with the integrand of (3.9). It is analytic on R except possibly at the branch
point z = 1 (note that z = 0 is not on R).

We look at the limit as z → 1. Using (3.3) and (3.8), we find that

g(z) = − 3

u0(z)2
+O
(
u0(z)

−1)= 3

2(z − 1)
+O
(
(z − 1)−1/2) (3.11)

as z → 1. In terms of the local coordinates z − 1 = w2,

g(z) dz =
(

3

w
+O(1)

)
dw,

which implies that Resz=1 g(z) dz = 3. Due to the pole of g, the integral
∫ z

0(1) g(t) dt depends on the choice of the path on
R. However, since the residue of g at the pole is an integer, exp(

∫ z

0(1) g(t) dt) does not depend on the choice of path.

Lemma 3.4. The function

E(z) := exp

(∫ z

0(1)

g(t) dt

)
= exp

(∫ z

0(1)

L1/2(z)

2πz

(
L1/2(z) + 25/2√π

U0(z)

)
dt

)
is well defined and analytic on R. We have E(z) = E(z) on z ∈ R1 satisfying 0 < |z| < 1. Furthermore, E has a zero of
order 3 at the branch point z = 1. Finally, E(z) has continuous boundary values E(z ± i0) for z on the interval (−∞,0)

in the boundary of R1.

Proof. For z 	= 1, the value of E(z) does not depend on the choice of path of the integral on the Riemann surface since
the residue of g at the pole 1 is an integer. Being an integral of an analytic function, it is analytic possibly except at z = 1.
As z → 1, we have from (3.11)∫ z

0(1)

g(t) dt = 3

2
log(z − 1) +O(1),

which implies that E(z) = (z−1)3/2f (z) = w3f (1+w2) for an analytic function f and the local coordinates z−1 = w2.
This analysis shows that E is analytic near z = 1 and it has a zero of order 3 at z = 1.

The continuity of the boundary values of E follow from continuity of the boundary values for Li1/2 and u0 away from
z = 0. �
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3.5. Behavior of the function E(z) near z = 0 on the second sheet

We conclude this section with the behavior of E(z) as z → 0(2) on the second sheet R2. The following result will be used
in the proof of Lemma 4.9 in the next section.

Lemma 3.5. We have

E(z) = −4u0(z)
4(1 +O

(
z2)) as z → 0(2).

Proof. Fix a small real number ε ∈ (0,1). We evaluate the exponent
∫ z

0(1) g(t) dt of E using a specific path that consists
of several pieces:∫ z

0(1)

g(t) dt =
∫ ε(1)

0(1)

g(t) dt +
∫ (1−ε)(1)

ε(1)

g(t) dt +
∫ (1−ε)(2)

(1−ε)(1)

g(t) dt +
∫ ε(2)

(1−ε)(2)

g(t) dt +
∫ z

ε(2)

g(t) dt.

The contours for the second and fourth integrals are straight line segments. The first and last integrals are over contours
such that |t | stays small. The third integral is over a contour that satisfies that |t − 1| stays small. Note that the first four
integrals do not depend on z.

Consider the third integral. By (3.10) and using the local coordinates 1 − t = w2,

lim
ε→0

∫ (1−ε)(2)

(1−ε)(1)

g(t) dt = lim
ε→0

∫ −√
ε

√
ε

3

w
dw = ±3πi,

where the sign depends on the direction that the path goes around the branch point z = 1. Since E(z) is the exponential of
the integral and e3πi = e−3πi = −1, both signs give the same contribution to E(z).

Now consider the first and the last integrals. From (3.10) and (3.8),

g(z) = 1

2πz
Li1/2(z)

(
Li1/2(z) + 25/2√π

u0(z)

)
for z ∈ R1 (3.12)

and

g(z) = 1

2πz

(
Li1/2(z) + 23/2√π

u0(z)

)(
Li1/2(z) − 23/2√π

u0(z)

)
for z ∈R2. (3.13)

Since Li1/2(z) = z + O(z2) (see (3.1)),

g(z) = − 2√
π(− log z)1/2

+O(1) as z → 0(1)

and

g(z) = − 4

zu0(z)2
+ Li1/2(z)

2

2πz
= 2

z log z
+O(z) as z → 0(2).

Hence,

lim
ε→0

∫ ε(1)

0(1)

g(t) dt = − 2√
π

lim
ε→0

∫ ε

0

1

(− log z)1/2
dz = 0,

and for small enough |z| and ε,∫ z

ε(2)

g(t) dt = 2
∫ z

ε

dt

t log t
+O
(
z2)+O

(
ε2)= 2 log(− log z) − 2 log(− log ε) +O

(
z2)+O

(
ε2).

Finally, for the second and the fourth integrals, we have from (3.12) and (3.13),∫ (1−ε)(1)

ε(1)

g(t) dt +
∫ ε(2)

(1−ε)(2)

g(t) dt = 23/2

√
π

∫ 1−ε

ε

(
Li1/2(t) +

√
2π

u0(t)

)
dt

tu0(t)
.
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A direction computation shows that

23/2

√
π

∫ 1−ε

ε

√
2π

tu0(t)2
dt = −2

∫ 1−ε

ε

dt

t log t
= −2 log

(− log(1 − ε)
)+ 2 log(− log ε)).

We postpone the computation of the remaining part of the integral.
Combining all together and taking ε → 0 first, we find that

E(z) = −(− log z)2(1 +O
(
z2))eC

as z → 0(2), where

C = lim
ε→0

[
23/2

√
π

∫ 1−ε

ε

Li1/2(t)
dt

tu0(t)
− 2 log

(− log(1 − ε)
)]

.

We now find the value of C using the lemma below. We may replace log(− log(1 − ε)) in the integral in the formula
by log(ε), and replace ε in the lower limit of the integral by 0 because the integral is convergent at t = 0. After that we
change the variable t to u0(t) = −(−2 log t)1/2 and find

C = lim
ε→0

[
−23/2

√
π

∫ −(−2 log(1−ε))1/2

−∞
Li1/2
(
e−t2/2)dt − 2 log ε

]
.

Since Li1/2(e
−t2/2) = O(t−1) as t → 0, which follows from (3.3), we may replace the upper limit of the integral by

−√
2ε. Changing

√
2ε = δ, and using the evenness of the integrand, we find that C = 4 log 2 from the lemma below. This

completes the proof. �

Lemma 3.6. We have

lim
δ→0+

∫ ∞

δ

Li1/2
(
e−t2/2)dt + √

2π log(δ) = −
√

π

2
log 2.

Proof. Using the power series formula (3.1) for the polylog and changing variables,∫ ∞

δ

Li1/2
(
e−t2/2)dt =

∞∑
k=1

1

k

∫ ∞
√

kδ

e−t2/2 dt =
∫ ∞

δ

e−t2/2h
([

t2δ−2])dt,

where h(n) := 1 + 1
2 + · · · + 1

n
is the n-th partial sum of the harmonic series. We have

h(n) = logn + γ + εn,

where γ is the Euler–Mascheroni constant, and εn = O(n−1) as n → ∞. Set ε̃y := ε[y] + log[y] − logy and note that
there is a constant C > 0 such that |ε̃y | ≤ C

y
for all y ≥ 1. Hence,∫ ∞

δ

Li1/2
(
e−t2/2)dt =

∫ ∞

δ

e−t2/2(log
(
t2δ−2)+ γ + ε̃t2δ−2

)
dt.

Note that∫ ∞

0
e−t2/2 dt =

√
π

2
and

∫ ∞

0
e−t2/2 log

(
t2)dt = −

√
π

2
(γ + log 2).

On the other hand,∣∣∣∣∫ ∞

δ

e−t2/2ε̃t2δ−2 dt

∣∣∣∣≤ Cδ2
(∫ 1

δ

1

t2
dt +
∫ ∞

1
e−t2/2 dt

)
= O(δ).

Combining the above equations, we obtain the result. �
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4. Large time limit

Recall the distribution function F in (2.7). In this section we consider the large τ limit of F(xτ ; τ, γ ) with

xτ = −τ + π1/4

√
2

xτ 1/2, x ∈ R fixed, (4.1)

and prove Theorem 1.5. This section is split into four subsections. In the first subsection, we analyze the asymptotics
of the Fredholm determinant in the integrand of (2.7) and show that all but the first two terms of the Fredholm series
expansion are exponentially small. In the second subsection, we show that the main contribution to F(xτ ; τ, γ ) comes
from the integral involving the trace of the operator Kz and then show that the integral can be expressed as a single
integral involving polylog functions. In the third subsection we evaluate the integral using the method of steepest descent
and, finally, in the fourth subsection we combine all the ingredients to prove Theorem 1.5.

4.1. Asymptotic analysis of the Fredholm determinant

The formula (2.7) of F(xτ ; τ, γ ) is given by an integral of the variable z ∈D \ {0} where D denotes the open unit disk. It
is convenient to write

z = elog |z|eiθ0(z)/2, θ = θ0(z) =
{

2 arg z, arg z ∈ [0,π],
−2(2π − arg z), arg z ∈ (π,2π).

Note that θ0(z) ∈ (−2π,2π ]. Using the above notation, the set S− (recall (1.5)), which is the set of solutions of e−ξ2/2 = z

with Re ξ < 0, can be enumerated as S− = {uk}k∈Z where

uk = uk(z) = −(−2 log |z| + iθk

)1/2
, θk := −θ0(z) + 4πk.

In particular

u0(z) = −(−2 log |z| + iθ0
)1/2 = −(−2 log z)1/2

agrees with the previous definition in (3.5). We denote the real part and the imaginary part of uk by xk and yk :

uk = uk(z) = xk + iyk = xk(z) + iyk(z).

These values xk and yk satisfy the relations

x2
k − y2

k = −2 log |z|, 2xkyk = θk. (4.2)

Solving for x2
k , we have

(
xk(z)
)2 = − log |z| +

√(
log |z|)2 + θ2

k /4. (4.3)

Also note that

θ2
k ≥ 4

(
2k − θ0

2π

)2

π2 ≥ 4
(
2|k| − 1

)2
π2 for k 	= 0. (4.4)

Recall the formula (2.5) of the function � appearing in (2.6). With the change x �→ xτ in (4.1), it becomes

�τ (ξ) := �(ξ ; z, xτ , τ ) = −τ

(
1

3
ξ3 + ξ

)
+ τ 1/2 π1/4x√

2
ξ − Q(ξ), (4.5)

where Q is defined in (2.3). Using (4.2), we write

Re�τ (uk) = −τ

3
pz(xk) + τ 1/2 π1/4x√

2
xk − ReQ(uk) (4.6)
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for uk = xk + iyk ∈ S−, where

pz(w) := −2w3 + 3w
(
1 − 2 log |z|).

In the next few results, we estimate Re�τ (u) for u on S−. These results involve constants which are given numerically
to several digits and will be later combined to estimate a Fredholm determinant from its series. The exact value of these
constants, as they appear here, could be relaxed at the cost of estimating the very first few terms of the series for the
Fredholm determinant separately, taking advantage of the alternating signs that appear when computing determinants.
However, we opt for giving these precise values of the constants and use only the first term of the series.

Lemma 4.1. There is a constant δ ∈ (0,1) such that

pz

(
xk(z)
)≥ {−1.42, k = 0,

5.81|k|3/2, k 	= 0,

for 1 − δ ≤ |z| ≤ 1.

Proof. From the definition of S− we have xk(z) < 0. Thus, for all |z| that satisfies the inequality

log |z| ≥ 1

2

(
1 − 3 3

√
2 · 0.71 · 0.71

)≈ −0.00136,

we have

pz

(
xk(z)
)≥ −2xk(z)

3 + 3 3
√

2 · 0.71 · 0.71xk(z) ≥ −1.42.

Now, consider k 	= 0. Using (4.3), recalling xk(z) < 0, and combining with (4.4),

xk(z) ≤ −
√

− log |z| + (2|k| − 1
)
π, k 	= 0.

The function pz(w) decreases in w ∈ (−∞,wc) with wc = − 1
2

√
1 − 2 log |z|. For k 	= 0, we see that

−√− log |z| + (2|k| − 1)π < wc, and hence,

pz

(
xk(z)
)≥ pk

(−√− log |z| + (2|k| − 1
)
π
)

= (4 log |z| + (4|k| − 2
)
π − 3
)√− log |z| + (2|k| − 1

)
π

≥ (4|k| − 2.9565
)√

2|k| − 1π3/2 ≥ 1.0435π3/2|k|3/2

provided log |z| > π
4 (3/π − 0.9565) ≈ −0.0012. This completes the proof. �

Corollary 4.2. There exists a constant δ ∈ (0,1) such that for every δ1 ∈ (0, δ), we can find τ0 > 0 so that

Re�τ

(
uk(z)
)≤ {0.4734τ, k = 0,

−1.9366|k|3/2τ, k 	= 0,

for all 1 − δ ≤ |z| ≤ 1 − δ1 and τ ≥ τ0.

Proof. We use the formula (4.6) and the last lemma. By (4.3) and (4.4), for every ε ∈ (0,1), there is a positive constant
C > 0 such that |xk(z)| ≤ C|k|1/2 for all k 	= 0 and ε ≤ |z| ≤ 1. Using this and the fact that x is a fixed constant, we

find that the term π1/4xτ 1/2√
2

xk of the formula (4.6) is O(|k|1/2τ 1/2) uniformly in ε ≤ |z| ≤ 1. The remaining term of the

formula, ReQ(uk(z)), is uniformly bounded in compacts of |z| < 1 as can be seen from the formula (2.4). Hence, we
obtain the result for k 	= 0. The case k = 0 is similar. �

We also need estimates on the points in S−.
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Lemma 4.3. For every fixed δ1 ∈ (0,1), there exists c > 0 such that∣∣uk(z)
∣∣≥ c
√|k| + 1 and

∣∣uj (z) + uk(z)
∣∣≥ c
√|j | + |k| + 2

for all 0 < |z| < 1 − δ1 and k, j ∈ Z.

Proof. From (4.3), x2
k ≥ − log |z|+ |θk|/2 > − log(1 − δ1)+|θk/2| > 0. From (4.4), |θk| ≥ 2(2|k|− 1)π for k 	= 0. Thus,

there exists c > 0 such that |uk|2 ≥ x2
k ≥ c2(|k| + 1) for all k. This implies the first inequality. The second inequality

follows from the first inequality since xj , xk < 0, and hence

|uj + uk| ≥ −xj − xk ≥ c
√|j | + 1 + c

√|k| + 1 ≥ c
√|j | + |k| + 2. �

The kernel of the operator Kz is given by (2.6). With the change x �→ xτ in (4.1), the kernel becomes

Kz(ξ1, ξ2) =
∑
u∈S−

e�τ (ξ1)+�τ (u)+ γ
2 (ξ2

1 −u2)

ξ1u(ξ1 + u)(u + ξ2)
for ξ1, ξ2 ∈ S−,

where �τ is defined in (4.5). We now estimate this kernel.

Lemma 4.4. There is a constant δ ∈ (0,1) such that for every δ1 ∈ (0, δ), we can find τ0 > 0 and C > 0 so that

N∑
k=1

∣∣Kz(ξ, u	k
)
∣∣2 ≤ (C logN)e2 Re�τ (ξ)+0.9468τ

for all ξ ∈ S−, for all N ≥ 2 and distinct integers 	1, . . . , 	N , and for all τ ≥ τ0 and 1 − δ ≤ |z| ≤ 1 − δ1.

Proof. Let δ, δ1 and τ0 be the constants from Corollary 4.2. Every ξ ∈ S− satisfies e−ξ2/2 = z, and hence, |e−γ ξ2/2| =
|z|γ . Thus, using Lemma 4.3,

∣∣Kz(ξ, u)
∣∣≤ eRe�τ (ξ)

c3
f (u) where f (u) :=

∑
j∈Z

eRe�τ (uj )

|uj + u| (4.7)

for ξ,u ∈ S−, where the constant c > 0 is from Lemma 4.3. For u = u	, Corollary 4.2 and Lemma 4.3 imply that

f (u	) ≤ e0.4734τ

c
√|	| + 2

+
∑
j 	=0

e−1.9366|j |3/2τ

c
√|	| + |j | + 2

.

for all τ ≥ τ0. Adjusting the value of τ0 if needed, the sum is smaller than the single term, and hence,

f (u	) ≤ 2e0.4734τ

c
√|	| + 2

.

Inserting the above inequalities into (4.7) and noting that
∑N

k=1
1

|	|+2 ≤ logN since 	1, . . . , 	N are distinct integers, we
complete the proof. �

We are now ready to prove the main result of this subsection.

Proposition 4.5. Change x �→ xτ as (4.1). There is a constant δ ∈ (0,1) such that for every δ1 ∈ (0, δ),

det(I−Kz) = 1 − TrKz +O
(
e−0.51τ

)
as τ → ∞,

uniformly for 1 − δ ≤ |z| ≤ 1 − δ1.

Proof. From the series expansion of Fredholm determinants,

det(I−Kz) = 1 − TrKz +
∞∑

N=2

(−1)N

N ! DN with DN :=
∑∗

	1,...,	N∈Z
det
(
Kz(u	j

, u	k
)
)N
j,k=1,
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where the superscript ∗ means that the sum is taken over 	j ’s that are distinct. For distinct 	j ’s, the Hadamard’s inequality
and Lemma 4.4 give us that

∣∣det
(
Kz(u	j

, u	k
)
)N
j,k=1

∣∣≤ N∏
j=1

(
N∑

k=1

∣∣Kz(u	j
, u	k

)
∣∣2)1/2

≤ (C logN)N/2e0.4734τN
N∏

j=1

e
Re�τ (u	j

)
.

Hence,

|DN | ≤ (C logN)N/2e0.4734τN
∑∗

	1,...,	N∈Z

N∏
j=1

e
Re�τ (u	j

)
.

Considering the case when one of the indices 	j is zero separately and using a symmetry,

∑∗

	1,...,	N∈Z

N∏
j=1

e
Re�τ (u	j

) =
∑∗

	1,...,	N 	=0

N∏
j=1

e
Re�τ (u	j

) + NeRe�τ (u0)
∑∗

	2,...,	N 	=0

N∏
j=2

e
Re�τ (u	j

)

≤
(∑

		=0

eRe�τ (u	)

)N

+ NeRe�τ (u0)

(∑
		=0

eRe�τ (u	)

)N−1

.

Now, Corollary 4.2 implies that

∑
	∈Z\{0}

eRe�τ (u	) ≤ 2
∞∑

	=1

e−1.9366	3/2τ ≤ 2e−1.9366τ

1 − e−1.9366τ
and eRe�τ (u0) ≤ e0.4734τ

for all large enough τ . Therefore,

∑∗

	1,...,	N∈Z

N∏
j=1

e
Re�τ (u	j

) ≤ CN
1 e−1.9366τNe2.41τ

for a new constant C1 > 0. Thus, adjusting the constant τ0 if needed, we find that for a yet new constant C2 > 0

|DN | ≤ (
√

C2 logN)Ne−1.4632τN+2.41τ

for τ ≥ τ0 and N ≥ 2. From this and using N ! ≥ (N/e)N , we conclude that∣∣∣∣∣
∞∑

N=2

(−1)N

N ! DN

∣∣∣∣∣≤
∞∑

N=2

(
e
√

C2 logN

N

)N

e−1.4632τN+2.41τ ≤ C3

∞∑
N=2

e−1.4632τN+2.41τ

for a new constant C3 > 0, and hence we find that the sum is O(e−0.51τ ). �

4.2. From a Fredholm determinant integral to a polylog integral

Proposition 4.5 implies the following result for the distribution function.

Proposition 4.6. We have

F(xτ ; τ, γ ) = 1 −
∮

|z|=R

exτ A1(z)+τA2(z)+2B(z) Tr(Kz)
dz

2πiz
+O
(
e−0.002τ

)
as τ → ∞ for any R ∈ (0,1).

Proof. Since the integrand in the result is analytic in 0 < |z| < 1, it is enough to prove the statement for R = 1 − δ where
δ > 0 is the constant from Proposition 4.5. We insert the result of Proposition 4.5 into the formula (2.7) of F(xτ ; τ, γ ).
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Since A1(z),A2(z), and B(z) are analytic in the unit disc, and they are all 0 at z = 0, by the residue theorem, we obtain
the term 1. We now consider the error term. Recalling (4.1),

max|z|=R
Re
(
xτA1(z) + τA2(z) + 2B(z)

)= τ√
2π

max|z|=R
Re
(
Li3/2(z) − Li5/2(z)

)+O
(
τ 1/2).

Using the series representation (3.1) of polylog functions,

∣∣Li3/2(z) − Li5/2(z)
∣∣≤ ∞∑

k=1

|z|k(k−3/2 − k−5/2)≤ ζ(3/2) − ζ(5/2) < 1.271.

Here ζ is the Riemann zeta function. Hence,

max|z|=R
Re
(
xτA1(z) + τA2(z) + 2B(z)

)
< 0.5071τ (4.8)

for all large enough τ , and∮
|z|=R

exτ A1(z)+τA2(z)+2B(z)O
(
e−0.51τ

)
dz =O

(
e−0.002τ

)
and we obtain the result. �

Since the kernel of Kz is given by a sum, TrKz is a double sum. We show that the main contribution to the trace comes
from a single term of the sum.

Lemma 4.7. With the change x �→ xτ in (4.1), there is a constant δ ∈ (0,1) such that for every δ1 ∈ (0, δ),

TrKz = e2�τ (u0(z))

4u0(z)4
+O
(
e−1.4632τ

)
as τ → ∞,

uniformly for 1 − δ ≤ |z| ≤ 1 − δ1.

A direct calculation shows that 2 Re�τ (u0(−1 ± i0)) ≈ −3.8795τ , so the term singled out above is neglectible when
compared with the error term for z close to −1. However, the importance of the formula above comes from its uniformity:
when z moves away from −1, the formula is still valid, and for z sufficiently away from −1 the contribution from the
term e2�(u0(z)) above becomes dominant over the error term.

Later we will use the asymptotic formula above to compute the integral in Proposition 4.6. The major contribution
to that integral will come from a critical point z = zc of the exponent of the integrand and, at this critical point, the
contribution that will arise from the term e2�τ (u0(zc)) will indeed be larger than the error term.

Also, the asymptotic formula above has to be interpreted carefully when considering z < 0, as the term TrKz is
analytic in 0 < |z| < 1, but u0(z) is analytic only in C \ ((−∞,0] ∪ [1,∞)). Nonetheless, it is easy to check from the
definition that u0(z) and 1

u0(z)
are bounded in any compact subset of the open set {z : Re z < 0}, including on the line

segment (−∞,0), and admit continuous boundary values when z approaches (−∞,0) from above or below (although
these boundary values do not coincide). Therefore, as will be done later without further mention, these asymptotics can
be used to integrate TrTz along any contour that intersects (−∞,0) only at its endpoints.

Proof of Lemma 4.7. By the definition of the kernel,

TrKz =
∑

u∈S−
Kz(u,u) =

∑
k∈Z

∑
j∈Z

e
�τ (uk)+�τ (uj )+ γ

2 (u2
k−u2

j )

ukuj (uj + uk)2
= e2�τ (u0)

4u4
0

+ REST,

where we have set

REST =
∑

(k,j)	=(0,0)

e
�τ (uk)+�τ (uj )+ γ

2 (u2
k−u2

j )

ukuj (uj + uk)2
.
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We estimate REST. Let τ0 > 0 be the constant from Corollary 4.2. Using |e γ
2 u2

k | = |z|γ and Lemma 4.3,

|REST| ≤ 1

c4

[
eRe�τ (u0)

∑
j 	=0

eRe�τ (uj ) +
∑
k 	=0

eRe�τ (uk)
∑
j∈Z

eRe�τ (uj )

]
.

From Corollary 4.2 we have eRe�τ (u0) ≤ e0.4734τ ,

∑
k 	=0

eRe�τ (uk) ≤ 2
∞∑

k=1

e−1.9366|k|3/2τ ≤ 2e−1.9366τ

1 − e−1.9366τ

and

∑
j∈Z

eRe�τ (uj ) ≤ e0.4734τ + 2e−1.9366τ

1 − e−1.9366τ

for all τ ≥ τ0. Hence, |REST| = O(e−1.4632τ ) and we obtain the result. �

We arrived at the main result of this subsection. To state it, we define the functions

f1(z) := 1√
2π

Li3/2(z) − 1√
2π

Li5/2(z) − 2u0(z) − 2

3
u0(z)

3,

f2(z) := 2u0(z) − 1√
2π

Li3/2(z),

E(z) := e2B(z)−2Q(u0(z))

(4.9)

for z ∈C \ ((−∞,0] ∪ [1,∞)), where B and Q are given in (2.2) and (2.3).

Corollary 4.8. There is a constant ε ∈ (0,1) such that

F(xτ ; τ, γ ) = 1 − 1

8πi

∫
�

E(z)eτf1(z)+τ1/2x̂f2(z)

zu0(z)4
dz +O

(
e−0.002τ

)
with x̂ := π1/4x√

2
(4.10)

as τ → ∞, where � is any simple contour in the domain C \ ((−∞,0] ∪ [1,∞)) that starts at a − i0 and ends at b + i0,
for any a, b ∈ (−1 − ε,−1 + ε).

Proof. Observe that the integrand of (4.10) is analytic in C\ ((−∞,0]∪ [1,∞)). Let R for the contour in Proposition 4.6
be any number in [1 − δ,1) where δ is the constant from Lemma 4.7. We regard the contour as an arc that starts at
−R − i0 and ends at −R + i0. We insert the result of Lemma 4.7 into the formula of Proposition 4.6. By the definitions,
exτ A1(z)+τA2(z)+2B(z) times e2�τ (u0(z)) is E(z)eτf1(z)+τ1/2x̂f2(z), and hence we obtain the result when the contour is an arc
that starts at −R − i0 and ends at −R + i0. Since the integrand of (4.10) is analytic in C \ ((−∞,0] ∪ [1,∞)), we can
deform the contour to any other simple contour in the same domain but with the same end points −R − i0 and −R + i0.

We now show that there is ε > 0 such that for any −1 − ε < a1 < a2 < −1 + ε, the integral over the line segment from
a1 − i0 to a2 − i0 or the line segments from a1 + i0 to a2 + i0 are exponentially small in τ . This allows us to change the
end points and still have the formula (4.10) valid, thus concluding the proof. Noting u0(−1 ± i0) = − 1∓i√

2

√
2π and using

the numerical values Li3/2(−1) = −0.7651 · · · and Li5/2(−1) = −0.8671 · · · , we see that

Ref1(−1 ± i0) = 1√
2π

Li3/2(−1) − 1√
2π

Li5/2(−1) + 2
√

π − 4π
√

π

3
= −3.8388 · · · .

Thus, by continuity of the integrand up to the boundary (−∞,0) ± i0, we find that the integrand is O(e−3τ ) in a neigh-
borhood of z = −1, as we wanted. �



272 J. Baik, Z. Liu and G. L. F. Silva

Fig. 6. The dashed curve in the first sheet is the original contour �. The solid curve is the contour �′ = �1 ∪ �2 ∪ �3. The contour �3 is the arc on the
second sheet that connects the two marked triangle points. �2 consists of two straight line segments each connecting one marked triangle point and one
marked square point. The remaining part of the solid curve is �1.

4.3. Asymptotic analysis of polylog integral

We now evaluate the integral on the right-hand side of (4.10) as τ → ∞ using the method of steepest descent. It turns
out that the main contribution to the integral comes from a point on the Riemann surface on which the integrand admits
analytic extension.

Recall the Riemann surface R introduced in Section 3.2. Define the one-form

ωτ = E(z)eτ f1(z)+τ1/2x̂f2(z)

8πizU0(z)4
dz (4.11)

on R, where E, f1, f2,U0 are extensions of E,f1, f2, u0 defined in Section 3. Using this notation, the equation (4.10)
becomes

F(xτ ; τ, γ ) = 1 −
∫

�

ωτ +O
(
e−0.002τ

)
, (4.12)

where � is a contour in the first sheet R1, which we now take to start at −1 − i0 and end at −1 + i0. We will see that
as τ → ∞, the main contribution to the integral comes from a neighborhood of order τ−1/2 of the point z = 0(2) on the
second sheet R2. We deform � to a new contour �′ = �1 ∪ �2 ∪ �3 defined as follows (see Figure 6).

• �1 = γ1 ∪ γ1 where γ1 is a contour that starts from the point −1 − i0 in the lower half plane, moves in the lower half
plane of R1 until it hits a point on the branch cut on (1,∞), and then moves to the upper half plane in the second sheet
R2 until it ends at a point in the upper imaginary axis. Concretely, we use the contour

γ1(t) = e− 1
2 (t2−π)+i

√
πt for −√

π ≤ t ≤ √
π/2,

where the part for −√
π ≤ t ≤ 0 lies on R1 and the part for 0 ≤ t ≤ √

π/2 lies on R2. Note that γ1(−√
π) = −1 − i0

and γ1(0) = eπ/2 > 0. Also, γ1(
√

π/2) = ie
3π
8 on R2.

• �2 = γ2 ∪ γ2, where γ2 is the line segment on the imaginary axis in R2 joining the point γ2(
√

π/2) = ie3π/8 and the
point iτ−5/12.

• �3 is a contour in R2 joining the point iτ−5/12 and −iτ−5/12. We take it to be the union of straight line segments with
a semicircle, namely

�3 = {z = τ−1/2eiθ | − π/2 ≤ θ ≤ π/2
}∪ {z = iy|τ−1/2 ≤ |y| ≤ τ−5/12},

oriented downwards. As we will show, this part gives the main contribution to the integral.

In the above, the notation γj denotes the contour in R whose intersection with Rk is the complex conjugation of
γj ∩Rk .

We now evaluate the integral of ωτ on each part of �′ = �1 ∪ �2 ∪ �3.
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Lemma 4.9. We have

lim
τ→∞

∫
�3

ωτ = 1√
2π

∫ ∞

x
e− 1

2 u2
du.

Proof. The contour �3 is on the second sheet R2. From the definition (4.11) of ωτ , Lemma 3.3, and Lemma 3.5,∫
�3

ωτ = − 1

2πi

∫
�3

eHτ (z)
(
1 +O
(
z2))dz

z

with

Hτ (z) := τ√
2π

(
Li3/2(z) − Li5/2(z)

)− τ 1/2x̂√
2π

Li3/2(z) = τ

8
√

π
z2 + τO

(
z3)− τ 1/2x̂√

2π
z + τ 1/2O

(
z2),

where the error terms are independent of τ . Using |z| ≤ τ−5/12 for the error term and changing the variables z = τ−1/2s,
we find that∫

�3

ωτ = − 1

2πi

∫
τ 1/2�3

e
1

8
√

π
s2− x̂√

2π
s+O(τ−1/4) ds

s

(
1 +O
(
τ−5/6)).

The new contour τ 1/2�3 consists of the line segment from −iτ 1/12 and −i, the line segment i and iτ 1/12, and the half-
circle, {z = eiθ | −π/2 ≤ θ ≤ π/2}. It is oriented downwards. Note that the pole s = 0 is located to the left of the contour.

Reversing the orientation, recalling x̂ = π1/4x√
2

, and changing the variables s = i2π1/4u, we find that

lim
τ→∞

∫
�3

ωτ = 1

2πi

∫ i∞

−i∞
e

1
8
√

π
s2− x̂√

2π
s ds

s
= 1

2πi

∫ ∞

−∞
e− 1

2 u2−ixu du

u
,

where the contour of the middle integral goes around the pole s = 0 through the right half plane, and the contour of the
last integral goes around the pole u = 0 through the lower half plane. Changing variables u �→ u − ix, it is easy to show
that the last integral is a function of x whose derivative is − 1√

2π
e−x2/2 and tends to zero as x → +∞. Hence, we find that

1

2πi

∫ ∞

−∞
e− 1

2 u2−ixu du

u
= 1√

2π

∫ ∞

x
e− 1

2 u2
du

and we obtain the result. �

Lemma 4.10. We have

lim
τ→∞

∫
�2

ωτ = 0.

Proof. Since �2 = γ2 ∪ γ2, by symmetry, it is enough to consider γ2 which is the line segment in R2 from the point
ie3π/8 to iτ−5/12. From the definition of ωτ and Lemmas 3.1 and 3.3,∫

γ3

ωτ = i

8π

∫ e3π/8

τ−5/12

E(iy)

yu0(iy)4
e
− τ√

2π
(Li5/2(iy)−Li3/2(iy))− τ1/2 x̂√

2π
Li3/2(iy)

dy.

By the integral representation (3.2),

Re
(
Li5/2(iy) − Li3/2(iy)

)= y2

√
π

∫ ∞

0

1

e2t + y2

(
2t1/2 − 4

3
t3/2
)

dt.

The integrand changes its sign at t = 3/2. Splitting the integral into two, numerical evaluations show that, for 0 ≤ y ≤
e3π/8,

Re
(
Li5/2(iy) − Li3/2(iy)

)≥ y2

√
π

∫ 3
2

0

1

e2t + e3π/4

(
2t1/2 − 4

3
t3/2
)

dt − y2

√
π

∫ ∞
3
2

1

e2t

(
4

3
t3/2 − 2t1/2

)
dt

= y2

√
π

(
(0.06729 · · · ) − (0.02600 · · · ))> (0.02)y2.



274 J. Baik, Z. Liu and G. L. F. Silva

On the other hand, the function y �→ Li3/2(iy) is continuous in the interval [0, e3π/8] and has the behavior Re Li3/2(iy) =
Re(iy − y2

2
√

2
+ O(y3)) = − y2

2
√

2
+ O(y3) as y → 0. Hence, there is a constant c1 > 0 such that

∣∣Re Li3/2(iy)
∣∣≤ c1y

2 for every y ∈ [0, e3π/8].
In addition, by Lemma 3.5 and continuity, there is c2 > 0 such that |E(iy)| ≤ c2|u0(iy)|4 on the contour. Combining
together, we find that there is a constant c3 > 0 such that∣∣∣∣∫

�2

ωτ

∣∣∣∣≤ c2

∫ e3π/8

τ−5/12

e−c3τy2

y
dy ≤ c2

∫ ∞

τ1/12

e−c3u
2

u
du

and we obtain the result. �

Lemma 4.11. We have

lim
τ→∞

∫
�1

ωτ = 0.

Proof. By symmetry, it is enough to consider only the part γ1 of �1 that starts on the lower half plane on R1 and ends on
the upper half plane on R2. We specified γ1 explicitly by its parametrization

γ1(t) = e− η(t)2

2 = e− 1
2 (t2−π)+i

√
πt where η(t) = t − i

√
π for −√

π ≤ t ≤ √
π/2,

and we take γ1(t) to be on the first sheet R1 for −√
π ≤ t < 0, and on the second sheet R2 for 0 < t ≤ √

π/2. We note
that γ1(−√

π) = −1 − i0, γ1(0) = eπ/2, and γ1(
√

π/2) = ie3π/8. It is straightforward to check that u0(γ1(t)) = η(t) for
−√

π ≤ t < 0 and u0(γ1(t)) = −η(t) for 0 < t ≤ √
π/2. From the definition (4.11) of ωτ ,∫

γ1

ωτ = 1

8πi

∫ √
π/2

−√
π

E(γ1(t))

η(t)4
eτ f1(γ1(t))+τ 1/2x̂f2(γ1(t))γ ′

1(t) dt. (4.13)

We have |η(t)4| = |t − i
√

π |4 ≥ π2. Each of the functions |γ ′
1(t)|, |E(γ1(t))| and Re f2(γ1(t)) is bounded along the

contour: for γ ′
1 this is clear from its definition whereas for Re f2 and E this follows from Lemmas 3.3 and 3.4. From the

definition and Lemma 3.3,

f1
(
γ1(t)
)= { 1√

2π
Li3/2(γ1(t)) − 1√

2π
Li5/2(γ1(t)) − 2η(t) − 2

3η(t)3, t < 0,

1√
2π

Li3/2(γ1(t)) − 1√
2π

Li5/2(γ1(t)), t ≥ 0.

Using this explicit expression one can check numerically that the function Re f1(γ1(t)) for −√
π ≤ t ≤ √

π/2 has
its maximum at t = √

π/2, and the maximum value is negative, see Figure 7. One could also rigorously prove that
Re f1(γ1(t)) ≤ −0.03 in this interval by expanding the difference Li3/2(γ1(t)) − Li5/2(γ1(t)) in series and viewing the
expression for f1 above as a polynomial in η(t) of degree 6 plus a small and controllable error. Since this proof is straight-
forward but cumbersome, and the claim is clear from Figure 7, we do not provide the explicit calculations. Hence, the
integrand of (4.13) is O(e−cτ ) for some c > 0, and we obtain the result.

�

4.4. Completion of the proof of Theorem 1.5

The only thing left to check is that it is possible to deform the contour � in (4.12) to �′. We thus need to check that
ωτ is analytic on R. Since f1, f2,E,U0 are all analytic on R, the only possible singularities of ωτ come from the zeros
of U0. The only zero of U0 is the branch point z = 1, which is a simple zero (see Lemma 3.1). Since E has a zero of
order 3 by Lemma 3.4, and dz = 2w dw has a simple zero using the local coordinate z − 1 = w2, we find that ωτ has a
removable singularity at z = 1. (Putting aside the terminology of Riemann surfaces, this simply means that the function
E(z)eτf1(z)+τ1/2 x̂f2(z)

8πizu0(z)
4 has an integrable singularity at the branch point z = 1). Therefore, ωτ is analytic on R, and we can

deform � to �′ in the integral in (4.12). The proof is then completed from Lemmas 4.9, 4.10 and 4.11.
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Fig. 7. The plot of Re f1(γ1(t)) for t ∈ [−√
π,

√
π/2]: the maximum is −0.104065 · · · at t = √

π/2.

5. Small time limit

We prove Theorem 1.6.

5.1. Small τ limit

We set γ = 0 as in Theorem 1.6. Recall �(ξ) = − 1
3τξ3 + xξ − Q(ξ) from (2.5). Scaling s, t by τ 1/3 in Lemma 1.1, the

distribution function (2.7) can be written as

F
(
τ 1/3x; τ,0

)= ∮ eτ 1/3xA1(z)+τA2(z)+2B(z) det
(
I−A

2
x,τ

) dz

2πiz
,

where Ax,τ : L2(0,∞) → L2(0,∞) is the operator with the kernel

Ax,τ (s, t) = τ 1/3T0
(
τ 1/3s, τ 1/3t

)|x �→τ 1/3x = τ 1/3
∑
ξ∈S−

1

−ξ
e− 1

3 τξ3+τ1/3ξ(s+t+x)−Q(ξ) (5.1)

for s, t > 0. Observe that Ax,τ depends on z since the set S− depends on z.
We compare F(τ 1/3x; τ,0) with the GUE Tracy–Widom distribution, FGUE(x) = det(I−A2

x), where Ax : L2(0,∞) →
L2(0,∞) has kernel

Ax(s, t) = Ai(s + x + t), s, t > 0.

Recall the integral representation of the Airy function

Ai(z) = 1

2πi

∫
�

e− u3
3 +zu du, z ∈ C, (5.2)

where � is an unbounded contour from ∞e−θi to ∞eθi for any θ ∈ (π/2,5π/6).
We will show that if we scale z appropriately with τ then in the limit τ → 0 the term Q(ξ) vanishes and the kernel

Ax,τ (s, t) converges to the Airy kernel along with its Fredholm determinant.

Lemma 5.1. For every ε ∈ (0,1), there is a constant c > 0 such that

Q
(
τ−1/3ζ

)=O
(
e−cτ−2/3)

(5.3)

as τ → 0 uniformly for ζ satisfying Re(ζ 2) ≥ 1 − ε and Re ζ < 0.

Proof. From (2.4), after a change of variables,

Q
(
τ−1/3ζ

)= −
∫ i∞

−i∞
log(1 − e−ζ 2/(2τ 2/3)eu2/2)

u − τ−1/3ζ

du

πi
= − 1

πi

∫ i∞

−i∞
log
(
1 − e

− ζ2−u2

2τ2/3
) du

u − ζ
.
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Fig. 8. The dots are the points in S− and sit in the dashed parabola determined by |e−w2/2| = |z|. The contours �in and �out are represented in solid
lines.

Uniformly for u ∈ iR and Re(ζ 2) ≥ 1 − ε, |e− ζ2−u2

2τ2/3 | ≤ |e− ζ2

2τ2/3 | = e
− Re(ζ2)

2τ2/3 ≤ e
− 1−ε

2τ2/3 → 0 as τ → 0, and hence,

∣∣log
(
1 − e

− ζ2−u2

2τ2/3
)∣∣≤ 2
∣∣e− ζ2−u2

2τ2/3
∣∣= 2e

− Re(ζ2−u2)

2τ2/3 ≤ 2e
− 1−ε+|u|2

2τ2/3 .

Also note that |u − ζ | ≥ |Reu − Re ζ | =√(Re ζ )2 ≥√Re ζ 2 ≥ √
1 − ε uniformly for u ∈ iR and ζ as assumed in the

lemma. These two estimates complete the proof. �

Lemma 5.2. For every x0 ∈ R, there exist constants C,c, τ0 > 0 such that∣∣Ax,τ (s, t) − Ax(s, t)
∣∣≤ Ce−cτ−2/3

e−c(s+t)−c(x−x0)

for every x ≥ x0, s, t > 0, τ ∈ (0, τ0), and every z satisfying

|z| = e
− 1

2τ2/3 . (5.4)

Proof. Define the function

f (w) = z

z − e−w2/2
e− 1

3 τw3+τ1/3w(x+s+t)−Q(w)

for Rew < 0 in the sector 3π
4 < argw < 5π

4 . Recall that this sector contains the set S− (see (1.5)) and that the function Q

is analytic in this sector. The fraction in the formula for f has simple poles precisely at the set S− and

Res
ξ

f = 1

ξ
e− 1

3 τξ3+τ1/3ξ(x+s+t)−Q(ξ) for ξ ∈ S−.

Therefore, (see (5.1)) we can write

Ax,τ (s, t) = −τ 1/3
∑
ξ∈S−

Res
ξ

f = τ 1/3

2πi

∫
�in

f (w)dw − τ 1/3

2πi

∫
�out

f (w)dw, (5.5)

where �in and �out are two unbounded curves in C, both from ∞e−3πi/4 to ∞e3πi/4, lying in the sector 3π
4 < argw < 5π

4
such that S− is contained in the strip between �in and �out. We also choose �in to be to the left of �out; see Figure 8.

Let z satisfy (5.4). Changing the variables w = τ−1/3ζ we get the identity

τ 1/3
∫

�in,out

f (w)dw =
∫

�̂in,out

z

z − e−ζ 2/(2τ 2/3)
e− 1

3 ζ 3+ζ(x+s+t)−Q(τ−1/3ζ ) dζ, (5.6)

where the new contours �̂in and �̂out are as follows. Since |z| = e
− 1

2τ2/3 ,

τ 1/3S− ⊂ {u ∈ C | Reu2 = 1,Reu < 0
}
.
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Thus, for every ε ∈ (0,1), the scaled set τ 1/3S− lies between the contours

�̂in := {ζ ∈ C | Re ζ 2 = 1 + ε,Re ζ < 0
}

and �̂out := {ζ ∈ C | Re ζ 2 = 1 − ε,Re ζ < 0
}
.

These contours lie in the sector 3π
4 < arg ζ < 5π

4 . We choose the contours with any fixed ε ∈ (0,1).

Note that since |z| = e
− 1

2τ2/3 , we have |ze
ζ2

2τ2/3 | = e
Re ζ2−1

2τ2/3 = e
ε

2τ2/3 for ζ ∈ �̂in and |ze
ζ2

2τ2/3 | = e
− ε

2τ2/3 for ζ ∈ �̂out.
Thus,

z

z − e−ζ 2/(2τ 2/3)
=
(

1 − 1

zeζ 2/(2τ 2/3)

)−1

= 1 +O
(
e
− ε

2τ2/3
)
, ζ ∈ �̂in, (5.7)

and

z

z − e−ζ 2/(2τ 2/3)
= −zeζ 2/(2τ 2/3)

(
1 − zeζ 2/(2τ 2/3)

)−1 =O
(
e
− ε

2τ2/3
)
, ζ ∈ �̂out (5.8)

as τ → 0, uniformly for ζ on the respective contour and z satisfying (5.4).
Using � = �̂in in the integral formula of the Airy function in (5.2) and (5.6), we obtain∣∣∣∣τ 1/3

2πi

∫
�in

f (w)dw − Ai(s + x + t)

∣∣∣∣= ∣∣∣∣ 1

2πi

∫
�̂in

(
z

z − e−ζ 2/(2τ 2/3)
e−Q(τ−1/3ζ ) − 1

)
e− 1

3 ζ 3+ζ(x+s+t) dζ

∣∣∣∣.
Since s, t > 0 and x > x0, and −Re ζ =√(Re ζ )2 ≥√Re ζ 2 = √

1 + ε, we have

Re ζ(x + s + t) ≤ −√
1 + ε(x − x0 + s + t) + x0 Re ζ, ζ ∈ �̂in ∪ �̂out.

The integral
∫
�̂in

e
1
3 Re(ζ 3)−x0 Re ζ |dζ | is convergent, and thus we find using (5.7) and (5.3) that there is a constant c > 0

which is independent of the parameters, and another constant C > 0 which depends only on x0, such that∣∣∣∣τ 1/3

2πi

∫
�in

f (w)dw − Ai(s + x + t)

∣∣∣∣≤ Ce−cτ−2/3
e−√

1+ε(x−x0+s+t)

as τ → 0. Similarly, we obtain using (5.8)∣∣∣∣τ 1/3

2πi

∫
�out

f (w)dw

∣∣∣∣≤ Ce−cτ−2/3
e−√

1−ε(x−x0+s+t).

The proof is now complete once we combine these estimates with (5.5)–(5.6). �

Corollary 5.3. For every x0 ∈ R, there exist constants C,c, τ0 > 0 such that∣∣det
(
I−A

2
x,τ

)− det
(
I−A

2
x

)∣∣≤ Ce−cτ−2/3
e−c(x−x0)

for all x ≥ x0, τ ∈ (0, τ0), and z satisfying |z| = e
− 1

2τ2/3 .

Proof. Denote by ‖·‖1 the trace norm and by ‖·‖2 the Hilbert–Schmidt norm. Using∣∣det(I−K1) − det(I−K2)
∣∣≤ ‖K1 −K2‖1 exp

(‖K1‖1 + ‖K2‖1 + 1
)

and ‖K1K2‖1 ≤ ‖K1‖2‖K2‖2, we have∣∣det
(
I−A

2
x,τ

)− det
(
I−A

2
x

)∣∣≤ ‖Ax,τ −Ax‖2
(‖Ax,τ‖2 + ‖Ax‖2

)
exp
(‖Ax,τ‖2

2 + ‖Ax‖2
2 + 1
)
.

Lemma 5.2 implies that

‖Ax,τ −Ax‖2
2 ≤ C2e−2cτ−2/3

e−2c(x−x0)

∫ ∞

0

∫ ∞

0
e−2c(s+t) ds dt =O

(
e−2cτ−2/3)

.

On the other hand, ‖Ax‖2 is uniformed bounded for x ≥ x0. Therefore, we obtain the result. �
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5.2. Completion of the proof of Theorem 1.6

The functions A1,A2 and B in (2.2) are analytic on the unit disk and A1(0) = A2(0) = B(0) = 0. Thus, by Cauchy’s
Theorem,

F
(
τ 1/3x; τ, γ = 0

)− FGUE(x) =
∮

eτ 1/3xA1(z)+τA2(z)+2B(z)
(
det
(
I−A

2
x,τ

)− det
(
I−A

2
x

)) dz

2πiz
.

Taking the contour as the circle (5.4), the proof now follows from Corollary 5.3

6. Right tail estimate

In this section we prove Theorem 1.7. It is convenient to reformulate the right tail of FGUE(x) and (FGUE(x))2 in terms
of an integral involving the Airy function. The Airy function Ai(x) has the integral representation (5.2) and

Ai(x) = 1

2
√

πx1/4
e− 2

3 x3/2(
1 +O
(
x−3/2)), x → ∞. (6.1)

We define

B(x;α) :=
∫ ∞

x

(y − x)eαyAi(y)2 dy, α ∈R, (6.2)

and denote in particular

B(x) = B(x;0).

Lemma 6.1. We have

B(x;α) = 1

16πx3/2
eαx− 4

3 x3/2
(

1 + α

x1/2
+ 3α2

4x
+O
(
x−3/2)) (6.3)

as x → ∞. Moreover, for any positive constants a and β ,∫ x+axβ

x

(y − x)eαyAi(y)2 dy = B(x;α)
(
1 +O
(
e−ax

β+ 1
2 ))

, x → ∞. (6.4)

Proof. Inserting (6.1) in (6.2), and writing y = x + s, we have

B(x;α) = eαx

4π

∫ ∞

0

s

(s + x)1/2
eαse− 4

3 (x+s)3/2
ds
(
1 +O
(
x−3/2))

= eαx− 4
3 x3/2

4π
√

x

∫ 1

0
seαs e

− s2

2
√

x

(1 + s/x)1/2
e−2

√
xs ds
(
1 +O
(
x−3/2)),

where for the second equality we changed the integral domain from (0,∞) to (0,1) since the integral over (1,∞) only
gives exponentially smaller error, and expanded (x + s)3/2. Expanding the fraction in the integrand in power series and
applying Watson’s lemma we obtain (6.3) after routine calculations. Using a similar calculation,∫ ∞

x+axβ

(y − x)eαyAi(y)2 dy = eαx− 4
3 x3/2

4π
√

x
O
(
e−cx

β+ 1
2 )

for any positive constant c with c < 2a. Combining with (6.3), we obtain (6.4). �

Noting that Tr(A2
x) = B(x), the right tail of the GUE Tracy–Widom distribution satisfies

1 − FGUE(x) = B(x)
(
1 +O
(
e− 4

3 (1−ε)x3/2))
(6.5)
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as x → ∞, for any ε > 0 fixed. This implies that

1 − (FGUE(x)
)2 = 2B(x)

(
1 +O
(
e− 4

3 (1−ε)x3/2))
. (6.6)

Now we turn to the function F(x; τ, γ ). Recall Lemma 1.1,

F(x; τ, γ ) =
∮

exA1(z)+τA2(z)+2B(z) det(I−T−γTγ )
dz

2πiz
, (6.7)

where the contour is any circle |z| = R with 0 < R < 1. We take x → +∞ with the choice of contour

|z| = e− x
2τ .

We prove the following result.

Proposition 6.2. For every γ ∈ [−1/2,1/2], there exists a constant 0 < ε < 1 such that the Hilbert–Schmidt norm of Tγ

satisfies

‖Tγ ‖2 ≤ e− 2
3 (1−ε)x3/2τ−1/2

as x → ∞,

uniformly for |z| = e− x
2τ .

We also need to evaluate the leading term asymptotics for Tr(T−γTγ ). This will be done with a careful control of the
Laurent expansion of the kernel for the product T−γTγ at z = 0. As a result we will see that for |γ | < 1 the Laurent
coefficient for z0 is the leading one, whereas for |γ | = 1/2 the coefficients for z±1 and z0 all contribute to the same order
as x → ∞. For the precise statement, set

b(τ, γ, x) := B
(

x

τ 1/3
+ γ 2

4τ 4/3

)
, b±(τ, γ, x) := B

(
x

τ 1/3
+ γ 2

4τ 4/3
;± 1

2τ 2/3

)
.

Proposition 6.3. For each γ ∈ [−1/2,1/2], there is c > 0 such that the following result holds as x → ∞ uniformly for
|z| = e− x

2τ : if |γ | < 1/2,

Tr(T−γTγ ) = b(τ, γ, x)
(
1 +O
(
e−cx1/2))

,

and if γ = ±1/2,

Tr(T1/2T−1/2) = (2b(τ,1/2, x) + ze
− 1

96τ2 b+(τ,1/2, x) + z−1e
1

96τ2 b−(τ,1/2, x)
)(

1 +O
(
e−cx1/2))

.

Lemma 6.1 implies that b±(τ,1/2, x) = e
±( x

2τ
+ 1

32τ2 )
b(τ,1/2, x)(1 +O(x−1/2)). Hence, for |z| = e− x

2τ ,

zb+(τ,1/2, x) = O
(
b(τ,1/2, x)

)
, z−1b−(τ,1/2, x) =O

(
b(τ,1/2, x)

)
, (6.8)

so the three terms in Tr(T1/2T−1/2) have the same order.
We prove the two propositions in the following subsections. Assuming them, we now obtain Theorem 1.7.

Proof of Theorem 1.7. The functions A1,A2 and B are analytic (see (2.2)), and using (3.1) we see that

E(z) := exA1(z)+τA2(z)+2B(z) = 1 − (x + τ)z√
2π

+O
(
z2) as z → 0.

Hence,∮
E(z)

dz

2πiz
= 1,

∮
zE(z)

dz

2πiz
= 0,

∮
z−1E(z)

dz

2πiz
= −x + τ√

2π
. (6.9)
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We also have E(z) = O(1) for |z| = e− x
2τ as x → ∞. On the other hand, using ‖T−γTγ ‖1 ≤ ‖T−γ ‖2‖Tγ ‖2 and Propo-

sition 6.2,

det(I−T−γTγ ) − 1 + Tr(T−γTγ ) =O
(‖T−γTγ ‖2

1

)=O
(
e
− 8(1−ε)x3/2

3τ1/2
)

as x → ∞ uniformly for |z| = e− x
2τ . Hence,

1 − F(x; τ, γ ) =
∮

|z|=e
− x

2τ

E(z)Tr(T−γTγ )
dz

2πiz
+ O
(
e
− 8(1−ε)x3/2

3τ1/2
)
. (6.10)

Thus, for |γ | < 1/2, Proposition 6.3 and (6.5) imply the theorem. For γ = ±1/2, Proposition 6.3, the equation (6.9), and
(6.8) imply that the integral in (6.10) is

(
2b(τ, x,1/2) − (x + τ)e

1
96τ2

√
2π

b−(τ, x,1/2)

)(
1 +O
(
e−cx1/2))

.

Since b−(τ,1/2, x) =O(e− x
2τ b(τ,1/2, x)), we obtain the result from (6.6). �

In Section 6.1, we first analyze the kernel of Tγ . We then prove Propositions 6.2 and 6.3 in Sections 6.2 and 6.3,
respectively.

6.1. Analysis of the kernel Tγ

The kernel of Tγ is given by Lemma 1.1 and we recall it here,

Tγ (s, t) = Tγ (x + s + t), Tγ (y) = Tγ (y; z, τ ) =
∑
ξ∈S−

e− τ
3 ξ3+ γ

2 ξ2+yξ−Q(ξ)

−ξ
(6.11)

for s, t > 0. The function Q is defined in (2.3). In this subsection we find the asymptotic behavior of Tγ (y) as y → ∞.
Fix τ > 0 and define the Airy-like function

A(y;μ) =
∫

�

e− τ
3 ξ3+ μ

2 ξ2+yξ−Q(ξ) dξ

2πi
, (6.12)

where � is any simple unbounded contour from ∞e5πi/4 to ∞e3πi/4 contained in the sector 3π/4 < arg ξ < 5π/4, the
latter condition being imposed so that Q remains analytic along �. Without the term Q, the above function is a scaled
Airy function,

∫
�

e− τ
3 ξ3+ μ

2 ξ2+yξ dξ

2πi
= e

μ3

12τ2 + μy
2τ

τ 1/3
Ai

(
y

τ 1/3
+ μ2

4τ 4/3

)
. (6.13)

The function Tγ (y) in (6.11) looks like a discretization of A(y;γ ). The factor 1
−ξ

is close to the spacing between the
points in the discrete set S−, which is not uniformly spaced. A precise comparison between Tγ (y) and A(y;γ ) is in
Proposition 6.9 below.

6.1.1. Asymptotics of A(y;μ)

Lemma 6.4. There are constants c > 0 and y0 > 0 such that

A(y;μ) = e
μ3

12τ2 + μy
2τ

τ 1/3
Ai

(
y

τ 1/3
+ μ2

4τ 4/3

)(
1 +O
(
e−cy
))

for all y ≥ y0 and μ ≤ 2
√

τy.
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Proof. The proof follows from the standard steepest descent analysis, accounting for the factor Q in the exponent.
Introduce the change of variables ξ �→ w for (6.12) and (6.13),

ξ = sw + μ

2τ
, with s := 1√

τ

(
y + μ2

4τ

)1/2

> 0.

In terms of the new variable,

τ 1/3e
− μ3

12τ2 − μy
2τ A(y;μ) − Ai

(
τ 2/3s2)= τ 1/3s

2πi

∫
�̂

eτs3(− 1
3 w3+w)

(
e−Q(ξ(w)) − 1

)
dw.

To evaluate the integral as s → ∞, we need to take a contour of steepest descent. The relevant critical point of the
function −w3/3 + w is w = −1 and its path of steepest descent is a contour from ∞e4πi/3 to ∞e2πi/3, it is on the
hyperbola 3x2 − y2 = 3. However, Q(ξ(w)) is analytic in the sector 3π/4 < arg ξ(w) < 5π/3, which is approximately
3π/4 < argw < 5π/3 when w becomes large, and consequently we cannot deform the contour to the path of steepest
descent. Nonetheless, since the functions involved are explicit, we find that there is a contour in the sector that is “steep
enough” and passes the critical point z = −1. We use the following concrete choice:

�̂ = �̂1 ∪ �̂2 := {−1 + bi | −0.2 ≤ b ≤ 0.2} ∪ {a + bi | a2 − b2 = −1.45a − 0.49, a ≤ −1
}
.

This contour is locally the same as the path of steepest descent near the critical point z = −1. To verify that the method
of steepest descent applies, it is enough to show that (1) Re(− 1

3w3 + w) decreases as a = Rew decreases along �̂2 and
(2) the factor e−Q(ξ(w)) − 1 is exponentially small uniformly on the contour.

For (1), it is direct to check that for w = a + bi ∈ �̂2,

Re

(
−w3

3
+ w

)
= 2

3
a3 + 1.45a2 + 1.49a

and its derivative is 2a2 + 2.9a + 1.49 > 0 for all a.
For (2), we use the integral representation (2.4) of Q. For w = a + bi ∈ �̂2,

Re
(
ξ(w)2)= 1

τ

(
y + μ2

4τ

)(
λ2 + a(2λ − 1.45) − 0.49

)
), λ := μ

2τs
= μ√

μ2 + 4τy
.

Note that the above function depends only on a = Re(w), not on b = Im(w). The assumption μ ≤ 2
√

τy implies that
λ ≤ 1/

√
2 which in turn gives 2λ − 1.45 < 0. Hence, the above function takes its minimum when a = −1, and for this

value of a we have b = ±0.2 since a + ib is on �̂2.
On the other hand, for w = a + ib ∈ �̂1, Re(ξ(−1 + bi)2) is equal to −s2b2 plus a term which is independent of b.

Hence, the minimum of Re(ξ(w)2) over w ∈ �̂1 is achieved at the end points w = −1 ± 0.2i.
Thus, we found that Re(ξ(w)2) ≥ Re(ξ(−1 ± 0.2i)2) for any w ∈ �̂. Now, noting that the function f (v) := v2 − 2v +

0.96 is a decreasing function for v ≤ 1, we have f (λ) ≥ f ( 1√
2
) = 1.46 − √

2 > 0, and therefore,

Re
(
ξ(w)2)≥ Re

(
ξ(−1 ± 0.2i)2)= s2f (λ) ≥ (1.46 − √

2)s2 for w ∈ �̂.

Combined with Re(ξ(w)) < 0 from the definition of ξ(w), we find that ξ(w) is in the sector 3π/4 < arg(ξ(w)) < 5π/4
for all w ∈ �̂, and also,

∣∣e−ξ(w)2/2
∣∣= e−Re(ξ(w)2)/2 ≤ e−c(y+ μ2

4τ
)

with c = (1.46 − √
2)/τ . With arguments similar to the ones in Lemma 5.1 we obtain

∣∣Q(ξ(w)
)∣∣=O

(
e−c(y+ μ2

4τ
)
)

(6.14)

as y → ∞, uniformly for w ∈ �̂. Hence e−Q(ξ(w)) − 1 =O(e−c(y+ μ2

4τ
)) uniformly for w ∈ �̂.
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Thus, the method of steepest-descent applies. Since the integral without the term (e−Q(ξ(w)) − 1) is the same as
Ai(τ 2/3s2), the asymptotic formula is the same as that of the airy function multiplied by an error from (e−Q(ξ(w)) − 1).
From (6.14) we find that

τ 1/3s

2πi

∫
�̂

eτs3(− 1
3 w3+w)

(
e−Q(ξ(w)) − 1

)
dw =O

(
Ai
(
τ 1/3s2)e−c(y+ μ2

4τ
)
)
.

This completes the proof. �

By (6.1), the above lemma implies that

A(y;μ) = 1

2
√

πτ 1/4

(
y + μ2

4τ

)−1/4

e
μ3

12τ2 + μy
2τ

− 2
3
√

τ
(y+ μ2

4τ
)3/2(

1 +O
(
y−3/2)) (6.15)

for all y ≥ y0 and μ ≤ 2
√

τy.

6.1.2. Truncated series expansion of Tγ (y)

Note that Tγ (y) depends on S− which, in turn, depends on the complex variable z that appears in the integral in (6.7). To
compare Tγ (y) with A(y;γ ), we start with the following formula.

Lemma 6.5. There are positive constants x0 and C such that∣∣∣∣∣Tγ (y) −
∞∑

k=−K

z−kA(y;γ − k)

∣∣∣∣∣≤ C

( |z|
0.9

)K

for all y ≥ x0, 0 < |z| ≤ 0.8, and K ≥ 1.

The values 0.8 and 0.9 are chosen solely for convenience. The proof will show that the condition |z| ≤ 0.8 can be
changed to |z| ≤ r for any fixed r ∈ (0,1) with the bound changed to (

|z|
R

)K for any R ∈ (r,1).

Proof. Using the fact that S− is a set of zeros of the equation e−ξ2/2 − z = 0, we can write (cf. the proof of Lemma 5.2)

Tγ (y) =
(∫

�out

−
∫

�in

)
z

z − e−ξ2/2
e− τ

3 ξ3+ γ
2 ξ2+yξ−Q(ξ) dξ

2πi
,

where we take �out := {ξ : |e−ξ2/2| = 0.9|z|,Re(ξ) < 0} and �in := {ξ : |e−ξ2/2| = 0.9,Re ξ < 0}. Both contours lie in
the sector 3π/4 < arg ξ < 5π/4 and they extend from ∞e5πi/4 to ∞e3πi/4. The points of S− lie between these two
contours since |e−ξ2/2| = |z| for all ξ ∈ S− and 0.9|z| < |z| < 0.9.

Since |z−1e−ξ2/2| = 0.9 < 1 for ξ ∈ �out, the geometric series implies that

1

2πi

∫
�out

z

z − e−ξ2/2
e− τ

3 ξ3+ γ
2 ξ2+yξ−Q(ξ) dξ =

∞∑
k=0

z−k

∫
�out

e− τ
3 ξ3+ γ−k

2 ξ2+yξ−Q(ξ) dξ

2πi
.

The integral is A(y;γ − k). On the other hand, for ξ ∈ �in, we write

z

z − e−ξ2/2
= −

K∑
k=1

zkekξ2/2 +
(

z

e−ξ2/2

)K
z

z − e−ξ2/2
.

Since |e−ξ2/2| = 0.9 for ξ ∈ �in and |z| ≤ 0.8,∣∣∣∣ 1

2πi

∫
�in

(
z

e−ξ2/2

)K
z

z − e−ξ2/2
e− τ

3 ξ3+ γ
2 ξ2+yξ−Q(ξ) dξ

∣∣∣∣≤ 4

π

( |z|
0.9

)K

(0.9)−γ

∫
�in

e−Re( τ
3 ξ3+Q(ξ))|dξ |,

where we use the fact that Re(ξ) < 0 on �in. The last integral does not depend on z, y, or K . Hence, we obtain the
result. �

We use the above result when |z| = e− x
2τ with x → ∞. We will also choose K = K(y) depending on y in a specific

way; see (6.21).
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Corollary 6.6. There are positive constants x0 and C such that∣∣∣∣∣Tγ (y) −
∞∑

k=−K

z−kA(y;γ − k)

∣∣∣∣∣≤ Ce− 9K(y)x
19τ (6.16)

for all 0 < |z| ≤ e− x
2τ , y ≥ x ≥ x0, and any choice of K = K(y) ≥ 1.

6.1.3. Tγ (y) when y is close to x

We show that the main contribution to the sum in Corollary 6.6 comes from only one or two terms. From (6.15), for
|z| = e− x

2τ ,

∣∣z−kA(y;μ − k)
∣∣= e

μx
2τ

+ 2y3/2

3
√

τ
f (

μ−k
2
√

τy
;1− x

y
)

√
2π(4τy + (μ − k)2))1/4

(
1 +O
(
y−3/2)) (6.17)

as y → ∞, uniformly for μ and k satisfying μ − k ≤ 2
√

τy, where

f (u;λ) := u3 + 3

2
λu − (1 + u2)3/2

. (6.18)

This function f (u;λ) is strictly concave for every λ. It is strictly increasing when λ ≥ 1, and when λ < 1 it has the unique
maximum

max
u∈R

f (u;λ) = f (uc;λ) = −3

2
(1 − λ)1/2 + 1

2
(1 − λ)3/2, uc = λ

2
√

1 − λ
. (6.19)

We are interested in the case when x ≤ y ≤ x + O(x1/2) and x → ∞. In this case, λ = 1 − x
y

→ 0 as x → ∞, and
hence the maximizer uc of f (u;1− x

y
) is close to 0. We may expect that the main contribution to the sum in Corollary 6.6

comes from the term corresponding to k at which the function f (
μ−k
2
√

τy
;1 − x

y
) becomes the largest. Since f is concave

and k is a discrete index, the maximum may occur either at one value of k or two values of k. We will show that the
main contribution to the sum comes from the term k = 0 when |γ | < 1/2, from the terms k = 1,0 when γ = 1/2, and
from the terms k = 0,−1 when γ = −1/2. For this purpose, we first analyze the function f . We use the next result when
s =O(x) → ∞.

Lemma 6.7. The function f defined in (6.18) satisfies the following inequalities.

(a) For all α < 1/2, s > 0, and λ ≥ 0,

f

(
α

s
;λ
)

− f

(
α − 1

s
;λ
)

≥ 3(1 − 2α)

2s2
.

(b) For all α > −1/2, s ≥ 3(1+2α)2+1
5(1+2α)

, and 0 ≤ λ ≤ 1+2α
12s

,

f

(
α

s
;λ
)

− f

(
α + 1

s
;λ
)

≥ 1 + 2α

8s2
.

Proof. (a) Since u3 and 3
2λu are increasing functions of u, we have

f

(
α

s
;λ
)

− f

(
α − 1

s
;λ
)

≥
(

1 + (α − 1)2

s2

)3/2

−
(

1 + α2

s2

)3/2

.

Using the inequality (1 + a)3/2 ≥ 1 + 3a
2 , which holds for all a ≥ 0, the above is equal to(

1 + α2

s2

)3/2((
1 + 1 − 2α

α2 + s2

)3/2

− 1

)
≥
(

1 + α2

s2

)
3(1 − 2α)

2(α2 + s2)
= 3(1 − 2α)

2s2
.
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(b) From the formula of f ,

f

(
α

s
;λ
)

− f

(
α + 1

s
;λ
)

= α3 − (α + 1)3

s3
− 3λ

2s
+
(

1 + α2

s2

)3/2((
1 + 1 + 2α

α2 + s2

)3/2

− 1

)
.

From the assumption on s,

α3 − (α + 1)3

s3
= −3(1 + 2α)2 + 1

4s3
≥ −5(1 + 2α)

4s2
.

Using the inequality (1 + a)3/2 ≥ 1 + 3a
2 for a ≥ 0 again,

f

(
α

s
;λ
)

− f

(
α + 1

s
;λ
)

≥ −5(1 + 2α)

4s2
− 3λ

2s
+ 3(1 + 2α)

2s2

From the condition λ ≤ 1+2α
12s

we conclude the proof. �

Lemma 6.8. Fix τ > 0.

(a) For each fixed μ < 1/2, there exists x0 > 0 such that

∣∣z−k−1A(y;μ − k − 1)
∣∣≤ 2e

− 1−2μ+2k

4τ3/2 y1/2 ∣∣z−kA(y;μ − k)
∣∣

for all |z| = e− x
2τ , y ≥ x ≥ x0, and k ≥ 0.

(b) For each fixed μ > −1/2, there exists x0 > 0 such that

∣∣zk+1A(y;μ + k + 1)
∣∣≤ 2e

− 1+2μ+2k

48τ3/2 y1/2 ∣∣zkA(y;μ + k)
∣∣

for all |z| = e− x
2τ and x ≥ x0, and for all y and k satisfying x ≤ y ≤ x + 1+2μ+2k

24
√

τ

√
x and 0 ≤ k ≤ K(y) := � 19

12
√

τy�.

Proof. (a) The formula (6.17) applies since μ− k ≤ μ ≤ 2
√

τx ≤ 2
√

τy holds if x is large enough. Note that (μ− k)2 ≤
(μ − k − 1)2 for all k ≥ 0 since μ < 1/2. Also noting that the error term in (6.17) is uniform in y and k, we find that for
all large enough y ≥ x,

|z−k−1A(y;μ − k − 1)|
|z−kA(y;μ − k)| ≤ 2 exp

{
−2y3/2

3τ 1/2

(
f

(
μ − k

2
√

τy
;1 − x

y

)
− f

(
μ − k − 1

2
√

τy
;1 − x

y

))}
.

Applying Lemma 6.7(a) with α = μ − k, s = 2
√

τy, and λ = 1 − x
y

, we obtain the result.
(b) Since μ + k + 1 ≤ μ + 1 + K(y) ≤ 2

√
τy if y ≥ x and x is large enough, the formula (6.17) applies. By the

same argument as the part (a), the result follows from Lemma 6.7(b) with α = μ + k, s = 2
√

τy, and λ = 1 − x
y

if these

values satisfy the conditions of the lemma. Clearly, α > −1/2 since μ > −1/2 and k ≥ 0. The condition 0 ≤ λ ≤ 1+2α
12s

is
satisfied since

0 ≤ 1 − x

y
= y − x

y
≤ (1 + 2μ + 2k)x1/2

24
√

τy
≤ 1 + 2μ + 2k

24
√

τy
= 1 + 2α

12s
.

Finally, to verify the condition on s we observe that for x large enough so that
√

τx ≥ 6(1 + 2μ) + 2
1+2μ

,

3

5
(1 + 2α) + 1

5(1 + 2α)
≤ 3

5
(1 + 2μ + 2K) + 1

5(1 + 2μ)
= 1

10

(
6(1 + 2μ) + 2

1 + 2μ

)
+ 6

5
K ≤ s

since K ≤ 19
12

√
τy and x ≤ y. Hence, Lemma 6.7(b) applies and we obtain the result. �

The above estimates imply the following result.
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Proposition 6.9 (Tγ (y) when y is close to x). Fix τ > 0. For any fixed γ ∈ (−1/2,1/2), there exists c > 0 such that

Tγ (y) = A(y;γ )
(
1 +O
(
e−cy1/2))

(6.20)

as x → ∞ uniformly for y ∈ [x, x + (1+2γ )
√

x

24
√

τ
] and |z| = e− x

2τ . For γ = ±1/2, there is c > 0 such that

T±1/2(y) =(A(y;±1/2) + z∓1A(y;∓1/2)
)(

1 +O
(
e−cy1/2))+O

(
e− 9K(y)x

19τ
)

as x → ∞ uniformly for y ∈ [x, x +
√

x

12
√

τ
] and |z| = e− x

2τ .

Proof. We use the truncated series formula for Tγ (y) given in Corollary 6.6 with

K(y) =
⌊

19

12
√

τy

⌋
. (6.21)

Consider first the case when −1/2 < γ < 1/2. For k ≥ 1, using Lemma 6.8(a) k times,∣∣z−kA(y;γ − k)
∣∣≤ (2e−c1y

1/2)k∣∣A(y;γ )
∣∣, c1 := 1 − 2γ

4τ 3/2

for all y ≥ x. For −K ≤ k ≤ −1, using Lemma 6.8(b) |k| times,∣∣z−kA(y;γ − k)
∣∣≤ (2e−c2y

1/2)|k|∣∣A(y;γ )
∣∣, c2 := 1 + 2γ

48τ 3/2

for x ≤ y ≤ x + (1+2γ )
√

x

24
√

τ
. With (6.16) in mind, this implies that k = 0 term gives the main contribution to the sum and

with c = min{c1, c2},
Tγ (y) = A(y;γ )

(
1 +O
(
e−cy1/2))+O

(
e− 9K(y)x

19τ
)

as x → ∞ uniformly for y ∈ [x, x + (1+2γ )
√

x

24
√

τ
] and |z| = e− x

2τ . We compare the two error terms. From (6.21) and y ≥ x,

we see that O(e− 9K(y)x
19τ ) is (super-)exponentially smaller than A(y;γ ) (see (6.15)). Hence, the additive error can be

replaced by a multiplicative error and we obtain (6.20).
Consider now the case γ = 1/2. For k ≥ 2, we use Lemma 6.8(a) k − 1 times to obtain∣∣z−kA(y;1/2 − k)

∣∣≤ (2e−c1y
1/2)k−1∣∣z−1A(y;−1/2)

∣∣, c1 := 1 − 2γ + 2

4τ 3/2
= 1

2τ 3/2
,

for all y ≥ x. For −K ≤ k ≤ −1, we use Lemma 6.8(b) |k| times to obtain∣∣z−kA(y;1/2 − k)
∣∣≤ (2e−c2y

1/2)|k|∣∣A(y;1/2)
∣∣, c2 := 1 + 2γ

48τ 3/2
= 1

24τ 3/2
,

for x ≤ y ≤ x +
√

x

12
√

τ
. Proceeding as before and replacing the additive error by the multiplicative error we obtain the

result in this case.
Finally, consider the case when γ = −1/2. For k ≥ 1, we use 6.8(a) k times and estimate of |z−kA(y;1/2+k)| in terms

of |A(y;1/2)| for all y ≥ x. For −K ≤ k ≤ −2, we use 6.8(b) |k| − 1 times and find an estimate of |z−kA(y;1/2 + k)| in

terms of |zA(y;−1/2)|, which are valid for x ≤ y ≤ x + 1+2γ+2
24

√
τ

√
x = x +

√
x

12
√

τ
. We now obtain the result in the same

way as before. �

6.1.4. Uniform estimate of Tγ (y) for all y ≥ x

Although valid for all y ≥ x, the next result will only be used for y ≥ x +O(x1/2).

Proposition 6.10 (Uniform estimate of Tγ (y) for y ≥ x). Fix −1/2 ≤ γ ≤ 1/2 and τ > 0. There exist positive constants
C and x0 such that∣∣Tγ (y)

∣∣≤ C max
{
y1/4e

γx
2τ

−
√

x(3y−x)

3
√

τ , e− 9K(y)x
19τ
}
, K(y) :=

⌊
19

12
√

τy

⌋
,

for all y ≥ x ≥ x0 and |z| = e− x
2τ .
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Proof. We use (6.16). Since Lemma 6.8(a) holds for all y ≥ x, using the same argument of the proof of Proposition 6.9
we find that for some c1 > 0,

∞∑
k=2

∣∣z−kA(y;γ − k)
∣∣≤ ∣∣z−2A(y;γ − 2)

∣∣(1 +O
(
e−c1y

1/2))≤ 2
∣∣z−2A(y;γ − 2)

∣∣
for all y ≥ x as x → ∞. Thus,

∞∑
k=−K(y)

∣∣z−kA(y;γ − k)
∣∣≤ 2
(
K(y) + 3

)
max

−K(y)≤k≤2

∣∣z−kA(y;γ − k)
∣∣

for all y ≥ x as x → ∞. Hence, from (6.17) we obtain that there are C > 0 and x0 > 0 such that

∞∑
k=−K(y)

∣∣z−kA(y;γ − k)
∣∣≤ Cy1/4e

γx
2τ exp

{
2y3/2

3τ 1/2
max

u
f

(
u;1 − x

y

)}
for all y ≥ x ≥ x0. Inserting the formula (6.19) of the maximum, we obtain

∞∑
k=−K(y)

∣∣z−kA(y;γ + k)
∣∣≤ Cy1/4e

γx
2τ

−
√

x(3y−x)

3
√

τ .

Remembering the error term in (6.16) we obtain the result. �

6.2. Proof of Proposition 6.2

From the formula (6.11),

‖Tγ ‖2
2 =
∫ ∞

0

∫ ∞

0

∣∣Tγ (x + s + t)
∣∣2 ds dt =

∫ ∞

x

(y − x)
∣∣Tγ (y)

∣∣2 dy.

We split the integral into two parts: one for x ≤ y ≤ x + c
√

x and the other for y ≥ x + c
√

x, where c = 1−2γ

24τ 1/2 for |γ | < 1
2

and c = 1
12τ 1/2 for γ = ± 1

2 . Equation (6.15) implies that there is 0 < ε < 1 such that

∣∣A(y;γ )
∣∣2, ∣∣z∓1A(y;γ ∓ 1)

∣∣2 ≤ e
− 4

3
√

τ
(1− ε

2 )y3/2

as x → ∞, uniformly for x ≤ y ≤ x + c
√

x. Thus, for the first part of the integral, Proposition 6.9 and the equation (6.15)
imply that for every ε ∈ (0,1),∫ x+c

√
x

x

(y − x)
∣∣Tγ (y)

∣∣2 dy ≤
∫ x+cx1/2

x

(y − x)e
− 4

3
√

τ
(1− ε

2 )y3/2

dy ≤ e
− 4

3
√

τ
(1−ε)x3/2

for all large enough x. For the second part of the integral, applying Proposition 6.10 we have∫ ∞

x+c
√

x

(y − x)
∣∣Tγ (y)

∣∣2 dy ≤ C2
∫ ∞

x+c
√

x

(y − x)
(
y1/2e

γx
τ

− 2(3y−x)
√

x

3
√

τ + e− 18K(y)x
19τ
)
dy ≤ e

− 4
3
√

τ
(1−ε)x3/2

for all large enough x. This completes the proof.

6.3. Proof of Proposition 6.3

From the formula (6.11),

Tr(T−γTγ ) =
∫ ∞

0

∫ ∞

0
T−γ (x + s + t)Tγ (x + s + t) ds dt =

∫ ∞

x

(y − x)T−γ (y)Tγ (y) dy.

We split the integral into two parts; the part I1 for x ≤ y ≤ x + a
√

x and the second part I2 for y ≥ x + a
√

x where
a = 1−2|γ |

24
√

τ
when |γ | < 1/2, and a = 1

12
√

τ
when γ = 1/2.
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Consider the first part I1. Proposition 6.9 implies that for γ ∈ (−1/2,1/2),

I1 =
∫ x+ax1/2

x

(y − x)A(y;γ )A(y;−γ )dy
(
1 +O
(
e−cx1/2))

,

and for γ = ±1/2,

I1 =
∫ x+ax1/2

x

(y − x)
(
2A(y;1/2)A(y;−1/2) + zA(y;1/2)2 + z−1A(y;−1/2)2)dy

(
1 +O
(
e−cx1/2))

.

From Lemma 6.4 and Equation (6.4),∫ x+ax1/2

x

(y − x)A(y;γ )A(y;−γ )dy = B
(

x

τ 1/3
+ γ 2

4τ 4/3

)(
1 +O
(
e−cx1/2))

,

∫ x+ax1/2

x

(y − x)A(y;1/2)2 dy = e
− 1

96τ2 B
(

x

τ 1/3
+ 1

16τ 4/3
; 1

2τ 2/3

)(
1 +O
(
e−cx1/2))

,

and ∫ x+ax1/2

x

(y − x)A(y;−1/2)2 dy = e
1

96τ2 B
(

x

τ 1/3
+ 1

16τ 4/3
;− 1

2τ 2/3

)(
1 +O
(
e−cx1/2))

.

Consider the second part I2. Using Proposition 6.10 (which holds for γ ∈ [−1/2,1/2]) for each of Tγ (y) and T−γ (y),
we need to consider four integrals. Noting the cancellation of the terms − γ x

2τ
and γ x

2τ
, the first integral is bounded by a

constant times∫ ∞

x+a
√

x

(y − x)y1/2e
− 2(3y−x)

√
x

3
√

τ dy =O
(
xe

− 4
3
√

τ
x3/2−cx)

,

for some c > 0. As we will see in a moment, this extra decay e−cx is relevant. Two of the remaining three integrals are
bounded by a constant times∫ ∞

x+a
√

x

(y − x)y1/4e
± γ x

2τ
− (3y−x)

√
x

3
√

τ
− 9K(y)x

19τ dy =O
(
e
− 4(1+ε′)

3
√

τ
x3/2)

for some ε′ > 0 due to the term involving K(y). The final integral is bounded by a constant times∫ ∞

x+a
√

x

(y − x)e− 18K(y)x
19τ dy =O

(
e
− 4(1+ε′)

3
√

τ
x3/2)

.

Thus, I2 = O(xe
− 4

3
√

τ
x3/2−cx

). We compare this with I1. Using Lemma 6.1 the leading terms in I1 are of order B( x

τ 1/3 +
1

16τ 4/3 ) =O(e
− 4

3
√

τ
x3/2

). Hence, I2 is exponentially smaller than I1, completing the proof.

7. Integrable differential equations

As mentioned before, from Lemmas 2.2 and 2.3 we learn that the operators H and F are IIKS-integrable [27], and it is
now the time to explore this structure.

It is known that the resolvent of an integrable operator can be evaluated in terms of a canonically associated Riemann–
Hilbert problem (RHP) [18,27]. The main difference of F and H is that F acts on a space L2 with absolutely continuous
reference measure, whereas H acts on a space 	2 with discrete reference measure. Consequently the RHP for the former
is continuous (involves only jump conditions) whereas the RHP for the latter is purely discrete (involves only residue
conditions). The survey paper [18] reviews many aspects of the theory of continuous IIKS operators. Properties of discrete
IIKS integrable operators were analyzed by Deift, in a work of Borodin [13, Section 4]. In this Section we explore this
integrable structure to obtain Theorem 1.2.

Riemann–Hilbert problems, whether discrete, continuous or mixed, often arise in the inverse scattering transform in
integrable differential equations. The common cubic polynomial factor V in (2.14) is the key to recognize the associated
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Riemann–Hilbert problems for H and F both as the ones that arise from coupled mKdV equations and coupled nonlinear
heat equations, yielding Theorem 1.2. This approach of using integrable operators and Riemann–Hilbert problems for
finding differential equations was also used in many other problems; see, for example, [11,13,14,18,19].

7.1. Riemann–Hilbert problem

As a first step, we describe the Riemann–Hilbert Problems (RHPs) associated to F and H. For that, recall that � and S
were defined in (2.13), V was defined in (2.14) and the functions �f , �g, �a and �b appear in Lemmas 2.2 and 2.3.

The RHP asks for finding 2 × 2 matrices X (which is associated to H) and Y (which is associated to F) with the
following properties.

RHP(a) The entries of X are analytic on C \ S and the entries of Y are analytic on C \ �.
RHP(b) X has a simple pole at every ξ ∈ S , and its residue satisfies

Res
s=ξ

X(s) = lim
s→ξ

X(s)RX(s),

with

RX(s) := �f (s)�g(s)T =
(

0 eQ(s)−V (s)

s
χ+(s)

e−Q(s)+V (s)

s
χ−(s) 0

)
.

The matrix Y has continuous boundary values Y±(s) as s approaches � from its ±-side, and they are related by

Y+(s) = Y−(s)JY (s),

with

JY (s) := I − �a(s)�b(s)T =
(

1 −e−V (s)χ�+(s)

eV (s)χ�−(s) 1

)
,

where I is the 2 × 2 identity matrix.
RHP(c) As s → ∞ the matrices X and Y admit asymptotic expansions of the form

X(s) ∼ I +
∞∑

k=1

Xk

sk
and Y(s) ∼ I +

∞∑
k=1

Yk

sk
(7.1)

for matrices Xk and Yk that are constant in s.

The condition RHP(c) for X should be understood as s → ∞ uniformly away from S .
For γ = 0 and τ = 1, the RHP for Y above coincides with a particular case of the ones studied in [11,12].
Since �g(s)T �f (s) = 0, we find that RX(s)2 = 0. This implies that the limit limξ→s X(ξ)RX(s) in RHP(b) converges.

The residue condition can also be stated in a different way. The following basic result is essentially in [13, Lemma 4.4].

Lemma 7.1. Let X(ξ) be an r × r matrix function with a simple pole at a point s ∈ C. Let R be a constant r × r matrix
such that R2 = 0. The following statements are equivalent.

(i) Ress X = limξ→s X(ξ)R

(ii) The product X(ξ)(− R
ξ−s

+ I ) is analytic at ξ = s.

Proof. Without loss of generality, assume s = 0 and write X(ξ) = X−1
ξ

+ X0 +O(ξ) as ξ → 0. Then

X(ξ)

(
−R

ξ
+ I

)
= −X−1R

ξ2
+ X−1 − X0R

ξ
+O(1), ξ → 0.

This means that (ii) holds true if and only if X−1R = 0 and X−1 − X0R = 0. Since R2 = 0, these two equations are
equivalent to the single equation X−1 = X0R, which is equivalent to the statement (i). �

We now state the solvability of the RHPs.
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Lemma 7.2. For any real values of x, γ and τ , the RHP for Y has a unique solution. The RHP for X has a solution for
all (τ, γ, x) and 0 < |z| < 1 satisfying det(I − Kz) 	= 0 which is an open set of full Lebesgue measure in the space of
parameters (τ, γ, x, z). Also, if X exists, then it is unique and detX ≡ 1.

Proof. From Lemma 2.3 we know that det(I − F) = det(I − A−γAγ ), and the latter is never zero because it coincides
with the classical Airy determinant (see (1.3)). Consequently I− F is invertible and by [18] the RHP for Y has a unique
solution.

By [13], the RHP for X has a unique solution if I − H is invertible. Hence, the first statement for X follows since
det(I−Kz) is analytic in all four variables. On the other hand, from RX(s)2 = 0 we obtain that det(I − (ξ − s)−1R) ≡ 1
and Lemma 7.1 implies that detX(ξ) is an entire function. Because detX(ξ) → 1 as ξ → ∞, Liouville’s Theorem implies
that detX ≡ 1. �

Since detX ≡ 1 and detY ≡ 1, from RHP(c) we find that TrX1 = 0 and TrY1 = 0. We denote the entries of X1 and
Y1 as

X1 :=
(

Qper Pper
Rper −Qper

)
and Y1 :=

(
QKPZ PKPZ
RKPZ −QKPZ

)
, (7.2)

where Qper,Pper,Rper are functions of x, γ, τ , and also z, whereas QKPZ,PKPZ,RKPZ are functions of x, γ, τ but not of
z.

If the integrable operator has some additional structure, then the logarithmic derivative of the Fredholm determinant
can be expressed directly in terms of the solution to the associated RHP. In our case, we show that the logarithmic
derivative of the Fredholm determinants in the x variable can be expressed in terms of (7.2) as in the next lemma.

Lemma 7.3 (Deformation formula). We have

∂x log det(I−H) = Qper and ∂x log det(I− F) = QKPZ. (7.3)

Proof. The proof is standard, and various versions of this formula for continuous RHPs have appeared, for example, in
[12,13,19]. For convenience of the reader in Appendix A we provide a proof in the discrete case. �

7.2. Coupled integrable differential equations

From the explicit form of the vectors �a, �b, �f and �g given in Lemmas 2.2 and 2.3, the matrices RX and JY can be brought
to the form

RX(s) = e− 1
2V(s)σ3R0(s)e

1
2V(s)σ3 and JY (s) = e− 1

2V(s)σ3J0(s)e
1
2V(s)σ3

for matrices R0(s) and J0(s) which do not depend on τ, γ, τ , and the choice V(s) = V (s; τ, γ, x) with V as (2.14).
For general V , the dressing method for RHPs consists of, starting from a residue or jump matrix as above, finding an

integrable differential equation related to the solution W = X,Y as follows. Setting W0 = We−Vσ3/2, the new matrix W0
has the residue matrix R0 (or jump matrix J0) which does not depend on the parameters of V . So the derivative of W0 with
respect to these parameters satisfies the same RHP as W itself, apart from different asymptotics as s → ∞. This implies
that (∂W0)W

−1
0 has only removable singularities, and using Liouville’s theorem, we find linear differential equations for

W0 on the parameters of V . When these differential equations for two different parameters are combined they form a Lax
pair for W . The specific form of this Lax pair depends solely on V but not on whether W solves a discrete or continuous
RHP. After some work, the compatibility condition for this Lax pair reduces to nonlinear equations/systems on the entries
of W1 = X1, Y1.

Carrying out the general ideas just outlined, by picking different rational exponents V one can produce different
integrable systems, including (modified) Korteweg-de Vries equation, nonlinear Schrödinger equation, or even more
generally the AKNS system [1] that contains the former and many other integrable differential equations.

In our specific context, we can suppress the γ term from V into R0 and J0 and write

RX(s) = e− 1
2 (− τ

3 s3+xs)σ3R1(s)e
1
2 (− τ

3 s3+xs)σ3 and JY (s) = e− 1
2 (− τ

3 s3+xs)σ3J1(s)e
1
2 (− τ

3 s3+xs)σ3

for matrices R1(s) and J1(s) which do not depend on τ and x. The formalism just mentioned then produces that the
entries of X1 and Y1 solve the coupled mKdV system claimed in Theorem 1.2. If, on the other hand, we suppress the τ
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term and write

RX(s) = e− 1
2 (

γ
2 s2+xs)σ3R2(s)e

1
2 (

γ
2 s2+xs)σ3 and JY (s) = e− 1

2 (
γ
2 s2+xs)σ3J2(s)e

1
2 (

γ
2 s2+xs)σ3

for matrices R2(s) and J2(s) which do not depend on γ and x, then we obtain the nonlinear heat equations in Theorem 1.2.
We stress that these arguments do not rely on the choice of R1,R2, J1, J2 but solely on the choice of the conjugating
exponential factors in the above.

In either of the two situations above, for X we are dealing with a purely discrete RHP with infinitely many poles,
which indicates that Pper and Rper are infinite soliton solutions. Also, we considered the parameter z that defines the set
of poles S to be fixed. In terms of the integrable systems for X, the dependence of Pper and Rper on z appears in the
initial/boundary conditions, and since this set of poles is not, for general z, symmetric under the real axis, these solutions
Pper and Rper are, also for general z, complex-valued.

The equations in Theorem 1.2 should be supplemented by appropriate initial/boundary conditions, which should be
read off from the RHP. Finding these initial/boundary conditions is a challenge of its own, and we do not pursue it in this
paper.

The calculations that lead to the exact form of the systems (1.10)–(1.11) is a folklore in integrable systems theory, for
convenience of the reader we include them in the Appendix B.

In concrete terms, the outcome of this discussion is summarized as the next result.

Proposition 7.4. The entries q = QKPZ, r = RKPZ and p = PKPZ of Y1 in (7.2) satisfy

qx = pr. (7.4)

The pair (p, r) satisfies a coupled system of nonlinear heat equations,{
2pγ = −pxx − 2p2r,

2rγ = rxx + 2pr2 (7.5)

and also a coupled system of mKdV equations{
3pτ + pxxx + 6prpx = 0,

3rτ + rxxx + 6prrx = 0.
(7.6)

The same is true for the entries q = Qper, r = Rper and p = Pper of X1 in (7.2), provided the solution X of the RHP exists.

7.3. From the coupled systems to the KP equation: Proof of Theorem 1.2 and Corollary 1.3

For u = Uper,UKPZ as in Corollary 1.3, we take the derivative of the equation (7.3) and use Lemma 2.2 (for u = Uper) or
Lemma 2.3 (for u = UKPZ), combined with (7.4), and write

u = qx = pr,

with q = QKPZ,Qper etc. Thus, Proposition 7.4 implies Theorem 1.2 except (1.12) which we prove in the next subsection.
We now show that the pair of coupled systems (7.5) and (7.6), when combined together, yield the KP equation,

hence proving Theorem 1.3. Using (7.5), we have 2uγ = prxx − pxxr = ∂x(prx − pxr). Using (7.5) again and noting
pr(prx + pxr) = uux , we find that

4uγγ = ∂x

(
prxxx + pxxxr + 4uux − (pxrx)x

)
.

On the other hand, multiplying the first equation in (7.6) by r and the second by p, and adding the results, we get, using
pr(prx + pxr) = uux again,

3uτ + prxxx + pxxxr + 6uux = 0.

Finally, the third derivative evaluation of u = pr is given by

uxxx = prxxx + pxxxr + 3(pxrx)x.



Limiting one-point distribution of periodic TASEP 291

We combine the above three equations to remove prxxx + pxxxr and (pxrx)x and obtain the KP equation

12uγγ + (uxxx + 12uux + 12uτ )x = 0.

This proves Theorem 1.3.
In summary, the calculations above show that any RHP with residue or jump matrix of the form

M(s) = e− 1
2 (− τ

3 s3+ γ
2 s+xs)σ3M0(s)e

1
2 (− τ

3 s3+ γ
2 s+xs)σ3

with a matrix M0(s) which do not depend on τ, γ, x is associated to the KP equation. Rigorous analysis of the scattering
transform for the KP equation has been carried out for classes of real solutions that decay sufficiently fast as x, γ → ∞,
except possibly along a line (see [4] and the references therein). In these situations, the inverse scattering transform always
involves a so-called d-bar problem component, possibly also with poles, and a continuous RHP, all for scalar functions
instead of matrix-valued functions. Our RHP for Y is nothing but a dressed-up version of the RHP for the Hastings-
McLeod solution to PII, which is well understood. In contrast, our RHP for X is a purely discrete matrix RHP. Hence,
the KP solution encoded in our discrete matrix RHP falls outside the class of the just mentioned works. Determining the
exact growth/decay properties of our KP solution is a separate task of interest.

7.4. Symmetry

We start with the discrete RHP for X. Define

X̂(ξ ;γ ) := σ1X(−ξ ;−γ )σ1, with σ1 = ( 0 1
1 0

)
.

This matrix tends to the identity matrix I as ξ → ∞.
A direct calculation shows that the residue matrix for X satisfies the symmetry property

RX(−s;−γ ) = −σ1RX(s;γ )σ1.

Hence, X̂(ξ ;γ ) satisfies, for every s ∈ S ,

X̂(ξ ;γ )

(
−RX(s;γ )

ξ − s
+ I

)
= σ1X(−ξ ;−γ )

(
−RX(−s;−γ )

(−ξ) − (−s)
+ I

)
σ1.

By the RHP for X and Lemma 7.1, the above formula is analytic at ξ = s. Hence, Lemma 7.1 again shows that X̂(ξ ;γ )

satisfies the same residue condition as X(ξ ;γ ). By the uniqueness of the solution to the RHP, we find that X̂(ξ) = X(ξ),
thus obtaining the symmetry property

X(ξ ;γ ) = σ1X(−ξ ;−γ )σ1.

Inserting this into the asymptotic expansion (7.1) we find that Xk = (−1)kσ1Xk(−γ )σ1 for all k ≥ 1. When k = 1, this
means that the coefficients in (7.2) satisfy p(γ ) = −r(−γ ), proving the symmetry (1.12). We also have q(γ ) = q(−γ ).

The proof for Y is similar: the jump symmetry is now

σ1JY (−s;−γ )σ1 = JY (s;γ )−1,

and this implies that σ1Y(−s;−γ )σ1 = Y(s;γ ), which then from (7.1) yields the symmetry (1.12).
We discussed in Section 1.2 that using the symmetry, the function p itself satisfies the non-local differential equations

(1.13) and (1.14). The equation (1.14) is a non-local nonlinear Schrödinger (NLS) equation with complex time variable.
The appearance of the non-local NLS from the AKNS system was obtained relatively recently in [3], and the inverse
scattering transform of this non-local NLS equation has also recently been analyzed (see [2] and the references therein)
for a class of initial conditions with finite amplitude as x → ∞. Among other distinguishing features, in these works the
poles of the discrete RHP were symmetric under reflection onto the imaginary axis, which is not the case for our discrete
RHP.
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8. Flat initial condition

All of the results for the step initial condition extend to the flat initial condition, and we now discuss them.
The limit of the one point distribution with the flat initial condition does not depend on the location parameter γ . It is

given by the formula [8]

F1(x; τ) =
∮

exA1(z)+τA2(z)+A3(z)+B(z) det
(
I−K

(1)
z

) dz

2πiz
, (8.1)

where the integral is a small circle around the origin in the counterclockwise direction. The functions A1,A2,B are the
same as in the step initial condition case, and A3(z) = − 1

4 log(1 − z). The operator K(1)
z : 	2(S−) → 	2(S−) is defined

via the kernel

K(1)
z (ξ1, ξ2) = K(1)

z (ξ1, ξ2;x, τ ) = e�(ξ1)+�(ξ2)

ξ1(ξ1 + ξ2)
, ξ1, ξ2 ∈ S−, (8.2)

where the function � is given by

�(ξ) = �(ξ ;x, τ ) := −1

3
τξ3 + xξ − 1

2
Q(ξ) = 1

2
�(ξ ;2x,2τ) (8.3)

compared with the function � in (2.5). We have the following results.

Theorem 8.1 (Large τ limit; flat case). For each fixed x ∈ R,

lim
τ→∞F1

(
−τ + π1/4

√
2

xτ 1/2; τ
)

= 1√
2π

∫ x

−∞
e− y2

2 dy.

Theorem 8.2 (Small τ limit; flat case). For every x0 ∈R, there exist constants C,c, ε > 0 and τ0 > 0 such that∣∣F1
(
τ 1/3x; τ)− FGOE

(
22/3x
)∣∣≤ Ce−ετ−2/3

e−c(x−x0), 0 < τ < τ0, x ≥ x0,

where FGOE is the GOE Tracy–Widom distribution. In particular,

lim
τ→0

F1
(
τ 1/3x; τ)= FGOE

(
22/3x
)
.

Theorem 8.3 (Right tail estimate; flat case). For every fixed τ > 0, there is a constant c > 0 such that

1 − F1(x; τ) = (1 − FGOE
(
22/3τ−1/3x

))(
1 +O
(
e−cx1/2))

, x → ∞.

The above result shows that the leading term of the right tail of F1(τ
1/3x; τ) does not depend on τ , and it is the same

as the right tail of FGOE(22/3x), which can be found, for example, in [6].

Theorem 8.4 (Integrable differential equations; flat case). The kernel K(1) with x, τ replaced by x
2 , τ

2 satisfies

∂x ln det
(
I−K

(1)
z | x

2 , τ
2

)= 1

2
R(τ, x) + 1

2
Q(τ,x),

where R(τ, x) = Rper(τ,0, x) and Q(τ,x) = Qper(τ,0, x) in terms of the functions in Theorem 1.2 and Proposition 7.4.
The function R satisfies the (defocusing) mKdV equation

3Rτ + Rxxx − 6R2Rx = 0 and Qx = −R2.

As a consequence, we rediscover a connection with the KdV equation that was first pointed out by Prolhac [39,
Section 2.6.3], albeit in different form.

Corollary 8.5. The function

U(τ, x) := 2∂xx ln det
(
I−K

(1)
z | x

2 , τ
2

)
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satisfies the Korteweg–de Vries equation (KdV) equation12

3Uτ + Uxxx + 6UUx = 0.

Proof. We have U = Rx + Qx = Rx − R2. It is straightforward to check that if R satisfies the mKdV equation, then U

satisfies the KdV equation. Indeed, this is a well-known Miura transformation. �

We prove the above theorems in the following subsections.

8.1. Large τ limit

For xτ as in (4.1), we use (8.1)–(8.3) and write

F1(xτ /2; τ/2) =
∮

e
xτ
2 A1(z)+ τ

2 A2(z)+A3(z)+B(z) det
(
I−K

(1)
z | xτ

2 , τ
2

) dz

2πiz
,

emphasizing the explicit expression

K(1)
z | xτ

2 , τ
2
(ξ1, ξ2) = e

1
2 �τ (ξ1)+ 1

2 �τ (ξ2)

ξ1(ξ1 + ξ2)
, ξ1, ξ2 ∈ S−,

with �τ (ξ) := �(ξ ;xτ , τ ) as in (4.5).
As in Lemma 4.4, let S− = {uk}k∈Z and let 	1, . . . , 	N be distinct integers. Corollary 4.2 and Lemma 4.3 imply that

N∑
k=1

|K(1)
z

∣∣
x
2 , τ

2
(ξ, u	k

)
∣∣2 ≤ 1

c2
eRe�τ (ξ)

∞∑
k=−∞

eRe�τ (uk)

|k| + 2
, ξ ∈ S−,

and we further estimate

∞∑
k=−∞

eRe�τ (uk)

|k| + 2
≤ e0.4734τ

2
+ 2

∞∑
k=1

e−1.9366|k|3/2τ ≤ e0.4734τ

for all large enough τ and every z as in Corollary 4.2. Thus, there are τ0 and C > 0 such that

N∑
k=1

|K(1)
z

∣∣
x
2 , τ

2
(ξ, u	k

)
∣∣2 ≤ CeRe�τ (ξ)+0.4734τ

uniformly for ξ ∈ S− and τ ≥ τ0; this estimate is similar to Lemma 4.4. Similar arguments as used in the proof of
Proposition 4.5 now show that

det
(
I−K

(1)
z | x

2 , τ
2

)= 1 − Tr
(
K

(1)
z | x

2 , τ
2

)+O
(
e−0.255τ

)
as τ → ∞, uniformly for 1 − δ ≤ |z| ≤ 1 − δ1 for some δ ∈ (0,1) and any fixed δ1 ∈ (0, δ). Here, the exponent in the
error is half the one from Proposition 4.5 due to the change from �τ to 1

2�τ in the kernel.
We look now at the proof of Proposition 4.6. The estimate (4.8) implies that for every R ∈ (0,1 − δ1),

max|z|=R
Re

(
xτ

2
A1(z) + τ

2
A2(z) + A3(z) + B(z)

)
< 0.254τ

for sufficiently large τ , and Proposition 4.6 changes to

F1(xτ /2, τ/2) = 1 −
∮

e
xτ
2 A1(z)+ τ

2 A2(z)+A3(z)+B(z) Tr
(
K

(1)
z | xτ

2 , τ
2

) dz

2πiz
+O
(
e−0.001τ

)
12The scale τ �→ 3τ changes to a standard form of the KdV equation Uτ + Uxxx + 6UUx = 0.



294 J. Baik, Z. Liu and G. L. F. Silva

as τ → ∞. From the formula of K(1)
z , the version of Lemma 4.7 now follows from the simpler estimate

TrK(1)
z | xτ

2 , τ
2

= e�τ (u0(z))

2u0(z)2
+
∑

k∈Z\{0}

e�τ (uk)

2u2
k

= e�τ (u0(z))

2u0(z)2
+O
(
e−1.9τ
)
,

where we error term was obtained using Corollary 4.2 and Lemma 4.3.
Plugging in the formulas and using the notations (4.9),∫

e
xτ
2 A1(z)+ τ

2 A2(z)+A3(z)+B(z) e
�τ (u0(z))

2u0(z)2

dz

2πiz
= 1

4πi

∫
E(1)(z)e

1
2 τf1(z)+ 1

2 τ 1/2x̂f2(z)

zu0(z)2
dz,

where x̂ = π1/4x
2 as before, x ∈R fixed, and

E(1)(z) := eA3(z)+B(z)−Q(u0(z)) = E(z)1/2

(1 − z)1/4
, E(z) = e2B(z)−2Q(u0(z)) as before.

The functions f1 and f2 have analytic extensions, f1 and f2, on the Riemann surface R (see Section 3.3). On the other
hand, the function E(z) also extends analytically on R and has a zero of order 3 at z = 1 (see Section 3.4). Combined
with (1 − z)−1/4, we see that E(1)(z) extends analytically on R and it has a zero of order 1 at z = 1. We denote the
extension by E(1)(z). Recalling Lemma 3.5, E(z) ≈ −4u0(z)

4 as z → 0(2). It is also direct to verify that (1 − z)−1/4 = −i

as z → 0(2). Combining everything, E(1)(z) = −2u0(z)
2(1 +O(z2)) as z → 0(2). Define the one form (cf. (4.11))

ω(1)
τ := E(1)(z)e

τ
2 f1(z)+ τ1/2 x̂

2 f2(z)

4πizU0(z)2
dz

on the Riemann surface R. Using this notation, we just verified that (cf. (4.12))

F1(xτ /2, τ/2) = 1 −
∫

�

ω(1)
τ +O

(
e−0.001τ

)
,

where � is the same contour that was used in (4.12). We evaluate the integral following Section 4.3. The contour is
divided into three parts. The proofs of Lemma 4.10 and 4.11 for the parts �1 and �2 apply with minimal changes, and
contributions from these parts tend to zero as τ → ∞. On the other hand, for the contour �3, which is a small semicircle
about the origin in the second sheet of R, most of the proof of Lemma 4.9 does not change, but in the last steps we find

lim
τ→∞

∫
�3

ω(1)
τ = 1

2πi

∫ i∞

−i∞
e

1
2 ( 1

8
√

π
s2− x̂√

2π
s) ds

s
= 1

2πi

∫ ∞

−∞
e
− u2

2 −i x√
2
u du

u
= 1√

2π

∫
x√
2

e− 1
2 u2

du,

where for the second inequality we changed variables s = i23/2π1/4u and used that x̂ = π1/4x/
√

2. Having in mind the
explicit expression for xτ in (4.1), we just obtained that

lim
τ→0

F1

(
−τ

2
+ π1/4

√
2

x√
2

(
τ

2

)1/2

,
τ

2

)
= lim

τ→0
F1

(
−τ + π1/4

√
2

x√
2
τ 1/2, τ

)
= 1√

2π

∫ x√
2

−∞
e− u2

2 du,

valid for any x ∈ R fixed. This finishes the proof of Theorem 8.1.

8.2. Small τ limit

After a simple conjugation, we may replace the kernel K(1)
z (ξ1, ξ2) in (8.2) by (using the same notation)

K(1)
z (ξ1, ξ2) = − e�(ξ1)+�(ξ2)

√−ξ1
√−ξ2(ξ1 + ξ2)

, ξ1, ξ2 ∈ S−,

without changing the Fredholm determinant. Using (8.3) and the notation from (2.10), we see that

K(1)
z

(
ξ, η; x

2
,
τ

2

)
= −e

1
2 �(ξ ;x,τ)+ 1

2 �(η;x,τ)

√−ξ
√−η(ξ + η)

= −J(ξ, η;x, γ = 0, τ ), that is,K(1)
z | x

2 , τ
2

= −J|γ=0. (8.4)
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Now from (2.12) we have J|γ=0 = −G0G
T
0 , and recalling that Tγ =GT−γG−γ we find that

det
(
I−K

(1)
z | x

2 , τ
2

)= det(I−T0), (8.5)

where T0 has kernel as in Lemma 1.1 with γ = 0. Thus, changing x to τ 1/3x, we find that

F1

(
τ 1/3x

2
; τ

2

)
=
∮

e
τ1/3x

2 A1(z)+ τ
2 A2(z)+A3(z)+B(z) det(I−Ax,τ )

dz

2πiz
,

where the operator Ax,τ is defined by (5.1). Recall that FGOE(x) = det(I−Ax). Lemma 5.2 established the convergence
of Ax,τ to the operator Ax with an explicit error bound for the kernel. Hence, we find that the Fredholm determinant
converges as well with the same error bound as in Corollary 5.3. Taking the integral (see Section 5.2), we find that∣∣∣∣F1

(
τ 1/3x

2
; τ

2

)
− FGOE(x)

∣∣∣∣≤ Ce−ετ−2/3
e−c(x−x0).

Changing τ �→ 2τ , and x �→ 22/3x, and renaming the constants, we conclude the proof of Theorem 8.2.

8.3. Right tail

From (8.5),

F1(x/2; τ/2) =
∮

e
x
2 A1(z)+ τ

2 A2(z)+A3(z)+B(z) det(I−T0)
dz

2πiz
.

As in Section 6, we take the contour |z| = e− x
2τ . Proposition 6.2 implies that we may change the Fredholm determinant to

1 − Tr(T0) plus an error term. The kernel is given by T0(s, t) = T0(x + s + t) (see (6.11)). Proposition 6.9 and 6.10 allow
us to replace T0(x + s + t) by A(x + s + t;0) whose asymptotic formula is given in Lemma 6.4. Thus, after performing
the trivial z-integral, we find that

1 − F1(x/2; τ/2) =
∫ ∞

x

1

τ 1/3
Ai
(
2τ−1/3y

)
dy
(
1 +O
(
e−cx1/2))

.

We have∫ ∞

x

1

τ 1/3
Ai
(
2τ−1/3y

)
dy =
∫ ∞

x

Ai(2y)dy = Tr(Ax) = (1 − FGOE(x)
)(

1 +O
(
e−cx
))

.

Scaling x and τ completes the proof of Theorem 8.3.

8.4. Integrable differential equations

From (8.4),

det
(
I−K

(1)
z | x

2 , τ
2

)= det(I+ J|γ=0).

The operator for the step initial condition case satisfies Kz = JJT (see (2.9)). Because of the symmetry JT |γ = J|−γ (see
(2.11)), we find that

Kz|γ=0 = (J|γ=0)
2.

For all the computations in the rest of this section we set γ = 0, and in particular for simplicity we write Kz|γ=0 and
J|γ=0 simply Kz and J. Also, we use the notation ∂ = ∂x .

We have

∂ ln det
(
I−K

(1)
z | x

2 , τ
2

)= ∂ ln det(I+ J) = Tr
(
(I+ J)−1∂J

)= Tr
((
I− J

2)−1
(I− J)∂J

)
.
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Using that (I− J2)−1 and J commute, we write

∂ ln det
(
I−K

(1)
z | x

2 , τ
2

)= Tr
((
I− J

2)−1
∂J
)− 1

2
Tr
((
I− J

2)−1(
J(∂J) + (∂J)J

))
= Tr
((
I− J

2)−1
∂J
)+ 1

2
∂ ln det

(
I− J

2). (8.6)

From Lemmas 2.2 and 7.3 we know that

∂ ln det
(
I− J

2)= ∂ ln det(I−Kz) = ∂ ln det(I−H) = Qper(τ,0, x)

Hence, it is enough to consider

Tr
((
I− J

2)−1
∂J
)
.

We use the following lemma.

Lemma 8.6. Let H1 and H2 be two Hilbert spaces. Suppose that K1 : H2 → H1, K2 : H2 → H1, and K3 : H1 → H1
are trace class operators. Set H = H1 ⊕H2. We extend K1,K2,K3 to operators on H in a natural way, and we use the
same notations. Let P1,P2 : H →H be the projection operators to H1 and H2, respectively. Then,

Tr
(
(I−K1K2)

−1
K3
)
H1

= Tr
(
(I− P1K1P2 − P2K2P1)

−1
P1K3P1

)
H

Proof. It is enough to show that the non-zero eigenvalues of both operators are the same. This is straightforward to check,
we skip the details. �

In the proof of Lemma 2.2, we set W : 	2(S+) → 	2(S−) to be the reflection operator (Wh)(u) = h(−u) and used
the decomposition J2 = Kz = J1J2 where J1 = JW and J2 = WT JT = WT J, with the last equality being valid because
γ = 0. Recall the definition S = S1 ∪ S2 and observe that 	2(S−) ⊕ 	2(S+) = 	2(S). Denoting by P± the projections
onto S±, the above lemma implies that

Tr
((
I− J

2)−1
∂J
)
	2(S−)

= Tr
(
(I− P−J1P+ − P+J2P−)−1

P−∂JP−
)
	2(S)

= Tr
(
(I−H)−1

P−∂JP−
)
	2(S)

,

where H = P−J1P+ + P+J2P− is the same operator as in Lemma 2.2 (with γ = 0).
Since �(s) = − 1

3τs3 + xs − Q(s) and recalling that ∂ = ∂x , we find from direct differentiation that

χ−(u)∂J(u, v)χ−(v) = 1

2
χ−(u)

e
1
2 �(u)+ 1

2 �(v)

√−u
√−v

χ−(v) = 1

2
f2(u)g1(v),

where fi and gi are the components of the vectors �f and �g in Lemma 2.2. Hence,

Tr
((
I− J

2)−1
∂J
)
	2(S−)

= 1

2
Tr
(
(I−H)−1f2 ⊗ g1

)
.

Using the notation �F := (I− J)−1 �f , the above equation becomes

Tr
((
I− J

2)−1
∂J
)
	2(S−)

= 1

2
Tr(F2 ⊗ g1) = 1

2

∑
s∈S

F2(s)g1(s).

In formulas (A.1) and (A.4), we will show that
∑

s∈S �F(s)�g(s)T = X1 is the residue matrix in (7.2). Therefore,

Tr
((
I− J

2)−1
∂J
)
	2(S−)

= 1

2
(X1)21.

Recalling the notation (X1)21 = Rper in (7.2) and combining with (8.6), we obtain

∂x ln det
(
I−K

(1)
z | x

2 , τ
2

)= 1

2
Rper(τ,0, x) + 1

2
Qper(τ,0, x).
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The coupled system of mKdV equations (1.10) and the symmetry Pper(γ ) = −Rper(−γ ) in (1.12) implies that
R(τ, x) := Rper(τ,0, x) satisfies the mKdV equation

3Rτ + Rxxx − 6R2Rx = 0.

On the other hand, the equation (7.4) implies that Q(τ,x) := Qper(τ,0, x) satisfies

Qx = −R2.

The proof of Theorem 8.4 is completed.

Appendix A: Proof of Lemma 7.3

We prove the lemma. It is a fundamental property of integrable operators [13,18] that the vector

�F := (I−H)−1 �f (A.1)

can be obtained from the RHP by the formula

�F(s) = lim
ξ→s

X(ξ) �f (s), (A.2)

where the limit converges. Now, the solution of the RHP satisfies the identity

X(ξ) = I −
∑
s∈S

�F(s)�g(s)T

s − ξ
for ξ ∈ C \ S, (A.3)

with �F(s) given by (A.2). This equation can be seen by checking directly that the right-hand side satisfies the conditions
RHP-X (a), (b), and (c) of the RHP for X, and using the uniqueness of the solution. For the condition RHP-X (b), note
that

Res
ξ=w

(
I −
∑
s∈S

�F(s)�g(s)T

s − ξ

)
= �F(w)�g(w)T = lim

ξ→w
X(ξ) �f (w)�g(w)T = lim

ξ→w
X(ξ)RX(w).

Considering the asymptotic behavior as ξ → ∞, (A.3) implies that

X1 =
∑
s∈S

�F(s)�g(s)T . (A.4)

From the formulas of �f and �g, we see that

∂x
�f (u) = −u

2
σ3 �f (u) and ∂x �g(u) = u

2
σ3 �g(u).

Thus,

∂xH(u, v) = ∂x
�f (u)T �g(v) + �f (u)T ∂x �g(v)

u − v
= −1

2
�f (u)T σ3 �g(v),

and using (A.1),

∂x log det(I−H) = −Tr
(
(I−H)−1∂xH

)= 1

2
Tr
(
(I−H)−1 �f ⊗ (σ3 �g)

)
= 1

2
Tr
( �F ⊗ (σ3 �g)

)= 1

2

∑
s∈S

�F(s)T σ3 �g(s).

On the other hand, from (A.4),

Tr(X1σ3) =
∑
s∈S

Tr
( �F(s)�g(s)T σ3

)=∑
s∈S

�g(s)T σ3 �F(s) =
∑
s∈S

�F(s)T σ3 �g(s).

Equating the last two formulas, we obtain the lemma.
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Appendix B: Proof of Proposition 7.4

We prove Proposition 7.4 focusing only on X. The proof for Y is similar: we define W = Ye−V σ3/2 similarly as in (B.1)
below and obtain the Lax equations in Lemma B.1 in the standard way for continuous Riemann–Hilbert problems. Having
the Lax equations at hand, all the remaining arguments are algebraic and can be repeated for Y , line-by-line, as below,
simply replacing X and Xk by Y and Yk .

B.1. The Lax systems

Define the new matrix function

W(ξ) = X(ξ)e− V (ξ)
2 σ3, ξ ∈C \ S. (B.1)

Then, W satisfies the following RHP:

RHP-W 1 W :C \ S → C2×2 is analytic.
RHP-W 2 The points in S are simple poles of W with residue matrix

RW(s) = e
V (s)

2 σ3RX(s)e− V (s)
2 σ3 =

(
0 1

s
eQ(s)χ+(s)

1
s
e−Q(s)χ−(s) 0

)
for s ∈ S .

RHP-W 3 As ξ → ∞,

W(ξ) = (I +O
(
ξ−1))e− V (ξ)

2 σ3 .

The jump matrix does not depend on the parameters τ, γ, x. This has the following consequence.

Lemma B.1 (Lax equations). The matrix W satisfies linear differential equations

∂γ W(ξ) = A(ξ)W(ξ), ∂τW(ξ) = B(ξ)W(ξ), ∂xW(ξ) = D(ξ)W(ξ), (B.2)

for some polynomial matrices

A(ξ) = ξ2A2 + ξA1 + A0, B(ξ) = ξ3B3 + ξ2B2 + ξB1 + B0, D(ξ) = ξD1 + D0,

where A2 = − 1
4σ3, B3 = 1

6σ3, and D1 = − 1
2σ3, and other matrices Ai,Bi,Di do not depend on ξ .

Proof. Since detX ≡ 1, detW ≡ 1. Hence, W is invertible. Let ∂ be the partial derivative with respect either τ, γ or x.
For s ∈ S , Lemma 7.1 implies that

Z(ξ) := W(ξ)

(
−RW(s)

ξ − s
+ I

)
is analytic at ξ = s. Since RW(s)2 = 0, we have detZ(ξ) = 1, and hence Z(ξ)−1 is also analytic at ξ = s. Since RW does
not depend on the parameters, the derivative becomes

∂Z(ξ) = ∂W(ξ)

(
− RW

ξ − s
+ I

)
.

Hence,

(
∂W(ξ)

)
W(ξ)−1 = ∂W(ξ)

(
− RW

ξ − s
+ I

)(
RW

ξ − s
+ I

)
W(ξ)−1 = (∂Z(ξ)

)
Z(ξ)−1

is analytic at ξ = s. Thus, (∂W(ξ))W(ξ)−1 is an entire function.
The asymptotic condition, RHP-W 3, implies that

(
∂W(ξ)

)
W(ξ)−1 =O

(
ξ−1)− ∂V (ξ)

2

(
I +O
(
ξ−1))σ3

(
I +O
(
ξ−1))



Limiting one-point distribution of periodic TASEP 299

as ξ → ∞. Since

∂γ V (ξ) = ξ2

2
, ∂τV (ξ) = −ξ3

3
, ∂xV (ξ) = ξ,

the Liouville’s theorem implies that (∂W(ξ))W(ξ)−1 is a polynomial with the leading term − ∂V (ξ)
2 σ3. We thus obtain

the result. �

We now insert (B.1) and the asymptotic series condition (7.1) into the equations (B.2) to obtain sequences of relation-
ships between Ai,Bi,Di and Xk . We find that

4A1 = −6B2 = 2D0 = [σ3,X1] =: C1,

4A0 = −6B1 = −[σ3,X1]X1 + [σ3,X2] =: C2,

−6B0 = [σ3,X1]X2
1 − [σ3,X2]X1 − [σ3,X1]X2 + [σ3,X3] =: C3

and for k ≥ 1,

4∂γ Xk = −[σ3,Xk+2] + C1Xk+1 + C2Xk, (B.3)

−6∂τXk = −[σ3,Xk+3] + C1Xk+2 + C2Xk+1 + C3Xk, (B.4)

2∂xXk = −[σ3,Xk+1] + C1Xk, (B.5)

where the bracket denotes the commutator [P,Q] = PQ − QP .
Using (B.5) when k = 1,2, we may remove the commutator terms in C2 and C3 and express them as

−1

2
C2 = ∂xX1 and − 1

2
C3 = (∂xX1)X1 + ∂xX2. (B.6)

Recall the notation (7.2). The diagonal entries of the equation (B.5) with k = 1 gives us the identity

qx = pr. (B.7)

This proves (7.4) of Proposition 7.4.

B.2. Coupled nonlinear heat equations

We find a partial differential equation for X1 in the variables x and γ and prove (7.5) of Proposition 7.4.
The k = 1 case of equation (B.3) becomes, using (B.6) for C2,

4∂γ X1 = −2(∂xX1)X1 + [σ3,X1]X2 − [σ3,X3].

We remove [σ3,X3] using the k = 2 case of the equation (B.5). The equation becomes

2∂γ X1 = −(∂xX1)X1 + ∂xX2. (B.8)

This equation contains X2 which we remove as follows. The x-derivative of the k = 1 case of (B.5) is

[σ3, ∂xX2] = −2∂xxX1 + ∂x

([σ3,X1]X1
)
.

We solve for ∂xX2 in (B.8) and insert it to the above equation and arrive at an equation involving only X1. Using the
general commutator identity [A,BC] = [A,B]C + B[A,C], the equation can be written as

2[σ3, ∂γ X1] = −2∂xxX1 + [σ3,X1](∂xX1) − (∂xX1)[σ3,X1]. (B.9)

We insert the entries q,p, r of X1 in (7.2) into (B.9). The diagonal entries simply give the x-derivative of (B.7). The
off-diagonal entries give two non-trivial equations, which after inserting qx = pr become (7.5) of Proposition 7.4.
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B.3. Coupled mKdV equations

We find a partial differential equation for X1 in the variables x and τ and prove (7.6) of Proposition 7.4. In this section,
we set

Q := [σ3,X1] and R := [σ3,X2] = −2∂xX1 + QX1,

where the second equality in R follows from the k = 1 case of (B.5). Consider the k = 1 case of (B.4). The equation
contains [σ3,X4]. We remove it using the k = 3 case of (B.5). Further inserting the formula (B.6), the k = 1 case of (B.4)
becomes

∂xX3 = (∂xX1)X2 + (∂xX2)X1 − (∂xX1)X
2
1 − 3∂τX1.

The k = 2 case of (B.5) is

[σ3,X3] = −2∂xX2 + QX2. (B.10)

Taking the x-derivative of this equation, and then inserting the formula of ∂xX3 above, we find[
σ3, (∂xX1)X2 + (∂xX2)X1

]− [σ3, (∂xX1)X
2
1

]− 3∂τQ = −2∂xxX2 + ∂x(QX2).

We use the general commutator identity [A,BC] = [A,B]C + B[A,C] for the first term on the left-hand side and
move the term ∂x(QX2) to the left-hand side of the equation. Since TrX1 = 0, the matrix X2

1 is diagonal, and hence
[σ3,X

2
1] = 0, implying that [σ3, (∂xX1)X

2
1] = [σ3, ∂xX1]X2

1 = (∂xQ)X2
1. Hence, recalling the notations Q and R, the

above equation can be written as

(∂xX1)R + (∂xR)X1 + (∂xX2)Q − Q(∂xX2) − (∂xQ)X2
1 − 3∂τQ = −2∂xxX2.

Taking the commutator with σ3,[
σ3, (∂xX1)R + (∂xR)X1

]+ [σ3, (∂xX2)Q − Q(∂xX2)
]− [σ3, (∂xQ)X2

1

]− 3[σ3, ∂τQ] = −2∂xxR. (B.11)

We express [σ3, (∂xX2)Q − Q(∂xX2)] in terms of Q and R using the next lemma.

Lemma B.2. We have

2
[
σ3, (∂xX2)Q

]= −QRQ and 2
[
σ3,Q(∂xX2)

]= Q2R.

Proof. The equation (B.10) gives 2∂xX2 = QX2 − [σ3,X3]. Observe that since [σ3,X3] and Q = [σ3,X1] have zero
diagonal entries, [σ3,X3]Q is a diagonal matrix, and hence [σ3, [σ3,X3]Q] = 0. Similarly we have [σ3,Q[σ3,X3]] = 0.
Therefore,

2
[
σ3, (∂xX2)Q

]= [σ3,QX2Q − [σ3,X3]Q
]= [σ3,QX2Q]

and

2
[
σ3,Q(∂xX2)

]= [σ3,Q
2X2 − Q[σ3,X3]

]= [σ3,Q
2X2
]
.

Now, since Q = [σ3,X1], we have σ3Q + Qσ3 = 0. Using this identity, we can write

[σ3,QX2Q] = −Q[σ3,X2]Q = −QRQ and
[
σ3,Q

2X2
]= Q2[σ3,X2] = Q2R. �

The equation (B.11) thus becomes an equation only of X1:

2
[
σ3, (∂xX1)R + (∂xR)X1

]− Q(RQ + QR) − 2
[
σ3, (∂xQ)X2

1

]− 6[σ3, ∂τQ] = −4∂xxR. (B.12)

We now insert the entries (7.2) of X1. The entries are

X1 =
[
q p

r −q

]
and Q =

[
0 2p

−2r 0

]
and R =

[
0 −2px − 2pq

−2rx − 2rq 0

]
,
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where we used (B.7) for the diagonal entries of R. It is useful to observe that

RQ + QR = −4(rxp − pxr)I and X2
1 = (q2 + pr

)
I.

Inserting these into (B.12), the diagonal entries of the equation give trivial identities. The off-diagonal entries, on the
other hand, imply, using qx = pr , (7.6) of Proposition 7.4.
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