AN OSCILLATION-FREE DISCONTINUOUS GALERKIN METHOD
FOR SCALAR HYPERBOLIC CONSERVATION LAWS
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Abstract. In this paper, we propose a novel discontinuous Galerkin (DG) method to con-
trol the spurious oscillations when solving the scalar hyperbolic conservation laws. Usually, the
high order linear numerical schemes would generate spurious oscillations when the solution of the
hyperbolic conservation laws contains discontinuities. The spurious oscillations maybe harmful to
the numerical simulation, as it not only generates some artificial structures not belonging to the
problems, but also causes many overshoots and undershoots that make the numerical scheme less
robust. To overcome this difficulty, in this paper we introduce a numerical damping term to control
spurious oscillations based on the classic DG formulation. Comparing to the classic DG method,
the proposed DG method still maintains many good properties, such as the extremely local data
structure, conservation, L2-boundedness, optimal error estimates and superconvergence. We also
provide some numerical examples to show the good performance of the proposed DG scheme and
verify our theoretical results.
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1. Introduction. Discontinuous Galerkin methods are a class of finite element
methods that have attracted a lot of attention in the last several decades. They have
been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems
arising from a wide range of applications. Since the DG methods adopt the complete
discontinuous basis functions, they have some advantages which are not shared with
the typical finite element methods, such as the allowance of arbitrary triangulation
with hanging nodes, easy h-p adaptivity, and high parallel efficiency due to the ex-
tremely local data structure. The first DG method dates back to 1973, when Reed and
Hill solved a steady linear hyperbolic equation in [34]. Later it was coupled with the
nonlinearly stable Runge-Kutta time discretization method for solving nonlinear hy-
perbolic conservation laws by Cockburn et al. in a series of papers [18, 19, 17, 15, 20].
The extension to the convection-diffusion problem and higher order PDEs was carried
out in e.g. [5, 21, 41, 12, 40] and the references therein. For more details, we refer to
some survey papers [16, 35, 36].

Despite of the excellent performance of the DG methods in dealing with a vari-
ety of problems, they become less robust when computing the convection-dominated
problems with strong shocks, especially for hyperbolic conservation laws. Due to the
nonlinearity of the hyperbolic conservation laws such as inviscid compressible Euler
equations, no matter how smooth the initial condition is, the solution can evolve
into shock discontinuities at a finite time. This causes numerical difficulty because
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many numerical schemes either cannot correctly compute the shock speed, or gener-
ate spurious oscillations near the discontinuity that makes the numerical schemes less
robust or even unstable. Through decades, people never stop seeking a way to control
spurious oscillations. Among the early works, the first order Godunov scheme [23]
possesses monotonicity-preserving property and can resolve the discontinuity mono-
tonically without spurious numerical oscillations. However, Godunov pointed out
that if a numerical scheme preserves the monotonicity then it is at most first order
accurate. This result is somehow frustrating and could prevent people from attempt-
ing to improve the Godunov scheme. This also explains the numerical solution is
often smeared too much near the discontinuity for the relatively large built-in nu-
merical dissipation in the Godunov scheme. Fortunately, there is an assumption in
Godunov’s proof that the numerical scheme is linear when solving a linear advection
equation. By realizing the Godunov’s theorem could be circumvented, the so-called
high-resolution schemes were devised in 1970s and 1980s, such as MUSCL schemes
[38], TVD schemes [25], and PPM schemes [22], etc. These high resolution schemes
are usually second order accurate in smooth region, and can resolve the discontinuity
monotonically with a sharper transition than first order schemes. They are popular
in applications for the balance between computational cost and desired resolution,
especially for problems with shocks and other discontinuities and relatively simple
structures between these discontinuities. For problems containing both shocks and
complicated smooth structures, such as the shock interaction with vortices or acous-
tic waves, the higher order schemes in an essentially non-oscillatory (ENO) fashion
are favorable [26, 37, 28]. Such high order ENO schemes can be constructed up to
arbitrary order of accuracy, and produce sharp and ENO shock transitions even for
strong shocks, which also explains their rapid popularity and widespread applications
as soon as they were born.

To control spurious oscillations near the discontinuity for the DG methods, differ-
ent kinds of limiters were developed such as the minmod-type total variation dimin-
ishing (TVD) limiter, total variation bounded (TVB) limiter and weighted essentially
non-oscillatory (WENO) limiter, etc. For more details, see e.g. [35, 33, 44] and ref-
erences therein. The mechanism of limiters is to modify the numerical solution after
we have obtained it, with various tools and indicators to determine whether the nu-
merical solution is “bad” or not within a cell and to perform a limiting process once
the “bad” cell is marked. Sometimes the limiter is problem-dependent, and it may
destroy some good properties of the original schemes. Another approach is to intro-
duce artificial terms, such as artificial diffusion, directly in the weak formulation so as
to obtain certain properties such as entropy stability or shock capturing, see e.g. [27].
However, the artificial diffusion usually involves parameters, which might be problem
dependent, and if these parameters are not adjusted properly, the numerical solution
either could have too much smearing for shocks, or the spurious oscillations could still
be visible and cannot be negligible. The advantage of the artificial diffusion approach
is that it is embedded in the weak formulation, which facilitates theoretical analysis
and certain applications such as steady state computation. In this paper, we propose
a different approach to control spurious oscillations in the DG methods for solving
scalar hyperbolic conservation laws. Based on the conventional DG scheme, we in-
troduce a damping term in it to control the high order terms. The added damping
term is similar in spirit to the so-called “local projection stabilization” schemes, please
see [2, 3] and references therein. Similar idea of this projection-based operator has
also been used in the virtual element methods [4]. By a unified choice of the damp-
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ing coefficients, the damping term would be small when the numerical solution stays
smooth, and takes effect near the discontinuity. To be more specific, this approach
can automatically detect the intensity of the discontinuity and control the numerical
oscillation near the strong discontinuity without any problem-dependent parameters.
Theoretical analysis shows that the proposed DG scheme maintains many good prop-
erties such as conservation, L?-boundedness, and optimal error estimates, etc. For
one-dimensional linear scalar conservation laws, we also study the superconvergence
behavior using the correction function technique [11]. For two-dimensional problems,
we prove the optimal error estimates with P*-elements by using the shifting technique
[31]. Numerical evidences verify all the theoretical results, and the numerical solution
does behave non-oscillatory around the discontinuity indicating that the proposed DG
method controls spurious numerical oscillations effectively.

This paper is organized as follows. In Section 2, we propose a novel DG scheme
for solving one-dimensional scalar conservation laws. Then we show the proposed DG
scheme is conservative, L?-bounded, and has an optimal error estimation. Moreover,
with the correction function technique [11], we study the superconvergence of the
proposed DG method. In Section 3, we extend the algorithm to the multidimensional
scalar conservation laws. We also show the proposed DG scheme is conservative, L2-
bounded, and has an optimal error estimation on the uniform Cartesian meshes using
P*_elements. In Section 4, we show several numerical examples including both the
linear and nonlinear scalar problems in one and two dimensions. Concluding remarks
are given in Section 5.

2. One-dimensional scalar conservation laws. In this section, we propose
a new DG scheme for solving the one-dimensional hyperbolic conservation laws. As
we shall see later, the proposed DG scheme is based on the classic DG methods, with
an extra damping term in it. It not only possesses the property of conservation, but
also maintains the L2-boundedness, the optimal error estimates and superconvergence
result analogous to the classic DG schemes.

2.1. Scheme formulation. In this subsection, we first take a brief review of
the classic DG method for solving the one-dimensional scalar conservation laws in the
following

@2.1) {ut Ff)e=0,  (x.) € (a,b) x (0,T],

u(z,0) = up(x), x € (a,b)
with periodic or compactly supported boundary conditions. Throughout this paper,
we consider the problems with the periodic or the compactly supported boundary con-
ditions only, while it can be generalized to problems with inflow boundary conditions
without any difficulty.

Take partition of (a,b) into N cells, and we then have
(22) a=wy<zy < o <ay=bhy=wg-a, L= (v 1,0).
We also assume that the mesh is quasi-uniform, i.e. there exists a constant v > 0

such that

(2.3) h<vp, h=maxh;, p=minh;.
J j

The standard semi-discrete DG scheme is as follows: Find u§ (-,t) € V}* such that

(2.4) /1 (uf)vp, da = /1 f(uf)(vp) g do — fH%(Uh)j_Jr% + fj_%(vh);;%, Yoy € th7

J
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+
it
or the Lax-Friedrichs flux, etc. The finite element space V;* is defined as follows

(2.5) V= {ve L*(a,b]): o[y, € PA(I;), j=1,...,N},

where (vp,) =y, (:zril) and fj+% is the monotone flux, such as the Godunov flux
2

where PF(I ;) denotes the set of all polynomials of degree not greater than & on I;.
It is widely known that the DG scheme (2.4) possesses many good properties and
we present them as follows. When v, = 1 in (2.4) and sum it over j, we have the
conservation given by

d (b
a/ uj(z,t)de =0.

Also, take v, = u§ in (2.4) and sum it over j, then we obtain the L2-stability of the
scheme (2.4):

1d (b .
(2.7) 5@/ (uf)? do = — Z ©j+1>
@ J

where O ; 418 defined as
Jt3

(2.6)

(ui);+1 N

— 2 - +

28) Oy = [ (1) F(h)7, o ) )y 2 0.

hit+g

For the linear case f(u) = au, a is a constant and the upwind numerical fluxes are
adopted in (2.4). If the exact solution stays smooth, we then have the following
optimal error estimates:

(2'9) Hu(vt) - UZ(, t)” 5 hk+1 )

where || - || is the standard L? norm on (a,b), and A < B means that there exists a
constant ¢y > 0 independent of h such that A < ¢y B. For more details, we refer the
readers to e.g. [35] and the references therein. Furthermore, the authors in [12, 11]
obtained the superconvergence result between the projection of the exact solution and
the numerical solution for the DG scheme (2.4). With these good properties, the DG
scheme (2.4) works very well in computing the hyperbolic conservation laws. It not
only maintains high order accuracy in the smooth region, but also captures discon-
tinuities (especially weak discontinuities) well. However, it generates some spurious
oscillations near the discontinuity, which makes the scheme less robust. To overcome
this difficulty, many limiters have been developed to control spurious oscillations,
such as the minmod type total variation diminishing (TVD) limiter, total variation
bounded (TVB) limiter and weighted essentially non-oscillatory (WENO) limiter, etc.
See [35, 44] and the references therein. Now we proceed to construct a DG scheme for
solving (2.1) that possesses the above good properties, and also controls spurious os-
cillations automatically. The new DG scheme is defined as follows: Find uy(-,t) € Vi
such that

C

1
2 J—3

/Ij (up)iop de = /Ij fun)(vp)q do — fj+%(vh)j_+% + fj_

(2.10)

|

>

J I

k
— Z % / (uh — Pl_luh)vh dr, Yo € th ,
1=0 I
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where P,ll, I > 0, is the standard L? projection into V,i, that is, for any function w,
Plw € V! satisfies

(2.11) / (Plw — w)vp de =0, Yo, € P(IL;).
I

We also define P, ' = P{. Particularly, PYw = (@); on I;, where (@); denotes the
cell average of w on I;. aé > 0 has to be chosen carefully so that they are small in
smooth region, and becomes large near discontinuities. In this paper, they are taken
as follows.

l 1
(212) l72(2l+1)h 2 2 )2, L

R e (CAD PR CATY

where [v];, 1 = v(x;r%) - v(x;r%) denotes the jump of v at x = x;, 1.

REMARK 2.1. It is widely known the first order monotone scheme possesses many
good properties such as TVD, monotonicity-preserving, and convergent to the entropy
solution, etc. Intuitively, the mechanism of controlling the spurious oscillations can
be explained as follows. As the damping coefficients in (2.12) are large, the high
frequency waves are damped out as time evolves, then the DG scheme (2.10) behaves
as the first order scheme near the discontinuity.

2.2. Conservation, L’-boundedness and optimal error estimates.
2.2.1. Conservation. Take v, = 1 in (2.10), we have

k
d ; ; o -1
T up de = — j+%+ j_é_zh_j'/].(Uh_Ph uh)dx

Sum it over j, with the periodic or the compactly supported boundary conditions,
and we obtain the conservation result similar to (2.6).

2.2.2. L2?-boundedness. Take v, = uy in (2.10) and sum it over j, and we have

1d [° ko1
5@ ('Uzh)zd(b: _ZG”%_ZZ%/ (uh_P}lliluh)UhdiC
“ J i oi=0 771
k Ul» )
:‘ZGJ‘%—ZZ#/ (un = Py~ un) " de <0,
J j o1=0 17

where © 1 is defined in (2.8). Then we obtain [[us (-, ?)[| < [Jun (-, 0)]| -

2.2.3. A priori error estimates. We present the a priori error estimates for
the linear scalar conservation laws with f(u) = au. Without loss of generality, we
assume a = 1. We take the upwind fluxes fj+% = (uh);r% in (2.10). For the classic DG
method, the optimal error estimate is obtained thanks to the Gauss-Radau projection
[35]. While in our method, there is an extra damping term that needs to be estimated.
We now introduce some inverse inequalities [14] as follows: For wy, € V}¥, there exists
a positive constant C' independent of wj, and h such that

(2.13) 10swnl < Ch™Hwnll;  Nlwnllze < OBV jwn].
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We now proceed to obtain the error estimate of the numerical solution generated by
the semi-discrete DG scheme (2.10), stated in the following theorem.

THEOREM 2.1. For any given integer k > 1, suppose u(-,t) € H**'([a,b]) is
the exact solution of the problem (2.1) with the linear flux f(u) = uw and uy, is the
numerical solution of DG scheme (2.10). The initial data is chosen by up(x,0) =
P}lfuo, where P}lf is the standard L? projection defined in (2.11), then we have

(2.14) lu(-,t) —un(-, t)|| < RrHL.

For the exact solution u to (2.1), we have

(2.15) / wvp dx + Bj(u,v,) =0, VYo, € th ,
L

where B; is defined as

(2.16) Bj(w,vp,) = _/1 w (vp), de + w;r%(vh);% —w L)t

Subtracting (2.10) from (2.15), we have
k
o

l.
(2.17) / ey dx + Bj(e,vp) = Z h_J / (uh — P,lfluh)vh dx, Yu, € th,
Ij 1=0 J Ij

where e = u — up. Denote e = § —n, £ = P, u—wup, n = P, u—u, and P, is the
Gauss-Radau projection defined as follows. For any function w, P, w € Vi such that

(2.18) / (P, w—w)vpdr =0, Yu, € PF71(I),
2.18 I

Pru(e, ) = wleye)
If the function w € H**([a,b]), then we have the following approximation properties

(219) WL w —w)| + AL (Pyw — w) 2,y S HHFYL 1=0,.k

) 3

1
where [|w|p2r,) = (Z ((wJ,r 7)2 + (w;+l)2>>2. Then for Vv, € V¥, the error
2

equation (2.17) becomes

k O’Z-
/I.gtvhderBj(g,vh)JrZh—?/l_ (€ — PI7'¢) vy dr
(2.20) ! =0

/ntvhd:v—i—B(n,vh +Z / P u—Pil(P u))vhdx
I I

J

With the definition of the projection P, we have Bj(n,v,) = 0. Taking v, = & in
(2.20) and summing it over j, we then have

(2.21) 2dt/§2d + = Z[[&]]+1+ijzh / (6= Pe) de= Ay + A,
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where Aj, As are given as
ko1
Ay = Z/ médr, Ay =>">" h_ﬂ/ (Ph_u— P,i—l(P,;u))gdx.

- I. -

J J 7 =0 ]
For A, we have
(2.22) [Ar] S RMHHE]
For As, on I; we have

[P u =P (B[ oy

(2.23) <N Pru=ull o,y + 1w = Byl gy + 1P = Pra)l o

< pmex LD+ l =0,....k.
and with the definition of aj- in (2.12) we have

21
(o7 = T (10t — )y + [0 — )

ghﬂ([[al &3y +[05€03, )+h21([[a;n]]§, + 003, )

(2.24)

By Cauchy-Schwarz inequality and inverse inequality (2.13), (2.23) and (2.24), we
then have

A2 < Zi %HP}L_U - P}i_l(Ph_u)HLz(]j)”g”LZ(Ij)
2
S Zzhmax (=33 “([[8;5]]2.7% + ﬂ3i§]]§+%>%||§||w(1j)
J
+Zzhmdx =0 ([l + 042, Eloea)
J
<(z lz;h”[[aiﬂ]iﬁ)éhé el + (30 Sl ) ni el
J = J

=0

(2.25)

SIENP + n2*+2.

In the last inequality of (2.25) we have used the following facts by (2.13) and (2.19)
k k ) )
275l £72 21 pae Ly —
Z ;h Haﬂﬂﬂ]ﬁ% S Z ;h ((((%Oﬂ%) + ((815)#%) )
il= il=

k

(2.26) ShY RMake? S hTHER,
=0
k

5SSty £ S () + (o)) £

1=0 7
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Now we plug (2.22) and (2.25) into (2.20), and obtain

(2.27) 2dt/ Edut 5 ZMLIJFZZ / “RTY
! J
S €l + r2*+2.

With the Gronwall’s inequality, namely supposing %y(t) < ay(t) +b(t), then we have

(2.28) y(t) < e*y(0) —i—/o e“(t_r)b(r) dr,

we can obtain ||£(-, 1) < [1€(+,0)]| + R¥TL. We could take the standard L? projection
of the initial condition such that ||(-,0)| < h**L, together with the approximation
properties (2.19), to obtain the error estimates |le|| < [|£]| + ||| < RFF.

2.3. Superconvergence. In the past few years, there has been considerable
interest in studying the superconvergence properties of the DG methods. We refer to
[13] for one-dimensional hyperbolic conservation laws and time-dependent convection-
diffusion equations, for which the authors obtained the (k + 1/2)-th superconvergence
rate between the numerical solution and the Gauss-Radau projection of the exact
solution by taking special test functions. Later, Yang and Shu in [42] obtained a
(k + 2)-th superconvergence rate of the DG approximation at the right Radau points
when upwind fluxes were used. In 2014, Cao et al. [11] introduced an approach
to study the superconvergence of the DG methods for linear hyperbolic equations.
They constructed a suitable correction function to correct the error between the exact
solution and its special projection to obtain the optimal (2k + 1)-th superconvergence
rate at the downwind points. Later, this technique is developed to study other kinds
of DG methods, such as the local DG method, the direct DG method, the energy-
conserving DG method and the ultra-weak local DG method, ete. [7, 8, 9, 6, 10, 30, 32].
For other superconvergence results of DG methods in 2D or 3D, we refer to [1, 39].
Superconvergence results are foundations of designing trouble cell indicators such as
the KXRCF trouble cell indicator [29], which is a key point for adaptive DG schemes.
Thus, we are also very interested in studying the superconvergence properties of the
newly proposed DG method. Now we continue to derive a superconvergence result
for the DG scheme (2.10), stated in the following theorem.

THEOREM 2.2. For any given integer k > 1, suppose u(-,t) € H**3([a,b]) is
the exact solution of the problem (2.1) with the linear flur f(u) = u and uyp, is the
numerical solution of DG scheme (2.10). The initial data is chosen by up(x,0) =
P, ug, then we have

(2.29) |un — Py ul| S HFF2.
To obtain the above superconvergence of the DG scheme, we firstly need to estimate
&:. Indeed, we have the following lemma.

LEMMA 2.1. For the DG scheme (2.10), we have the error estimate of & that
(2.30) &0 S RAFL

The proof of Lemma 2.1 is given in the Appendix; see Section 6.1.
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In light of the error estimate of £, with (2.24) and (2.26) we then have

k =
(2.31) (ZZ |a§.|2)é < pits
J 1=0

In the proof of Lemma 2.1 in the Appendix, we also have the estimate for (oé)t. A
similar derivation gives us the following estimation from (6.5) and (2.30).

k 1
(2.32) (ZZKUé')tF)Z < Bt
j 1=0

Next we define the correction function to improve the estimate for &: For any j, find
the correction function w € P¥(I;) such that

/ w (vp)e dr = L(vy)j, Yo, € PH(I),
(2.33) 1
=0,

+2

where L(vy,); is given as

k Ul-
L(vn); = /1 neon da + > o /1 (P,;u - P,i*l(P,;u))uh dz.
1=0 7 74

J

Then from the definition of Bj(-,-) in (2.16), we obtain B;(w,v,) = —L(vy);. By
(2.19) and Cauchy-Schwarz inequality, we have

k
1 2\ ?
(2.34) |L(Uh)j‘ S H77t|\L2(1j)HUhHL2(1j) +hz (Z |0'H ) ||Uh|\L2(1j)-
1=0

Thus, for the correction function w we have the following estimation.
LEMMA 2.2. The correction function w is well defined by (2.33) and has the
following estimation

lollzeyy < hlmlloes, +h2(2|ol|2)
2 3 k 2 3
3 3
lwrllzay) S b Imullzac,y + 3 (Z!oﬂ ) h (z;@.)t, )
=0

=0

(2.35)

The proof of Lemma 2.2 is given in the Appendix; see Section 6.2.

Therefore, with the aid of the correction function w, we are able to improve the
convergence order in the estimate of £. We add the function w to both sides of the
error equation (2.20) and obtain

E

l

/I(f—f—w)tvhd:C—I—Bj(f—i—w,vh)—i—zh—J/ (f—i—w_P]lI—l(g_yw))vhdx

J =0

a

IQN

k
= /; (w)tvh dx + Bj(wvvh) + Z
l

j —o 'l

/ (w — P,ll_lw)vh dx
I

>

[
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/ntvhdw-i-z /1 P u— PN (P u))vhdac

l

:/(w)tvhdac—/ w(vp)z d:v—l—z J/ w Pl ! vhd:v
I I

J I J

+/ ntvhdx—i—z%/ (P,:u—P]l;l(Ph*u))vhd:E
1=0 J JIj

L

_ /Iv(w)tvhd:v—i—iz—é_/lv (w — P w)vy, da
(2.36) (h|mt||m<z>+h2(;\%\) (Z! ) )uvhm
(Zm) fonllzacry-

Here we have used the definition of the correction function w (2.33) in the second and
third equalities in (2.36). Take v, = £ + w in (2.36), by the stability analysis and
Cauchy-Schwarz inequality, we obtain

e+ wl?

(2.37) k

§<hlnttll+h%(zzk:\ >%+h%<22\<0§>42> e+l

=0 j =0

j
This, together with (2.31) and (2.32), leads to

=

2.38 — < A2
(2:38) L+l 2

Thus, we have

(2.39) €l < 1€ +wl + Jwl| S hF*2.

Therefore, we obtain (k + 2)-th order superconvergence result.
As a direct consequence of Theorem 2.2, we have the following superconvergence
results of the fluxes, the cell averages and errors at Gauss-Radau points, respectively.
COROLLARY 2.1. For any given integer k > 1, suppose u(-,t) € H**3([a,b]) is
the the exact solution of the problem (2.1) for the linear case f(u) = u and uyp, is
the approzimation of the DG scheme (2.10). The initial discretization is chosen by
up(x,0) = Py uo, then we have

(2.40) Cue S eny SH2 ey, S HFTE

where €y c, €y,r and ey, are given as

o= (2 (5 f - miw)’)

1
Cu,f = (NZ (uj+; (uh)]+ )2) eup = max’ u—uh)(Gj,g)’,

X J,t
J

(2.41)

=
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where G ¢ are the right Gauss-Radau points on the subinterval I;. We provide the
proof of Corollary 2.1 in the Appendix; see Section 6.3.

REMARK 2.2. In [/3], the authors developed a mazimum-principle-satisfying lim-
iter for the finite volume methods and the discontinuous Galerkin methods, which
solved the hyperbolic conservation laws successfully. The essence of the limiter is to
keep the cell averages of the numerical solution within the range. As long as the cell
averages stay in the range, a compression technique is performed to the numerical
solution such that all quadrature points are confined in that range. Since the high
order approximation for the cell averages can be written as a convexr combination of
several first order monotone schemes, the cell averages would stay in the range under
a suitable CFL condition in one step Euler forward. We remark that the new DG
scheme (2.10) is compatible with the mazimum-principle-satisfying limiter, and the
damping term does not bring any troubles when applying the limiter to the schemes.

REMARK 2.3. In [11], the authors obtained the optimal (2k + 1)-th superconver-
gence rates for numerical fluzes and cell averages. Since the Gauss-Radau projection is
orthogonal to the polynomials of degree k—1, the authors then constructed k correction
functions to improve the errors between the numerical solution and the Gauss-Radau
projection of the exact solution up to (2k + 1)-th order. However, in our method the
additional term wvanishes only for vy, = 1, thus the correction function w defined in
(2.33) has no more orthogonality. Therefore, we can only obtain (k 4 2)-th super-
convergence rate and numerical ezamples also confirm that our theoretical analysis is
sharp, please see Section 4.

3. Multidimensional scalar problems. In this section, we extend the one-
dimensional DG scheme (2.10) to the scalar hyperbolic conservation laws in multidi-
mensions. We also show that the proposed DG scheme is conservative, L2-bounded,
and has an optimal error estimation using P*-elements.

3.1. Scheme formulation. The governing equation is given as follows

(3.1) {ut +Vfw) =0, (1) €Qx(0,T],

u(z,0) = up(x), ze)

with periodic or compactly supported boundary conditions. The domain €2 is bounded
in R and = (21,...,24) € R% Assume we have the partition 75 of Q and Ty, is
regular. We still adopt the notations similar as in Section 2 without causing any
ambiguities.

h = max hg, hxg = diam K, p = min pg
KeT, ) ap K€7—hp )

pk is the diameter of the sphere inscribed in K. The DG scheme for (3.1) is presented
as follows: Find uy(-,t) € V;¥ such that

/ (uh)tvh dx = / f(uh) -V, de + f(uh) “mngvpdS
(32) K K i OK

l
g _
_ _K/ (un — P lup)on dee, Vo € Vi,
= h Ik

o~

where f(up) is taken as the monotone flux on the element interfaces, and ng is
the outward unit normal respect to 0K. Vh’C is the finite element space containing
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piecewise polynomials of degree not greater than k, with no continuity assumed across
the interface of the elements in Ty, i.e.

(3.3) ViE={ve L*(Q) :v|x € P*(K), VK <cT,}.

P,ll is the standard L? projection into V,f, [ > 0 and we define P, - PY. The damping
coefficients o, are given as follows.

2(21+1) 2\ 2
I
e Z( v 2 (rul,)) ke
=l vEK
where the vector a = (a1, ..., aq) is the multi-index of order
o = on + -+ o,

and 0%w is defined as

N, is the number of edges of the element K and v € K are the vertices of K. [[w]]|v
denotes the jump of the function w on the vertex v. It should be noted that w may
have several jumps on the vertex v, and we only compute the jump between the
element K and its adjacent neighbors. More specifically, we take the two-dimensional
case as an illustration example in the following.

Fia. 3.1. Graph for the illustration of the jumps in O'lK defined in (3.4).

In Figure 3.1, we consider the jump of the function w on the vertex v € K. The
element K has three edges thus N, = 3. The adjacent neighbors of element K are
K, Ky, K3, then we define

(0wll,)” = [l = wlx)? + (wlk — wle)?)]

Note that we do not take the elements K4, K5, K¢ into consideration, though we still
have jumps between the element K and them on the vertex v.

3.2. Conservation, L’-boundedness and optimal error estimates.
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3.2.1. Conservation. Take v, = 1 in (3.2), we have

k
d ~ ol
— up, de = flup) ngdS — E —K/ up, — Py, dx,
dt Jx oK (un) gt hi K( h )

~

= f(up) -ngdS.
oK

Take summation over K € Ty, with the periodic or the compactly supported boundary
conditions, and we obtain the following conservation result for the DG scheme (3.2).

d
T Z /Kuhdw—o.

KeTy

3.2.2. L2%-boundedness. Taking v, = uy in (3.2), we have

1d [,
55‘/Kuhdw—/Kf(uh)-Vuhdw

ko1
~ o _
+ f(uh)-nKuhdS— E h—K/ (uh—P,i 1uh)2d:c
oK = i JK

Take summation over K € Ty, with the periodic or the compactly supported boundary
conditions, and we obtain the L? stability result if the monotone numerical flux is
used on the element interface.

d 2
(3.5) o > /Kuhdmgo.

KeTh

Then it indicates ||up (-, )| is bounded by |lup(-,0)].

3.2.3. A priori error estimates. In the following we proceed to derive the a
priori error estimates for the DG scheme (3.2). As is well known, for multidimensional
Cartesian meshes, the optimal results are usually based on using Q*-elements, namely
the space of tensor-product polynomials of degree at most k in each variable. Recently,
in [31] the authors developed a shifting technique to construct a special projection
to obtain the optimal error estimates for the P* space. We continue to use this
technique to study the optimal error estimates for our DG method. Now we also
consider the two-dimensional linear equation and assume that f(u) = (u,u) without
loss of generality. Due to technical reasons, we study the error estimates on the
uniform Cartesian meshes. Though we consider the two-dimensional problem in this
section, the analysis can be extended to the higher dimensional cases d > 2 without
any difficulties. We now have the following error estimation of the DG scheme (3.2)
for two-dimensional linear hyperbolic conservation laws.

THEOREM 3.1. For any given integer k > 1, suppose u(-,t) € H*2(Q) is the
exact solution of the problem (3.1) with the linear fluz f(u) = (u,u) and uyp, is the
numerical solution of DG scheme (3.2) with uniform meshes. The initial data is
chosen by up(x,0) = P,’fuo, where P}lf is the standard L* projection, then we have

(3.6) lu(,t) —un(-,t)]| £ RrHL.
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Before we proceed, we introduce some notations for convenience. Denote

Kij=1;xJj, Li=(xi_y,201),Jj= (U-1:941), i=1,.. . Noy j=1,...,Ny.

2

Let hl = Tyt =T, hi =Yjpr — Y1 Since we have the assumption that the
mesh is uniform in each direction, we denote h, = hi, hy, = hJ and h; ; = \/h2 + h2,

Vi, and h = max(hg, hy). Similar to the one-dimensional case, we adopt the upwind
numerical flux in the DG scheme (3.2). First we rewrite the DG scheme (3.2) into the
following form.

(3.7) /K

where B; ;(-,-) is given as

a

l
Ky / (uh — P}ll_luh)vh dxdy =0,
i JK;

k
(un)tvn dedy 4 Bj j(un, vn) + Z o
=0 '

@3

Eiyj (w,vp) = — / w(vp)e +w (vh)y dxdy
K

(¥

(3.8) +/1 w(x,y;r%)vh(a:,y;r%) —w(a:,y.i )vh(a:,y;i%)dx

i

+ [ ol ol wla )o@ y0) v

. 2
)

Since the exact solution u also satisfies

/ ugvy, drdy + EU (u,vp) =0, Yo, € V¥,
K

(2%

we then immediately obtain the error equation as follows.

/ (u—up)ion da:dy—kéi,j(u—uh,vh)

Ki,j

(39) .

— Z &/ (un — P}lfluh)vh dedy =0, Yo, € ViE.
K

-0 hi,j i

Next, we introduce a special projection constructed in [31], which is crucial in the
derivation of the error estimates. We denote the projection as P*, and for each K ;,
find P*w(z,y) € P*(K; ;) such that

(3.10) /K

Fh(]?*wavh)i,j = ﬁ;(wavh)i,ja Yoy, € PH(K; ),

Prw(z,y) dedy = / w(z,y)dzdy,
Ki’]‘

where ?h(w, vp)i,; is defined as follows

Puw.ns = [

Ki j

(3.11) —/ w(a:,y;r%)(vh(x,y;r%) —vh(a:,y;i%)) dx

I;

_/J w(:v;l,y)(vh(x;%,y)—vh(x;%,y)) dy.

. 2
)

(w (vp)g +w (vh)y) dxdy
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It has already been shown that the projection P* is well-defined in [31], and it also
has the optimal approximation error estimates for a smooth function w as follows

(3.12) lw —P*wll L2k, ) S P [wllkgr s

We now take

(3.13) E=Pu—up, n=Pu—u

Then for the error equation (3.9), we take the summation over ¢, j and obtain

(3.14)
; /lﬂ ’. &op dady + Z EU (&, vn)

+ ZZ /K { Pl 1§)Uh drdy = By(vp) + Ba(vs), Vv, € ViF,

3,5 1=0

where B; and By are defined as

Bi(vp) = Z /K neon dudy + Y Bi j(n, v),
— JK.; >
2(vn) Z Z / - P! (P*u))vp, dudy .

2,7 1=0
For the left-hand side of (3.14), we take v, = £ and use the stability result to obtain

Z/ §t£dxdy+ZB,J£§ +ZZ /K — PI7e) e drdy

7]l0

615) =l + Z/ G[CY) Z/ I(e,5+4)) do
ll
+ZZ /K - P, )dxdy,

1,7 1=0

where [¢] (xH%,y) = 5(“7;;%’?%) _5(“71';%79)’ [€] (I’yﬂ%) = 5(“7’34;%) _5(“7’?4];%)-
In [31], we have

(3.16) Bi1(€) < h** 2 |lull s + [1€]17

For By(£), we have the fact that

(3.17) [P*u — P (P || ok, ) S B2 BEDTL 1= 0,0k
and with the definition of UlKi,j in (3.4), we have

2 4(20+1)% p? 1 o N 2
> (ok.,) :ZWW 2, (E > ([[6 up — 0 u]]\v)>

i,j veK; ;

N Z Z Z ([[3"‘ .t [[8“77]]2!,,) < B2 + h2E.

ij |e=l eveK”

(3.18)
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For the last inequality, we have used the inverse inequality, Theorem 3.2.6. in [14].
Therefore, by the Cauchy-Schwarz inequality we have

Kz *
<ZZ e, S IIP*u—Pl L) Re ) + 1IENP
i, 1=0

(3.19) 2

<ZZ W il pamastorie o e < 1 1 e
4,5 1=0

Plug (3.15), (3.16) and (3.19) into (3.9), we then obtain

(3.20) L ez < h2+2 4 e

2dt

Again Gronwall’s inequality (2.28), together with the initial discretization, gives us
the desired optimal error estimates.

4. Numerical tests. In this section, we present some numerical results to val-
idate our theoretical results in both one- and two-dimensions. We adopt the classic
fourth order Runge-Kutta method as our time stepping method for most cases in this
section unless otherwise indicated. The CFL condition is 7 = O(h), where 7 and h
are temporal step size and spatial step size, respectively.

4.1. One-dimensional problems. In this subsection, we present the numer-
ical examples of one-dimensional problems. For the linear scalar problems, we use
the ninth order strong stability preserving (SSP) Runge-Kutta method. To see the
convergence behavior of the DG method, we use the nonuniform mesh and it is 10%
random perturbation of the uniform mesh. For the nonlinear scalar problems, we just
use the uniform Cartesian mesh for convenience. In the plots, the solid line in black
is the reference solution, and the numerical solution is shown with the red circles.

EXAMPLE 1. Consider the linear scalar conservation laws that f(u) = wu in (2.1).
We consider two initial conditions:

(a) The smooth case: ug(z) = sin(2rz)?, z € (0,1).
(b) The non-smooth case:

(2) = sin(2rx), 0.3 <2 <0.8,
oLt = cos(2mz) — 0.5, otherwise.

For both cases, the domain is (0,1) and the final time is T = 1.1.

In Table 4.1, We show the errors and convergence orders of ||u—upl|, [Ju—wug ], [|€]|
and ey, ¢, €y, f, €y p defined in (2.41) in Example 1, where u§, is the numerical solution of
the classic DG scheme (2.4). As the mesh refines, the error between uj, and u§ is close
indicating that the damping term becomes smaller on refined mesh when the exact
solution stays smooth. Also, we can see the convergence orders of |[£|], €u,c; €u, £ €u,p
coincide well with the theoretical results and ||£]| is dominant in ||u—wuy|| on the coarse
mesh for short time simulation. In Figure 4.2, we show the numerical solution of the
mesh N = 256. We can see the shock discontinuity is well captured and the shock
transition becomes sharper as we increase the degree of polynomials k, and spurious
oscillations are eliminated effectively.

EXAMPLE 2. Consider the Burgers’ equation that f(u) = u?/2 in (2.1). The
initial condition is up(x) = sin(z) + 0.5, x € (0,27). We choose different final time
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TABLE 4.1
Errors and convergence orders of ||u — upl|, ||u —ulll, €|, eu,c, €u,r, and ewp, with initial
condition (a) in Example 1.

‘ N lu —up||  order | [Ju—wuj| order [H]] order Cuc order Cuy order Cup order
16 1.482E-01 - 3.326E-02 - 1.478E-01 - 1.435E-01 -~ 1.486E-01 -~ 2.134E-01 -
32 3.022E-02  2.258 | 5.291E-03 2.579 || 2.999E-02 2.523 | 2.961E-02 2.307 | 2.992E-02 2.492 | 5.005E-02 2.056
pl 64 || 4.950E-03 2.821 | 1.012E-03 2.479 || 4.864E-03 2.628 | 4.815E-03 2.665 | 4.852E-03 2.544 | 8.624E-03 2.528
128 || 7.495E-04 2.632 | 2.233E-04 2.219 || 7.206E-04 2.808 | 7.153E-04 2.792 | 7.191E-04 2.776 | 1.177E-03 2.763
256 || 1.100E-04 2.862 | 5.402E-05 1.997 || 9.590E-05 2.877 | 9.607E-05 2.939 | 9.617E-05 2.882 | 1.495E-04 3.107
512 || 1.820E-05 2.602 | 1.344E-05 1.995 || 1.236E-05 3.012 | 1.235E-05 2.986 | 1.236E-05 3.057 | 1.875E-05 3.021
16 1.204E-02 9.244E-04 1.220E-02 1.173E-02 1.297E-02 1.621E-02
32 T.979E-04 4.053 | 1.134E-04 3.063 || 7.847E-04 3.980 | 7.675E-04 3.892 | 7.939E-04 4.035 | 1.171E-03 3.971
p2 64 || 4.896E-05 4.045 | 1.422E-05 3.143 || 4.673E-05 4.162 | 4.747TE-05 4.178 | 4.731E-05 3.973 | 6.854E-05 4.168
128 || 3.37T4E-06 3.944 | 1.761E-06 2.953 || 2.801E-06 4.092 | 2.812E-06 4.118 | 2.812E-06 4.212 | 4.122E-06 4.091
256 || 2.796E-07 3.564 | 2.188E-07 3.045 || 1.701E-07 4.070 | 1.701E-07 4.049 | 1.697E-07 3.949 | 2.536E-07 4.050
512 || 2.953E-08 3.285 | 2.748E-08 3.021 || 1.055E-08 4.034 | 1.056E-08 4.055 | 1.057E-08 4.132 | 1.557E-08 4.001
16 7.309E-04 4.516E-05 7.253E-04 6.687E-04 7.022E-04 1.309E-03
32 || 2.565E-05 4.875 | 2.842E-06 4.244 | 2.610E-05 5.195 | 2.435E-05 5.167 | 2.573E-05 4.922 | 4.396E-05 5.257
p3 64 || 9.014E-07 5.015 | 1.799E-07 4.046 || 8.812E-07 4.700 | 8.591E-07 4.767 | 8.783E-07 4.850 | 1.398E-06 5.063
128 || 3.089E-08 4.805 | 1.086E-08 4.074 | 2.955E-08 5.073 | 2.917E-08 5.249 | 2.890E-08 4.921 | 4.314E-08 4.952
256 || 1.148E-09 4.997 | 6.903E-10 4.031 || 9.375E-10 4.925 | 9.269E-10 4.868 | 9.323E-10 5.000 | 1.358E-09 4.990
512 || 5.243E-11 4.472 | 4.313E-11 4.021 || 2.956E-11 5.065 | 2.940E-11 5.031 | 2.964E-11 4.993 | 4.291E-11 5.080
Fi1G. 4.2.  The numerical solution with the initial condition (b) in Example 1.
1sF 1sF 1sF
o meass T s T s
1+ 1 1k
osk osf osF
s s s
ofF oF oF
osk osf osf
s iF W

(a) Pl-element. (b) P2-element. (c) P3-element.

to test our algorithm. Note that when the final time T = 0.6, the exact solution is
smooth. While if we choose the final time T = 2.2, then there is a shock developed
inside the domain.

In Example 2, the exact solution of the one-dimensional Burgers’ equation is
smooth at time 7" = 0.6. We report the errors and convergence orders in Table 4.2,
and we can see a very clean (k + 1)-th order of convergence in L', L? and L® norms.
In Figure 4.3, we plot the numerical solution at time 7" = 2.2, when there is a shock
inside the domain. We can see there are no spurious numerical oscillations near the
discontinuity, which validates the good performance of our algorithm.

4.2. Two-dimensional problems. In this subsection, we present two-dimensional
numerical examples, including the linear and nonlinear problems. For simplicity, we
adopt uniform Cartesian meshes throughout this subsection.

EXAMPLE 3. Consider the two-dimensional linear scalar conservation laws:
ur +uy +uy =0, (z,y) € (—1,1) x (—1,1)

with periodic boundary condition. We consider two initial conditions in the following.
(a) The smooth case: ug(x,y) = sin(m(z + y))2.
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TABLE 4.2

Errors and orders, and the final time T = 0.6 in Example 2.

| N || lu=unl[z:  order | lu—wupr2  order | [Ju—up|p~ order
16 1.054E-02 - 1.682E-02 - 5.511E-02 -
32 1.829E-03  2.527 | 3.122E-02  2.430 1.514E-02 1.864
pl 64 3.939E-04 2215 | 7.287E-03  2.099 | 4.128E-03 1.875
128 9.262E-05  2.088 | 1.739E-03  2.067 | 9.644E-03  2.098
256 2.218E-05 2.062 4.270E-04 2.026 2.624E-04 1.878
512 5.462E-06  2.022 | 1.068E-05  2.000 | 6.908E-05 1.926
16 1.119E-03 - 2.334E-03 - 1.080E-02 -
32 1.644E-04  2.766 | 3.914E-04  2.576 2.881E-03 1.907
P2 64 2.240E-05 2.876 | 5.808E-05 2.753 | 4.800E-04  2.586
128 2.992E-06 2.904 | 8.261E-06 2.814 7.832E-05 2.616
256 4.005E-07 2,901 | 1.173E-06 2.816 1.198E-05  2.708
512 5.375E-08  2.898 | 1.640E-07  2.839 1.712E-06  2.807
16 2.052E-04 — 5.975E-04 - 3.071E-03 -
32 1.263E-05  4.023 | 4.454E-05  3.746 3.269E-04  3.231
p3 64 6.577TE-07  4.263 | 2.573E-06 4.114 | 2.361E-05  3.792
128 3.192E-08  4.365 | 1.23TE-07 4.378 1.415E-06  4.060
256 1.577E-09  4.339 | 7.992E-09 4.385 7.992E-08  4.146
512 8.811E-11 4.162 3.097E-10 4.257 4.292E-09 4.219
Fic. 4.3. The numerical solution with final time T = 2.2 in Example 2.

s
0

L
T

L TP
z 8 4 5 6 7
x

(a) Pl-element.

(b) P2-element.

exac
nx= 256

(c) P3-element.

(b) The non-smooth case:
L,
Uo(xv y) -
0,

, when y > 0, and § = 21 — arccos
.1'2 + y2 ZC2 + y2

($2+y2)% S (3+355in9)’

| =

elsewhere,

where 0 is given as

0 = arccos , when y < 0.

We take the final time T = 1.1 for case (a) and T = 1.8 for case (b).
In Table 4.3, we show the errors and convergence orders in L', L? and L™ norms
in Example 3. We can see the convergence orders are above k+ 1 for both P'-element
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and P?-element. In Figure 4.4, we show the contours of the numerical solution and
the cuts at y = —1/4 with initial condition (b). The spurious numerical oscillations
are hardly seen in the figure and it implies the extra damping term does take effect.

TABLE 4.3
Errors and convergence orders, initial condition (a) in Example 3.

| | Nox Ny || [lu—wunllr: order | [[u—wupllpz  order | [lu—upl[L= order |
20 x 16 || 1.949E-01 - 2.171E-01 - 3.149E-01 -
40 x 32 || 5.739E-02 1.764 | 6.646E-02 1.708 | 1.050E-01  1.585
pl 80 x 64 || 9.055E-03 2.664 | 1.144E-02 2.539 | 2.185E-02  2.265
160 x 128 || 1.593E-03  2.507 | 1.838E-03 2.638 | 3.475E-03  2.653
320 x 256 || 2.299E-04  2.792 | 2.641E-04 2.799 | 5.074E-04  2.776
20 x 16 || 6.761E-02 - 7.397E-02 - 1.021E-01 -
40 x 32 || 5.936E-03  3.510 | 6.337E-03  3.545 | 1.098E-02  3.217
p2 80 x 64 || 3.846E-04 3.948 | 4.251E-04 3.898 | 9.146E-04  3.585
160 x 128 || 2.382E-05 4.013 | 2.671E-05 3.992 | 8.023E-05  3.511
320 x 256 || 1.521E-06  3.969 | 1.754E-06 3.929 | 8.050E-06  3.317
F1G. 4.4. The numerical solution with the initial condition (b) in Ezample 3.

exac
nx= 320

‘

3
k £

of | W

r L L s 1 L )
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exac
nx= 320

ofF Qe—

L L s 1 s '
45 El 05 [ 05 1 15
x

(d) The cut at y = —1/4 of (c)

(c) P2-element

EXAMPLE 4. We consider two-dimensional Burgers’ equation

u? u?
= —) =0
e (5).4(5),=0

We consider two cases in the following.

(x,y) € Q.
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(a) The initial condition is ug(x,y) = sin(w(z +y)) and periodic boundary condition.
The computational domain is @ = (0,27) x (0,27), and we take the final time
that T = 0.8.

(b) Riemann problem [2/] The computational domain is Q = (0,1) x (0,1) and the
final time is T = 0.5.

In Figure 4.5, the shock is developed inside the domain and we can see the shock
is well captured by the DG scheme and there are no spurious oscillations from the cut
figures at y = 37/4. In Figure 4.6, we plot the numerical solution for the Riemann
problem. From the figures we can see no spurious oscillations near the discontinuity,
and it again indicates that our algorithm is capable of treating spurious oscillations.

Fic. 4.5.  Plots of the numerical solution with initial condition (a) in Example 4. Ny =
320, Ny = 256. The final time is T = 0.8.
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(a) P'-element (b) The cut at y = 37/4 of (a)
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(c) P2-element (d) The cut at y = 3w/4 of (c)

5. Concluding remarks. In this paper, we propose a new DG formulation for
solving scalar hyperbolic conservation laws. Since the classic DG method would gen-
erate spurious oscillations that make the scheme less robust, our aim is to control
spurious numerical oscillations near the discontinuities. By carefully introducing an
extra damping term in the classic DG methods, we show that the new DG formula-
tion still possesses many good properties such as conservation, L?-boundedness, and
optimal error estimates. In particular, for one-dimensional linear scalar conservation
laws, with the correction function technique [11] we show the numerical solution still
has the superconvergence behavior analogous to that of the classic DG schemes. In
two-dimensional problems, we prove the optimal error estimates with P¥-elements by
using the so-called shifting technique [31]. We provide several numerical examples in
both linear and nonlinear, one- and two-dimensional cases, to show the robustness
and effectiveness of the newly proposed DG method. Our next work is to extend the
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Fic. 4.6.  Plots of the numerical solution with initial condition (b) in Example 4. Ny =
256, Ny = 256. The final time is T' = 0.5.
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(a) P'-element (b) The cut along the diagonal line (1,0) -
(0,1) of (a)
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(c) P2-element (d) The cut along the diagonal line (1,0) -
(0,1) of (c)

current framework to systems, such as the inviscid compressible Euler equations. Be-
sides, the choice of the damping term is obviously not unique and current definition
has an influence on the convergence order for smooth problems on coarse meshes.
Thus, to optimize the damping term so as to reduce its effect in the smooth region
also constitutes our future work.

6. Appendix: Proofs of some lemmas and propositions. In this section,
we give the proofs of some lemmas used in the paper.

6.1. Proof of Lemma 2.1. Since o', is not differentiable at ([[Biuh]]j+%, [[(%uh]]j_%) =

(0,0), we would like to proceed our proof by (0. )% instead of o', that

2(20+1) B! 3
<a€>;:ﬁﬂ(ﬂa;uh]]§+é+[[a;uh]]§_§+g2) L 0<e< B
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With this new (as)é-, we then take the derivative of the error equation (2.20) with
respect to ¢t and Yy, € Vi¥ we have

/§ v dx + B (€ vh)—l—i(oa)é/ (& —Pl_lﬁ)vhd:v
. tt 5 (St 2 ), t— b &

(Ua)l‘

J /1 ((Ph_u)t — P,ll_l(Ph_u)t)vh dx

), ([ e mreumars [ (=i o).

=0 J J Ij

1;

k
(6.1) = / Ny vy, dx + Bj(ne, vp) + Z
1=0

k

Taking v, = & in (6.1) and summing it over j, we obtain

4

2dt/ Gdet g Zﬂgt +1+zj:z / = Pla) e =3 A

s=1

where Ay, As, A3, Ay are given as

k
A1:Z/ Utt{tdi?, AQZZZ(
i 7 i 1=0

(;Z)é /Ij ((P;ZU)t - P,lfl(P,;u)t)gt da,

(05)5‘ 1
A=-33 : hj) /(e Fgar
A4—Zi /(Ph_u—P,i_l(Ph_u))gtdx.

For A, we immediately have
(6.3) Ar S G
For Aj, on I; we have

[Py u)e = Py (P e o

<Py = will gy + 1w = P vl oy + 1207 (0 = Pl ey

< hmax(l,l)Jr%, 1=1 k.

geeey

Then with the estimate of aé in (2.24), we can obtain

(6.4) A2<ZZ ﬂ||Pu — PP o M6l ny S (BFF )l
J

For Az, we should estimate ((0:)}), firstly. In fact, we have

l
()=o) T () () + ()
) <2 (b = 02 + b= 0

SR, + aly) " + 0t (10l + [OhnIy )’
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Note that for 0 < e < h**+1 we still have [|£(-,¢)|| < h*+L. Then we have the following
estimate for As.

A3<Z Zhl([[algt R A )Hg s PN A P

1
+Z Zhl( 7715 J+1 +|I int]]?_%)2Hg_Pilzilgulp(]j)H§t||L2(Ij)

Jzo

6.6
(6.6) <thZhl([[8l§t]]2+1+[[3l€t]]J,_) I€ell 221,y

J 1=0

1
+hkzzhl( 7e] ;+1 +1 alc”t]]i%)QH&HB(zj)
j

SEFTE&)? + R R
For Ay, we have || P, u— P, (P, u) HL2 L) S < pmax(+3.2) then with (6.5) we have

(6.7) As S &N +hM gl
Plug (6.3), (6.4), (6.6) and (6.7) into (6.2), then we obtain

(6.8) 2dt/ §dot 3 Z[[&]]ﬁw%ji /1 & - Pllg)?

S &l + (A5 +e)ll&d -
With the Gronwall’s inequality, we obtain
(6.9) €07 S 1€ 0)1P + (B + ).

Let € — 07 in (6.9), then the result still holds true. To bound [|&(-,0)||, we take the
initial condition uy(x,0) = P, ug such that £(z,0) =0, V& € [a,b] and we take t =0
in the error equation (2.20), then ¥ vy, € V;* we have

& (z,0)vp do = / ne (2, 0)vp, da
I; I;
(6.10) .

ol
=+ Z h—] / (P,;uo - P}lfl(P,;uODvh dx .
1=0 "7 1

Take vy, = &(2,0) in (6.10) and sum it over j, we then obtain

b

/{t(x,())zdx—/abnt(x,())ft(x,())dx

"’ZZ ( ~pl- NPy uO))gt(;p,O)dx

Similar to the estimates for A; and Az in (2.22) and (2.25), we can obtain

(6.11)

b
/ nt(x,O)ft(x,O) dx 5 hk+ll|§t(,70)” )
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kool
ZZ%/[ (P;;uo—P;lfl(P;;uo))ft(%O)dx5 RELI&(-,0)]]
0o 7L

iol=

Plug the above estimates into (6.11), then we obtain ||&(-,0)|| < h**+1. Therefore, we
obtain the desired result (2.30). O

6.2. Proof of Lemma 2.2. Since w € P¥(I;), we assume w has the following
expression

k
(6.12) w(z)], =Y wli(e),
=0

where L; ;(x) is the standard Legendre polynomial of degree [ in the interval I;. Now
we take test function vy, in first equation in (2.33) as follows.

vp(r) = D710 (2) = / Lij(s)ds, 1=0,....,k—1.
11-,%
Then we have
k
(613) al Wty + 0 (D lot])s =001,
1=0
where we have already used the estimation (2.34). Since Wi = 0, we have
2

k—

k
(6.14) okl £ Jwi] Sh%||77t||L2(1j)+h(Z‘0H)'

1=0 =0

—

Thus we obtain

k k
1 3 2
(6.15) oty £ 04 ()" S bl +0t (D14l
1=0 =0

From the estimation for w, we can see the correction w is well defined and we can
take time derivative in (2.33). By the similar argument as before, we can obtain the
estimation for w;. [J

6.3. Proof of Corollary 2.1. From (2.41), since (u—Ph_u)’

Uiyl and by using Cauchy-Schwarz inequality we have

1
1 1/ _ 2\ 2 k2
eue=| = — [ (P, u—up)dx ) < €l < hFF2

1 P 4
Cus = <N S ((Brwy,, - <uh>;+%)2) < (5 2onel,)” = lel < i
J

J

1
2

I 1 P(1y), (P,;u);+% =

By the standard approximation theory,
|(u— Py u)(Ge, t)] S AFF2.
Therefore, we have
(= un) (G, )] < |(u— Py u) (G, )] + (P u—un)(Gje, t)|
SH2LRTE|lg| SR O
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