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Abstract

Stochastic gradient methods (SGMs) have been widely used for solving stochastic
optimization problems. A majority of existing works assume no constraints or easy-to-
project constraints. In this paper, we consider convex stochastic optimization problems
with expectation constraints. For these problems, it is often extremely expensive to
perform projection onto the feasible set. Several SGMs in the literature can be applied
to solve the expectation-constrained stochastic problems. We propose a novel primal-
dual type SGM based on the Lagrangian function. Different from existing methods,
our method incorporates an adaptiveness technique to speed up convergence. At each
iteration, our method inquires an unbiased stochastic subgradient of the Lagrangian
function, and then it renews the primal variables by an adaptive-SGM update and the
dual variables by a vanilla-SGM update. We show that the proposed method has a con-
vergence rate of O(1/+/k) in terms of the objective error and the constraint violation.
Although the convergence rate is the same as those of existing SGMs, we observe
its significantly faster convergence than an existing non-adaptive primal-dual SGM
and a primal SGM on solving the Neyman—Pearson classification and quadratically
constrained quadratic programs. Furthermore, we modify the proposed method to
solve convex—concave stochastic minimax problems, for which we perform adaptive-
SGM updates to both primal and dual variables. A convergence rate of O (1/+/k) is
also established to the modified method for solving minimax problems in terms of
primal-dual gap. Our code has been released at https://github.com/RPI-OPT/APriD.
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1 Introduction

The stochastic approximation method can trace back to [28], where a root-finding
problem is considered. Stochastic gradient methods (SGMs), as first-order stochastic
approximation methods, have attracted a lot of research interests from both theory
and applications. In the literature, a majority of works on SGMs focus on problems
without constraints or with easy-to-project constraints.

In this work, we consider expectation-constrained convex stochastic programs,
which are formulated as

min fo(x) = Eg [Fo(x; &)1,
xeX

s.t. fix) =Eg[Fi(x;6)] <0,1 € [M]. (1.1)

Here, [M] denotes {1, ..., M}, X is a compact convex set in R" that admits an easy
projection, & is a random variable and f; is a convex function on X for each i =
0,1,..., M, and Eg, takes the expectation about &;. When §&; is distributed uniformly
on a finite set {§;1, ..., &y, } foreachi =0, 1, ..., M, (1.1) reduces to the finite-sum
structured function-constrained problem

No
. 1
min fo(x) = 5= ; Fo(x; &)
1 Y
st fi(x) = E;Fi(x; £/)<0,ie[M], (1.2)

where each N; can be a big integer number.

Due to the possible nonlinearity of { f; }i"i |» the expectation format, and the possibly
big numbers {N; }f‘i , and/or M, it can be extremely expensive to perform projection
onto the feasible set of (1.1) or (1.2). Toward finding a solution of (1.1) or (1.2)
with a desired accuracy, we will design a primal-dual SGM that does not require the
expensive projection. Our method will only require unbiased stochastic subgradients
of the Lagrangian function of (1.1) or (1.2) and the weighted projection onto X. To
have fast convergence, we will incorporate into the designed method an adaptiveness
technique, which has been extensively used in solving unconstrained problems, such
as training deep learning models.

1.1 Motivating applications

Many applications can be formulated into (1.1) or (1.2). We give a few concrete
examples below.

Neyman—Pearson classification One example of (1.1) is the Neyman—Pearson clas-
sification (NPC) [27,32]. For a binary classification problem, a classifier A (x; a),
parameterized by X, is learned by finding an optimal x from a set of training data.
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Each training data point a has a label b € {+1, —1}. The classifier categorizes a
new sample a to the “+1” class if 4(x,a) > 0 and “—1” otherwise. The prediction
incurs two types of errors: type-I error and type-II error. The former is also called
false-positive error, defined as

R™(x) =Prob(h(x;a) >0 | b= —1) =E[i>o(h(x;a)) | b= —1]
and the latter is also called false-negative error, defined as
R (x) = Prob(—h(x;a) > 0 | b = +1) = E[i>o(—h(x; a)) | b = +1].

Here, b denotes the true label of a, and ¢ > o denotes the indicator function of nonnegative
numbers, i.e., t>0(z) = 1if z > 0 and t>9(z) = 0if z < 0. In certain applications, the
cost of making these two types of error could be severely different. For example, in
medical diagnosis, missing a malignant tumor is much more concerned than diagnosing
abenign tumor to a malignant one. Hence, for these applications, it would be beneficial
to minimize the more concerned type of error while controlling another type of error
at an acceptable level. NPC aims at minimizing the type-II error by controlling the
type-1 error. It searches for the best parameter x in a given space X by solving the
error-constrained problem:

min RT(x), st R (x) <c, (1.3)
xeX

where ¢ > 0 is a user-specified level of error. Due to the nonconvexity of the indicator
function ¢>¢(z), the problem in (1.3) is often computationally intractable. Hence, it is
common (cf. [27]) to relax the indicator function ¢>((z) by a convex non-decreasing
surrogate ¢(z) : R — R™. This way, if h(x; a) is affine with respect to x in a convex set
X, we can obtain a relaxed convex stochastic program in the form of (1.1) by relaxing
t>0(z) to ¢(z) with z = h(x; a) and z = —h(X; a) respectively in the formulations of
R~ and R™.

Fairness-constrained classification The data involved in a classification problem
may contain certain sensitive features, such as gender and race. Fairness-constrained
classification [43,44] aims at finding a classifier that is fair to the samples with dif-
ferent sensitive features. For example, consider the binary classification problem.
Let (a, z) denote a data point, following a certain distribution and having a label
b € {+1, —1}. Here, z € {0, 1} represents a unidimensional binary sensitive feature.
Suppose h(x; a, z) is a classifier, parameterized by X, such that a given sample (a, z)
is predicted to class b= sign(h(X; a, z)). One can learn a fair classifier 4(x; a, z) by
solving the problem:

min L(x). st Prob(b £b|z=0)=Prob(b #b |z = 1), (1.4)
Xe

where L(x) measures a certain expected loss, e.g., L(x) = E[log (1 + exp(=b -
h(x;a,z)))], and X is a convex set. The constraint in (1.4) is one kind of fairness
constraint. More kinds of fairness constraints can be found in [43]. Roughly speaking,
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a fairness constraint enforces that the classifier should not be correlated to the sensitive
features. In general, the constraint in (1.4) is nonconvex. [43] introduces a relaxation
to (1.4) by using an empirical estimation of the covariance between z and h(x; a, z),
which results in the following problem:

1 n
min L(x), st —c<-— Z(zi —2h(x;a;,z) <c. (1.5)
xeX n i

Here, L is an empirical loss, Z = E[z], {(a;, z/)}"

i—1 is a set of training samples, and
¢ > 0is a given threshold that trades off accuracy and unfairness. If 4 (x; a, z) is affine
about x, then the constraint in (1.5) will be convex about x, and in this case, (1.5) with

a convex loss function L(x) becomes a convex problem in the form of (1.2).

Chance-constrained problems Another example is the chance-constrained problem.
It can be modeled as (cf. [33])

mi}r{l f(x), st Prob{F(x,&) <0}> p, (1.6)

where £ € E is a random vector, X is a convex set, and p € (0, 1) is a user-specified
probability value. Notice Prob{F (x,£) < 0} = 1 — Prob{F(x,&) > 0} = 1 —
Eli=o(F(x, &))], where ¢ denotes the indicator function of positive numbers. We
can rewrite (1.6) as

mi)I(l fx), st Elso(F(x,§)]=1-p. (1.7

One approach to solve (1.7) is the sample average approximation method [22,26]. It
approximates the expectation in the constraint by the empirical mean and forms the
approximation problem:

. 1 _
min f(x), st N§t>o(F<x,si>>sl—p, (1.8)

where p is carefully selected such that the solution of (1.8) can satisfy certain desired
property. When f is convex, F is linear about x, and the indicator function ¢~ is
relaxed by a convex surrogate, (1.7) and (1.8) are convex in the form of (1.1) and (1.2)
respectively.

Another approach to solve (1.6) is the scenario approximation [3,4], which takes

M independent samples &1, &2, &3, .. ., &y of & and forms the problem
min f(x), st F(x,§&)<0,ie[M]. (1.9)
xeX

When f(x) and F (x, £) are convex about x € X for all &, (1.9) becomes one instance
of (1.1) with f;(x) = F(x, &;) foreachi.
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More More examples of (1.1) include the risk averse optimization (cf. [33, Chapter
6]), asset-allocation problems (cf. [29]), and the monotonicity constrained machine
learning [11].

1.2 Related work

Several existing methods can be applied to solve (1.1) or (1.2). The method that we
will propose is of primal-dual type and adopts an adaptiveness technique to have faster
convergence. Below we review the existing works that are closely related to ours.

1.2.1 Existing methods for solving (1.1) or (1.2)

Lan and Zhou [18] proposes a cooperative stochastic approximation (CSA) method
for stochastic programs that have one function constraint. Let g(x) = Zlﬂi] [fi )]+
The constraint {x : f;(x) < 0,Vi € [M]} can be reformulated to g(x) < 0. Hence,
CSA can be applied to (1.1) with this reformulation. At the k-th iterate xf forallk > 0,
CSA first calculates an unbiased estimator Gy of g(x¥). Then depending on whether
G x < ni or not for some tolerance n; > 0, it moves either along the negative direction
of an unbiased stochastic approximation of the subgradient v fo(xk) or \% g(xF). Given
a maximum iteration K, CSA takes a weighted average of all iterates indexed by
BX = {s <k <K| 6k < ni} for some 1 < s < K. An ergodic convergence of
O(1/+/K) can be shown for CSA under the convexity assumption.

When M is big in (1.1) and f; is a deterministic function for each i € [M], one
can apply the primal-dual SGM in [38] or its adaptive variant. The method in [38] is
derived by using the augmented Lagrangian function. At the k-th iteration, it inquires
an unbiased stochastic subgradient (u*, wX) of the augmented Lagrangian function
and then performs the updates

X! = Projy p (x* — D 'u), z

ML — 2k 4 pewk, (1.10)
where pr > 0 is a dual step size, and Dy is a positive definite matrix. Two settings of
Dy are provided and analyzed in [38]. One is a non-adaptive setting with Dy = aik,
where [ is the identity matrix and «x > 0. The other is an adaptive setting with Dy =

diag(vk)—i—é and vk = 7 /Zle (u 2)2,Where ay > 0,17 > 0and ¥, = max{1, |Ju’||}.

t
Vi

Under both settings, the method has an ergodic convergence rate of O (1/+/k) for the
convex case. Notice that for the expectation or finite-sum constrained problems, the
augmented Lagrangian function will have the compositional expectation or finite-sum
terms, which prohibit an easy access to an unbiased stochastic subgradient [37,41].
Hence, the method in [38] will not apply to (1.1) with expectation constraints or (1.2)
with big numbers {Ni}iﬂi].

If an easy projection can be performed onto X; = {x € R" : f;(x) < 0} for each
i € [M], one can also apply the random projection methods [35,36] to (1.1), and in
addition, if the exact gradient of fy can be obtained, the stochastic proximal-proximal
method in [30] can also be applied. However, if X;,i € [M] are not simple sets
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such as the logistic loss function induced constraint set in NPC [27], these random
projection methods will be inefficient. For the finite-sum constrained problem (1.2),
level-set based methods are studied in [19]. For the special case of (1.1) where exact
gradients of all the functions { f;} f‘i o can be accessed, deterministic first-order methods
have been studied in several works, e.g., [2,20,21,39,40,42]. However, for (1.2) with
big numbers {N; }lN: o- these deterministic methods would be inefficient, as computing
exact gradients at each iteration is very expensive.

Deterministic or stochastic gradient methods (e.g., [13—15,24,46]) have also been
studied for saddle-point problems, which can include the function-constrained prob-
lems as special cases if certain constraint qualifications hold. For example, one can
solve the problem in (1.1) by the saddle-point mirror stochastic approximation (MSA),
which is proposed by Nemirovski et al. [24] to solve convex—concave stochastic saddle-
point problems. Assuming the strong duality, we can reformulate (1.1) as a saddle-point
problem by using the Lagrangian function L(x, z); see (2.1) below. Applying MSA to
the reformulation will yield the following iterative update:

k+1 k k
<)z(k+1> = PrOijZ |:<)Z(k) — Vk <_uwk>i| ) (111)

where (u¥, wX) is an unbiased stochastic subgradient of L(xF, 7", Z is an estimated
compact set on the dual variable, and y; > 01is a step size. Given a maximum iteration
K, MSA with y, = y/~/K, Vk for some y > 0 can achieve an ergodic convergence
rate O(1/+/K) in terms of the primal-dual gap.

1.2.2 Adaptive SGMs

A key difference between the existing methods reviewed above and our method for
solving (1.1) or (1.2) is the use of an adaptiveness technique, which has been widely
used to improve the empirical convergence speed of SGMs for machine learning,
especially deep learning. The vanilla SGM is easy to implement, but its convergence
is often slow. Many adaptive variants have been proposed to improve the empirical
convergence speed, such as Adagrad [8], RMSprop [34], Adam [17], Adadelta [45],
Nadam [6], and Amsgrad [31]. In the vanilla SGM, the same learning rate is used to all
coordinates of the variable at each update, and this often results in poor performance
for solving a problem with sparse training data [8]. In contrast, adaptive methods
adaptively scale the learning rate for different coordinates of the variable, based on a
certain average of all the stochastic gradients that have been generated. The arithmetic
average is used by Adagrad [8] and the exponential moving average by others [6,17,
31,34,45]. Besides the adaptive learning rate, momentum-based search direction is
adopted in adaptive SGMs. These adaptive methods have been used a lot but mainly
for problems without constraints or with easy-to-project constraints.

The adaptiveness technique that will be used in our method is closely related
to the technique used by Amsgrad [31]. For a stochastic problem mingey fo(X) =
Eg, [Fo(x; &)1, Amsgrad iteratively performs the updates:

m* = gm ! + (1 - gut,
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vh = Bvi Tl 4 (1 - B (b)?,
v = max(?k_l,vk),

k= Projx,@k)l/z (Xk — Olkmk/(vk)lﬂ), (1.12)

where u* is an unbiased stochastic gradient of f; at x*. Slightly different from Ams-

grad, Adam [17] sets VK = v forall k. It turns out that the setting in (1.12) is important,
as otherwise the method is not guaranteed to converge even for convex problems. The
update in (1.12) ensures that each component of ¥¥ is nondecreasing with respect to
k. This addresses the divergence issue of Adam. However, one drawback is that once
an unusual u* with “big” components appears in early iterations, the components of
¥ will remain “big”, which results small effective learning rates and can slow the
convergence. We address this issue by using the clipping technique in [1] to modify
the update of V¥,

1.3 Contributions

The main contributions are listed below.

e We propose a new adaptive primal-dual stochastic gradient method (APriD) for
solving expectation-constrained convex stochastic optimization problems. The
method is derived based on the ordinary Lagrangian function of the underlying
problem. During each iteration, APriD first inquires an unbiased stochastic sub-
gradient of the Lagrangian function about both primal and dual variables, and then
it performs a stochastic subgradient descent update to the primal variable and a
stochastic gradient ascent update to the dual variable. For the primal update, an
adaptive learning rate is applied, in order to have faster convergence.

e We analyze the convergence rate of APriD. Assuming the existence of a Karush—
Kuhn-Tucker (KKT) solution, we prove the boundedness of the dual iterate in
expectation. Based on that, we then establish the O (1/+/k) ergodic convergence
rate, where k is the number of subgradient inquiries. The convergence rate results
are in terms of primal and dual objective value and primal constraint violation.

e We also extend APriD to solve a convex—concave minimax problem. The extended
method (named as APriAD), during each iteration, first inquires an unbiased esti-
mation of a subgradient of the minimax problem and then updates the primal and
dual variables by performing an adaptive update. An ergodic convergence rate of
O(1/+/k) is also established in terms of the primal-dual gap.

o Wetest APriD on NPC[27,32] and the quadratically constrained quadratic program
(QCQP) in the expectation form and the scenario approximation form. We compare
the proposed method to CSA [18] and MSA [24]. Although all three methods have
the same-order convergence rate, the numerical results demonstrate that APriD can
decrease the objective error and the constraint violations (sometimes significantly)
faster than CSA and MSA, in terms of iteration number and the running time.
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1.4 Notation

We use bold lower-case letters X, z for vectors and x;, z; for their i-th components.
The bold number 0, 1 denote the all-zero vector and all-one vector, respectively. We
use the convection 0/0 = 0. For any positive integer M, [M] is short for the set
{1,2,..., M}. With slight abuse of notation, for any two vectors x and y, |x| takes
element-wise absolute value, x” takes the element-wise p-th power, x/y takes the
element-wise division, and max{x, y} takes the element-wise maximum. We define
[x]+ = max{x, 0} and [x]— = max{—x, 0}.x < yandx > y mean that the inequalities
hold element-wisely.

For a given symmetric positive semidefinite matrix D, we define the weighted
product between X, z as (X, z)p = X' Dz. Specially, when D is the identity matrix /,
we briefly denote (x, z) = (X, z); = x | z. For any vector v, diag(v) denotes a diagonal
matrix with v on the diagonal. For a nonnegative vector v > 0, (x, z)y = deiag(v)z.
For any vector x, we denote ||x|| = /(X,X), [[X|lp = VX, X)p, |IXlly = VX, X)y,
Ixlli = >, 1xi], and [|X| o = max;|x;|. Similarly, for a closed convex set X, we denote
the (weighted) projection onto X as Projy (y) = arg minyey ||X— yl?, Proj x.p(y) =
argmingex [X — 3 and Projx ,(y) = arg minxex [|Ix — yII5.

For a convex function f(x), we denote \% f(x) as one subgradient and 9 f (x) as the
set of all subgradients of f at x. If f is differentiable, we simply use V f(x) as the
gradient. For a function f (X, y), we denote the partial gradient or partial subgradient
about x by Vy f (X, y) or Vy f (x, y) and the set of all partial subgradients by d f (X, y).
In the analysis of our algorithm, we denote ¥ as all history information until the -th

iteration, i.e., H¥ = {xl, ', x2, 22, ... xK, zk}.

2 Adaptive primal-dual stochastic gradient method

In this section, we give the details of our adaptive primal-dual stochastic gradient
method. Since the algorithm only requires the stochastic subgradient of the Lagrangian
function of the underlying problem, it can be applied to both (1.1) and (1.2) by speci-
fying how to obtain the stochastic subgradient. Hence, we focus on the more general
formulation in (1.1).

Letf(x) = [f1(X), fo(X), ..., fu(x)]" be the vector function that concatenates all
the constraint functions in (1.1). Then the Lagrangian function of (1.1) can be written
as

L(x,2) = fo(x)+2z f(x), 2.1

where z = [z1,22,...,2m]  is the Lagrange multiplier or dual variable. The
Lagrangian dual problem is

%%{ﬂmzﬂgcalﬂ. (2.2)
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By the Lagrangian function in (2.1), we design an adaptive primal-dual stochastic
gradient method for solving (1.1), named as APriD. The pseudocode is shown in
Algorithm 1. We assume an oracle that can return an unbiased stochastic subgradient
of £ at any inquiry point (X, z). At each iteration k, APriD first calls the oracle to
obtain a stochastic subgradient (uk, wk) of £ at (x¥, z¥). Then it updates the primal
variable by performing an adaptive-SGM step and the dual variable by a vanilla-SGM
step. Our adaptive update is similar to Amsgrad [31], and the difference is that we clip
the primal stochastic gradient u* if its norm is greater than a user-specified parameter
6. The clipping technique has been used in existing works about adaptive SGMs, e.g.,
[23], to avoid potentially too-small effective learning rate.

Algorithm 1 Adaptive primal-dual stochastic gradient (APriD) method for (1.1)

1: Initialization: choose x! € X and z! > 0, set m = 0, v = 0,’\70 =0;
2: Parameter setting: set the maximum number K of iterations; choose 81, 2 € (0,1), & > 0, non-
increasing step sizes {otk}]{(=l and p; > 0;if o = «g for k € [K], i.e., o is a constant, let n] =
il oz,-ﬂi_] = lf—}}l; otherwise, let ] = Zszl aiﬁ{_l.
3:fork=1,2,...,K do
4:  Call the oracle to obtain a stochastic subgradient (uk s wk) of L at (xk R zk).
5:  Update the primal variable x by

mt = gm 1 4 (1 - pput, (2.3)

o = L}{ (2.4)
max {1, 1451}

vE = povF Tl (1= gy @b)2, (2.5)

¥ = max {?kil, vk}, (2.6)

xkl = Projy qiy1/2 (Xk - akmk/(\?k)l/z). 2.7

6:  If k > 2, update the step size py by

Pk—1 . Nk—1 — %k—1
pk = ——F—, withnppy = ————. 2.8)
B+ alﬁ,*;l B
7:  Update the dual variable z by
= [k Wb, (2.9)

8: end for

Below, we give a few facts about the step-size parameters of Algorithm 1. About
the primal step size, the inequality in the following lemma will be used many times in
our analysis.

Lemmal Foranyl < j <t < K, we have

t
0 <Y apf < (2.10)
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Proof The first inequality is trivial from the positivity of {o;} ;(:1 and B;. The second
inequality follows from the non-increasing monotonicity of {« j}f= | and by noting

Z,t(:j akﬂi{_j <aj Z;(:j ﬂf_j =a; ZZ;JO ﬂf <aj Yy ,3{‘. The proof is finished
by 1 € (0, 1). o

About the dual step size, we show the next lemma, which will be used to analyze
the summation of ||z/ — z||2. The proof of the lemma is given in Appendix A.

K

Lemma 2 The dual step size sequence {p; =

| is non-increasing and

‘ k=(j=1) ‘ k=j
_i_1up —joup
Dk j—1 1 _ij 1 >0, forany2<j<t<K, (211

Pj—1 Pj
p1o;

Furthermore, if a constant primal step size is set, i.e., o = ay, for all j € [K] for
some oy > 0, then n; = % and pj = py forall j € [K], i.e. the dual step size is
also a constant.

3 Convergence analysis

In this section, we analyze the convergence of Algorithm 1. We first give the assump-
tions in Sect. 3.1 and then show some preparatory lemmas in Sect. 3.2. In Sect. 3.3,
we give the main convergence results, including a uniform bound on E[z*].

3.1 Technical assumptions

Throughout our analysis in this section, we make the following three assumptions.

Assumption 1 X is a compact convex set in R”, i.e. there exists a constant B such
that

X1 —X2lle0 < B, VXi,% € X.
For any x € R”, ||X|| < +/7]|X||c0» and from Assumption 1, it holds

Ix; —x2)|> <nB% Vxi,x € X. (3.1)
Assumption 2 There are constants P, Q, F such that for any k € [K],

E[u | H'] e 0L 2. B[] < P-E[| 2]+ 0.
E[wt | HF] = £(x) = v,.£(x*, 25, E[IwF)?] < F2.
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By Assumption 2, we have for any k € [K],

max E[|[u’ || <P~(maxIE 7/ 2>+ = pk, 3.2
max B[ [jo/|[*] < P - ( max B[/ I] ) + 0 = F; (3.2)

Assumption 3 There exists a primal-dual solution (x*, z*) satisfying the KKT condi-
tions of (1.1):

M
0 €0 fo(x*) + Nx (x*) + Y 259 fi(x*), (33)
i=l1
x*eX, fi(x")<0, Vie[M], (3.4)
F>0, Zfix)=0, Viel[M], (3.5)

where Ny (x) denotes the normal cone of X at x.

In Assumption 2, the unbiasedness condition on the stochastic gradients is standard
in the literature of SGMs. As X is compact, the uniform boundedness on E[Ilwk ||2]
can hold if f is continuous. However, the bound on E[||uk ||2] often depends on the
z-variable. To see this, we suppose that u{f is an unbiased stochastic subgradient of f;
atx* foreachi =0, 1, ..., M and let

Then u* will be an unbiased stochastic subgradient of £(-, z*) at x*. Denote U* =
[u’f, R uﬁ,l]. ‘We have

E[Iu*?] <2E[lugl*] + 2E[ 12" 1* 0" |1?]
= 2E[E[ o | 7] + 2B[ 12 PE[IU* 1 | 1]

As X is compact, IE[HuI(‘)H2 | Hk] and I['Z[||Uk||2 | Hk] can be uniformly bounded by
some constants P and Q, and thus the boundedness condition on E[Huk ||2] holds.

Assumption 3 is satisfied if a certain constraint qualification holds such as the
Slater’s condition. Under Assumption 3, the strong duality holds, i.e.

d(z*) = fo(x*). (3.6)
where d is defined in (2.2).
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3.2 Preparatory lemmas

In this subsection, we establish a few lemmas, whose proofs are given in Appendixes B—
G. First, we have the following lemma under Assumption 3.

Lemma 3 For any primal-dual solution (x*, z*) satisfying the KKT conditions (3.3)—
(3.5), we have that for any x € X,

fox) — fox*) + (z*, £(x)) = 0. (3.7

Furthermore, for any z > 0,

fox) — fo(x*) — (2, £(x")) + (2", f(x)) = 0. (3.8)

Under Assumption 2 and by the updates in Algorithm 1, we are able to upper bound
E[7)"/?[11] and E[m"|[%,, _, »1. as summarized below.

Lemma4 For any integer k € [K],

pr
12 k2 \/’7 0+ 7)
B[N0 < nf. E[Im Gy 12] < (=i PR
where I/J\Zk is defined in (3.2).

From the update in (2.7) about the primal variable, we have the following result.

Lemma5 Foranyx € X andt € [K],

t t 2 E ! 2
(1 ,BQ;E[(# X, u’)]];akﬂ1 = 5 + 20— B2(1—po)1 2

3.9
From the update in (2.9) about the dual variable, we have the follows.
Lemma6 Foranyz >0, j € [K], it holds
(@ 10 = {2 £0) + 53— ([ =2 — |2/ —2|?)
210j
- % |wi|* = {2/ — 2, wi — £(x)). (3.10)

. t i i t k—j
Lemma 5 gives an upper bounfl of j=1 E [(x/ —x,u/ )] e jakBy 7, the next
lemma gives a lower bound on this summation.

Lemma7 Forz > 0andt € [K] we have
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t

SB[l —x,w] Zﬁ

J=1

t t
> Y E[ o)) — fox) — {2/, £®) + (2. D)) > o pi
j=I

k=j

t t
+ ZE[ - (zj —z,w — f(xj)) + <xj —x, 0/ — Vi L(x/, zj))] Zakﬁ]f_j
j=1 k=j

alE[”ZI B ZHZ] P F2 th=l ot? o 1+1 2
B - + K —z|7]. 3.11
2p1(1 = B1) 201(1-B1)% ' 2p [z z|’] (3.11)

where VyL(x/, 7)) = E[uj | Hj].
The second term in the right side of (3.11) can be bounded as follows.

Lemma 8 For any deterministic or stochastic vector (X,z) withx € X andz > 0, it

holds for any positive number sequence {y; ;(:1, andt € [K] that

t
Z viE [(zj — 1z, wl — f(xj)> — (xj — X, w — @xﬁ(x/, zj)>]
j=1

t
< %(E[Hzl —z||2]+n32+(F2+13;)ny), (3.12)
j=1

where VyL(x/, 7)) = E[uj | Hj] and 13;’ is defined in (3.2). Furthermore, if X and z
are deterministic, then

t
Z y;E [(zj —z,w —f(x))) = (x/ —x,u/ — VyL(x/, zj))] =0. (3.13)
j=1

3.3 Main convergence results

In this subsection, we use the previous established lemmas to show our main conver-
gence results. First, we obtain the following theorem by combining the inequalities in
(3.9) and (3.11).

Theorem 1 Under Assumptions 1-3 and with the choice of z' = 0, for any x € X,
z>01¢e[K]

E[fo&") = fox) — (Z'. £(®)) + (2. £(X))] < & + eoE[]1z]*]. (3.14)
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where X! = Z; 1 Sk Ja"ﬂl i’ Z; . ,Otkﬁl and
IZk /O‘kﬁk U 1Zk J()tkﬂk i
’ﬁt
! , O+ P Y
€z = — 7 I’l(9+1)B + - 2 7
2(1 ,Bl)zk 1 %% ( ,31)( ,32)

t
+(F*+P))
=) * ;“ )

1 (63]
= — +1).
0 2(1—ﬁ1>zz=1ak<m+)

Proof From (3.9), (3.11), (3.12), and z! = 0, we have

W0B VA0 + Y o
> TR

3.9) ! . I -
> (1— B0 Y E[x —x.u/)] > oy
J=1 k=j

3.11,3.12)
=

(= B0 D B[ forx)) = fo0) = (27 £} + (2. £ D) | Y el

j=1 k=j

F2
_O‘lE[“z”] Pl Zi 1"‘ +(1 B [”Zz+1_z||2]
2p1 201 (1=p1) 201
1 2 <
~5(BF Y087+ (7 ) ) 619

where in the second inequality, we have used (3.12) with y; = Z,’(: j Ok ,Bf_j 1 -
B1) < aj by (2.10).
By the convexity of { f;}i>0, we have from the above inequality that for any z > 0,

E[fo&") — fox) — (@', £ (%)) + (z. £ (X))

' i . ) Zl— ) Olkﬁk_j
N P -
= j=12k=j %P

1 d , . od -
= — S E[ o) — fo0 — (27 800} + [z £6:D)| Y e}
i Yoy i i
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<
2(1-81) Zk:l 294

P SR ¢ (24 ) Y ),

Jj=1

NCCES )y PLa L
(1=B2(1=Bp)1/2 a(1—p1)

<n(9 + 1B+

where in the last inequality, we have used (3.15) for the numerator and the fact
i Yk B > Py a;j by (2.10) for the denominator. Rearranging the
above inequality gives the result in (3.14). O

In(3.14),¢pis a constant. In order to bound €, that depends on 13;’ defined in (3.2),
we need to bound E[||z/ ||], for all j € [¢]. This is shown in the following theorem.

Theorem 2 Suppose Assumptions 1-3 hold and z' = 0. Assume that for a given

. 4 1/2
positive number K, Zle ot? < and p; < % Then E[ | 2! ”2] for
allt € [K + 1] has a uniform bound, i.e.,

Ci

E[Hlt ”2] = 1 — C2’

(n0B> + PO+ AP+ (24 ) |2 and

where C| = (=BD2(162)17260 T a1 (I=B1)

— _ 2p
a1 (1-81)?
_ 2p1/nPa
G = Sy as) e

Proof As the first step in the proof of Theorem 1, we obtain from (3.9) and (3.11) with
X = x*,z = z* that

P!
noB2 O+ )Y g <39> . NS ke
T R RIS A ﬂ‘)ZE Xl

t t
>(1—B1) Y E[fo)) — fox®) — (2 £N) + (2, £x))] Y ey
Jj=1 k=j
I N L YL (=)
2p1 2001 (1-81) 2p;

+(1- /31)2 [ (2 =2, W/ £+ {x] —x" ! = L z])]Zakﬂ
k=j

Ef2+! — 2]

Since x*, z* are deterministic, the last term on the right side of the above inequality
vanishes by Lemma 8. In addition, we use (3.8) and have from the above inequality
that
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T e

2p;
ﬁt
- no B* N VO + P Y e |2*|)? N pLF? Yy o]
-2 2(1—-B1)2(1—-p2)1/? 2p1 201 (1-B1)
By (2.12), I - Thus we have

(1 /31) — i (1-41)? Oll(l 5 )?:

E[[2*! - z*|*]
Pl 2 2 2 2
b (o SOEBTE wlr aP T
———— |nOB .
Sala—ﬂoz(” T A T a(—pD) )

By ||z”rl ||2 < 2(||z”rl -z ||2 + ||z* ||2), we obtain

e P M PR Gl 22> KL/ AN L MR
“a(1-B1)? (1=B1)*(1—p2)1/? ar(1-51)

2
2 *
( (1 ﬂl)z)”Z ”

<Ci + Comax (E[|]7]).
where in the last inequality, we have used (3.2) and 23: 1 ajz. < f: 1 a? < « for all
t € [K]. Notice that Cy < 1 from the selection of p;. Below we show E[”z’ ||2] <
I_C—lcz for all + € [K + 1] by induction.
— Whent = 1,z' =0, thus E[||z!|?] < lf—lcz holds trivially.
— Assume that E[ ||z Hz] < lf—‘cz holds for k < ¢, then

ci G
1—-Cy, 1-Cy

[l 1) < €1+ & (max [ ]) <1+ o

Therefore, we complete the induction and obtain the desired result. O

When the conditions in Theorem 2 hold, we have that for k € [K + 1],

Dk 12
P = P~<mf[1,§]E[llzf|| ])+Q = Pq

JE€

Cq ~

+Q0=P
¢, ¢
Then €, in Theorem 1 can be bounded by a constant as follows:

NGRS DD DAY
(1= B12(1— )12

2 < ! -
21=B1) Dy

(n(9 +1)B* +
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2 t 2
pLF= ) 5o

t
F>+ P 2.) =e. 3.16
(—p1) + ( +jj_lot] €1 (3.16)

Remark 1 In Theorems 1 and 2, we assume z! = 0 in the initialization of Algorithm
1, which simplifies the proof. But notice that we can get the same-order convergence
rate with any z' >0 by a similar proof with slightly different €, €, C;.

With Theorems 1 and 2, we are ready to show the convergence rate results by the
following lemma, whose proof is given in Appendix H.

Lemma9 Letx € X and z > 0 be random vectors. If for any x € X and z > 0 that
may depend on (X, 7)), there are two constants €1, €y satisfying

E[ fo®) — fox) — (7, £X0)) + (2, £R))] < €1 + €oE[||z]’]. (3.17)

then for any (x*, z*) satisfying KKT conditions, we have

E[| fo® — fox™) | ] <2e1 +9eo| 2|, (3.18)
M
E[ Y 1f:®14] <e1 +eo|1 +2*|, (3.19)
i=1
3
E[d(@) — d@)] = (e + 3eo 2" 1. (3.20)

Below, we specify the parameters and give convergence rate results for two different
choices of {ay }15:1. One is a constant sequence and the other a varying sequence.

Corollary 1 (Convergence rate with constant step size) Given any positive integer K,
_ B4 (1— 1/2
setaj = j‘—?forj € [K]and p; = \/L? with p < WPV B 760 7o 1(xk | 7K} be

204/n P
1 kX0 Ty
the sequence generated from Algorithm 1 withz' = 0, and x* = =21
Y=g
e

YR -l

and iK =  —F%— 77
Y a-gf

. Define

2p 5 V(6% + Q)a? ,anz) 2 ol2
Ci=—|nbB 24— ,
! a(l—ﬁ1)2<n Tt o) T A 12

B 2p0a/nP
2T A=) =B %6
e
P=pPr—g+0

Jna? (6% + P) apF?

F2 + P)a2.
—p2( =16~ (1—pp T TP

¢ =n® + 1)B> +
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Then we have

X ! ANa+p)y 42
¢ RO =\t ——7) 3.21
[|f0(x ) — fox¥) | ] 52(1 —ﬂl)aﬁ( o+ . ”Z ” ) ( )
M . . 2
. = 1+2)%). G622
[l;[f(x >]+]52(1_ﬁ])aﬁ(¢+ LI ). 62
zZ 3 3@+ 42
Blae —dat *[1%). 3.3
[ (z") (z )] 54(1 —ﬁl)aﬁ(¢+ . ”Z ” ) (3.23)

Proof From a; = \/Lf for j € [K], we have thzl a? < Z;{:l otjz. =co?forallt e

[K]. Hence, the conditions required by Theorem 2 hold, and thus E[ Hz’ +1 || 2] < lflCz
for t € [K] with the given C1, C3, and P.

Note Z,{il o = a+/ K and €, < €1 in (3.16). By Theorem 1, we have that for any
xe€ Xandz >0,

E[ /o&X) = fox) — (75, £0) + (2. £GF))] < &1 + «oE[| 2] ],

where

S0 + 2ya? L apF?
(I=B2A =)V (1-=p1)

1
~2(1-BavK

€ (n(e +1)B2+ +(F? + F)a2>,

1 o
o=—"—+(>+1).
2(1 — Bav K \p
Therefore, by Lemma 9, we complete the proof. O

Remark 2 The convergence rate results in Corollary 1 indicate that the parameter 6

can neither be too big or too small. Let « be fixed and p proportional to 6 such

_B1)4 (1-8,)1/2 . .
that p < %. Then C; is a constant independent of 6, and C; and ¢

are quadratically dependent on 6. However, the second terms in the parenthesis of
the right sides of (3.21)—(3.23) are inversely proportional to 8. Thus the right-hand
sides of (3.21)—(3.23) will approach to infinity if & — oo or 6 — 0. Similarly, 6
can neither be too big or too small in Corollaries 2, 3 and 4. But notice that if u* in
(2.4) is uniformly bounded for all k, then a too big 6 will not have effect of clipping.
Numerically, we observe that the algorithm can still perform well even with a very
small 9, even if « and p are both relatively large.

. B (1-8,)1/2 .
Remark 3 Corollary 1 requires p < %, or equivalently ap <

(-0 (1-p)' %6
2/nP
strictly following the setting may give too conservative stepsizes. In the experiments,
we do not follow the condition strictly, but instead we tune « and p. In Sect. 5.5,
we test Algorithm 1 with different combinations of («, 6, p), and it turns out that the

algorithm can perform well in a wide range of values.

. In some applications, P is unknown, and even it can be estimated,
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Corollary 2 (Convergence rate with varying step size) For all j € [K], set aj =

o i A= 20 1
Vi+Tlog(j+1)" V210g(2) Say/nP 7

((xK, 25)} be the sequence generated from Algonthm 1 withz! = 0, and X =

In addition, choose p; = with p <

K K k—j 4
ZJ . /akﬁlk = ,andz Z] IZk /akﬁlk — ,Deﬁne
Zk IOlkﬁ Zk ,Olkﬂl
0 ) 5 na’ 0>+ Q) 50(,0F2> 2 w12
Cr=—" (2m0B2+ + (24 ———) |z
! 0!(1—,31)2< 1-BD2(A=p)1%26 ~ (1—p1) ( (1—,31)2)H
Cr = S5ap/nP
2T B - )10
- C
P=r
-G + 0,

2.502/n02+ P)  2.5apF?

=n( + 1)B?
¢=nO+1)B" + (1—B1)2(1—p2)1/20 + (1-p81)

+2.50%(F% + P).

Then we have

K N log(1 + K) o+ p) 42
— 2 TR
B[ %) = o) | ] = 5o e (20 + |2?).
_K log(1 + K) o+ p %12
i 1 ’
Z[f( T RN ﬁ><¢+ o 7 T)

E[d(z*) —d(@")] <

3log(1 + K) 3@+ p0)y 42
+ )
8(1 — B (WK +2—+/2) (¢ P =] )

Proof Note that for any ¢ € [K],

1
Zoz < Za, = Z (j + D(og(j + 1))?

1 o0 1
< az(— + / dx)
2(log2)? 1 (x + Ddog(x + 1))2
1 1
—o(—— + ——) <2502
* (2(10g2)2 + 10g2> =

Hence, by the choice of pj, the conditions required by Theorem 2 hold, and thus
E[Hz’““z] < 1—C_]Cz for all r € [K] with the given C, C», and P. Note €, < €7 in
(3.16) and 3", o satisfies

i“lFi @ @ K1 20W/EF2-VD)
= =1 Vk+Tloglk +1) ~ log(l +K) Jik=1 Vk+1 log(1 + K)

@ Springer



Y.Yan, Y. Xu

By Theorem 1, we have for any x € X,z > 0,

E[fo&X) — fo) — (25, £0) + (2. £G5))] < 1 + €oE[| 2] ]

where
log(1 + K 2502 /n(0 + £
L og(l + K) (n(9+1)32+ V0 + )
41 = Ba(VK +2—/2) (1=B*(1=B)Y/
2.5apF? 2 0 A )
+ ———+25a°(F"+ P) |,
(I1=8D
log(1 + K) <a 1)
€) = — .
4(1 = Ba(VK F2—+/2) \p
By Lemma 9, we obtain the desired results and complete the proof. O

4 Extension to Stochastic minimax problem

In this section, we modify the APriD method in Algorithm 1 to solve a stochastic
convex—concave minimax problem in the form of

min max {£(x, z) = E¢[L(x, z; §)]}. “4.1)

xeX zeZ

Similar to existing works (e.g., [5,16,24,46]), we assume that X € R” and Z C R"™
in (4.1) are compact convex sets, £ is a random vector, and £(X, z) is convex inx € X
and concave inz € Z. By the minimax theorem [25], the strong duality holds for (4.1),
namely,

minmax £(X,z) = max min L£(X, Z). “4.2)
xeX zeZ zeZ xeX

In Algorithm 1, we perform an adaptive SGM update to the primal variable x
in (2.3)—(2.7), but a vanilla SGM update to the dual variable z. This is because the
Lagrangian function of (1.1) has a simple linear dependence on the dual variable.
As demonstrated in [38], an adaptive primal-dual SGM performs similarly as well as
its non-adaptive counterpart for a linearly constrained problem. In (4.1), £ can have
complex dependence on both x and z. Hence, we modify Algorithm 1 to solve (4.1)
by performing adaptive updates to both x and z. The modified algorithm is named
as APriAD, and its pseudocode is given in Algorithm 2. Similar to Algorithm 1,
we assume a stochastic first-order oracle, which can return an unbiased stochastic
subgradient of £ at any inquiry point (X, z).

Below we analyze the convergence of Algorithm 2. Throughout our analysis in this
section, we make the following two assumptions.
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Algorithm 2 Adaptive primal-dual stochastic gradient (APriAD) method for (4.1)

1: Initialization: choose x! € X,z' € Z, m® = [mg, m(z)] =0,v0 = [vg, v(z)] =0,v0 = [?Q,V(Z)] =0;

2: Parameter setting: set the maximum number K of iterations; choose 81, 2 € (0, 1), 8 > 0, non-
increasing step sizes {oy } le and {pr} le ;

3:forallk =1,2,...,K do

4:  Call the oracle to return a stochastic subgradient gk = (uk, wk ) of L at (xk, z* ).

5:  Update the primal variables x and dual variables z by

mf = gm* 1 4+ (1 - gk 4.3)

:g"‘:(ﬁ"ﬁ")=( LA L ; ) “.4)
max{l, W} max{1, Hvé—”}

vE = v+ (1 - B @97 4.5)

/V\k = max{'\?ki1 R vk}, (4-6)

*H = Projy o1 6 — axml/ )1/, 4.7)

K+ :PrOJ'z,@i‘)l/z(zk + oemb /)12, (4.8)

6: end for

Assumption 4 X and Z are both compact convex sets, i.e., there exist constants By, B,
such that

IX1 — X2llc0 < Bx, VX1,X2 € X; |21 — Z2]lo0 < B;, V21,20 € Z.

Assumption 5 The stochastic subgradient (uk, wk) of L£(x*,zF) is unbiased and
bounded for all k € [K], i.e., there are constants My and M, such that forany k € [K],

E[uf | H*] = WeL(xh, 25 e o L(x*, 25, E[Iub)1?] < Mg,

E[w | 1] = VL5, 25 € 9,£(xF, 25), E[IIwF)?] < MZ.

Different from Assumption 2, here we assume uniform bounds on E[Huk ||2] and

E[||wk||2] as X and Z are both compact. By the assumption, we have that for any
k € [K],

max E[[lu’ || <M2, max E[|w/|?] < M2.
jelk] [’ 1] = M jelk] [Iw1°] = M

Similarly to Lemma 4, we have the bounds

V(0 + M)
B, <m0 E[Im[Ge-10] = gy
Jm(% + M32)

2
E[|0"* 1 1] < mé. E[|m} | -] <~ g5

By the convexity—concavity of £(x, z), we can upper bound £(x/, z) — L(x, z/) as
follows.
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Lemma 10 Foranyx € X andanyz € Z and j € [K] we have

L(x),2) — L(x,77) §(xj —X, uj) - <zj -1z, wj> + (zj —z,w — V,L(x, zj)>

—(x/—x, 0/ = Wy L(x/, 2))), (4.9)

where @X/.Z(x/', 7)) = E[u/ | Hj] € L(x/,2/) and @zﬁ(xj, 7)) = E[wj | Hj] €
8, L(x!,2)).

Proof For any j € [K], we have

<x-/ - X, uj> = <X'i —x, VxL(x/, zj)) + <x-/ —x, W — Vi L(x/, zj)), (4.10)
(zj — 1z, wj> = (zj — 1z, 6zﬁ(xj, zj)> + (zj — 1z, wl — 6z£(xj, zj)>. 4.11)

Because L£(x, z) is convex in x and concave in z, we have

<xj —x, Vg L(x/, zj)) > L(x!,2)) — L(x,2)),
(zj — 1z, 6z£(xj, zj)) < L(xj, zj) — [I(Xj, Z).

Negating the second one of the above two inequalities and adding to the first one give
(xj —X, @Xﬂ(xj, zj)) — (zj — 1z, @Z,C(xj, zj)> > £(xj, z) — L(X, zj).

Replacing the left two terms of the above inequality by (4.10) and (4.11), we obtain
the desired result by rearranging terms. O

For the first two terms in the right side of (4.9), we have the following lemma by
the same arguments as those in the proof of Lemma 5.

Lemma 11 Foranyt € [K],xe€ X,z € Z,

t ) o . 2 92+M2) Z['— o
_ j_ J k—j _ 1OBx v e
(1 ﬂﬂj;E[(X xu ”;jakﬁl =72 T2 gri—pnie

, : 2 Jm(62 I3 p?
- - . k—j _ mOB; m(0°+ Mz) 3 p;
(1 ﬁl);lE[(Z’ Z’Wj”,;pkﬂl R N T T S e

The second inequality above holds reversely because of the concavity of £ about z.
For the last two terms in the right side of (4.9), by essentially the same arguments
as those in the proof of Lemma 8, we have the following lemma.

Lemma 12 For any deterministic or stochastic vector (X,z) withx € X andz € Z, it
holds for any positive number sequence {y; }le andt € [K] that
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t
Z y;E [(zj —z,wl —V,L(x/, zj)) - (xj —x,u/ — W L(x, zj))]
j=1

t
(an +mB} + (M2 + MDY )/]-2>.
j=1

=

N =

where Vi L(x/, 7)) = E[uj | Hj] and V,L(x7, 7)) = E[wj | Hj].

Note that the bounds in Lemmas 11 and 12 do not depend on x and z. Below, we
use the established lemmas to show the main convergence rate result of Algorithm 2.
Following [24], we adopt the expected primal-dual gap to measure the quality of a
solution (X, z) € X x Z for (4.2), namely,

€X,Z) = ]E[I;leazx L(X,z) — ;Iél}r(} L(x, z)].

Theorem 3 Under Assumptions 4 and 5, let {(x/, z/)} be generated from Algorithm 2.
Suppose ay = cpx, Y k for some constant ¢ > 0. Then for any t € [K], it holds

ex',7') <

1 VO + M) Yy + om0 + M) Y o7
200 - B1) Yo @ (1-B>(1—p2)1/%6

t
+0(nBg + cmB;) + (nBg +mB3) Y af) .
j=1

k—j_j

le=1 Zi:jakﬁl '/
= -

Z;‘:l Ztk:jakﬁ| /

i
le=| Zi:j“kﬂl 'xJ

=1
— and 7' =
t ' k—j
D=t D= kB

where X! =

Proof By the convexity—concavity of £ and Lemma 10, we have that for any x € X
andz € Z,

t

L&)~ LxE) <) <(£(x-/, 2) - Lx.7)))

j=1

i

Z;{:j O‘kﬁ] / )
T

thzl Z;c:j orpy

4.9 1 !

<

(S~ nw) et

k—
Z;’:lz;c:jakﬂl ! i=1

k=j

t
3 (1 2w VL0 7))~ —x w —VaL 1)) Z“kﬁfj)
=1

Letx € argmingey £(x,Z') andz € arg max,cz L(X', z), and take the expectation on
the above inequality. By Lemmas 11 and 12 with y; = Zf(:j akﬂfﬁ (1-B1) < aj for
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the numerator, and 3", i1 e —j % /31 > Z;: 1 o j from (2.10) for the denominator,
we have

e®,7) :E[ma%; L&)~ min L(x. zf)]
VAS

2 2
< L (9("3 tembBy) 1 (B2+mBz+(M2+M2)Z )
(=B 2@ 2 2 j=1
. VO + MDYy af +eym© + MP) Y, pf)
2(1-p*(1-p)1/%0 '
Simplifying the above inequality gives the desired result. O

Below, we specify the choices of {c }fz 1 and { ,ok}f=1 and obtain sublinear conver-
gence of Algorithm 2. Corollary 3 can be proved by essentially the same arguments as
those in the proof of Corollary 1, and the proof of Corollary 4 is given in Appendix I.

Corollary 3 (Convergence rate with constant step size) Given any positive integer K,
o L ; »
setaj = UK and p; 7K for all j € [K] and some positive constants o, p. Let

Kok : k2=
{(x",2%)} be the sequence generated from Algorithm 2. Let X" = —f——F%——1—

Z] (- /31( j+1
1 K—j+1_j
and 7% = % Then
J
& Ky e — 1 (0B + Y B2) + (1B + mB2) + (M2 + M2)
) — 2(1 _ ﬂl)a\/E X p z X z X z

@ (0% + M2) + ap/m(©> + Mzz))
(1=B*(1—p2)'/%0 )

. . . o« o
Corollary 4 (Convergence rate with varying step size) Sera; = i and pj = T
for all j € [K] and some positive constants a, p. Let {(x¥, z¢)} be generated from
Algorithm 2. Let XX = Z’ DY L and ¥ = Z’ 1 D ’akﬂlk — for K > 2.
RPN by 1 ke By
Then
x - log(1 + K) < ma
K ;K 2 2 2 2
e(x™,z") < 6(nB; + —B;)+ (nB; + mB,)
41— Ba(WK +2-+2) ot ¥ ‘

@ (6> + M2) + ap/m(©> + Mzz))
(1-B2(1—p2)'/2%0

5 Numerical experiments

In this section, we compare the numerical performance of our proposed APriD method
in Algorithm 1 to CSA [18] and MSA [24]. The latter two methods have been reviewed
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in Sect. 1.2. In all our experiments, we take B = 0.9, > = 0.99,6 = 10 in APriD;
s = 1 and g = n = 0.04 in CSA. In [18], the output of CSA is the weighted average
of x' overt € BX = {t € [K] | 6, < n;}. Note that B may be empty for a small
k. Hence, we also computed the weighted average of x” over all ¢ € [k]. We call the
result of CSA by the former weighted average as CSA1 and the latter as CSA2.

In [24], the step sizes of MSA for updating x and z are both equal to y, asin (1.11).
In our experiments, we chose different step sizes for the x and z updates in order to
have better performance. More specifically, we did the updates:

k+ k+

x1 = Pron(xk —apuf) and ZF! = Projz(zk + ,okwk),

where o and py are the step sizes. We used the same o and p; for MSA and APriD.
Hence, MSA can be viewed as a non-adaptive counterpart of APriD. We tried different
pairs of (o, px) for MSA. It turned out that the best pair for MSA was also the best for
APriD. With the step size y; in CSA, we denotes the step sizes in the three algorithms
as (Ctk, Pk Yk)-

Three problems were tested in our experiments. The first one is NPC in a finite-
sum form; the second one is QCQP whose objective and constraint are both in an
expectation form; the third one is QCQP with scenario approximation (i.e., with many
quadratic constraints). For the third problem, we also compared to PDSG-adp in [38],
for which the update is given in (1.10). All experiments were run on MATLAB installed
on a MacBook Pro with one 2.9 GHz Dual-Core Intel Core i5 processor and 16 GB
memory.

5.1 Neyman-Pearson classification problem

In this subsection, we compare the algorithms on solving instances of NPC (1.3). We
take the linear classifier 2(x; a) = x ' a and the convex surrogate ¢(z) = log(1 + €%).
This way, (1.3) reduces to

min Eflog(1 + e 2) | b = +1],
X

st. Eflog(14+¢* @) | b= —1]—c <0. (5.1)

Given a training data set with n T positive-class samples {aj‘ }7_, and n™ negative-class

samples {a; }:’; |» We can obtain and solve a scenario approximation of (5.1), namely,
T
1 — —xTa;‘
min fo(x) = — Eloga +eX ),
=

1 & -
st fix) = — Y log(l + KAy <o, (5.2)
n i=1
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Table 1 Characteristics of data sets and algorithm parameters

Data set d nt,n7) T 9,71 78) K (e, p, )

spambase [7] 57 (1813,2788)  —log(0.7)  (10,10,100) 105 (10,1, 10)
madelon [12] 500 (1300, 1300) —1og(0.6) (10, 10, 100) 105 (10,1, 10)
gisette [12] 2000 (3500, 3500) —1og(0.6) (30, 30, 100) 105 (10, 1, 10)

For the data sets, d is the number of features of each sample; n and n~ are respectively the numbers of

positive and negative samples. ¢ controls the level of the false-positive error in (5.2). J 0 and J! are the

batch sizes for evaluating the stochastic gradients of the objective and the constraint functions by the three

methods; J& is the batch size for obtaining a stochastic estimation of the constraint function value in CSA.

K is the total number of iterations. (o, ok, =(-& £ Yy Vk< K are constant step sizes
@k, pr> Vi) = ( VK’ VK ﬁ) = P

spambase

03F [—=APriD
02} |- = MSA
CSAL
O1F [orvrees CSA2

S 107 100

iteration time

u

w0 e ' 10f 107 100 107

iteration time

w0 10t

iteration

o3} [——APriD
? - = MSA %
Nl C8AL q
ga OAF faunenes CSA2
- 10° 10" 102 10° 10¢ 10° o 10% o 10" 107 10° )*
iteratio: time iteration time

Fig.1 The objective error (Left two columns) and constraint value (Right two columns) by three compared
methods on solving Example 5.1 with three data sets: Spambase(Top); Madelon(Middle); Gisette(Bottom).
The curve with legend “0” represents the zero-error curve

According to [27], we set ¢ = ¢ — \/%, where « is a positive constant in order to ensure
that the feasible solution of (5.2) is also feasible for (5.1) in a given high probability.

We use three data sets. The information of the data sets and the algorithm parameters
are given in Table 1. Before feeding the data sets into the methods, we preprocess the
data sets. We first normalize the data sets feature-wisely to have mean O and standard
deviation 1 and then scale each sample to have unit 2-norm.

We apply a deterministic method iALM [40] to compute the “optimal” solution
Xopt- The selected ¢ makes sure Xopy is feasible. The results, in terms of iteration and
time (in seconds), by all compared methods are shown in Fig. 1. The left two columns
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of Fig. 1 are the objective error at the output solutions. The right two columns show
the value of the constraint at the output solutions.

We can see from Fig. 1 that APriD performs the best on the data sets spambase and
gisette, in terms of either objective error or feasibility. For the data set madelon,
APriD is the fastest to achieve feasibility. We also note the lack of results for CSA1 at
the beginning iterations because B is empty. When CSA1 has results, it is better than
CSA2 since the former only takes ergodic mean on “good” solutions but the later one
takes ergodic mean on “all” solutions.

5.2 QCQP in expectation form

In this subsection, we conduct experiments on the QCQP in an expectation form:
. 1 2
min fo(x) = E[S || Hex — ¢z [I7],
xeX 2
11 T
s.t. fi(x) = E[EX Oex+a:x—bg] <0. (5.3)

Here, we set X = [—10, 10]", £ is a random variable, H € R”*" and ¢z € R” are
randomly generated, and their components are generated by standard Gaussian distri-
bution and then normalized. The entries of az € R" are also generated by standard
Gaussian distribution and then normalized; Q¢ € R"*" is a randomly generated sym-
metric positive semidefinite matrix with unit 2-norm; bg follows a uniform distribution
on the open interval (0.1, 1.1).

While running the algorithms, we generate He, ¢, Q¢, ag, bg based on the above
distribution once needed for function evaluation or gradient evaluation. Hence, the
function value and gradient direction are both unbiased estimations. At a weighted
iterate x, we generate another 10° samples to evaluate the objective value and the
constraint function value. Also, we obtain the “optimal” solution X,pt by using CVX
[9,10] to solve a sample approximation problem with the generated 10 samples.

We test the compared algorithms on QCQP instances of size (n, p) = (10, 5) and
(n, p) = (200, 150). In both instances, we run K = 5 x 10* iterations, and we set
batch size J = 10 for obtaining stochastic gradients of both objective and constraint
functions in all the three methods and J¢ = 100 for obtaining a stochastic estimation

of the constraint value in CSA. Step sizes are set to (ax, pi, Yx) = (% N f f)

for all k. The results in terms of iteration and time (in seconds) are shown in Fig. 2.
From the results, we see again that APriD significantly outperforms over other two
compared methods.

5.3 Finite-sum structured QCQP with many constraints

In this subsection, we test the algorithms on the QCQP with a finite-sum objective and
many constraints:
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= =
2 2
o o
R R
%43 10%] 1‘2 10%)
l APriD l
v { e, — 10t
\5 CSA1 \5
< ereens CSA2 3
0 10° 10" 107 10° 10¢ 0 10° 10? 10° 0°
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\>_</ * CSA1 5/ N
R L = : .
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Fig.2 The objective error (Left two columns) and constraint value (Right two columns) by three methods
on solving QCQP instances of (5.3)

min fo(x) = > Z I Hix — <1,

1
st fi(x) = sz Qjx+a;x—b; <0, j € [M]. (5.4)

We set X = [—10, 10]" in the experiment. H;, ¢; for i € [N] and Q;,a;, b; for
J € [M] are independently generated from the same distribution as He, ¢, QOs, ag, b
in Sect. 5.2. Two different-size QCQP instances are generated: one with (n, p) =
(10, 5) and the other with (n, p) = (200, 150). We set N = M = 10* in both
instances. Besides CSA and MSA, we also compare APriD with the adaptive method
in [38], called PDSG-adp. The update of PDSG-adp is shown in (1.10). For each
update of the compared methods, we randomly select 10 component functions of
the objective and 10 constraint functions for evaluating stochastic gradients, and for
CSA, we randomly pick 100 constraint functions to obtain a stochastic estimation of
g(x) = Z?’I 1[fj(¥)]+. In both instances, we run K =5 x 10* iterations with step

sizes (g, Pk, Vk) = (f :/lﬁ» f) for all k. We run PDSG-adp to K = 5 x 10*

iterations with o, = J_f’ Pk = ‘/T;, Vkand n =0.1.

For the smaller-size instance, we obtain the optimal solution Xept by CVX [9,10];
for the larger one, we use as an estimated optimal solution Xep¢ that is feasible and
has the smallest objective value among all iterates from APriD, CSA, MSA and
PDSG-adp. We report the objective error, the averaged constraint violation mea-
sured by % Zﬁ/lzl[ fi(X)]+, and the maximum constraint violation measured by
max jerm][f;j (X)]+. The results in terms of iteration and time (in seconds) are shown in
Fig. 3. From the results, we see again that APriD outperforms over the other methods
in terms of any of the three measures we use.
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n=10,p=5

104 | [=— APriD
— =MSA
CSAL

| fo(%) — fo(Xopt)]

iteration iteration

[fo(x) — fo(Xopt)]

| fo(x) = fo(xopt)|

iteration

| fo(x) — fo(Xopt)]

\
[}
:
o

10° 107

time time time

Fig. 3 The objective error (Left), averaged constraint violation (Middle), maximum constraint violation
(Right) by four methods on solving QCQP instances of (5.4). Rows 1 and 3 are with respect to iteration;
rows 2 and 4 are with respect to time (in seconds)

5.4 Computing time comparison

In Table 2, we compare the total running time (in seconds) of all the tested methods in
Sects. 5.1-5.3. From the table, we see that although APriD needs extra computation in
(2.3)—(2.7), it takes similar amount of time (and thus has similar per-iteration cost) as
MSA in all examples and PDSG-adp for the example in Sect. 5.3. CSA always takes
more time than the other methods because of the extra estimation of g(x*) in each
iteration.
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Table 2 Total running time (in seconds) of all the methods that are tested in Sect. 5.1-5.3

Example Data or size APriD MSA CSA PDSG-adp
NPC (5.2) spambase 60.3 58.8 67.1 -
madelon 175.5 144.6 167.4 -
gisette 983.8 954.8 1416.6 -
QCQP (5.3) (10, 5) 78.8 79.6 177.1 -
(200, 150) 4451.9 4722.6 17592.7 -
QCQP (5.4) (10, 5) 40.7 30.0 422 29.7
(200, 150) 1964.2 1966.0 3638.1 2087.2

PDSG-adp is only applied to QCQP (5.4)

spambase gisette

“H—p=100
— _f|7 -p=10
: p=1
..... —0.1
2 I

0w

w0

10 10° 1
iteration
n

100 10! 0t 00 10t 00 10 10! 0t 10 00 10 10 0* 10t 100 o' 10 10! 0t

iteration iteration iteration iteration

Fig.4 The objective error and constraint violation by APriD with & = 10, @ = 10 and different values of p
on solving instances of NPC (5.2) with data sets spambase (TopLeft) and gisette (TopRight) and on solving
instances of QCQP (5.3) with (n, p) = (10, 5) (BottomLeft) and (n, p) = (200, 150) (BottomRight)

5.5 Effect of hyper-parameters on algorithm performance

In this subsection, we test how the choices of «, p (in the constant step size (ax, pr) =
(%, %) for all k < K) and 6 affect the performance of APriD. For all tests in this
subsection, we apply APriD to solve instances of NPC (5.2) with the spambase and
gisette data sets and QCQP instances (5.3) with (n, p) = (10, 5) and (200, 150).
It turns out that APriD can perform reasonably well for a wide range of values of the
hyper-parameters.

First, we test the effect of p by fixing & = 10 and « = 10. From the results in
Fig. 4, we see that the algorithm performs similarly well with different values of p.
The difference is most obvious for the instance of NPC on the spambase data set.
Zooming in details of the curves, we can observe that with the biggest p = 100, the
objective error decreases slowest but the constraint value decreases fastest, and the
convergence behavior with the smallest p = 0.1 is exactly the opposite.

Second, we fix & = 10 and test the effect of («, p). For simplicity, we fix the product
ap = 10 and test the algorithm with different pairs of («, p). The results are shown in
Fig. 5. It turns out that the algorithm with a larger « tends to converge faster in terms
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gisette

7
°
|
5
I,

a=2p=5
..... a=1,p=10

a=2p=5
a=1,p=10

10(5) ~ foGeops)

iteration
n = 200, p = 150

\afu(mx) - fg(xopt)‘

10" 107 10° 104 10° 10" 107 10° 10¢ 10° 10" 10? 10° 104 10° 10" 107 10°
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Fig.5 The objective error and constraint violation by APriD with different pairs of («, p) and afixed 6 = 10,
on solving instances of NPC (5.2) with data sets spambase (TopLeft) and gisette (TopRight) and on solving
instances of QCQP (5.3) with (n, p) = (10, 5) (BottomLeft) and (n, p) = (200, 150) (BottomRight)

of both the objective error and the constraint violation. Nevertheless, the influence by
the choice of (o, p) is not severe, and the algorithm with all four different pairs of
(e, p) can perform reasonably well.

Finally, we test the effect of 6 by fixing « = 10 and p = 10. We vary 0 €
{10_4, 1073,1072, 1071, 1, 10}. The results are shown in Fig. 6. For the instances
of NPC (5.2), there is almost no difference for 6 € {0.1, 1, 10}. This is probably
because these values of 6 do not trigger the clipping. For the spambase data set, the
best results appear to be given by & = 1072 and # = 1073, The algorithm can still
perform well with & = 10~, but the corresponding feasibility curve is less smooth.
Similar observations are made to the gisette data set. For QCQP instances of (5.3),
the performance of the algorithm is more affected by the value of 6. The algorithm
performs better as 6 decreases from 10 to 1072, in terms of both suboptimality and
infeasibility. However, for the case of n = 200 and p = 150, the infeasibility increases
rapidly in the beginning iterations. These observations match with our discussion in
Remark 2, i.e., the best value of # should not be extremely small.

6 Conclusions

We have proposed an adaptive primal-dual stochastic gradient method (SGM) for solv-
ing expectation-constrained convex stochastic programming. The method is designed
based on the Lagrangian function. At each iteration, it first inquires an unbiased
stochastic estimation of the subgradient of the Lagrangian function, and then it per-
forms an adaptive SGM update to the primal variables and a vanilla SGM step to
the dual variables. The method has also been extended with a modification to solve
stochastic convex—concave minimax problems. For both methods, we have established
the convergence rate of O(1/+/k), where k is the number of inquiries of the stochas-
tic subgradient. Numerical experiments on three examples demonstrate its superior
practical performance over two state-of-the-art methods.
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spambase gisette

w0 L T S S T w0 w0 w0t w0 ot

107 10° 107 10%
iteration iteratio iteration iteratio
n=10,p=>5 n = 200, p = 150
=
2w
xc K S
= [[—#=o0.0001 " f—6=0.0001
=< o7 -0 =0.001 [ — -0 =0.001
| 0=001 | 0 =0.01
PR | . 0=01 [% = 1 CoJL\Mey e 0=0.1
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Fig. 6 The objective error and constraint violation by APriD with « = 10,p = 10 and 6 €

{1074,1073,1072, 107, 1, 10} on solving instances of NPC (5.2) with data sets spambase (TopLeft)
and gisette (TopRight) and on solving instances of QCQP (5.3) with (n, p) = (10, 5) (BottomLeft) and
(n, p) = (200, 150) (BottomRight)
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A Proof of Lemma 2

Proof First, consider the case of non-constant primal step size. By n; = Zle 1o ,3{7]
and the n-update in (2.8), we have n; = Zlek aiﬁi_k, k € [K], and thus the p-update
becomes

_ Pk—1
- + Qf—1 _ :
Pt S wp™

Pk

By the above equation, we have for2 < j < K,

Pj-1 Pj-1 Pj-1
pj = — < — < = pj_1.
DBt = s T B — s T B =t !

1+ = T~ =
S By ! aj1 =i B i
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where the inequality follows from the non-increasing monotonicity of {« j} _, and

B1 € (0, 1). Hence, {p; }]:1 is a non-increasing sequence. Using (2.8) again, we have
for2 <j<r<K,

o Pj-1 - pj—1 D e Olk,Bl
pj = @ = @1 —G—nPi-1

At I anhy At Yijouy ! Zk j—1 9Py

which clearly implies the inequality in (2.11).
For j = 1, (2.12) holds because 8 € (0, 1). To show it holds for 2 < j < K, we
rewrite o; and obtain

i = Pj-1 > “kﬁ1 0;
J = o] k—(—-1) "I~ 1
i+ P apy Zk j—1 Py
K k—j k=(j—1) K -
> k=) @B PIANIREY: S a2
G-~ k(12>x"X—K 1
Zk i 1ak,3 Zk j—2 By 2 k=1 By
_% %
_ Y By P = P (= VB L
Yo B! Yo B! o1 ar(d=p1)

where the third equation recursively applies the second equation, and the inequalities
hold by the two inequalities in (2.10).

Now, consider the case of constant primal step size, i.e., «; = aj forall j € [K].
We can prove n; = % for all j € [K] by the induction, and thus

Pj—1 _ Pj—1
ﬂl+m B+ (—p1)

pj = =pj-1, Yji=2,

which completes the proof. O

B Proof of Lemma 3
Proof As (x*, z*) satisfies the KKT conditions in Assumption 3, there are v fi(x*),
Vi € [M] such that

M

=Y V) €3 fox") + Nx(x).
i=1
. . % M * *

From the convexity of fpand X, itfollows that fi(x)— fo(x*) > —( Yoic1 4V fi(x¥), x—
x*),‘v’x € X. Since f; is convex for each i € [M], we have f;(x) — fi(x™) >

(@f,-(x*), x — x*). Noticing z* > 0, we have for any x € X,
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M M
fo®) = fox*) = =" ZHVfi(x*), x —x*) = = Y (fi(x) — fix").

i=1 i=1

Because z} f;(x*) = 0 for all i € [M], we obtain (3.7).
Furthermore, for any z > 0, we have (z, f(x*)) < 0 from f;(x*) <0, Vi € [M].
Hence, combining with (3.7), we have the inequality in (3.8). O

C Proof of Lemma 4
Proof For ' given in (2.4), we have |[u¥|| < # and thus each coordinate of U* is also

less than 6, i.e. —61 < uf < 01. Recursively rewriting the updates in (2.3), (2.5) and
(2.6) gives

k
m = gm (1 - pout =1 - Y BT, C.1)
j=1
k . .
Vo= vl (1= @) =1 -8 > B @) (C.2)
j=1
= max{Vk_l, vk} = max v/, (C.3)
JElk]

here, m® = VO_ =3 = 0. By (C.2) and —01 < W* < 01, we have v¢ < 02(1 —
B2) 2’];1 85771 < 621. By (C.3), we further have ¥ < 621. Thus E[I#)!21h] <
n6 holds. .

Notice ]E[||mk||2vk)7l/2] =E[| @TW I>]. We can lower bound v¥ by keeping only
the last term in (C.2) since (/)% > 0,i.e. vF > (1 — ) (@*)2. By (C.3), we also have

vk > (1 — B2) max e[ (@)%, Plugging the inequality and (C.1) into E[ | m* ||§Vﬂ(),1 2]
gives

2
m*

E
H (a- ﬁz)mane[k](ﬁj)2)1/4

ko k=i
=1 By W

mane[k] | ﬁj |]/2

E[llm* %, 1] <

2

_ (1=p)?
=B

(C4)

2
by the Cauchy-Schwarz inequality.

k k—j i
/:1/31 u/

Then we bound || —=——=—7
max ek [u/|

ko pk—ji i p?
H Y= B v

max ez | 0/ |1/2

_ Xk:(ﬁk_")l/z (Br ) w
j=1

1 i
max ey | 0/ |1/2
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k k=jN120 %
k—j\1/2 By )/"ua >
(Z<(ﬁ ) ) ><; manE[k] |ﬁ] |1/2
w :

- (X
=(Z

) (e
i) (2

2

)

1/2

max e | w0 172

)

(C.5)

where we use max e | u |V 22| ul |V 2 for J € [k] in the second inequality. For

u/
|ﬁj ‘1/2

2 2

2 7 . . . k .
, we have W’ given in (2.4) and notice max {1, “';—”} is a scalar.

u/ B Il
5| || =m0 B ],
max | 1, 1071
||u | Jalul |, if u/| <6,
ax \/_ o = 12
Tl = —ﬁ”;]” Cif ud| > 6.

So we get H ﬁ
(C.5) back to (C.4).

E[m* 1% 1]

2 .
<.n (9 + W) Plug the inequality back to (C.5), and then

1— 2 k k . jn2
< (1( /31)1/2 (Z:B )(Zﬂf ]ﬁ<9+ ||119|| ))
— B2) e e
(1= p)? Yol E[Iw)?]
(1—ﬂ2)‘/2<2’3 ><;ﬁ1 ,(9+ Z >>
f(l B1)? E[lu/|?]
/32)‘/2<Zﬂ ) max (9+ 5 )

ﬁ(@ + max/el"+E[”“j”]>
=gz

where we have used ZI;_:] By < > Bl =
inequality. With (3.2), the proof is finished.

ﬁ for B1 € (0, 1) in the last

O
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D Proof of Lemma 5

Proof From the projection (2.7) in the primal variable update, we have for k € [K]
and Vx € X,

0> <Xk+1 —x xMH = (Xk _ akmk/(vk)l/2>>({ﬂ()l/2

= <xk+1 — X, (’\7]‘)1/2(7(1“rl — xk) + akmk). (D.1)
The first term of the right side equals to

<Xk+l —x, G912 (Xk+1 _ Xk)>

1
= 5 (”Xk+l H 412 T ” XH??")'/Z + ”Xk+l _ xk”??k)l/z) . (D.2)
Recursively rewrite <xk+1 — X, mF ) with the update (2.3)

(xFH! —x, mk> (D.3)
=< —x*, m k)+(1—,31)<x —xu)+,31(xk—x,mk_l>
:< k+1 X , k>+(1 —,81)<X — X, uk)

+ B ([ = x N mt ) (= T - x ek )

+/3]1‘_1 ((x2 —x',m )+ (1 —ﬂl)(x —Xu >) +l3]f<xl _X’m0>

k
= Zﬁf_j ((Xj+1 _ Xj, mj) +(1— ﬂl)(xj — X, llj>), (D.4)

where the second equation recursively applied the first equation and the last term
Bf(x! — x, m®) vanishes because m® = 0. Plugging Egs. (D.2) and (D.4) into the
inequality (D.1) gives

OlkZ,Bk /(Xj+1 _X] mj)—{—(l —ﬂl)( —x, uj))

Jj=1
1 2 2 2
=5 (‘ [x+ —x] @2 [x* —x] )12 = [xHt —x* H(vk)m) - (DS)

Sum the above inequality (D.5) for k = 1 to z. About the left side, we have
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Zckaﬂ (x”l xf,mf)> 2:(()(14rl x/ mJ)Zak,B

j=l1 =Jj
I ] A > B PR
“Hl/2 k=j kP j 2 ) k—j
> — — — m/ . o
(- - B ) o
(2.>10) ! B [+t —x/ ||?vj)1/2 B 0‘,2'||mj “?vj)l/z) D.6)
- 2 2(1—p1)? '

j=1

About the right side of the sum of the inequality (D.5), by (?")1/2 > (?7"_1)1/2 >0,
k € [t] since the iteration (2.6), and Assumption 1, we have

t
1
> 5 (1 =y I = [

k=1
1
5 ( ”X[-H _X”("f)l/z +Z ”X _X”("k)l/Z @112 + ”X X”?Vl)l/Z)
k=2
B2 B2
=7 <Z |@HY2 = FHY2] + @hH2, ) @) o)

Thus with inequalities (D.6) and (D.7), the sum of the inequality (D.5) fork = 1to ¢
becomes

%/ Xj“?vj)l/z “,2'||mj“?vj)1/2>

Z“kZﬁl Ja-po +Z(‘ 2 20112

2
< B, - L3 ot e
k=1

Eliminating the term ||xj o x/ || @iy1/2 on both sides and exchanging the order of
sums in the first term give

: 5 o w2,
1—=BD)_ (x —xu Zakﬁk T<=- ”(‘7’)1/2“1"' — 12(11” ﬂlﬂz(\) -

Then take the expectation on the above inequality. With the bounds given in Lemma 4,
we have

=g Y B[ —x )] 3 cupf ™
=1 =i

5
t o a/ne+E)
no B2 Zj:laj (1_,32)19/2

=72 21— p)°
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- no B2 n Vn( + %) Z;:l a?
-2 201=p*(1=p)'/2°

where the last inequality holds because we notice Ek defined in (3.2) is nondecreasing
with respect to k. O

E Proof of Lemma 6

Proof For the dual variable is projected to the positive region in the update (2.9), it
follows that for any z > 0, j € [K],

<z~/+1 —z,2/t — (2 + ,ojwj)> <0.
It could be rewritten as

(zj+1 —z, 7/t — zj) < <Zj+1 — 1z, ,ojwj)

:(sz—zj,pjwj)—l-(Zj—z,pjwj). (E.1)

For each term of the above inequality (E.1), we have

= ) = S (o 2 =l - o =)

2
)

ol = P

(zj -z, wj> = <zj —z,w —f(xj))+<zj —1z, f(xj)).

Plugging the above three terms into the inequality (E.1) and eliminating || it — 7/ || 2
give

(I =217 o) = 2w W R~ 2 )
2,0j 2
Rearranging the above inequality gives the inequality (3.10). O

F Proof of Lemma 7

Proof For any j € [K], we have
(xj — X, uj> = (xj — X, @x[,(xj, z~i)) + <Xj — X, w — @xﬁ(xj, zj)). (F.1)
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Here Vx£(x/,2/) = E[u/ | H/] € 9xL(x/,2/) according to Assumption 2. By the
convexity of f;(x),i =0, 1,..., M, we know L(X, z) is convex with respect to x and

(x/ —x, Vs L(x/, 2))> L 2)) — L(x, 2)) = fo(x)) = fox)+(z/, £(x)))— (2, £ (x)).
Plug the lower bound of (z/, f(x/)) given in Lemma 6 to the above inequality.

(xj — X, 6xﬁ(x~i, zj)>
. . . 1 . .
= foo) = fo00 = (&7, 800} fo. 0] = ([ =2~ o7 )
J
— LW = (] — 2w — £,
Summarizing (F.1) with weights Zf(: j Ok ,Bi(_j for j € [t], and plugging the above

inequality give

t

'
Z (xj — X, uj) Z akﬂ]f_J
k=j

j=1
t
= 37 (100! = o0 = ol £00) + b 4 ([T =] = o o)
j=1 !
. t .
— '%j”wj ||2 - (zj —z,w — f(xj)> —|—<xj —x,uf — Ve L(x/, zj)>) Zakﬁfﬁ.
k=j
(F2)
Summation of the term about ”zj +_ z||2 — ||zj — Z||2 can be lower bounded:
to _ R t
E:;—(W”* 2> = 2 —2]*) Y st
j=1 P =y
Y ST WP LN A W
2p1
Zk 1 % ﬂk u=D Zi:'“kﬂf_j i 2
+Z( ) | TR
-1 Pj
2.11 ! k=1
R - e
201 Pt
2.10 L q)f?
@10 a2 — 2" Ry (F3)
2p1(1 = B1)
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Summation of || w/ || 2 can also be lower bounded

P2
- 210 pja;|w|
Z 2(1-81)

Jj=1

P1 211w 112
j=1

_Z'OJ w1| ZO‘

2.12)
>

Plugging the above two inequalities (F.3) and (F.4) into the inequality (F.2) gives

t

Z (xj — X, uj) Z akﬂiﬁ]
k=j

j=1
t t
= " (folx) = fox) — (27, £00) + (2. £)) D}

j=1 k=j
Rl o oo P >y a2w |2
2011 - B1) 2a1(1-p1)?

+Z( J—z, W —£(x))) + (x/ —x, 0/ = Vy L(x/, zU)Zakﬂ

k=j

Then taking the expectation on the above inequality and using Assumption 2 to bound
E[”Wj ||2] give the result (3.11). O

G Proof of Lemma 8

Proof If (x, z) are deterministic, we can prove (3.13) by the conditional expectation
and Assumption 2, i.e.

B[(# - 2w — ()| =B [E[(a — 2w/ — 1) | 1]
—E[< — 2. Blw/ — £’ | H4] >] E[(zf —z,0>] —0,
E [(xf' —x,w — VL, zf))] —E [E[(xj —x,w — VL, 7)) | Hk]]
_E [<xf — X, E[w/ — Y L(x/, 7)) | Hk]>] —E [(xj _x, 0)] —0.
Then we prove the stochastic case through considering the left two terms of (3.12),
separately, in a similar way. Let 7' =z, 2/*! =2/ — y;(w/ —f(x/)), thenz/ — 7/ is

known given H* and we have E[(z/ —z/, w/ —f(x/))] = 0like the above deterministic
case. Thus we have
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Zy] I —z,w —f(x)))]

t

_DJ A
_ ;zﬁ[na —2’+ |7 -7 = |-

— 5 (Bl ~ 1)+ iE[an‘ ~ @) - B{la -1
(]E”z ) —l—Zy [w/ — )| ])

%(E 2" —2|] +Zy [w/ ] )S%(E[Hzl—z”2]+lﬂé)ﬁ2>’

(G.1)

=

N =

IA

where the first inequality holds because we drop the nonpositive term and z! = z';

the second inequality holds because for any random vector w, E[”w — E[w] ||2] <
E[HWHZ], and here E[w/ | H/] = f(x/) for j € [t]; and the last inequality holds by
Assumption 2. B

For the summation of yj]E[(xj —x,u — Vxﬁ(xj, zj)>], let X' = x!, %/t =
%/ + Vi (uj — @xﬁ(xj, zj)), then IE[(X-/ —%/,u — @xﬁ(xf, zj)]> = 0and

— Z y;E —x,u/ — Vi L(x/, zj))]
=— Z yiE[(& —x, 0/ = VL 7)) = Y E[[® —x, & — %/ )]

t
ZlEhxf—x\ P = fx—x]
]=12
t

s CEUE W (LR R (Rl

| S 1

< 5( + ZVZE Ju/ — Vxﬁ(X’,ZJ)HZ]) 2("32 + ;VQE Ju/] ])
1 1 Sy

§§< +(max]E |uf|| )Zyl> §§<nBZ+Pz‘ZyJ-2>, (G.2)

J=1 Jj=1
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where the first inequality holds because we drop the nonpositive term and (3.1); the
second inequality holds because E[u/ | H/] = VxL(x/,z) for j € [t]; and the last
two inequalities holds by Assumption 2 and (3.2).

Adding (G.1) and (G.2) gives the result (3.12). O

H Proof of Lemma 9
Proof Let x = x* in (3.17), we have f(x*) < 0 and thus
E[ fo®) — fox*) + (2. £®)] < €1 + «oE[| 2] °]. (H.1)

Since fj(X) < [fj(X)]+ and z* > 0, we have from (3.7) that
M
S L < fo® — fox). (H2)
=1

Substituting (H.2) into (H.1) with z given by z; = 1 + z’; if fj(X)>0andz; =0
otherwise for any j € [M] gives

M M
—E[ Y10 | +E[ Y0+ 01 ] < e+ eof 12

j=1 j=1

Simplifying the above inequality gives (3.19).
Letting z; = 323‘. if f;(x) > 0and z; = 0 otherwise for any j € [M]in (H.1) and
adding (H.2) together gives

M
_ €1 e 2
E[X;zjf[fj(x)h] <5+ 7||z* I (H.3)
j=
Hence, by the above inequality and (H.2), we obtain
_ N €1 90 42
~E[fo®) ~ fox)] = 5 + 2" (H.4)

Thus E[[ fo®) — fox)]-] < & + %2 |2*|*. In addition, from (H.1) with z = 0, it
follows E[fo()_() — fo(x*)] < €. Since | a |= a + 2[a]- for any real number a, we
have

E[| fo®) — fox*) | ] = E[fo® — fox)] +2E[[ fo%) — fo(x*)]-]

2

)

< 21 + 9¢p | z*

which gives (3.18).
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Furthermore, let z = 0 in (3.17) and take X € argminy y fo(X) + <i, f (x)). By

equation (2.2), we have E fy(X) < Ed(z) + €1, which together with (3.6) gives

E[d(z") — d@)] < E[ fox*) — fo(X)] + €. (H.5)

Combining the above inequality with (H.4) gives (3.20). O

| Proof of Corollary 4

Proof For the step sizes {« j}le, we have

Similarly, for {p;}5_,, it holds Y"1, p? <
result of Theorem 3 and note log(K + 1) >

K K 1 K+2 1 \/_ f
ai=o — >« —ds =2a(WVK +2 —-+2),
,Z:: ! jz::lx/J-l-l /s.:2 NG
K ) 2K 1 5 K+11 )
Qs =« — < —ds = a”log (K + 1).
jgl J jgl‘]-i_l /_;:1 s g( )

p?log (K + 1). Plug these bounds to the
1 for K > 2. We finish the proof. O
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