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Abstract. In this paper, we study the stability of a numerical boundary treatment
of high order compact finite difference methods for parabolic equations. The compact
finite difference schemes could achieve very high order accuracy with relatively small
stencils. To match the convergence order of the compact schemes in the interior do-
main, we take the simplified inverse Lax-Wendroff (SILW) procedure [24, 14] as our
numerical boundary treatment. The third order total variation diminishing (TVD)
Runge-Kutta method [18] is taken as our time-stepping method in the fully-discrete
case. Two analysis techniques are adopted to check the algorithm’s stability, one is
based on the Godunov-Ryabenkii theory, and the other is the eigenvalue spectrum vi-
sualization method [26]. Both the semi-discrete and fully-discrete cases are investigated,
and these two different analysis techniques yield consistent results. Several numerical
experimental results are shown to validate the theoretical results.

1. Introduction

The finite difference approximations for derivatives are one of the simplest and oldest

approaches to solve differential equations. To make a high order finite difference scheme

work, one must take special treatment near the domain boundary, i.e. evaluating the

numerical solution on the ghost points properly. As mentioned in [22], there exist two

difficulties in obtaining high order accurate and stable numerical boundary conditions.

One is the proper evaluation of the ghost point values located outside the computational

domain which are used by the interior schemes. The other is that the grid points may not

coincide with the physical boundary exactly, especially when a Cartesian mesh is used

to solve problems on a complex geometry. There are many methods in the literature

for handling boundary conditions on irregular domains, such as the body-fitted meshes

[2, 8], the embedded boundary method [10, 21], the inverse Lax-Wendroff method (ILW)

[22] and the simplified inverse Lax-Wendroff method (SILW) [4, 11, 12, 13, 14, 23, 24,

26] and so on. For these approaches, stability is a major concern especially when the
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cell intersects with the physical boundary, referred as the “cut-cell” problem. In finite

volume methods, this leads to a restricted time step for the sake of stability, and the

so-called h-box method is developed to overcome this difficulty, see [1] and the references

therein. In this paper, we focus on the stability of the SILW procedure for high order

compact finite difference schemes when solving diffusion problems. The SILW method

uses Taylor expansion at the boundary point to get the approximation values on the ghost

points. Derivatives at the boundary points are obtained by the ILW procedure and the

interpolation polynomial, which will be explained in detail in later sections. There exists

a vast variety of methods to get the interpolation polynomials. In the previous work

[13, 14], the interpolation polynomial was obtained by the function values at the interior

points and the boundary points. It would seem reasonable to expect the same method

also works for the compact schemes. However, it turns out the extension is not so easy

and we cannot find a stable scheme by the previous polynomial construction methods.

To make it work, we choose the Birkhoff interpolation method to get the interpolation

polynomials in this paper.

General stability analysis for initial boundary value problems (IBVP) on a bounded

domain can be performed by the normal mode analysis, which is based on the Laplace

transform. This method was firstly presented by Godunov and Ryabenkii [7] and then

developed by Kreiss [9] and Osher [15]. The original Godunov-Ryabenkii theory only

provided a necessary condition for stability. Later, Gustafsson, Kreiss and Sundström

developed a necessary and sufficient condition for stability for the first order linear hy-

perbolic systems in one space dimension [5], which is referred to as the GKS theory.

For parabolic problems, such stability analysis was formulated in, e.g. [16, 20, 25].

Later on, the semi-discrete case was studied by Strikwerda in [19]. Theoretically, the

Godunov-Ryabenkii method leads to necessary conditions for stability, but in a vast

number of cases they also appear to be sufficient conditions [20]. However, for high

order schemes the Godunov-Ryabenkii method is not so advantageous due to the high

algebraic complexity. In [26], the authors proposed an alternative technique by visu-

alizing the eigenvalues spectrum of compact differencing operators, and they obtained

consistent stability conclusions with the Godunov-Ryabenkii analysis. In our previous

work [13, 14], both the GKS analysis and eigenvalue analysis were used to analyze stabil-

ity of high order upwind-biased schemes for hyperbolic equations and high order central

difference schemes for diffusion equations, and the two methods produced consistent

stability conclusions. In this paper, we continue to extend the work to high order com-

pact schemes for parabolic equations with Dirichlet or Neumann boundary conditions.

The compact finite difference schemes are taken as our interior schemes, and the SILW
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procedure is performed near the boundaries. With Godunov-Ryabenkii analysis and

eigenvalue analysis, we report on the minimum number of spatial derivatives which must

be obtained by the ILW procedure for the sake of stability for schemes of various order

of accuracy. Although we only consider pure diffusion here, our eventual objective is to

use the methodology for possibly convection dominated convection-diffusion equations,

thus justifying the choice of explicit time-stepping methods throughout this paper.

This paper is organized as follows. In Sect. 2, we first give an overview of the

discretization of the problem, that is, the high order compact finite difference schemes

and the third order total variation diminishing (TVD) Runge-Kutta time discretization

method used in the fully-discrete problems. The SILW procedure is introduced in detail

in this section as well. In Sect. 3, stability analysis is performed both for the semi-

discrete and fully-discrete cases by the Godunov-Ryabenkii method and the eigenvalue

spectrum visualization method. In Sect. 4, numerical examples are given to demonstrate

and validate the results of the analysis. Concluding remarks are given in Sect. 5.

2. Scheme formulation

In this section, we list the high order compact finite difference schemes used as the

interior schemes considered in this paper. The third order explicit total variation di-

minishing (TVD) Runge-Kutta time discretization method [18] is used to get the fully-

discrete schemes. We also give a detailed introduction of the SILW procedure for the

boundary treatments.

2.1. High order compact difference schemes. Consider the one-dimensional linear

scalar heat equation

(2.1)

{
ut = c uxx, x ∈ (a, b), t > 0,

u(x, 0) = u0(x), x ∈ (a, b),

with appropriate boundary conditions. For instance, we can take Dirichlet boundary

conditions as

(2.2)

{
u(a, t) = g1(t), t ≥ 0,

u(b, t) = g2(t), t ≥ 0,

or Neumann boundary conditions as

(2.3)

{
ux(a, t) = g3(t), t ≥ 0,

ux(b, t) = g4(t), t ≥ 0,

or a suitable combination, where c > 0 is restricted by the well-posedness of the IBVP

(2.1).
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The interval (a, b) is discretized by a uniform mesh as

(2.4) a+ Ca∆x = x0 < x1 < x2 < · · · < xN = b− Cb∆x

with the uniform mesh size ∆x = (b − a)/(Ca + Cb + N), Ca, Cb ∈ [0, 1). {xj =

a+(Ca+ j)∆x, j = 0, 1, 2, · · ·N} are the grid points. Note that the first and last points

x0 and xN are not necessarily aligned with the boundary, and we choose this kind of

discretization on purpose.

In [17], the authors presented the fourth order compact schemes for the discretization

of uxx, in which the stencil only consists of three points in the formula. Therefore, the

scheme can be efficiently implemented by solving a tridiagonal matrix. Based on the low

order compact schemes, we can derive the compact schemes for arbitrary even order in

a uniform mesh.

The high order compact schemes considered in this paper are listed below.

• The fourth order scheme

CF1:

1

12
(uxx)j−1 +

5

6
(uxx)j +

1

12
(uxx)j+1 =

1

∆x2
(uj−1 − 2uj + uj+1)

• The sixth order schemes

CS1:

2

15
(uxx)j−1 +

11

15
(uxx)j +

2

15
(uxx)j+1

=
1

∆x2

( 1

20
uj−2 +

4

5
uj−1 −

17

10
uj +

4

5
uj+1 +

1

20
uj+2

)

CS2:

−
1

240
(uxx)j−2 +

1

10
(uxx)j−1 +

97

120
(uxx)j +

1

10
(uxx)j+1 −

1

240
(uxx)j+2

=
1

∆x2
(uj+1 − 2uj + uj−1)

• The eighth order schemes

CE1:

9

56
(uxx)j−1 +

19

28
(uxx)j +

9

56
(uxx)j+1 =

1

∆x2

(
−

23

10080
uj−3 +

51

560
uj−2

+
21

32
uj−1 −

751

504
uj +

21

32
uj+1 +

51

560
uj+2 −

23

10080
uj+3

)

CE2:

23

3780
(uxx)j−2 +

172

945
(uxx)j−1 +

131

210
(uxx)j +

172

945
(uxx)j+1 +

23

3780
(uxx)j+2

=
1

∆x2

( 31

252
(u)j−2 +

32

63
uj−1 −

53

42
uj +

32

63
uj+1 +

31

252
uj+2

)
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CE3:

31

60480
(uxx)j−3 −

73

10080
(uxx)j−2 +

2171

20160
(uxx)j−1 +

12067

15120
(uxx)j

+
2171

20160
(uxx)j+1 −

73

10080
(uxx)j+2 +

31

60480
(uxx)j+3 =

1

∆x2
(uj+1 − 2uj + uj−1)

• The tenth order schemes

CT1:

(uxx)j =
1

∆x2

( 1

3150
uj−5 −

5

1008
uj−4 +

5

126
uj−3 −

5

21
uj−2 +

5

3
uj−1 −

5269

1800
uj

+
5

3
uj+1 −

5

21
uj+2 +

5

126
uj+3 −

5

1008
uj+4 +

1

3150
uj+5

)

CT2:

8

45
(uxx)j−1 +

29

45
(uxx)j +

8

45
(uxx)j+1

=
1

∆x2

( 43

226800
uj−4 −

74

14175
uj−3 +

247

2025
uj−2 +

1126

2025
uj−1

−
4361

3240
uj +

1126

2025
uj+1 +

247

2025
uj+2 −

74

14175
uj+3 +

43

226800
uj+4

)

CT3:

43

3220
(uxx)j−2 +

167

805
(uxx)j−1 +

899

1610
(uxx)j +

167

805
(uxx)j+1 +

43

3220
(uxx)j+2

=
1

∆x2

( 79

28980
uj−3 +

519

3220
uj−2 +

213

644
uj−1 −

2867

2898
uj +

213

644
uj+1

+
519

3220
uj+2 +

79

28980
uj+3

)

CT4:

−
79

585900
(uxx)j−3 +

1873

195300
(uxx)j−2 +

7873

39060
(uxx)j−1 +

33863

58590
(uxx)j

+
7873

39060
(uxx)j+1 +

1873

195300
(uxx)j+2 −

79

585900
(uxx)j+3

=
1

∆x2

( 289

1860
uj−2 +

176

465
uj−1 −

331

310
uj +

176

465
uj+1 +

289

1860
uj+2

)

CT5:

−
289

3628800
(uxx)j−4 +

149

129600
(uxx)j−3 −

8593

907200
(uxx)j−2 +

101741

907200
(uxx)j−1

+
57517

72576
(uxx)j +

101741

907200
(uxx)j+1 −

8593

907200
(uxx)j+2 +

149

129600
(uxx)j+3

−
289

3628800
(uxx)j+4 =

1

∆x2
(uj+1 − 2uj + uj−1)

In these formulas, uj is the numerical approximation of the exact solution u at the grid

point xj , and (uxx)j is the numerical approximation of uxx at xj . Note that the tenth

order scheme CT1 is not a compact scheme, it is a central difference scheme which
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has already been analyzed in [14]. We put it here for comparison with other compact

schemes. Then we obtain a semi-discrete interior scheme written as

Ut = L(U) ,(2.5)

where L is discrete spatial operator.

2.2. Time discretization. For the fully-discrete scheme, we take the third order ex-

plicit total variation diminishing (TVD) Runge-Kutta method [18] as our time-stepping

method to discretize (2.5) in time. We briefly introduce it below for clarity.

From the time level tn to tn+1, the third order TVD Runge-Kutta method is given by

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)),

where ∆t is the time step. Other types of time discretizations can also be analyzed along

the same line.

To avoid order reduction, special attention must be paid when we impose time-

dependent boundary conditions in the two intermediate stages of the Runge-Kutta

method [3]. With the given boundary condition g(t), the corresponding boundary con-

ditions are given as follows.

un ∼ g(tn),

u(1) ∼ g(tn) + ∆tg′(tn),

u(2) ∼ g(tn) +
1

2
∆tg′(tn) +

1

4
∆t2g′′(tn) .

2.3. The simplified inverse Lax-Wendroff procedure. The main idea of the in-

verse Lax-Wendroff procedure (ILW) is repeatedly using the partial differential equation

(PDE) and boundary conditions to convert spatial derivatives to time and tangential

derivatives of the given boundary condition. With these spatial derivatives, we then

obtain the values of the ghost points by Taylor expansion. However, the algebra of the

ILW procedure could be very heavy for fully nonlinear 2D systems. To overcome this

difficulty, a simplified ILW method (SILW) was proposed in [24], with the ILW proce-

dure to obtain the lower order spatial derivatives and extrapolation to obtain the higher

order spatial derivatives. As the left and right boundaries are completely symmetric for

parabolic equations with Dirichlet and Neumann boundary conditions, we will take the

left boundary x = a as an example to introduce the SILW procedure for (2.1) briefly.
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2.3.1. SILW procedure for Dirichlet boundary conditions. In this subsection, we discuss

the IBVP (2.1) with the boundary condition (2.2). Assume the inner approximation is

a d-th order scheme. Taylor expansion at the boundary point x = a is given as follows:

u(x−p) = u(a+ (Ca − p)∆x) =

d−1∑

k=0

u
∗(k)
a ∆xk(−p + Ca)

k

k!
+O(∆xd),

uxx(x−p) = uxx(a+ (Ca − p)∆x) =
d−3∑

k=0

u
∗(k+2)
a ∆xk(−p + Ca)

k

k!
+O(∆xd−2)

where u(x−p) is the value of the function u at the ghost points x−p and uxx(x−p) is the

value of the second order derivative uxx at the ghost point x−p respectively. Clearly, d-th

order approximations of u(x−p) and (d− 2)-th order approximations of uxx(x−p) are

(2.6) u−p =

d−1∑

k=0

u
∗(k)
a ∆xk(−p + Ca)

k

k!
, (uxx)−p =

d−3∑

k=0

u
∗(k+2)
a ∆xk(−p + Ca)

k

k!

where u
∗(k)
a is (at least) (d− k)-th order approximations of ∂ku

∂xk

∣∣∣
x=a

. With the parabolic

equation ut = c uxx and the Dirichlet boundary conditions, we can use the PDE itself or

extrapolation to get the even order derivatives, while the odd order derivatives can only

be obtained by extrapolation. The details of the procedure are as follows.

• The even order derivatives can be obtained by the PDE itself through the inverse

Lax-Wendroff (ILW) procedure:

u∗(0)
a = u(a, t) = g1(t), · · · , u

∗(2β)
a =

∂(2β)u

∂x(2β)

∣∣∣
x=a

=
1

cβ
g
(β)
1 (t), · · ·

• All derivatives can be obtained by extrapolation.

Assume the d-th order scheme is used in the numerical approximation. We use

the point values inside the computational domain to get the interpolation polynomial

Pd−1(x). Once Pd−1(x) is obtained, then all derivatives can be obtained at the boundary

with this interpolation polynomial. In [14], function values at the interior points and the

boundary point are used to get Pd−1(x) for the high order central difference schemes.

However, for the compact difference schemes in this paper, we are not able to get a sta-

ble scheme by using the method in [14]. Instead, we use m point values of the function

and (d − m) point values of the second order partial derivative to get Pd−1(x), which

is a polynomial of degree d − 1. That is, we use {(x0, u0), (x1, u1), · · · , (xm−1, um−1),

(x0, (uxx)0), (x1, (uxx)1), · · · , (xd−m−1, (uxx)d−m−1)} to get the interpolation polynomial

Pl,d−1(x). Here the subscript “l” stands for left. Then we have

u∗(2β)
a =

∂(2β)u

∂x(2β)

∣∣∣
x=a

= P
(2β)
l,d−1(a), u∗(2β+1)

a =
∂(2β+1)u

∂x(2β+1)

∣∣∣
x=a

= P
(2β+1)
l,d−1 (a).
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The simplified inverse Lax-Wendroff (SILW) method is as follows. For kd = k1 (1 ≤

k1 ≤ d/2), the even derivatives of u
∗(2β)
a , β = 0, 1, 2 · · ·k1 − 1 are obtained by the ILW

procedure. The remaining derivatives in (2.6) are all obtained by extrapolation. In this

way, we can get the values of the ghost points by Taylor expansion.

2.3.2. SILW procedure for Neumann boundary conditions. In this section, we discuss the

IBVP (2.1) with the boundary condition (2.3). Assume the inner approximation is a

d-th order scheme. Taylor expansion at the boundary point x = a gives

u(x−p) = u(a+ (Ca − p)∆x) =
d∑

k=0

u
∗(k)
a ∆xk(−p+ Ca)

k

k!
+O(∆xd+1),

uxx(x−p) = uxx(a+ (Ca − p)∆x) =

d−2∑

k=0

u
∗(k+2)
a ∆xk(−p + Ca)

k

k!
+O(∆xd−1).

where u(x−p) is the value of the function u at the ghost points x−p, uxx(x−p) is the

value of the second order derivative uxx at the ghost points x−p, respectively. Similar as

in [14], we also use (d + 1)-th Taylor expansion to get the approximation values of the

ghost points. Then we have u−p and (uxx)−p as follows.

(2.7) u−p =

d∑

k=0

u
∗(k)
a ∆xk(−p+ Ca)

k

k!
, (uxx)−p =

d−2∑

k=0

u
∗(k+2)
a ∆xk(−p + Ca)

k

k!
.

In the case of the parabolic equation ut = c uxx with the Neumann boundary condi-

tions, we can use the PDE itself or extrapolation to get the odd order derivatives, while

the even order derivatives can only be obtained by extrapolation. The details of the

procedure are as follows.

• The odd order derivatives can be obtained by the PDE itself through the inverse

Lax-Wendroff (ILW) procedure:

u∗(1)
a = ux(a, t) = g3(t), · · · , u

∗(2β+1)
a =

∂(2β+1)u

∂x(2β+1)

∣∣∣
x=a

=
1

cβ
g
(β)
3 (t), · · ·

• All derivatives can be obtained by extrapolation.

Assume the d-th order scheme is used in the numerical approximation. As before,

m point values of function and (d + 1 − m) point values of the second order partial

derivative are used to get the interpolation polynomial Pd(x), which is a polynomial of

degree d. We use {(x0, u0), · · · , (xm−1, um−1), (x0, (uxx)0), · · · , (xd−m, (uxx)d−m)} to
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get the interpolation polynomial Pl,d(x). Then we have

u∗(2β)
a =

∂(2β)u

∂x(2β)

∣∣∣
x=a

= P
(2β)
l,d (a), u∗(2β+1)

a =
∂(2β+1)u

∂x(2β+1)

∣∣∣
x=a

= P
(2β+1)
l,d (a).

The simplified inverse Lax-Wendroff (SILW) method is as follows. For kd = k1 (1 ≤

k1 ≤ d/2), the even derivatives of u
∗(2β+1)
a , β = 0, 1, 2 · · ·k1− 1 are obtained by the ILW

procedure. The remaining derivatives in (2.7) are obtained by extrapolation. In this

way, we can get the values of the ghost points by Taylor expansion.

Clearly, a proper choice of kd and m is the key point to ensure stability for numerical

approximations of both Dirichlet and Neumann boundary conditions. Note that for the

Dirichlet boundary, the possible value of m is 1, 2, · · · , d and for the Neumann boundary

condition, m can be choose as 1, 2, 3, · · · , d+1. We want to find the appropriate value of

m and the corresponding minimum value of kd that can ensure stability for all Ca ∈ [0, 1).

Notice that, the smaller the values of kd, the simpler and less expensive the algorithm

becomes. Hence we would like to find the smallest value of the the parameter kd which

can ensure stability.

3. Stability analysis

In this section, we consider the stability issue for both the semi-discrete and fully-

discrete schemes. We apply the Godunov-Ryabenkii method and the eigenvalue spec-

trum visualization to analyze stability and these two methods yield similar results. The

problem considered in this paper consists of two physical boundaries and each bound-

ary can be analyzed separately, that is, stability can be discussed for two quarter-plane

problems and a Cauchy problem. Furthermore, for the numerical approximation to the

parabolic equation ut = c uxx , the left boundary and the right boundary are completely

symmetric for a compact scheme. Therefore, we only perform stability analysis on the

left boundary and we can obtain symmetric conclusions for the right boundary.

3.1. Semi-discrete schemes. In this subsection, we discuss stability for the semi-

discrete schemes. Stability is performed on the quarter-plane problem

(3.8)





ut = c uxx, x ∈ [a,+∞), t ≥ 0,

u(a, t) = g1(t), t ≥ 0,

u(x, 0) = u0(x), x ∈ [a,+∞).
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For convenience, we set g1(t) = 0. Now let us take the fourth order scheme (3.9) as an

illustration example.




(uj)t = c (uxx)j,

1

12
(uxx)j−1 +

5

6
(uxx)j +

1

12
(uxx)j+1 =

1

∆x2
(uj−1 − 2uj + uj+1).

(3.9)

3.1.1. Godunov-Ryabenkii stability analysis. The key point of the Godunov-Ryabenkii

method is to determine whether there exist any eigenvalues with positive real part. A

complete description of the method can be found in [6, 19].

• Analysis on the Dirichlet boundary condition

For illustration purpose, we take m = 4, that is, the interpolation polynomial is

obtained by {(x0, u0), (x1, u1), (x2, u2), (x3, u3)}.

Let uj = estφj , due to the fact that ut = c uxx, scheme (3.9) can be transformed into

(3.10) s̃
( 1

12
φj−1 +

5

6
φj +

1

12
φj+1

)
= φj−1 − 2φj + φj+1

where s̃ = s∆x2/c. s̃ can also be regarded as eigenvalue and {φj(s̃)}
∞

j=0 is the corre-

sponding eigensolution. For the fourth order scheme, the possible values of kd are 1 and

2. Now we use kd = 1 for instance.

Take φj = κj and plug it into equation (3.10), we can get the characteristic equation

as follows.

(3.11) s̃
( 1

12
+

5

6
κ+

1

12
κ2
)
= κ2 − 2κ+ 1.

Define

(3.12) f(κ) =
(
1−

1

12
s̃
)
κ2 −

(
2 +

5

6
s̃
)
κ+ 1−

1

12
s̃ .

Take κ = eıξ, ξ ∈ [0, 2π], |κ| = 1. From (3.11), we can get

(3.13) s̃ =
12(cos ξ − 1)

cos ξ + 5

From (3.13), we can get s̃ is real and s̃ ≤ 0 if |κ| = 1.

Since x ∈ [a,+∞), we are only interested in the roots of the characteristic equation

satisfying |κ| < 1. Same as in [13], if Re(s̃) > 0, equation (3.13) implies the number

of roots for (3.11) with |κ| < 1 is independent of s̃. We can take any value of s̃ with

Re(s̃) > 0 and get the roots, then we can get the number of roots for (3.11) with |κ| < 1.

Taking s̃ = 1, the roots of (3.12) are

κ1 = 0.36714, κ2 = 2.72377.

Thus, there is only one root with |κ| < 1 when Re(s̃) > 0. Then the general expression

of φj in (3.10) is

(3.14) φj = σκj.
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For scheme (3.9), we need the ghost point values u−1 and (uxx)−1. As kd = 1, the

derivatives are given as

u∗(0)
a = u(a, t) = g1(t) = 0,

u∗(1)
a =

1

∆x

(
− (3C2

a + 12Ca + 11)u0 + (9C2
a + 30Ca + 18)u1

− (9C2
a + 24Ca + 9)u2 + (3C2

a + 6Ca + 2)u3

)
,

u∗(2)
a =

1

∆x2

(
(Ca + 2)u0 − (3Ca + 5)u1 + (3Ca + 4)u2 − (Ca + 1)u3

)
,

u∗(3)
a =

1

∆x3
(−u0 + 3u1 − 3u2 + u3).

(3.15)

Plugging (3.15) into (2.6) and we can get the approximate values at the ghost points

(3.16)

u−1 =
−C2

a − 6C2
a − 11Ca + 18

6
u0 +

C3
a + 5C2

a + 6Ca− 12

2
u1

+
−C3

a − 4C2
a − 3Ca + 8

2
u2 +

C3
a + 3C2

a + 2Ca − 6

6
u3,

(uxx)−1 =
3u0 − 8u1 + 7u2 − 2u3

∆x2
.

Plugging (3.14) and (3.16) into (3.10) with j = 0 and we then have

(3.17) (a3κ
3 + a2κ

2 + a1κ+ a0)σ = 0

where a0, · · · , a3 are given as

a0 =
2C3

a + 12C2
a + 22Ca + 10s̃− 9

12
, a1 =

−6C3
a − 30C2

a − 36Ca + 52 + s̃

12
,

a2 =
6C3

a + 24C2
a + 18Ca − 41

12
, a3 =

−C3
a − 3C2

a − 2Ca + 5

6
.

In order to get a nontrivial φj, we need σ is nonzero and

(3.18)






a3κ
3 + a2κ

2 + a1κ+ a0 = 0,

f(κ) = 0,

|κ| < 1.

For any Ca ∈ [0, 1), by solving equation (3.18) and taking the maximum value of

Re(s̃), we have the following result in Fig. 3.1.

The shaded region in Fig. 3.1 shows the maximum value of Re(s̃) for different Ca, the

fact that the region is below Re(s̃) = 0 indicates stability. From Fig. 3.1, we can see

all eigenvalues of the semi-discrete fourth order scheme CF1 satisfy Re(s̃) < 0 for the

Dirichlet boundary problem. This indicates the SILW procedure with kd = 1 and m = 4

is stable for Ca ∈ [0, 1) and Cb ∈ [0, 1).

• Analysis on the Neumann boundary condition

Without loss of generality, we set g3(t) = 0.
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Fourth order semi-discrete scheme and the SILW procedure with k
d
=1
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Fig. 3.1. Godunov-Ryabenkii stability analysis on the right-plane prob-
lem with Dirichlet boundary conditions: Fourth order semi-discrete scheme
and SILW procedure with kd = 1 and m = 4.

For the Neumann boundary condition, we need 5 points to get the interpolation

polynomial. For illustration purpose, we choose {(x0, u0), (x1, u1), (x2, u2), (x0, (uxx)0),

(x1, (uxx)1)}, i.e. m = 3. We also take kd = 1.

As before, we have the characteristic equation is (3.11). The eigenvalue problem is

(3.10) and the general expression of φj is (3.14). When kd = 1, the values of derivatives

are

(3.19)

u∗(0)
a =

C4
a + 2C3

a + Ca + 2

2
u0 + (−C4

a − 2C3
a)u1 +

C4
a − Ca + 2C3

a

2
u2

+
C3

a + 3C2
a + 2Ca

6
∆x2(uxx)0 +

−3C4
a − 7C3

a + 4Ca

6
∆x2(uxx)1,

u∗(1)
a =

1

c
g3(t) = 0,

u∗(2)
a =

6C2
a + 6Ca

∆x2
u0 −

12C2
a + 12Ca

∆x2
u1 +

6C2
a + 6Ca

∆x2
u2

+ (Ca + 1)(uxx)0 + (−6C2
a − 7Ca)(uxx)1,

u∗(3)
a =

−6(2Ca + 1)

∆x3
u0 +

12(2Ca + 1)

∆x3
u1 −

6(2Ca + 1)

∆x3
u2

−
1

∆x
(uxx)0 +

12Ca + 7

∆x
(uxx)1,

u∗(4)
a =

12u0 − 24u1 + 12u2

∆x4
−

12

∆x2
(uxx)1.
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Plugging (3.19) into (2.7) and we can get the approximate values at the ghost points

(3.20)

u−1 =
(
2C4

a + C3
a − 3C2

a +
Ca

2
+

5

2

)
u0 + (−4C4

a − 2C3
a + 6C2

a − 3)u1

+
(
2C4

a + C3
a − 3C2

a −
Ca

2
+

3

2

)
u2 +

(C3
a

2
+

C2
a

2
−

2

3
Ca +

2

3

)
∆x2(uxx)0

+
(
− 2C4

a −
3

2
C3

a +
7

2
C2

a +
2

3
Ca −

5

3

)
∆x2(uxx)1,

(uxx)−1 =
12u0 − 24u1 + 12u2

∆x2
+ 2(uxx)0 − 13(uxx)1.

Plugging (3.14) and (3.20) into (3.10) with j = 0 and we then have

(3.21) (b2κ
2 + b1κ+ b0)σ = 0

where b0, b1, b2 are given as

b0 = −
(Ca − 1)[12C3

a + 3(s̃+ 6)C2
a + 6s̃Ca + 2s̃+ 3]

6
,

b1 =
(Ca − 1)[12(s̃+ 2)C3

a + 3(7s̃+ 12)C2
a − 4s̃]

6
, b2 = −

(Ca − 1)(4C3
a + 6C2

a − 1)

2
.

In order to get a nontrivial φj, we need σ is nonzero and

(3.22)





b2κ
2 + b1κ+ b0 = 0,

f(κ) = 0,

|κ| < 1.

For any Ca ∈ [0, 1), by solving equation (3.22) and taking the maximum value of Re(s̃)

and we have the following result in Fig. 3.2.

Fourth order semi-discrete scheme and the SILW procedure with k
d
=1
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Fig. 3.2. Godunov-Ryabenkii analysis on the right-plane problem with
Neumann boundary conditions: Fourth order semi-discrete scheme and
SILW procedure with kd = 1 and m = 3.

Fig. 3.2 indicates the semi-discrete fourth order scheme for the Neumann boundary

problem with SILW procedure with kd = 1 and m = 3 is stable for all Ca ∈ [0, 1) and

Cb ∈ [0, 1).
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3.1.2. Eigenvalue spectrum visualization. The algebra of the Godunov-Ryabenkii method

is very complicated for the higher order schemes and we use an alternative eigenvalue

spectrum visualization method which is easier to carry out to analyze stability. We will

validate our analysis results by numerical experiments in the next section.

Unlike the Godunov-Ryabenkii method, which breaks the whole problem into three

small problems, the method of eigenvalue spectrum visualization [26] needs to consider

stability with the two boundaries together.

For simplicity, we set g1(t) = g2(t) = g3(t) = g4(t) = 0. The semi-discrete schemes

can be transformed into a matrix-vector form as

(3.23)
d~U

dt
=

c

∆x2
Q~U

where ~U = (u0, u1, · · · , uN)
T and Q is a matrix. This system contains the chosen interior

scheme and numerical boundary conditions.

Take u(x, t) = estv(x) in (3.23) and it changes to

(3.24) s̃~U = Q~U

As demonstrated in [26], stability has no relation with the grid number N , so we

only need to focus on the eigenvalues which keep O(1) distance from the imaginary axis

when the grid number N increases and satisfy Re(s̃) > 0. Therefore, we look for “fixed”

eigenvalues, namely those eigenvalues which are equal (subject to a negligible difference

due to round-off errors and eigenvalue solver accuracy) for different values of grid number

N . As in the case of the Godunov-Ryabenkii method, there may exist more than one

“fixed” eigenvalue of the matrix Q, and we take the maximum value of the real part of

the “fixed” eigenvalues. We also take the fourth order scheme (3.9) as an example to

explain this method in detail.

Similar to the analysis in Sect. 3.1.1, we only analyze the stability of the right-plane

problem. In order to get the matrix-vector form (3.23), we need a finite interval. For

the fourth order scheme (3.9), the ghost points are u−1, (uxx)−1, uN+1 and (uxx)N+1.

As we are considering the right-plane problem, we get the ghost points u−1 and (uxx)−1

by the SILW procedure and we set uN+1 = (uxx)N+1 = 0 to eliminate the influence to

stability from the right boundary. In particular, for the Neumann boundary condition

with kd = 1, m = 3, we provide an explicit form of the matrix Q in details.

• Analysis on Dirichlet boundary condition

As before, we choose kd = 1, m = 4 and use {(x0, u0), (x1, u1), (x2, u2), (x3, u3)} to

get the interpolation polynomial Pl,3(x). We use different values of N to find the largest

part of all the fixed eigenvalues, the result is in Fig. 3.3.
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Fourth order semi-discrete scheme and the SILW procedure with k
d
=1
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Fig. 3.3. Eigenvalue spectrum visualization on the right-plane problem
with Dirichlet boundary conditions: Fourth order semi-discrete scheme
and SILW procedure with kd = 1 and m = 4.

From Fig. 3.1 and Fig. 3.3, we can see they are almost the same. So the eigenvalue

spectrum visualization could be another approach to analyze stability.

• Analysis on the Neumann boundary condition

For the Neumann boundary condition, we choose kd = 1, m = 3 and use {(x0, u0),

(x1, u1), (x2, u2), (x0, (uxx)0), (x1, (uxx)1)} to get Pl,4(x). In this case, we have the

numerical boundary condition (3.9) with j = 0, N that

(3.25)

1

12
(uxx)−1 +

5

6
(uxx)0 +

1

12
(uxx)1 =

1

∆x2
(u−1 − 2u0 + u1),

1

12
(uxx)N−1 +

5

6
(uxx)N +

1

12
(uxx)N+1 =

1

∆x2
(uN−1 − 2uN + uN+1) ,

where the ghost points u−1 and (uxx)−1 are obtained by the SILW procedure in (3.20)

and we take uN+1 = (uxx)N+1 = 0. Then (3.25) can be rewritten as follows:

(3.26)
m0(uxx)0 +m1(uxx)1 =

1

∆x2
(n0u0 + n1u1 + n2u2),

1

12
(uxx)N−1 +

5

6
(uxx)N =

1

∆x2
(uN−1 − 2uN) ,

with m0, m1, n0, n1, n2 are given as

m0 =
2 + 4Ca − 3C2

a − 3C3
a

6
, m1 =

4− 4Ca − 21C2
a + 9C3

a + 12C4
a

6
,

n0 =
−1 + Ca − 6C2

a + 2C3
a + 4C4

a

2
, n1 = 2C2

a(3− Ca − 2C2
a),

n2 =
1− Ca − 6C2

a + 2C3
a + 4C4

a

2
.
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The fourth order scheme (3.9) then can be transformed into M d2~U
dx2 = 1

∆x2N~U with

M =




m0 m1

1
12

5
6

1
12

. . .
. . .

. . .
. . .

. . .
. . .

1
12

5
6

1
12

1
12

5
6




, N =




n0 n1 n2

1 −2 1
. . .

. . .
. . .

. . .
. . .

. . .
1 −2 1

1 −2




.

Due to the fact that d~U
dt

= c d2 ~U
dx2 , we can rewrite the fourth order scheme in the form of

(3.23) with Q = M−1N . For different values of Ca, by analyzing the “fixed” eigenvalues

of Q, we can get the result in Fig. 3.4.

Fourth order semi-discrete scheme and the SILW procedure with k
d
=1
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Fig. 3.4. Eigenvalue spectrum visualization on the right-plane problem
with Neumann boundary conditions: Fourth order semi-discrete scheme
and SILW procedure with kd = 1 and m = 3.

3.2. Fully-discrete Schemes. In this paper, we use the third order TVD Runge-Kutta

method as the time discretization method for scheme (3.9). The detailed procedure can

be found in [13].

In the semi-discrete case, an eigensolution is in the form uj(t) = estφj = es̃c
t

∆x2 φj with

Re(s̃) > 0. Analogously, in the fully-discrete scheme an eigensolution is in the form

un+1
j = z(µ)un

j with µ = s∆t = s̃λcfl, λcfl =
c∆t

∆x2
and |z(µ)| > 1 where

(3.27) z(µ) = 1 + µ+
µ2

2
+

µ3

6
.

Here, s̃ is an eigenvalue of the semi-discrete scheme and z(µ) is the eigenvalue of the fully-

discrete scheme. In both semi-discrete and fully-discrete cases, the scheme is unstable if

such candidate eigensolution exists.

Before studying the stability of the schemes for the initial-boundary value problem

considered in this paper, we need to fix the CFL number first. Here we consider the CFL
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condition of the numerical schemes for the corresponding Cauchy problem. We can get

the maximum value of λcfl, denoted as (λcfl)max, which ensures stability of the schemes

without boundary (periodic boundary conditions). Throughout this paper, we adopt

(λcfl)max as our CFL number when verifying the stability of the numerical schemes for

the initial-boundary value problem. This means we do not want the boundary treatment

to affect the CFL number of interior schemes for the corresponding Cauchy problem. The

detailed procedure to find (λcfl)max can be found in [13] and we just list the values of

(λcfl)max for the schemes in Sect. 2.1 in Table 3.1.

Table 3.1. (λcfl)max for schemes of different schemes

Scheme CF1 CS1 CS2 CE1 CE2 CE3 CT1 CT2 CT3 CT4 CT5

(λcfl)max 0.418 0.366 0.376 0.343 0.336 0.356 0.368 0.329 0.320 0.322 0.343

3.2.1. Godunov-Ryabenkii stability analysis. For the Godunov-Ryabenkii stability anal-

ysis, s̃ is the eigenvalue obtained in the semi-discrete case and

µ = s∆t = (λcfl)maxs̃.

• Dirichlet boundary condition

As in Sect. 3.1.1, there may exist more than one eigenvalue s̃, hence there may exist

more than one eigenvalue z(µ). The maximum value of |z(µ)| defined in equation (3.27)

is shown in Fig. 3.5.

Fourth order fully-discrete scheme and the SILW procedure with k
d
=1
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Fig. 3.5. Godunov-Ryabenkii analysis on the right-plane problem with
Dirichlet boundary conditions: Fourth order fully-discrete scheme and
SILW procedure with kd = 1 and m = 4.

The shaded region in Fig. 3.5 shows the the maximum value of |z(µ)| for different Ca,

the fact that the region is above |z(µ)| = 1 indicates instability.

• Neumann boundary condition
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The result for the Neumann boundary condition is shown in Fig. 3.6.

Fourth order fully-discrete scheme and the SILW procedure with k
d
=1
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Fig. 3.6. Godunov-Ryabenkii analysis on the right-plane problem with
Neumann boundary conditions: Fourth order fully-discrete scheme and
SILW procedure with kd = 1 and m = 3.

3.2.2. Eigenvalue spectrum visualization. In this subsection, we use the eigenvalue spec-

trum visualization method to get the stability results for the fully-discrete scheme. This

method is based on the matrix formulation (3.23). By using the third order TVD Runge-

Kutta method, we can get the fully-discrete scheme

(3.28) ~Un+1 =
(
I +

c∆t

∆x2
Q +

1

2

( c∆t

∆x2
Q
)2

+
1

6

( c∆t

∆x2
Q
)3)

~Un

where I is the identity matrix. Same as in [13], we need all the eigenvalues of

G = I +
c∆t

∆x2
Q+

1

2

( c∆t

∆x2
Q
)2

+
1

6

( c∆t

∆x2
Q
)3

to lie inside the unit circle. i.e. |z(µ)| ≤ 1, to ensure stability of the fully-discrete

approximation.

• Dirichlet boundary condition

The maximum value of |z(µ)| as defined in equation (3.27) is shown in Fig. 3.7.

• Neumann boundary condition

The result of the Neumann boundary value problem is in Fig. 3.8.

Comparing Fig. 3.5 with Fig. 3.7, we can see that Fig. 3.5 is similar to Fig. 3.7 and

Fig. 3.6 is similar to Fig. 3.8, which indicates these two methods yield the same results.

In conclusion, for the Dirichlet boundary value problem, the fully-discrete fourth order

scheme and SILW procedure with kd = 1 and m = 4 is stable for all Ca ∈ [0, 1) and

Cb ∈ [0, 1). For the Neumann boundary value problem, the fully-discrete fourth order

scheme and SILW procedure with kd = 1 and m = 3 is stable for Ca ∈ [0.21, 1) and

Cb ∈ [0.21, 1). In the later section, we will show that we need to take kd = 2 to get a

stable scheme for all Ca ∈ [0, 1) and Cb ∈ [0, 1).
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Fourth order fully-discrete scheme and the SILW procedure with k
d
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Fig. 3.7. Eigenvalue spectrum visualization on the right-plane problem
with Dirichlet boundary conditions: Fourth order fully-discrete scheme
and SILW procedure with kd = 1 and m = 4.

Fourth order fully-discrete scheme and the SILW procedure with k
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Fig. 3.8. Eigenvalue spectrum visualization on the right-plane problem
with Neumann boundary conditions: Fourth order fully-discrete scheme
and SILW procedure with kd = 1 and m = 3.

For the remaining schemes in Sect. 2.1, we have obtained similar results. Suppose the

interior scheme is d-th order, for the Dirichlet boundary value problem, m can be chosen

as 1, · · · , d; for the Neumann boundary value problem, m can be chosen as 1, · · · , d+1.

For every possible value of m, we would like to find the minimum value of kd denoted

as (kd)min to guarantee stability for all Ca ∈ [0, 1) and Cb ∈ [0, 1). It maybe more than

one pair of (m, (kd)min) that can get the stable results. In Table 3.2, we summarize all

possible pairs of (m, (kd)min) to ensure stability of different schemes for the IBVP (2.1)

with the Dirichlet boundary conditions (2.2), under the CFL conditions shown in Table

3.1. Results for the IBVP (2.1) with the Neumann boundary conditions (2.3) are shown

in Table 3.3.
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Table 3.2. Pairs of (m, (kd)min) to ensure stability for different schemes
for IBVP (2.1) with Dirichlet boundary conditions (2.2).

Scheme Pairs of (m, (kd)min)

CF1 (4,1)

CS1 (6,2)

CS2 (6,2)

CE1 (3,3), (6,3), (8,2)

CE2 (3,3), (5,3), (6,3)

CE3 (3,3), (6,3), (8,2)

CT1 (2,2), (3,3), (4,4), (6,4), (7,3), (8,3), (9,2)

CT2 (3,3),(4,3),(6,3), (7,3), (8,3)

CT3 (3,3), (4,3), (6,3), (7,3), (8,3)

CT4 (3,3), (4,3), (6,3), (7,3), (8,3)

CT5 (3,3), (4,3), (7,3), (8,3), (10,2)

4. Numerical Example

In this section, we present some numerical examples to illustrate and validate the

results in Tables 3.2 and 3.3. These numerical tests also indicate the obtained stability

results are sufficient for stability of the boundary treatments.

Consider the following problem

(4.29)

{
ut = uxx, x ∈ (1.5, 3.5), t ≥ 0

u(x, 0) = sin(x), x ∈ (1.5, 3.5).

The corresponding Dirichlet boundary conditions are

(4.30)

{
u(1.5, t) = e−t sin(1.5),

u(3.5, t) = e−t sin(3.5).

The corresponding Neumann boundary conditions are

(4.31)

{
ux(1.5, t) = e−t cos(1.5),

ux(3.5, t) = e−t cos(3.5).

The exact solution is

u(x, t) = e−t sin(x)
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Table 3.3. Pairs of (m, (kd)min) to ensure stability for different schemes
for IBVP (2.1) with Neumann boundary conditions (2.3).

Scheme Pairs of (m, (kd)min)

CF1 (2,2), (3,2)

CS1 (2,2), (6,2), (7,1)

CS2 (2,2), (6,2)

CE1 (2,2), (8,2)

CE2 (2,3), (8,2)

CE3 (2,2), (8,2), (9,2)

CT1 (3,3), (9,3)

CT2 (2,4), (10,3)

CT3 (6,4)

CT4 (10,4)

CT5 (2,3), (10,3), (11,2)

The time step size ∆t is chosen as

(4.32) ∆t = (λcfl)max∆x2

and (λcfl)max is the maximum CFL number shown in Table 3.1.

4.1. Results for Dirichlet Boundary Condition. In this subsection, we show the nu-

merical results of boundary treatments for equation (4.29) with the boundary condition

(4.30).

• The fourth order scheme

Here m = 4 and (kd)min = 1. Table 4.4 shows that we can get the fourth order with

small and large Ca and Cb.

• The sixth order scheme CS1

In this case, m = 6 and the minimum value of kd is (kd)min = 2. The left figure in Fig.

4.9 shows the scheme is unstable with kd = 1. The right figure in Fig. 4.9 and Table

4.5 indicate the scheme is stable with kd = 2, and we can see clearly sixth convergence

order in Table 4.5.

• The sixth order scheme CS2
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Table 4.4. The fourth order scheme CF1 with m = 4, kd = 1, tend = 1.0
for the heat equation (4.29) with Dirichlet boundary conditions (4.30).
The CFL condition is in (4.32).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 4.218E-04 – 4.382E-04 – 6.030E-05 – 6.700E-05 –

20 2.473E-05 4.092 2.779E-05 3.979 5.211E-06 3.533 6.040E-06 3.472

40 1.488E-06 4.054 1.740E-06 3.998 3.861E-07 3.754 4.567E-07 3.725

80 9.116E-08 4.029 1.087E-07 4.001 2.636E-08 3.873 3.151E-08 3.857

160 5.638E-09 4.015 6.787E-09 4.001 1.724E-09 3.935 2.071E-09 3.928
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Fig. 4.9. The sixth order scheme CS1 and SILW procedure with m = 6,
Ca = Cb = 0.92, tend = 1.0. The CFL condition is in (4.32). Left: kd = 1
and N = 20; Right: kd = 2 and N = 320.

Table 4.5. The sixth order scheme CS1 with m = 6, kd = 2, tend = 1.0
for the heat equation (4.29) with Dirichlet boundary conditions (4.30).
The CFL condition is in (4.32).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 7.084E-06 – 6.731E-06 – 1.514E-06 – 1.572E-06 –

20 1.015E-07 6.125 1.091E-07 5.947 3.777E-08 5.325 4.383E-08 5.164

40 1.504E-09 6.076 1.722E-09 5.985 7.517E-10 5.651 9.210E-10 5.573

80 2.284E-11 6.041 2.698E-11 5.996 1.330E-11 5.821 1.671E-11 5.785

160 3.516E-13 6.021 4.220E-13 5.999 2.213E-13 5.909 2.813E-13 5.892

From previous analysis, we can get that m = 6 and (kd)min = 2. Fig. 4.10 shows

the stable and unstable results and Table 4.6 shows the sixth order when the scheme is

stable.
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Fig. 4.10. The sixth order scheme CS2 and SILW procedure with m = 6,
Ca = Cb = 0.88, tend = 1.0. The CFL condition is in (4.32). Left: kd = 1
and N = 20; Right: kd = 2 and N = 320.

Table 4.6. The sixth order scheme CS2 with m = 6, kd = 2, tend = 1.0
for the heat equation (4.29) with Dirichlet boundary conditions (4.30).
The CFL condition is in (4.32).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 6.842E-06 – 6.491E-06 – 2.850E-07 – 2.938E-07 –

20 9.812E-08 6.124 1.053E-07 5.946 7.193E-09 5.308 8.144E-09 5.173

40 1.455E-09 6.076 1.662E-09 5.985 1.444E-10 5.638 1.710E-10 5.573

80 2.210E-11 6.041 2.605E-11 5.996 2.568E-12 5.814 3.104E-12 5.784

160 3.403E-13 6.021 4.074E-13 5.999 4.286E-14 5.905 5.229E-14 5.892

• The eighth order scheme CE1

We only explore the case with m = 3 and (kd)min = 3. Stability and instability results

are given in Fig. 4.11. The results are consistent with the analysis.

• The eighth order scheme CE2

In this case, we only give the results with m = 5 and the corresponding (kd)min is 3.

Fig. 4.12 gives the stability and instability results.

• The eighth order scheme CE3

Here, we take m = 6 and (kd)min = 3. Stability and instability results are shown in

Fig. 4.13.

• The tenth order scheme CT1

Fig. 4.14 gives the results with m = 4 and (kd)min = 4 and the results are consistent

with the analysis before.

• The tenth order scheme CT2
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Fig. 4.11. The eighth order scheme CE1 and SILW procedure withm = 3,
Ca = Cb = 0.13, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 20; Right: kd = 3 and N = 320.
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Fig. 4.12. The eighth order scheme CE2 and SILW procedure withm = 5,
Ca = Cb = 0.24, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 20; Right: kd = 3 and N = 320.

Fig. 4.15 is the stability and instability results of m = 6 and we can get that (kd)min =

3 and this is consistent with the stability analysis.

• The tenth order scheme CT3

In this case, we take m = 3 and (kd)min = 3. Stability and instability results are given

in Fig. 4.16. The results are again consistent with the analysis.

• The tenth order scheme CT4

We give the numerical results with m = 7 and (kd)min = 3. Fig. 4.17 shows the

stability and instability results.
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Fig. 4.13. The eighth order scheme CE3 and SILW procedure withm = 6,
Ca = Cb = 0.18, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 20; Right: kd = 3 and N = 320.
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Fig. 4.14. The tenth order scheme CT1 and SILW procedure with m = 4,
Ca = Cb = 0.04, tend = 1.0. The CFL condition is in (4.32). Left: kd = 3
and N = 40; Right: kd = 4 and N = 320.

• The tenth order scheme CT5

In this case, we only display the results with m = 8 and (kd)min = 3. Fig. 4.18 shows

the stability and instability results.

4.1.1. Results for Neumann Boundary Condition. In this subsection, we give the results

of equation (4.29) with the boundary condition (4.31).

• The fourth order scheme CF1

Here, we only explore the case with m = 3. From previous discussion, if kd = 1 the

scheme is stable for Ca ∈ [0.21, 1) and Cb ∈ [0.21, 1). The left figure in Fig. 4.19 shows the
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Fig. 4.15. The tenth order scheme CT2 and SILW procedure with m = 6,
Ca = Cb = 0.58, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 20; Right: kd = 3 and N = 320.
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Fig. 4.16. The tenth order scheme CT3 and SILW procedure with m = 3,
Ca = Cb = 0.1, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 10; Right: kd = 3 and N = 320.

solution has strong spurious oscillations with very large magnitudes if Ca = Cb = 0.2 and

the right one shows that the solution remains stable and accurate after grid refinements if

Ca = Cb = 0.21. The numerical result confirm the theoretical results from the stability

analysis. From Table 4.7, a grid refinement study verifies the designed fourth order

accuracy when kd = 2, which can ensure stability for Ca ∈ [0, 1) and Cb ∈ [0, 1).

• The sixth order scheme CS1

Here, we take m = 6 as an illustration example. In this case, (kd)min = 2 is the

minimum value to ensure stability for all Ca ∈ [0, 1) and Cb ∈ [0, 1). The left figure in
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Fig. 4.17. The tenth order scheme CT4 and SILW procedure with m = 7,
Ca = Cb = 0.48, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 20; Right: kd = 3 and N = 320.
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Fig. 4.18. The tenth order Scheme CT5 and SILW procedure withm = 8,
Ca = Cb = 0.6, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 20; Right: kd = 3 and N = 320.

Fig. 4.20 clearly shows instability and the right one shows stability. Table 4.8 shows the

optimal convergence order.

• The sixth order scheme CS2

In this case, we also only give the results of m = 6. In order to get a stable scheme

for all Ca ∈ [0, 1) and Cb ∈ [0, 1), we should take (kd)min = 2. Fig. 4.21 gives the

stable and unstable results with kd = 1 and kd = 2. Table 4.9 gives the results with

kd = 2 after grid refinements. Theoretically, for the sixth order scheme and the third

order Runge-Kutta method under the CFL condition (4.32), we are supposed to get a



28 TINGTING LI, JIANFANG LU, AND CHI-WANG SHU

X
2 2.5 3

­1E+09

­5E+08

0

5E+08

1E+09

Numerical solution
Exact solution

Neumann boundary condition

CF1  Ca=Cb=0.2  k_{d}=1

X
1.5 2 2.5 3 3.5

­0.1

­0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Numerical solution
Exact solution

Neumann bounary condition

CF1  Ca=Cb=0.21  k_{d}=1

Fig. 4.19. The fourth order scheme CF1 and SILW procedure withm = 3,
kd = 1, tend = 1.0. The CFL condition is in (4.32). Left: Ca = Cb = 0.2
and N = 80; Right: Ca = Cb = 0.21 and N = 320.

Table 4.7. The fourth order scheme CF1 with m = 3, kd = 2, tend = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.32).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 2.835E-06 – 3.889E-06 – 5.943E-05 – 7.867E-05 –

20 1.664E-07 4.091 2.416E-07 4.008 5.840E-06 3.347 7.483E-06 3.394

40 1.007E-08 4.046 1.507E-08 4.003 4.633E-07 3.656 5.805E-07 3.688

80 6.192E-10 4.023 9.412E-10 4.001 3.273E-08 3.823 4.048E-08 3.842

160 3.839E-11 4.012 5.882E-11 4.000 2.176E-09 3.910 2.673E-09 3.921

Table 4.8. The Sixth order scheme CS1 with m = 6, kd = 2, tend = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.32).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 4.762E-08 – 5.321E-08 – 5.919E-06 – 8.188E-06 –

20 5.846E-10 6.348 6.467E-10 6.363 1.829E-07 5.016 2.407E-07 5.088

40 8.135E-12 6.167 8.933E-12 6.178 4.079E-09 5.486 5.171E-09 5.541

80 1.202E-13 6.080 1.318E-13 6.082 7.642E-11 5.738 9.472E-11 5.771

160 1.808E-15 6.055 1.975E-15 6.060 1.308E-12 5.868 1.602E-12 5.886

sixth order scheme, but we can only obtain the fourth order numerically when Ca and

Cb are large. Therefore we increase the number of interpolation points to get higher

order interpolation polynomial and then we can obtain the desired sixth order. To be
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Fig. 4.20. The sixth order scheme CS1 and SILW procedure with m = 6,
Ca = Cb = 0.19, tend = 1.0. The CFL condition is in (4.32). Left: kd = 1
and N = 160; Right: kd = 2 and N = 320.

specifically, we use {(x0, u0), (x1, u1), · · · , (x8, u8)} and {(xn−8, un−8), (xn−7, un−7), · · · ,

(xn, un)}, that is, m = 9 as an example to get Pl,8(x) and Pr,8(x) which are polynomials

of degree 8, respectively. By using the previous stability analysis procedure, we have

(kd)min = 2. From Table 4.10, a grid refinement study verifies the designed sixth order

accuracy.
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Fig. 4.21. The sixth order scheme CS2 and SILW procedure with m = 6,
Ca = Cb = 0.2, tend = 1.0. The CFL condition is in (4.32). Left: kd = 1
and N = 160; Right: kd = 2 and N = 320.

• The eighth order scheme CE1

We take m = 2 and in this case, the minimum value of kd is 2. Fig. 4.22 shows the

stability and instability results which is consistent with the analysis.
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Table 4.9. The Sixth order scheme CS2 with m = 6, kd = 2, tend = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.32).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 4.912E-08 – 5.548E-08 – 5.078E-04 – 7.897E-04 –

20 5.917E-10 6.375 6.634E-10 6.386 4.932E-05 3.364 7.869E-05 3.327

40 8.141E-12 6.184 9.070E-12 6.193 3.886E-06 3.666 6.204E-06 3.665

80 1.197E-13 6.087 1.333E-13 6.089 2.732E-07 3.830 4.344E-07 3.836

160 1.795E-15 6.060 1.993E-15 6.064 1.805E-08 3.920 2.860E-08 3.925

Table 4.10. The Sixth order scheme CS2 with m = 9, kd = 2, tend = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.32).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

10 1.907E-07 – 2.231E-07 – 4.125E-04 – 5.872E-04 –

20 7.563E-10 7.978 8.129E-10 8.101 1.211E-05 5.090 1.955E-05 4.909

40 1.016E-11 6.217 1.069E-11 6.249 2.654E-07 5.512 4.323E-07 5.499

80 1.830E-13 5.796 1.734E-13 5.945 4.927E-09 5.751 7.934E-09 5.768

160 2.948E-15 5.955 2.731E-15 5.989 8.370E-11 5.879 1.331E-10 5.897
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Fig. 4.22. The eighth order Scheme CE1 and SILW procedure with m =
2, Ca = Cb = 0.16, tend = 1.0. The CFL condition is in (4.32). Left:
kd = 1 and N = 80; Right: kd = 2 and N = 320.

• The eighth order scheme CE2

We take m = 2 and in this case, the minimum value of kd is 3. Fig. 4.23 shows the

stability and instability results which is consistent with the analysis.
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Fig. 4.23. The eighth order scheme CE2 and SILW procedure withm = 2,
Ca = Cb = 0.31, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 80; Right: kd = 3 and N = 320.

• The eighth order scheme CE3

We take m = 8 and the minimum value of kd is 2. Fig. 4.24 shows the stability and

instability results which is consistent with the analysis.

To match the order of accuracy, we take

(4.33) ∆t = (λcfl)max∆x
8

3 .

Similar to the sixth order scheme CS2, results of grid refinements in Table 4.11 shows

that we can only get the sixth order when Ca and Cb is large. In order to get the eighth

order accuracy, we can use {(x0, u0), · · · , (x10, u10)} and {(xn−10, un−10), · · · , (xn, un)},

that is, m = 11 to get Pl,10(x) and Pr,10(x) which are polynomials of degree 10. In this

case, (kd)min = 2 and then we can get the designed eighth order as shown in Table 4.12.

Table 4.11. The eighth order scheme CE3 with m = 8, kd = 2, tend = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.33).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

30 6.420E-13 – 6.056E-13 – 5.045E-08 – 8.160E-08 –

40 6.499E-14 7.962 6.036E-14 8.015 1.004E-08 5.611 1.621E-08 5.618

50 1.097E-14 7.973 1.009E-14 8.015 2.817E-09 5.697 4.537E-09 5.708

60 2.558E-15 7.986 2.340E-15 8.017 9.869E-10 5.752 1.586E-09 5.764

70 7.430E-16 8.019 6.786E-16 8.030 4.042E-10 5.790 6.486E-10 5.802

• The tenth order scheme CT1
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Fig. 4.24. The eighth order scheme CE3 and SILW procedure withm = 8,
Ca = Cb = 0.17, tend = 1.0. The CFL condition is in (4.32). Left: kd = 1
and N = 80; Right: kd = 2 and N = 320.

Table 4.12. The eighth order scheme CE3 with m = 11, kd = 2, tend =
1.0 for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.33).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

50 6.025E-15 – 5.164E-15 – 2.004E-11 – 3.284E-11 –

60 1.362E-15 8.154 1.193E-15 8.034 4.947E-12 7.672 8.086E-12 7.687

70 3.860E-16 8.181 3.424E-16 8.099 1.504E-12 7.723 2.452E-12 7.740

80 1.256E-16 8.406 1.123E-16 8.350 5.337E-13 7.760 8.680E-13 7.778

90 4.202E-17 9.299 3.767E-17 9.274 2.133E-13 7.788 3.461E-13 7.806

We take m = 3 and in this case, the minimum value of kd is 3. Fig. 4.25 shows the

stability and instability results which is consistent with the analysis.

• The tenth order scheme CT2

We take m = 10 and in this case, the minimum value of kd is 3. Fig. 4.26 shows the

stability and instability results which is consistent with the analysis.

• The tenth order scheme CT3

We take m = 6 and in this case, the minimum value of kd is 4. Fig. 4.27 shows the

stability and instability results which is consistent with the analysis.

• The tenth order scheme CT4

We take m = 10 and in this case, the minimum value of kd is 4. Fig. 4.28 shows the

stability and instability results which is consistent with the analysis.

• The tenth order scheme CT5
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Fig. 4.25. The tenth order scheme CT1 and SILW procedure with m = 3,
Ca = Cb = 0.24, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 20; Right: kd = 3 and N = 320.
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Fig. 4.26. The tenth order scheme CT2 and SILW procedure with m =
10, Ca = Cb = 0.36, tend = 1.0. The CFL condition is in (4.32). Left:
kd = 2 and N = 20; Right: kd = 3 and N = 320.

We take m = 2 and in this case, the minimum value of kd is 3. Fig. 4.29 shows the

stability and instability results which is consistent with the analysis. Similar to the case

of the sixth order scheme CS2 and the eighth order scheme CE3, if we take

(4.34) ∆t = (λcfl)max∆x
10

3

we can only get the eighth order when Ca and Cb is large shown in Table 4.13. We use

{(x0, u0), · · · , (x11, u11), (x0, (uxx)0)} and {(xn−11, un−11), (xn−10, un−10), · · · , (xn, un),

(xn, (uxx)n)}, that is, m = 12 to get the interpolation polynomials Pl,12(x) and Pr,12(x)
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Fig. 4.27. The tenth order scheme CT3 and SILW procedure with m = 6,
Ca = Cb = 0.12, tend = 1.0. The CFL condition is in (4.32). Left: kd = 3
and N = 40; Right: kd = 4 and N = 320.
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Fig. 4.28. The tenth order scheme CT4 and SILW procedure with m =
10, Ca = Cb = 0.28, tend = 1.0. The CFL condition is in (4.32). Left:
kd = 3 and N = 160; Right: kd = 4 and N = 320.

which are polynomials of degree 12. In this case, the minimum value of kd is (kd)min = 4,

then we can get the designed tenth order of accuracy as shown in Table 4.14.

5. Concluding Remarks

In this paper, we study the stability of the numerical boundary treatments for the high

order compact finite difference schemes for solving parabolic equations with both Dirich-

let and Neumann boundary conditions on a finite domain. We use the simplified inverse

Lax-Wendroff (SILW) procedure to evaluate the ghost points and then get the numerical
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Fig. 4.29. The tenth order scheme CT5 and SILW procedure with m = 2,
Ca = Cb = 0.4, tend = 1.0. The CFL condition is in (4.32). Left: kd = 2
and N = 40; Right: kd = 3 and N = 320.

Table 4.13. The tenth order scheme CT5 with m = 2, kd = 3, tend = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.34).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

30 2.413E-15 – 2.176E-15 – 2.343E-10 – 3.818E-10 –

40 1.385E-16 9.933 1.236E-16 9.970 2.713E-11 7.494 4.415E-11 7.499

50 1.503E-17 9.952 1.333E-17 9.983 4.970E-12 7.606 8.065E-12 7.618

60 2.444E-18 9.963 2.156E-18 9.989 1.226E-12 7.677 1.984E-12 7.692

70 5.256E-19 9.970 4.621E-19 9.993 3.725E-13 7.727 6.016E-13 7.742

Table 4.14. The tenth order scheme CT5 withm = 12, kd = 4, tend = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.34).

N Ca = 10−8, Cb = 10−8 Ca = 1− 10−8, Cb = 1− 10−8

L2 error order L∞ error order L2 error order L∞ error order

40 7.650E-17 – 6.965E-17 – 7.662E-14 – 1.256E-13 –

50 8.197E-18 10.010 7.479E-18 10.000 9.171E-15 9.513 1.500E-14 9.524

60 1.322E-18 10.008 1.208E-18 10.000 1.593E-15 9.601 2.598E-15 9.617

70 2.826E-19 10.007 2.586E-19 10.000 3.593E-16 9.662 5.842E-16 9.680

80 7.429E-20 10.007 6.803E-20 10.000 9.829E-17 9.707 1.594E-16 9.726

boundary conditions. Stability analysis is performed by both the Godunov-Ryabenkii

analysis and the eigenvalue spectrum visualization method to get the pair (m, (kd)min)

for the sake of stability, where m is the number of function values in constructing the
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interpolation polynomial and kd is the number of terms using the inverse Lax-Wendroff

procedure. All analyses are under the standard CFL condition for the corresponding

periodic problems. Numerical examples are provided to verify stability and instability

results predicted by the analysis in Table 3.2 and 3.3. Currently we only consider the

parabolic equation with Dirichlet or Neumann boundary conditions, however the Robin-

type boundary condition is very challenging and the current approach cannot be applied

to it easily. Therefore, to find a suitable numerical boundary treatment for Robin-type

boundary condition will be one of our future works.
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