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ABSTRACT. In this paper, we study the stability of a numerical boundary treatment
of high order compact finite difference methods for parabolic equations. The compact
finite difference schemes could achieve very high order accuracy with relatively small
stencils. To match the convergence order of the compact schemes in the interior do-
main, we take the simplified inverse Lax-Wendroff (SILW) procedure [24, 14] as our
numerical boundary treatment. The third order total variation diminishing (TVD)
Runge-Kutta method [18] is taken as our time-stepping method in the fully-discrete
case. Two analysis techniques are adopted to check the algorithm’s stability, one is
based on the Godunov-Ryabenkii theory, and the other is the eigenvalue spectrum vi-
sualization method [26]. Both the semi-discrete and fully-discrete cases are investigated,
and these two different analysis techniques yield consistent results. Several numerical
experimental results are shown to validate the theoretical results.

1. INTRODUCTION

The finite difference approximations for derivatives are one of the simplest and oldest
approaches to solve differential equations. To make a high order finite difference scheme
work, one must take special treatment near the domain boundary, i.e. evaluating the
numerical solution on the ghost points properly. As mentioned in [22], there exist two
difficulties in obtaining high order accurate and stable numerical boundary conditions.
One is the proper evaluation of the ghost point values located outside the computational
domain which are used by the interior schemes. The other is that the grid points may not
coincide with the physical boundary exactly, especially when a Cartesian mesh is used
to solve problems on a complex geometry. There are many methods in the literature
for handling boundary conditions on irregular domains, such as the body-fitted meshes
2, 8], the embedded boundary method [10, 21], the inverse Lax-Wendroff method (ILW)
[22] and the simplified inverse Lax-Wendroff method (SILW) [4, 11, 12, 13, 14, 23, 24,
26] and so on. For these approaches, stability is a major concern especially when the
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cell intersects with the physical boundary, referred as the “cut-cell” problem. In finite
volume methods, this leads to a restricted time step for the sake of stability, and the
so-called h-box method is developed to overcome this difficulty, see [1] and the references
therein. In this paper, we focus on the stability of the SILW procedure for high order
compact finite difference schemes when solving diffusion problems. The SILW method
uses Taylor expansion at the boundary point to get the approximation values on the ghost
points. Derivatives at the boundary points are obtained by the ILW procedure and the
interpolation polynomial, which will be explained in detail in later sections. There exists
a vast variety of methods to get the interpolation polynomials. In the previous work
[13, 14], the interpolation polynomial was obtained by the function values at the interior
points and the boundary points. It would seem reasonable to expect the same method
also works for the compact schemes. However, it turns out the extension is not so easy
and we cannot find a stable scheme by the previous polynomial construction methods.
To make it work, we choose the Birkhoff interpolation method to get the interpolation
polynomials in this paper.

General stability analysis for initial boundary value problems (IBVP) on a bounded
domain can be performed by the normal mode analysis, which is based on the Laplace
transform. This method was firstly presented by Godunov and Ryabenkii [7] and then
developed by Kreiss [9] and Osher [15]. The original Godunov-Ryabenkii theory only
provided a necessary condition for stability. Later, Gustafsson, Kreiss and Sundstrom
developed a necessary and sufficient condition for stability for the first order linear hy-
perbolic systems in one space dimension [5], which is referred to as the GKS theory.
For parabolic problems, such stability analysis was formulated in, e.g. [16, 20, 25].
Later on, the semi-discrete case was studied by Strikwerda in [19]. Theoretically, the
Godunov-Ryabenkii method leads to necessary conditions for stability, but in a vast
number of cases they also appear to be sufficient conditions [20]. However, for high
order schemes the Godunov-Ryabenkii method is not so advantageous due to the high
algebraic complexity. In [26], the authors proposed an alternative technique by visu-
alizing the eigenvalues spectrum of compact differencing operators, and they obtained
consistent stability conclusions with the Godunov-Ryabenkii analysis. In our previous
work [13, 14], both the GKS analysis and eigenvalue analysis were used to analyze stabil-
ity of high order upwind-biased schemes for hyperbolic equations and high order central
difference schemes for diffusion equations, and the two methods produced consistent
stability conclusions. In this paper, we continue to extend the work to high order com-
pact schemes for parabolic equations with Dirichlet or Neumann boundary conditions.

The compact finite difference schemes are taken as our interior schemes, and the SILW
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procedure is performed near the boundaries. With Godunov-Ryabenkii analysis and
eigenvalue analysis, we report on the minimum number of spatial derivatives which must
be obtained by the ILW procedure for the sake of stability for schemes of various order
of accuracy. Although we only consider pure diffusion here, our eventual objective is to
use the methodology for possibly convection dominated convection-diffusion equations,
thus justifying the choice of explicit time-stepping methods throughout this paper.
This paper is organized as follows. In Sect. 2, we first give an overview of the
discretization of the problem, that is, the high order compact finite difference schemes
and the third order total variation diminishing (TVD) Runge-Kutta time discretization
method used in the fully-discrete problems. The SILW procedure is introduced in detail
in this section as well. In Sect. 3, stability analysis is performed both for the semi-
discrete and fully-discrete cases by the Godunov-Ryabenkii method and the eigenvalue
spectrum visualization method. In Sect. 4, numerical examples are given to demonstrate

and validate the results of the analysis. Concluding remarks are given in Sect. 5.

2. SCHEME FORMULATION

In this section, we list the high order compact finite difference schemes used as the
interior schemes considered in this paper. The third order explicit total variation di-
minishing (TVD) Runge-Kutta time discretization method [18] is used to get the fully-
discrete schemes. We also give a detailed introduction of the SILW procedure for the

boundary treatments.

2.1. High order compact difference schemes. Consider the one-dimensional linear

scalar heat equation

(2.1)

U = CUge, T € (a,b), t>0,
U(ZL’,O) = Uo(l’), M (CL, b)a

with appropriate boundary conditions. For instance, we can take Dirichlet boundary

conditions as

(2.2) {W%ﬂzgﬁ%tza

u(b,t) = ga(t), t >0,

or Neumann boundary conditions as

ux(av t) = g3(t)7 > Ov
(2.3)
ux(b> t) = g4(t)7 t 2 07
or a suitable combination, where ¢ > 0 is restricted by the well-posedness of the IBVP

(2.1).
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The interval (a, b) is discretized by a uniform mesh as
(2.4) a+C,Ar=x0< 11 <9< ---<2any=0b—CyAx

with the uniform mesh size Ax = (b — a)/(C, + Cp, + N), Co,Cp € [0,1). {z; =
a+(Co+7)Ax, j=0,1,2,--- N} are the grid points. Note that the first and last points
o and xy are not necessarily aligned with the boundary, and we choose this kind of
discretization on purpose.

In [17], the authors presented the fourth order compact schemes for the discretization
of ., in which the stencil only consists of three points in the formula. Therefore, the
scheme can be efficiently implemented by solving a tridiagonal matrix. Based on the low
order compact schemes, we can derive the compact schemes for arbitrary even order in
a uniform mesh.

The high order compact schemes considered in this paper are listed below.

e The fourth order scheme

CF1:
1 5 1 1
E(um)j—l + é(um)J + E(um)j-i-l = A—zz(uj_l — 2uj + Uj+1)
e The sixth order schemes
CS1:
2 11 2
15 (u:c:c)] 1+ 15 (um)J + 1_5(u:c:c)j+1
1 1 4 17 4 1
AxZ( o2 Tt T gttt T g ”2)
CS2:
1 1 97 1 1
- go(umv)j—2 + 1_0(uxx>j 1+ — 120 (uxx> 10( mm)j—l—l - %(umm)j—lﬂ
1
= 2 (Wil — 2u5 + Uj)
e The eighth order schemes
CEL:
( ) n 19( ) . 9 ( ) 1 ( 23 . 51
Upa — (U ) i1 = — Ui_g + — Ui
56 “HTHT o8 56 T Az2 10080 Y% T 560 072
L2 oL, o 23 )
3271 T gt T 39 T 012 T 10080
CE2:
23 172 131 172 23

1 /31 32 53 32 31
N (E( it gt~ 42“j+@“j+1+ﬁ“j+2>
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CE3:
31 73 2171 12067
60480 (um)j—3 - 10080 (Um)j—2 + 20160 (ux:v)j—l + m(um)g
2171 73 31 1

20160 (tae)j+1 — 10080 (Uaz)j+2 + m(“m)ﬂs = @(uj+1 —2uj 4+ uj_q)

e The tenth order schemes

CT1:
(1) 1 ( 1 5 L5 5 +_5 5269
T A2 \3150 7 T 1008 T 1260 T 01 3771 1800 ¢
5 5 5 5 1
gl T gyt T gt T qapg ittt ﬁ“ﬁ'“’)
CT2:

29 8
45( 2)j ‘|‘£(Um)j+1

1 ( 43 74 Lur 247 | 1126
= — | —— i ——Ui_
A2 \226800 7% T 141757 T 20252 T 3025 !

8
15 (uxx)J 1+

4361 1126 247 74 43
_'3240“1*‘2025“j+1*‘§655uj+2_'iZI?S“j+3*'2268001“+4>
CT3:
43 167 899 167 43

ﬁ(umm)j—2 + %(Um)j—l + ﬁ(ump)j + %(Um)jﬂ + ﬁ(umm)j—m
1 ( 79 519 213 2867 213

= A2 \28080" 3 T 3220% 2 T Gt T 98089 T gag
eIl 79 )
—U —U;
* 3900+ T 539801+
CT4:
79 1873 7873 33863

~ 585000 Yer)i=3 + Tga30p (taw)i-2 T 5age5 (tea)iaa
7873 1873 79

* 39060 U= )i+t + 195300 (Uew)iv2 ~ 5gagng (Mer)ivs
1 ( 289 176 331 176 289 )

=~ A2 \1860" 2 T 165" T 310 T 165! T 186019+
CTh:
289 149 8593 101741

~ 3628800 ")~ + Tog600 (“e)i-3 ~ go7a00 (“e=)i-2 F gomang
57517 101741 8593 149

7a576 Uan)i F gomang (tae)itt = Gamang (Mer)ive + 155600
289 1
- m(um)jH = @(Uﬁl —2u; +uj_q)

In these formulas, u; is the numerical approximation of the exact solution u at the grid

(um)j—l

(um>j+3

point x;, and (u,,); is the numerical approximation of w,, at z;. Note that the tenth

order scheme CT1 is not a compact scheme, it is a central difference scheme which
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has already been analyzed in [14]. We put it here for comparison with other compact

schemes. Then we obtain a semi-discrete interior scheme written as

where L is discrete spatial operator.

2.2. Time discretization. For the fully-discrete scheme, we take the third order ex-
plicit total variation diminishing (TVD) Runge-Kutta method [18] as our time-stepping
method to discretize (2.5) in time. We briefly introduce it below for clarity.

From the time level ¢,, to t,,11, the third order TVD Runge-Kutta method is given by

uM = u" + AtL(u"),

1 1
1 2 2
utt = Ju §u(2) + gAtc(u(2>),

where At is the time step. Other types of time discretizations can also be analyzed along
the same line.

To avoid order reduction, special attention must be paid when we impose time-
dependent boundary conditions in the two intermediate stages of the Runge-Kutta
method [3]. With the given boundary condition ¢(t), the corresponding boundary con-

ditions are given as follows.

ul ~ g(t,) + Aty (t),

1 1
u® ~ g(t,) + 5Atg’(tn) + ZAt2g”(tn) .

2.3. The simplified inverse Lax-Wendroff procedure. The main idea of the in-
verse Lax-Wendroff procedure (ILW) is repeatedly using the partial differential equation
(PDE) and boundary conditions to convert spatial derivatives to time and tangential
derivatives of the given boundary condition. With these spatial derivatives, we then
obtain the values of the ghost points by Taylor expansion. However, the algebra of the
ILW procedure could be very heavy for fully nonlinear 2D systems. To overcome this
difficulty, a simplified ILW method (SILW) was proposed in [24], with the ILW proce-
dure to obtain the lower order spatial derivatives and extrapolation to obtain the higher
order spatial derivatives. As the left and right boundaries are completely symmetric for
parabolic equations with Dirichlet and Neumann boundary conditions, we will take the

left boundary x = a as an example to introduce the SILW procedure for (2.1) briefly.
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2.3.1. SILW procedure for Dirichlet boundary conditions. In this subsection, we discuss
the IBVP (2.1) with the boundary condition (2.2). Assume the inner approximation is

a d-th order scheme. Taylor expansion at the boundary point x = a is given as follows:

d—1 *(k)A k(_ oA
u(z_p) =ula+ (Cy — p)Az) = . (k:' p+Ca) + O(Az?),
k=0 '
d—3  x(k+2) k k
Ua AT (—p+ C, -
tee(0—p) = el + (Co — p)Az) = Y k(! PH+C) | oagt-2)

where u(x_,) is the value of the function u at the ghost points z_, and u,,(x_,) is the
value of the second order derivative u,, at the ghost point x_, respectively. Clearly, d-th

order approximations of u(z_,) and (d — 2)-th order approximations of w,,(z_,) are

d—1  «(k) A K k d—3  x(k+2) A K k
Ug Az (—p 4+ C,) Ug VT AZ(—p+ Cy)
(26> u*P - Z k' ) (U‘JUJU)*P - k'
k=0 ' k=0 '
where us* is (at least) (d — k)-th order approximations of %‘ . With the parabolic

r=a

equation u; = cu,, and the Dirichlet boundary conditions, we can use the PDE itself or
extrapolation to get the even order derivatives, while the odd order derivatives can only

be obtained by extrapolation. The details of the procedure are as follows.
e The even order derivatives can be obtained by the PDE itself through the inverse
Lax-Wendroff (ILW) procedure:

) . 928)q, 1
WO = y(a,t) = g (t), -, ui®) = @ ..~ P a2, -

e All derivatives can be obtained by extrapolation.

Assume the d-th order scheme is used in the numerical approximation. We use
the point values inside the computational domain to get the interpolation polynomial
P, _1(x). Once P,;_1(x) is obtained, then all derivatives can be obtained at the boundary
with this interpolation polynomial. In [14], function values at the interior points and the
boundary point are used to get P;_1(x) for the high order central difference schemes.
However, for the compact difference schemes in this paper, we are not able to get a sta-
ble scheme by using the method in [14]. Instead, we use m point values of the function
and (d —m) point values of the second order partial derivative to get P, 1(z), which
is a polynomial of degree d — 1. That is, we use {(xo,ug), (z1,u1), =+, (Tm-1,Um-1),
(o, (Ugz)o), (71, (Ugz)1)s =+ (Ta—m—1, (Uzz)a—m—1)} to get the interpolation polynomial
P, 4-1(z). Here the subscript “I” stands for left. Then we have

w29 0 pd ] p2s+1)

_ *(28+1) _
@ 0r28) |p—a l:dfl(a)’ Ua T 9p@BY) |, bd-1 (a).
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The simplified inverse Lax-Wendroff (SILW) method is as follows. For k; = k; (1 <
k1 < d/2), the even derivatives of uz(w), B =0,1,2---k — 1 are obtained by the ILW
procedure. The remaining derivatives in (2.6) are all obtained by extrapolation. In this

way, we can get the values of the ghost points by Taylor expansion.

2.3.2. SILW procedure for Neumann boundary conditions. In this section, we discuss the
IBVP (2.1) with the boundary condition (2.3). Assume the inner approximation is a

d-th order scheme. Taylor expansion at the boundary point z = a gives

d

u(z_p) = ula+ (C, — p)Az) = Z

k

uZ(k)Axk(—p +C,)k
k!

+O(Az™),

I
=)

d—2  x(k+2) k k
Ua Az (—p+ C, -
Uzz (T—p) = Ugp(a + (Cp — p)Az) = E k(! & ) + O(Azh).

k=0

where u(x_,) is the value of the function u at the ghost points z_,, u..(x_,) is the
value of the second order derivative u,, at the ghost points x_,, respectively. Similar as
in [14], we also use (d + 1)-th Taylor expansion to get the approximation values of the

ghost points. Then we have u_, and (uy;)_, as follows.

d . x(k) Ak k
Ug  Ax®(—p+ C,
(2.7) U—p = § (/{:! ) , o (Uae)—p = Ll

In the case of the parabolic equation u; = ¢ u,, with the Neumann boundary condi-
tions, we can use the PDE itself or extrapolation to get the odd order derivatives, while
the even order derivatives can only be obtained by extrapolation. The details of the

procedure are as follows.
e The odd order derivatives can be obtained by the PDE itself through the inverse
Lax-Wendroff (ILW) procedure:

o26+1)y, 1
#(1) — el 26+ S ) e
Uy " = UI(CL, t) - 93(t)7 » Ug - Ox26+D) |,y - B 93 (t)7

e All derivatives can be obtained by extrapolation.
Assume the d-th order scheme is used in the numerical approximation. As before,
m point values of function and (d + 1 — m) point values of the second order partial

derivative are used to get the interpolation polynomial P;(x), which is a polynomial of

degree d. We use {(x(]qu)v ) (xm—17um—1)7 (.]70, (uxx>0)7 ) (xd—mu (uwx)d—m)} to
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get the interpolation polynomial P, 4(x). Then we have

H2B+1)y,

2
gz _ 0%
0$(26+1) r=a

(28) *(28+1
a 922B) | e - Pl,d (a), ua( Atl) =

2 1
= P2V (a).

The simplified inverse Lax-Wendroff (SILW) method is as follows. For kg = k; (1 <
k1 < d/2), the even derivatives of u2(26+1)’ £5=0,1,2---k; — 1 are obtained by the ILW
procedure. The remaining derivatives in (2.7) are obtained by extrapolation. In this
way, we can get the values of the ghost points by Taylor expansion.

Clearly, a proper choice of k; and m is the key point to ensure stability for numerical
approximations of both Dirichlet and Neumann boundary conditions. Note that for the
Dirichlet boundary, the possible value of mis 1,2, --- ,d and for the Neumann boundary
condition, m can be choose as 1,2,3,--- ,d+1. We want to find the appropriate value of
m and the corresponding minimum value of k,; that can ensure stability for all C, € [0,1).
Notice that, the smaller the values of k4, the simpler and less expensive the algorithm
becomes. Hence we would like to find the smallest value of the the parameter k; which

can ensure stability.

3. STABILITY ANALYSIS

In this section, we consider the stability issue for both the semi-discrete and fully-
discrete schemes. We apply the Godunov-Ryabenkii method and the eigenvalue spec-
trum visualization to analyze stability and these two methods yield similar results. The
problem considered in this paper consists of two physical boundaries and each bound-
ary can be analyzed separately, that is, stability can be discussed for two quarter-plane
problems and a Cauchy problem. Furthermore, for the numerical approximation to the
parabolic equation u; = cu,, , the left boundary and the right boundary are completely
symmetric for a compact scheme. Therefore, we only perform stability analysis on the

left boundary and we can obtain symmetric conclusions for the right boundary.

3.1. Semi-discrete schemes. In this subsection, we discuss stability for the semi-
discrete schemes. Stability is performed on the quarter-plane problem

Up = ClUyy, T € [a,+00), t >0,
(3.8) u(a,t) = g1(t), t >0,

u(z,0) = up(x), = € [a,+00).
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For convenience, we set gy(t) = 0. Now let us take the fourth order scheme (3.9) as an
illustration example.
(uj)e = ¢ (),

5 %(Um)j—l + g(um)j + 11—2(Um)j+1 = ﬁ(“]‘—l — 2u; + uj4).
3.1.1. Godunov-Ryabenkii stability analysis. The key point of the Godunov-Ryabenkii
method is to determine whether there exist any eigenvalues with positive real part. A
complete description of the method can be found in [6, 19].

e Analysis on the Dirichlet boundary condition

For illustration purpose, we take m = 4, that is, the interpolation polynomial is
obtained by {(zo,ug), (21, u1), (x, us), (x3,us3)}.

Let uj = e5¢;, due to the fact that u; = ¢y, scheme (3.9) can be transformed into

/1 5 1
(3.10) 8(@%‘—1 + 6¢j + E¢j+1> = ¢j-1—20; + ¢j11
where § = sAz”/c. § can also be regarded as eigenvalue and {¢;(5)}32, is the corre-
sponding eigensolution. For the fourth order scheme, the possible values of k; are 1 and

2. Now we use k; = 1 for instance.

Take ¢; = k7 and plug it into equation (3.10), we can get the characteristic equation

as follows.
(1 ) 1
(3.11) s(ﬁjugwrﬁm?) — K22+ 1.
Define
1\ 5 1
(3.12) f) = (1= 53)e2 = (24 28)m+1- 5.
Take k = %, £ € [0,27], || = 1. From (3.11), we can get
. 12(cos€ —1)
3.13 — °\PS )
( ) ° cosé+5

From (3.13), we can get s is real and 5 < 0 if |k| = 1.

Since = € [a, +00), we are only interested in the roots of the characteristic equation
satisfying |k| < 1. Same as in [13], if Re(s) > 0, equation (3.13) implies the number
of roots for (3.11) with |k| < 1 is independent of S. We can take any value of s with
Re(s) > 0 and get the roots, then we can get the number of roots for (3.11) with |x| < 1.
Taking s = 1, the roots of (3.12) are

k1 = 0.36714, Ko = 2.72377.

Thus, there is only one root with |x| < 1 when Re(s) > 0. Then the general expression
of ¢; in (3.10) is

(3.14) ¢; = oK.
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For scheme (3.9), we need the ghost point values u_; and (uz,)_1. As kg = 1, the

derivatives are given as
w:©® = wu(a,t) = g1 (t) =0,

wr) = ﬁ( — (3C2 + 120, + 11)ug + (9C? + 30C, + 18)uy
(3.15) — (9C2 + 24C, + 9)uy + (3C7 + 6C, + 2)us),
w® — A%Q ((Ca + 2)ug — (3C, + 5)us + (3C, + 4)us — (Co + 1)us),
u® = ﬁ(—uo + 3uy — 3ug + us).
Plugging (3.15) into (2.6
 —C?2-6C2—-11C, + 18 C3 4+ 5C? 4+ 6Ca — 12

) and we can get the approximate values at the ghost points

U_1 6 Ug + 9 U1
1 —C3 —4C% -3C, +8 C3+3C2+2C,—6
(3.16) + U ug,
2 6
( ) BUO - 8u1 + 7UQ - 2U3
Upg )1 = .
! Ax?

Plugging (3.14) and (3.16) into (3.10) with j = 0 and we then have

(3.17) (azk® + agk® + a1k + ag)o = 0
where aqg, - - - , a3 are given as
203 +12C% +22C, + 105 -9 —6C?% — 3002 — 36C, + 52+ 5
ap = , a1 = )
12 12
6C3 + 24C? +18C, — 41 —-C3-3C%*-20,+5
a9 = 12 s a3 = 6 .

In order to get a nontrivial ¢;, we need o is nonzero and
3 2 _
ask” + asKk”™ + a1k + ag —O,

(3.18) f(k)=0,
|| < 1.

For any C, € [0,1), by solving equation (3.18) and taking the maximum value of
Re(s), we have the following result in Fig. 3.1.

The shaded region in Fig. 3.1 shows the maximum value of Re(§) for different C,, the
fact that the region is below Re(5) = 0 indicates stability. From Fig. 3.1, we can see
all eigenvalues of the semi-discrete fourth order scheme CF1 satisfy Re(s) < 0 for the
Dirichlet boundary problem. This indicates the SILW procedure with k; = 1 and m =4
is stable for C, € [0,1) and C}, € [0, 1).

e Analysis on the Neumann boundary condition

Without loss of generality, we set g3(t) = 0.
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he SILW dure wi

Fic. 3.1. Godunov-Ryabenkii stability analysis on the right-plane prob-
lem with Dirichlet boundary conditions: Fourth order semi-discrete scheme
and SILW procedure with k; =1 and m = 4.

For the Neumann boundary condition, we need 5 points to get the interpolation
polynomial. For illustration purpose, we choose {(zg,ug), (1, u1), (x2,u2), (zo, (tUzz)o),
(1, (uge)1)}, i.e. m = 3. We also take kg = 1.

As before, we have the characteristic equation is (3.11). The eigenvalue problem is

(3.10) and the general expression of ¢; is (3.14). When k; = 1, the values of derivatives

are
o) Ca+2C3+Cy+2 A ) Ci—C,+203
up = 5 uy + (—C; —2C) )uy + 5 Us
3 2 2 . o 4 3 4 A
. Ca+36’6a+ C A2 ()0 + 3C 76C7a+ C Aw2(u, )1,
1
Uz(l) - EQS(t) = 07
2 6CF+6C, 12C% +12C, 6C2 + 6C,
(3.19) Ya o = TTA 0T T A Arz 2
+ (Cq + 1) (tga)o + (—6C2 — TC,) (U )1,
—6(2C, +1 12(2C, + 1 6(2C, + 1
o _ TORC D) 1200, +1) 620, +1)

Ax3 Ax3 Ax3

1 12C, + 7
— E(Um)o + T(umm)la

*(4) o 12”0 - 24”1 + 12u2 o 12
o Azt Ax?

(ua:a:)l-
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Plugging (3.19) into (2.7) and we can get the approximate values at the ghost points

Uy = <2(];1 +C%—3C% + Ca + §>u0 + (—4C2 =202 +60? — 3)uy

2 2
c, 3 c3 c?* 2 2
4 3 _ 2_ “a _ —a —a _ = _ 2
520, +<20a+ca 3Ca =5 +2)u2+<2 +5 3Ca+3)Ax (Uza)o

3 7 2 5
_oct_ 28 4 Lo _a__)AZ .
+ (=208 = 508+ 502+ 3Ca = 2 ) A (uaa .
12ug — 24wy + 12u
(Uq:q:)—l - 0 szl 2 + 2(Ua:x)0 - 13(Uxa:)1

Plugging (3.14) and (3.20) into (3.10) with j = 0 and we then have
(321) (bgliz + bll{ + bo)O’ =0

where bg, by, by are given as

(C, — 1)[12C2 + 3(5 4 6)C2 + 65C, + 25 + 3]

bO = - )
6
(Co — 1)[12(5 4 2)C2 + 3(75 + 12)C2 — 43] b (C, —1)(4C2 +6C* —1)
6 9 2 — 9 .

In order to get a nontrivial ¢;, we need o is nonzero and

b1:

bok? + bk + by = 0,
(3.22) f(r) =0,
|| < 1.
For any C,, € [0, 1), by solving equation (3.22) and taking the maximum value of Re(s)

and we have the following result in Fig. 3.2.

ler semi-discrete scheme and the SILW procedure with k=1

Fic. 3.2. Godunov-Ryabenkii analysis on the right-plane problem with
Neumann boundary conditions: Fourth order semi-discrete scheme and
SILW procedure with k; = 1 and m = 3.

Fig. 3.2 indicates the semi-discrete fourth order scheme for the Neumann boundary
problem with SILW procedure with k; = 1 and m = 3 is stable for all C, € [0,1) and
Cy € [0, 1).
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3.1.2. Eigenvalue spectrum visualization. The algebra of the Godunov-Ryabenkii method
is very complicated for the higher order schemes and we use an alternative eigenvalue
spectrum visualization method which is easier to carry out to analyze stability. We will
validate our analysis results by numerical experiments in the next section.

Unlike the Godunov-Ryabenkii method, which breaks the whole problem into three
small problems, the method of eigenvalue spectrum visualization [26] needs to consider
stability with the two boundaries together.

For simplicity, we set g1(t) = ¢2(t) = g3(t) = ga(t) = 0. The semi-discrete schemes

can be transformed into a matrix-vector form as

dU c -
3.23 — =—QU
(3.23) dt  Ax? @
where U = (ug,u1, - ,uy)’ and Q is a matrix. This system contains the chosen interior

scheme and numerical boundary conditions.
Take u(z,t) = e'v(z) in (3.23) and it changes to

(3.24) 50U = QU

As demonstrated in [26], stability has no relation with the grid number N, so we
only need to focus on the eigenvalues which keep O(1) distance from the imaginary axis
when the grid number N increases and satisfy Re($) > 0. Therefore, we look for “fixed”
eigenvalues, namely those eigenvalues which are equal (subject to a negligible difference
due to round-off errors and eigenvalue solver accuracy) for different values of grid number
N. As in the case of the Godunov-Ryabenkii method, there may exist more than one
“fixed” eigenvalue of the matrix (), and we take the maximum value of the real part of
the “fixed” eigenvalues. We also take the fourth order scheme (3.9) as an example to
explain this method in detail.

Similar to the analysis in Sect. 3.1.1, we only analyze the stability of the right-plane
problem. In order to get the matrix-vector form (3.23), we need a finite interval. For
the fourth order scheme (3.9), the ghost points are u_1, (Uzy)_1, Uny1 and (Uze)ni1-
As we are considering the right-plane problem, we get the ghost points u_; and ()1
by the SILW procedure and we set uyi1 = (uzz)ni1 = 0 to eliminate the influence to
stability from the right boundary. In particular, for the Neumann boundary condition
with k; = 1, m = 3, we provide an explicit form of the matrix @) in details.

e Analysis on Dirichlet boundary condition

As before, we choose kg = 1, m = 4 and use {(xo,ug), (x1,u1), (22, uz), (x3,u3)} to
get the interpolation polynomial P, 3(x). We use different values of NV to find the largest
part of all the fixed eigenvalues, the result is in Fig. 3.3.
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Fourth order semi-discrete scheme and the SILW procedure with k =1
03 04 ca 05

maxRe(s)

Fic. 3.3. Eigenvalue spectrum visualization on the right-plane problem
with Dirichlet boundary conditions: Fourth order semi-discrete scheme
and SILW procedure with k; =1 and m = 4.

From Fig. 3.1 and Fig. 3.3, we can see they are almost the same. So the eigenvalue
spectrum visualization could be another approach to analyze stability.

e Analysis on the Neumann boundary condition

For the Neumann boundary condition, we choose k; = 1, m = 3 and use {(xg, uop),
(x1,u1), (z2,u2), (X0, (Uzz)o), (@1, (uzz)1)} to get Py(x). In this case, we have the

numerical boundary condition (3.9) with j = 0, N that

1 5) 1 1
E(ugggg)fl + 6(“11)0 + E(u11>1 — E(ufl - 2“0 + ul)a
(3.25) 1 5 1 1
ﬁ(uxx)Nfl + E(UII)N + E(UII)N+1 — A—LL’Q(UNfl - 2uN + uN+1) 5

where the ghost points u_; and (u,,)_; are obtained by the SILW procedure in (3.20)

and we take uyi1 = (Uzz)ny+1 = 0. Then (3.25) can be rewritten as follows:

1
WZO(UCL‘CI?)O +my (UCECL‘)l = —2(n0u0 + nju; + TL2u2>,
Az
(3.26)
1 5 1
E(um‘)N*l + é(uu)N = E(UNA - 2UN> )

with mq, my, ng, ny, ny are given as

24+ 4C, — 302 - 3C2 4 —4C, — 21C? +9C3 + 12C¢
mo = , My = )
6 6
~1+C, — 6C? +2C3 4 4C*
ng = ——% 5* o« 2%, 223 -0, —207),
1—C,—6C2?42C3 +4C2
Ng = .

2



16 TINGTING LI, JIANFANG LU, AND CHI-WANG SHU

The fourth order scheme (3.9) then can be transformed into M 657[2] = ﬁN U with

mqy My Nog N1 N2

1 5 1 -
54 1 2 1

]\/1: .. .. .. 7 N:

G|>—' olen
ol |-

Due to the fact that % =c f—g, we can rewrite the fourth order scheme in the form of

(3.23) with Q = M~'N. For different values of C,, by analyzing the “fixed” eigenvalues
of ), we can get the result in Fig. 3.4.

Fourth order semi-discrete scheme and the SILW procedure with k =1
2 03 ca 05 08 [ 08 09

Fic. 3.4. FEigenvalue spectrum visualization on the right-plane problem
with Neumann boundary conditions: Fourth order semi-discrete scheme
and SILW procedure with k; =1 and m = 3.

3.2. Fully-discrete Schemes. In this paper, we use the third order TVD Runge-Kutta
method as the time discretization method for scheme (3.9). The detailed procedure can
be found in [13].

In the semi-discrete case, an eigensolution is in the form w;(t) = e*¢; = e ¢; with

Re(s) > 0. Analogously, in the fully-discrete scheme an eigensolution is in the form

At
wIt = z(p)ul with = sAt = Shep, Aot = % and |z(p)| > 1 where
T
2 3
(3.27) (1) =1+u+%+%-

Here, § is an eigenvalue of the semi-discrete scheme and z () is the eigenvalue of the fully-
discrete scheme. In both semi-discrete and fully-discrete cases, the scheme is unstable if
such candidate eigensolution exists.

Before studying the stability of the schemes for the initial-boundary value problem
considered in this paper, we need to fix the CFL number first. Here we consider the CFL
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condition of the numerical schemes for the corresponding Cauchy problem. We can get
the maximum value of A.;, denoted as (A.fi)maz, Which ensures stability of the schemes
without boundary (periodic boundary conditions). Throughout this paper, we adopt
(Acft)maz @s our CFL number when verifying the stability of the numerical schemes for
the initial-boundary value problem. This means we do not want the boundary treatment
to affect the CFL number of interior schemes for the corresponding Cauchy problem. The
detailed procedure to find (Acfi)mas can be found in [13] and we just list the values of
(Aefi)mae for the schemes in Sect. 2.1 in Table 3.1.

TABLE 3.1. (Acf1)max for schemes of different schemes

Scheme | CF1| CS1 | CS2 | CE1 | CE2 | CE3 | CT1 | CT2 | CT3 | CT4 | CT5

(Aeft)maz | 0418 1 0.366 | 0.376 | 0.343 | 0.336 | 0.356 | 0.368 | 0.329 | 0.320 | 0.322 | 0.343

3.2.1. Godunov-Ryabenkii stability analysis. For the Godunov-Ryabenkii stability anal-

ysis, s is the eigenvalue obtained in the semi-discrete case and
"= sAt = ()\cfl)ma:pg-

e Dirichlet boundary condition
As in Sect. 3.1.1, there may exist more than one eigenvalue s, hence there may exist
more than one eigenvalue z(x). The maximum value of |z(u)| defined in equation (3.27)

is shown in Fig. 3.5.

Fourth order fully-discrete scheme and the SILW procedure with k=1
04 0. 06

Fic. 3.5. Godunov-Ryabenkii analysis on the right-plane problem with
Dirichlet boundary conditions: Fourth order fully-discrete scheme and
SILW procedure with k; =1 and m = 4.

The shaded region in Fig. 3.5 shows the the maximum value of |z(u)| for different C,,
the fact that the region is above |z(p)| = 1 indicates instability.

e Neumann boundary condition
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The result for the Neumann boundary condition is shown in Fig. 3.6.

Fourth order fully-discrete scheme and the SILW procedure with k =1

Fic. 3.6. Godunov-Ryabenkii analysis on the right-plane problem with
Neumann boundary conditions: Fourth order fully-discrete scheme and
SILW procedure with k; =1 and m = 3.

3.2.2. Figenvalue spectrum visualization. In this subsection, we use the eigenvalue spec-
trum visualization method to get the stability results for the fully-discrete scheme. This
method is based on the matrix formulation (3.23). By using the third order TVD Runge-
Kutta method, we can get the fully-discrete scheme
- cAt 17eAt N2 1 /7cAt N3\ ~
(3:28) 0 = (1+ 3739+ 3(559) +5(529) )7
where [ is the identity matrix. Same as in [13], we need all the eigenvalues of
cAt 1/7cAt N2 1 /7cAt _\3
G=1+550+3(329) +5(529)

to lie inside the unit circle. i.e. |z(u)| < 1, to ensure stability of the fully-discrete
approximation.

e Dirichlet boundary condition

The maximum value of |z(u)| as defined in equation (3.27) is shown in Fig. 3.7.

e Neumann boundary condition

The result of the Neumann boundary value problem is in Fig. 3.8.

Comparing Fig. 3.5 with Fig. 3.7, we can see that Fig. 3.5 is similar to Fig. 3.7 and
Fig. 3.6 is similar to Fig. 3.8, which indicates these two methods yield the same results.

In conclusion, for the Dirichlet boundary value problem, the fully-discrete fourth order
scheme and SILW procedure with k; = 1 and m = 4 is stable for all C, € [0,1) and
Cy € [0,1). For the Neumann boundary value problem, the fully-discrete fourth order
scheme and SILW procedure with k; = 1 and m = 3 is stable for C, € [0.21,1) and
Cp € [0.21,1). In the later section, we will show that we need to take k; = 2 to get a
stable scheme for all C, € [0,1) and C} € [0, 1).
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Fourth order fully-discrete scheme and the SILW procedure with k =1
04 0,

06 07

maxabs(z)

Fic. 3.7. Eigenvalue spectrum visualization on the right-plane problem
with Dirichlet boundary conditions: Fourth order fully-discrete scheme
and SILW procedure with k; =1 and m = 4.

Fourth order fully-discrete scheme and the SILW procedure with k =1

Fic. 3.8. Eigenvalue spectrum visualization on the right-plane problem
with Neumann boundary conditions: Fourth order fully-discrete scheme
and SILW procedure with k; = 1 and m = 3.

For the remaining schemes in Sect. 2.1, we have obtained similar results. Suppose the
interior scheme is d-th order, for the Dirichlet boundary value problem, m can be chosen
as 1,---  d; for the Neumann boundary value problem, m can be chosen as 1,--- ,d-+ 1.
For every possible value of m, we would like to find the minimum value of k; denoted
as (kq)min to guarantee stability for all C, € [0,1) and C}, € [0,1). It maybe more than
one pair of (m, (kq)min) that can get the stable results. In Table 3.2, we summarize all
possible pairs of (m, (kq)min) to ensure stability of different schemes for the IBVP (2.1)
with the Dirichlet boundary conditions (2.2), under the CFL conditions shown in Table
3.1. Results for the IBVP (2.1) with the Neumann boundary conditions (2.3) are shown
in Table 3.3.
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TABLE 3.2. Pairs of (m, (kq)min) to ensure stability for different schemes
for IBVP (2.1) with Dirichlet boundary conditions (2.2).

Scheme Pairs of (m, (kq)min)
CF1 (4,1)
Cs1 (6,2)
CS2 (6,2)
CE1 (3,3), (6,3), (8,2)
CE2 (3,3), (5,3), (6,3)
CE3 (3,3), (6,3), (8,2)
CT1 |(2,2), (3,3), (4,4), (6,4), (7,3), (8,3), (9,2)
CT2 (3,3),(4,3),(6,3), (7,3), (8,3)
CT3 (3,3), (4,3), (6,3), (7,3), (8,3)
CT4 (3,3), (4,3), (6,3), (7,3), (8,3)
CT5 (3,3), (4,3), (7,3), (8,3), (10,2)

4. NUMERICAL EXAMPLE

In this section, we present some numerical examples to illustrate and validate the
results in Tables 3.2 and 3.3. These numerical tests also indicate the obtained stability
results are sufficient for stability of the boundary treatments.

Consider the following problem
Up = Uy, T € (1.5,3.5), £ >0

(4.29) '
u(z,0) = sin(z), = € (1.5,3.5).

The corresponding Dirichlet boundary conditions are

(430) {u(l.S,t) = e 'sin(1.5),
u(3.5,t) = e "sin(3.5).

The corresponding Neumann boundary conditions are

u,(1.5,t) = e " cos(1.5),
(4.31)
u,(3.5,t) = e cos(3.5).
The exact solution is

u(x,t) = e 'sin(x)



STABILITY OF SILW FOR COMPACT SCHEMES 21

TABLE 3.3. Pairs of (m, (k4)mn) to ensure stability for different schemes
for IBVP (2.1) with Neumann boundary conditions (2.3).

Scheme | Pairs of (m, (kq)min)
CF1 (2,2), (3,2)
CS1 (2,2), (6,2), (7,1)
CS2 (2,2), (6,2)
CE1l (2,2), (8,2)
CE2 (2,3), (8,2)
CE3 (2,2), (8,2), (9,2)
CT1 (3,3), (9,3)
CT2 (2,4), (10,3)
CT3 (6,4)

CT4 (10,4)
CT5 | (2,3), (10,3), (11,2)

The time step size At is chosen as
(4.32) At = ()\cfl)maxAx2

and (Acfi)maz is the maximum CFL number shown in Table 3.1.

4.1. Results for Dirichlet Boundary Condition. In this subsection, we show the nu-
merical results of boundary treatments for equation (4.29) with the boundary condition
(4.30).

e The fourth order scheme

Here m = 4 and (kq)min = 1. Table 4.4 shows that we can get the fourth order with
small and large C, and C.

e The sixth order scheme CS1

In this case, m = 6 and the minimum value of k4 is (kg)min = 2. The left figure in Fig,.
4.9 shows the scheme is unstable with k; = 1. The right figure in Fig. 4.9 and Table
4.5 indicate the scheme is stable with k; = 2, and we can see clearly sixth convergence
order in Table 4.5.

e The sixth order scheme CS2
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TABLE 4.4. The fourth order scheme CF1 with m =4, k; =1, te,g = 1.0
for the heat equation (4.29) with Dirichlet boundary conditions (4.30).
The CFL condition is in (4.32).

N C, =108 C, =108 C,=1-10"8% C,=1-10"°%
L? error order L™ error order L? error order L™ error order
10 | 4.218E-04 - 4.382E-04 - 6.030E-05 - 6.700E-05 -

20 | 2473E-05 4.092 2.779E-05 3.979 | 5.211E-06 3.533 6.040E-06 3.472
40 | 1.488E-06 4.054 1.740E-06 3.998 | 3.861E-07 3.754 4.567E-07 3.725
80 | 9.116E-08 4.029 1.087E-07 4.001 | 2.636E-08 3.873 3.151E-08 3.857
160 | 5.638E-09 4.015 6.787E-09 4.001 1.724E-09 3.935 2.071E-09 3.928

Dirichlet boundary condition — = Numerical solution Dirichlet boundary condition
CS1 Ca=Cb=0.92 k_{d}=1 Exact solution CS1 Ca=Cb=0.92 k_{d}=2

——=—— Numerical solution
Exact solution

4E+19 | 0351
i 03F
- 025
2E+19 E
- 02F

| \//\/\v/\vf\v/\/\/\/\\/

-2E+19

-0.05

-4E+19 |- 0.1 F

TR R I T NI M T BRI E . . .
15 2 2.5 3 3.5 1.5

Fi1G. 4.9. The sixth order scheme CS1 and SILW procedure with m = 6,
Cy,=Cy,=0.92, teng = 1.0. The CFL condition is in (4.32). Left: ky =1
and N = 20; Right: k; = 2 and N = 320.

TABLE 4.5. The sixth order scheme CS1 with m = 6, kg = 2, te,q = 1.0
for the heat equation (4.29) with Dirichlet boundary conditions (4.30).
The CFL condition is in (4.32).

N C, =108 C, =108 C,=1-10"8% C,=1-10"°
L? error order L™ error order L? error order L™ error order
10 | 7.084E-06 — 6.731E-06 — 1.514E-06 - 1.572E-06 —

20 | 1.015E-07 6.125 1.091E-07 5.947 | 3.777E-08 5.325 4.383E-08 5.164
40 | 1.504E-09 6.076 1.722E-09 5.985 | 7.517E-10 5.651 9.210E-10 5.573
80 | 2.284E-11 6.041 2.698E-11 5.996 | 1.330E-11 5.821 1.671E-11 5.785
160 | 3.516E-13 6.021 4.220E-13 5.999 | 2.213E-13 5.909 2.813E-13 5.892

From previous analysis, we can get that m = 6 and (kq)min = 2. Fig. 4.10 shows
the stable and unstable results and Table 4.6 shows the sixth order when the scheme is
stable.
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Dirichlet boundary condition
CS2 Ca=Cb=0.88 k_{d}=2

Dirichlet boundary condition
CS2 Ca=Cb=0.88 k_{d}=1

600000 —

Numerical
Exact solution

———=—— Numerical solution
Exact solution

400000 -

200000

Vs
[V

0

-200000

-400000 [~

F1G. 4.10. The sixth order scheme CS2 and SILW procedure with m = 6,
Cy, =Cy =0.88, teng = 1.0. The CFL condition is in (4.32). Left: ky =1
and N = 20; Right: k; =2 and N = 320.

TABLE 4.6. The sixth order scheme CS2 with m = 6, kg = 2, teng = 1.0
for the heat equation (4.29) with Dirichlet boundary conditions (4.30).
The CFL condition is in (4.32).

N C,=10"% C,=10"" C,=1-10"8% C,=1-10"°%
L? error order L™ error order L? error order L™ error order
10 | 6.842E-06 - 6.491E-06 - 2.850E-07 - 2.938E-07 -
20 | 9.812E-08 6.124 1.053E-07 5.946 7.193E-09 5.308 &.144E-09 5.173
40 | 1.455E-09 6.076 1.662E-09 5.985 1.444E-10 5.638 1.710E-10 5.573
80 | 2.210E-11 6.041 2.605E-11 5.996 2.568E-12 5.814 3.104E-12 5.784
160 | 3.403E-13 6.021 4.074E-13 5.999 4.280E-14 5.905 5.229E-14 5.892

e The eighth order scheme CE1

We only explore the case with m = 3 and (kg)min = 3. Stability and instability results
are given in Fig. 4.11. The results are consistent with the analysis.

e The eighth order scheme CE2

In this case, we only give the results with m = 5 and the corresponding (kg)min is 3.
Fig. 4.12 gives the stability and instability results.

e The eighth order scheme CE3

Here, we take m = 6 and (kg)min = 3. Stability and instability results are shown in
Fig. 4.13.

e The tenth order scheme CT1

Fig. 4.14 gives the results with m = 4 and (kg)min = 4 and the results are consistent
with the analysis before.

e The tenth order scheme CT?2
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Dirichlet boundary condition
CE1 Ca=Cb=0.13 k_{d}=2

1E+08

Dirichlet bounary conditin
CE1 Ca=Cb=0.13 k_{d}=3

Numerical
Exact solution

———=—— Numerical solution
Exact solution

8E+07 :\r
6E+07 —\
4E+07 —\
i \v
0 _
1 | - | i\j\i\q
15 2 25 3 35

Fic. 4.11. The eighth order scheme CE1 and SILW procedure with m = 3,
Cy, = Cy =0.13, teng = 1.0. The CFL condition is in (4.32). Left: kg = 2
and N = 20; Right: k; = 3 and N = 320.

Dirichlet boundary condition Numerical solution Dirichlet boundary condition ——=——— Numerical solution
CE2 Ca=Cb=0.24 k_{d}=2 Exact solution CE2 Ca=Cb=0.24 k_{d}=3 Exact solution
1E+36p o o o o o o o o o W 0.35 E
\ 03f
5E+35 |- 0.25 -
0.2
3 \ 0.15
1.47574E+20 I s
F 01F
[ 0.05
-5E+35 - oF
\ -0.05
AE+36 |- X 01F
TR N AN Y RN N YT NI IR RS MR | E . . 1
15 2 2.5 3 35 15
X

Fic. 4.12. The eighth order scheme CE2 and SILW procedure with m = 5,
Co=Cyp=0.24, teng = 1.0. The CFL condition is in (4.32). Left: ky = 2
and N = 20; Right: k; = 3 and N = 320.

Fig. 4.15 is the stability and instability results of m = 6 and we can get that (kg)min =
3 and this is consistent with the stability analysis.

e The tenth order scheme CT3

In this case, we take m = 3 and (kg)min = 3. Stability and instability results are given
in Fig. 4.16. The results are again consistent with the analysis.

e The tenth order scheme CT4

We give the numerical results with m = 7 and (kg)mim = 3. Fig. 4.17 shows the
stability and instability results.
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Dirichlet boundary condition
CE3 Ca=Cb=0.18 k_{d}=2

Dirichlet boundary condition
CE3 Ca=Cb=0.18 k_{d}=3

Numerical soluti
Exact solution

———=—— Numerical solution
Exact solution

1.2E429
1E+29
8E+28 |-
6E+28 |-
4E+28

2E+28

Fic. 4.13. The eighth order scheme CE3 and SILW procedure with m = 6,
Cy, = Cy =0.18, teng = 1.0. The CFL condition is in (4.32). Left: kg = 2
and N = 20; Right: k; =3 and N = 320.

Dirichlet boundary condition
CT1 Ca=Cb=0.04 k_{d}=3

Dirichlet boundary condition
CT1 Ca=Cb=0.04 k_{d}=4

Numerical soluti

ical soll
Exact solution Exact solution

1E+36~ © 9 © » © o 3 o &

$TI

AE+36F & & b b 4 b b b
15

25
X

F1G. 4.14. The tenth order scheme CT1 and SILW procedure with m = 4,
Cy, = Cy =0.04, teng = 1.0. The CFL condition is in (4.32). Left: ky = 3
and N = 40; Right: k; =4 and N = 320.

e The tenth order scheme CT5H
In this case, we only display the results with m = 8 and (kg)min = 3. Fig. 4.18 shows
the stability and instability results.

4.1.1. Results for Neumann Boundary Condition. In this subsection, we give the results
of equation (4.29) with the boundary condition (4.31).

e The fourth order scheme CF1

Here, we only explore the case with m = 3. From previous discussion, if k; = 1 the
scheme is stable for C, € [0.21,1) and C}, € [0.21,1). The left figure in Fig. 4.19 shows the
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Dirichlet boundary condition
CT2 Ca=Cb=0.58 k_{d}=2

Numerical
Exact solution

Dirichlet boundary condition
CT2 Ca=Cb=0.58 k_{d}=3

———=—— Numerical solution
Exact solution

1.5E+09 |-

1E+00 [

=T
: vvv VY

-5E+08 |-

AE+09 |-

T T N N R T IR
15 2 2.5 3 3.5
X

Fic. 4.15. The tenth order scheme CT2 and SILW procedure with m = 6,
Cy, = Cy =0.58, teng = 1.0. The CFL condition is in (4.32). Left: kg = 2
and N = 20; Right: k; = 3 and N = 320.

Dirichlet boundary condition

Dirichlet boundary condition
CT3 Ca=Cb=0.1 k_{d}=3

CT3 Ca=Cb=0.1 k_{d}=2

———=—— Numerical solution|
Exact solution

———=——Numerical solution
Exact solution
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Fi1Gc. 4.16. The tenth order scheme CT3 and SILW procedure with m = 3,
C, = Cy =0.1, teng = 1.0. The CFL condition is in (4.32). Left: kg = 2
and N = 10; Right: k; = 3 and N = 320.

solution has strong spurious oscillations with very large magnitudes if C;, = C}, = 0.2 and
the right one shows that the solution remains stable and accurate after grid refinements if
C, = C, = 0.21. The numerical result confirm the theoretical results from the stability
analysis. From Table 4.7, a grid refinement study verifies the designed fourth order
accuracy when kg = 2, which can ensure stability for C, € [0,1) and Cy, € [0,1).

e The sixth order scheme CS1

Here, we take m = 6 as an illustration example. In this case, (kq)min = 2 is the

minimum value to ensure stability for all C, € [0,1) and Cj, € [0,1). The left figure in
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Dirichlet boundary condition
CT4 Ca=Cb=0.48 k_{d}=2
1E+36

5E+35 -

1.47574E+20 B I B
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Dirichlet boundary condition
CT4 Ca=Cb=0.48 k_{d}=3

——=s—— Numerical solution

Fi1Gg. 4.17. The tenth order scheme CT4 and SILW procedure with m = 7,
Cy, =Cy =048, teng = 1.0. The CFL condition is in (4.32). Left: kg = 2

and N = 20; Right: k; =3 and N = 320.

Dirichlet boundary condition
CT5 Ca=Cb=0.6 k_{d}=2

———=—— Numerical solution
Exact solution
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Dirichlet boundary condition
CT5 Ca=Cb=0.6 k_{d}=3

F1G. 4.18. The tenth order Scheme CT5 and SILW procedure with m = 8,
Cy = Cy = 0.6, teng = 1.0. The CFL condition is in (4.32). Left: kq = 2

and N = 20; Right: k; = 3 and N = 320.

Fig. 4.20 clearly shows instability and the right one shows stability. Table 4.8 shows the

optimal convergence order.
e The sixth order scheme CS2

In this case, we also only give the results of m = 6. In order to get a stable scheme
for all C, € [0,1) and C, € [0,1), we should take (kg)min = 2. Fig. 4.21 gives the
stable and unstable results with k; = 1 and k; = 2. Table 4.9 gives the results with
kg = 2 after grid refinements. Theoretically, for the sixth order scheme and the third

order Runge-Kutta method under the CFL condition (4.32), we are supposed to get a
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Neumann bounary condition
CF1 Ca=Cb=0.21 k_{d}=1

———=——Numerical solution

Neumann boundary condition ———=—— Numerical solution 9
Exact solution

CF1 Ca=Cb=0.2 k_{d}=1 ——=—— Exact solution
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Fi1G. 4.19. The fourth order scheme CF1 and SILW procedure with m = 3,
kg =1, tena = 1.0. The CFL condition is in (4.32). Left: C, = C, = 0.2
and N = 80; Right: C, = C, = 0.21 and N = 320.

TABLE 4.7. The fourth order scheme CF1 with m =3, kg = 2, te,g = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.32).

N c,= 10_8, Cy = 108 c,=1- 10_8, Ch=1-— 108
L? error order L™ error order L? error order L™ error order
10 | 2.835E-06 — 3.889E-06 — 5.943E-05 — 7.867E-05 —

20 | 1.664E-07 4.091 2.416E-07 4.008 | 5.840E-06 3.347 7.483E-06 3.394
40 | 1.007E-08 4.046 1.507E-08 4.003 | 4.633E-07 3.656 5.805E-07 3.688
80 | 6.192E-10 4.023 9.412E-10 4.001 | 3.273E-08 3.823 4.048E-08 3.842
160 | 3.839E-11 4.012 5.882E-11 4.000 | 2.176E-09 3.910 2.673E-09 3.921

TABLE 4.8. The Sixth order scheme CS1 with m = 6, kg = 2, tepg = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.32).

N C, =108 C, =108 C,=1-10"8% C,=1-10"°
L? error order L™ error order L? error order L™ error order
10 | 4.762E-08 — 5.321E-08 — 5.919E-06 — 8.188E-06 —

20 | 5.846E-10 6.348 6.467E-10 6.363 | 1.829E-07 5.016 2.407E-07 5.088
40 | 8.135E-12 6.167 8.933E-12 6.178 | 4.079E-09 5.486 5.171E-09 5.541
80 | 1.202E-13 6.080 1.318E-13 6.082 | 7.642E-11 5.738 9.472E-11 5.771
160 | 1.808E-15 6.055 1.975E-15 6.060 | 1.308E-12 5.868 1.602E-12 5.886

sixth order scheme, but we can only obtain the fourth order numerically when C, and
Cy, are large. Therefore we increase the number of interpolation points to get higher

order interpolation polynomial and then we can obtain the desired sixth order. To be
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s Neumann boundary condition N ical
2;:"“:"1‘(:‘:)"_‘:)":’:'{ °Z“f':"°" —+ Numerical solution CS1 Ca=Ch=0.19 k_{d}=2 umerica
a=Co=0. {d}= Exact Solution

Exact solution
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F1G. 4.20. The sixth order scheme CS1 and SILW procedure with m = 6,
Cy, =Cy=0.19, teng = 1.0. The CFL condition is in (4.32). Left: ky =1
and N = 160; Right: k; = 2 and N = 320.

specifically, we use {(zo, uo), (z1,u1), -, (zs,us)} and {(zp_g, Un_g), (Tpn_7,Un_7)," ",
(@, uy)}, that is, m = 9 as an example to get P, s(x) and P, g(x) which are polynomials
of degree 8, respectively. By using the previous stability analysis procedure, we have
(kq)min = 2. From Table 4.10, a grid refinement study verifies the designed sixth order
accuracy.

. Neumann boundary condition .
Neumann boundary condition Numerical solution e _ Numerical
CS2 Ca=Cb=0.2 k_{d}=1 €S2 Ca=Cb=0.2 k_{d}=2 Exact solution

Exact solution
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Fic. 4.21. The sixth order scheme CS2 and SILW procedure with m = 6,
C, =Cy=0.2, tepg = 1.0. The CFL condition is in (4.32). Left: kg =1
and N = 160; Right: k; = 2 and N = 320.

e The eighth order scheme CE1
We take m = 2 and in this case, the minimum value of k; is 2. Fig. 4.22 shows the

stability and instability results which is consistent with the analysis.
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TABLE 4.9. The Sixth order scheme CS2 with m = 6, kg = 2, teng = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.32).
N C,=10"% C,=10"% Co=1-10"8% C,=1-10"8
L* error order L error order L* error order L error order
10 | 4.912E-08 —  5.548E-08 - 5.078E-04 -  T7.897E-04 -
20 | 5.917E-10 6.375 6.634E-10 6.386 | 4.932E-05 3.364 7.869E-05 3.327
40 | 8.141E-12 6.184 9.070E-12 6.193 | 3.886E-06 3.666 6.204E-06 3.665
80 | 1.197E-13 6.087 1.333E-13 6.089 | 2.732E-07 3.830 4.344E-07 3.836
160 | 1.795E-15 6.060 1.993E-15 6.064 | 1.805E-08 3.920 2.860E-08 3.925
TABLE 4.10. The Sixth order scheme CS2 with m =9, k; =2, te,g = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.32).
N c,= 10_8, Cy = 10~8 c,=1- 10_8, Ch=1-— 10~8
L? error order L* error order L? error order L* error order
10 | 1.907E-07 - 2.231E-07 -~ 4.125E-04 —  5.872E-04 -
20 | 7.563E-10 7.978 8.129E-10 8.101 | 1.211E-05 5.090 1.955E-05 4.909
40 | 1.016E-11 6.217 1.069E-11 6.249 2.654E-07 5.512 4.323E-07 5.499
80 | 1.830E-13 5.796 1.734E-13 5.945 |4.927E-09 5.751 7.934E-09 5.768
160 | 2.948E-15 5.955 2.731E-15 5.989 |8.370E-11 5.879 1.331E-10 5.897

Neumann boundary condiion
CE1 Ca=Cb=0.16 k_{d}=1
3E+26 -

Numerical soluti
Exact solution
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Neumann bounary condition
CE1 Ca=Cb=0.16 k_{d}=2

———=—— Numerical solution
Exact solution

Fic. 4.22. The eighth order Scheme CE1 and SILW procedure with m =
2, C, = Cp = 0.16, tepg = 1.0. The CFL condition is in (4.32). Left:
kg =1 and N = 80; Right: k; =2 and N = 320.

e The eighth order scheme CE2

We take m = 2 and in this case, the minimum value of k; is 3. Fig. 4.23 shows the

stability and instability results which is consistent with the analysis.
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dary condition

Neumann boundary condition N
CE2 Ca=Cb=0.31 k_{d}=3

CE2 Ca=Cb=0.31 k_{d}=2

Numerical
Exact solution

——=—— Numerical solution
Exact solution
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F1G. 4.23. The eighth order scheme CE2 and SILW procedure with m = 2,
Cy, =Cy =0.31, teng = 1.0. The CFL condition is in (4.32). Left: kg = 2
and N = 80; Right: k; =3 and N = 320.

e The eighth order scheme CE3
We take m = 8 and the minimum value of k; is 2. Fig. 4.24 shows the stability and

instability results which is consistent with the analysis.

To match the order of accuracy, we take
(433) At = ()\cfl)ma:ch%-
Similar to the sixth order scheme CS2, results of grid refinements in Table 4.11 shows

that we can only get the sixth order when C, and Cj, is large. In order to get the eighth

) ($10, Ulo)} and {(%-10, Un—w), Ty (xn7un>}7

that is, m = 11 to get P 10(x) and P, jo(x) which are polynomials of degree 10. In this

order accuracy, we can use {(xg,ug), - - -

case, (kq)min = 2 and then we can get the designed eighth order as shown in Table 4.12.

TABLE 4.11. The eighth order scheme CE3 with m = 8, kg = 2, t.pg = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.33).

N C,=10"% C,=10"% C,=1-10"8% Cy,=1-10"8
L? error order L™ error order L? error order L™ error order
30| 6.420E-13 -  6.056E-13 - 5.045E-08 -  8.160E-08 -
40 | 6.499E-14 7.962 6.036E-14 8.015 1.004E-08 5.611 1.621E-08 5.618
50 | 1.097E-14 7.973 1.009E-14 8.015 | 2.817E-09 5.697 4.537E-09 5.708
60 | 2.558E-15 7.986 2.340E-15 8.017 | 9.869E-10 5.752 1.586E-09 5.764
70 | 7.430E-16 8.019 6.786E-16 8.030 | 4.042E-10 5.790 6.486E-10 5.802

e The tenth order scheme CT1
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Neumann boundary condition
CE3 Ca=Cb=0.17 k_{d}=2

Neumann bounary condition
CE3 Ca=Cb=0.17 k_{d}=1

———=—— Numerical solution
Exact solution

——=—— Numerical solution
Exact solution
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F1G. 4.24. The eighth order scheme CE3 and SILW procedure with m = 8,
Cy,=Cy=0.17, teng = 1.0. The CFL condition is in (4.32). Left: ky =1
and N = 80; Right: k; = 2 and N = 320.

TABLE 4.12. The eighth order scheme CE3 with m = 11, kg = 2, teng =
1.0 for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.33).

N c,= 10_8, C,=10"8 c,=1- 10_8, Cpy=1-10"8
L? error order L™ error order L? error order L™ error order
50 | 6.025E-15 — 5.164E-15 2.004E-11 3.284FE-11

60 | 1.362E-15 8.154 1.193E-15 8.034 |4.947E-12 7.672 8.086E-12 7.687
70 | 3.860E-16 8.181 3.424E-16 8.099 | 1.504E-12 7.723 2.452E-12 7.740
80 | 1.256E-16 8.406 1.123E-16 8.350 | 5.337E-13 7.760 8.680E-13 7.778
90 | 4.202E-17 9.299 3.767E-17 9.274 | 2.133E-13 7.788 3.461E-13 7.806

We take m = 3 and in this case, the minimum value of k; is 3. Fig. 4.25 shows the
stability and instability results which is consistent with the analysis.

e The tenth order scheme CT2

We take m = 10 and in this case, the minimum value of k; is 3. Fig. 4.26 shows the
stability and instability results which is consistent with the analysis.

e The tenth order scheme CT3

We take m = 6 and in this case, the minimum value of k; is 4. Fig. 4.27 shows the
stability and instability results which is consistent with the analysis.

e The tenth order scheme CT4

We take m = 10 and in this case, the minimum value of k; is 4. Fig. 4.28 shows the
stability and instability results which is consistent with the analysis.

e The tenth order scheme CT5
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Neumann boundary condition

Neumann boundary condition ———=s——Numerical solution ———=s——Numerical solution
CT1 Ca=Cb=0.24 k_{d}=2 Exact solution CT1 Ca=Cb=0.24 k_{d}=3 Exact solution
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Fia. 4.25. The tenth order scheme CT1 and SILW procedure with m = 3,
Cy,=Cy=0.24, teng = 1.0. The CFL condition is in (4.32). Left: kg = 2
and N = 20; Right: k; =3 and N = 320.

Neumann boundary condition ——=——Numerical solution Neumann boundary condition Numerical
CT2 Ca=Cb=0.36 k_{d}=2 Exact solution CT2 Ca=Cb=0.36 k_{d}=3 Exact solution
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F1G. 4.26. The tenth order scheme CT2 and SILW procedure with m =
10, C, = C, = 0.36, tepg = 1.0. The CFL condition is in (4.32). Left:
kg =2 and N = 20; Right: k; =3 and N = 320.

We take m = 2 and in this case, the minimum value of k; is 3. Fig. 4.29 shows the
stability and instability results which is consistent with the analysis. Similar to the case
of the sixth order scheme CS2 and the eighth order scheme CE3, if we take

(4.34) At = (Aefl)mas Az 5
we can only get the eighth order when C, and C}, is large shown in Table 4.13. We use

{(xo,uo), 7(9311,U11), (xo, (Um)o)} and {(xn—llaun—ll)a (xn—lOaun—IO)a 7(xn7un)7

(@, (Ugz)n) }, that is, m = 12 to get the interpolation polynomials P, 2(z) and P, 15(x)
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Neumann boundary condition — = Numerical solution Neumann boundary condition

——=——Numerical solution
CT3 Ca=Cb=0.12 k_{d}=3 Exact solution CT3 Ca=Cb=0.12 k_{d}=4

Exact solution
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Fia. 4.27. The tenth order scheme CT3 and SILW procedure with m = 6,
Cy,=Cy=0.12, topg = 1.0. The CFL condition is in (4.32). Left: kg = 3
and N = 40; Right: k; =4 and N = 320.

Neumann boundary condition Neumann boundary condition

———=——Numerical solution AL _
CT4 Ca=Cb=0.28 k_{d}=3 Exact solution CT4 Ca=Cb=0.28 k_{d}=4
0.08}

———=—— Numerical solution
Exact solution
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Fic. 4.28. The tenth order scheme CT4 and SILW procedure with m =
10, C, = Cy = 0.28, tepg = 1.0. The CFL condition is in (4.32). Left:
kg =3 and N = 160; Right: k; =4 and N = 320.

which are polynomials of degree 12. In this case, the minimum value of k4 is (kg)min = 4,

then we can get the designed tenth order of accuracy as shown in Table 4.14.

5. CONCLUDING REMARKS

In this paper, we study the stability of the numerical boundary treatments for the high
order compact finite difference schemes for solving parabolic equations with both Dirich-
let and Neumann boundary conditions on a finite domain. We use the simplified inverse

Lax-Wendroff (SILW) procedure to evaluate the ghost points and then get the numerical
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Neumann boundary condition
CT5 Ca=Cb=0.4 k_{d}=2
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Neumann boundary condition
CT5 Ca=Cb=0.4 k_{d}=3

Numerical
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Fia. 4.29. The tenth order scheme CT5 and SILW procedure with m = 2,
C, =Cy =04, teg = 1.0. The CFL condition is in (4.32). Left: k; = 2
and N = 40; Right: k; = 3 and N = 320.

TABLE 4.13. The tenth order scheme CT5 with m = 2, kg = 3, teng = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).

The CFL condition is in (4.34).

N C,=10"8, C, =108 C,=1-10"8% Cy=1-10"%
L? error order L™ error order L? error order L™ error order
30 | 2.413E-15 - 2.176E-15 - 2.343E-10 - 3.818E-10 -
40 | 1.385E-16 9.933 1.236E-16 9.970 2.713E-11 7.494 4.415E-11 7.499
50 | 1.503E-17 9.952 1.333E-17 9.983 | 4.970E-12 7.606 8.065E-12 7.618
60 | 2.444E-18 9.963 2.156E-18 9.989 1.226E-12 7.677 1.984E-12 7.692
70 | 5.256E-19 9.970 4.621E-19 9.993 3.725E-13 7.727 6.016E-13 7.742
TABLE 4.14. The tenth order scheme CT5 withm = 12, kg = 4, te,g = 1.0
for the heat equation (4.29) with Neumann boundary conditions (4.31).
The CFL condition is in (4.34).
N C,=10"8% C,=10"8 C,=1-10"8% C,=1-10"°
L? error order L™ error order L? error order L™ error order
40 | 7.650E-17 — 6.965E-17 — 7.662E-14 — 1.256E-13 -
50 | 8.197E-18 10.010 7.479E-18 10.000 9.171E-15 9.513 1.500E-14 9.524
60 | 1.322E-18 10.008 1.208E-18 10.000 | 1.593E-15 9.601 2.598E-15 9.617
70 | 2.826E-19 10.007 2.586E-19 10.000 | 3.593E-16 9.662 5.842E-16 9.680
80 | 7.429E-20 10.007 6.803E-20 10.000 9.829E-17 9.707 1.594E-16 9.726

boundary conditions. Stability analysis is performed by both the Godunov-Ryabenkii

analysis and the eigenvalue spectrum visualization method to get the pair (m, (kq)min)

for the sake of stability, where m is the number of function values in constructing the



36 TINGTING LI, JIANFANG LU, AND CHI-WANG SHU

interpolation polynomial and k; is the number of terms using the inverse Lax-Wendroff
procedure. All analyses are under the standard CFL condition for the corresponding
periodic problems. Numerical examples are provided to verify stability and instability
results predicted by the analysis in Table 3.2 and 3.3. Currently we only consider the
parabolic equation with Dirichlet or Neumann boundary conditions, however the Robin-
type boundary condition is very challenging and the current approach cannot be applied
to it easily. Therefore, to find a suitable numerical boundary treatment for Robin-type

boundary condition will be one of our future works.
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