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Abstract
In this paper, an inexact proximal-point penalty method is studied for constrained 
optimization problems, where the objective function is non-convex, and the con-
straint functions can also be non-convex. This method approximately solves a 
sequence of subproblems, each of which is formed by adding to the original objec-
tive function a proximal term and quadratic penalty terms associated to the con-
straint functions. Under a weak-convexity assumption, each subproblem is made 
strongly convex and can be solved effectively to a required accuracy by an optimal 
gradient-based method. The computational complexity of this approach is analyzed 
separately for the cases of convex constraint and non-convex constraint. For both 
cases, the complexity results are established in terms of the number of proximal gra-
dient steps needed to find an �-stationary point. When the constraint functions are 
convex, we show a complexity result of Õ(𝜀−5∕2) to produce an �-stationary point 
under the Slater’s condition. When the constraint functions are non-convex, the 
complexity becomes Õ(𝜀−3) if a non-singularity condition holds on constraints and 
otherwise Õ(𝜀−4) if a feasible initial solution is available.
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1  Introduction

We consider the nonconvex optimization problem with inequality and equality 
constraints:

where g ∶ ℝ
d
→ ℝ ∪ {+∞} , � = [f1,… , fm] with fi ∶ ℝ

d
→ ℝ for each i = 0,… ,m , 

and � = [c1,… , cn] with cj ∶ ℝ
d
→ ℝ for each j = 1,… , n . We assume that g is a 

proper lower-semicontinuous convex function with a compact domain and all other 
functions are continuously differentiable.

For a general non-convex function, finding its global minimizer is intracta-
ble, and it becomes even more difficult, when there are (non-convex) constraints. 
Therefore, instead of finding a global minimizer of  (1.1), we focus on finding a 
stationary point. We call a point �∗ ∈ dom(g) a stationary point of (1.1), if there 
are �∗ ∈ ℝ

m
+

 and �∗ ∈ ℝ
n , which exist if some constraint qualification is assumed, 

such that the Karush-Kuhn-Tucker (KKT) conditions hold: 

 where �g(�∗) denotes the subdifferential of g at �∗ , J� (�∗) denotes the Jacobian 
matrix of � at �∗ , and J�(�∗) denotes the Jacobian matrix of � at �∗ . The vectors �∗ 
and �∗ are called Lagrangian multipliers. Due to the inevitable truncation error, it is 
hard to compute a solution that satisfies the above conditions exactly. Numerically, 
it is more reasonable to pursue an approximate stationary point defined as follow. 
Here, ‖ ⋅ ‖ stands for the Euclidean norm.

Definition 1  (�-stationary point and its weak version) Given 𝜀 > 0 , a point �̄ is an �
-stationary point of (1.1) if there are ̄� ∈ 𝜕g(�̄) , ̄� ∈ ℝ

m
+
 , and �̄ ∈ ℝ

n such that 𝜆̄i = 0 
if fi(�̄) < 0 for i = 1,… ,m and 

 If only (1.3a) and (1.3b) hold, �̄ is called a weak �-stationary point of (1.1).

(1.1)min
�∈ℝd

f0(�) + g(�), s.t. � (�) ≤ �, �(�) = �,

(1.2a)� ∈ ∇f0(�
∗) + J� (�

∗)⊤�∗ + J�(�
∗)⊤�∗ + 𝜕 g(�∗),

(1.2b)fi(�
∗) ≤ 0, i = 1,… ,m, cj(�

∗) = 0, j = 1,… , n,

(1.2c)�
∗
i
fi(�

∗) = 0, i = 1,… ,m,

(1.3a)
‖‖‖∇f0(�̄) + J� (�̄)

⊤ ̄� + J�(�̄)
⊤�̄ + ̄�

‖‖‖ ≤ 𝜀,

(1.3b)
�

‖�(�̄)‖2 + ��[� (�̄)]+��2 ≤ 𝜀,

(1.3c)
m∑
i=1

|𝜆̄ifi(�̄)| ≤ 𝜀.
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Here, the three conditions in (1.3) are �-approximation of the three conditions in 
(1.2) while the condition that 𝜆̄i = 0 if fi(�̄) < 0 essentially requires the complemen-
tary slackness condition in (1.2) holds exactly when fi(�̄) < 0 . When there are only 
equality conditions, Definition 1 is the same as that for the �-approximate first-order 
solution considered in several existing papers, e.g., [60, 73]. When there are inequal-
ity constraints, the �-stationary solution in Definition 1 is stronger than the solutions 
guaranteed by [5, 29], which only requires 𝜆̄i = 0 if fi(�̄) < −𝜀 . A different defini-
tion of approximate stationary point is considered in [8, 47] where the objective and 
constraint functions can be non-smooth. The differences between their definitions 
and Definition 1 are discussed in Appendix 3.1.

Our goal is to establish the theoretical complexity of finding an �-stationary point 
or a weak �-stationary point of (1.1). To achieve this goal, we consider an inexact 
proximal-point penalty (iPPP) method (see Algorithm 1 below). Our method solves 
a sequence of strongly-convex unconstrained subproblems that are constructed by 
combining two classical techniques: the proximal-point method and the quadratic 
penalty method; see (4.1) below. The adaptive accelerated proximal gradient (Ada-
pAPG) method by [45, 54] (see Algorithm  4) is applied to approximately solve 
each subproblem. To show the complexity results, we consider two cases of (1.1) 
separately and assume different regularity conditions for them. In the first case, the 
problem has a weakly-convex objective (see Definition  5) but convex constraint 
functions, and we assume Slater’s condition. In the second case, the objective and 
constraint functions are all weakly convex, and we assume either a non-singularity 
condition (see Assumption 4) or the feasibility of the initial solution (see Assump-
tion 5).

1.1 � Contributions

We make contributions to understanding the theoretical complexity of finding an �
-stationary point of a non-convex constrained problem in the form of (1.1). Three 
scenarios are studied and the computational complexity of the iPPP method, meas-
ured by the number of proximal gradient steps, is established in each scenario.

They are summarized as follows.

–	 For the case where f0 is weakly convex, fi is convex for i = 1,… ,m , and cj is 
affine for j = 1,… , n , we show that, when Slater’s condition holds, the proposed 
iPPP method can find an �-stationary point within Õ(𝜀−5∕2) proximal gradient 
steps.1 This complexity is first achieved by this paper and remains by far the best 
complexity for (1.1) under these assumptions.

–	 When {fi}mi=0 and {cj}nj=1 are all weakly convex, we show that, if a non-singularity 
condition (see Assumption 4) is satisfied by the constraint functions, the iPPP 
method can find an �-stationary point within Õ(𝜀−3) proximal gradient steps. This 

1  Here and in the rest of paper, we suppress all logarithmic terms in Õ.
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complexity improves the one Õ(𝜀−4) achieved in [60] that uses an inexact aug-
mented Lagrangian method under the same assumptions.2

–	 When {fi}mi=0 and {cj}nj=1 are all weakly convex, we show that, if an initial feasible 
solution is available (but the aforementioned non-singularity condition is not 
needed), the iPPP method can find a weak �-stationary point within Õ(𝜀−4) proxi-
mal gradient steps. In Sect. 2, we will discuss how this result is compared with 
other works that also consider non-convex constraints without the non-singular-
ity condition.

1.2 � Organization of the paper

The rest of the paper is organized as follows. In Sect. 2, we discuss related works 
on convex and non-convex constrained optimization. In Sect. 3, we introduce some 
definitions, notations, and a subproblem to solve in the proposed algorithm. Details 
of the proposed algorithm are described in Sect. 4. The complexity analysis is con-
ducted in Sect. 5 for the convex constrained case and in Sect. 6 for the non-convex 
constrained case. Numerical results are presented in Sects.  7 and 8 concludes the 
paper.

2 � Related works

There has been growing interest in first-order algorithms for non-convex minimi-
zation problems with no constraints or simple constraints  3 in both stochastic and 
deterministic settings. See, e.g., [1, 16–18, 21, 25, 26, 39, 58, 82]. However, for 
(1.1) with constraints that are not simple, these methods are not applicable. There 
is a long history of studies on continuous optimization with constraints. The recent 
works on first-order methods for convex optimization with convex constraints 
include [4, 44, 62, 71, 74–78] for deterministic constraints and [3, 40, 79] for sto-
chastic constraints. Different from these works, this paper studies the problems with 
a non-convex objective function and with potentially non-convex constraints.

When all constraint functions in (1.1) are affine, a primal-dual Frank-Wolfe 
method is proposed in [70], and it finds an �-stationary point with a complexity of 
O(�−3) in general and O(�−2) when there exists a strictly feasible solution. We adopt 
a notion of �-stationary point different from that in [70], and our constraint functions 
can be nonlinear and non-convex.

As a classical approach for solving problems in the form of (1.1), a penalty 
method finds an approximate solution by solving a sequence of unconstrained 

3  Here, simple constraints mean the constraints allow a closed-form projection onto the feasible set.

2  A complexity of Õ(𝜀−3) is claimed in Corollary 4.2 in [60]. However, there is an error in its proof. The 

authors claimed the complexity of solving their subproblem is O(
�
2

�k
�
2

�
k+1

) but it should be O(
�
2

�k
�
2

�
2

k+1

) . (See 
[60] for the definitions of �

�
k
 , � and �

k+1 .) After correcting this error, following the same proof they used 

gives a total complexity of Õ(𝜖−4) .
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subproblems, where the violation of constraints is penalized by the positively 
weighted penalty terms in the objective function of the subproblems. Unconstrained 
optimization techniques are then applied to the subproblems along with an updat-
ing scheme for the weighting parameters. The computational complexity of penalty 
methods for convex problems has been well established [38, 51, 61]. For non-convex 
problems, most existing studies focus on the asymptotic convergence to a stationary 
point. See, e.g., [9, 10, 19, 20, 23, 28, 57]. On the contrary, we analyze the finite 
complexity of penalty methods for finding an �-stationary point.

An exact penalty method has been studied in [11] as an application of a trust 
region method for a composite non-smooth problem. When applied to (1.1) with 
g ≡ 0 , the method in [11] either finds an �-infeasible and �-critical point of (1.1) (see 
[11] for the definition) or finds a solution that is infeasible to (1.1) but �-critical to 
the infeasibility measure 

∑n

j=1

���cj(�)
��� +

∑m

i=1
max{fi(�), 0} . It needs to exactly solve 

O(�−2) linearized trust-region subproblems if the penalty parameter is bounded 
above and solve O(�−5) subproblems otherwise. In a subsequent study [12] and its 
corrigendum [13], a target-following algorithm is developed. It can find an approxi-
mate Fritz-John (instead of KKT) solution with similar guarantee as [11] by solving 
O(�−2) subproblems regardless of the boundedness of penalty parameter. This 
method has been extended to the case when f0 is the expectation of a stochastic 
function in [68]. We want to emphasize that the complexity result of [11, 12] is 
given in terms of the number of exactly-solved trust-region subproblems, and thus it 
is not exactly computational (time) complexity, especially when the subproblem is 
not trivially solvable. On the contrary, we directly analyze the total computational 
(time) complexity of the proposed method. When the constraints are non-convex, 
our method has complexity Õ(𝜀−3) and Õ(𝜀−4) , respectively, when a non-singularity 
condition (Assumption 4) is assumed and when an feasible initial solution (Assump-
tion 5) is assumed. Neither assumption is needed in [11]. Suppose the time complex-
ity of solving a trust-region subproblem in [11] is the same as a proximal gradient 
step in our method. The complexity of [11] is lower than ours if their penalty param-
eters are bounded and higher than ours, otherwise. Moreover, the method by [11] 
did not always guarantee an �-feasible solution while our method does, which is 
mainly because of Assumptions 4 or 5 we make.

On solving a problem with a non-convex objective and linear constraint, [36] 
has developed a quadratic-penalty accelerated inexact proximal point method. That 
method can generate an �-stationary point in the sense of (1.3) with a complexity of 
O(�−3) . Our method is similar to that in [36] by utilizing the techniques from both 
the proximal point method and the quadratic penalty method. Although we make 
a little stronger assumption than [36] by requiring the boundedness of dom(g) , our 
method and analysis apply to the problems with non-convex objectives and convex/
non-convex nonlinear constraint functions. When the constraints are convex (but 
possibly nonlinear), our method can find an �-stationary point with a complexity of 
Õ(𝜀−5∕2) that is a nearly O(�−1∕2) improvement over the complexity in [36].

Barrier methods are another traditional class of algorithms for constrained opti-
mization. Similar to penalty methods, they also solve a sequence of unconstrained 
subproblems with barrier functions added to the objective function. The barrier 
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functions will increase to infinity as the iterates approach the boundary of the fea-
sible set, and thus enforce the iterates to stay in the interior of the feasible set. The 
convergence rate of barrier methods has been studied by [53, 63–65] for convex 
problem. For a general non-convex problems, most studies only focus on asymp-
totic convergence analysis. Recent works [30, 56] proposed algorithms based on 
logarithmic barrier function for non-convex problems with only non-negative and 
linear constraints. They established the complexity of their algorithms for finding 
first-order and second-order �-KKT point (whose definitions are slightly different in 
[30, 56] and different from our definition). However, they do not consider nonlinear 
constraints as we do.

The augmented Lagrangian method (ALM) is another effective approach for con-
strained optimization. At each iteration, ALM updates the primal variable by mini-
mizing the augmented Lagrangian function and then performs a dual gradient ascent 
step to update the dual variable. The iteration complexity of ALM has been estab-
lished for convex problems [38, 51, 74–76]. For non-convex problems, asymptotic 
convergence or local convergence rate of ALM has been studied by [6, 7, 15, 22, 24, 
66, 69]. The computational complexity of ALM and its variants (e.g. ADMM) for 
finding an �-stationary point for linearly constrained non-convex problems has been 
studied by [27, 31, 32, 34, 48–50, 80, 81]. For example, the proximal inexact ALM 
method by [50] achieves complexity of O(�−5∕2) and a related but different ALM 
method by [80, 81] achieves complexity of O(�−2) , the latter of which is by far the 
best result for nonconvex problems with linear constraints.

ALM and its proximal variant are analyzed by [5, 29, 37, 41, 42, 60, 73] for 
non-convex problems with nonlinear constraints. In each main iteration of those 
methods, an approximate stationary point of the (proximal) augmented Lagrangian 
function is computed by first- or second-order methods. Utilizing the Hessian infor-
mation, the methods in [60, 73] can find a second-order �-stationary point while 
our method cannot. Without Hessian information, the methods by [60, 73] can still 
find a first-order �-stationary point. In [60], under a non-singularity assumption that 
the smallest singular value of the Jacobian matrix of the constraint functions is uni-
formly bounded away from zero, it is showed that ALM finds an �-stationary point 
with complexity of Õ(𝜀−4).

The complexity of [73] is also O(�−4) if we set the parameter � in their algorithm 
to the optimal value, i.e., zero; see Theorem 2 in [73].

On the contrary, our method has a complexity of Õ(𝜀−3) for problems with non-
convex constraints under the assumptions similar to [60, 73] and only has a complex-
ity of Õ(𝜀−2.5) for convex constrained problems. Moreover, we consider both ine-
qualities and equality constraints while [60, 73] only consider equality constraints.

In addition, even if the non-singularity assumption does not hold, our method can 
still find an �-stationary point as long as an initial feasible solution is available. This 
result benefits the applications where the constraints are non-convex but have some 
special structure that allows finding a feasible solution easily (e.g. [67] and [35]). After 
the release of the first draft [43] of this paper, [42] gave a hybrid of the quadratic pen-
alty method and ALM, which also achieves an Õ(𝜀−2.5) complexity for non-convex 
problems with convex constraints under the same assumptions as we make in Assump-
tions  1 and 2. However, [42] shows that the complexity of the pure-ALM-based 
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first-order method is Õ(𝜀−3) . Thus the usage of the quadratic penalty method in the 
hybrid method of [42] is the key to obtain the Õ(𝜀−2.5) complexity. The Õ(𝜀−3) com-
plexity result has also been established in [37] for a proximal ALM on solving non-
convex problems with nonlinear convex constraints. [41] adopts a proximal-point based 
subroutine and improves to Õ(𝜀−3) the complexity result of the first-order ALM in [60] 
for equality-constrained nonconvex problems.

In [5], the authors assume neither the non-singularity assumption nor a feasible ini-
tial solution while are still able to achieve O(�−3) complexity for ALM. However, in 
their setting, ALM does not necessarily guarantee an �-stationary point of (1.1) but may 
only return a point that is infeasible to (1.1) and �-stationary to the infeasibility measure 
(similar to the guarantee by [11]). The totaly number of iterations needed by ALM is 
also analyzed by [29] when the constraints are linear or quadratic. However, they solve 
the ALM subproblems by a second-order or high-order method so their complexity per 
iteration can be much higher than ours when the problem’s dimension is high. Finally, 
we want to emphasize again that the �-stationary point we consider in Definition 1 is 
stronger than the solutions guaranteed by [5, 29] which do not satisfy (1.3c) and only 
satisfy 𝜆̄i = 0 when fi(�̄) < −𝜀.

In addition to [60, 73], the algorithms by [33, 46, 55] also utilize Hessian informa-
tion to find a second-order �-stationary point for linearly constrained non-convex opti-
mization. Different from these works, we focus on finding an approximate first-order 
stationary point for nonlinear constrained non-convex optimization using only gradient 
information.

Two recent works [8, 47] proposed similar algorithms for non-convex constrained 
optimization based on the proximal-point technique. In their approaches, a strongly 
convex constrained subproblem is constructed in each main iteration by adding proxi-
mal terms to the objective and constraints. When applied to non-convex smooth con-
strained optimization, both methods find an �-stationary point in complexity of Õ(𝜀−3) . 
The definitions of an �-stationary point in [8, 47] are different from ours, and the dif-
ferences are discussed in Appendix 3.1. Their analysis requires a (nearly) feasible ini-
tial solution and uniform boundedness of the dual solutions of all subproblems. To sat-
isfy the latter requirement, [47] assumes that a uniform Slater’s condition holds and 
[8] assumes that the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at 
the limiting points of the generated iterates. On the contrary, when the non-singularity 
assumption (Assumption  4) holds, our method also has complexity Õ(𝜀−3) but does 
not require a (nearly) feasible initial solution. The uniform Slater’s condition in [47] 
and MFCQ in [8] do not imply the non-singularity assumption, and our non-singularity 
assumption does not imply their assumptions either. See Appendix 3.2 for the related 
examples. When an initial feasible solution is indeed available, our method can be ana-
lyzed in an alternative way without the non-singularity assumption or the constraint 
qualification conditions required by [8, 47], although the complexity becomes Õ(𝜀−4).
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3 � Preliminary

In this section, we provide some basic definitions and discuss about a subproblem 
solved in each main iteration of our algorithm.

3.1 � Definitions and Assumptions

We denote ‖ ⋅ ‖ as the �2-norm and ‖ ⋅ ‖1 as the �1-norm. Let

be the domain of a function g. The interior and boundary of X  are respectively 
denoted by int(X) and �X  . We use NX(�) for the normal cone of X  at � . Given 
a > 0 , we use Ba to represent the ball {� ∈ ℝ

d ∶ ‖�‖ ≤ a} . We denote � as an all-
zero vector whose dimension is clear from the context, and [�]+ = max{�, �} 
is the vector of component-wise maximum between � and � . For a convex set S , 
we use dist(�,S) = min�∈S ‖� − �‖ for the distance of � to S . For any � ∈ ℝ

d , 
J� (�) = [∇f1(�),… ,∇fm(�)]

⊤ ∈ ℝ
m×d and J�(�) = [∇c1(�),… ,∇cn(�)]

⊤ ∈ ℝ
n×d 

denote the Jacobian matrices of � and � at � , respectively.
We adopt the following definitions.

Definition 2  (subdifferential) Given a proper lower-semicontinuous convex function 
h ∶ ℝ

d
→ ℝ ∪ {+∞} , its subdifferential at any � in the domain is defined as

and each � ∈ �h(�) is called a subgradient of h at �.

Definition 3  (L-smoothness) A function h ∶ ℝ
d
→ ℝ is L-smooth if it is differenti-

able on ℝd and satisfies

Definition 4  (�-strong convexity) A function h ∶ ℝ
d
→ ℝ ∪ {+∞} is �-strongly con-

vex for � ≥ 0 if h − �

2
‖ ⋅ ‖2 is convex. When � = 0 , �-strong convexity is reduced to 

convexity.

Definition 5  (�-weak convexity) A function h ∶ ℝ
d
→ ℝ ∪ {+∞} is �-weakly con-

vex for � ≥ 0 if h + �

2
‖ ⋅ ‖2 is convex. When � = 0 , �-weak convexity is reduced to 

convexity.

When h is smooth and �-weakly convex, it holds that for any � and �′,

(3.1)X = dom (g) ∶= {� ∈ ℝ
d ∶ g(�) < +∞}

𝜕h(�) =
{
� ∈ ℝ

d || h(��) ≥ h(�) + �⊤(�� − �),∀�� ∈ ℝ
d
}
,

(3.2)h(�) ≤ h(��) + ⟨∇h(��), � − ��⟩ + L

2
‖�� − �‖2, ∀ �, �� ∈ ℝ

d.

(3.3)h(�) ≥ h(��) +
�
∇h(��), � − ��

�
−

�

2
‖�� − �‖2.
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Definition 6  (proximal mapping) Given a proper lower-semicontinuous convex 
function h ∶ ℝ

d
→ ℝ ∪ {+∞} , its proximal mapping at � is defined as

The following assumption on problem (1.1) is made throughout the paper.

Assumption 1  The following statements hold: 

A.	 fi is Lfi-smooth with Lfi ≥ 0 for i = 0, 1,… ,m ; cj is Lcj-smooth with Lcj ≥ 0 for 
j = 1,… , n;

B.	 X  is compact, and its diameter is denoted by D = max�,��∈X ‖� − ��‖;
C.	 There exist constants G and M such that |g(�)| ≤ G , �g(�) ≠ � , and 

𝜕g(�) ⊆ NX(�) + BM ,∀� ∈ X .
D.	 ����g(�) can be computed easily, e.g., in a closed form.

With Assumption 1A and 1B, there must exist constants {Bfi
}m
i=0

 and {Bcj
}n
j=1

 such 
that 

 Assumption 1C holds, for example, if g(�) = r(�) + �X(�) , where �X is the indicator 
function on X  , and r is a real-valued function with the norm of every subgradient 
bounded by M. In addition to Assumption 1, we will make more assumptions on the 
(weak) convexity of the constraint functions. Details will be given in Sects. 5 and 6, 
where we conduct the complexity analysis.

3.2 � Strongly convex composite subproblem

In each main iteration of the algorithm we propose for (1.1), a strongly convex compos-
ite optimization subproblem of the form

will be approximately solved, where � ∶ ℝ
d
→ ℝ is �

�
-strongly convex and L

�

-smooth, and r ∶ ℝ
d
→ ℝ ∪ {+∞} is a proper lower-semicontinuous convex func-

tion. Function r will be g in (1.1) but function � will vary with the main iteration. 
For each subproblem, we need to find a solution �̄ satisfying

where the value of the left-hand side measures the suboptimality of �̄ to (3.5) and 
𝜀̂ is the targeted suboptimality that decreases with the main iteration. To find �̄ , we 

����h(�) = argmin�∈ℝd

�
h(�) +

1

2
‖� − �‖2

�
.

(3.4a)max
��fi(�)�, ‖∇fi(�)‖

� ≤ Bfi
, ∀� ∈ X, ∀ i = 0, 1,… ,m,

(3.4b)max
��cj(�)�, ‖∇cj(�)‖

� ≤ Bcj
, ∀� ∈ X, ∀ j = 1,… , n.

(3.5)min
�∈ℝd

{
F(�) ∶= �(�) + r(�)

}

(3.6)dist
�
− ∇𝜙(�̄), 𝜕r(�̄)

�
∶= min

��∈𝜕r(�̄)
‖∇𝜙(�̄) + ��‖ ≤ 𝜀̂,
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can solve (3.5) by an accelerated proximal gradient (APG) method which is a first-
order method and whose main step per iteration is a proximal gradient step, namely, 
computing

for some � ∈ ℝ
d and L > 0 . In this paper, the complexity of the APG method and 

our method is measured by the total number of proximal gradient steps they perform.
The standard APG method (e.g., [52]) requires knowing the exact values of �

�
 

and L
�
 which may be unknown. To address this issue, adaptive accelerated proximal 

gradient (AdapAPG) methods [45, 54] have been developed to dynamically esti-
mate �

�
 and L

�
 during the algorithm at the cost of a little higher complexity than 

APG. We will apply the AdapAPG method in [45] to our subproblems and the total 
complexity of our algorithm will be derived using the complexity of AdapAPG for 
solving each subproblem with a specific level of suboptimality (i.e., 𝜀̂ ). That said, 
describing the AdapAPG method in details requires introducing additional notations 
and technical results, which are not necessary for readers to understand the proposed 
algorithm and main theories in this paper. Hence, to avoid interrupting the flow of 
the presentation, the details of the AdapAPG method are postponed to Appendix 1, 
and here we only present its complexity in terms of �

�
 , L

�
 and 𝜀̂ in the following 

theorem, which is sufficient to derive the complexity of our algorithm. The exact 
complexity of AdapAPG in terms of all related parameters is presented in Theo-
rem 5 in Appendix 1.

Theorem 1  (Complexity of AdapAPG) When applied to (3.5), the AdapAPG method 

by [45] terminates in Õ
(√

L
𝜙

𝜇
𝜙

log
(

1

𝜀̂

))
 proximal gradient steps with an ouput �̄ 

satisfying (3.6).

4 � Inexact proximal‑point penalty methods

In this section, we describe the inexact proximal-point penalty (iPPP) method for 
(1.1) in details. This method incorporates the ideas of the proximal point method 
and the quadratic penalty method by iteratively updating the estimated solution �̄(k) 
as follows

where 𝛽k > 0 is the penalty parameter, and 𝛾k > 0 is the proximal parameter. We 
formally describe our method in Algorithm 1, where �k in (4.5) is the smooth part 
of the objective function in (4.1). In iteration k, we only need to guarantee (4.6) 
through solving (4.1). When all fi ’s and cj ’s are weakly convex, a sufficiently large �k 
can be chosen such that the minimization problem in (4.1) becomes strongly convex. 

(3.7)TL(�) ∶= ����L−1r(� − L−1∇�(�))

(4.1)

�̄(k+1) ≈ ��(k) ∶= argmin
�∈ℝd

f0(�) + g(�) +
𝛾k

2
‖� − �̄(k)‖2 + 𝛽k

2

�
‖�(�)‖2 + ��[� (�)]+��2

�
,
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Then the AdapAPG method can be applied to (4.1) to obtain �̄(k+1) satisfying (4.6); 
see Theorem  1. In addition to �̄(k+1) , Algorithm  1 also computes the Lagrangian 
multipliers �̄(k+1) and ̄�(k+1) , as well as the following three quantities 

 which correspond to the three inequalities in (1.3) and will be used to select the 
output solution from {�̄(l)}k+1

l=1
 . In particular, depending on if the goal is to find an �

-stationary point or its weak version, Algorithm 1 will return �̄(Rk+1) with

Remark 1  Computing �k+1 in (4.2a) requires projection onto −𝜕g(�̄(k+1)) , which is 
also needed when evaluating the stopping condition �(�(t+1)) in Algorithm  4. We 
have assumed g to be simple enough to allow a closed-form solution for the proxi-
mal gradient step. For such a g, this projection is usually no harder than a proximal 
gradient step, e.g., when g(�) = �X(�) where X  is a Euclidean ball or a box.

(4.2a)
�k+1 = dist

(
∇f0(�̄

(k+1)) + J� (�̄
(k+1))⊤ ̄�

(k+1)
+ J�(�̄

(k+1))⊤�̄(k+1), − 𝜕g(�̄(k+1))
)

(4.2b)�k+1 =

�
‖�(�̄(k+1))‖2 + ��[� (�̄(k+1))]+��2

(4.2c)�k+1 =

m∑
i=1

|𝜆̄(k+1)
i

fi(�̄
(k+1))|,

(4.3)Rk+1 =argmin
1≤l≤k+1

max
{
�l,�l,�l

}

(4.4)Rk+1 =argmin
1≤l≤k+1

max
{
�l,�l

}
.
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In the rest of the paper, we analyze the theoretical properties of Algorithm 1. For 
technical reasons, we consider two different cases. In the first case, we assume that the 
objective function is weakly convex while the constraint functions are convex. In the 
second case, we assume that the objective function and the constraint functions are all 
weakly convex. The parameters {�k} and {�k} will be chosen differently for the two 
cases. We will show that the output of Algorithm 1 with appropriate settings is an �-sta-
tionary point or a weak �-stationary point of (1.1) in each case. We will also analyze the 
computational complexity of Algorithm 1, measured by the total number of proximal 
gradient steps it performs.

Lemma 1  Suppose �k in (4.5) is convex. Let {�̄(k)} be generated from Algorithm 1. 
Then for any � ∈ X  , it holds that

and that

Proof  According to Line 4 of Algorithm 1, there exists ̄�(k+1) ∈ 𝜕g(�̄(k+1)) such that 
‖∇𝜙k(�̄

(k+1)) + ̄�
(k+1)‖ ≤ 𝜀̂k . Since �k is convex, so is �k + g . Hence, we obtain (4.7) 

by noting

which gives (4.7). Now let � = �̄(k) in (4.7) and sum it over k = 0 through K − 1 to 
obtain (4.8) by Assumption 1 and the equation (3.4a). 	�  ◻

By the definitions of �k+1 , �k+1 , and �k+1 in (4.2), we have for any K ≥ 1 that if 
{Rk} is chosen as (4.3) in Algorithm 1, then

 and if {Rk} is chosen as (4.4) in Algorithm 1, then

(4.7)𝜙k(�̄
(k+1)) + g(�̄(k+1)) − 𝜙k(�) − g(�) ≤ 𝜀̂kD, ∀k ≥ 0

(4.8)

K−1�
k=0

𝛾k

2
‖�̄(k+1) − �̄(k)‖2 + 𝛽K−1

2

�
‖�(�̄(K))‖2 + ��[� (�̄(K))]+��2

�

≤ 2Bf0
+ 2G +

𝛽0

2

�
‖�(�(0))‖2 + ��[� (�̄(0))]+��2

�

+
1

2

K−1�
k=1

(𝛽k − 𝛽k−1)

�
‖�(�̄(k))‖2 + ��[� (�̄(k))]+��2

�
+

�
K−1�
k=0

𝜀̂k

�
D, ∀K ≥ 1.

𝜙k(�̄
(k+1)) + g(�̄(k+1)) − 𝜙k(�) − g(�)

≤�∇𝜙k(�̄
(k+1)) + ̄�

(k+1)
�
⊤

(�̄(k+1) − �) ≤ 𝜀̂k‖�̄(k+1) − �‖ ≤ 𝜀̂kD,

(4.9)
max

�
�RK

,�RK
,�RK

� ≤ 1

K

∑K−1

k=0
max

�
�k+1,�k+1,�k+1

�

≤ 1

K

∑K−1

k=0
�k+1 +

1

K

∑K−1

k=0
�k+1 +

1

K

∑K−1

k=0
�k+1,

(4.10)
max

�
�RK

,�RK

� ≤ 1

K

∑K−1

k=0
max

�
�k+1,�k+1

� ≤ 1

K

∑K−1

k=0
�k+1 +

1

K

∑K−1

k=0
�k+1.
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Lemma 2  Let {�k+1} be defined in (4.2a). Then for any K ≥ 1,

Proof  First, note

Second, according to Line 4 of Algorithm  1, there exists ̄�(k+1) ∈ 𝜕g(�̄(k+1)) such 
that ‖∇𝜙k(�̄

(k+1)) + ̄�
(k+1)‖ ≤ 𝜀k , which, by the definition of �̄(k+1) and ̄�(k+1) in Algo-

rithm 1, implies

Hence, by the definition of �k+1 , we have �k+1 ≤ 𝜀k + 𝛾k‖�̄(k+1) − �̄(k)‖ , which, after 
taking average over k = 0,… ,K − 1 , implies the desired result. 	�  ◻

5 � Complexity with convex constraints

Throughout this section, we assume that fi is convex for each i = 1,… ,m and cj is 
affine for each j = 1,… , n , namely, we consider the following problem with only 
convex constraints:

where � ∈ ℝ
n×d and � ∈ ℝ

n are given. In addition to Assumption 1, we make the 
following assumption.

Assumption 2  The following statements hold: 

A.	 f0 is �0-weakly convex for �0 ≥ 0 , fi is convex for i = 1,… ,m and �(�) = �� − �

.
B.	 There exists �feas ∈ int(X) satisfying ��feas = � and � (�feas) < �.

Here, we only require the existence of �feas but not its availability to our algo-
rithm. In addition, the assumption on int(X) ≠ � does not lose generality. If X  
does not have a full dimension, it can be written as X� ∩ {� ∈ ℝ

d ∶ �� = �} for 
some full-dimensional convex compact set X′

⊂ ℝ
d . Then, we can put �� = � as 

a part of the affine constraints and replace X  with X′.
Under Assumptions 1 and 2, the function �k in (4.5) is L

�k
-smooth with

(4.11)1

K

∑K−1

k=0
�k+1 ≤ 1

K

∑K−1

k=0
𝜀k +

1

K

∑K−1

k=0
𝛾k‖�̄(k+1) − �̄(k)‖.

(4.12)
∇𝜙k(�̄

(k+1)) = ∇f0(�̄
(k+1)) + 𝛾k(�̄

(k+1) − �̄(k)) + 𝛽kJ�(�̄
(k+1))⊤�(�̄(k+1))

+ 𝛽kJ� (�̄
(k+1))⊤[� (�̄(k+1))]+.

���∇f0(�̄
(k+1)) + ̄�

(k+1)
+ J�(�̄

(k+1))⊤�̄(k+1) + J� (�̄
(k+1))⊤ ̄�

(k+1)���
≤ 𝜀k + 𝛾k‖�̄(k+1) − �̄(k)‖.

(5.1)min
�∈ℝd

f0(�) + g(�), s.t. �� = �, � (�) ≤ �,
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and is (�k − �0)-strongly convex if 𝛾k > 𝜌0 . To facilitate our analysis in this section, 
we define

5.1 � Technical Lemmas

From Assumption 2B, we have Slater’s condition, and thus �̂(k) must be a KKT 
point of (5.3), i.e., there are ̂�

(k)
∈ �g(�̂(k)) , Lagrangian multipliers �̂(k) ∈ ℝ

n , and 
̂�
(k)

∈ ℝ
m associated to �̂(k) such that (c.f. [59, Theorem 28.2]): 

 Note that the direct sum of Range(��⊤) and Null(��⊤) forms the whole 
space ℝd , and also �⊤� = � if and only if ��⊤� = � . Hence, we can choose 
��(k) ∈ Range(��⊤) . With this choice, we next prove the boundedness of (�̂(k), ̂�

(k)
).

Lemma 3  Suppose Assumptions 1 and 2 hold. Let (�̂(k), �̂(k), ̂�
(k)
) be the solution sat-

isfying the conditions in (5.4) and ��(k) ∈ Range(��⊤) for k ≥ 0 . Then

 where Qk = D(Bf0
+ �kD +M) , and (��⊤)† denotes the pseudoinverse of ��⊤.

Proof  Let �feas be the point in Assumption 2. Then from the convexity of {fi}mi=1 and 
the fact ̂�

(k) ≥ � , it follows that

The above inequality together with (5.4a) and (5.4c) yields

(5.2)L
𝜙k

= Lf0 + 𝛾k + 𝛽k

�‖�⊤�‖ +∑m

i=1
Bfi

(Bfi
+ Lfi)

�

(5.3)

��(k) ≡ argmin
�∈ℝd

�
f0(�) + g(�) +

𝛾k

2
‖� − �̄(k)‖2, s.t. �� = �, � (�) ≤ �

�
.

(5.4a)∇f0(��
(k)) + ��

(k)
+ 𝛾k(��

(k) − �̄(k)) + �⊤
��(k) + J� (��

(k))⊤��
(k)

= �,

(5.4b)̂�
(k) ≥ �, ��̂(k) = �, � (�̂(k)) ≤ �,

(5.4c)�̂
(k)

i
fi(�̂

(k)) = 0, i = 1,… ,m.

(5.5)‖̂�(k)‖ ≤M
�
(�k) ∶=

Qk

mini �fi(�feas)�

(5.6)

‖��(k)‖ ≤My(𝛾k) ∶= Qk‖(��⊤)†�‖
�
1

D
+

1

dist(�feas, 𝜕X)
+

maxi Bfi

mini �fi(�feas)�
�
,

∑m

i=1
�𝜆
(k)

i
fi(�feas) ≥ ∑m

i=1
�𝜆
(k)

i

�
fi(��

(k)) + (�feas − ��(k))⊤∇fi(��
(k))

�
.
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where the equality follows from �(�feas − �̂(k)) = � − � = � and the last inequality is 
by Assumption 1B and (3.4a).

By Assumption  1C, we have ̂�
(k)

= ̂�1 +
̂�2 with ̂�1 ∈ NX(�̂

(k)) and ‖̂�2‖ ≤ M , 
and thus

Next we bound the term (�feas − ��(k))⊤��1 . If �̂(k) ∈ int(X) , then ̂�1 = � . Hence, we 
only need to consider the case when �̂(k) ∈ �X  and ̂�1 ≠ � . In this case, 
H =

{
� ∈ ℝ

d | (� − ��(k))⊤��1 = 0
}
 is a supporting hyperplane of X  at �̂(k) . Hence, 

dist(�feas,H) ≥ dist(�feas, 𝜕X) > 0 . By the distance formula of a point to a hyper-
plane, we have dist(�feas,H) =

�(��(k)−�feas)⊤��1�
‖��1‖

 , and thus

where the first equality follows from ̂�1 ∈ NX(�̂
(k)) so that (��(k) − �feas)

⊤��1 ≥ 0 . 
Applying this inequality to (5.8) and using (5.7), and also noting fi(�feas) < 0 , we 
have

The above inequality implies

and

Furthermore, since ��(k) ∈ Range(��⊤) , we have from (5.4a) that

Therefore,

(5.7)

m∑
i=1

�𝜆
(k)

i
fi(�feas) ≥ − (�feas − ��(k))⊤

[
∇f0(��

(k)) + ��
(k)

+ �⊤
��(k) + 𝛾k(��

(k) − �̄(k))
]

= − (�feas − ��(k))⊤
[
∇f0(��

(k)) + ��
(k)

+ 𝛾k(��
(k) − �̄(k))

]

≥ − (�feas − ��(k))⊤��
(k)

− DBf0
− 𝛾kD

2,

(5.8)(�feas − ��(k))⊤��
(k) ≤ (�feas − ��(k))⊤��1 + DM.

(��(k) − �feas)
⊤��1= �(��(k) − �feas)

⊤��1� = dist(�feas,H)‖��1‖ ≥ dist(�feas, 𝜕X)‖��1‖,

m�
i=1

�̂
(k)

i
�fi(�feas)� + dist(�feas, �X)‖̂�1‖ ≤ DBf0

+ �kD
2 + DM = Qk.

(5.9)‖̂�(k)‖ ≤ ‖̂�(k)‖1 ≤
∑m

i=1
�̂
(k)

i
�fi(�feas)�

mini �fi(�feas)� ≤ Qk

mini �fi(�feas)� ,

(5.10)‖̂�(k)‖ ≤ ‖̂�1‖ + ‖̂�2‖ ≤ Qk

dist(�feas, �X)
+M.

��(k) = −(��⊤)†�
(
∇f0(��

(k)) + 𝛾k(��
(k) − �̄(k)) + J� (��

(k))⊤��
(k)

+ ��
(k)
)
.
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where the second inequality is from (5.10), Assumption 1B, and (3.4a), and the third 
inequality is from (5.9), Assumption 1B, and the definition of My(�k) . 	�  ◻

The next lemma bounds the feasibility violation of iterate �̄(k+1).

Lemma 4  Suppose Assumptions 1 and 2 hold. Given 𝛾k > 𝜌0 and 𝛽k > 0 for k ≥ 0 , 
let �k be defined in (4.5) with �(�) = �� − � , �̂(k) be defined in (5.3), and �̄(k+1) be 
generated as in Algorithm 1. Then for any k ≥ 0,

Proof  Notice that when 𝛾k > 𝜌0 , �k in (4.5) is convex. Hence, letting � = �̂(k) in 
(4.7), we have from the feasibility of �̂(k) for (5.3) that

Recall that �̂(k) and ̂�
(k)

 are the Lagrangian multipliers satisfying (5.4). Hence, from 
the convexity of the objective and constraint functions of (5.3), we have

The above inequality, together with (5.12), implies

By the Young’s inequality, it holds

‖��(k)‖ ≤ ‖(��⊤)†�‖
����∇f0(��

(k)) + 𝛾k(��
(k) − �̄(k))

��� + ‖��(k)‖ + ����J� (��
(k))⊤��

(k)����
�

≤ ‖(��⊤)†�‖
�
Bf0

+ 𝛾kD +M +
Qk

dist(�feas, 𝜕X)
+ ‖��(k)‖1 max

i
‖∇fi(��(k))‖

�

≤ My(𝛾k),

(5.11)‖��̄(k+1) − �‖2 + ��[� (�̄(k+1))]+��2 ≤ 4𝜀̂kD

𝛽k

+
4‖��(k)‖2

𝛽
2
k

+
4‖��(k)‖2

𝛽
2
k

.

(5.12)

f0(�̄
(k+1))+ g(�̄(k+1)) +

𝛾k

2
‖�̄(k+1) − �̄(k)‖2 + 𝛽k

2

�
‖��̄(k+1) − �‖2 + ��[� (�̄(k+1))]+��2

�

≤ f0(��
(k)) + g(��(k)) +

𝛾k

2
‖��(k) − �̄(k)‖2 + 𝜀̂kD.

f0(��
(k)) + g(��(k)) +

𝛾k

2
‖��(k) − �̄(k)‖2 ≤ f0(�̄

(k+1)) + g(�̄(k+1)) +
𝛾k

2
‖�̄(k+1) − �̄(k)‖2

+ (��(k))⊤(��̄(k+1) − �) +
∑m

i=1
�𝜆
(k)

i
fi(�̄

(k+1)).

(5.13)
𝜀̂kD ≥ 𝛽k

2

�
‖��̄(k+1) − �‖2 + ��[� (�̄(k+1))]+��2

�
− (��(k))⊤(��̄(k+1) − �)

−
∑m

i=1
�𝜆
(k)

i
fi(�̄

(k+1)).

− (��(k))⊤(��̄(k+1) − �) ≥ −
‖��(k)‖2
𝛽k

−
𝛽k

4
‖��̄(k+1) − �‖2,

−
∑m

i=1
�𝜆
(k)

i
fi(�̄

(k+1)) ≥ −
∑m

i=1
�𝜆
(k)

i
[fi(�̄

(k+1))]+

≥ −

m�
i=1

(�𝜆
(k)

i
)2

𝛽k

−

m�
i=1

𝛽k

4
[fi(�̄

(k+1))]2
+
.
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Plugging the above two inequalities into (5.13) gives the desired result.
	�  ◻

5.2 � The complexity of the iPPP method

In this subsection, we specify the parameters in Algorithm  1 and estimate its 
complexity in order to find an �-stationary point of (5.1).

Theorem 2  Suppose that Assumptions 1 and 2 hold and the parameters {�k} , {�k} 
and {𝜀̂k} in Algorithm 1 are chosen as

where 𝛽 > 0 is a constant. If Rk is defined as (4.3), it holds for any K ≥ 1 that

where {(�k,�k,�k)}k≥1 is defined in (4.2), My = My(�) , M�
= M

�
(�) defined in (5.5), 

and

Proof  Notice that �k is convex when 𝛾k > 𝜌0 . Hence, (4.8) holds.
Since �k = � for all k, we have from Lemma 3 that ‖̂�(k)‖ ≤ M

�
 and ‖�̂(k)‖ ≤ My 

for all k. Hence, it follows from (5.11) and (5.14) that

for any k ≥ 0 . Since �k = �

√
k + 1 , we have from the above inequality that

Noting 
√
k + 1 −

√
k =

1√
k+

√
k+1

≤ 1

2
√
k
 and 

∑K−1

k=1
k
−

3

2 ≤ 1 + ∫ K−1

1
x
−

3

2 dx ≤ 3 , we 
sum up (5.18) to have

In addition, by the setting of 𝜀̂k in (5.14), it holds

(5.14)𝛾k = 𝛾 > 𝜌0, 𝛽k = 𝛽

√
k + 1, and 𝜀̂k =

1

𝛽k(k + 1)
,

(5.15)max
�
�RK

,�RK
,�RK

� ≤ 3

�K
+

�
2�C1

K
+

4
√

D+M2
y
+M2

�

�

√
K

+
8(D+M2

y
+M2

�
)

�

√
K

,

(5.16)

C1 = 2Bf0
+ 2G +

𝛽

2
‖��̄(0) − �‖2 + 𝛽

2
��[� (�̄(0))]+��2 + 3

𝛽

�
2D +M2

y
+M2

𝜆

�
.

(5.17)‖��̄(k+1) − �‖2 + ��[� (�̄(k+1))]+��2 ≤ 4𝜀kD

𝛽k

+
4(M2

y
+M2

𝜆
)

𝛽
2
k

≤ 4(D+M2
y
+M2

𝜆
)

𝛽
2
k

,

(5.18)

(𝛽k − 𝛽k−1)
�
‖��̄(k) − �‖2 + ��[� (�̄(k))]+��2

� ≤ (
√
k + 1 −

√
k)

𝛽k

�
4D + 4M2

y
+ 4M2

𝜆

�
.

(5.19)
K−1�
k=1

(𝛽k − 𝛽k−1)
�
‖��̄(k) − �‖2 + ��[� (�̄(k))]+��2

� ≤ 6

𝛽

�
D +M2

y
+M2

𝜆

�
.
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Now plugging (5.19) and (5.20) into (4.8) with �(�) = ��̄ − �,
we obtain

where we have used the definition of C1 in (5.16).
From (5.21), the Cauchy–Schwarz inequality, and the setting �k = � ,∀k , it follows

Applying (5.20) and (5.23) to (4.11) gives

Futhermore, by the definition of �k+1 in (4.2b), we have from (5.17) that

where we have used the following arguments:

Finally, by 𝜆̄(k+1)
i

= 𝛽k[fi(�̄
(k+1))]+ and also using (5.17), we have

Hence, from the definition of �k+1 in (4.2c), we average the above inequality to have

where we have used (5.26) again.
Now the result in (5.15) follows by plugging (5.24), (5.25), and (5.28) into (4.9). 	

� ◻

Remark 2  In the parameter setting (5.14), we require the knowledge of the weak-
convexity constant �0 . In case it is unknown but the smoothness constant Lf0 is 
known, we can set 𝛾 > Lf0 . Without knowledge of �0 or Lf0 , we cannot guarantee 
strong convexity of the function �k given in (4.5). To the best of our knowledge, 

(5.20)
∑K−1

k=0
𝜀̂k =

1

𝛽

∑K−1

k=0
(k + 1)−

3

2 ≤ 1

𝛽

�
1 + ∫ K

1
x
−

3

2 dx
� ≤ 3

𝛽

.

(5.21)
∑K−1

k=0

𝛾k

2
‖�̄(k+1) − �̄(k)‖2 ≤ C1,

(5.22)1

K

∑K−1

k=0
𝛾k‖�̄(k+1) − �̄(k)‖ ≤ 1

K

�∑K−1

k=0
𝛾k

�∑K−1

k=0
𝛾k‖�̄(k+1) − �̄(k)‖2

(5.23)≤
√

2�C1

K
.

(5.24)1

K

∑K−1

k=0
�k+1 ≤ 3

�K
+

�
2�C1

K
.

(5.25)1

K

∑K−1

k=0
�k+1 ≤ 1

K

∑K−1

k=0

2
√

D+M2
y
+M2

�

�k

≤ 4
√

D+M2
y
+M2

�

�

√
K

,

(5.26)
1

K

∑K−1

k=0

1

�k

=
1

�K

∑K−1

k=0

1√
k+1

≤ 1

�K
∫ K

0
x
−

1

2 dx ≤ 2

�

√
K
.

(5.27)
∑m

i=1
�𝜆̄(k+1)

i
fi(�̄

(k+1))� = 𝛽k
��[� (�̄(k+1))]+��2 ≤ 4(D+M2

y
+M2

𝜆
)

𝛽k

,

(5.28)1

K

∑K−1

k=0
�k+1 ≤ 1

K

∑K−1

k=0

4(D+M2
y
+M2

�
)

�k

≤ 8(D+M2
y
+M2

�
)

�

√
K

,
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smoothness constants are assumed in all existing works on the complexity analysis 
of first-order methods for non-convex problems, e.g., [11, 26, 36].

According to Theorem  2, the convergence rate of Algorithm  1 is O( 1√
K
) , in 

terms of the number of outer iterations. Suppose (4.6) is guaranteed through the 
AdapAPG method in Algorithm 4 in Appendix 1. By the complexity result of the 
AdapAPG method in Theorem 1, we below give the overall computational com-
plexity of Algorithm 1 for finding an �-stationary point of (5.1).

Corollary 1  (complexity result) Under the assumptions of Theorem 2, let

where C1 is defined as in (5.16), � and � are the algorithmic parameters in (5.14). 
Then �̄(RK ) is an �-stationary point of (5.1). In addition, if �̄(k+1) satisfying (4.6) is 
found by the AdapAPG method, the total complexity for Algorithm 1 to produce �̄(RK ) 
is

Proof  With the given K, the right hand side of (5.15) is upper bounded by � . 
Hence, �̄(RK ) is an �-stationary point of (5.1). The order of magnitude of K in 
terms of � , � and � is then obtained by the fact that C1 = O

(
� + (1 + �

2)∕�
)
 and 

D +M2
y
+M2

�
= O

(
1 + �

2
)
 according to the definitions of C1 , My and M

�
.

Let Tk be the number of proximal gradient steps performed by the AdapAPG 
method (Algorithm 4) to find �̄(k+1) satisfying (4.6). Then according to Theorem 1, 
the settings of �k and �k in (5.14), and the formula of L

�k
 in (5.2), we have

for k = 0, 1,… ,K − 1 . Therefore, the total complexity is

which completes the proof after plugging in the order of K.
	�  ◻

K =

⎡
⎢⎢⎢⎢
max

⎧
⎪⎨⎪⎩

6

��

,
4

�
2

⎡
⎢⎢⎢⎣

√
2�C1 +

4
�

D +M2
y
+M2

�

�

+
8(D +M2

y
+M2

�
)

�

�2⎫⎪⎬⎪⎭

⎤
⎥⎥⎥⎥

=O

��
�

�
� +

1 + �
2

�

�
+

1 + �
4

�
2

�
1

�
2

�
,

Õ

(√
𝛽

𝛾 − 𝜌0

K
5

4

)
= Õ

(√
𝛽

𝛾 − 𝜌0

(
𝛾

(
𝛽 +

1 + 𝛾
2

𝛽

)
+
1 + 𝛾

4

𝛽
2

) 5

4 1

𝜀

5

2

)
.

Tk = Õ

��
L
𝜙k

𝛾k−𝜌0

�
= Õ

��
𝛽k

𝛾−𝜌0

�
= Õ

�√
𝛽(k+1)

1
4√

𝛾−𝜌0

�
,

Ttotal =
∑K−1

k=0
Tk =

∑K−1

k=0
Õ

�√
𝛽(k+1)

1
4√

𝛾−𝜌0

�
= Õ

��
𝛽

𝛾−𝜌0
K

5

4

�
,
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6 � Complexity of the iPPP method with non‑convex constraints

In this section, we consider the problem in (1.1) with a non-convex objective and non-
convex constraints. Instead of Assumption 2, we make the following assumption.

Assumption 3  fi is �i-weakly convex for �i ≥ 0 for i = 0, 1,… ,m . cj is �j-weakly 
convex for �j ≥ 0 for j = 1,… , n.

The non-convexity of the constraints further increases the difficulty of finding a 
stationary point of (1.1). Fortunately, with a sufficiently large �k , the proximal-point 
penalty subproblem (4.1) is strongly convex under Assumption 3 and thus can be effec-
tively solved by Algorithm 4. By this observation, we show that Algorithm 1 can still 
guarantee an approximate stationary solution of (1.1) within a polynomial time.

6.1 � Technical Lemmas

To show the complexity result, we first establish a few technical lemmas. A proof of the 
following lemma has been given in [21, Lemma 2]. We present it here for the readers’ 
convenience.

Lemma 5  Suppose Assumptions 1 and 3 hold. For any 𝛽 > 0 , the function �
2
[fi(�)]

2
+
 

is (��iBfi
)-weakly convex for i = 1,… ,m , and �

2
[cj(�)]

2 is (��jBcj
)-weakly convex for 

j = 1,… , n.

Proof  Since fi(�) is �i-weakly convex, we have

Using this inequality, the fact |fi(�)| ≤ Bfi
 , and also the convexity of [t]2

+
 about t, we 

have

which implies the (��iBfi
)-weak convexity of �

2
[fi(�)]

2
+
 . Similarly, we can show the 

(��jBcj
)-weak convexity of �

2
[cj(�)]

2 for each j and thus complete the proof. 	�  ◻

With a little abuse of notation, under Assumption  3, �k defined in (4.5) is L
�k

-smooth with

fi(�) − fi(�
�) ≥ �

∇fi(�
�), � − ��

�
−

�i

2
‖�� − �‖2, ∀ �, �� ∈ X.

�

2
[fi(�)]

2
+
≥ �

2
[fi(�

�)]2
+
+ �[fi(�

�)]+
�
fi(�) − fi(�

�)
�

≥ �

2
[fi(�

�)]2
+
+ �[fi(�

�)]+
�
∇fi(�

�), � − ��
�
−

��iBfi

2
‖�� − �‖2,

(6.1)L
�k

= Lf0 + �k + �k

�∑m

i=1
Bfi

(Bfi
+ Lfi) +

∑n

j=1
Bcj

(Bcj
+ Lcj )

�
.
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Note that the value of L
�k

 is different from that defined in (5.2). In addition, by 
Assumption  3 and Lemma  5, the function f0(�) +

�k

2

�
‖�(�)‖2 + ��[� (�)]+��2

�
 is Γk

-weakly convex with

6.2 � The complexity of the iPPP method under a non‑singularity condition

In this subsection, we make the following assumption in addition to Assumptions 1 
and 3.

Assumption 4  There exists a constant 𝜈 > 0 such that for any � ∈ X  , the following 
inequality holds

This assumption is inspired by a similar assumption made in [60, 73], where 
only equality constraints are considered. This assumption is closely related to the 
Kurdyka-Łojasiewicz inequality [2]. To see the connection, we consider the minimi-
zation problem

Its optimal objective value is zero and its optimal set is identical to the feasible set 
of (1.1). Due to non-convexity, finding a feasible solution to (1.1) and solving this 
minimization are equally difficult in general. However, when h(�) above globally 
satisfies a special case of the Kurdyka-Łojasiewicz inequality, namely,

it is possible to minimize h(�) , or equivalently, to find a feasible solution to (1.1) by 
reducing dist(�, �h(�)) , which is a relatively easy task for a non-convex problem. 
Note that the global Kurdyka-Łojasiewicz inequality satisfied by h above is exactly 
(6.3). This explains Assumption  4 and why it helps to numerically find an �-sta-
tionary point of (1.1). In Appendix 2, we show that Assumption 4 can hold for the 
application (7.1) we test in the numerical experiment under the additional assump-
tion (B.2) that holds when the data is preprocessed appropriately (e.g., normalized 
and lifted). In Appendix 3, we further discuss how Assumption 4 compares to the 
assumptions made by [47] and [8].

Suppose (4.6) is guaranteed through the AdapAPG method in Algorithm  4 in 
Appendix  1. Under Assumptions  1, 3, and 4, we are able to show that our iPPP 
method can find an �-stationary point of (1.1) in a complexity of Õ( 1

𝜀
3
) . Similar to 

Theorem 2, we first show a convergence rate result, in terms of the number of outer 
iterations.

(6.2)Γk ∶= �0 + �k�c, �c =
�∑m

i=1
�iBfi

+
∑n

j=1
�jBcj

�
.

(6.3)𝜈

�
‖[� (�)]+‖2 + ‖�(�)‖2 ≤ dist

�
J�(�)

⊤�(�) + J� (�)
⊤[� (�)]+, −NX(�)

�
.

min
�

�
h(�) ∶=

1

2
‖[� (�)]+‖2 + 1

2
‖�(�)‖2 + �X(�)

�
.

2�2h(�) ≤ [dist(�, �h(�))]2, ∀� ∈ X,
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Theorem 3  Suppose that Assumptions 1, 3 and 4 hold and the parameters {�k} , {�k} 
and {𝜀̂k} in Algorithm 1 are taken as

where 𝛽 > 0 is a constant, and Γk is defined in (6.2). If Rk is defined as (4.3), then for 
any K ≥ 1 , it holds

where {(�k,�k,�k)}k≥1 is defined in (4.2), �c is defined in (6.2), and

Proof  Similar to Theorem 2, we first bound the three summations on the right-hand 
side of (4.9).

According to Line 4 of Algorithm 1, there must exist ̄�(k+1) ∈ 𝜕g(�̄(k+1)) such that 
‖∇𝜙k(�̄

(k+1)) + ̄�
(k+1)‖ ≤ 𝜀k.

From Assumption  1C, we have ̄�(k+1) = ̄�1 +
̄�2 where ̄�1 ∈ NX(�̄

(k+1)) and 
‖ ̄�2‖ ≤ M . Hence, it follows from ‖∇𝜙k(�̄

(k+1)) + ̄�
(k+1)‖ ≤ 𝜀k and (4.12) that

where we have used (3.4a) in the last inequality. Now noting 
̄�1

𝛽k

∈ NX(�̄
(k+1)) , we 

have from (6.7) and Assumption 3 that

Since ̂𝜀k ≤ 1

𝛽

 for all k, (6.8) implies

(6.4)𝛽k = 𝛽(k + 1)
1

3 , 𝛾k = 2Γk, and 𝜀̂k =
1

𝛽(k+1)
4
3

,

(6.5)

max
�
�RK

,�RK
,�RK

� ≤ 1

K

�
4

�

+
4

��
2
+

9

2�2�3
+

6C2(�0∕�+�c)

�
2

�
+

√
2�0C2√
K

�
1 +

1

��

�

+
1

K1∕3

��
1 +

1

��

�√
2��cC2 +

3Bf0
+3M

2��
+

9(Bf0
+M)2

2�2�

�

(6.6)

C2 ∶=4
�
2Bf0

+ 2G +
𝛽

2
‖�(�̄(0))‖2 + 𝛽

2
��[� (�̄(0))]+��2 + 8

3𝜈2𝛽
(1∕𝛽 + Bf0

+M)2 +
4D

𝛽

�

+
64𝜌2

0
D2

3𝜈2𝛽
+

16𝛽𝜌2
c
D2

𝜈
2

��
max

��
32𝜌0

3𝜈2𝛽

� 3

4

,
32𝜌c

3𝜈2

��
− 1

� 1

3

.

(6.7)

��� ̄�1 + 𝛽kJ�(�̄
(k+1))⊤�(�̄(k+1)) + 𝛽kJ� (�̄

(k+1))⊤[� (�̄(k+1))]+
���

≤ 𝜀k + 𝛾k‖�̄(k+1) − �̄(k)‖ + ‖∇f0(�̄(k+1))‖ + ‖ ̄�2‖
≤ 𝜀k + 𝛾k‖�̄(k+1) − �̄(k)‖ + Bf0

+M,

(6.8)

𝜈

�
‖�(�̄(k+1))‖2 + ��[� (�̄(k+1))]+��2 ≤

𝜀k + 𝛾k‖�̄(k+1) − �̄(k)‖ + Bf0
+M

𝛽k

, ∀ k ≥ 0.

(6.9)

‖�(�(k))‖2 + ��[� (�̄(k))]+��2 ≤ 1

𝜈
2
𝛽
2
k−1

(1∕𝛽 + 𝛾k−1‖�̄(k) − �̄(k−1)‖ + Bf0
+M)2

≤ 2

𝜈
2
𝛽
2
k−1

�
(1∕𝛽 + Bf0

+M)2 + 𝛾
2
k−1

‖�̄(k) − �̄(k−1)‖2�,
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for all k ≥ 1 . Notice (k + 1)
1

3 − k
1

3 =
1

k
2
3 +k

1
3 (k+1)

1
3 +(k+1)

2
3

≤ 1

3k
2
3

 . Hence, by the setting 

of {�k} in (6.4), it holds �k−�k−1
�
2
k−1

≤ 1

3�k
4
3

 . Therefore, multiplying �k − �k−1 to both sides 

of (6.9) and summing it over k = 1 to K − 1 , we have

where we have used 
∑K−1

k=1
k
−

4

3 ≤ 1 + ∫ K−1

1
x
−

4

3 dx ≤ 4 in the last inequality. In addi-
tion, it follows from (6.4) that

Since 𝛾k > Γk , �k defined in (4.5) is convex, and thus (4.8) holds. Adding (6.10) and 
(6.12) to (4.8), we obtain

By �k = 2Γk with Γk defined in (6.2), we have

Let

When k ≥ K′ , it holds that 4�0

3�2�(k+1)
4
3

≤ 1

8
 and 4�c

3�2(k+1)
≤ 1

8
,

and thus

Applying (6.15) for K� ≤ k ≤ K − 2 in (6.13) and also noting �k
2
≥ �k

4
 , we obtain

(6.10)

∑K−1

k=1
(𝛽k − 𝛽k−1)

�
‖�(�(k))‖2 + ��[� (�̄(k))]+��2

�

≤ ∑K−1

k=1

2

3𝜈2𝛽k
4
3

�
(1∕𝛽 + Bf0

+M)2 + 𝛾
2
k−1

‖�̄(k) − �̄(k−1)‖2�

(6.11)≤ 8

3𝜈2𝛽
(1∕𝛽 + Bf0

+M)2 +
∑K−1

k=1

2𝛾2
k−1

‖�̄(k)−�̄(k−1)‖2
3𝜈2𝛽k

4
3

,

(6.12)
∑K−1

k=0
𝜀̂k =

1

𝛽

∑K−1

k=0
(k + 1)−

4

3 ≤ 1

𝛽

�
1 + ∫ K

1
x
−

4

3 dx
� ≤ 4

𝛽

.

(6.13)

∑K−2

k=0

�
𝛾k

2
−

2𝛾2
k

3𝜈2𝛽(k+1)
4
3

�
‖�̄(k+1) − �̄(k)‖2 + 𝛾K−1

2
‖�̄(K) − �̄(K−1)‖2

≤ 2Bf0
+ 2G +

𝛽0

2

�
‖�(�(0))‖2 + ��[� (�̄(0))]+��2

�
+

8

3𝜈2𝛽
(1∕𝛽 + Bf0

+M)2 +
4D

𝛽

.

2�k

3�2�(k+1)
4
3

=
4�0

3�2�(k+1)
4
3

+
4�c

3�2(k+1)
.

(6.14)K� ∶=

⌈
max

{(
32�0

3�2�

) 3

4

,
32�c

3�2

}⌉
− 1.

(6.15)
2�k

3�2�(k+1)
4
3

≤ 1

4
, ∀ k ≥ K�.
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By Assumption 1B and the definitions of �k and �k , we can show that

where, in the last inequality, we use the facts that 
∑K�−1

k=0
(k + 1)−

4

3 ≤ 1 + ∫ K�

1
x
−

4

3 dx ≤ 4 
and that 

∑K�−1

k=0
(k + 1)−

2

3 ≤ 1 + ∫ K�

1
x
−

2

3 dx ≤ 3(K�)
1

3 . Applying (6.17) and the defini-
tion of K′ in (6.14) to (6.16) gives

with C2 defined in in (6.6).
Using (6.4) and recalling Γk in (6.2), we have 

∑K−1

k=0
�k = 2�0K + 2�c

∑K−1

k=0
�k , 

and in addition, 
∑K−1

k=0
�k = �

∑K−1

k=0
(k + 1)

1

3 ≤ �K
4

3 . Therefore, by (5.22) and (6.18), 
it holds that

Now apply (6.12) and (6.19) to (4.11) to have

From the definition of �k+1 in (4.2b), we use (6.8) to have

(6.16)

K−1�
k=0

𝛾k

4
‖�̄(k+1) − �̄(k)‖2 ≤ 2Bf0

+ 2G +
𝛽0

2

�
‖�(�(0))‖2 + ��[� (�̄(0))]+��2

�

+
8

3𝜈2𝛽
(1∕𝛽 + Bf0

+M)2 +
4D

𝛽

+

K�−1�
k=0

2𝛾2
k

3𝜈2𝛽(k + 1)
4

3

‖�̄(k+1) − �̄(k)‖2.

(6.17)

K�−1�
k=0

2𝛾2
k

3𝜈2𝛽(k + 1)
4

3

‖�̄(k+1) − �̄(k)‖2 ≤
K�−1�
k=0

2(2𝜌0 + 2𝛽k𝜌c)
2D2

3𝜈2𝛽(k + 1)
4

3

≤
K�−1�
k=0

16𝜌2
0
D2

3𝜈2𝛽(k + 1)
4

3

+

K�−1�
k=0

16𝛽𝜌2
c
D2

3𝜈2(k + 1)
2

3

≤ 64𝜌2
0
D2

3𝜈2𝛽
+

16𝛽𝜌2
c
D2

𝜈
2

(K�)
1

3 ,

(6.18)
K−1�
k=0

𝛾k

4
‖�̄(k+1) − �̄(k)‖2 ≤ C2,

(6.19)

1

K

∑K−1

k=0
𝛾k‖�̄(k+1) − �̄(k)‖ ≤

√
C2

K

�
2𝜌0K + 2𝜌c𝛽K

4

3 ≤
�

2𝜌0C2

K
+

√
2𝜌c𝛽C2

K1∕3
.

(6.20)1

K

∑K−1

k=0
�k+1 ≤ 4

�K
+

�
2�0C2

K
+

√
2�c�C2

K1∕3
.

(6.21)

1

K

∑K−1

k=0
�k+1 ≤ 1

K

∑K−1

k=0

𝜀k+Bf0
+𝛾k‖�̄(k+1)−�̄(k)‖+M

𝜈𝛽k

≤ 1

𝜈𝛽K

∑K−1

k=0
𝜀k +

1

𝜈𝛽K

∑K−1

k=0
𝛾k‖�̄(k+1) − �̄(k)‖ + Bf0

+M

𝜈K

∑K−1

k=0

1

𝛽k

≤ 4

𝜈𝛽
2K

+
√
2𝜌0C2

𝜈𝛽

√
K

+
√
2𝜌c𝛽C2

𝜈𝛽K1∕3
+

3Bf0
+3M

2𝜈𝛽K1∕3
,
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where the second inequality follows from �k ≥ � , and the last inequality holds 
because of (6.12), (6.19), and the fact that

By (6.8) and the definition of �(k+1)
i

 in Algorithm 1, it holds

From the definition of �k+1 in (4.2c), we average both sides of the above inequality 
to have

where the second inequality uses (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 , and the third ine-
quality follows from (6.22) and

Recall �k = 2�0 + 2�k�c for all k ≥ 0 and also note �k ≥ � . We have 
�
2
k

�k

≤ �k(
2�0

�

+ 2�c) , and thus by (6.16), it holds

Now apply (6.24) to (6.23) to have

Plugging (6.20), (6.21), and (6.25) into (4.11) gives (6.5). 	�  ◻

Corollary 2  (Complexity result) Under the same assumptions of Theorem 3, let

(6.22)1

K

∑K−1

k=0

1

�k

=
1

�K

∑K−1

k=0

1

(k+1)1∕3
≤ 1

�K
∫ K

0
x
−

1

3 dx ≤ 3

2�K1∕3
.

m�
i=1

�𝜆̄(k+1)
i

fi(�̄
(k+1))� = 𝛽k

��[� (�̄(k+1))]+��2 ≤
(𝜀k + Bf0

+ 𝛾k‖�̄(k+1) − �̄(k)‖ +M)2

𝜈
2
𝛽k

.

(6.23)

1

K

K−1�
k=0

�k+1 ≤ 1

K

K−1�
k=0

(𝜀k + Bf0
+ 𝛾k‖�̄(k+1) − �̄(k)‖ +M)2

𝜈
2
𝛽k

≤ 3

𝜈
2K

K−1�
k=0

𝜀̂
2
k

𝛽k

+
3

K

K−1�
k=0

(Bf0
+M)2

𝜈
2
𝛽k

+
3

K

K−1�
k=0

𝛾
2
k
‖�̄(k+1) − �̄(k)‖2

𝜈
2
𝛽k

≤ 9

2𝜈2𝛽3K
+

9(Bf0
+M)2

2𝜈2𝛽K1∕3
+

3

K

K−1�
k=0

𝛾
2
k
‖�̄(k+1) − �̄(k)‖2

𝜈
2
𝛽k

,

∑K−1

k=0

𝜀̂
2
k

𝛽k

=
1

𝛽
3

∑K−1

k=0

1

(k+1)3
≤ 1

𝛽
3

�
1 + ∫ K

1

1

x3
dx
� ≤ 3

2𝛽3
.

(6.24)3

K

∑K−1

k=0

𝛾
2
k
‖�̄(k+1)−�̄(k)‖2

𝜈
2
𝛽k

≤ 6C2(𝜌0∕𝛽+𝜌c)

𝜈
2K

,

(6.25)1

K

∑K−1

k=0
�k+1 ≤ 9

2�2�3K
+

9(Bf0
+M)2

2�2�K1∕3
+

6C2(�0∕�+�c)

�
2K

.
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and

where C2 is defined as in (6.6), � is the algorithmic parameter in (6.4) and 
� = max{�0, �c} . Then �̄(RK ) is an �-stationary point of (1.1). In addition, if �̄(k+1) 
satisfying (4.6) is found by the AdapAPG method,

the total complexity for Algorithm 1 to produce �̄(RK ) is

Proof  With the given K, the right hand side of (6.5) is upper bounded by � , so �̄(RK ) 
is an �-stationary point of (1.1). The order of magnitude of K in terms of � , � and � is 
then obtained by the fact that C2 = O

(
� + �

−3 + �
2∕� + ��

2
(
(�∕�)

1

4 + �

1

3

))
 

according to the definitions of C2 and �.
Let Tk be the number of proximal gradient steps performed by the AdapAPG 

method (Algorithm 4) to find �̄(k+1) satisfying (4.6). Then according to Theorem 1 
and the definitions of Γk , �k , �k , and L

�k
 in (6.1), (6.2) and (6.4), we have

for k = 0, 1,… ,K − 1 . Therefore, the total complexity is 
Ttotal =

∑K−1

k=0
Tk = Õ

��
1+𝜌

𝜌

K
�
, which completes the proof after plugging in the 

order of K.
	�  ◻

K1 =
3

�

�
4

�

+
4

��
2
+

9

2�2�3
+

6C2(�0∕� + �c)

�
2

�
, K2 =

18�0C2

�
2

�
1 +

1

��

�2

,

K3 =
27

�
3

��
1 +

1

��

�√
2��cC2 +

3Bf0
+ 3M

2��
+

9(Bf0
+M)2

2�2�

�3

K =
⌈
max

{
K1,K2,K3

}⌉

= O

(((
� +

1

�

) 3

2
[
�� +

�

�
3
+

�
3

�

+ ��
3
(
(�∕�)

1

4 + �

1

3

)] 3

2

+
1

�
3

)
1

�
3

)
,

Õ

��
1 + 𝜌

𝜌

K

�
= O

⎛⎜⎜⎝

�
1 + 𝜌

𝜌

⎛⎜⎜⎝

�
𝛽 +

1

𝛽

� 3

2

�
𝛽𝜌 +

𝜌

𝛽
3
+

𝜌
3

𝛽

+ 𝛽𝜌
3

�
(𝜌∕𝛽)

1

4 + 𝜌

1

3

�� 3

2

+
1

𝛽
3

⎞
⎟⎟⎠
1

𝜀
3

⎞
⎟⎟⎠
.

Tk = Õ

(√
L
𝜙k

𝛾k−Γk

)
= Õ

(√
Γk+𝛽k

Γk

)
= Õ

(√
𝛽k𝜌+𝛽k

𝛽k𝜌

)
= Õ

(√
1+𝜌

𝜌

)
,
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6.3 � The complexity of the iPPP method under initial feasibility assumption

In this subsection, we drop Assumption 4 and analyze the complexity of the pro-
posed iPPP method by starting from an initial feasible point, namely, in addition 
to Assumptions 1 and 3, we assume the follows.

Assumption 5  The initial solution �̄(0) ∈ X  in Algorithm  1 is feasible, i.e., 
fi(�̄

(0)) ≤ 0 for each i = 1,… ,m and cj(�̄(0)) = 0 for each j = 1,… , n.

Remark 3  This feasibility assumption on �̄(0) can be weakened to near-feasibility 
depending on the required accuracy. Unless with certain regularity conditions like 
the one we assumed in the previous subsection, or with certain special structures, it 
is generally impossible to find a (near) feasible solution of a nonlinear system in a 
polynomial time. Existing works, such as [8, 11, 47], also need the (near)-feasibility 
assumption to guarantee a near-stationary point.

Below, we specify the parameters of Algorithm 1 and analyze its complexity 
with Option II to find a weak �-stationary point of (1.1).

Theorem 4  Suppose that Assumptions 1, 3, and 5 hold and the parameters {�k} , {�k} 
and {𝜀̂k} in Algorithm 1 are taken as

where 𝛽 > 0 is a constant, and �c is defined in (6.2). If Rk is defined as (4.4), then for 
any K ≥ 1 , it holds that

where

Proof  By the setting �k = �, ∀ k ≥ 0 and 
∑K−1

k=0
𝜀̂k =

∑K−1

k=0

1

(k+1)2
≤ 𝜋

2

6
 , we obtain 

from (4.8) and also the feasibility of �̄(0) that

(6.26)𝛽k = 𝛽, 𝛾k = 2(𝜌0 + 𝛽𝜌c), and 𝜀̂k =
1

(k+1)2
, ∀ k ≥ 0,

(6.27)max
�
�RK

, �RK

� ≤ �
2

6K
+

√
C3√
K
+

�
4(Bf0

+G)+�2D∕3

�

,

(6.28)C3 ∶=
(
2�0 + 2��c

)(
4(Bf0

+ G) +
�
2D

3

)
.

(6.29)

∑K−1

k=0

𝛾k

2
‖�̄(k+1) − �̄(k)‖2 + 𝛽

2
���(�̄(K))��2 + 𝛽

2
��[� (�̄(K))]+��2 ≤ 2(Bf0

+ G) +
𝜋
2D

6
.
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Hence, from (5.22) and (6.29) and also the setting of �k in (6.26), we have

Applying (6.30) and the fact that 
∑K−1

k=0
𝜀̂k ≤ 𝜋

2

6
 to (4.11) leads to

In addition, notice that (6.29) actually holds for any K ≥ 1 . Hence,

which, together with the definition of �k+1 in (4.2b), implies

Now plugging (6.31) and (6.32) into (4.10) gives the desired result.
	�  ◻

Corollary 3  (complexity result) Under the same assumptions of Theorem  4, let 
� =

36(Bf0
+G)+3�2D

�
2

 and K =
⌈
max

{
9C3

�
2
,
�
2

2�

}⌉
= O

(
�

�
4

)
,

where C3 is defined in (6.28) and � = max{�0, �c} . Then

�̄(RK ) is a weak �-stationary point of (1.1).

In addition, if �̄(k+1) satisfying (4.6) is found by the AdapAPG method, the total 
complexity for Algorithm 1 to produce �̄(RK ) is Õ

��
1+𝜌

𝜌

K
�
= Õ

�√
(1+𝜌)𝜌

𝜀
4

�
.

Proof  With the chosen � and K, it holds that 
√

4(Bf0
+G)+�2D∕3

�

≤ �

3
 and �

2

6K
+

√
C3√
K
≤ 2�

3
 . 

Hence, by (6.27), �̄(RK ) is a weak �-stationary point of (1.1). The order of magnitude 
of K in terms of � and � is then obtained by the fact that C3 = O(��) =

�

�
2
 according 

to the definitions of � and �.
Let Tk be the number of proximal gradient steps performed by the AdapAPG 

method (Algorithm 4) to find �̄(k+1) satisfying (4.6).
Notice that with the parameters set in (6.26), �k defined in (4.5) is 

(�0 + ��c)-strongly convex, and in addition, its smoothness constant 
L
�k

= Θ(�k + �k) = Θ(�� + �) . Hence, according to Theorem 1 and the choice of � , 
we have

(6.30)

1

K

∑K−1

k=0
𝛾k‖�̄(k+1) − �̄(k)‖ ≤ 1

K

�
4(Bf0

+ G) +
𝜋
2D

3

√
2𝜌0K + 2K𝛽𝜌c =

√
C3√
K
.

(6.31)1

K

∑K−1

k=0
�k+1 ≤ �

2

6K
+

√
C3√
K
.

𝛽

2
‖‖�(�̄(k+1))‖‖2 + 𝛽

2
‖‖[� (�̄(k+1))]+‖‖2 ≤ 2(Bf0

+ G) +
𝜋
2D

6
, ∀ k ≥ 0,

(6.32)1

K

∑K−1

k=0
�k+1 ≤

�
4(Bf0

+G)+�2D∕3

�

.
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for all k ≥ 0 . Therefore, the total complexity is Ttotal =
∑K−1

k=0
Tk = Õ

��
1+𝜌

𝜌

K
�
, 

which completes the proof after plugging in the order of K. 	�  ◻

Remark 4  Notice that in Corollary 3, we only guarantee a weak �-stationary point 
because no constraint qualification (CQ) is assumed. Without a CQ, even a global 
optimal solution is not guaranteed to be a KKT point.

7 � Numerical experiments

In spite of the theoretical focus of this paper, we evaluate the numerical performance 
of the iPPP method on a multi-class Neyman-Pearson classification (mNPC) prob-
lem in this section. Suppose there is a set of training data with K classes, denoted by 
Dk ⊆ ℝ

d for k = 1, 2,… ,K . The goal is to learn K linear models �k , k = 1, 2,… ,K 
and predict the class of a data point � as argmaxk=1,2,…,K �⊤

k
𝜉 . To achieve a high 

classification accuracy, {�k} is found such that �⊤
k
𝜉 − �⊤

l
𝜉 is positively large for any 

k ≠ l and any � ∈ Dk [14, 72]. This leads to minimizing the average loss 
1

�Dk�
∑

l≠k
∑

𝜉∈Dk
𝜙(�⊤

k
𝜉 − �⊤

l
𝜉), where � is a non-increasing (potentially non-convex) 

loss function. Suppose misclassifying � has a cost depending on its true class label k. 
When training these K linear models, the mNPC prioritizes minimizing the loss on 
one class, say D1 , and meanwhile controls the losses on other classes, namely,

Here, rk controls the loss for Dk , and 𝜆 > 0 is a regularization parameter.
We created test instances of (7.1) using the LIBSVM multi-class classification 

datasets covtype and mnist, which have K = 7 and K = 10 classes, respectively.
The first class of each dataset is used to formulate the objective function 

in (7.1), and the other classes are used to formulate the constraints. The func-
tion � in (7.1) is chosen as the sigmoid function �(z) = 1∕(1 + exp(z)) . We set 
rk = 0.5(K − 1), ∀ k = 2,… ,K and set � = 0.3 for both datasets.

We compare the proposed method to the exact penalty method proposed in [11] 
and the inexact augmented Lagrangian method (iALM) in [60]. We choose [11] 
because their theoretical complexity is given in terms of how many trust-region 
subproblems their algorithm needs to solve while the complexity we consider in 
this paper is measured by the total number of the gradients computed. Since it is 
not clear how to compare the theoretical complexity between our method and [11], 
we directly compare their empirical performances. We choose [60] because the 
augmented Lagrangian method typically has better performance than the penalty 

Tk = Õ

⎛
⎜⎜⎝

�
L
𝜙k

𝜌0 + 𝛽𝜌c

⎞
⎟⎟⎠
= Õ

��
𝛽𝜌 + 𝛽

𝛽𝜌

�
= Õ

��
1 + 𝜌

𝜌

�

(7.1)
min‖�k‖≤𝜆,k=1,…,K

1

�D1�
∑

l>1

∑
𝜉∈D1

𝜙(�⊤
1
𝜉 − �⊤

l
𝜉),

s.t.
1

�Dk�
∑

l≠k
∑

𝜉∈Dk
𝜙(�⊤

k
𝜉 − �⊤

l
𝜉) ≤ rk, k = 2, 3,… ,K.
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method in practice although the theoretical complexity by [60] is higher than ours. 
We do not compare with other methods because they either have a higher theoretical 
complexity than ours or have no theoretical guarantee as (7.1) does not satisfy their 
assumptions (e.g. linear constraints).

All methods are implemented in Matlab on a 64-bit MacOS Catalina machine 
with a 4.20 Ghz Intel Core i7-7700K CPU and 16GB of memory. For all algorithms, 
the initial iterate is set to �̄(0) = � and we verify that it is a feasible solution of (7.1) 
with rk ’s chosen above. In Appendix 2, we discuss how Assumption 4 can hold for 
problem (7.1) when the data � satisfies a mild condition that can be ensured by a 
standard preprocessing. The values of algorithm-related parameters in all algorithms 
are selected from a discrete set of candidates based on the value of the objective 
function after 10,000 data passes.

On solving (1.1) with g ≡ 0 , the method in [11] applies a non-smooth trust-region 
method to solve a sequence of unconstrained subproblems in the form of

where 𝜌 > 0 is a penalty parameter which will be increased sequentially. At iteration 
k of the non-smooth trust-region method for solving (7.2), an updating direction is 
computed as4

where Δk is the radius of the trust region. Upon obtaining �(k) , the estimated solu-
tion is updated to �(k+1) = �(k) + �(k) if this update significantly reduces the objec-
tive value of (7.2). Once an �-critical point of (7.2) (see equation (2.2) in [11] for 
the definition) is found, a steering procedure [10] is utilized to increase the penalty 
parameter � in (7.2).

In our implementation, we formulate the problem in (7.3) as a linear program 
and then use Matlab built-in LP solver to obtain �(k) . The outer iterations in the 
method by [11] require a steering parameter � , an increase factor to update � , an 
initial value of � , and a tolerance for solving subproblem (7.2). Steering parameter 
� is set to be 0.3 for covtype and 0.1 for mnist. The initial value of � is set to be 1∕� 
for both datasets. We choose the increase factor to be 10 and tolerance � = 0.001 
for both datasets. Moreover, the trust-region method for solving subproblem  (7.2) 
requires five control parameters: Δ0 , �1 , �2 , �1 , and �2 . For both datasets, we choose 
Δ0 = 1, �1 = 0.3, �2 = 0.7 , �1 = 0.3 , and �2 = 0.7.

The iALM method in [60] is developed for (1.1) with only equality constraints 
(i.e., � ≡ � ). At the kth outer iteration, it applies another optimization algorithm to 
the following subproblem

(7.2)min
�

f0(�) + �

∑m

i=1

�
fi(�)

�
+
+ �

∑n

j=1
��cj(�)��,

(7.3)

�(k) ∈ argmin
‖�‖1≤Δk

�
f0(�

(k)) + ∇f0(�
(k))⊤� + 𝜌

∑m

i=1

�
fi(�

(k)) + ∇fi(�
(k))⊤�

�
+

+𝜌
∑n

j=1

���cj(�(k)) + ∇cj(�
(k))⊤�

���

�
,

4  The method in [11] allows using any norm in the ball constraint of (7.3). Here, we choose �
1
-norm so 

that (7.3) can be solved as a linear program.
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where �ALM
k

≥ 0 and �̄(k) ∈ ℝ
n is the dual variable, in order to find an 𝜀̂k+1-statioanry 

point of (7.4), namely, a point �̄(k+1) ∈ ℝ
d such that

Then it applies a dual ascent step to update �̄(k+1) = �̄(k) + 𝜎k+1�(�̄
(k+1)) with a step 

size 𝜎k+1 = 𝜎0 min{
‖�(�̄(0))‖ log2 2

‖�(�̄(k+1))‖(k+1) log2(k+2) , 1} for all k ≥ 0 . Here �0 is user-specified. 
Since (7.1) has inequality constraints, we apply iALM to the following equivalent 
problem

where sk ∈ ℝ+ for k = 2,… ,K are slack variables.
When implementing the iALM method, we set �̄(0) = � , �0 = 5 , �ALM

k
= 5k and 

𝜀̂k+1 = 1∕𝛽ALM
k

 for both covtype and mnist datasets. The forms of �ALM
k

 and 𝜀̂k+1 are 
consistent with Algorithm 1 and Corollary 4.2 in [60]. We find an 𝜀̂k+1-statioanry 
point of (7.4) using the accelerated proximal gradient method (APGM) in [26]. The 
APGM itself requires three control parameters. Despite a little abuse of notation, we 
denote the control parameters in iteration t of APGM by �t , �t and �t to be consistent 
with the notation in [26]. According to Corollary 2 in [26], we set �t =

2

t+1
 and 

�t = �t for covtype and mnist with �t =
1

10�ALM
k

 for covtype and �t =
1

200�ALM
k

 for mnist, 
where �ALM

k
 is from subproblem (7.4) solved in the kth outer iteration of the iALM 

method.
For our iPPP method, we need to specify the parameters 𝜀̂k, 𝛾k and �k for each k as 

well as constant Mini and �ini . The inner algorithms also require parameters 
�inc, �dec, �sc , and �sc . We set Mini = 10 , �ini = 1 , �inc = 1.5 , �dec = �sc = 1.2 , and 
�sc = 0.5 . For other parameters, we compare two different settings: one using 
𝜀̂k = 1∕(k + 1)2, 𝛾k = 0.1, 𝛽k = 1000,∀ k , and the other using 
𝜀̂k =

1

𝛽(k+1)
4
3

, 𝛾k = 0.1(k + 1)
1

3 , 𝛽k = 𝛽(k + 1)
1

3 , ∀ k.

In the latter setting, we choose � = 200 for mnist and choose � = 500 for covtype.
The numerical results are presented in Figure 1. The x-axis represents the number 

of data passes each algorithm performs. The y-axis represents the objective value 
of iterates in the first column, the infeasibility of iterates (i.e., maxi=1,…,m{fi(�), 0} ) 
in the second column, and the stationarity of iterates in the third column. Let 
I(�) = {1 ≤ i ≤ m|fi(�) ≥ 0} and X = {� = (�1,… , �K) � ‖�k‖ ≤ �, k = 1,… ,K} . 
We calculate the stationarity of a solution � as the optimal objective value of the fol-
lowing convex optimization

(7.4)min
�∈ℝd

f0(�) + g(�) + (�̄(k))⊤�(�) +
𝛽
ALM
k

2
‖�(�)‖2,

min
��∈𝜕g(�̄(k+1))

‖∇f0(�̄(k+1)) + J�(�̄
(k+1))⊤�̄(k) + ��‖ ≤ 𝜀̂k+1.

(7.5)
min‖�k‖≤𝜆,k=1,…,K,sk≥0,k=2,…,K

1

�D1�
∑

l>1

∑
𝜉∈D1

𝜙(�⊤
1
𝜉 − �⊤

l
𝜉),

s.t.
1

�Dk�
∑

l≠k
∑

𝜉∈Dk
𝜙(�⊤

k
𝜉 − �⊤

l
𝜉) + sk = rk, k = 2, 3,… ,K,
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which can be solved as a convex quadratic program and we solve using Matlab 
built-in QP solver. We observe from Figure 1 that, for these two instances, our iPPP 
method outperforms the trust-region-based penalty method by [11] in terms of its 
capability of improving objective value, feasibility, and stationarity of the iterates 
simutaneously. Moreover, these two instances also suggest that the iPPP method 
using growing penalty parameters performs better than using a fixed penalty param-
eter. However, the iALM method using APGM as a subroutine has better perfor-
mance than our iPPP method for both instances although the former has a higher 
theoretical complexity ( ̃O(𝜀−4) ) than the latter ( ̃O(𝜀−3) ). It is possibly because the 
Õ(𝜀−4) complexity proved by [60] is not tight and can be further reduced with more 
sophisticated analysis.

8 � Conclusion

We proposed a gradient-based penalty method for a constrained non-convex optimi-
zation problem. The complexity of the proposed algorithm for finding an approxi-
mate stationary point is derived for two cases: (i) when the objective function is 
non-convex but the constraint functions are convex and, (ii) when the objective and 
constraint functions are all non-convex. For the first case, our method can produce 
an �-stationary point with complexity of Õ(𝜀−5∕2) under Slater’s condition. For the 

min
�∈ℝ

|I(�(k) )|
+ ,�∈ℝn

dist

(
∇f0(�

(k)) +
∑
i∈I(�)

�i∇fi(�
(k)) +

n∑
j=1

yj∇cj(�
(k)),−NX(�

(k))

)
,
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Fig. 1   Comparison between the iPPP method and the trust-region-based penalty method in [11] for solv-
ing multi-class Neyman-Pearson classification problem (7.1) on two datasets from LIBSVM
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second case, the complexity is Õ(𝜀−3) if a non-singularity condition holds on the 
constraints and otherwise Õ(𝜀−4) if an initial feasible solution is assumed.

Appendix 1: Adaptive accelareted proximal gradient method

In this section, we introduce the AdapAPG method by [45] for solving a strongly 
convex composite optimizaiton in the form of (3.5). It can be applied to (4.1), which 
is an instance of (3.5), in order to find �̄(k+1) satisfying (4.6) as required in Line 4 of 
Algorithm 1.

Consider problem (3.5), where � ∶ ℝ
d
→ ℝ is �

�
-strongly convex and L

�

-smooth, and r ∶ ℝ
d
→ ℝ ∪ {+∞} is a proper lower-semicontinuous convex func-

tion. Given � ∈ ℝ
d and a constant L > 0 , we define a local model of �(�) as

As defined in (3.7), the proximal gradient step of (3.5) at � is

and the proximal gradient mapping of (3.5) at � is

By the optimality condition satisfied by TL(�) in (A.2), there exists � ∈ �r(TL(�)) 
such that

which implies ∇�(TL(�)) + � = ∇�(TL(�)) − ∇�(�) − L(TL(�) − �) so that

 Here,

is a first-order suboptimality measure of � and

is a local Lipschitz constant of � . Inequality (A.4) means that, when ‖gL(�)‖ is 
small, the solution generated by a proximal gradient step from � has a small subgra-
dient and thus is a high-quality solution of (3.5). 

(A.1)𝜓L(�;�) ∶= 𝜙(�) + ∇𝜙(�)⊤(� − �) +
L

2
‖� − �‖2 + r(�).

(A.2)TL(�) = argmin
�∈ℝd

�L(�;�) = ����L−1r(� − L−1∇�(�)),

(A.3)gL(�) ∶= L(� − TL(�)).

� + ∇�(�) + L(TL(�) − �) = �,

(A.4)
�(TL(�)) ≤ ‖∇�(TL(�)) + �‖ ≤ ‖∇�(TL(�)) − ∇�(�)‖ + ‖gL(�)‖

=

�
1 +

SL(�)

L

�
‖gL(�)‖.

(A.5)�(�) ∶= min
��∈�r(�)

‖∇�(�) + ��‖

(A.6)SL(�) ∶=
‖∇�(TL(�))−∇�(�)‖

‖TL(�)−�‖ ≤ L
�
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With these notations, we briefly describe the AdapAPG method in Algo-
rithm  4, where we treat � and r as the input because we need to apply it to 
instances of (3.5) with different �’s. We refer the interested readers to [45] for 
details. AdapAPG calls two different line-search schemes that are described in 
Algorithm  2 and Algorithm  3, respectively. Here, Algorithm  2 is only used for 
initialization while Algorithm 3 is the main subroutine in each iteration of Algo-
rithm 4. AdapAPG maintains and updates estimations of �

�
 and L

�
.
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In iteration t, the AdapAPG method calls Algorithm  3, which performs the 
updating steps of the APG method [52] by using an estimation of �

�
 , denoted as 

� , in place of �
�
 and using a line search scheme to update the estimation of L

�
 , 

denoted as Mt . After the tth call of Algorithm  3, the AdapAPG method stores 
�(t) = gMt

(�(t)) and �(t+1) = TMt
(�(t)) . It can be shown that, if � ≤ �

�
 , the value 

of ‖�(t)‖ should decrease geometrically to zero. Therefore, if such a decrease is 
not observed, it must happen that 𝜇 > 𝜇

𝜙
 . Then the algorithm is restarted with � 

divided by 𝛾sc > 1 , which leads to the adaptivity to the unknown �
�
 . The follow-

ing theorem shows the complexity of the AdapAPG method for solving (3.5).

Theorem 5  (Theorem 2 in [45]) Assume 𝜇0 ≥ 𝜇
𝜙
> 0 . Let �ini denote the first �(−1) 

computed by Algorithm 4. Algorithm 4 terminates in at most

iterations with an output �̄ satisfying (3.6) and the total complexity is

where TAPG is the number of iterations given by (A.7).

Remark 5  In this paper, we measure the complexity of an algorithm using the total 
number of proximal gradient steps it performs. The value TAPG in (A.7) is the total 
number of iterations by Algorithm 4, but multiple proximal gradient steps can be 
performed in one iteration of Algorithm  4 inside the subroutine AccelLine-
Search. According to the inequality between inequalities 16 and 17 in [45], the 
total number of proximal gradient steps is given in (A.8) which differs from TAPG 
only by logarithmic factors. If 0 < 𝜇0 < 𝜇

𝜙
 , following the same proof as for Theo-

rem 2 in [45], we can show that the total number of iterations performed by Algo-
rithm 4 is at most

which is obtained by replacing �
�
∕�sc by �0 in (A.7).

By this theorem, the total complexity of the AdapAPG method to find a solu-
tion �̄ to (3.5) satisfying (3.6) is O

(
𝜅
1∕2

𝜙
log(𝜅

𝜙
) log

(
1

𝜀̂

))
,

where �
�
=

L
�

�
�

 is the condition number of (3.5). Compared to APG whose com-

plexity is O
(
𝜅
1∕2

𝜙
log

(
1

𝜀̂

))
 , AdapAPG has an additional factor of log(�

�
) in the 

(A.7)

TAPG =

��
log1∕𝜃sc

��
1 +

L
𝜙

Lmin

�‖�ini‖
𝜀̂

��
+

�
log

𝛾sc

�
𝜇0

𝜇
𝜙

���

×

�
L
𝜙
𝛾inc𝛾sc

𝜇
𝜙

ln

�
8

�
L
𝜙
𝛾inc𝛾sc

𝜇
𝜙
𝜃sc

�2�
1 +

L
𝜙

Lmin

�2
�

(A.8)
(
1 +

ln �dec

ln �inc

)
(TAPG + 1) +

1

ln �inc
max

{
ln

�incL�

�dec��

, 0

}
= O(TAPG),

�
log1∕𝜃sc

��
1 +

L
𝜙

Lmin

�‖�ini‖
𝜀̂

��
×

�
L
𝜙
𝛾inc

𝜇0

ln

�
8

�
L
𝜙
𝛾inc

𝜇0𝜃sc

�2�
1 +

L
𝜙

Lmin

�2
�
,
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complexity result, but the latter does not require knowing the exact values of �
�
 and 

L
�
 . We present this complexity result in terms of �

�
 , L

�
 and 𝜀̂ in Theorem 1.

By (A.5) and the stopping condition (Line 19) of Algorithm 4, we can use Ada-
pAPG to find �̄(k+1) satisfying (4.6) at Line 4 of Algorithm 1. To do so, we only need 
to initialize M̂ and 𝜇̂ at the beginning (between Lines 1 and 2) of Algorithm 1 as

using any constants �ini and Mini satisfying 0 < 𝜇
ini ≤ Mini and then replace Line 4 

of Algorithm 1 with

This is also what we implement in our numerical experiments in Sect. 7.
In Algorithms  2,  3 and 4, users need to provide parameters Lini ≥ 𝜇0 > 0 , 

Lmin ∈ [�0, Lini] , 𝛾inc > 1 , 𝛾dec > 1 , 𝛾sc > 1 , and �sc ∈ (0, 1) . Next, we will explain the 
roles of these parameters. Parameters Lmin , Lini , �inc and �dec are introduced for updat-
ing the local estimate of L

�
 , which is Mt in Algorithm 4. More specifically, Lini is the 

initial guess of L
�
 while Lmin is an estimated lower bound of L

�
 . According to equa-

tion 12 in [45], the stopping condition F(�(t+1)) ≤ �L(�
(t);�(t+1)) in Algorithms 2 and 3 

holds whenever L ≥ L
�
 . However, the condition L ≥ L

�
 is not necessary for the above 

stopping condition to hold for a particular t, and an overly large L will slow down the 
convergence. Hence, the estiamte Mt is reduced by a factor 𝛾dec > 1 in Line 15 in Algo-
rithm 4 to ensure Algorithm 2 begins with a relatively small L and, in each iteration of 
Algorithms 2 and 3 , L is increased by a factor 𝛾inc > 1 to ensure the aforementioned 
stopping condition will eventually hold.

Parameters �0 , �sc and �sc are introduced for updating the estimate of �
�
 , which is � 

in Algorithm 4. Parameter �sc is the desired shrinking factor, which is used in the condi-
tion ���(t)‖2 ≤ �sc

���(−1)��2 for restarting the iterate at �(t+1) as shown in Lines 8 and 9 in 
Algorithm 4. Because of (A.4), Algorithm 4 will terminate if this condition holds suffi-
ciently many times. Parameter � is initialized with �0 . By Lemma 11 in [45], if � ≤ �

�
 , 

it must hold that

where �t is updated in Line 6 of Algorithm 4 and decreases geometrically to zero. 
Hence, for any �sc ∈ (0, 1) , if 2

√
2�t

Mt

�

�
1 +

S−1

M−1

� ≤ �sc happens earlier than 
���(t)‖2 ≤ �sc

���(−1)��2 , we must have that 𝜇 > 𝜇
𝜙
 and need to decrease � by a factor 

𝛾sc > 1 and restart the iterate at �(0) as shown in Lines 12 and 13 of Algorithm 4.
Although the choices for the aforementioned parameters must depend on specific 

problems, we can provide some guideline in general for users in practice. In our iPPP 
method, Lini and �0 are set to M̂ and 𝜇̂ , which are initialized in (A.9) and updated after 
each call of Algorithm 4 in (A.10). Since AdapAPG can adaptively update M̂ and 𝜇̂ , 
the initial value Mini does not need to be large and �ini can be set relatively close to 
Mini . In practice, we suggest setting Mini = 10 and �ini ∈ [1, 10] . According to Theo-
rem 5 and the discussion afterwards, setting �inc , �dec , �sc , and �sc too large or too small 

(A.9)M̂ ← Mini and 𝜇̂ ← 𝜇
ini

(A.10)Call Alg. 4 ∶ {�̄(k+1), M̂, 𝜇̂} ← ������� (𝜙k, g, �̄
(k), M̂, 𝜇̂, 𝜀̂k).

‖�(t)‖ ≤ 2
√
2�t

Mt

�

�
1 +

S−1

M−1

�
���(−1)��,
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will increase the complexity. According to the numerical experiments in [45, 54] and in 
this paper, where different classes of problems are solved, �inc and �dec can be selected 
from a grid in (1, 2], �sc in (1, 10] and �sc in (0, 1). The selection can be maded based on 
the objective value achieved after a fixed number of iterations.

Appendix 2: Discussion on Assumption 4 for application (7.1)

We explain that Assumption 4 can hold for the tested problem (7.1). For simplicity, 
we consider the case of K = 2 , and in this case, we have a single inequality con-
straint in the form of

where � = [�1;�2] , �(z) = 1∕(1 + exp(z)) , N2 denotes the number of 
data points in D2 , and �i is the i-th data point in D2 . In addition, let 
X = {(�1, �2) ∶ ‖�1‖ ≤ �, ‖�2‖ ≤ �} . It is easy to have

The condition in Assumption 4 reduces to

Let

Then

When f (�) ≤ 0 , the condition in (B.1) trivially holds for any 𝜈 > 0 . Below, we 
assume the feasibility of the origin, i.e., f (�) ≤ 0 as in our numerical experiment 
and also assume

 Notice that the condition in (B.2) may not naturally hold but can be ensured by lift-
ing all data points by one more dimension, i.e., �i ← [�i;c],∀ i for some c > 0 . If the 
original data points are normalized, it suffices to take c = 1 . For linear classification 

f (�) ∶=
1

N2

N2∑
i=1

𝜙(�⊤
2
𝜉i − �⊤

1
𝜉i) − r2,

NX(�) =

⎧⎪⎨⎪⎩

{�}, if ‖�1‖ < 𝜆, ‖�2‖ < 𝜆,

{�} × {a2�2 ∶ a2 ≥ 0}, if ‖�1‖ < 𝜆, ‖�2‖ = 𝜆,

{a1�1 ∶ a1 ≥ 0} × {�}, if ‖�1‖ = 𝜆, ‖�2‖ < 𝜆,

{a1�1 ∶ a1 ≥ 0} × {a2�2 ∶ a2 ≥ 0}, if ‖�1‖ = 𝜆, ‖�2‖ = 𝜆.

(B.1)∃ 𝜈 > 0 such that 𝜈[f (�)]+ ≤ dist
(
[f (�)]+∇f (�),−NX(�)

)
, ∀ � ∈ X.

� =
1

N2

[𝜉1,… , 𝜉N2
], ui(�) = 𝜙

�(�⊤
2
𝜉i − �⊤

1
𝜉i), for i = 1,… ,N2.

∇f (�) =
1

N2

N2∑
i=1

𝜙
�(�⊤

2
𝜉i − �⊤

1
𝜉i)[−𝜉i;𝜉i] = [−��(�);��(�)].

(B.2)𝜉i ≠ �, ∀ i, 𝜉
⊤

i
𝜉j ≥ 0, ∀ i, j.
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models like (7.1), lifting the data is essentially changing the intercept coefficient that 
does not change the separability of the data.

However, the optimization problem will be changed slightly. The goal here is not 
to provide an equivalent transformation of the original optimization model so that 
it satisfies (B.2). Instead, we just want to present a practical scenario where (B.2) is 
ensured at modeling stage, instead of optimization stage, by normalizing and lifting 
data.

We establish the condition in (B.1) through discussing three cases on � with 
f (�) > 0.

Case I ‖�1‖ < 𝜆, ‖�2‖ < 𝜆 . In this case, NX(�) = {�} , and thus the inequality 
in (B.1) becomes � ≤ ‖∇f (�)‖ . Let

Since 𝜙
�(�) < 0 for any � , there exist 𝜂1 > 0 and 𝜂2 > 0 such that 

−�2 ≤ ui(�) ≤ −�1, ∀ i for all � ∈ X  . Hence 𝜈1 > 0 by (B.2).
Case II ‖�1‖ < 𝜆, ‖�2‖ = 𝜆 or ‖�1‖ = 𝜆, ‖�2‖ < 𝜆 . We only consider the for-

mer because the latter can be discussed in the same way. In the former case, 
NX(�) = {�} × {a2�2 ∶ a2 ≥ 0} , and the inequality in (B.1) becomes

which is implied by the fact that � ≤ ‖��(�)‖ with � = �1∕
√
2 and �1 defined in 

(B.3).
Case III ‖�1‖ = �, ‖�2‖ = � . In this case, 

NX(�) = {a1�1 ∶ a1 ≥ 0} × {a2�2 ∶ a2 ≥ 0} , and the inequality in (B.1) becomes

which, as f (�) > 0 , is equivalent to

Let �2 ≥ 0 be defined as

Notice that the minimum of the above problem is reached at a point �̄ and numbers 
ā1 and ā2 . Suppose �2 = 0 . It must hold that �̄1 = 𝜆

��(�̄)

‖��(�̄)‖ and �̄2 = −𝜆
��(�̄)

‖��(�̄)‖ with 
the corresponding ā1 = ā2 =

‖��(�̄)‖
𝜆

 . Since ui(�̄) < 0, ∀ i , we have from (B.2) that 
�̄⊤
2
𝜉i − �̄⊤

1
𝜉i = −

𝜆

‖��(�̄)‖𝜉
⊤

i
��(�̄) > 0 for all i. This means f (�̄) < f (�) ≤ 0 by the 

(B.3)𝜈1 = inf
‖�1‖ < 𝜆, ‖�2‖ < 𝜆

‖∇f (�)‖ = min
�∈X

√
2‖��(�)‖.

(
�[f (�)]+

)2 ≤ ‖‖[f (�)]+��(�)‖‖2 +min
a2≥0

‖‖[f (�)]+��(�) + a2�2
‖‖2,

(
�[f (�)]+

)2 ≤ min
a1≥0

‖‖[f (�)]+��(�) − a1�1
‖‖2 +min

a2≥0
‖‖[f (�)]+��(�) + a2�2

‖‖2,

�
2 ≤ min

a1≥0
‖‖��(�) − a1�1

‖‖2 +min
a2≥0

‖‖��(�) + a2�2
‖‖2.

(B.4)
�
2
2
= min

‖�1‖ = �

‖�2‖ = �

f (�) ≥ 0

�
min
a1≥0

����(�) − a1�1
��2 +min

a2≥0
����(�) + a2�2

��2
�
.
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monotonicity of � , which contradicts with the fact that f (�̄) ≥ 0 . Therefore, we must 
have 𝜈2 > 0.

By the above discussions, we can set 𝜈 = min{𝜈1∕
√
2, 𝜈2} > 0 to ensure con-

dition (B.1), which gives the following conclusion.
Claim: Assumption 4 can hold for the tested problem (7.1).

Appendix 3: Comparison with [47] and [8]

In this section, we compare [47] and [8] with this paper in two aspects: the defini-
tion of approximate stationary point and the assumptions needed for processing 
non-convex constraints.

Since [47] and [8] only consider the problems with inequality constraints and 
their key assumptions are also stated only for the problems with inequality con-
straints, we also assume �(�) ≡ � in (1.1) in this section. In addition, we assume 
Assumptions  1 and 3 during the comparison because, except Assumption  1A 
(smoothness), Assumptions 1 and 3 are also made in [47] and [8].

Note that [47] and [8] also require a (nearly) feasible solution and ensure a 
(nearly) feasible solution in each outer iteration. Our method does not require 
a (nearly) feasible solution but cannot ensure a (nearly) feasible solution in all 
intermediate iterations.

Definition of approximate stationary point

In [8], the authors define an (�, �)-KKT point for (1.1) with only inequality con-
straints as follows.

Definition 7  Suppose �(�) ≡ � in (1.1). Given 𝜀 > 0 and 𝛿 > 0 , a point �̂ is an 
(�, �)-KKT point of (1.1) if there are �̄ ∈ dom(g) , ̄� ∈ 𝜕g(�̄) and ̄� ∈ ℝ

m
+
 such that 

fi(�̄) ≤ 0 for i = 1,… ,m , and 

A similar definition is considered by [47]. Note that (C.1a) and (C.1b) are 
identical to (1.3a) and (1.3c) except that the left-hand side of (C.1a) is squared. 
For the purpose of comparison, in the rest of this subsection, we assume �̂ is 
an (�2, �2)-KKT point so that the point �̄ associated to �̂ in Definition  7 satis-
fies (1.3a) just like an �-stationary point in Definition 1. Now we discuss about 

(C.1a)‖‖‖∇f0(�̄) + J� (�̄)
⊤ ̄� + ̄�

‖‖‖
2 ≤ 𝜀,

(C.1b)
m∑
i=1

|𝜆̄ifi(�̄)| ≤ 𝜀,

(C.1c)‖�� − �̄‖2 ≤ 𝛿.
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the connections of �̂ and its associated point �̄ with an �-stationary point in 
Definition 1.

–	 When the inequalities in (C.1) hold with � and � replaced by �2 and �2 , �̄ satis-
fies (1.3a), ‖‖[� (�̄)]+‖‖ = 0 and 

∑m

i=1
�𝜆̄ifi(�̄)� ≤ 𝜀

2 where the last two inequalities 
are stronger than (1.3b) and (1.3c), respectively. However, Definition 7 does not 
require 𝜆̄i = 0 if fi(�̄) < 0 for i = 1,… ,m as Definition 1.

–	 The algorithms in [47] and [8] can only find the near-KKT point �̂ but not the asso-
ciated point �̄ . Unfortunately, �̂ is not necessarily an �-stationary point even if �̂ is 
an (�2, �2)-KKT point. Consider the one-dimensional example minx∈[1,2] x

2 which 
is an instance of (1.1) with f0(x) = x2, g(x) = �[1,2](x) , �(x) ≡ � and � (x) ≡ � . For 
any � ∈ (0, 1) , x̂ = 1 + �

2 is an (�2, �2)-KKT point associated to x̄ = 1 . However, 
‖∇f0(�x)‖ = 2 + 2𝜀2 > 𝜀 , which violates (1.3a).

–	 When g(�) ≡ 0 and (3.4) holds, �̂ will be an O(�)-stationary point. In fact, since 
‖�� − �̄‖ ≤ 𝜀 , by Assumption 1A and (3.4), �̂ satisfies ‖‖∇f0(��) + J� (��)

⊤ ̄�‖‖ ≤ O(𝜀) , ‖‖[� (�̂)]+‖‖ ≤ O(�) and 
∑m

i=1
�𝜆̄ifi(��)� = O(𝜀) . Unlike �̄ , the point �̂ is not stronger 

than an �-stationary point in terms of the last two inequalities. The algorithms in 
[47] and [8] can find the (�2, �2)-KKT point �̂ with complexity of O( 1

�
3
) which is the 

same as our complexity under Assumption 4.

Key assumptions on non‑convex constraints

The key assumption, called the uniform Slater’s condition, made by [47] (see Assump-
tion 1 in [47]) is that

for any �2-feasible � (i.e., � ∈ X  and fi(�) ≤ �
2 for i = 1,… ,m ), where � is the error 

of the approximate stationary point found by [47], �
�
 and �

�
 are positive constants 

depending on � , and � = max
i=0,…,m

�i with �i defined as in Assumption 3. As follows, 
we use examples to show that the uniform Slater’s condition and Assumption 4 do 
not imply each other.

We consider the following one-dimensional problem

where f0 is any smooth objective function. It is clear that 
max{(x − 1)3 + 1,−(x + 1)3 + 1} ≥ 0 for any x and attains zero at x = 0 , meaning 
that x = 0 is the only feasible solution to this problem. Considering the left-hand 
side of (C.2), we can show that, for any x ∈ ℝ , 𝜌 > 0 and 𝜌

𝜀
> 0,

(C.2)min
��∈X

�
max

i=1,…,m
fi(�

�) +
𝜌 + 𝜌

𝜀

2
‖�� − �‖2

�
< −𝜎

𝜀

min
x∈[−0.5,0.5]

f0(x) s.t. � (x) ∶= [(x − 1)3 + 1; − (x + 1)3 + 1] ≤ �,

min
x�∈[−0.5,0.5]

�
max{(x� − 1)3 + 1,−(x� + 1)3 + 1} +

� + �
�

2
‖x� − x‖2

�
≥ 0,
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which indicates the uniform Slater’s condition by [47] does not hold. On the 
contrary, this problem satisfies Assumption  4. In fact, for x ∈ (0, 0.5] , we have 
‖[� (x)]+‖ = (x − 1)3 + 1 and

where the last inequality is because 3(x − 1)2 ≥ 3

4
 on (0, 0.5]. This means (6.3) holds 

on (0, 0.5] with � =
3

4
 . By symmetricity, (6.3) also holds on [−0.5, 0) with � =

3

4
 and 

it holds trivially at x = 0.
Next, we modify the problem above slightly and obtain

where f0 is any smooth weakly convex objective function with �0 = 12 . It can be 
easily verified that the two constaint functions above are also smooth weakly convex 
with �1 = �2 = 12 so that � = 12 in (C.2). This problem does not satisfy Assump-
tion 4 because, when x = 1 , ‖[� (x)]+‖ = (x − 1)3 + 27∕64 = 27∕64 while

so that (6.3) does not hold for any 𝜈 > 0 . On the contrary, this problem satis-
fies (C.2) with a small enough � . In fact, since [−0.25, 0.25] is the feasible set 
of (C.3), by continuity of the constraint functions, there exists 𝛿 > 0 such that 
[−0.25 − �, 0.25 + �] is the set of all �2-feasible solutions for any small enough � . 
Given x ∈ [−0.25 − �, 0.25 + �] and �

�
= 1 , we have

where the first inequality is obtained by taking x� = 0 . Note that the limit of 
−

37

64
+

13

2
(0.25 + �)2 as � approaches zero is − 11

64
 . Hence, for a small enough � , the 

corresponding � will also be small enough so that the right-hand side of the last 
inequality above will be less than −�

�
 for some �

�
≈

11

64
 and for any �2-feasible x, 

indicating that (C.2) holds.
When there are only inequality constraints in (1.1), we say the Mangasarian-Fro-

movitz constraint qualification (MFCQ) holds at a feasible solution � to (1.1) if there 
exists a direction � ∈ ℝ

d such that

Assuming the initial solution is feasible, [8] proved that any limiting point of the 
iterates generated by its algorithm is feasible (see Theorem 3.3 in [8]). Then they 
assume that MFCQ holds at any limiting point of the iterates (see Assumption 3.6 
and Lemma 3.7 in [8]). However, this assumption is algorithm-dependent while 

dist
�
J� (x)

⊤[� (x)]+, −N[−0.5,0.5](x)
�
= 3(x − 1)2[(x − 1)3 + 1]

= 3(x − 1)2‖[� (x)]+‖ ≥ 3

4
‖[� (x)]+‖,

(C.3)min
x∈[−1,1]

f0(x) s.t. � (x) ∶= [(x − 1)3 + 27∕64; − (x + 1)3 + 27∕64] ≤ �,

dist
(
J� (x)

⊤[� (x)]+, −N[−1,1](x)
)
= 3(x − 1)2[(x − 1)3 + 27∕64] = 0,

min
x�∈[−1,1]

�
max

�
(x� − 1)3 +

27

64
,−(x� + 1)3 +

27

64

�
+

� + �
�

2
‖x� − x‖2

�
≤ −

37

64
+

13

2
x2

≤ −
37

64
+

13

2
(0.25 + �)2,

(C.4)∇fi(�)
⊤� < 0 for all i such that fi(�) = 0.
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Assumption  4 only depends on the problem. Hence, the comparison below will 
depend on where the limiting point is.

We consider the following one-dimensional problem

It is clear that the assumption by [8] does not hold if the limiting point is x = 0 (the 
optimal solution). In fact, when x = 0 , both constraints are active but the gradient of 
the second constraint is zero so that no direction � can satisfy (C.4). On the contrary, 
this problem satisfies Assumption 4. In fact, (6.3) holds trivially for any 𝜈 > 0 when 
x ∈ [−1, 0] . For x ∈ (0, 1] , we have ‖[� (x)]+‖ =

√
x2 + x6 and

which means (6.3) holds with � = 1 . Then, we consider problem (C.3) again. 
According to the previous subsection, we know that (C.3) does not satisfy Assump-
tion  4. However, MFCQ holds at any feasible solution to (C.3), namely, any 
x ∈ [−0.25, 0.25] . Hence, we conclude that the MFCQ assumption of [8] and 
Assumption 4 do not imply each other.

Appendix 4: Complexity with convex constraints and unbounded 
domain

In this section, we assume Assumption 1 holds except Assumption 1B. In other 
words, the domain X  of g can be unbounded, e.g., when g(�) = ‖�‖1 or g(�) ≡ 0 . 
Throughout this section, we consider the special case of (1.1) with convex con-
straints, which is formulated as (5.1) and satisfies Assumption 2. In addition, we 
make the following assumption.

Assumption 6  Function ‖�� − �‖2 + ��[� (�)]+��2 has compact level sets on X  , that 
is, for all � ∈ ℝ+ , the set

is compact. Moreover, there exist constants {Bfi
}m
i=0

 satisfying (3.4a), and f0(�) + g(�) 
is bounded below on X  , that is, there exists F ∈ ℝ such that f0(�) + g(�) ≥ F for 
any � ∈ X .

This assumption is used to prove the iterates {�̄(k)}k≥0 of Algorithm 1 will stay 
in a bounded region (see Lemma  7 below), which is a key property to replace 
Assumption 1B in the proof of convergence. Set S

�
 is compact, for example, when 

‖�� − �‖2 + ��[� (�)]+��2 is coercive or strongly convex. For many applications in 

min
x∈[−1,1]

−x3 s.t. x ≤ 0, x3 ≤ 0.

dist
�
J� (x)

⊤[� (x)]+, −N[−1,1](x)
�
= x + 3x5 = ‖[� (x)]+‖ 1 + 3x4√

1 + x4
≥ ‖[� (x)]+‖,

(D.1)S
�
∶=

�
� ∈ X

���� ‖�� − �‖2 + ��[� (�)]+��2 ≤ �

�
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machine learning, F exists and equals zero. Condition (3.4a) is needed to ensure 
�k(�) in (4.5) is L

�k
-smooth with L

�k
 in (5.2) so that the AdapAPG method can be 

applied to subproblem (4.1).
Since the diameter D of X  is not necessarily finite, Lemma 1 needs to be modi-

fied as follows. The only changes are that 𝜀̂kD on the left-hand sides of (4.7) and 
(4.8) are replaced by 𝜀̂2

k
∕𝜇

𝜙k
 as shown in (D.2) and (D.3). Moreover, the constant 

term 2Bf0
+ 2G in (4.8) is replaced by f0(�(0)) + g(�(0)) − F as shown in (D.3).

Lemma 6  Suppose �k in (4.5) is �
�k

-strongly convex. Let {�̄(k)} be generated from 
Algorithm 1. Then for any � ∈ X  , it holds that

and

Proof  According to Line 4 of Algorithm 1, there exists ̄�(k+1) ∈ 𝜕g(�̄(k+1)) such that 
‖∇𝜙k(�̄

(k+1)) + ̄�
(k+1)‖ ≤ 𝜀̂k . Since �k is �

�k
-strongly convex, so is �k + g . Hence, we 

obtain (D.2) by noting

Now let � = �̄(k) in (D.2) and sum it over k = 0 through K − 1 to obtain (D.3) by the 
lower boundedness of f0(�) + g(�) in Assumption 6. 	�  ◻

Lemma 7  Suppose that Assumptions 2 and 6 hold and the parameters {�k} , {�k} and 
{𝜀̂k} in Algorithm 1 are chosen as in (5.14). Each iterate �̄(k) will stay in S

𝛼̄
 during 

Algorithm 1, where S
𝛼̄
 is defined in (D.1) and

with F from Assumption 6 and � from (5.14).

(D.2)𝜙k(�̄
(k+1)) + g(�̄(k+1)) − 𝜙k(�) − g(�) ≤ 𝜀̂

2
k

2𝜇
𝜙k

, ∀k ≥ 0

(D.3)

s

K−1�
k=0

𝛾k

2
‖�̄(k+1) − �̄(k)‖2 + 𝛽K−1

2

�
‖�(�̄(K))‖2 + ��[� (�̄(K))]+��2

�

≤ f0(�
(0)) + g(�(0)) − F +

𝛽0

2

�
‖�(�(0))‖2 + ��[� (�̄(0))]+��2

�

+
1

2

K−1�
k=1

(𝛽k − 𝛽k−1)

�
‖�(�̄(k))‖2 + ��[� (�̄(k))]+��2

�
+

K−1�
k=0

𝜀̂
2
k

2𝜇
𝜙k

, ∀K ≥ 1.

𝜙k(�̄
(k+1)) + g(�̄(k+1)) − 𝜙k(�) − g(�)

≤ �
∇𝜙k(�̄

(k+1)) + ̄�
(k+1)

�
⊤

(�̄(k+1) − �) −
𝜇
𝜙k

2
‖�̄(k+1) − �‖2

≤ ‖∇𝜙k(�̄
(k+1)) + ̄�

(k+1)‖2
2𝜇

𝜙k

≤ 𝜀̂
2
k

2𝜇
𝜙k

.

(D.4)

𝛼̄ =
2

𝛽

�
f0(�̄

(0)) + g(�̄(0)) − F
�
+ ‖��̄(0) − �‖2 + ��[� (�̄(0))]+��2 + 14

5𝛽3(𝛾 − 𝜌0)



	 Q. Lin et al.

1 3

Proof  Under (5.14) and Assumption 2, the function �k in (4.5) is �
�k

-strongly con-
vex with �

�k
= � − �0 . According to Lemma 6, we obtain

by choosing � = �̄(k) in (D.2). By the definition of �k in (4.5), subtracting F from 
both sides of the inequality in (D.5) and then dividing both sides by �k give

Since ‖�̄(k+1) − �̄(k)‖2 ≥ 0 , f0(�̄(k)) + g(�̄(k)) − F ≥ 0 and �k+1 ≥ �k for any k, (D.6) 
implies

Summing the inequality above over k = 0 through K − 1 gives

Using the facts that f0(�̄(K)) + g(�̄(K)) − F ≥ 0 and that

we derive from (D.7)

(D.5)𝜙k(�̄
(k+1)) + g(�̄(k+1)) − 𝜙k(�̄

(k)) − g(�̄(k)) ≤ 𝜀̂
2
k

𝛾 − 𝜌0

, ∀k ≥ 0

(D.6)

f0(�̄
(k+1)) + g(�̄(k+1)) − F

𝛽k

+
𝛾k

2𝛽k
‖�̄(k+1) − �̄(k)‖2 + 1

2

�
‖��̄(k+1) − �‖2 + ��[� (�̄(k+1))]+��2

�

≤ f0(�̄
(k)) + g(�̄(k)) − F

𝛽k

+
1

2

�
‖��̄(k) − �‖2 + ��[� (�̄(k))]+��2

�

+
𝜀̂
2
k

(𝛾 − 𝜌0)𝛽k
, ∀k ≥ 0.

f0(�̄
(k+1)) + g(�̄(k+1)) − F

𝛽k+1

+
1

2

�
‖��̄(k+1) − �‖2 + ��[� (�̄(k+1))]+��2

�

≤ f0(�̄
(k)) + g(�̄(k)) − F

𝛽k

+
1

2

�
‖��̄(k) − �‖2 + ��[� (�̄(k))]+��2

�
+

𝜀̂
2
k

(𝛾 − 𝜌0)𝛽k
, ∀k ≥ 0.

(D.7)

f0(�̄
(K)) + g(�̄(K)) − F

𝛽K

+
1

2

�
‖��̄(K) − �‖2 + ��[� (�̄(K))]+��2

�

≤ f0(�̄
(0)) + g(�̄(0)) − F

𝛽0

+
1

2

�
‖��̄(0) − �‖2 + ��[� (�̄(0))]+��2

�
+

K−1�
k=0

𝜀̂
2
k

(𝛾 − 𝜌0)𝛽k
.

K−1∑
k=0

𝜀̂
2
k

𝛽k

=

K−1∑
k=0

1

𝛽
3(k + 1)3.5

≤ 1

𝛽
3

(
1 + �

K

1

x−3.5dx

)
≤ 7

5𝛽3
,

‖��̄(K) − �‖2 + ��[� (�̄(K))]+��2 ≤ 2

𝛽

�
f0(�̄

(0)) + g(�̄(0)) − F
�

+ ‖��̄(0) − �‖2 + ��[� (�̄(0))]+��2 + 14

5𝛽3(𝛾 − 𝜌0)
= 𝛼̄.
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Since K above can be any integer greater or equal to one, we have proved the conclu-
sion for k ≥ 1 . The conclusion when k = 0 is trivially true. 	�  ◻

According to Lemma 7, if Assumptions 2 and 6 hold and the parameters {�k} , 
{�k} and {𝜀̂k} are chosen as in (5.14), we must have

where S
𝛼̄
 is defined in (D.1) with 𝛼̄ in (D.4). Using Lemma 7 and D

𝛼̄
 , we obtain the 

following bounds for (�̂(k), ̂�
(k)
) similar to the ones in Lemma 3.

Lemma 8  Suppose Assumptions 1 (except B), 2 and 6 hold and the parameters {�k} , 
{�k} and {𝜀̂k} in Algorithm 1 are chosen as in (5.14). Let (�̂(k), �̂(k), ̂�

(k)
) be the solu-

tion satisfying the conditions in (5.4) and ��(k) ∈ Range(��⊤) for k ≥ 0 . Then

where Q𝛼̄

k
= D

𝛼̄
(Bf0

+ 𝛾kD𝛼̄
+M) , D

𝛼̄
 is defined in (D.8), Bfi

 is defined in (3.4a), and 
(��⊤)† denotes the pseudoinverse of ��⊤.

Proof  Since �̂(k) defined in (5.3) and �feas in Assumption 2 are feasible to (5.1), both 
of them must be in S0 ⊂ S

𝛼̄
 for any k ≥ 0 . Then the proof of (D.9) and (D.10) will 

be the same as Lemma 3 except that D is replaced by D
𝛼̄
 . 	�  ◻

Similar to Lemma 4, the next lemma bounds the feasibility violation of iterate 
�̄(k+1).

Lemma 9  Suppose Assumptions 1 (except B) and 2 hold. Given 𝛾k > 𝜌0 and 𝛽k > 0 
for k ≥ 0 , let �k be defined in (4.5) with �(�) = �� − � , �̂(k) be defined in (5.3), and 
�̄(k+1) be generated as in Algorithm 1. Then for any k ≥ 0,

Proof  The proof is the same as Lemma  4 except that (D.2) with �
�k

= �k − �0 is 
used in place of (4.7) throughout the proof. 	�  ◻

With the lemmas introduced above, we next analyze the complexity of Algo-
rithm  1 in order to find an �-stationary point of (5.1) when Assumption  1B is 
replaced by Assumption 6.

(D.8)D
𝛼̄
= max

�,��∈S
𝛼̄

‖� − ��‖ < +∞,

(D.9)‖��(k)‖ ≤M𝛼̄

𝜆
(𝛾k) ∶=

Q𝛼̄

k

mini �fi(�feas)�

(D.10)

‖��(k)‖ ≤M𝛼̄

y
(𝛾k) ∶= Q𝛼̄

k
‖(��⊤)†�‖

�
1

D
𝛼̄

+
1

dist(�feas, 𝜕X)
+

maxi Bfi

mini �fi(�feas)�
�
,

(D.11)‖��̄(k+1) − �‖2 + ��[� (�̄(k+1))]+��2 ≤ 2𝜀̂2
k

(𝛾k−𝜌0)𝛽k
+

4‖��(k)‖2
𝛽
2
k

+
4‖��(k)‖2

𝛽
2
k

.
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Theorem 6  Suppose that Assumptions 1 (except B), 2 and 6 hold and the parameters 
{�k} , {�k} and {𝜀̂k} in Algorithm 1 are chosen as in (5.14). If Rk is defined as in (4.3), 
it holds for any K ≥ 1 that

where {(�k,�k,�k)}k≥1 is defined in (4.2), M𝛼̄

y
= M𝛼̄

y
(𝛾) , M𝛼̄

𝜆
= M𝛼̄

𝜆
(𝛾) defined in 

(D.9) and (D.10), and

Proof  Notice that �k is strongly convex when 𝛾k > 𝜌0 . Hence, (D.3) holds.
Since �k = � for all k, we have from Lemma 8 that ‖��(k)‖ ≤ M𝛼̄

𝜆
 and ‖��(k)‖ ≤ M𝛼̄

y
 

for all k. Hence, it follows from (D.11) and (5.14) that

for any k ≥ 0 . This inequality is the same as (5.17) except that D in (5.17) is replaced 
by 1∕(2�(� − �0)) . The rest of the proof is the same as Theorem 2 except that (5.17) 
is replaced by (D.14), (4.8) is replaced by (D.3), and constant C1 is repalced by C𝛼̄

1
 

throughout the proof. 	�  ◻

According to Theorem 6, the convergence rate of Algorithm 1 is still O( 1√
K
) in 

terms of the number of outer iterations K, which is the same as Theorem 2. Suppose 
(4.6) is guaranteed by applying the AdapAPG method in Algorithm 4 in Appendix 1 
to (4.1). We can analyze the total complexity of Algorithm 1 based on the complex-
ity of Algorithm 4 in Theorem 1.

Corollary 4  (complexity result) Under the assumptions of Theorem 6, let

(D.12)
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�
�RK

,�RK
,�RK

� ≤ 3
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+
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‖��̄(k+1) − �‖2 + ��[� (�̄(k+1))]+��2 ≤ 2𝜀̂2
k

(𝛾−𝜌0)𝛽k
+

4((M𝛼̄

y
)2+(M𝛼̄

𝜆
)2)

𝛽
2
k

≤ 4
�
1∕(2𝛽(𝛾 − 𝜌0)) + (M𝛼̄

y
)2 + (M𝛼̄

𝜆
)2
�

𝛽
2
k

,



1 3

Complexity of an inexact proximal‑point penalty method for…

where C𝛼̄
1
 is defined as in (D.13). Then

�̄(RK ) is an �-stationary point of (5.1). In addition, if �̄(k+1) satisfying (4.6) is found 
by the AdapAPG method, the total complexity for Algorithm 1 to produce �̄(RK ) is 
Õ
(
1∕𝜀

5

2

)
.

Proof 
With the given K, the right hand side of (D.12) is upper bounded by � . Hence, 

�̄(RK ) is an �-stationary point of (5.1). The total complexity is obtained by the same 
procedure in the proof of Corollary 1.

	�  ◻
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