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Abstract

In this paper, an inexact proximal-point penalty method is studied for constrained
optimization problems, where the objective function is non-convex, and the con-
straint functions can also be non-convex. This method approximately solves a
sequence of subproblems, each of which is formed by adding to the original objec-
tive function a proximal term and quadratic penalty terms associated to the con-
straint functions. Under a weak-convexity assumption, each subproblem is made
strongly convex and can be solved effectively to a required accuracy by an optimal
gradient-based method. The computational complexity of this approach is analyzed
separately for the cases of convex constraint and non-convex constraint. For both
cases, the complexity results are established in terms of the number of proximal gra-
dient steps needed to find an e-stationary point. When the constraint functions are
convex, we show a complexity result of O(e~>/?) to produce an e-stationary point
under the Slater’s condition. When the constraint functions are non-convex, the
complexity becomes O(¢~>) if a non-singularity condition holds on constraints and
otherwise O(¢™%) if a feasible initial solution is available.
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1 Introduction

We consider the nonconvex optimization problem with inequality and equality
constraints:

;ggéllfo(x) +gx), st fx)<0, cx) =0, (1.1

where g : R > RU {+o0}, f = [f;,....f,,] with £, : R? - R for eachi =0, ...,m,
and ¢ = [cy,...,c,] with ¢; : R? - R for each j=1,...,n. We assume that g is a
proper lower-semicontinuous convex function with a compact domain and all other
functions are continuously differentiable.

For a general non-convex function, finding its global minimizer is intracta-
ble, and it becomes even more difficult, when there are (non-convex) constraints.
Therefore, instead of finding a global minimizer of (1.1), we focus on finding a
stationary point. We call a point x* € dom(g) a stationary point of (1.1), if there
are A € R and y* € R”, which exist if some constraint qualification is assumed,
such that the Karush-Kuhn-Tucker (KKT) conditions hold:

0 € Vf(x*) + J;(x)TA +J,(x)Ty* +0  g(x*), (1.2a)
f(x)20,i=1,....m ¢(x)=0,j=1,...,n, (1.2b)
Afi(x)=0,i=1,...,m, (1.2¢)

where dg(x*) denotes the subdifferential of g at x*, Jp(x*) denotes the Jacobian
matrix of f at x*, and J (x*) denotes the Jacobian matrix of ¢ at x*. The vectors 1*
and y* are called Lagrangian multipliers. Due to the inevitable truncation error, it is
hard to compute a solution that satisfies the above conditions exactly. Numerically,
it is more reasonable to pursue an approximate stationary point defined as follow.
Here, || - || stands for the Euclidean norm.

Definition 1 (e-stationary point and its weak version) Given € > 0, a point X is an £
-stationary point of (1.1) if there are £ € dg(X), 4 € [R{’f, and y € R” such that Z,- =0
if fi(X) <Ofori=1,...,mand

[VA® + 4@+ 7@+ E| <. (130
VIe@I? + [IE®1L | < e, (1.3b)
D IAf®)] <e. (13¢)

i=1

If only (1.3a) and (1.3b) hold, X is called a weak e-stationary point of (1.1).
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Here, the three conditions in (1.3) are e-approximation of the three conditions in
(1.2) while the condition that A, = 0 if f;(X) < 0 essentially requires the complemen-
tary slackness condition in (1.2) holds exactly when f;(X) < 0. When there are only
equality conditions, Definition 1 is the same as that for the e-approximate first-order
solution considered in several existing papers, e.g., [60, 73]. When there are inequal-
ity constraints, the e-stationary solution in Definition 1 is stronger than the solutions
guaranteed by [5, 29], which only requires 4, = 0 if f;(X) < —e. A different defini-
tion of approximate stationary point is considered in [8, 47] where the objective and
constraint functions can be non-smooth. The differences between their definitions
and Definition 1 are discussed in Appendix 3.1.

Our goal is to establish the theoretical complexity of finding an e-stationary point
or a weak e-stationary point of (1.1). To achieve this goal, we consider an inexact
proximal-point penalty (iPPP) method (see Algorithm 1 below). Our method solves
a sequence of strongly-convex unconstrained subproblems that are constructed by
combining two classical techniques: the proximal-point method and the quadratic
penalty method; see (4.1) below. The adaptive accelerated proximal gradient (Ada-
pAPG) method by [45, 54] (see Algorithm 4) is applied to approximately solve
each subproblem. To show the complexity results, we consider two cases of (1.1)
separately and assume different regularity conditions for them. In the first case, the
problem has a weakly-convex objective (see Definition 5) but convex constraint
functions, and we assume Slater’s condition. In the second case, the objective and
constraint functions are all weakly convex, and we assume either a non-singularity
condition (see Assumption 4) or the feasibility of the initial solution (see Assump-
tion 5).

1.1 Contributions

We make contributions to understanding the theoretical complexity of finding an e
-stationary point of a non-convex constrained problem in the form of (1.1). Three
scenarios are studied and the computational complexity of the iPPP method, meas-
ured by the number of proximal gradient steps, is established in each scenario.

They are summarized as follows.

— For the case where f, is weakly convex, f; is convex fori=1,...,m, and ¢ is
affine for j = 1, ..., n, we show that, when Slater’s condition holds, the proposed
iPPP method can find an e-stationary point within O(¢~>/?) proximal gradient
steps.! This complexity is first achieved by this paper and remains by far the best
complexity for (1.1) under these assumptions.

— When {f;}" ) and {cj};.’=1 are all weakly convex, we show that, if a non-singularity
condition (see Assurhption 4) is satisfied by the constraint functions, the iPPP
method can find an e-stationary point within O(¢~>) proximal gradient steps. This

! Here and in the rest of paper, we suppress all logarithmic terms in O.
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complexity improves the one O(e~*) achieved in [60] that uses an inexact aug-
mented Lagrangian method under the same assumptions.”
— When {f;}" and {c; } , are all weakly convex, we show that, if an initial feasible
solution is available (but the aforementioned non-singularity condition is not
needed), the iPPP method can find a weak &-stationary point within O(g~*) proxi-
mal gradient steps. In Sect. 2, we will discuss how this result is compared with
other works that also consider non-convex constraints without the non-singular-
ity condition.

1.2 Organization of the paper

The rest of the paper is organized as follows. In Sect. 2, we discuss related works
on convex and non-convex constrained optimization. In Sect. 3, we introduce some
definitions, notations, and a subproblem to solve in the proposed algorithm. Details
of the proposed algorithm are described in Sect. 4. The complexity analysis is con-
ducted in Sect. 5 for the convex constrained case and in Sect. 6 for the non-convex
constrained case. Numerical results are presented in Sects. 7 and 8 concludes the

paper.

2 Related works

There has been growing interest in first-order algorithms for non-convex minimi-
zation problems with no constraints or simple constraints * in both stochastic and
deterministic settings. See, e.g., [1, 16-18, 21, 25, 26, 39, 58, 82]. However, for
(1.1) with constraints that are not simple, these methods are not applicable. There
is a long history of studies on continuous optimization with constraints. The recent
works on first-order methods for convex optimization with convex constraints
include [4, 44, 62, 71, 74-78] for deterministic constraints and [3, 40, 79] for sto-
chastic constraints. Different from these works, this paper studies the problems with
a non-convex objective function and with potentially non-convex constraints.

When all constraint functions in (1.1) are affine, a primal-dual Frank-Wolfe
method is proposed in [70], and it finds an e-stationary point with a complexity of
O(¢73) in general and O(e2) when there exists a strictly feasible solution. We adopt
a notion of e-stationary point different from that in [70], and our constraint functions
can be nonlinear and non-convex.

As a classical approach for solving problems in the form of (1.1), a penalty
method finds an approximate solution by solving a sequence of unconstrained

2 A complexity of O(¢7?) is claimed in Corollary 4.2 in [60]. However there is an error in its proof The

iL

authors claimed the complexity of solving their subproblem is O(

[60] for the definitions of 4, p and €;.) After correcting this error, followmg the same proof kthey used

gives a total complexity of O(e™*) .
3 Here, simple constraints mean the constraints allow a closed-form projection onto the feasible set.
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subproblems, where the violation of constraints is penalized by the positively
weighted penalty terms in the objective function of the subproblems. Unconstrained
optimization techniques are then applied to the subproblems along with an updat-
ing scheme for the weighting parameters. The computational complexity of penalty
methods for convex problems has been well established [38, 51, 61]. For non-convex
problems, most existing studies focus on the asymptotic convergence to a stationary
point. See, e.g., [9, 10, 19, 20, 23, 28, 57]. On the contrary, we analyze the finite
complexity of penalty methods for finding an e-stationary point.

An exact penalty method has been studied in [11] as an application of a trust
region method for a composite non-smooth problem. When applied to (1.1) with
g = 0, the method in [11] either finds an e-infeasible and e-critical point of (1.1) (see
[11] for the definition) or finds a solution that is infeasible to (1.1) but e-critical to
the infeasibility measure ZJ’;I |cj(x)| + Z;":l max {f;(x),0}. It needs to exactly solve
O(¢7?) linearized trust-region subproblems if the penalty parameter is bounded
above and solve O(¢™>) subproblems otherwise. In a subsequent study [12] and its
corrigendum [13], a target-following algorithm is developed. It can find an approxi-
mate Fritz-John (instead of KKT) solution with similar guarantee as [11] by solving
O(¢7%) subproblems regardless of the boundedness of penalty parameter. This
method has been extended to the case when f is the expectation of a stochastic
function in [68]. We want to emphasize that the complexity result of [11, 12] is
given in terms of the number of exactly-solved trust-region subproblems, and thus it
is not exactly computational (time) complexity, especially when the subproblem is
not trivially solvable. On the contrary, we directly analyze the total computational
(time) complexity of the proposed method. When the constraints are non-convex,
our method has complexity O(¢~3) and O(¢~*), respectively, when a non-singularity
condition (Assumption 4) is assumed and when an feasible initial solution (Assump-
tion 5) is assumed. Neither assumption is needed in [11]. Suppose the time complex-
ity of solving a trust-region subproblem in [11] is the same as a proximal gradient
step in our method. The complexity of [11] is lower than ours if their penalty param-
eters are bounded and higher than ours, otherwise. Moreover, the method by [11]
did not always guarantee an e-feasible solution while our method does, which is
mainly because of Assumptions 4 or 5 we make.

On solving a problem with a non-convex objective and linear constraint, [36]
has developed a quadratic-penalty accelerated inexact proximal point method. That
method can generate an e-stationary point in the sense of (1.3) with a complexity of
O(¢73). Our method is similar to that in [36] by utilizing the techniques from both
the proximal point method and the quadratic penalty method. Although we make
a little stronger assumption than [36] by requiring the boundedness of dom(g), our
method and analysis apply to the problems with non-convex objectives and convex/
non-convex nonlinear constraint functions. When the constraints are convex (but
possibly nonlinear), our method can find an e-stationary point with a complexity of
O(£75/?) that is a nearly O(e~'/?) improvement over the complexity in [36].

Barrier methods are another traditional class of algorithms for constrained opti-
mization. Similar to penalty methods, they also solve a sequence of unconstrained
subproblems with barrier functions added to the objective function. The barrier
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functions will increase to infinity as the iterates approach the boundary of the fea-
sible set, and thus enforce the iterates to stay in the interior of the feasible set. The
convergence rate of barrier methods has been studied by [53, 63-65] for convex
problem. For a general non-convex problems, most studies only focus on asymp-
totic convergence analysis. Recent works [30, 56] proposed algorithms based on
logarithmic barrier function for non-convex problems with only non-negative and
linear constraints. They established the complexity of their algorithms for finding
first-order and second-order e-KKT point (whose definitions are slightly different in
[30, 56] and different from our definition). However, they do not consider nonlinear
constraints as we do.

The augmented Lagrangian method (ALM) is another effective approach for con-
strained optimization. At each iteration, ALM updates the primal variable by mini-
mizing the augmented Lagrangian function and then performs a dual gradient ascent
step to update the dual variable. The iteration complexity of ALM has been estab-
lished for convex problems [38, 51, 74—76]. For non-convex problems, asymptotic
convergence or local convergence rate of ALM has been studied by [6, 7, 15, 22, 24,
66, 69]. The computational complexity of ALM and its variants (e.g. ADMM) for
finding an e-stationary point for linearly constrained non-convex problems has been
studied by [27, 31, 32, 34, 48-50, 80, 81]. For example, the proximal inexact ALM
method by [50] achieves complexity of O(¢~>/?) and a related but different ALM
method by [80, 81] achieves complexity of O(e~2), the latter of which is by far the
best result for nonconvex problems with linear constraints.

ALM and its proximal variant are analyzed by [5, 29, 37, 41, 42, 60, 73] for
non-convex problems with nonlinear constraints. In each main iteration of those
methods, an approximate stationary point of the (proximal) augmented Lagrangian
function is computed by first- or second-order methods. Utilizing the Hessian infor-
mation, the methods in [60, 73] can find a second-order e-stationary point while
our method cannot. Without Hessian information, the methods by [60, 73] can still
find a first-order e-stationary point. In [60], under a non-singularity assumption that
the smallest singular value of the Jacobian matrix of the constraint functions is uni-
formly bounded away from zero, it is showed that ALM finds an e-stationary point
with complexity of O(e™*).

The complexity of [73] is also O(e™*) if we set the parameter # in their algorithm
to the optimal value, i.e., zero; see Theorem 2 in [73].

On the contrary, our method has a complexity of O(e~>) for problems with non-
convex constraints under the assumptions similar to [60, 73] and only has a complex-
ity of O(e=2%) for convex constrained problems. Moreover, we consider both ine-
qualities and equality constraints while [60, 73] only consider equality constraints.

In addition, even if the non-singularity assumption does not hold, our method can
still find an e-stationary point as long as an initial feasible solution is available. This
result benefits the applications where the constraints are non-convex but have some
special structure that allows finding a feasible solution easily (e.g. [67] and [35]). After
the release of the first draft [43] of this paper, [42] gave a hybrid of the quadratic pen-
alty method and ALM, which also achieves an O(¢~>7) complexity for non-convex
problems with convex constraints under the same assumptions as we make in Assump-
tions 1 and 2. However, [42] shows that the complexity of the pure-ALM-based
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first-order method is O(e~>). Thus the usage of the quadratic penalty method in the
hybrid method of [42] is the key to obtain the O(¢~>>) complexity. The O(¢~>) com-
plexity result has also been established in [37] for a proximal ALM on solving non-
convex problems with nonlinear convex constraints. [41] adopts a proximal-point based
subroutine and improves to O(¢~>) the complexity result of the first-order ALM in [60]
for equality-constrained nonconvex problems.

In [5], the authors assume neither the non-singularity assumption nor a feasible ini-
tial solution while are still able to achieve O(¢~%) complexity for ALM. However, in
their setting, ALM does not necessarily guarantee an e-stationary point of (1.1) but may
only return a point that is infeasible to (1.1) and e-stationary to the infeasibility measure
(similar to the guarantee by [11]). The totaly number of iterations needed by ALM is
also analyzed by [29] when the constraints are linear or quadratic. However, they solve
the ALM subproblems by a second-order or high-order method so their complexity per
iteration can be much higher than ours when the problem’s dimension is high. Finally,
we want to emphasize again that the e-stationary point we consider in Definition 1 is
stronger than the solutions guaranteed by [5, 29] which do not satisfy (1.3c) and only
satisfy 4; = 0 when f;(X) < —¢.

In addition to [60, 73], the algorithms by [33, 46, 55] also utilize Hessian informa-
tion to find a second-order e-stationary point for linearly constrained non-convex opti-
mization. Different from these works, we focus on finding an approximate first-order
stationary point for nonlinear constrained non-convex optimization using only gradient
information.

Two recent works [8, 47] proposed similar algorithms for non-convex constrained
optimization based on the proximal-point technique. In their approaches, a strongly
convex constrained subproblem is constructed in each main iteration by adding proxi-
mal terms to the objective and constraints. When applied to non-convex smooth con-
strained optimization, both methods find an e-stationary point in complexity of O(e~3).
The definitions of an e-stationary point in [8, 47] are different from ours, and the dif-
ferences are discussed in Appendix 3.1. Their analysis requires a (nearly) feasible ini-
tial solution and uniform boundedness of the dual solutions of all subproblems. To sat-
isfy the latter requirement, [47] assumes that a uniform Slater’s condition holds and
[8] assumes that the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at
the limiting points of the generated iterates. On the contrary, when the non-singularity
assumption (Assumption 4) holds, our method also has complexity O(~>) but does
not require a (nearly) feasible initial solution. The uniform Slater’s condition in [47]
and MFCQ in [8] do not imply the non-singularity assumption, and our non-singularity
assumption does not imply their assumptions either. See Appendix 3.2 for the related
examples. When an initial feasible solution is indeed available, our method can be ana-
lyzed in an alternative way without the non-singularity assumption or the constraint
qualification conditions required by [8, 47], although the complexity becomes O(g ™).
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3 Preliminary

In this section, we provide some basic definitions and discuss about a subproblem
solved in each main iteration of our algorithm.

3.1 Definitions and Assumptions

We denote || - || as the £,-norm and || - ||, as the £-norm. Let
X=dom(g) :={x € R? : g(x) < +o0} 3.1

be the domain of a function g. The interior and boundary of X are respectively
denoted by int(X) and dX. We use N(x) for the normal cone of X at x. Given
a > 0, we use B, to represent the ball {x € R : ||x|| < a}. We denote 0 as an all-
zero vector whose dimension is clear from the context, and [a], = max{0,a}
is the vector of component-wise maximum between 0 and a. For a convex set S,
we use dist(x,S) = minygg ||y — x]| for the distance of x to S. For any x € R,
Ji(x) = [Vfi(x), ..., V,(x)]T € R™4 and J.(x) = [Vc,(X),...,Vc,(x)]T € R™d
denote the Jacobian matrices of f and c at x, respectively.
We adopt the following definitions.

Definition 2 (subdifferential) Given a proper lower-semicontinuous convex function
h 1 RY > RU {400}, its subdifferential at any x in the domain is defined as

oh(x) = {¢ € R? | h(x') > h(x) + {T(x' — x),Vx' € R},

and each § € dh(x) is called a subgradient of % at x.

Definition 3 (L-smoothness) A function 4 : R? - R is L-smooth if it is differenti-
able on R? and satisfies

h(x) < h(x') + (Vh(x'),x — X'} + §||x' —x||2, Vx,x' € RY, (3.2)

Definition 4 (u-strong convexity) A function# : R? — R U {+o0} is u-strongly con-
vex for uy > 0if h — %ll - ||?is convex. When u = 0, p-strong convexity is reduced to
convexity.

Definition 5 (p-weak convexity) A function # : R? - R U {+o0} is p-weakly con-
vex for p > 0if h + gll - ||? is convex. When p = 0, p-weak convexity is reduced to

convexity.

When £ is smooth and p-weakly convex, it holds that for any x and x/,

h(x) > h(x") + (VA(X'),x = x") — gllx’ —x||% (3.3)
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Definition 6 (proximal mapping) Given a proper lower-semicontinuous convex
function /& : R? - R U {400}, its proximal mapping at X is defined as

Prox,(x) = arg min,cga {h(z) + %Hz —x||? }
The following assumption on problem (1.1) is made throughout the paper.
Assumption 1 The following statements hold:

A. fiis Lﬁ-smooth with Lf,~ >0fori=0,1,...,m; ¢ is Lcj-smooth with Lc,. > 0 for
j=1,...,m

B. X'is compact, and its diameter is denoted by D = max, vy [IX — X[

C. There exist constants G and M such that |g(x)] < G, dg(x) # @, and
0g(x) C Ny(x) + By, ¥x € X.

D. prox,(x) can be computed easily, e.g., in a closed form.

With Assumption 1A and 1B, there must exist constants {Bf :’i 0 and {BC/_ } ;’:1 such
that

max { [, IV} < B, Vx € X, Vi=0,1,...,m, (3.42)

max{|cj(x)|, ||ch(x)||} < BCj, vxe X, Vj=1,...,n. (3.4b)

Assumption 1C holds, for example, if g(x) = r(x) + 1,(x), where 1, is the indicator
function on X, and r is a real-valued function with the norm of every subgradient
bounded by M. In addition to Assumption 1, we will make more assumptions on the
(weak) convexity of the constraint functions. Details will be given in Sects. 5 and 6,
where we conduct the complexity analysis.

3.2 Strongly convex composite subproblem

In each main iteration of the algorithm we propose for (1.1), a strongly convex compos-
ite optimization subproblem of the form

min {F(x) 1= $p(x) + r(x)} 3.5)

will be approximately solved, where ¢ : RY — R is ug-strongly convex and L,
-smooth, and r : RY - R U {400} is a proper lower-semicontinuous convex func-
tion. Function r will be g in (1.1) but function ¢ will vary with the main iteration.
For each subproblem, we need to find a solution X satisfying

dist( = VR, 0r®) 1= min V6 + &'l <&, (3.6)

where the value of the left-hand side measures the suboptimality of X to (3.5) and
£ is the targeted suboptimality that decreases with the main iteration. To find X, we
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can solve (3.5) by an accelerated proximal gradient (APG) method which is a first-
order method and whose main step per iteration is a proximal gradient step, namely,
computing

T, (W) := prox,_.,(w — L™ V(w)) (3.7

for some w € R¢ and L > 0. In this paper, the complexity of the APG method and
our method is measured by the total number of proximal gradient steps they perform.

The standard APG method (e.g., [52]) requires knowing the exact values of y,
and L which may be unknown. To address this issue, adaptive accelerated proximal
gradient (AdapAPG) methods [45, 54] have been developed to dynamically esti-
mate y, and Ly during the algorithm at the cost of a little higher complexity than
APG. We will apply the AdapAPG method in [45] to our subproblems and the total
complexity of our algorithm will be derived using the complexity of AdapAPG for
solving each subproblem with a specific level of suboptimality (i.e., £). That said,
describing the AdapAPG method in details requires introducing additional notations
and technical results, which are not necessary for readers to understand the proposed
algorithm and main theories in this paper. Hence, to avoid interrupting the flow of
the presentation, the details of the AdapAPG method are postponed to Appendix 1,
and here we only present its complexity in terms of uy, L, and € in the following
theorem, which is sufficient to derive the complexity of our algorithm. The exact
complexity of AdapAPG in terms of all related parameters is presented in Theo-
rem 5 in Appendix 1.

Theorem 1 (Complexity of AdapAPG) When applied to (3.5), the AdapAPG method
by [45] terminates in O I’:—"’log <i> proximal gradient steps with an ouput X
b 13

satisfying (3.6).

4 Inexact proximal-point penalty methods

In this section, we describe the inexact proximal-point penalty (iPPP) method for
(1.1) in details. This method incorporates the ideas of the proximal point method
and the quadratic penalty method by iteratively updating the estimated solution %)
as follows

K4 2 0 1= argmin 00 + 800 + L llx = x91P + 2 (Jecoll” + [t ),

xeR4
@.1)

where f, > 0 is the penalty parameter, and y, > O is the proximal parameter. We
formally describe our method in Algorithm 1, where ¢, in (4.5) is the smooth part
of the objective function in (4.1). In iteration k, we only need to guarantee (4.6)
through solving (4.1). When all f;’s and ¢;’s are weakly convex, a sufficiently large y;
can be chosen such that the minimization problem in (4.1) becomes strongly convex.
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Then the AdapAPG method can be applied to (4.1) to obtain X**D satisfying (4.6);
see Theorem 1. In addition to £&*D Algorithm 1 also computes the Lagrangian
multipliers §¥%+D and 1%*", as well as the following three quantities

. - - = (k+1) - - -
St = dist (VAHEED) + Jp&EHTIE 4 g @ED)ThD | gext+D))

(4.2a)
_ — 2
Foot = \/leGED)2 + [iEGED), | (4.2b)
Cipy = ) IS, (4.2¢)
i=1

which correspond to the three inequalities in (1.3) and will be used to select the
output solution from {i(’)};‘:ll. In particular, depending on if the goal is to find an €
-stationary point or its weak version, Algorithm 1 will return X®«+1) with

R, , =argminmax {S, F, C
e 1s%sk+1 { b l} “4.3)

R, , =argminmax {S,, F,}.
k1 15%5k+ . { ! 1} (4.4)

Algorithm 1 Inexact Proximal-Point Penalty (iPPP) Method for (1.1)

1: Input: Initial solution x(®), proximal parameters {7x}r>0, penalty parameters {8y }r>0, and the
targeted optimality measure for subproblems {é}r>0-

2: for k=0,1,..., do

3:  Let

9100) = Jo) + e = xO + 22 (eGP + £ G0 1) (5)

4:  Fine x*+1) such that

min |V (xETD) 4 &' < & (4.6)
greag(x(k+1))

5 Set y*HD « Bre(xFHD) and ARHD g [f(xFHD)]

6:  Compute Spt1, Frp1, and Cpyq according to (4.2)

7. if a stopping condition is satisfied then

8: Return x(%+1) and stop, where Ry is defined in (4.3) or (4.4)
9: end if

10: end for

Remark 1 Computing S, in (4.2a) requires projection onto —dg(X**1), which is
also needed when evaluating the stopping condition w(x/*") in Algorithm 4. We
have assumed g to be simple enough to allow a closed-form solution for the proxi-
mal gradient step. For such a g, this projection is usually no harder than a proximal
gradient step, e.g., when g(x) = 1,(x) where & is a Euclidean ball or a box.
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In the rest of the paper, we analyze the theoretical properties of Algorithm 1. For
technical reasons, we consider two different cases. In the first case, we assume that the
objective function is weakly convex while the constraint functions are convex. In the
second case, we assume that the objective function and the constraint functions are all
weakly convex. The parameters {y,} and {f,} will be chosen differently for the two
cases. We will show that the output of Algorithm 1 with appropriate settings is an e-sta-
tionary point or a weak e-stationary point of (1.1) in each case. We will also analyze the
computational complexity of Algorithm 1, measured by the total number of proximal
gradient steps it performs.

Lemma 1 Suppose ¢, in (4.5) is convex. Let {X¥} be generated from Algorithm 1.
Then for any x € X, it holds that

BUSE) 4 &) - (0 - g%) S D, k20 @7
and that
K-1 v ﬂ
2 — <O 4 HL (e )2 + IGO0, 1)
k=0

<28, +26+ 2 <||c(x<°>>||2 + O] )

K-1 K-1
+ % DB - ﬁk_l)<||c<>'<<">>||2 + ||[f<f<<k>>1+||2> + ( ék>D, VK > 1.
k=1

k=0

4.8)
Proof According to Line 4 of Algorithm 1, there exists £ € dg(X**1) such that
|V, (x*+D) + 5( < £,. Since ¢, is convex, so is ¢, + g. Hence, we obtain (4.7)
by noting

(k+

¢ XED) + g &) — ¢ (x) — g(x)

| _ N R
(V(j) &+ +§( + )) &) _x) < £ KD — x| < £,D,

which gives (4.7). Now let x = X® in (4.7) and sum it over k = O through K — 1 to
obtain (4.8) by Assumption 1 and the equation (3.4a). O

By the definitions of S, |, F;,;, and C,, in (4.2), we have for any K > 1 that if
{R,} is chosen as (4.3) in Algorithm 1, then

max {SRK’FRK’ CRK} 5% s o mMax {Sk+1ka+1’ Ck+1}

4.9
< Sk+l + Z o P+ ¢ Zk o Cit1-
and if {R, } is chosen as (4.4) in Algorithm 1, then
K-1 1
max {SR ,FRK} o max {S;, . F, } < e Sk+1 + — Z "Fy, .
(4.10)
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Lemma2 Let {S,,,} be defined in (4.2a). Then for any K > 1,

1 $K-1 K=1 A D) ok
K ~k=0 Sie1 < k=0 &kt % Zk_o Vk”X( D —x®. 4.11)

Proof First, note

V¢k(i(k+l)) — Vfo()—((k+l)) + 7/k()—‘(k+l) _ )—((k)) + ﬁkJC()—((k+l))Tc()—((k+l))

+ ﬁka()_((k+1))T[f()_((k+1))]+, (4.12)

Second, according to Llne 4 of Algorithm 1, there exists &' € 6g£x<k+l)) such
that || Ve, (X*+D) + ) < £,, which, by the definition of y**! and A Vin Algo-
rithm 1, implies

k+1 _ _ _ (k1
||Vf (X(k+1)) + §( +1) +Jc(x(k+l))Ty(k+l) +Jf(X(k+1))T/1( + )H
< &+ 7 IRED — g0

Hence, by the definition of S, we have S;; < & + 7, [|X**! — x®||, which, after
taking average over k =0, ..., K — 1, implies the desired result. O

5 Complexity with convex constraints

Throughout this section, we assume that f; is convex for eachi=1,...,mand ¢; is
affine for each j =1, ...,n, namely, we consider the following problem with only
convex constraints:

gelg}fo(X) +g(x), st. Ax=b, f(x)<0, (5.1

where A € R"™ and b € R" are given. In addition to Assumption 1, we make the
following assumption.

Assumption 2 The following statements hold:
A. f,is pj-weakly convex for p, > 0, f;isconvex fori =1,...,mandec(x) =Ax—b
B. There exists X, € int(X) satisfying Ax.,, = b and f(x;,,,) < 0.

Here, we only require the existence of X, but not its availability to our algo-
rithm. In addition, the assumption on int(X) # @ does not lose generality. If X
does not have a full dimension, it can be written as X' n {x € R¢ : Cx = d} for
some full-dimensional convex compact set X' C R¢. Then, we can put Cx = d as

a part of the affine constraints and replace X’ with X’
Under Assumptions 1 and 2, the function ¢, in (4.5) is L¢k-smooth with
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Ly =L +v,+ B (IATAI + X7, B (B, + L)) (5.2)

and is (y; — py)-strongly convex if y, > p,. To facilitate our analysis in this section,
we define

*® = arg min {fo(x) +g(x) + Qllx —x®)2, st. Ax=b, fx)< 0}.
xeR4 2
5.3)

5.1 Technical Lemmas

From Assumption 2B, we have Slater’s condition, and thus X® must be a KKT
pgint of (5.3), i.e., there are &~ € 0g(X®), Lagrangian multipliers y® € R", and
A~ € R™ associated to X® such that (c.f. [59, Theorem 28.2]):

~(k A~k
VAR + 87 47, &0 —x0) + AT 4 &1 =0, (5.4a)
~(k
i“>0, ARP=b, &Y <0, (5.4b)
AVLED)=0,i=1,...,m. (5.4¢)

Note that the direct sum of Range(AAT) and Null(AAT) forms the whole
space R4, and also ATy =0 if and only if AATy = 0. Hence, we can c/b(%ose
y® € Range(AAT). With this choice, we next prove the boundedness of (', 1 ).

o Ak
Lemma 3 Suppose Assumptions 1 and 2 hold. Let (X®,§®, A )) be the solution sat-
isfying the conditions in (5.4) and y© € Range(AAT) for k > 0. Then

NG 0
AN <M, (rp) = s

T E— 5.5
mlni lfi(xfeas)| ( )
1591 <M, 0 = olAATY AN (L + — Ly T
YOS =L D " dist(Xpey, 00)  min, [f:(kee)] )
(5.6)

where Q, = D(Bfo + 7D + M), and (AA")' denotes the pseudoinverse of AAT.

Proof Let Xreas be the point in Assumption 2. Then from the convexity of {f;}" and
the fact A~ > 0, it follows that

S A  Kpeas) 2 Ty APTERD) + (Xpogs — KO TVAED)).

The above inequality together with (5.4a) and (5.4c¢) yields
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m

D A ) 2 = Kregs = RO VAGD) + 8+ ATFO 4+ 7, &Y = x|
i=1

— (Keas = X)T [Vf X9y + g )L y &O — X(k))]

2z - (Xfeas - ’)Z(k))TE( : - DBfg - Vsz;

5.7
where the equality follows from A(x;,,, — X*)) = b — b = 0 and the last inequality is
by Assumption 1B and (3.4a). .

By Assumption 1C, we have & =&, + &, with &, € N (X®) and ||E,|| < M,
and thus

PPN A
Kros = RO TEY < Xy — KO)TE, + DM. (5.8)

Next we bound the term (X;,, — X0)TE,. If ¥ € int(), then £, =0. Hence, we
only need to consider the case when X® € dX and 51 #0. In this case,
H={xeR!|(x- KOYTE = 0} is a supporting hyperplane of X at X*. Hence,
dist(Xpeys, H) > dist(Xge,s, dX) > 0. By the distance formula of a point to a hyper-

<LK
IO X100 T8 | , and thus
12,1

B~ X)) &= IRY — X1e0) &1 = dist(peqss FONIE ] 2 dist (R, 0V 1E 1
where the first equality follows from &, € Ny(®®) so that ®% — x;,,)T€, > 0.

Applying this inequality to (5.8) and using (5.7), and also noting f;(X.,,) < 0, we
have

plane, we have dist(X¢.,,, ) =

m

B XU Kpege)| + dist (g, O, | < DB, + 1, D* + DM = Q.

i=1

The above inequality implies

m "(k)
Ak A D A fix )I
120 < 1A, < feas &% (5.9)
Il'llIl V(Xteas)l mll’l lf(xfeaq)l
and
k) ~ (0]
IE7 1 < N+ 18,0 < C M. (5.10)

T di t( Xfeas» "Y)

Furthermore, since y® € Range(AAT), we have from (5.4a) that
A k) A~k
§9 = ~AATYA(VAHRY) + 7 &0 = x9) + /&L +E7).

Therefore,
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)

4 Oy
< IAADA|( B D+M+ ——— VEERW
< IAAT) ||<f0+yk M4 g+ 12 ma VAR

(k)

1991 < IAATY AII<||Vfo ) 4 7 &9 = x|+ 187 + |G

S MV(J/k)v

where the second inequality is from (5.10), Assumption 1B, and (3.4a), and the third
inequality is from (5.9), Assumption 1B, and the definition of My(yk). O

The next lemma bounds the feasibility violation of iterate X+,

Lemma 4 Suppose Assumptions 1 and 2 hold. Given y, > p, and p, > 0 for k > 0,
let ¢, be defined in (4.5) with ¢(x) = Ax — b, X® be defined in (5.3), and X*+V be
generated as in Algorithm 1. Then for any k > 0,

- <D | ahe At
JASED b 4 FEE )L | < 22 4 M L PR (s

Proof Notice that when y, > p,, ¢, in (4.5) is convex. Hence, letting x = X*) in
(4.7), we have from the feasibility of X for (5.3) that

- - Yk < - b
JEE D)+ g0+ ZRED KO + 2 (AR = bl + |, )

<HED) + &)+ ZRY =X +&,D.
(5.12)

Recall that y® and /1 are the Lagrangian multipliers satisfying (5.4). Hence, from
the convexity of the objective and constraint functions of (5.3), we have

J&D) + g QD) + LR - KV < fu&HD) 4+ g&H) + TR - V|2

+ T TAZ*D —p) + Zm A(k)f( (e Dy

The above inequality, together with (5.12), implies
&0 2 L (IASED — I + [IFGH D)L, ) — G9)TAXS —b)
(5.13)

_ Zm "(k)f(x(k+1))
By the Young’s inequality, it holds
(y(k))T(AX(k+l) b) > — ||}’;>||2 ﬂ_k ||A)_((k+1) _ b||2,
k

_ zm ’\(k)f(x(k+l)) > Zm A(k)[f(x(kﬂ))]

>-y - i —Zﬁk[f( (k+Dyp2

@ Springer



Complexity of an inexact proximal-point penalty method for...

Plugging the above two inequalities into (5.13) gives the desired result.

5.2 The complexity of the iPPP method

In this subsection, we specify the parameters in Algorithm 1 and estimate its
complexity in order to find an e-stationary point of (5.1).

Theorem 2 Suppose that Assumptions 1 and 2 hold and the parameters {y;}, { b}
and { €, } in Algorithm 1 are chosen as

1
Bk + 1)

where > 0 is a constant. If R, is defined as (4.3), it holds for any K > 1that

2C 4\/D+M2+M2 B(D+M2+M?)
max{sRK,FRK,cRK}gﬁ_K+,/K1 PN (5.15)

where {(Sy, ¥y, C) i1 is defined in (4.2), M, = M, (y), M, = M,(y) defined in (5.5),
and

w=r>pp» B=BFVk+1l, —and ¢ = (5.14)

C, =2B, +2G + gllAi((” ~ bl + §||[f(i(<°))]+||2 + %<ZD + M2+ Mﬁ).

(5.16)
Proof Notice that ¢, is convex when y, > p,. Hence, (4. 8) golds
Since y, = y for all k, we have from Lemma 3 that ||/1 | <M, and [[FP| < M,
for all k. Hence, it follows from (5.11) and (5.14) that

4ng MM ADMIAMY)

IAR®HD — b]|2 + | FEED)], |1° < A

(5.17)

for any k > 0. Since f§, = v/ k + 1, we have from the above inequality that

2) (\/ﬁ \/—)<

(e~ B (1AZ® = BIP + GO | 4D+ 4V +4M2).
(5.18)
| K-1 3
Noting vk + 1 \/_—\/_ﬂ/_ —andZ k2 <1+/1 'Yide <3, we

sum up (5.18) to have

K-1

Z(ﬂk B 1)<||Ax(") blI> + [ FEO)1, ||) (D+M§+M§). (5.19)

<0
p

In addition, by the setting of £, in (5.14), it holds
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Sa =t yar T < (14 i) <2 (5.20)

Now plugging (5.19) and (5.20) into (4.8) with ¢(x) = AXx — b,
we obtain

K-1 7 1= _
Yico SIRED 02 < C), (5.21)

where we have used the definition of C, in (5.16).
From (5.21), the Cauchy—Schwarz inequality, and the setting y, = y, Vk, it follows

1 vK-1 _
= " 7/k”X(kH) _X(k)” <= \/Zk o Vk\/zk o 7k||x(k+1) _X(k)”z (5.22)

2yC,
NV (5.23)

Applying (5.20) and (5.23) to (4.11) gives

1 K-1 3 2yC
% Zico Sen S g+ T (5.24)

Futhermore, by the definition of F,_, in (4.2b), we have from (5.17) that

2 2
K—1 2\/D+M§+Mi < 4\/D+M'§+MA

1
T FkJrl < < 2o m < K (5.25)
where we have used the following arguments:
K-11 _ 1 yk-1_1 e 2
¥ Zico 3 = 78 Zico 7 Spho XSS (5.26)
Finally, by Zl(.kﬂ) = B [f.X**D)], and also using (5.17), we have
m |7 - _ HD+M2+M3)
T TR ERED)] = g EEED | < ——= (5.27)

Br ’

Hence, from the definition of C, | in (4.2c), we average the above inequality to have

K—1 4D+M2+M?2) 8(D+M?+M?)
< _ - < y ,
K “k=0 B pVEK

where we have used (5.26) again.
Now the result in (5.15) follows by plugging (5.24), (5.25), and (5.28) into (4.9).
O

o Gl < (5.28)

Remark 2 In the parameter setting (5.14), we require the knowledge of the weak-
convexity constant p,. In case it is unknown but the smoothness constant L; is
known, we can set y > Lfn' Without knowledge of p, or Lfﬂ , we cannot guarantee
strong convexity of the function ¢, given in (4.5). To the best of our knowledge,
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smoothness constants are assumed in all existing works on the complexity analysis
of first-order methods for non-convex problems, e.g., [11, 26, 36].

According to Theorem 2, the convergence rate of Algorithm 1 is O(#), in

terms of the number of outer iterations. Suppose (4.6) is guaranteed through the
AdapAPG method in Algorithm 4 in Appendix 1. By the complexity result of the
AdapAPG method in Theorem 1, we below give the overall computational com-
plexity of Algorithm 1 for finding an e-stationary point of (5.1).

Corollary 1 (complexity result) Under the assumptions of Theorem 2, let

4 4‘,D+My2+Mi 8(D+M)2,+M%)‘|2

6
K =| max E,g—z 2yC, + 5 + 5

1+92 1+7*\ 1
=o(r(s+155) ) %)

where C, is defined as in (5.16), p and y are the algorithmic parameters in (5.14).
Then xR0 is an e-stationary point of (5.1). In addition, if X**V satisfying (4.6) is
found by the AdapAPG method, the total complexity for Algorithm 1 to produce XFx)

is
~ B s - p 1+y2> 1+y4>§ 1
(0] K+ )| =0 S
( Y — Po > < Y — Po <}’<ﬂ+ J/ * p? g%

Proof With the given K, the right hand side of (5.15) is upper bounded by e.
Hence, X% is an e-stationary point of (5.1). The order of magnitude of K in
terms of €, § and y is then obtained by the fact that C; = O(p + (1 + y?)/B) and
D+ M} +M; = O(1 +y*) according to the definitions of C;, M, and M.

Let 7}, be the number of proximal gradient steps performed by the AdapAPG
method (Algorithm 4) to find X**V satisfying (4.6). Then according to Theorem 1,
the settings of y, and f, in (5.14), and the formula of Ly, in (5.2), we have

—of () L =~< i); RV
Tk_o( n—pu> 0 r—po 0< V= )’

fork =0,1,...,K — 1. Therefore, the total complexity is

(k+1)4
Ttotal = Tk =0 0< \/— ) (

i),

J’I’o

which completes the proof after plugging in the order of K.
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6 Complexity of the iPPP method with non-convex constraints

In this section, we consider the problem in (1.1) with a non-convex objective and non-
convex constraints. Instead of Assumption 2, we make the following assumption.

Assumption 3 f; is p-weakly convex for p; >0 fori=0,1,...,m. ¢ is aj-weakly
convex foraj >0forj=1,...,n

The non-convexity of the constraints further increases the difficulty of finding a
stationary point of (1.1). Fortunately, with a sufficiently large y,, the proximal-point
penalty subproblem (4.1) is strongly convex under Assumption 3 and thus can be effec-
tively solved by Algorithm 4. By this observation, we show that Algorithm 1 can still
guarantee an approximate stationary solution of (1.1) within a polynomial time.

6.1 Technical Lemmas

To show the complexity result, we first establish a few technical lemmas. A proof of the
following lemma has been given in [21, Lemma 2]. We present it here for the readers’
convenience.

Lemma 5 Suppose Assumptions 1 and 3 hold. For any f > 0, the function g [f(x)]2
is (ﬁplel) weakly convex fori=1,...,m, and - 6 [c x)Pis (ﬂcr B, ) weakly convexfor

j=1,...,n
Proof Since f;(x) is p,-weakly convex, we have
’ ’ / Piy o1 2 /
[0 = fix) 2 (V) x =x') = Z I = x|I”, VX, X' € X,

Using this inequality, the fact |[f(x)| < Bﬁ, and also the convexity of [t]f_ about 7, we
have

PH@R 2L + AULE)L, () - /X))
>L[1R + AL (V). x —X') =

ﬂP'B/i
D% 1% — x|,

which implies the (ﬁple) Weak convexity of £ 4 [f(x) . Similarly, we can show the
(Bo;B, ) weak convexity of £ [c (x)]? for each j and thus complete the proof. O

With a little abuse of notation, under Assumption 3, ¢, defined in (4.5) is Ly,
-smooth with

Ly =Ly + 1+ B( S BB + L)+ T B B, +L)). (6.)
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Note that the value of Lzbk is different from that defined in (5.2). In addition, by
Assumption 3 and Lemma 5, the function fy(x) + %(Hc(x)ll2 + ||[f(x)]+||2> is T,

-weakly convex with

Uy i=po+ Bipe pe= <Z:n:1 piB; + X, Gchj>- (6.2)

6.2 The complexity of the iPPP method under a non-singularity condition

In this subsection, we make the following assumption in addition to Assumptions 1
and 3.

Assumption 4 There exists a constant v > 0 such that for any x € X, the following
inequality holds

AIEGOL, I + e < dist (/0 Te®) + /0TI, ~N®). (6.3)

This assumption is inspired by a similar assumption made in [60, 73], where
only equality constraints are considered. This assumption is closely related to the
Kurdyka-t.ojasiewicz inequality [2]. To see the connection, we consider the minimi-
zation problem

min {h(0) 1= 2 IEGOLIE + S 1eGoOIP + 100 }.

Its optimal objective value is zero and its optimal set is identical to the feasible set
of (1.1). Due to non-convexity, finding a feasible solution to (1.1) and solving this
minimization are equally difficult in general. However, when A(x) above globally
satisfies a special case of the Kurdyka-ELojasiewicz inequality, namely,

2v2h(x) < [dist(0, 0h(x))]>, Vx € X,

it is possible to minimize A(x), or equivalently, to find a feasible solution to (1.1) by
reducing dist(0, 0h(x)), which is a relatively easy task for a non-convex problem.
Note that the global Kurdyka-t.ojasiewicz inequality satisfied by £ above is exactly
(6.3). This explains Assumption 4 and why it helps to numerically find an e-sta-
tionary point of (1.1). In Appendix 2, we show that Assumption 4 can hold for the
application (7.1) we test in the numerical experiment under the additional assump-
tion (B.2) that holds when the data is preprocessed appropriately (e.g., normalized
and lifted). In Appendix 3, we further discuss how Assumption 4 compares to the
assumptions made by [47] and [8].

Suppose (4.6) is guaranteed through the AdapAPG method in Algorithm 4 in
Appendix 1. Under Assumptions 1, 3, and 4, we are able to show that our iPPP
method can find an e-stationary point of (1.1) in a complexity of O(E%). Similar to
Theorem 2, we first show a convergence rate result, in terms of the number of outer
iterations.
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Theorem 3 Suppose that Assumptions 1, 3 and 4 hold and the parameters {y; }, { b}
and {€,.} in Algorithm 1 are taken as

1
Bo=Pk+1)i, y=2T,, and & =— T 6.4)
Blk+1)3

where f > 0 is a constant, and I}, is defined in (6.2). If R, is defined as (4.3), then for
any K > 1, it holds

1[4 4 9 6Cy(po/B+p.) V2p,C, 1
maX{SRK’FRK’CRK} SE(E+E+2\/ZH3+ v2 >+ \/E <1+W>

1 1 3Bf0+3M 9(B/~0+M)2
+ ((1 + Vﬂ)\/2ﬂpcc2 e

where {(S;,Fy, C)} > is defined in (4.2), p,. is defined in (6.2), and

(6.5)

C, :=4|2B; +2G + L|e®)|1? + £||if &), ||* + %(1//} + B, + M) + 470]

1

, 1

64927 16pp2D° 320 \ 1 32, }

+ T, + = ([max{(3v2ﬁ S -1 .
(6.6)

Proof Similar to Theorem 2, we first bound the three summations on the right-hand
side of (4.9).

According to Line 4 of Algorithm 1, there must exist £ € dg(X*+D) such that
IV &D) + EV) < g

From Assumption 1C, we have gD _ g  + &, where & € Ny(x*+D) and
|€, ]| < M. Hence, it follows from || V¢, (X*+D) + E(H%)H < €, and (4.12) that

|1+ B &) T D) 4 gy R O)TIEE ), |
< &+ B = O+ VHEED) 411G, (6.7)
<&+ kY = x| + B, + M,

where we have used (3.4a) in the last inequality. Now noting i—' € N (x*D), we
k

have from (6.7) and Assumption 3 that

&+ nlIXY —xO + B, + M

, Vk > 0.
Br

W/ le@ D) + [iEGED), | <

(6.8)
Since g, g% for all k, (6.8) implies

1

— 2 — —(k—
eI + || FEO)], || < (1/B + 7 IRD = 4D + B, + M)

22
VP

2 2 <) _ k=12
< e [(1/B+ B, + M) +y;_ 1KY —x*D)2],
(6.9)
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1 1
for all k > 1. Notice (k+ )7 —ki = ——1 <
k§+k§(k+l)§+(k+l)3 3k3

of {f,}in (6.4), it holds pkﬂ_,—ﬁk“ < % Therefore, multiplying f, — f,_, to both sides
k=1 3pk3
of (6.9) and summing it over k = 1to K — 1, we have

—. Hence, by the setting

- ﬁk_l)(||c<x<’<>>||2 + IO )

! (6.10)
> f:] 32k [(1/ﬁ+Bf +M)? +71< X0 — x¢=Dy) ]
2 K-1 27 IRO-x¢D)2
<3 zﬂ(l/ﬁ+3f +M? + 3, sz 6.1

where we have used ZkK:_ll <1+ flK_l X3dx < 4 in the last inequality. In addi-
tion, it follows from (6.4) that

o : -4
S e= L T %(1 +[5x 3dx> <i (6.12)

Since y;, > T'}, ¢, defined in (4.5) is convex, and thus (4.8) holds. Adding (6.10) and
(6.12) to (4.8), we obtain

K2 <Y_k - L‘t [RE+D — x®|12 4 L=t g K — gK=D||2
=0\ 2 554413 2
< 2B, +2G+ %(uc(x(‘”)n2 + ||[f(i<°>)]+||2> My + 22
(6.13)

By y, = 2I';, with I', defined in (6.2), we have

2y 4py + 4p.
E 0 323k+1)
3v2B(k+1)3 3v2B(k+1)3

Let

2
K = [max{(ffﬂ) 2 H -1 (6.14)
< <

When k > K’, it holds that —=— Land 74 Pe 1
3V2ﬂ(k+1)3 8 32(k+1) = 8
and thus
<l vr>k. 6.15
apkens 4 T (6.15)

Applying (6.15) for K’ < k < K —2in (6.13) and also noting 2 > 2, we obtain
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K-1
ZQ||;2<’<+1>—§<’<>||2 < 2B, 126+ <||c(x<0>)||2+|| LESIN| )
k=0 4
K'—1 2
2y
+ %(1//} +B; + M)’ + D, Y ———— IR -z
p =0 3v2p(k + 1)

(6.16)
By Assumption 1B and the definitions of f, and y,, we can show that
K'-1 2 K'-1
2 R4 — 5012 < 2(2py + 20 )*D?
4 - 4
k=0 3vZp(k+ 1)3 k=0  3vZBk+1)3

K3 16p2D? S 16pp2D?
+ [ —

532 pk+ 1) S 32k + 1)
64p2D>  16fp2D?

po ﬂpc (K’)%,

3v2p V2

(6.17)
where, in the lastlnequahty, weusel the facts thatz (k+ 1)~ 3 <1+ / X de <4
and that Zk—o (k + 1)_3 <1+ /1 X de < 3(K’)3 Applying (6.17) and the defini-
tion of K’ in (6.14) to (6.16) gives

K-1
> %Ili“‘*” -xP|P <C,, (6.18)
k=0

with C, defined in in (6.6).

Using (6.4) and recalhng r 1n (6.2), we have Zk —o0 Y& = 2p0K + 2p, Zk —o B

and in addition, Zk o B=82 "k + 1)3 < ﬂK 3. Therefore, by (5.22) and (6.18),

it holds that

1 Kl 200C, | \V20.BCy
< plIRED — g0 < Y2 \/2p0K+2pCﬁK3< MGy

(6.19)
Now apply (6.12) and (6.19) to (4.11) to have
1 200C, |, V/20.BC
% 2o Skt < ﬂK + )2+ (6.20)
From the definition of F, ., in (4.2b), we use (6.8) to have
1 F K—1 &+By +7, I —xO|+M
K k+1 < K &k=0 Vﬂk
1 K 1 A M GK-1 1
S O Zk=o kT vﬂK Zk Zo 1lIXEED = xO 4 fo 2o B
< 4 \/2P()C2 + V20.5C, + 3Bfo+3M
- vﬂzK vﬁ\/_ vBK1/3 2vpK1/3°
(6.21)
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where the second inequality follows from f, > g, and the last inequality holds
because of (6.12), (6.19), and the fact that

1 K-1 1
X 2k=0 7, B PK Zk =0 (k+1)1/3 = 3K /0 e < o 2;;1(1/3 (6.22)
By (6.8) and the definition of A**" in Algorithm 1, it holds

: (€ + By, + KD — 59| + My
D EDEEED)| = &)L | <

i=1 Vzﬂk

From the definition of C,, ; in (4.2c), we average both sides of the above inequality
to have

1 K_IC 1 ’i (€ + By + 1 [IKED = xO|| + M)?

v k+1 = 7~ )

K = K= vEBy
L3 NE 3N BN 3 Rl 3O
~ VK = p K& vzﬂk K V2P,

2”X(k+l) _ X(k)“2

K-
3 Yk
< + + = ,
- 2V2ﬂ3K 2V2ﬂK1/3 K Z Vzﬂk
(6.23)

where the second inequality uses (@ + b + ¢)* < 3a® + 3b* + 3¢?, and the third ine-
quality follows from (6.22) and

X ﬂ_k_ﬂ3zk0(k+1)‘_ﬂ3<l+/1 B >_2ﬂ‘

Recall v, =2py+20p. for all k>0 and also note g, >pf. We have
k 0 KkPc k
yk < yk(2p° + 2p_), and thus by (6.16), it holds

3 ZK 17 ||5'((k"'])—xm||2 < 6Cy(po/B+p.)

5, < K (6.24)
Now apply (6.24) to (6.23) to have
9 OBy +MY | 6C,(py/B+p.)
Zk =0 Ck+l = 223K + 2v£0ﬂK1/3 + = TZK . . (625)
Plugging (6.20), (6.21), and (6.25) into (4.11) gives (6.5). O

Corollary 2 (Complexity result) Under the same assumptions of Theorem 3, let
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6C + 0, 18p,C 2
k=3(ds A 0 2(po/ P + 1) k=BG LY
e\ p  vpr 2P v2 g2 vp

3
3B, +3M  9(B; + M)2>

27 1
K3=§<<1+ﬁ>\/2ﬁpc(32+ o, + %Y

and

K =|max {K,,K,, K3} |

B 1)} PP 3 Lo AT
—0<<<ﬂ+ﬁ> [ﬁp+ﬁ+?+ﬁp (w/pi+0 )] +/¥>e_3>’

where C, is defined as in (6.6), p is the algorithmic parameter in (6.4) and
p = max{py, p.}. Then X® is an e-stationary point of (1.1). In addition, if X**V
satisfying (4.6) is found by the AdapAPG method,

the total complexity for Algorithm 1 to produce X« is

3 3
- 1+p 1+p 1\2 p ; 1 1 1|1
R e ———

Proof With the given K, the right hand side of (6.5) is upper bounded by &, so x®x)
is an e-stationary point of (1.1). The order of magnitude of K in terms of €, § and p is
then obtained by the fact that C, = 0(/3 Ny Yy ﬁpz((p/ﬁ)i + p%>>
according to the definitions of C, and p.

Let 7}, be the number of proximal gradient steps performed by the AdapAPG
method (Algorithm 4) to find X**D satisfying (4.6). Then according to Theorem 1
and the definitions of I';, v, f;, and Ly, in (6.1), (6.2) and (6.4), we have

N O T WY A e /ﬂkp+ﬂk)_~( /ﬂ)
T _0< Vk_rk>_0< Iy >_0< B =0 P ’

for k=0,1,..., K- 1. Therefore, the total complexity is

(S

Tiota = kK:_OI T, = O(, / %K ), which completes the proof after plugging in the
order of K.
O
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6.3 The complexity of the iPPP method under initial feasibility assumption

In this subsection, we drop Assumption 4 and analyze the complexity of the pro-
posed iPPP method by starting from an initial feasible point, namely, in addition
to Assumptions 1 and 3, we assume the follows.

Assumption 5 The initial solution X® € X in Algorithm 1 is feasible, i.e.,
&) <0foreachi=1,...,m andcj(f((o)) =0foreachj=1,...,n.

Remark 3 This feasibility assumption on X can be weakened to near-feasibility
depending on the required accuracy. Unless with certain regularity conditions like
the one we assumed in the previous subsection, or with certain special structures, it
is generally impossible to find a (near) feasible solution of a nonlinear system in a
polynomial time. Existing works, such as [8, 11, 47], also need the (near)-feasibility
assumption to guarantee a near-stationary point.

Below, we specify the parameters of Algorithm 1 and analyze its complexity
with Option II to find a weak e-stationary point of (1.1).

Theorem 4 Suppose that Assumptions 1, 3, and 5 hold and the parameters {y,}, { p;}
and {€,} in Algorithm 1 are taken as

A

B=P 7=2po+Pp). and &= s VA 20, (6.26)

where > 0 is a constant, and p, is defined in (6.2). If R, is defined as (4.4), then for
any K > 1, it holds that

22 Cs 4B, +G)+x*D/3
max {SRK, Frop <zt \/—\/; +14/ fUT (6.27)

Cy = (200 +280.) (4B, + G + =2). (6.28)

where

Proof By the setting §, =, Vk >0 and ZkK:_O £ = ZkK:_()l (k+11)2

from (4.8) and also the feasibility of X that

72 .
< T we obtain

Tico FIRED = xOU2 4 8 le®)|* + S EEOL | < 28, + 6) + 2.
(6.29)
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Hence, from (5.22) and (6.29) and also the setting of y, in (6.26), we have

=(k 1 2D _ \/C_
Zk 7 IRED — x| < 2V 4By, + G+ T21/2p0K + 2K pp, = TKS
(6.30)
Applying (6.30) and the fact that Klp <y to (4.11) leads to
k=0 €k < 6
c
Ly S s 5 (631)

In addition, notice that (6.29) actually holds for any K > 1. Hence,

Llle@® D)) + 2| g D), |I° < 28, + G) + 22, vk > 0,

which, together with the definition of F, , in (4.2b), implies

z "Fiy <4 /w_ (6.32)

Now plugging (6.31) and (6.32) into (4.10) gives the desired result.
O

Corollary 3 (complexity result) Under the same assumptions of Theorem 4, let
36(Bf +G)+372D 9,

T and K = [max { 22,2} = 0(£)

€27 2 A

where Cy is defined in (6.28) and p = max{p, p,.}. Then
xR0 is a weak e-stationary point of (1.1).

In addition, if X%V satisfying (4.6) is found by the AdapAPG method, the total
complexity for Algorithm 1 to produce X®«) is O( @K) = 0(—'(:/))”)
4(Bfu+c;)+n20/3 2 2
T a d— + \/\/; <3
Hence, by (6.27), R is a weak &-stationary point of (1.1). The order of magnitude
of K in terms of € and p is then obtained by the fact that C; = O(fp) = £ according
to the definitions of § and p. ‘

Let 7}, be the number of proximal gradient steps performed by the AdapAPG
method (Algorithm 4) to find X**V satisfying (4.6).

Notice that with the parameters set in (6.26), ¢, defined in (4.5) is
(po + Pp.)-strongly convex, and in addition, its smoothness constant
Ly = Oy, + p,) = ©(pp + p). Hence, according to Theorem 1 and the choice of g,
we have

Proof With the chosen $ and K, it holds that
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- Ly, A (BB _Af [L+p
T, =01/ —2—|=0 =0 4 —£
k po + Bp, < pr ) ( p

for all k > 0. Therefore, the total complexity is Ty = Yng Tt = O(‘/%K ),
which completes the proof after plugging in the order of K. O

Remark 4 Notice that in Corollary 3, we only guarantee a weak e-stationary point
because no constraint qualification (CQ) is assumed. Without a CQ, even a global
optimal solution is not guaranteed to be a KKT point.

7 Numerical experiments

In spite of the theoretical focus of this paper, we evaluate the numerical performance
of the iPPP method on a multi-class Neyman-Pearson classification (mNPC) prob-
lem in this section. Suppose there is a set of training data with K classes, denoted by
D, CRéfork=1,2,...,K. The goal is to learn K linear models x;, k = 1,2, ..., K
and predict the class of a data point & as argmax,_;, g xzé. To achieve a high
classification accuracy, {x,} is found such that xljé - xlTé is positively large for any
k#1 and any & €D, [14, 72]. This leads to minimizing the average loss
ﬁ sk Deen, P(x] & —x] &), where ¢ is a non-increasing (potentially non-convex)

loss function. Suppose misclassifying & has a cost depending on its true class label .
When training these K linear models, the mNPC prioritizes minimizing the loss on
one class, say D;, and meanwhile controls the losses on other classes, namely,

0 ,...,Kﬁ 2is1 Leen, p(x[&—x]E),

mi
lIxlI<A.k=1
. . . 7.1
stpg hm ZéeDk px E-x, )<, k=23,...K
Here, r; controls the loss for Dy, and A > 0 is a regularization parameter.

We created test instances of (7.1) using the LIBSVM multi-class classification
datasets covtype and mnist, which have K = 7 and K = 10 classes, respectively.

The first class of each dataset is used to formulate the objective function
in (7.1), and the other classes are used to formulate the constraints. The func-
tion ¢ in (7.1) is chosen as the sigmoid function ¢(z) = 1/(1 + exp(z)). We set
r,=05K —-1), Vk=2,...,K and set A = 0.3 for both datasets.

We compare the proposed method to the exact penalty method proposed in [11]
and the inexact augmented Lagrangian method (iIALM) in [60]. We choose [11]
because their theoretical complexity is given in terms of how many trust-region
subproblems their algorithm needs to solve while the complexity we consider in
this paper is measured by the total number of the gradients computed. Since it is
not clear how to compare the theoretical complexity between our method and [11],
we directly compare their empirical performances. We choose [60] because the
augmented Lagrangian method typically has better performance than the penalty
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method in practice although the theoretical complexity by [60] is higher than ours.
We do not compare with other methods because they either have a higher theoretical
complexity than ours or have no theoretical guarantee as (7.1) does not satisfy their
assumptions (e.g. linear constraints).

All methods are implemented in Matlab on a 64-bit MacOS Catalina machine
with a 4.20 Ghz Intel Core i7-7700K CPU and 16GB of memory. For all algorithms,
the initial iterate is set to X = 0 and we verify that it is a feasible solution of (7.1)
with r;’s chosen above. In Appendix 2, we discuss how Assumption 4 can hold for
problem (7.1) when the data & satisfies a mild condition that can be ensured by a
standard preprocessing. The values of algorithm-related parameters in all algorithms
are selected from a discrete set of candidates based on the value of the objective
function after 10,000 data passes.

On solving (1.1) with g = 0, the method in [11] applies a non-smooth trust-region
method to solve a sequence of unconstrained subproblems in the form of

minfo(x) +p X7, [, +pX, ¢, (7.2)

where p > 0 is a penalty parameter which will be increased sequentially. At iteration
k of the non-smooth trust-region method for solving (7.2), an updating direction is
computed as*

s® € argmin
lIslly <Ay

SO+ VHEO s+ p 37 [x®) + VAEE®)Ts]
+o X, jc_j(x<k>) + vcj(x<’<>)Ts| :
(1.3)

where A, is the radius of the trust region. Upon obtaining s, the estimated solu-
tion is updated to x**D = x® + s® if this update significantly reduces the objec-
tive value of (7.2). Once an e-critical point of (7.2) (see equation (2.2) in [11] for
the definition) is found, a steering procedure [10] is utilized to increase the penalty
parameter p in (7.2).

In our implementation, we formulate the problem in (7.3) as a linear program
and then use Matlab built-in LP solver to obtain s*). The outer iterations in the
method by [11] require a steering parameter £, an increase factor to update p, an
initial value of p, and a tolerance for solving subproblem (7.2). Steering parameter
& is set to be 0.3 for covtype and 0.1 for mnist. The initial value of p is set to be 1/¢
for both datasets. We choose the increase factor to be 10 and tolerance € = 0.001
for both datasets. Moreover, the trust-region method for solving subproblem (7.2)
requires five control parameters: A, 7, #,, ¥}, and y,. For both datasets, we choose
Ay=1,1=03,7,=07y, =0.3,andy, =0.7.

The iALM method in [60] is developed for (1.1) with only equality constraints
(i.e., f = 0). At the kth outer iteration, it applies another optimization algorithm to
the following subproblem

4 The method in [11] allows using any norm in the ball constraint of (7.3). Here, we choose #;-norm so
that (7.3) can be solved as a linear program.
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ALM
llecoll?, (7.4)

min /,) + g0 + ) Te) +

where 2™ > 0 and %' € R"is the dual variable, in order to find an £, , -statioanry
point of (7.4), namely, a point X**! € R? such that

. < (k+1 <(k+DNT o (k 2
Cmin [[VAEHD) + LG + £ < .
& eag(x*+D)

Then it applies a dual ascent step to update yoD =§® + 6, e&E*D) with a step
lle& )|l log® 2

lexE+D)[|(k+1) log?(k+2)”

Since (7.1) has inequality constraints, we apply iALM to the following equivalent

problem

size o, = 6y min{ ,1} for all k> 0. Here o0, is user-specified.

: T T
min X — X
X I<Ak=L, .. K,5,20k=2,....K ID [ L1 dep bix; & &)

(7.5)
s t'n;j Xk Zé‘EDk (,b(x;f - X[T§) +s,=r, k=23,..,K,
where 5, € R, fork =2, ..., K are slack variables.

When implementing the iALM method, we set §* =0, ¢, = 5, pAM = 5% and
£ =1/ ﬁ?LM for both covtype and mnist datasets. The forms of ﬁ?L and £, are
consistent with Algorithm 1 and Corollary 4.2 in [60]. We find an £, -statioanry
point of (7.4) using the accelerated proximal gradient method (APGM) in [26]. The
APGM itself requires three control parameters. Despite a little abuse of notation, we
denote the control parameters in iteration ¢ of APGM by «,, §, and 4, to be consistent
with the notation in [26]. According to Corollary 2 in [26], we set a, = 2 and

t+1
A, = B, for covtype and mnist with f, = for covtype and f, = for mnist,

10 ﬂALM 200 ﬁALM
where ﬂ?LM is from subproblem (7.4) solved in the kth outer iteration of the iALM
method.

For our iPPP method, we need to specify the parameters £, y, and f, for each k as
well as constant M™ and y™. The inner algorithms also require parameters
Yine> Ydeo> Vsor and 0. We set M”" =10, g™ =1, y;,. = 1.5, Vgee = ¥sc = 1.2, and
0,. = 0.5. For other parameters, we compare two different settings: one using

ék =1/(k+1)2,y,=0.1 ﬁk = 1000, V k, and the other using
8= —— y, = 0.1(k+ )5, B, = flk + D)7, Yk
pk+1)3

In the latter setting, we choose f = 200 for mnist and choose f = 500 for covtype.

The numerical results are presented in Figure 1. The x-axis represents the number
of data passes each algorithm performs. The y-axis represents the objective value
of iterates in the first column, the infeasibility of iterates (i.e., max,_; ,{f{(X),0})
in the second column, and the stationarity of iterates in the third column. Let
Ix)={l <i<m|f,(x) >0} and X={x=(x},....x) | lIX]| < Ak=1,....K}.
We calculate the stationarity of a solution x as the optimal objective value of the fol-
lowing convex optimization
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Fig. 1 Comparison between the iPPP method and the trust-region-based penalty method in [11] for solv-
ing multi-class Neyman-Pearson classification problem (7.1) on two datasets from LIBSVM

min dlst<Vf0(X(k))+ > aVAa®) + ZijC x®), -\ (x<k>)>
YER"

k
AR/ iel(x)

which can be solved as a convex quadratic program and we solve using Matlab
built-in QP solver. We observe from Figure 1 that, for these two instances, our iPPP
method outperforms the trust-region-based penalty method by [11] in terms of its
capability of improving objective value, feasibility, and stationarity of the iterates
simutaneously. Moreover, these two instances also suggest that the iPPP method
using growing penalty parameters performs better than using a fixed penalty param-
eter. However, the iALM method using APGM as a subroutine has better perfor-
mance than our iPPP method for both instances although the former has a higher
theoretical complexity (O(¢™*)) than the latter (O(e~3)). It is possibly because the
O(s~*) complexity proved by [60] is not tight and can be further reduced with more
sophisticated analysis.

8 Conclusion

We proposed a gradient-based penalty method for a constrained non-convex optimi-
zation problem. The complexity of the proposed algorithm for finding an approxi-
mate stationary point is derived for two cases: (i) when the objective function is
non-convex but the constraint functions are convex and, (ii) when the objective and
constraint functions are all non-convex. For the first case, our method can produce
an e-stationary point with complexity of O(e~>/?) under Slater’s condition. For the
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second case, the complexity is O(¢~3) if a non-singularity condition holds on the
constraints and otherwise O(¢~*) if an initial feasible solution is assumed.

Appendix 1: Adaptive accelareted proximal gradient method

In this section, we introduce the AdapAPG method by [45] for solving a strongly
convex composite optimizaiton in the form of (3.5). It can be applied to (4.1), which
is an instance of (3.5), in order to find X**D satisfying (4.6) as required in Line 4 of
Algorithm 1.

Consider problem (3.5), where ¢ : R - R is Hy-strongly convex and L,
-smooth, and r : RY - R U {400} is a proper lower-semicontinuous convex func-
tion. Given w € R and a constant L > 0, we define a local model of ¢(x) as

WLWX) 1= (W) + Veh(w) (x — W) + %ux — Wi + (). A

As defined in (3.7), the proximal gradient step of (3.5) at w is

T, (w) = arg min y; (W;X) = prox; ., (w — L™ 'Vp(w)), (A2)

xeR
and the proximal gradient mapping of (3.5) at w is
gr(W) 1= L(w — Ty (w)). (A3)

By the optimality condition satisfied by 7, (w) in (A.2), there exists & € dr(T,(w))
such that

&+ Vop(w) + (T (w) —w) =0,
which implies Ve(T, (W) + & = VG(T, () = V(W) — L(T, () — W) so that
(T, (W) < IVAT, (W) + Ell < VT, (W) — VoWl + llg, Wl
= (1 + SL(W))ugL(w)u. A4

L
Here,

= . v ’
w(x) min IVex) + &'l (A.5)

is a first-order suboptimality measure of x and

. VT (wm)-Vowli
SL(W) .= w < Ld) (A.6)

is a local Lipschitz constant of ¢. Inequality (A.4) means that, when ||g,(wW)]| is
small, the solution generated by a proximal gradient step from w has a small subgra-
dient and thus is a high-quality solution of (3.5).

@ Springer



Q.Linetal.

Algorithm 2 {x**+D M, p® S;} < LineSearch(¢,r,x*), L)

: Choose: ~ipc > 1

i L Lt/Yine

: repeat

L« Lyinc

x(t+D) Ty (x(0)

:until F(xOHD) < oy (x0; x(0+1))
M+ L

s p®) — My(x() — x(t+1))

2 Sy SL(x(t))

© WD U W

Algorithm 3

{xtD My, oy, p®, S} < AccellineSearch(ep,r, x®, xt =1 L,y oy 1)
: Choose: 7ipc > 1

¢ L ¢ Lt/%inc

: repeat

L+ Lyinc

ae b
wt) ¢ x(® ¢ Zjiflf(ﬁ;; (x() — x(t=1)
x(t+1) TL(w(t)

s until F(xETD) < gy (w®); x (1)

: My« L

s p) o My(w(®) — x(t+1))

s St <+ Sp(w®)

OO0 O U W

=

Algorithm 4 {x, M, i} < AdapAPG (¢, 7, x"™, Lini, 0, €)

1: Choose: Ly € [10, Lini], Ydec > 1, Yse > 1, Osc € (0,1)

2: {x(0) M_q,p(b), S_1} « LineSearch(¢, r,x™, Lin;)

3 x("D — xO) Lo e~ M_q, ¢ po, a—q 1,70 1,10

4: repeat

5: {x+D My, ap, p(), S} < AccellineSearch(e, 7, x®), xt=D L,y az_1)
6: Te41 < (1 — ay)

70 if [p®| < bsc|[p || then

8: x(0) ¢ x(t+D (=1 o x+D) Lo« My, pCD — p®)| M_y « My, S_1 « S
9: t<0

10: else v s

Wi 2vam M (14 571 < 0. then

12: B B/ se

13: t<«<0

14: else

15: L1 4 max{Liin, Mt /Ydec}

16: t—t+1

17: end if

18: end if

19: until w(x(tt) < ¢
20: % xtED N« My, o p

With these notations, we briefly describe the AdapAPG method in Algo-
rithm 4, where we treat ¢ and r as the input because we need to apply it to
instances of (3.5) with different ¢p’s. We refer the interested readers to [45] for
details. AdapAPG calls two different line-search schemes that are described in
Algorithm 2 and Algorithm 3, respectively. Here, Algorithm 2 is only used for
initialization while Algorithm 3 is the main subroutine in each iteration of Algo-
rithm 4. AdapAPG maintains and updates estimations of , and L.
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In iteration #, the AdapAPG method calls Algorithm 3, which performs the
updating steps of the APG method [52] by using an estimation of u,, denoted as
#, in place of u, and using a line search scheme to update the estimation of L,
denoted as M,. After the rth call of Algorithm 3, the AdapAPG method stores
p? = gy, (W) and x"*D =T, (w?). It can be shown that, if u < g, the value
of ||p”|| should decrease geometrically to zero. Therefore, if such a decrease is
not observed, it must happen that 4 > u,. Then the algorithm is restarted with u
divided by y, > 1, which leads to the adaptivity to the unknown . The follow-
ing theorem shows the complexity of the AdapAPG method for solving (3.5).

Theorem 5 (Theorem 2 in [45]) Assume py > p,, > 0. Let p™ denote the first p="
computed by Algorithm 4. Algorithm 4 terminates in at most

L ini
¢\ Ilp™ I Ho
Tapg = | |1 1+ + |1 —
APG < [ Ogl/aw < < Lmin > £ Og}’sc M¢
L YincYsc L YincYsc : L :
Dolinclse | 8<¢_> <1+ ¢ )
Mqﬁ ﬂd)e.vc Lmin

iterations with an output X satisfying (3.6) and the total complexity is

Iny,
<1 + lnyec>(TAPG +1)+

inc

(A7)

yinchﬁ
max < In ;00 =0Txpg),  (A8)
ydecluqﬁ

inc
where T \pg is the number of iterations given by (A.7).

Remark 5 In this paper, we measure the complexity of an algorithm using the total
number of proximal gradient steps it performs. The value Tpg; in (A.7) is the total
number of iterations by Algorithm 4, but multiple proximal gradient steps can be
performed in one iteration of Algorithm 4 inside the subroutine AccelLine-
Search. According to the inequality between inequalities 16 and 17 in [45], the
total number of proximal gradient steps is given in (A.8) which differs from 7 pg
only by logarithmic factors. If 0 < p < p,, following the same proof as for Theo-
rem 2 in [45], we can show that the total number of iterations performed by Algo-
rithm 4 is at most

L ini L,y L,y . \> L. \?
log, /o 1+ 2 ||pA I X P In (8 2 1+ 2 )
* Lmin € Ho ”Ogsc Lmin

which is obtained by replacing p,, /7, by g in (A.7).

By this theorem, the total complexity of the AdapAPG method to find a solu-
tion X o (3.5) satisfying (3.6 s 0<z<;/ ?log(x,) log (Pl))
where k= -2 is the condition number of (3.5). Compared to APG whose com-

U
plexity is O<K(;f 2 log <£)>, AdapAPG has an additional factor of log(x,) in the
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complexity result, but the latter does not require knowing the exact values of u, and
L,. We present this complexity result in terms of y,, L, and € in Theorem 1.

By (A.5) and the stopping condition (Line 19) of Algorithm 4, we can use Ada-
pAPG to find X+ satisfying (4.6) at Line 4 of Algorithm 1. To do so, we only need
to initialize M and /i at the beginning (between Lines 1 and 2) of Algorithm 1 as

M — M™ and g <« ™ (A.9)

using any constants 4™ and M satisfying 0 < x'™ < M™ and then replace Line 4
of Algorithm 1 with

Call Alg. 4 : {**V M, i} < AdapAPG (¢,.g. XY, M, 4,€,).  (A.10)

This is also what we implement in our numerical experiments in Sect. 7.

In Algorithms 2, 3 and 4, users need to provide parameters L, > p, > 0,
Lo € [Hos Linil, Vine > L Yaee > 1 7 > 1, and 6, € (0, 1). Next, we will explain the
roles of these parameters. Parameters L, Li.;, ¥inc and 74, are introduced for updat-
ing the local estimate of L, which is M, in Algorithm 4. More specifically, L;; is the
initial guess of L, while L,;, is an estimated lower bound of L,. According to equa-
tion 12 in [45], the stopping condition F(x"*1) <y, (x®;x*D)in Algorithms 2 and 3
holds whenever L > L¢. However, the condition L > L¢ is not necessary for the above
stopping condition to hold for a particular ¢, and an overly large L will slow down the
convergence. Hence, the estiamte M, is reduced by a factor y,.. > 1in Line 15 in Algo-
rithm 4 to ensure Algorithm 2 begins with a relatively small L and, in each iteration of
Algorithms 2 and 3, L is increased by a factor y;,. > 1 to ensure the aforementioned
stopping condition will eventually hold.

Parameters 4, v, and 6, are introduced for updating the estimate of y,, which is u
in Algorithm 4. Parameter 6. is the desired shrinking factor, which is used in the condi-
tion ||p@|l, < 6,||p=" ||, for restarting the iterate at x“*! as shown in Lines 8 and 9 in
Algorithm 4. Because of (A.4), Algorithm 4 will terminate if this condition holds suffi-
ciently many times. Parameter 4 is initialized with y,. By Lemma 11 in [45],if 4 < uy,
it must hold that

M S
() ! -1 (=D
1Pl < 2v/27, — <1+M l)llp I

where 7, is updated in Line 6 of Algorithm 4 and decreases geometrically to zero.

Hence, for any 6, € (0,1), if 24/27, %(1 + %) < 6, happens earlier than
1

[pll, < 6, |[p""]|, we must have that u > u, and need to decrease u by a factor
Y« > 1and restart the iterate at x® as shown in Lines 12 and 13 of Algorithm 4.
Although the choices for the aforementioned parameters must depend on specific
problems, we can provide some guideline in general for users in practice. In our iPPP
method, L; ; and y are set to M and /2, which are initialized in (A.9) and updated after
each call of Algorithm 4 in (A.10). Since AdapAPG can adaptively update M and 7,
the initial value M™ does not need to be large and ™ can be set relatively close to
M™. In practice, we suggest setting M™ = 10 and u™ € [1, 10]. According to Theo-
rem 5 and the discussion afterwards, setting ¥i,c, ¥gec> Ysc» a0d 8, too large or too small
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will increase the complexity. According to the numerical experiments in [45, 54] and in
this paper, where different classes of problems are solved, y;,. and y,. can be selected
froma grid in (1, 2], y. in (1, 10] and 8, in (0, 1). The selection can be maded based on
the objective value achieved after a fixed number of iterations.

Appendix 2: Discussion on Assumption 4 for application (7.1)

We explain that Assumption 4 can hold for the tested problem (7.1). For simplicity,
we consider the case of K =2, and in this case, we have a single inequality con-
straint in the form of

N,

= > dlE - X&)~
2 =1

Jx) =
where x = [x;;X,], @) =1/(1+exp(z)), N, denotes the number of
data points in D,, and & is the i-th data point in D,. In addition, let
X={x,%) : |Ix;]l £ A, |Ix,|| £ A}. Itis easy to have

{0}, if [1x,1] < 4 %1l < 4,
Nox) = 1 (01X {axxy & ay 2 0), if 1%, < A [I%,]] = 4,
v {a;x; : a; >0} x {0}, if %]l = A (1% ]| < A,

{ax; 1 a; 20} x{a,x, : a, 20}, if [|Ix;]| = A [Ix%,]] = A.
The condition in Assumption 4 reduces to
Jv > 0 such that v[f(x)], < dist([f(®)], Vf(x),-Ny(x)), VX EX. (B.1)

Let
_ 1 T T .
E= byl (0 =¢/008—X]&), fori=1,....N,.
2

Then
| g
Vi) = 5 X 8058 = X[ E)I=¢i] = [~Eu()Eu(x)]
2 =1

When f(x) <0, the condition in (B.1) trivially holds for any v > 0. Below, we
assume the feasibility of the origin, i.e., f(0) <0 as in our numerical experiment
and also assume

E#0,Vi, EE>0,Vij. (B.2)

Notice that the condition in (B.2) may not naturally hold but can be ensured by lift-
ing all data points by one more dimension, i.e., & < [§;;c], Vi for some ¢ > 0. If the
original data points are normalized, it suffices to take ¢ = 1. For linear classification
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models like (7.1), lifting the data is essentially changing the intercept coefficient that
does not change the separability of the data.

However, the optimization problem will be changed slightly. The goal here is not
to provide an equivalent transformation of the original optimization model so that
it satisfies (B.2). Instead, we just want to present a practical scenario where (B.2) is
ensured at modeling stage, instead of optimization stage, by normalizing and lifting
data.

We establish the condition in (B.1) through discussing three cases on x with
f(x) > 0.

Case I||x,|| < 4,||x,]| < A. In this case, N,(x) = {0}, and thus the inequality
in (B.1) becomes v < || Vf(x)||. Let

v = inf IVF)l| = min V2Bl B.3)
il < A D%l < 2 e

Since ¢'(x) <0 for any x, there exist n, >0 and #,>0 such that
-1, < u;(x) < —ny, Viforall x € X. Hence v; > 0 by (B.2).

Case II ||x,|| < A, [|I%,]| = 4 or [|Ix,]| = 4, [|X,|| < A. We only consider the for-
mer because the latter can be discussed in the same way. In the former case,
Nux) = {0} X {ayx, : a, > 0}, and the inequality in (B.1) becomes

2 .
(VF®1,)” < [F@1LEu)||* + min [|[f 0], Bux) + ax%, |,
a,>
which is implied by the fact that v < [|[Eu(x)|| with v =v,/ \/E and v, defined in
(B.3).
Case III [1%, ] = 4, [|%,]] = 4. In this case,
Nyx) = {a;x; : a; 2 0} X {a,X, : a, > 0}, and the inequality in (B.1) becomes
2 . .
(VIf®)l,)" < min |[F )], Eu(x) — a;x, ||2 + min |F )], Eu(x) + a2X2||2,
a; 2! a2
which, as f(x) > 0, is equivalent to

Vi< glg& [|[Eu(x) — a;x, ||2 + glzlél(} [|Eu(x) + a2x2||2.

Let v, > 0 be defined as

v;= min {min [|[Bux) — a;x, ||2 + min ||Eu(x) + a2X2||2 }
x|l = 4 L= 2 (B.4)
x|l = 4
fx) =0

Notice that the minimum of the above problem is reached at a point X and numbers

— ~ _ - _ , Eu® - _ . Eu® .

a, and a,. SupI')ose_v2 —_0. It ﬁré:(sgt)”h()l(.i that xl_ = /l”Eu(i.)” and X, = -4 IEa®] with
the corresponding a, = a, = ~——. Since u;(X) < 0, Vi, we have from (B.2) that
X —X&=— ”Eu’l(i)” ETEu(X) > 0 for all i. This means f(X) <f(0) <0 by the
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monotonicity of ¢, which contradicts with the fact that f(X) > 0. Therefore, we must
have v, > 0.

By the above discussions, we can set v = min{v]/\/i v,} > 0 to ensure con-
dition (B.1), which gives the following conclusion.

Claim: Assumption 4 can hold for the tested problem (7.1).

Appendix 3: Comparison with [47] and [8]

In this section, we compare [47] and [8] with this paper in two aspects: the defini-
tion of approximate stationary point and the assumptions needed for processing
non-convex constraints.

Since [47] and [8] only consider the problems with inequality constraints and
their key assumptions are also stated only for the problems with inequality con-
straints, we also assume ¢(x) = 0 in (1.1) in this section. In addition, we assume
Assumptions 1 and 3 during the comparison because, except Assumption 1A
(smoothness), Assumptions 1 and 3 are also made in [47] and [8].

Note that [47] and [8] also require a (nearly) feasible solution and ensure a
(nearly) feasible solution in each outer iteration. Our method does not require
a (nearly) feasible solution but cannot ensure a (nearly) feasible solution in all
intermediate iterations.

Definition of approximate stationary point

In [8], the authors define an (¢, 6)-KKT point for (1.1) with only inequality con-
straints as follows.

Definition 7 Suppose ¢(x) =0 in (1.1). Given £ >0 and 6 > 0, a point X is an
(g, 6)-KKT point of (1.1) if there are X € dom(g), EcogX)and 1 € [Rf such that
f(x)<0fori=1,...,m, and

|V + 70 TA+ | <, (C.1a)
Y 1Af®| <e, (C.1b)

i=1
I% - x| < 6. (C.10)

A similar definition is considered by [47]. Note that (C.la) and (C.1b) are
identical to (1.3a) and (1.3c) except that the left-hand side of (C.la) is squared.
For the purpose of comparison, in the rest of this subsection, we assume X is
an (€2, €2)-KKT point so that the point X associated to X in Definition 7 satis-
fies (1.3a) just like an e-stationary point in Definition 1. Now we discuss about
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the connections of X and its associated point X with an e-stationary point in
Definition 1.

— When the inequalities in (C.1) hold with £ and & replaced by £ and €2, X satis-
fies (1.3a), |[[f®)],|| =0 and X", |Afi(X)| < €* where the last two inequalities
are stronger than (1.3b) and (1.3c), respectively. However, Definition 7 does not
require /_1,- =0if fi(x) < Ofori=1,...,m as Definition 1.

— The algorithms in [47] and [8] can only find the near-KKT point X but not the asso-
ciated point X. Unfortunately, X is not necessarily an e-stationary point even if X is
an (¢2,£%)-KKT point. Consider the one-dimensional example min, ¢, 5 x* which
is an instance of (1.1) with f(x) = x%,g(x) = 11 5;(x), e(x) = 0 and f(x) = 0. For
any € € (0,1), ¥ =1+ €2 is an (¢, €2)-KKT point associated to X = 1. However,
V@ = 2 + 2€% > ¢, which violates (1.3a).

— When g(x) = 0 and (3.4) holds, X will be an O(g)-stationary point. In fact, since
IX — || <€, by Assumption 1A and (3.4), X satisfies || V/(X) + J;(X) T 1|| < O(e),
[F®)], || < O(e) and Y7, |Af;(X)| = O(e). Unlike X, the point X is not stronger
than an e-stationary point in terms of the last two inequalities. The algorithms in
[47] and [8] can find the (€2, £2)-KKT point X with complexity of O(%) which is the
same as our complexity under Assumption 4. ’

Key assumptions on non-convex constraints

The key assumption, called the uniform Slater’s condition, made by [47] (see Assump-
tion 1 in [47]) is that

p+p,
iné%{ max f(x )+ —F£ 3 IIx’ x||2} < —o, (C.2)
for any e-feasible x (i.e., x € X and f(x) < € fori = 1,...,m), where ¢ is the error

of the approximate stationary point found by [47], p, and o, are positive constants
depending on &, and p = max p; with p; defined as in Assumption 3. As follows,
i=0,...,m

we use examples to show that the uniform Slater’s condition and Assumption 4 do
not imply each other.
We consider the following one-dimensional problem
f —DP+ -+ +1]<
oin Jo@) st G =[G - DT+ E-G+ D)7+ 1] <0,

where f; is any smooth objective function. It is clear that
max{(x— 1)+ 1,—(x+ 1)> + 1} > 0 for any x and attains zero at x = 0, meaning
that x = 0 is the only feasible solution to this problem. Considering the left-hand
side of (C.2), we can show that, for any x € R, p > 0 and p, > O,

H / 3 / 3 ! Fe / 2
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which indicates the uniform Slater’s condition by [47] does not hold. On the
contrary, this problem satisfies Assumption 4. In fact, for x € (0,0.5], we have
If)1, Il = x—1)° + 1and

dist (J;(0) "[F ()14, —=N_o505()) =3 = D*[(x = 1)’ + 1]
= 36— DAL, > 2NIECoL, .

where the last mequahty is because 3(x — 1)> > on (0, 0.5]. This means (6.3) holds
on (0, 0.5] withv = = By symmetricity, (6.3) also holds on[-0.5,0) withv = = and
it holds trivially at x =0.

Next, we modify the problem above slightly and obtain

erP_iPH fo0) st £(x) =[x = 1> +27/64; — (x + 1)° +27/64] < 0, (C.3)

where f is any smooth weakly convex objective function with p, = 12. It can be
easily verified that the two constaint functions above are also smooth weakly convex
with p; = p, = 12 so that p = 12 in (C.2). This problem does not satisfy Assump-
tion 4 because, when x = 1, [|[f(x)], || = (x — 1)* + 27/64 = 27/64 while

dist (Jp () T [f )14, —N_j () =3 = D*[(x — 1)° +27/64] =

so that (6.3) does not hold for any v > 0. On the contrary, this problem satis-
fies (C.2) with a small enough €. In fact, since [—0.25,0.25] is the feasible set
of (C.3), by continuity of the constraint functions, there exists 6 > 0 such that
[-0.25 — 5,0.25 + 6] is the set of all £>-feasible solutions for any small enough .
Given x € [-0.25 - 6,0.25 + 6] and p, = 1, we have

; 27 p+p 37 13
m -1 3 13 } PPy — 2\ < — >
x,e[_“fu{maX{(x )+—6 R RS e M B e R

37 2

<—a+—(025+5)
Where the first inequality is obtained by takmg x' =0. Note that the limit of
—= + —(0 25 + 6)% as 6 approaches zero is ——4 Hence, for a small enough ¢, the
correspondmg 6 will also be small enough so that the right-hand side of the last
inequality above will be less than —¢, for some o, ~ é—; and for any e2-feasible x,

indicating that (C.2) holds.
When there are only inequality constraints in (1.1), we say the Mangasarian-Fro-
movitz constraint qualification (MFCQ) holds at a feasible solution x to (1.1) if there

exists a direction d € R such that

Vfi(x)Td < 0 for all i such that f;(x) = 0. (C4)

Assuming the initial solution is feasible, [8] proved that any limiting point of the
iterates generated by its algorithm is feasible (see Theorem 3.3 in [8]). Then they
assume that MFCQ holds at any limiting point of the iterates (see Assumption 3.6
and Lemma 3.7 in [8]). However, this assumption is algorithm-dependent while
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Assumption 4 only depends on the problem. Hence, the comparison below will
depend on where the limiting point is.
We consider the following one-dimensional problem

min —x° s.t. x<0, x> <0.
x€[-1,1]
It is clear that the assumption by [8] does not hold if the limiting point is x = 0 (the
optimal solution). In fact, when x = 0, both constraints are active but the gradient of
the second constraint is zero so that no direction d can satisfy (C.4). On the contrary,
this problem satisfies Assumption 4. In fact, (6.3) holds trivially for any v > 0 when
x € [-1,0]. For x € (0, 1], we have ||[f(x)], || = V/x* + x° and
. T 5 1+ 3)C4
dist (Je () "], =Ny (1) =x+3x° = II[f(X)]Jrll\/:)‘4 Z [IFCO1L,
1+

which means (6.3) holds with v = 1. Then, we consider problem (C.3) again.
According to the previous subsection, we know that (C.3) does not satisfy Assump-
tion 4. However, MFCQ holds at any feasible solution to (C.3), namely, any
x € [-0.25,0.25]. Hence, we conclude that the MFCQ assumption of [8] and
Assumption 4 do not imply each other.

Appendix 4: Complexity with convex constraints and unbounded
domain

In this section, we assume Assumption 1 holds except Assumption 1B. In other
words, the domain X of g can be unbounded, e.g., when g(x) = [|x||, or g(x) = 0.
Throughout this section, we consider the special case of (1.1) with convex con-
straints, which is formulated as (5.1) and satisfies Assumption 2. In addition, we
make the following assumption.

Assumption 6 Function ||Ax — b]|> + ||[f(x)] +||2 has compact level sets on X, that
is, for all @ € R, the set

Sy i= {xeX‘||Ax—b||2+||[f<x>1+||2Sa} (D.1)

is compact. Moreover, there exist constants {Bf,» }i, satisfying (3.4a), and f(x) + g(x)
is bounded below on X, that is, there exists F € R such that f,(x) + g(x) > F for
anyx € X.

This assumption is used to prove the iterates {X©},,, of Algorithm 1 will stay
in a bounded region (see Lemma 7 below), which is a key property to replace
Assumption 1B in the proof of convergence. Set S, is compact, for example, when
|Ax — b||* + ||[f(x)], || is coercive or strongly convex. For many applications in
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machine learning, F exists and equals zero. Condition (3.4a) is needed to ensure
¢(x) in (4.5) is L -smooth with L, in (5.2) so that the AdapAPG method can be
applied to subproblem (4.1).

Since the diameter D of X is not necessarily finite, Lemma 1 needs to be modi-
fied as follows. The only changes are that £,D on the left-hand sides of (4.7) and
(4.8) are replaced by éi/yd,k as shown in (D.2) and (D.3). Moreover, the constant

term 2B, + 2G in (4.8) is replaced by f,(x?) + g(x*) = F as shown in (D.3).

Lemma 6 Suppose ¢ in (4.5) is pg -strongly convex. Let (X®) be generated from
Algorithm 1. Then for any x € X, it holds that

22

£
G & D) + g &) g (x) — g(x) < # Vk >0 (D.2)
()8
and
K-1 v ﬁ
s I; Ek”)-((kﬂ) _)-((k)”2 + %(IIC(?‘((K))IIZ + ||[f(X(K))]+||2)

<SG +gx ) — F+ %(uc@@))w + ||[f<i<°>>l+||2>

K-1 K-1 22
1 - - 2 £k
+3 k;(ﬂk - ﬂk_o(uc(x‘k))nz + (&)L, | ) + ;‘6 2y K21

(D.3)

Proof Accordingkto1 Line 4 of Algorithm 1, there exists Z*7" & dg(x**+1) such that
|V (X*+D) + E( " )|| < &;. Since ¢ is g -strongly convex, so is ¢ + g. Hence, we
obtain (D.2) by noting

P EED) + g &MY — (%) — g(x)
- T Hy,
< (VR + B ) @D -3 - SHIRED - x)?

Vb, (x6+Dy + #4012 &2
< Ve &)+ &l < Sk
2H¢k 2M¢k

Now let x = % in (D.2) and sum it over k = 0 through K — 1 to obtain (D.3) by the
lower boundedness of f;(x) + g(x) in Assumption 6. O

Lemma7 Suppose that Assumptions 2 and 6 hold and the parameters {y, }, { p,} and
{&,} in Algorithm 1 are chosen as in (5.14). Each iterate X® will stay in S, during
Algorithm 1, where S is defined in (D.1) and

14

503y = po)
(D.4)

a= %(fo(i(o)) +8(X?) = F) + [IAX” = b||? + [|[FRO), ||* +

with F from Assumption 6 and f from (5.14).
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Proof Under (5.14) and Assumption 2, the function ¢, in (4.5) is Heg,-strongly con-
vex with Hy, =7 = Po- According to Lemma 6, we obtain

E
b Z*D) + g&4HD) — ¢, GP) — eGPy < —E— Yk > 0 (D.5)
-

Po

by choosing x = X*¥ in (D.2). By the definition of ¢, in (4.5), subtracting F from
both sides of the inequality in (D.5) and then dividing both sides by f, give

So&ED) 4 gx*+D) — F
B
P g+ Z 5012 1 Lag®) Z i + 1@ty |12
+ —|Ix VU7 + = ([1AX I1° + [|EE )1, ||
25, 2

EN & —F 100wy FONRG (B0
< 5 +§(|IAX =blI* + || FE)1, || >
éi Vk >0
+ ———— Vk>0.
(r = Po) B

Since [|x*D — x®)12 > 0, £,(X®) + g(X®) — F > 0 and B, > B, for any k, (D.6)
implies

()—((k+l))+ ()—((k+l)) - F
. : =+ (I bR 4 s L )

Pr1
ED +E -F 0] 2 NI &
< i +§(||Ax —b|)* + ||[f® )]+||) CEvaTA Vk > 0.

Summing the inequality above over k = 0 through K — 1 gives

So&E) + g&x*F) - F
Bk

HE?) + &) - 2
< AX? —b|% + ||(fE© kK
< b + 5 (1R = bIP + e, | >+2<y oB

(D.7)

1(||Afc<’<> b+ [, )

Using the facts that f,(X%) + g(x®)) — F > 0 and that

k-1, K-1 1 { X 7
k -35
Loyt (h [ dx> <.
;) Bx kz:‘) Pk + 1)35 ﬂ3 ( 1 5p°
we derive from (D.7)

IAX® — b + | (EGE)L|]* < 2 (fo &) +g&) - F)

_ _ 14
+IAX? = b|* + UG |" + e = @
| A 563(r — po)

@ Springer



Complexity of an inexact proximal-point penalty method for...

Since K above can be any integer greater or equal to one, we have proved the conclu-
sion for k > 1. The conclusion when k = 0 is trivially true. a

According to Lemma 7, if Assumptions 2 and 6 hold and the parameters {y,},
{B,}and {£,} are chosen as in (5.14), we must have

_ ’
D, = xg}zé)é& [[x —x'|| < 400, (D.8)
where S is defined in (D. 1) ith @ in (D.4). Using Lemma 7 and D, we obtain the
following bounds for (y*, /l ) similar to the ones in Lemma 3.

Lemma 8 Suppose Assumptions 1 (except B), 2 and 6 hold and the p &{ameters {7}
{B} and {£,} in Algorithm 1 are chosen as in (5.14). Let XX,y 17" be the solu-
tion satisfying the conditions in (5.4) and y® € Range(AAT) for k > 0. Then

(k) = QZ
Al M) = ———— D.9
” ” 4 T min; Vi(xfeas)l ( )
90N <MZ(r) 2= OF ||<AAT>TA||( 1 . >
<M°’ i -
y Yk k dlSt(Xfeasy a/Y) min; If;'(xfeas)l
(D.10)

where Qk =D, (Bf + v Dy + M), D; is defined in (D.8), By is defined in (3.4a), and
(AA") denotes the pseudoinverse of AAT

Proof Since X¥ defined in (5.3) and x;,,, in Assumption 2 are feasible to (5.1), both
of them must be in S; C & for any k > 0. Then the proof of (D.9) and (D.10) will
be the same as Lemma 3 except that D is replaced by D. O

Similar to Lemma 4, the next lemma bounds the feasibility violation of iterate
<(k+1)
XD,

Lemma 9 Suppose Assumptions 1 (except B) and 2 hold. Given y, > p, and f, > 0
for k >0, let ¢, be defined in (4.5) with ¢(x) = AX — b, X® be defined in (5.3), and
&) be generated as in Algorithm 1. Then for any k > 0,

. 26 Ao, 4
A (k+1) _ 2 f (k+1) k y .
|Ax b1? + [|[EGH D)L | < ot T (D.11)

Proof The proof is the same as Lemma 4 except that (D.2) with He, =Yk~ Po is
used in place of (4.7) throughout the proof. O

With the lemmas introduced above, we next analyze the complexity of Algo-
rithm 1 in order to find an e-stationary point of (5.1) when Assumption 1B is
replaced by Assumption 6.

@ Springer



Q.Linetal.

Theorem 6 Suppose that Assumptions 1 (except B), 2 and 6 hold and the parameters
{ri}, (B} and {€,} in Algorithm 1 are chosen as in (5.14). If R, is defined as in (4.3),
it holds for any K > 1 that

- 2 L 44/ 1/ @BG=po ) +MEP+)?
= 20%(r-ppK K VK

8(1/2B(r = po)) + (M)* + (M5)*)
+

BVK
(D.12)

where {(S;,Fy, C)}s, is defined in (4.2), Mg’ =M§‘(y), M$ = MS(y) defined in
(D.9) and (D.10), and

max {SRK, Fr . Cg,

s

€7 = (x0) + g&) ~ F + 2 A% - b
(D.13)

N (1/<ﬂ(y po) + (MO)? + (M3,

Proof Notice that ¢, is strongly convex when y;, > p,. Hence, (D. 3) holds.
Since y, = y for all k, we have from Lemma 8 that |1 || < M% and |[y®] < M"‘
for all k. Hence, it follows from (D.11) and (5.14) that

2 282 MMM
k+1) _ 12 (k+1) Ei y A
JAREHD — b + IEGH DL | < -
4(1/QB(r = po)) + (MEY + (M5)?) (D.14)
< - ,
b

for any k > 0. This inequality is the same as (5.17) except that D in (5.17) is replaced
by 1/(28(y — py))- The rest of the proof is the same as Theorem 2 except that (5.17)
is replaced by (D.14), (4.8) is replaced by (D.3), and constant C, is repalced by C‘f
throughout the proof. a

According to Theorem 6, the convergence rate of Algorithm 1 is still 0(#) in

terms of the number of outer iterations K, which is the same as Theorem 2. Suppose
(4.6) is guaranteed by applying the AdapAPG method in Algorithm 4 in Appendix 1
to (4.1). We can analyze the total complexity of Algorithm 1 based on the complex-
ity of Algorithm 4 in Theorem 1.

Corollary 4 (complexity result) Under the assumptions of Theorem 6, let
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(MD)? + (M3
p

Y
~ 28(y—
K =| max 3 42 \/2rCy + P

B(y — ppe’ €

8(—— + M + M) |
2p(r—po) y A
;

=0(1/€%)
where C? is defined as in (D.13). Then

&) is an e-stationary point of (5.1). In addition, if &V satisfying (4.6) is found
by the AdapAPG method, the total complexity for Algorithm 1 to produce X« is
~ 5
0(1 /3 )

Proof
With the given K, the right hand side of (D.12) is upper bounded by €. Hence,
x(Rx) is an e-stationary point of (5.1). The total complexity is obtained by the same
procedure in the proof of Corollary 1.
O
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