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Abstract.

Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimization. On smooth
nonconvex problems, a few acceleration techniques have been applied to improve the convergence rate of SGMs.
However, little exploration has been made on applying a certain acceleration technique to a stochastic subgradient
method (SsGM) for nonsmooth nonconvex problems. In addition, few efforts have been made to analyze an (ac-
celerated) SsGM with delayed derivatives. The information delay naturally happens in a distributed system, where
computing workers do not coordinate with each other.

In this paper, we propose an inertial proximal SsGM for solving nonsmooth nonconvex stochastic optimization
problems. The proposed method can have guaranteed convergence even with delayed derivative information in a
distributed environment. Convergence rate results are established to three classes of nonconvex problems: weakly-
convex nonsmooth problems with a convex regularizer, composite nonconvex problems with a nonsmooth convex
regularizer, and smooth nonconvex problems. For each problem class, the convergence rate is O(1/K %) in the
expected value of the gradient norm square, for K iterations. In a distributed environment, the convergence rate of
the proposed method will be slowed down by the information delay. Nevertheless, the slow-down effect will decay
with the number of iterations for the latter two problem classes. We test the proposed method on three applications.
The numerical results clearly demonstrate the advantages of using the inertial-based acceleration. Furthermore, we
observe higher parallelization speed-up in asynchronous updates over the synchronous counterpart, though the former
uses delayed derivatives. Our source code is released at https://github.com/RPI-OPT /Inertial-SsGM
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1. Introduction. The stochastic approximation method is one popular approach for solving
stochastic problems. It can date back to [52] for solving root-finding problems. Nowadays, its first-
order versions, such as the stochastic gradient method (SGM), have been extensively used to solve
stochastic problems or deterministic problems that involve a huge amount of data (e.g., see [42,56]).
A standard (or vanilla) SGM often converges slowly. Several acceleration techniques have been used
to improve its theoretical and/or empirical convergence speed (e.g., [3,15,24,62,65]) for solving
convex or smooth nonconvex problems. However, for nonsmooth nonconvex problems, it appears
that it is still unknown whether a prozimal SGM or a stochastic subgradient method (SsGM) can
still have guaranteed convergence if a certain acceleration technique is applied. In this paper, we
give a positive answer to this open question by using an inertial-type acceleration technique, even
if the derivative information can be delayed in a distributed environment.

Our study focuses on stochastic optimization problems in the form of
(1.1) ¢ = mi;lei%lize P(x) := F(x) +r(x), with F(x) := E¢[f(x;&)].

Here, £ is a random variable that can represent a stochastic scenario or a data point, F' is often
called a loss function or a data-fitting term, and r can include a hard constraint and/or a soft
regularization term. We will study a few problem classes, where F' is nonconvex and can be
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smooth or nonsmooth but 7 is convex and nondifferentiable if it exists. As a special case, when
¢ is distributed on a finite (but possibly very large-scale) dataset, F' will reduce to a finite-sum
structured function that appears in any application involving a pre-collected dataset.

Applications in the form of (1.1) include the robust phase retrieval that has been used in imaging
and speech processing [16,17], the blind deconvolution in astronomy and computer vision [8,27], the
robust principal component analysis in image deconvolution [7,9], the online nonnegative matrix
factorization in image processing and pattern recognition [21], and the sparsity-regularized deep
learning [53]. Specific formulations of some applications are given in section 6.

1.1. Proposed algorithm. We propose to solve (1.1) in a
distributed environment. Suppose there are multiple agents.
One agent is designated as the master and all the others as
workers. The master performs update to x while the work-
ers compute sample (sub)gradients; see Fig. 1 for an illus-
tration. The master-worker architecture has been adopted in
many works. It can naturally happen, either because data are
collected from local devices and then sent to a central server
for processing such as in a sensor network application [38], or
because the pre-collected dataset is too large to fit on a single
machine and must be distributed over multiple machines.

We assume that each worker can acquire samples of £ and
compute the (sub)gradient of each sampled function f(-;¢).
Each worker sends its computed sample (sub)gradient g to the master, and the latter updates x
by using its received sample (sub)gradients and then sends the updated x to workers. Our scheme
is described in Alg. 1, which is from the master’s point of view.

Figure 1: A master-worker archi-

tecture. The master performs up-
date to x; workers compute sample
(sub)gradients.

Algorithm 1: A distributed stochastic inertial subgradient method for (1.1)

1 Initialization: choose x(*) € dom(r) and set x(1) = x(©)

2 fork=1,2,...do

3 Let g®) = Vf(x* =) £,) computed by a worker, where &, is a sample of £ and 7,
measures the possible delay;

Choose stepsize ay > 0 and inertial parameter Sy > 0;

5 Update the variable x by

(1.2) x*1) = prox,,, (X(’“) — apg® + B(x®) — x(k_l))> .

Here, @h(x) denotes a subgradient of a function h at x, and it reduces to gradient if h is
differentiable at x. In (1.2), the proximal mapping is defined as

(1.3) prox,,(x) = arg min {r(y) + i”y — XH2} .

yeR”?
We use k to count the number of updates performed by the master. Notice that the master
will update x once it receives a sample (sub)gradient from one worker, and we do not enforce
coordination between the workers. Hence, the g(®) used in (1.2) may not be a sample (sub)gradient



DISTRIBUTED STOCHASTIC INERTIAL-ACCELERATED METHODS WITH DELAYED DERIVATIVES 3
computed at x¥) but at an outdated iterate x(*=7). This setup with delayed information is the
same as that in [1]. Also, instead of using a single sample, we can take multiple samples to compute
g®) as the average of the multiple sample (sub)gradients.

Consider a special case, where f(-;¢&) is differentiable for each £ and r(-) = 0. Then the update
n (1.2) becomes xF+1) = x(*) — 0y g®) 1 g (xB) — x(k=1)) Let 8, = B for all k > 1 and for

(67

some 3 € (0,1). Define a recursive sequence by
(1.4) m® = gm* Y 4+ (1 - p)g® vk > 1, with m® =o.
Then the x-update can be rewritten to

(1.5) x(+1) = () _ o (4)

which is often referred as a momentum SGM in the literature (e.g., [20,67])

Why use inertial force or momentum? Different from a standard proximal SsGM, we introduce
an inertial force (or heavy-ball momentum term) B(x*) — x*=1) in the update (1.2). If 8, = 0,
the update reduces to the standard proximal SsGM step. The heavy-ball momentum acceleration
technique was first used in [48]. With the inertial force, a heavy-ball gradient method can mitigate
the zigzagging behavior of a standard gradient descent method and potentially achieve faster con-
vergence. For unconstrained strongly-convex quadratic optimization, it has been shown (cf. [50])
that the heavy-ball gradient method can achieve an optimal convergence rate. The advantage of
using inertia has also been studied for deterministic composite nonconvex problems and stochastic
smooth nonconvex problems. For example, the work [20] studies a more general momentum-based
method, called Quasi-Hyperbolic Momentum (QHM), which includes the heavy-ball momentum as
a special case. For unconstrained smooth problems, [20] gives a local linear convergence result that
suggests the advantage of adding a heavy-ball momentum term in the update of a standard SGM.
In addition, it provides supporting experiments to demonstrate that the optimal inertial parameter
has a positive correlation with the condition number of the underlying problem. Although a heavy-
ball momentum SGM has been extensively used in practice, a theoretical convergence guarantee
is not yet achieved in the literature for nonconvex nonsmooth stochastic problems. We will pro-
vide a novel guideline of parameter setting for the inertial SGM or SsGM along with convergence
guarantee, even if each g*) is computed at an outdated iterate. It is worth mentioning that for
unconstrained smooth problems, a heavy-ball momentum SGM and Nesterov’s Accelerated Gradi-
ent (NAG) are different special cases of QHM [20]. Though beyond the scope of this paper, our
work may shed light on the acceleration effect of general momentum-based methods for nonsmooth
nonconvex problems, such as QHM and NAG.

1.2. Related works. Our method has a few key ingredients, including “stochastic subgradient”,
“inertia”, “nonsmooth nonconvex”, and “distributed delayed”, which differentiate our method from
existing ones. Below we review prior methods that share some ingredients with ours. We list a few
closely-related methods with corresponding ingredients in Table 1.

Heavy-ball and inertial methods. Early advances based on the heavy-ball or inertial momen-
tum acceleration technique can date back to [43,48]. For decades, researchers have been designing
heavy-ball or inertial methods for deterministic optimization [18,30,44-46,68], structured stochas-
tic optimization [19, 31, 32,49, 61, 63], and even in the framework of maximal monotone opera-
tors [4,5,37]. Convergence analysis has been conducted to convex problems and also nonconvex
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Table 1: A comparison of ingredients amongst several algorithms for solving problems in the form of (1.1). In
the second column, “property of F” is to reflect the underlying assumption of F: “w.c.” for weak convexity,
“smooth” for Lipschitz continuous gradient, and “cvx” for convexity. In the third column, “inertia” is to
reflect whether the algorithm introduces inertia. In the fourth column, “composite model” is to reflect the
existence of r in (1.1): “proj.” indicates a simple convex constraint, and “prox.” indicates a proximable
regularizer. In the fifth column, “distributed delayed” is to reflect whether the algorithm can handle a
distributed setting with delayed (sub)gradient information. In the last column, convergence rate results for
nonconvex models are listed: 7 for the upper bound on the delay and K for the total number of iterations.

‘ Method ‘ property of F' ‘ inertia ‘ composite model ‘ distributed delayed ‘ convergence rate ‘

Mirror Descent [1] smooth & cvx no no yes —
AdaptiveRevision [35] smooth & cvx no no yes —
Random Incremental Subgrad. [41] cvx no proj. yes —
AdaDelay [57 smooth & cvx no proj. yes —

AsySG-con [28] smooth no no yes 1 +7/VEK)/VK

PR smooth & cvx yes proj. yes
APAM [66] smooth yes no yes (1+7/KY* +72/VK) VK
SHB [33] w.c. yes proj. no 1/VK
W.C. yes proj. & prox. yes 1+7/VK +7)/VK
This paper smooth yes proj. & prox. yes (1+72/VE)/VK
smooth yes no yes (1+7/VK)/VK

problems. For a convex deterministic model, [59,60] provide last-iterate convergence for inertial
methods. For a convex stochastic model, [40] proposes an inertial mirror descent method and estab-
lishes an O(1/vK) convergence rate result. Under a bounded-gradient assumption, [67] provides
a unified convergence analysis of stochastic momentum methods for unconstrained smooth non-
convex stochastic optimization. [19] incorporates momentum acceleration in SGM and achieves an
optimal oracle complexity result for (1.1) when F' is smooth. The work [58] studies how heavy-ball
technique can help SGM escape saddle points.

Distributed /parallel stochastic methods with delayed (sub)gradient information. There
have been quite a few works about distributed delayed or asynchronous (async) parallel SGMs for
convex or nonconvex problems and SsGMs for convex problems.

Similar to our method, [1] also adopts a master-worker setup. It analyzes a distributed delayed
1+72/VK
VK
maximum delay of stochastic gradient and K is the total number of updates. Under a shared-
memory setting, [51] proposes an async-parallel SGM for strongly-convex problems with a special
HTZT/\/E In K

SGM for convex problems and establishes a convergence rate of O( ), where 7 denotes the

sparsity structure and establishes a convergence rate of O( ), where n is the number
of coordinates. [35] gives delay-tolerant algorithms for async distributed convex online learning
problems. Its algorithms can achieve a regret of O(y/(1+ 7)K) if a uniform upper bound 7 on
the delay is known and O((1 4+ 7)V/K) otherwise. For smooth convex stochastic problems, [6,
57] adapt the stepsize of an async-parallel SGM to the staleness of stochastic gradient. More
precisely, let 7, denote the actual delay at iteration k. The stepsize of the methods in [6, 57]
depends on 7. [57] analyzes its projected stochastic gradient scheme under the assumption that
the delay has a bounded expectation E[rz] = 7 < 0o and a bounded second moment E[77] = Q(72).

The convergence rate is O(imjg/‘/?) if 7 is known and O(%) otherwise. Under the

=2
assumption E[rz] = 7, [6] achieves a rate of O(#ln K) for unconstrained strongly convex
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problems.
Async-parallel SGMs have also been studied for smooth non-convex problems. For exam-
ple, [28] analyzes an async-parallel SGM for unconstrained stochastic problems and obtains a con-

1+T/\/E)
K

vergence rate of O( in terms of the expected value of gradient norm square; [23] analyzes

an async-parallel variance-reduced SGM for a finite-sum structured problem and shows a sub-
linear convergence when 7 = O(1); [66] focuses on async distributed and parallel adaptive (i.e.,

quasi-Newton-type) SGM for unconstrained stochastic problems and gives a convergence rate of
O(1+T/K1/4+T2/\/E)

VK :
lems. For example, [41] proposes an async projected SsSGM and shows an almost-sure subsequence

convergence result but with no convergence rate result.

The distributed/parallel methods mentioned above either adopt a master-worker setup (i.e.,
centralized) or assume a shared-memory setting. Many other works about SGMs or SsGMs are
built on a decentralized setting, where multiple agents are distributed on a connected network
and can only communicate with their neighbors but not a central master agent. Extending our
discussions to the decentralized setting is beyond the scope of this paper. The interested readers
can refer to [13,29,34,64] and the references therein.

Most closely-related works. The methods in [10,33] are perhaps the most closely related to
ours. [10] gives a decentralized projected deterministic subgradient method for weakly-convex opti-
mization. It establishes a sublinear convergence result for the deterministic method. A stochastic
variant is also given in [10] with subsequence convergence but no convergence rate. In comparison
to [10], we incorporate the inertial-force acceleration in a proximal SsSGM to achieve empirically
faster convergence, and in addition, we allow for delayed subgradient and can still achieve sublinear
convergence. [33] proposes a projected inertial SSGM for weakly-convex stochastic optimization.
The method appears similar to Alg. 1. However, its analysis is completely different from ours, and
it does not consider the delayed case. More importantly, its theoretical result is not established on
the inertial-generated sequence. This is explained as follows. The update of the method in [33] is

The studies on delayed SsGMs are still limited and only for convex prob-

(1.6) x5 = Proj (X(k) —aBg® + (1 - B)(x™ — X(k—l))> 7

where Projy denotes the projection onto a closed convex set X. Its analysis is only on the choice

of aff = @(%) for a given maximum number K of updates and 1 — 8 =1 — \/% The sequence

generated from (1.6) is similar to that we generate from (1.2), i.e., inertial-generated sequence.
However, the theoretical result in [33] is not about {x(*)} but on the extrapolated sequence {x*) :=
x(k) 4 %(x(’“) —x( 1)}, There are two potential issues on analyzing the property of {x(*)}. First,
if X # R™, the sequence may not be in X. In fact, X¥) can be far away from X if x(*) —x(=1) £ ¢
as % = /K —11is big. Second, if X = R, it holds x*+1) = x(*) — ag() and in this case, {x*} is
more like a non-inertial sequence, as compared to the sequence generated by the momentum SGM
in (1.5). In contrast, our analysis will be on the inertial-generated sequence.

1.3. Contributions.

e We propose a proximal inertial stochastic subgradient method in Alg. 1 for solving non-
convex stochastic Problem (1.1). The method can tolerate a delay of derivative information
in a distributed environment. To the best of our knowledge, it is the first method that
applies the inertial-acceleration technique in a proximal stochastic subgradient method for
non-convex problems.
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e We provide convergence rate analysis of the proposed method for three problem classes
in the form of (1.1). For each problem class, the method, with an appropriate setting of
parameters, enjoys an O(\/%) convergence rate in terms of the expected value of a gradient
norm square, where K is the number of total iterations. First, when F is weakly-convex

(see Def. 2.1 below) and possibly nondifferentiable and r is convex, we establish the O(ﬁ)

convergence rate by choosing ap = @(\/17) and B = @(ﬁ),Vk‘ < K, provided that the

delay 7 follows a static distribution and is bounded by 7 = O(1). Second, when F' is
smooth but possibly non-convex and r is convex, we obtain the O(ﬁ) convergence rate

by the same choice of aj and [ as in the first case, under a relaxed condition on 7, i.e.,

7 = O(K'/*) for all k. Third, for the case of a smooth F and r = 0, we obtain the O(ﬁ)
convergence rate with the choice of ap = ©(-L) and g, = 8 € (0,1),Vk < K, provided

VK
that 7, = O(V/K) for all k. Hence, the proposed method can tolerate a larger delay if the
problem has a nicer structure.
e We conduct numerical experiments of the proposed method on three applications to demon-
strate the effect of the inertial acceleration and also to demonstrate the higher parallelization
speed-up by the asynchronous implementation over a synchronous counterpart.

1.4. Notation and organization. We use lower-case bold letters x,y, ... for vectors. A super-
script ) is used to specify the iterate, i.e., x*) denotes the k-th iterate. We use || - || to denote
the Euclidean norm of a vector and also the spectral norm of a matrix. We use the big-O notation
with the standard meaning to compare two quantities that can both approach to infinity or zero.
The randomness of Alg. 1 comes from the samples {}r>1. In our analysis, we use Ej for the

conditional expectation with the history until the k-th iteration, i.e., Ex[-] = E { [{& ;:11} .
The rest of the paper is organized as follows. In section 2, we give some basic concepts and
preliminary results. The detailed analysis and convergence rate results are shown in section 3-5

for three different problem classes. Numerical results are given in section 6. Finally, section 7
concludes the paper.

2. Preliminaries. In this section, we give some basic concepts and preliminary results that will
be used in our analysis. For a function ¢ : R” — RU {oo}, we let d¢(x) denote its subdifferential
at x, i.e., the set of subgradients, which consists of all vectors v satisfying

P(y) 2 o(x) +(viy —x) +o(lly —x[) asy—x
The definition and results below can be found in [11, 14].
Definition 2.1. A function ¢ is p-weakly convez if ¢(-) + 5| - ||* is convez for some p > 0.
Lemma 2.2. If ¢ is p-weakly convez, then

(2.1) 3(y) 2 ¢(x) + (v,y —x) = §[ly = x|*,¥x, y € dom(¢), Vv € 9 (x),
and
(2.2) (v—w,x—y)>—plly— x||2 ,Vx,y € dom(¢), Vv € 0p(x),w € 0¢(y).

The class of weakly-convex functions is rather big. It includes all convex functions and all
smooth functions. In addition, the composition function h(c(x)) is also weakly-convex, if h : R™ —
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R is convex and Lipschitz continuous and ¢ : R™ — R™ is smooth. Specific applications that have
weakly-convex objectives include nonlinear least squares, phase retrieval, robust PCA, robust low
rank matrix recovery, optimization of the Conditional Value-at-Risk, and graph synchronization.
More examples can be found in [14].

A key tool used in recent works (e.g., [2,10,11,33,39]) about stochastic weakly-convex mini-
mization is the Moreau envelope [36], which is defined as follows.

Definition 2.3. For a p-weakly convex function ¢ and X € (0,1/p), the Moreau envelope ¢y (+) is
defined as

(2.3) #x(x) = min {o(y) + 3 Iy - xI*} .

The Moreau envelope is useful to characterize near-stationarity of a point x because of the
results in the following lemma. From (2.4), we notice that if [ V¢, (x)]| is small, then X := prox, 4(x)
will be a near-stationary point of ¢ and x is close to X.

Lemma 2.4. Let ¢ be p-weakly convez, then for any A € (0,1/p), the Moreau envelope ¢y is
smooth with gradient given by

Vor(x) =17t (x — i),

where X := prox,,(x). Moreover,
(2.4) [x =] = AM[Vor(x)ll, ¢(x) < é(x), and dist(0,9¢4(x)) < [[Vor(x)]]-

Besides the class of weakly-convex functions, we will also consider smooth functions in our
analysis, for which we are able to obtain stronger theoretical results. By slightly abusing the
notation, we also use p to denote the Lipschitz constant of a smooth function, as a p-smooth
function must be p-weakly convex.

Definition 2.5. A function ¢ is p-smooth, if it is differentiable, and

IVé(x) = Vé(y)ll < pllx —yll, Vx,y € R™.

If ¢ is p-smooth, then

(2.5) 6(x) — d(y) — (Vo(y),x —y)| < llx — y|I*, Vx,y € R".

3. Convergence analysis for nonsmooth weakly-convex problems. In this section, we analyze
Alg. 1 for problems in the form of (1.1), where F' is possibly nondifferentiable. Throughout this
section, we make the following assumptions.

Assumption 1 (weak convexity). F'is p-weakly convex with p > 0.

Assumption 2 (unbiased subgradient). g*) is an unbiased stochastic subgradient of F' at x(k~7%)
for each k, i.e., Eg, [g(k)] c 8F(X(k‘7‘rk))'

Assumption 3 (bounded subgradient). There is a real number M > 0 such that Ee|VF(x;€))? <
M? for all x € dom(r) and all subgradient V f(x; &) € 9f(x;&).
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3.1. Preparatory lemmas. For a fixed p > p, we denote

(3.1a) vk = Ee, [g(k)] e OF (x*=m)), x(F) = proxwp(x(k)),
and choose
(3.1b) v#) e oF (%W such that p(x® — x*)) € or(x*)) + ¥,

Note that the existence of v(¥) is guaranteed from the definition of X*). By Assumption 3, it holds
that

(3.2) Ee, lg®” < M2, [vOIP < M2, and [¥V]? < M2,

The next result is from [11, Lemma 3.2]. Its proof only relies on the definition of X(*) and the
choice of ¥(¥). Hence, the result still holds for our case, though the algorithm in [11, Lemma 3.2]
does not have an inertial term in its update.

Lemma 3.1. Let X% and ¥*) be defined as in (3.1a) and (3.1b). Then
(33) Xk = prox,, ., (akﬁx(k) — v P 4+ (1 - akﬁ)ﬁ(k)).

The next lemma extends the hypomonotonicity property of a weakly-convex function, in order
to deal with the case with delayed subgradients.
Lemma 3.2. Let X% v(¥) and ¥%) be defined as in (3.1). Then under Assumption 1, it holds
_ <X(k’) —xk) (k) _ g(/f)>
(3.4) _ _
< F(x(k)) — F(X(kfm)) + ng(k) — X(k)H2 + gHX(kfm) — X(k)||2 _ <X(k) — X(k*"'k)7v(k)>‘

Proof. From the p-weak convexity of F, it follows that

(3.5) (x®) —x®h) Fk)) < p(x®) — FEF) 4 2||x®) - x*)|)2,
and
(3.6) _ <X(kfm) — g(k)7v(k)> < F(g(k)) — F(xF=m)) 4 g”x(k*ﬂc) _ g(k)H?

Hence, we obtain the desired result by adding the two inequalities in (3.5) and (3.6), and also
noticing

_<X(k) %) v —_v®) > - <x 7g(’€)> _ <X(k*7'k) _ i(k),v(’“)> _ <x(k) _ X(k*Tk)’V(k)>'
This completes the proof. ]

The result in the next lemma establishes a descent property of the iterate sequence from Alg. 1
by relating it to the virtual sequence {X(*)}. It extends the result in [11, Lemma 3.3].

Lemma 3.3. Let p € (p,2p] and oy € (0,1/p] for all k. Under Assumptions 1-3, the iterate

sequence {x®)} from Alg. 1 with stepsize sequence {ay} and inertial parameter {8} satisfies
(3.7) Eg, [x*HD — W12 < (1= 205(5 — p) + ) [x*) = xB||* + 2+ 1) p7|xW) — x(k=D)12
+ 804%M2 + 20%(1 — akﬁ)é\k,

where X¥) is defined in (3.1a), ¢ is any positive number, and

(3.8) & := F(x®) — F(xk—m)) — Bllx®) —x®))12 4 £xk=i) — x(*)||2 — (x(*) — x(k=7) (k)
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The next lemma will be used to bound Z ~ L xEHD) — xR)||2 for any given integer K.

Lemma 3.4. Let {x k)} be generated from Alg. 1. Under Assumptions 1 and 3, it holds for any
v > 0 that

(8.9) (17— %2~ Z)Ext) —xM2 < g ($(x®) — p(x+1)) + GE[xh) k=2 4 %3,

Proof. By the convexity of r, we have (x®) —x*+1) vr(xF+D)) < p(x*)) —r(x*+D). In addition,
it follows from (1.2) that 0 € adr(x*F+D) 4+ xt+D) X(k) + ag® — B (x® — x(+=1)) Hence,

(3.10) <X(k+1) —x®) xEH) _ x®) 4 g®) g (xF) — x (k= 1))> < ap (T(X(k)) _ T(X(k+l))).
By the p-weak convexity of F', it holds

<X(k+1) _ x(k), @F(x(k—i-l)» > F(X(k+1)) _ F(x(k)) _ pHX(k'H) (k)H2a

2
and thus
(D~ %) 0y g®)Y) > ap (x B+ _ x®) g _ G (kD))
3.11
( ) + ak(F(X(k-l—l)) o F(X(k)) o gHX(k-i-l H )

Plugging (3.11) into (3.10) and rearranging terms give
(1 2) x40 — x92 < o () — G(xH)) + By (k) —x 8 xB) — x5
_ ak<x(k+1) _ X(k)’ g( ) _ VF(x(k+1))>_

Now using Assumption 3 and the Young’s inequality, we have

(3.12)

(1 =SB — x| < B (6(xM) - g 1)) + GE(xkH) - x W2 4 x¥) - x6-1 |2

+AE[x+D) - (B2 4. 2R

Rearranging terms in the above inequality gives the desired result. U

3.2. Convergence rate results. In this subsection, we establish the convergence rate results of
Alg. 1 for nonsmooth weakly-convex problems by using the lemmas in the previous subsection. We
first give a generic result as follows.

Theorem 3.5. Given a positive integer K, let {)(UC)}I,CK:1 be generated from Alg. 1 with a stepsize
sequence {ay} and inertial parameter sequence {f}. Under Assumptions 1-3, let p € (p,2p| and
assume ay, € (0,1/p] for all k. Then
(3.13)

)\ (|12 2p * p K 2 -
E[[Vr/5(x ") S S [E[61/5(x ) — 6] + § T4S,, (2 + 52 BRE[x®) — x|
+4pM? S, 0F + 201, akp(l - arp)BIE
where ko > 1 is an integer, T is randomly selected from {ko,..., K} by the distribution

(3.14) Prob(T = k) = =g—,Vk =ko,..., K,
Z] ko Qi

and

(3.15) & = F(x®) — F(xF=m)) 4 (£ + EP—)HX (k=) — x(k)||2 — (x(k) — x(k=7) y(R)),
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Proof. By the definition of ¢, in (2.3) and Lemma 3.3, we have

Eeg, [¢1/5(x* )]

< Eeg, [¢(x®) + §|lx*+D) — x(k)12]

< G&®M) + [(1 — 200 — p) + cx) ¥ — K2 1 (24 L)B2 ) — xF-D|2 4 802012
+ app(l — agp)&i

= ¢1/5(x®) = 8 2o (p — p) — i) [x®) = xP |2+ B2+ 1) BE[Ix*) — xF=V |12 4 dpai M?

~

(3.16)  + agp(l — ayp)&k.

where &, is defined in (3.8). By the Young’s inequality, we have
_§||X(k) —xh)12 + §||X(k—m) —xh)|12 = §||X(k:—m) —x0))12 4+ p(xb=me) — x(B) x(k) _ 5 (k)
< (54 75) IxE) = x®|P + 222 x® - 3B,
Using the definition of & in (3.8) and substituting the inequality above into (3.16), we have from
1 — agp < 1 and the definition of & in (3.15) that

Eg, [01/5(x"+)]
< G1yp(x®) =8 (Ban(p — p) — ) [IxB) = xP2 + B2+ 1)B2|Ix*) — x*=D|12 + dpaj M?
(3.17) + ap(l — agp)E.

Taking full expectation and summing the inequality in (3.17) over k = ko, ..., K, we have

E[¢1/5(x" V)]
< E[pyp(x*N)] — 830, (Baw(@ — p) — ) Ellx®) —x®)12
+ B3, 2 DBE[xW) — xED|2 4+ apM2 ST o 4+ Y arp(1 — k) Ei

Choose ¢ = %ak (p — p) for all k > 1 and rearrange the above inequality. We obtain

2ol s B x® — xB)|2 < gy 5(x*0)) — ¢*] + 4pM2 Y, o

(3.18) _ h ~
+ 8 i 2+ 5y BREIX®) — xED2 4 33 anp(1 — axp)E[E],
where we have used the fact ¢ /5(x) > ¢*,Vx € dom(r). From Lemma 2.4, we have %) —x®)||2 =

||ng1/ﬁ(x(k))||2/ﬁ2. Hence, plugging this equation into the left-hand side of (3.18) and using the
choice of T in (3.14), we obtain the desired result. O

To show the convergence rate in (3.13), it suffices to bound the summation terms on E||x*) —
x* =112 and the delay term E[&;]. If the delay is arbitrary, it is impossible to have convergence,
and thus a certain condition on 73 is needed. For nonsmooth problems, we make the following
assumption.

Assumption 4 (stochastic delay). There is an integer 7 such that the staleness 75 follows the
distribution
Prob(ry = j) = pj, for j=0,1,...,7, Vk.
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If the computing environment does not change during all the iterations, the assumption will hold.
In addition, one can track the delay at the master node and thus estimate the probability. However,
we do not need to know the values of {p;} or 7 in the computation and analysis, but we only require
their existence. A similar assumption has been made in [22,47,57].

In the rest of this section, we show convergence rate results separately for the case with a fixed
stepsize sequence and the one with a varying stepsize sequence.

3.2.1. Convergence rate with a fixed stepsize. In this subsubsection, we consider the case
where ap = a1 and 8 = (1 for all £k > 1. In this case, it is easy to bound the summation term
about E|x®*) — x(*=1)|12,

Lemma 3.6. Given a positive integer K, let ap = % Vk=1,...,K for some a > 0. Also, let

Br = K1/4,Vk‘ for some nonnegative 8 such that B 2\/%. Then under Assumptions 1 and
3, it holds
[0} * 042 2
(3.19) S BllxD —x® |2 < —6r (¢(xM) — ¢7) + hE, where v = (1 - 5% — Za)-
Proof. Let v = 3 (1 — % - K?/‘l) in (3.9) and sum it up over k. We have
(=7 =5k ~ m7e) T Eux““” - xW?
a 2 2
< WE(d)(X(l)) - ¢(X(K+1))) 2K1/4 Zf 1EHx(k —x(k=D) ”2 iw .
Since x(0 = x(M and ¢(xE+D) > ¢* the above inequality together with the choice of  implies
the desired result. We complete the proof. Il

When a fixed stepsize sequence is used, we can bound Zle E[€k] as in the next lemma.
Lemma 3.7. Let & be deﬁned in (3.15). Given a positive integer K, let ay, = J%,Vk =1,....K
Vk for some nonnegative B such that K[f/‘l < 2\F Suppose

for some a > 0. Also, let B = K1/4,

that F(x) is upper bounded by CF for all x € dom(r). Then under Assumptions 1, 3, and /, we
have

S ELE] < rma {0, ~F(O)} 4 7Cr 4 72(8 1 £2) (5 (6(xD) — 07) + 2247)
+M7'\/E\/ﬁ(¢ D)= ¢7) + a2M2,

(3.20)

where v = 3 (1—2\—ﬁ K?/‘l)'

Now from Theorem 3.5 and Lemmas 3.6 and 3.7, we can easily show the following convergence
rate result.

Theorem 3.8 (convergence rate with fixed stepsize).  Under Assumptions 1-3 and j, let p €
(p,2p] and K be the mam’mum number of iterations. Let {x*)} be the sequence from Alg. 1 with

£ and B = Vk = ., K for some a > 0 and nonnegative 8 such that % € (0,1/p]

QO = \/E K1/47
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and % < 2\/» Suppose that F(x) is upper bounded by Cr for all x € dom(r). Then

E|Vorpx D)’ < oz [’5(2+ 2/ B (o (p(xD) — ¢7) + A2 ) + 4pM2a?

 0150) = 0 + M [ () — o) + |,

where v = (1 — % - K?/‘l) and T is randomly selected from {1,..., K} by (3.14).
Proof. Notice Zle ap = avV'K and Ele a2 = o%. Then the inequality in (3. 21) directly follows
by substituting (3.19) and (3.20) into (3.13) with ky = 1, and also noticing 1 — 5& < 1. O

\/> =

Remark 3.9. The result in (3.21) indicates a convergence rate of O(1/vK). For the no-delay
case (i.e., 7 = 0), the assumption F(x) < Cr,Vx € dom(r) is not needed. The delay case has the
same-order convergence as the no-delay case. However, their constants are different. Compared to
the no-delay case, the delay one has a few additional terms dependent on 7. The term dependent
on 7 in the second line on the right-hand side of (3.21) is negligible if K is a large number, but
the term in the third line will not vanish as K — oo. In other words, the delay always has a
non-negligible effect on the convergence rate. To take a clearer look at the effect, let p = 2p, B =0,
and K — oo Then v — 5 , and the terms enclosed in the big square brackets of (3.21) roughly
equal ¢y /ﬁ( ) — "+ 8pa2M 2 + 4pa®M?1. Hence, the delay can slow down the convergence rate
by - oy (x<1>;—7 5 (Apa D) This indicates that the delay will have a smaller effect if p is smaller

(i.e., F'is closer to convexity) or if « is smaller (i.e., a smaller learning rate is used).

3.2.2. Convergence rate with varying stepsizes. When oy, varies with k, >, o ((b(x(k)) —
qb(x(kﬂ))) may not be a telescoping series any more, so we cannot directly obtain a bound as

in (3.19) by summing up (3.9). Below we make an additional assumption and show a bound on
SO Ix®D — x))12 when a = a/VE for all k > 1.

Assumption 5. At least one of the following conditions holds.

1. ¢ is bounded on dom(r), i.e., there is Cy such that |¢(x)| < Cy,Vx € dom(r).

2. The function r has the form of r = r; + r9, where 71 is the indicator function of a closed
convex set X C R", and rg is convex. In addition, there is M, > 0 such that ||v| < M, for
all x € X and all v € Ora(x).

In condition 1 of Assumption 5, the boundedness of ¢ can be guaranteed if ¢ is continuous and
dom(r) is compact. The second condition trivially holds if 79 = 0, and it also holds if X = R" and
ro is a Lipschitz continuous function such as a certain norm.

Lemma 3.10. Under Assumptions 1 and 3, let {ax} be a positive nonincreasing sequence and
aq < 2. Also, let B, < B,Yk >1 for some B such that 0 < 3 < 1— 2L Then if the first condition
n Assumptwn holds, we have for any positive integer K,

2 2 ~
L’“Jy , where v = %(1 — % —ﬁ).

K 20, C, K
(3.22) I R e D

Proof. When condition 1 of Assumption 5 holds, i.e., |¢(x)| < Cp,Vx € dom(r), we have from the
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nonincreasing monotonicity of oy that

TE L ar (M) — o(xF+D)) = a16(x V) + T (e — ap_1)d(xM) — a(xFHD)

(3.23) K
< alC¢ — Zk:Q(ak - Ozk,1)0¢ + OéKC¢ = 20410¢.

Hence, let v = (1 — %2 — 3) in (3.9) and sum it up over k. We have by v < 1 — v — L
2 2
Betfiit v > 1 that

K K 2M2
¥ Sy D — x®j2 < 20, Cy + AL S

which apparently implies the desired result. O

Lemma 3.11. Suppose that Assumption 3 and condition 2 of Assumption 5 hold. Let {x(k)}
be the sequence from Alg. 1 with a stepsize sequence {ax} and inertial parameter {Bi} such that
B < B < 1. Then for any positive integer K,

(3:24) S IR - x B2 < (M2 + M2 I S o2,

We still need to bound 34, ayp(1 — oy p)E[Ex] in (3.13).
Lemma 3.12. Under Assumptions 1-5, let p € (p,2p] and oy = W’Vk > 1 for some 0 < a <

1/p. Also, let B, = min {B, ];%},Vk:, for some B such that 0 < B < 1— %2, Furthermore, assume
|F(x)] < Cp,Vx € dom(r). Then for any integer K and 1 < ko < K, it holds

(3.25) R, w1 — aup)E[E] < 204,07Cr + ako725(§ + £5) (C1 + Co0?(1 + In K))

+ MTﬁ\/Zszko a2,/C1 + Cra%(1+ InK),

where & is defined in (3.15), and Cy and Cy are given in (3.27) below.

Now we are ready to show the convergence rate result for the case with varying stepsize.

Theorem 3.13 (convergence rate with varying stepsize). Under the same assumptions of Lemma 3.12,
let {x*)} be the sequence from Alg. 1. We have

E(| Ve /p(xM)]|*

< e \ﬁ) [E[@/p(x(’fo)) — ¢*] + 4pM2a2(1 + n K — In ko)
(252 )(Cl +CQO[ (1 —FIDK))

+ QﬁpTCF + mT ﬁ(? + ﬂ) (Cl + 02042(1 + IHK))

(3.26)

+aM7pyI+In K — Inkor/C1 + Coa2(1 + In K)} ,

where T is randomly selected from {kg,..., K} by (3.14) and

(3.27a) Cr = 1_4%%;37 Coy = %, if condition 1 of Assumption 5 holds; or,
2
(3.27b) Cy =0, Cop=(M?+ M2)4(1+B if condition 2 of Assumption 5 holds.

(1-p2)2’
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Proof. By the choice of {ay} and {fi}, we have

~ 2
S 2+ 2 ) BEx®) —xD|2 < (252 4+ 22 S ) — b2,

which, together with (3.22) and (3.24) and also Lemma A.2 with a = 1, gives
— ~ 2
YN m)ﬁiEHx(k) — x| < 8252 + 25) (Cr + Ca Y, of)

a(p—p)
(3.28) < B2 + 2 )(C) + Cha?(1 + In K)),

a(p—p)

N Nl

with Cy and Cy defined in (3.27). In addition, Y4, ax > o [;5 Jrde = 2a(VE +1 - Vko)

and ZszkO ar < a?+a? klo( 1dz = o*(14+1In K —Inkp). Hence, substituting (3.25) and (3.28) into
(3.13) gives the desired result. O

Remark 3.14. For the no-delay case (i.e., 7 = 0), we can set kg = 1 in Theorem 3.13; then the
assumption |F(x)| < Cp,Vx € dom(r) is not needed anymore. When 7 > 0, the negative effect
by the delay will not vanish as K — oo, similar to what we observe for the result in Theorem 3.8.
Suppose that we have an estimate on 7 and K > 71, We can set kg = Q(7%). Then the terms
caused by the delay will near-linearly depend on 7.

4. Convergence analysis for nonconvex composite problems. In this section, we analyze
Alg. 1 for problems in the form of (1.1), where F' is smooth and r is a possibly nonsmooth convex
function. Instead of the p-weak convexity, we assume the p-smoothness condition on F. Here,
we abuse the notation of p, which is used as the weak-convexity constant in the previous section.
Nevertheless, if F' is p-smooth, it is also p-weakly convex. The stronger assumption will enable us
to obtain better convergence result in terms of the effect caused by the staleness of the gradient.

Assumption 6 (p-smoothness). F(x) is p-smooth in dom(r), i.e.,
IVE(x) = VF(y)|| < pllx =y, Y%,y € dom(r).
When F is smooth, it is standard to replace Assumption 3 by the one below.

Assumption 7 (bounded variance). There is 0 > 0 such that E¢||V f(x;¢) — VF(x)||? < o2 for
all x € domr.

In addition, when F' is smooth, we only need a boundedness condition on the staleness but not
a static distribution anymore.

Assumption 8 (bounded staleness). There is a finite integer 7 such that 7, < 7 for all k£ > 1.

We can track the delay and ensure the boundedness of delay by discarding too outdated sample
gradients.

Lemma 4.1. Under Assumptions 2, 6, and 7, the iterates {x(k)} from Algorithm 1 satisfy
Eg, |l — VE(x®)[? < 0® 4 p?[x*) — xW%,

Proof. When F is differentiable, the condition in Assumption 2 becomes E, [g*)] = VF(x(*=7)).
Hence,

B, g% — VF(x)|? = Eg, g — VF(x*) + VF(x*~)) - VF(x)
— Eq, g% — VF(x®)|2 4 [V F(x57) = VF ()2
< %+ R - <2,
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where the second equality follows from E¢, (g®) — VF(x*=™)), VF(x*k=)) - VF(x¥))) = 0, and
the inequality holds by using Assumptions 6 and 7. This completes the proof. O

Lemma 4.2. Under Assumptions 2, 6 and 7, let p > p and oy, € (0,1/p] for all k. Then the
iterates {x®)} from Algorithm 1 with a stepsize sequence {oy} satisfies

Be, [ — 302 < x™ —xW? — (Jor(p — p) — ) [x) —xW))?

4.1
“.1) +(2+ é)ﬁi”x(k — x(=1) |]2+a202+2(ak+ =) p° (| F=e) — x(k)||2]

where ¢y is any positive number, and X*¥) is defined in (3.1a).
Using the previous two lemmas, we show a convergence result below for generic parameters.

Theorem 4.3. Under Assumptions 2, 6 and 7, let p > p and oy, € (0,1/p] for allk > 1. Given a
positive integer K, let {x(k)}szl be the sequence generated from Algorithm 1 with a stepsize sequence
{ou Y| and inertial parameter {By}. Then

EIVe1 5T < T [BYL (2+ i) BEEIX — x-D))2

(4.2)
¢1/p(x(1)) — ¢+ o p Zk 10% +PP Zk 1 (O‘k +3 ak )EHX (k=) — X(k)Hz

where T is randomly selected from {1,..., K} by (3.14).
Proof. By the definition of ¢, in (2.3) and Lemma 4.2, we have

Ee, [¢1/5(x"1)]
< g, [o(xW) + 5D — x®)2]
< (&) + 5 |Ix®) = %02 — (Ja(p = p) — e [xH) =%V
+ (2+ i)ﬂng(k) —xtD)2 + 202 + 2(a? + 2 £ ),0 || (k=) — x(k)HQ]
(43) = ipx ('“)) — 5Gar(p—p) —cr)x® — xR 4 5( + o) BRllx™®) — xt=D2
—i—pa’“ +2(ak+ )pp [|xF=e) — x(k))|2,
Take full expectation on both sides of (4.3) and sum up it over k =1,..., K. Then we have

E[¢1/5(x )]
< E[p1/p(x)] = § 5m; (Gan(@— p) — ) Elx® — B2+ T30, (24 L) BFE[x®) — xE-1)|2
(44) + %L Y00 0f + 702 i (oF + 25 Ellx ) — x|,

Choose ¢, = tay(p — p) for all k and replace |x®) —%*)||2 by ﬁ%HVd)l/p(x(k))HQ from Lemma 2.4.
We have from (4.4) that

E[¢1/5(x"+V)]
< E[p1/5(xM)] - Zk Lok — PE[Ve sx®) 2+ 250 (2+ 5 o) BRE[x®) — xE-D)12
(45) + UTE Zszl ai +pp Zk:l (ozk + ;fp)EHx(k*Tk) — x|




16 YANGYANG XU, YIBO XU, YONGGUI YAN, AND JIE CHEN

Rearrange terms in (4.5) and notice ¢; /p(x(K +1)) > ¢*, we obtain the desired result by the definition
of T. O

To show the convergence rate, we still need the following result to bound >, -, E||x*+1D —x(k))|2,

Lemma 4.4. Let {x(k)} be generated from Alg. 1. Under Assumptions 6 and 7, it holds for any
v>0,
(1= = %2 = BB ) — x |2 < g, (9(x ) — 9xHD)) 4 G x8) — xb-D)2
) NG
Proof. By the p-smoothness of F' and ay, > 0, it holds
(@) an(FGMH) = PG < ag () — x 8, TFGO)) 4+ ) - xB)2).

Also notice that (3.10) still holds. Hence, we obtain, by adding (3.10) and (4.7) and rearranging
terms, that

(1 — 22) [l — x P2 < (p(x ™)) — G(x*FD)) + e (xFH) — xB) T P(x*)) — g*))
+ B(xk D) — x(k) x(k) _ (k=1

By the Young’s inequality, we have for any v > 0,

(4.8)

a2
(4.9) o (x0HD) — x®) TF(xM) — g®)) < y|xEHD) — x0)|12 4 5| VF(x0) — g®)]2,
and
(4.10) Bro(x 1) — x(B) (k) _ (k=D))< B (I (kD) — (0|2 4 [ x(K) — x(k=1))12)

Plugging (4.9) and (4.10) into (4.8) gives
(1— 2%2)||x (k1) _ x (k)12 < ak(¢(x(k)) _ ¢(x(k+1))) + |[x D) — x(k)||2

(4.11) e
+ EIVE(x®) — g® 12 4 e ([t — x| 4 ||xck) — xE=1)2)

Now notice Eg,[|[VF(x*)) — g®|? < 2|VF(x®) - VF(x*)|2 4 2B, |[VF (x*~)) — g®)|2
and use Assumptions 6 and 7. We obtain the desired result by taking a conditional expectation
about & over both sides of (4.11) and rearranging terms. O

Now we are ready to show the convergence rate result.

Theorem 4.5 (convergence rate with fixed stepsize). Under Assumptions 2, 6, 7 and 8, let p > p
and K be the mazimum number of iterations. Choose oy =

\;}? and B, = % for some a > 0 and

B >0 such that 7 := % — 23’% — m;”Q — K[f/‘l > 0. Let {x®)} be the sequence from Alg. 1. Then

IEHV¢1/ﬁ(X(T))H2 W[¢l/p(x Dy —¢* + U'm
(4.12)

+1 (P + B o + 700 (5 + Goim)) (FrE00) =67 + o) .

where T is randomly selected from {1,..., K} by (3.14) with ky = 1.
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Proof. With ap = ﬁ and G, =
up over k =1 through K to have

G~ ok ~ ) zf B = x B < FeB(o(xM) — o(x D))
+ 57071 Do Ellx® — xFD|2 4 o2 57 (2R [x®) — xE=m)|12 4 62)

K1/4, we take full expectation over (4.6) with v = 3 and sum it

Notice that x(© = x®) and by Assumption 7, it holds
(4.14) e®) —xt=m)||2 < 7 377 (xR — x (2,

Hence, we have from (4.13) by rearranging terms and using ¢(x) > ¢*,Vx € dom(r) that

o T2Ot2 2 o
(415) (3 5% — 7% — gin) Tim Bl —x WP < ZE(g(xV) - ¢7) + a’o”.
Therefore,
§ 30 (24 =) BREIx ) — x B0 4 725p? 70| (0F + 22 ) Efx ) — X812
P —= K _
= §(2+%)T+T Pp (*er)) > E[x* —Xk b2

2=~

(116) < 5 (§2+ 25) T + 7 (¢ + Geiivm)) (FRBlo6) - 07) + o),

where the first inequality follows from (4.14), and the second inequality is from (4.15) and the
definition of 4. Now plug (4.16) and the choice of {a4} into (4.2) to obtain the desired result. [

Remark 4.6. We make a few remarks here about Theorem 4.5. First, in the proof, we take

v = l for simplicity while using (4.6). The analysis goes through for any v > 0 such that 1 —
v — 23& - T;?y‘ifz K?M > 0. Second, we see from (4.12) that a positive 7 will slow down the

convergence but its effect will be reduced in an order of K -1 Hence, if K is big enough such that
K'Y4 > 7. then the effect caused by the staleness is negligible.

The O(\/l—?) convergence above is established by using a fixed stepsize sequence. We can show
a similar result for the choice of ay = @(ﬁ) by assuming condition 1 of Assumption 5. The proof
is given in Appendix B.

Theorem 4.7 (convergence rate with varying stepsize). Suppose Assumptions 2, 6, 7 and 8, and
also condition 1 of Assumption 5 hold. Let p > p, ap = \/ﬁ and B = min {B, W}, for
all k > 1, for somea >0, >0, 8>0, and a > 1 such that

720202

(4.17) Fi=3(1-22 g2 2rray) 5

Let {x®)} be the sequence from Alg. 1. Then,

S(x(M)||2 4p _(x() _ p* 1 & pa atK=1
EIVé1x"* < carvireva [qbl/p(x ) — ¢* + (1+1In )
(4.18)

((52 ) 4+ 70 (% + p))) (01Cs + 020?(1 + In SEE=LY) |

where T is randomly selected from {1,..., K} by (3.14) with ky = 1.
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Remark 4.8. When there is no delay, i.e., 7 = 0, we can choose a = 1 and obtain a convergence

rate of é(ﬁ) When there is delay, i.e., 7 > 1, (4.18) with a = ©(7*), which can ensure (4.17),
gives a rate of @(W \ﬁ ( (WV1+% =+ Vi = ) In this case, the delay will have a

negligible effect on the convergence speed if 7 = o( K1 4

5. Convergence analysis for smooth nonconvex problems. In this section, we consider the
case where r = 0, i.e., a non-regularized smooth problem. For this special case, we are able to show
a stronger result under the same assumptions as we used in section 4, in the sense that the delay
has a weaker effect on the convergence speed. However, the analysis is significantly different from
those in the previous two sections. Throughout this section, we let

(5.1) Br = 5P, for all k > 1 and for some 3 € (0,1).

Then the update in (1.2) reduces to (1.5) with m-vectors defined in (1.4). We declare the following
notation, as they appear extensively in this section:

(5.2) u® = VExF ™) and uy, = E|[lu®™|? for all k > 1.

With the setting in (5.1), we define the following quantities that are critical for bounding the
staleness:

_ min{7p—1,k—j-1} k—j—1—1 min{ry—1,k—j—1} jk—j—]— 1
(5:3) O =210 g1 77T and () = 30 37

Lemma 5.1. Lett € (0,1), we have the following results:

(5.4) wk.(t)_{l_ltktj ifj=k—m+1,
4) m(t) =

St i j <k - g

Lemma 5.2. Let {x®)}r>1 and {m®)},51 be generated from (1.5) and (1.4). Under Assump-
tions 2 and 7, it holds for k > 1,

(5.5) Ellm® |2 < (1 - B) 5, 859wy + (1 - B2 Th_, 5209, + U=0F 02,

(5.6) E[|x k=) — x 02 < ST 0, S5 O jug + Y1 07wy + 02 Y167

In the remaining analysis, we follow the analytical framework of [67]. We define an auxiliary
sequence z*) as follows:

Recall x(© = x50 clearly, z(V) = x(1),

Lemma 5.3. Let z%) be defined as in (5.7) and ag = ay. We have for k > 1,

(5.8) 2040 2 = 2 (1 o fag ) (5D — x) — s g

and

(5.9) ||VF(Z(k)) _ VF(X(k))H < %Hx(k—l) _ x(k)H-
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Now we are ready to show the main result. We first show the convergence by imposing gen-
eral conditions on {ax} and then specify the choice of the parameters that satisfies the imposed

conditions.

Theorem 5.4. Given a mazimum number K of iterations, let {x(k) szl be generated from Alg. 1
with a non-increasing positive sequence {ax}5_,. Let %) be drawn from {x(k)}i{:1 with probability

(5.10) Prob(x¥) =x®)) = 2 vk =1,... K.

*l]

Under Assumptions 2 and 6-8, if for all k > 2,

(5.11) (1 - ar/ar-1)® < 5125,
and for all j > 1,
2

3pa; T(r—1)aia; (r—1)a? o} &5 2(1+5p)5*
(5.12) 1 + 0" | S+ e aor oot |t e S b

then it holds

o (1+5
E||VF (x| < i /3)42k 1ak[ (1= Ek 1 OOtk 1} T G p)ﬁ Zk 2 0%y

K 2 4(1-p)[F(x1)— lﬂfo(X)]
+ 0D k1 O‘k} + S an

(5.13)

Proof. By the p-smoothness of F it follows from (2.5) that
0< F(z(k)) _ F(Z(kJrl )+ VF(Z ) (z (k+1) _ Z(k)) + gHZ(IHl) _ Z(k)HZ
= F(z®) — F(zt)) 4 VF(x®) T (2D — z(k)
(5.14) F(VEED) ~ VEO)T (@) 509) 4 g+ — 502

Taking the conditional expectation and using (5.8) and Assumption 2, we have from (5.14) that

0 S Ek[F(Z(k)) — F(Z(kJrl))] + VF(X(k)) ( (1 — ak/ak 1 ( (k=1) _ X(k)) — %u(k))
+ (VF(z®) - VE(x®))T (1 5 (1 — o /oy D(xE=D — x(®)) — fykﬁu(k))
(5.15) pEkH1 (1 — ag/ag— 1)(X(k b X(k))—ﬁg k)H .

We bound the right-hand side of (5.15) as follows:
e in the first line of (5.15), applying the Cauchy-Schwarz inequality gives

«a 2 _
F )T (1o 1) (D) < %(1—W:>2HVF<X<’€>>H%f_ﬁux(k b

e in the second line of (5.15), it follows from (5.9) and 0 <1 — J*— <1 that

2
(VF(2®) = VF(xW)T 51— ap/a-1) (x* —x*)) < (1”,65)2 S

and in addition, by the Cauchy-Schwarz inequality,

(VF(E®) ~ VEE®)T(~25u®) < p- 12 xlb=) - x O 2 )]

k)12 pai
< )H 2(1_%)2 u

2
< st ) — x 2

12
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e in the last line of (5.15), using the Young’s inequality gives

BBk | 125 (1 k1) (x* D) —x(9)) — 2 g B2 < 250 15 (=1) _xc(B)2.4 . pak 2Exllg®™ 1%
e furthermore, by Assumption 7, we have
Exllg™|* = Exl|VF (¥ ™5 6) —u® |2 4+ [u® [ < 0% + [,

Substitute the above four items into (5.15), combine like terms, and take total expectation. We
have

0 < E[F(2) — F* V)] + 3(1 - 525 ’E|VE(x®)|? - 25E[VF (V) Tu®)]

2 a?g? a
+ (21;;5:,05))52 EHX(k—l) k)||2 p 3 i + (30 L
(516) = E[FEY) - P+ 0 - LVEHVF(X(“)II?
Qg1

— aigy [EIVEEO)|? + wp — E|[VF(x*™) = VF(xM)|]?]

2 _ a2 3 a
+ SRRt - xW|2 4 fHT 4 o,

where the equality is due to a’b = 1[||a|?> + ||b||> — ||a — b|%], for any two vectors a and b.
Using (1.5) and the smoothness of F' and then substituting (5.5) and (5.6) to (5.16), we have

0< E[F(z(k)) _ F(Z(kJrl))] + % [(1 __og )2 _ lafk:| EHVF(X(k))”2

Qp—1
k—1 -1 k—1 3pai
+2akp [El 1 eklzj 1‘9kauy+z 1 OF jui+ 02 3000 0 }4‘%((1%’32 — 125w

(1+5 )BQQ B _ k 1 o o o2 o2
(5.17)  + W{ZQ (B + p203 D) + ﬁaz} + (i

Summing the above inequality over k = 1,..., K and utilizing (5.11) lead to

o<F<x<l>>—E[F<z<K+1>>1—%zﬁilakmuw( ON)2 + LTI (5 — 255)
+ 505 B) P 10%[21 eklzg 19k,JUJ+Zk 192 ]
1 5 k—j—1
2;{ pﬁ)2 Zk L0 12 (ﬁ - + g2k 1)) Uj

k-1 145 K
[ 3 bt O 51 O %Zk:l o+ e Lk aﬂ‘f?-

(5.18)

Since {ay} is non-increasing, it holds from (5.3) that

(5.19) Hk,j < amax{k—Tk,j}Whj(ﬂ)?

which together with the two inequalities in (5.4) gives

(5.20) S 51 Ok < Crmaxfbor 1175 5, and S0, < Oy 1) T
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Plugging the latter inequality of (5.20) into the fourth line of (5.18), and also interchanging the
summations in the second and third lines of (5.18) yield

0 < F(xW) — infx F(x) = g5 Xrey B[ VF®)|2 + 5 355, ( 3’”‘;'3 — 15w
2

14+5p)382 K-1
+ﬁz fu Zk =j+1 akﬁk,]@@*’il ) +%Z] | ujo?
1 145p)
(5.21) + ﬁz/&ﬁ Oékamax{k—rk,l}—F (2;; PﬁQ) Sk e 1%] a8

where the last summation in the second line is simplified by utilizing the following summation
bound,

k-1 K-1
Yo 0 V2 Ty =30 uj Yo i Ot 1<Z 3 uja af/(1—1).

Furthermore,

Zkz—j—l—l b (Or 5 + Z " O 1)

Amax —TL, T
< (&%} Zk:j+1 amax{k—Tk,j}Wk,j(B) (O[max{k—’rk,j}ﬂ-k,j(ﬁ) + {1k—ﬁk s )
1 1
< ;). GHI<E<K, k<j+r—1 O‘jﬁ(o‘jﬂ + %)
k—1—j k—71—j
+ Q5 Dk j1<k<K, k>3+7%61 B (= 7 T 1= ﬁ)
T(T— l)ala] (r— 1) a3 a3
(5.22) < ~pr e T aer T aar T aeraey

In the above, the first inequality follows from oy < o for all £ > j, (5.19) and (5.20); the second
inequality breaks the summation on k into two parts: in the first part £k < 5+ 7 — 1, we used
mk;(8) < ﬁ by (5.3) and also apaxfk—r,,j3 < @ and Qpaxir—r,,13 < @1; and in the second part

k> j+ T, since k > j + 73, we have m, ;(8) < Bkl__? from the second case in the equality of (5.4)
and also, Omax{k—r;,,j} = Vmax{k—m,1} < Qj-

Now substitute (5.22) into (5.21), use the assumption in (5.12) to drop the non-positive terms
about u;, also use the definition of %K) in (5.10), and then rearrange terms to obtain the desired
result in (5.13). O

Below we specify the setting of {aj} and show the sublinear convergence.

Corollary 5.5. Given a mazximum number K of iterations, let ay, = a/\/f forallk=1,... K,
and for some o > 0. If a« > 0 and 8 > 0 are chosen such that

2 2 -
(5.23) T+ ﬁ + 1532 < (1204523)2 , and 3p + 1 (1+)?p)%2) < d g,l\/[?,
then under Assumptions 2 and 6-8, the iterate ) given in (5.10) satisfies
S(K)\ (12 p2ar (1+5p)p2 4dao? 4(1-5) [F(X(l))*infx F(x)]
(5.20)  EIVFE)? < (55200 + G2 + ) Tla + < .

Proof. When oy, = a/VK, (5.11) is trivially true, and in addition, when (5.23) hold, it is not hard
to verify

2

(525) p2 T(T—1)oroy (7— ) 7'0‘ o :|§

3 2(14-5p) 32
and [ 25 + 2000 o <

)

[

1
Tap -+ @=ay t app T mar| S 2

which implies (5.12). Finally, (5.13) simplifies to (5.24). O
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Remark 5.6. From (5.24), we see that the delay can reduce the convergence speed of Alg. 1 by
roughly O(\/T—?) When 7 = o(V K), the slow-down effect is negligible.

Corollary 5.7. Given a mazimum number K of iterations, let o = a/va+k—1 for all k =
., K, and for some a > 21 such that av/a +1 > % If

(5.26) 724 = (1=B)za  a 39+ (2(1+5p)ﬁ2 < (-8)va

1-)(1-p%) =  2a 2
then under Assumptions 2 and 6-8, the output of Alg. 1 satisfies

E|VFERE)|2 < 20D Zintx Foo)

(5.27) a(va+K—+/a)
2a(1+2a)T | (145p)8 a K 2 a K 1 2002
+ {”(ﬁﬁ)aﬁ + 3 ”62) (2 4+ In 9E2=2) + p(1 4 In &E2=1) e s eyl

Remark 5.8. Note that the logarithmic terms in (5.27) dominate the 7-related term if 7 < Vap ,
which matches the condition in (5.26). When there is no delay, i.e., 7 = 0, a convergence rate of

é(\/l—?) can be achieved with a = 1; when there is a delay, i.e., 7 > 0, (5.27) with a = O(72) gives

T2
a rate of @( \/ﬁ \ﬁ ( (WVi+%+\% ) In this case, the delay will have a negligible
effect on the convergence speed if 7 = 0(\/>

6. Numerical experiments. In this section, we test Alg. 1 by numerical experiments on three
examples: phase retrieval problem, neural network training, and sparse bilinear logistic regression.
For each example, we test the effect of the inertial force with different 5. Also, we demonstrate
the advantage of the asynchronous implementation over the synchronous version (i.e., 7, = 0,V k)
of Alg. 1. In all the tests, we compare the performance of Alg. 1 with different settings of {ay}
and {f}, which are fixed to constants for all iterations k or decrease with respect to the number
of epochs.

6.1. Phase retrieval problem. The phase retrieval problem aims to recover a signal x* € R¢
from m measuring vectors' {a;}™, and the correspondingly obtained magnitudes {bz}:r;l It can
be formulated into the following non-smooth minimization problem [12,16,17]:

(6.1) min —Z H a;,x)[> — b7,

xcRd T

which is in the form of (1.1) with F(x) = L 3™, [|(a;,x)|*> — b?| and r(x) = 0. In the test, the
vector a; followed the standard multivariate Gaussian distribution, i.e., a; ~ N(0,I), and we let

b; = [{(a;,x*)|, V1, for a ground truth x*. Hence, the optimal objective value is zero.

Synthetic data. We first solved (6.1) with x* generated from a uniform distribution on the d-
dimensional unit sphere. Fig. 2 shows the results for m = 50,000 and d = 20,000. We tested
the algorithm for several pairs of (m,d) and observed similar results. In the test, we computed
a stochastic subgradient by using 100 data points, i.e., the minibatch size was set to 100. The
parameters either followed a constant scheme with a; = a, 8, = 3,Vk where a = 5 x 107° and

'Tn general, the signal x and the measuring vectors {a;} can be complex-valued. For simplicity, we focus on the
real field.
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Figure 2: Results by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1) with randomly
generated x*, m = 50,000 and d = 20,000. Left: non-parallel implementation of Alg. 1 with
different choices of {ay } and {5 }; Middle: async-parallel implementation of Alg. 1 with diminishing
{ax} and {Bx}, and with different numbers of workers; Right: running time (in second) of the sync-
parallel and async-parallel implementation of Alg. 1 with different numbers of workers.

B € {0,0.2,05,0.8,0.9%; or diminished with aj, = 2202 and B = min {0. 9, oy o Yk, or
Br = 0,Vk. Here, e, denotes the epoch number at the k-th iteration. During the test we also
experimented with different values of the constant a. We found that for a smaller «, the algorithm
converged more slowly but could reach a lower objective value. The choice av = 5 x 1072 resulted
in a good trade-off between the convergence speed and the final objective value.

From the left subfigure in Fig. 2, we see that the algorithm with a bigger 5 converged faster
but achieved a higher objective value. The convergence of the algorithm with a diminishing {ay}
and constant [ = 0 is the slowest. The best results were obtained by the choice of diminishing
{ax} and {fx}. Comparing the curve with diminishing {ay} and {8} to that with gy = 0.9,V k,
we notice that the two curves are almost the same within the first 5 epochs, i.e., before the latter
one becomes flat. However, the former can decrease the objective to a significantly smaller value.
Thus both the choices of {ay} and {f;} contribute to the best results. With the diminishing {oy}
and {f;} that yield the best results for the non-parallel case, we then compared the sync-parallel
and async-parallel implementations of Alg. 1. The middle subfigure in Fig. 2 shows the results for
the async-parallel version with different numbers of workers. The right subfigure shows the running
time of both versions. The results show that the convergence speed (in terms of epoch number) of
the async-parallel method is almost never affected by the asynchrony (or information delay). In
addition, we see that the async-parallel implementation yielded significantly higher parallelization
speed-up over the sync-parallel one, according to the right subfigure in Fig. 2

Image data. We also solved (6.1) with x* flattened from an image. We tested with two images:
a CT scan image? of size 94 x 138 after downsampling and the cameraman image® of size 196 x 196
after cropping. Fig. 3 shows the ground-truth images, Fig. 4 and Fig. 6 show convergence curves
and computing times, and Fig. 5 and Fig. 7 show recovered images. In the test, for the CT scan

2https://aimi.stanford.edu/radiopaedia-list-ai-imaging-datasets
3https://github.com/antimatter15/cameraman
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Figure 3: Ground-truth images. Left: a CT scan image. Right: the cameraman image.

image, d = 12,972, and we selected m = 40, 000, computed each stochastic subgradient by using
100 randomly sampled data points, and set a; = \/107 for the cameraman image, d = 38,416,
and we selected m = 60, 000, computed each stochastic subgradient by using 60 randomly sampled
data points and set oy, Ei/x% We first tested the non-parallel version of Alg. 1 with 8 = (8, Vk,

where 8 € {0,0.2,0.5,0.8,0.9}, and then tested the parallel version by different numbers of workers.

—e— #workers=1 EEE sync

#workers=2 N async
—+— #workers=5
—+— #workers=10
—— #workers=20

[x —x*||
[ =]l

S0 100 150 200 250 300 350 400 S0 160 150 200 250 300 350 400
epoch epoch

s —— B=0.9 —e— #workers=1
: Br=0.8 4| w0 #workers=2
B=0.5 —+— #workers=5

—— B=0.2 —+— #workers=10
—— Bx=0.0 —— #workers=20

b

times (sec)

objective value

objective value
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50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

3 10
#workers

Figure 4: Results by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1) with a CT scan
image as x* and m = 40,000. Left: non-parallel implementation of Alg. 1 with diminishing {ay}
and different choices of {fx}; Middle: async-parallel implementation of Alg. 1 with diminishing
{ax} and B = 0.8, and with different numbers of workers; Right: running time (in second) of the
sync-parallel and async-parallel implementation of Alg. 1 with different numbers of workers.

From the left subfigures in Fig. 4 and Fig. 6, we see that the algorithm with a bigger 8 converged
faster. After 400 epochs, the algorithm achieved the lowest objective value and the smallest distance
from x* with B = 0.8,V k for the CT scan image, and with S, = 0.9,V k for the cameraman image.
Alg. 1 recovered the image clearly for the CT scan image with 8 = 8 € {0.9,0.8,0.5} shown in
the top subfigures in Fig. 5 and for the cameraman image with 8 = 0.9,V k in the top subfigures
in Fig. 7. The recovered images became clearer as the 5 value increases. The middle subfigures in
Fig. 4 and Fig. 6 show the results for the async-parallel version of Alg. 1 with different numbers of
workers, and the bottom subfigures in Fig. 5 and Fig. 7 show the corresponding recovered images.
The right subfigures in Fig. 4 and Fig. 6 show the running time of both sync-parallel and async-
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Figure 5: Recovered images by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1)
with a CT scan image as x* and m = 40,000. Top: non-parallel implementation of Alg. 1 with
diminishing {ay} and different choices of {5k }; Bottom: async-parallel implementation of Alg. 1
with diminishing {ay} and B = 0.8, and with different numbers of workers.
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Figure 6: Results by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1) with the
crameman image as x* and m = 60,000. Left: non-parallel implementation of Alg. 1 with dimin-
ishing {ay} and different choices of {f8;}; Middle: async-parallel implementation of Alg. 1 with
diminishing {ax} and B = 0.9, and with different numbers of workers; Right: running time (in
second) of the sync-parallel and async-parallel implementation of Alg. 1 with different numbers of
workers.

parallel versions of Alg. 1. The results show that the convergence speed (in terms of epoch number)
of the async-parallel method is rarely affected by the asynchrony (or information delay). In addition,
we see that the async-parallel implementation yielded significantly higher parallelization speed-up
over the sync-parallel one.

6.2. Neural network models training. In this subsection, we trained two neural network models
by Alg. 1. One is LeNet5 on the MNIST dataset [26] and the other AIICNN [55] on the Cifarl0
dataset [25]. LeNet5 has 2 convolutional, 2 max-pooling, and 3 fully-connected layers. AIICNN has 9
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Figure 7: Recovered images by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1)
with the crameman image as x* and m = 60,000. Top: non-parallel implementation of Alg. 1 with
diminishing {ay} and different choices of {f5x}; Bottom: async-parallel implementation of Alg. 1
with diminishing {ay} and B = 0.9, and with different numbers of workers.

convolutional and 1 avg-pooling layers. The outputs of the two models are re-scaled as probabilities
in all classes for each data sample by the softmax function. The estimated probabilities and the true
class labels are fed to the negative log likelihood loss function to get the losses. The objective is to
minimize the mean loss over all data samples, which is in the form of (1.1) with the model weights
as x, the mean loss as F'(x) and r(x) = 0. For both trainings, we set o = o,V k and selected the
best a from {0.01,0.005,0.001,0.0005,0.0001}. For training LeNet5, we used oy = 0.001, and for
training Cifarl0, we used «p = 0.005,V k.

The results of training LeNet5 on the MNIST dataset are shown in Fig. 8. In the test, we com-
puted a stochastic subgradient by using 40 data samples, i.e., the minibatch size was set to 40. We
first tested Alg. 1 with 5, = 8, Vk, where 5 € {0,0.2,0.5,0.8, 0 9}, or B = m1n{09 i) 1/4} VEk.
The first column of Fig. 8 shows that the algorithm with a bigger 5 gave better results Notice
that the algorithm with B = 0.9 or B = min{0.9 m} V k give the highest testing accu-
racy. For these two choices, we ran the async-parallel version of Alg. 1 with different numbers of
workers. From the results in the second and third columns of Fig. 8, we see that the asynchrony
had negative effect on the behavior of the algorithm, especially when more workers were used.
Nevertheless, the final training loss for all different number of workers is almost the same, and the
final testing accuracy by using 10 or 20 workers is slightly lower than that produced by using fewer
workers. The fourth column compares the running time of the sync-parallel and async-parallel
implementations of Alg. 1 with 5, = min {0.9 W} V k. Again, the bars show significantly
higher parallelization speed-up by the async—parallel 1mplementat10n over the sync-parallel one.

The results of training AIICNN on the Cifarl0 dataset are shown in Fig. 9. In the test, we set
the minibatch size to 100 and S = 3, Vk, where 5 € {0,0.2,0.5,0.8,0.9}. The left column of Fig. 9
shows that the algorithm with a bigger 8 gave better results. The choice of 8 = 0.9,V k yielded the
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Figure 8: Results by Alg. 1 on training LeNet5 on the MNIST dataset. First column: non-parallel
implementation of Alg. 1 with aj = 0.001,V k and different choices of {f}; Second column: async-
parallel implementation of Alg. 1 with aj = 0.001 and §; = 0.9,V k; Third column: async-parallel
implementation of Alg. 1 with a; = 0.001 and S5, = min{O.Q,W},Vk; Fourth column:
running time (in second) of the sync-parallel and async-parallel implementations of Alg. 1 with
different numbers of workers.

best results. With this choice, we compared the sync-parallel and async-parallel implementations
of Alg. 1. The middle column in Fig. 9 shows the results for the async-parallel version with different
numbers of workers. The right column shows the running time of both versions. From the results,
we see that the convergence speed (in terms of epoch number) of the async-parallel method is almost
not affected by the asynchrony. In addition, we see again that the async-parallel implementation
yielded higher parallelization speed-up over the sync-parallel one.

6.3. Sparse bilinear logistic regression. In this subsection, we test Alg. 1 on solving the sparse
bilinear logistic regression (BLR) built in [54]. Let {(Xj;,v;)}", be the training data set with each
data sample X; € R**! and label y; € {1,2,...,C} for i = 1,2,....m, where C is the number of
classes. The sparse BLR is modeled as

N exp[tr(Uy, XiV,.) + by,
(62) %g—zlog( el R AL )+A<||uul+|rV||1+||b||1>,
Vs m P Zj:l eXp[tI‘(UjXZ‘Vj) + bj]

where U = (Ul, Us, ..., Uc), Y = (Vl, Vo, ..., Vc), b= (bl, ba, ..., bc) with Uj € RP*s V} S RtXp, bj S
Rforj=1,2,...C, |U|;:= Z]C:l St 31 [(U))ials A > 01is the weight for the sparse regularizer,
and tr(S) :=Y_¥ | S;; for any matrix S € RP*P. To solve (6.2), we apply Alg. 1 with x = (U, V, b),
F(x) being the first term in (6.2), and r(x) = A(||U]}1 + ||V|l1 + ||b]1)-

In this test, we used the MNIST dataset [26] and set the minibatch to 100 while computing
a stochastic gradient of F. To obtain a relatively high accuracy and also relatively cheap com-
putation, we chose p = 5 and A = 1073. The learning rate was set to oy, = a, Yk with o tuned
from {0.01,0.005,0.001,0.0005,0.0001}. To ensure convergence and also satisfactory final testing
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Figure 9: Results by Alg. 1 on training AIICNN on the Cifar10 dataset. Left:non-parallel imple-
mentation of Alg. 1 with ay = 0.005 and different {fj}; Middle: async-parallel implementation of
Alg. 1 with ag = 0.005, 8, = 0.9, and with different numbers of workers; Right: running time (in
second) of the sync-parallel and async-parallel implementations of Alg. 1 with different numbers of
workers.

accuracy for both async-parallel and sync-parallel implementations of Alg. 1, we set o = 0.0005.
Note that the sync-parallel version could converge faster in the beginning with a larger o but the
final testing accuracy and training loss were similar to those produced by using o = 0.0005.
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Figure 10: Results by Alg. 1 to solve the sparse bilinear logistic regression (6.2) on the MNIST
dataset with p = 5 and A = 0.001. Left: non-parallel implementation of Alg. 1 with o = 0.0005
and different {Sj}; Middle: async-parallel implementation of Alg. 1 with ay = 0.0005, 8, = 0.9,V k,
and with different numbers of workers; Right: running time (in second) of the sync-parallel and
async-parallel implementations of Alg. 1 with different numbers of workers.

The left column of Fig. 10 shows the results by Alg. 1 with g, = 5 € {0,0.2,0.5,0.8,0.9}, Vk.
We see that the algorithm with a bigger 8 converges faster. The middle column in Fig. 10 shows the
results by the async-parallel implementation of Alg. 1 with 8; = 0.9, Vk and with different numbers
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of workers. The right column shows the running time of both sync-parallel and async-parallel
implementations. The results show that the convergence speed (in terms of epoch number) of the
async-parallel method is almost not affected by the asynchrony. In addition, we see that the async-
parallel implementation yielded significantly higher parallelization speed-up over the sync-parallel
one.

7. Conclusions. We have proposed an inertial-accelerated proximal stochastic subgradient
method for solving non-convex stochastic optimization. An O(1/K %) convergence rate result is
established for three different problem classes, by the measure of the expected value of the gra-
dient norm square of the objective function or its Moreau envelope, where K is the number of
total iterations. The same-order convergence rate can be shown even if the derivative information
is outdated in an asynchronous distributed computing environment, provided that the delay (or
staleness) of the derivative is in a tolerable range. Numerical experiments on phase retrieval, neural
network training, and sparse bilinear logistic regression demonstrate faster convergence by using
the inertial-acceleration technique and also the higher parallelization speed-up of the asynchronous
computing over the synchronous counterpart.
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Appendix A. Remaining proofs. In this section, we provide proofs of the lemmas that are used in
our analysis.
Proof of Lemma 3.3. For ease of notation, we denote 6 = 1 — ayp in this proof. We have

Hx(kJrl) . i(k) ”2

_ _ ~ = 2
= ||prox,,, (x* — arg® + Br(x® — x*=1)) — prox,, (arpx® — @ v® 1 (1 - agp)x®)|

~ ~ —1)\ 12
(A1) < H(;(X(k) _ x(k)> _ ak(g(k) — vy 4 Bk(x(’“) _ x(k 1))“

~ —1)h 2 ~(k) |12
(A2) = ||5(X(k) — X0 4 B (x®) — x(k 1))“ + ang(k) _ V(k)H

— Qak<5(x(k) _ g(k)) + ﬂk(x(’“) _ X(kfl))’g(k) _ q(k)>7

where the first equality is from (1.2) and (3.3), and the inequality follows from the nonexpansiveness of the
proximal mapping. Taking conditional expectation on & over the equation in (A) gives

EEkHX(kH) _ >~<(k)H2
< 86 — %) 4 B (x® — x6)|[* + aZEg, ) ~ |
— 20, (8(x®) = x0) 4 B (xF) — x(F=D) y*) _ Gk
< (81x® =% B + Blx® = x*V)* + 4o
—2050(x® — %0 v _ 50y _ 90,6, (x0) — xk=1) y0) _ k)
< 81+ o) [x® — WP+ (14 LA x® — x*D|? 4 daf M
_ 2ak5<x(k) _ g(k)ﬂ,(k) _ g(k)> + 513”)((16) _ X(k—1)||2 + ai”v(k) _ g(k)||27

where the second inequality holds by (3.2), and the third inequality follows from the Young’s inequality
along with a scalar ¢ > 0. Now we obtain the desired result by plugging (3.4) into the above inequality,
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bounding [|[v(¥) — v(*)||2 < 4M?, and noticing
82 (1 + cx) + 2ax0p = 1 =20k (p — p) — A p(2p — P) + cx0” < 1= 2a5(p — p) + i,
where the equality holds because § = 1 — ap, and the inequality follows from § < 1, ¢, > 0, and p < 2p. O

Proof of Lemma 3.7. Taking conditional expectation on 74, we have E,, [F(x(*~))] = Z]T.ZO piF(x*F=9)),
where we let x(*¥) = x(1) vV < 0. Hence,

St E[F ()] = 30 Y7o i E[F(x )]
- ZkK:l Zf:k—fpk*tE[ (X(t))] Zt 1— 7-Z?lﬁi’figpk%E[F’(xw)]»

and

K K min{K,k+7}

SE[FG®) - FxEm)] = SE[F&®)] Z S E[Fx®)]

k=1 k=1 k=1—7 t=max{1,k}

1 k+T1 K
= < - Z Zpt k) F(xW)+ Z (1 - Zpt k> X(k))]
k=1—71 t=1 k=K—1+1

(A.3) < 7max {0, —F(x 1) )} +7CF.

In addition, because 7, < 7,Vk, it holds Zszl [x(F=m) — x(#))|2 < 72 Eszl [x*=1 — x(®)||12 which
together with (3.19) gives

K —r o % a2 M2
(A4) i x40 =W < 72 (o (0(x) — 07) + <347
For the last term in &, we use (3.2) and Assumption 4 to bound it as follows
_<X(k) — x(k_Tk),v(k)> < M||x(k) — X(k—m)H < szle ||x(k+1—j) —xk=9)|,
and thus
(A.5) Sy () = v ) < M [ xB

By the Cauchy-Schwarz inequality and Jensen’s inequality, we have

SE L Ex®) - x®D)| < VETE (Bx® - x-1]) < VR T Ex®) - xt-D]2,

which together with (3.19) and (A.5) gives

72

(A6) Xhe B[ () =) v )] < MV [90 (66eD) - 67) + 253
Now we obtain the desired result from (A.3), (A.4), and (A.6). O

Proof of Lemma 3.11. When condition 2 of Assumption 5 holds, the update in (1.2) indicates that there
exists a subgradient Vi (x*+1) such that

(y — xFHD Vg (xFHD) 4 xBFD — x(®) 4, g®) — gy (xF) — x(kfl))> >0, forally € X.

Letting y = x(®) and rearranging terms in the above inequality, we have

(A7) D — x 2 < (x®) = x D, (Vg (xFFD) 4 gW) — go(x®) —x 1)),
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which together with the Cauchy-Schwarz inequality gives
[0 — X < flan (Fra(x+1) + g4) — iy (x) b))

Hence, by the triangle inequality and the Young’s inequality, we have for any ¢ > 0,

I = x @2 < (o [Vra(x V) + g0 + B fx® —x*=D)?
< a1+ DIVra(x®) + g2 + 571 + o) x®) —xEY) 2
< 205 (1+ D)(IVr2 ™2 + g™ 1%) + B + o) [x™) —xF=D2,

Take full expectation on both sides of the above inequality and use Assumption 3 and condition 2 of As-
sumption 5 to obtain

Efx® —x®|2 < 2af(1+ 1) (M2 + M?) + BZ(1 + o)E[[x*) — x*=1)2,

Let ¢ = %(1/52 — 1) and sum up the above inequality over £k = 1 to K. We obtain (3.24) by rearranging
terms and using x(9) = x(1). O

Proof of Lemma 3.12. By similar arguments as in the proof to obtain (A.3), we have

K
> E[F(x®) — F(x*)]
k=ko
K min{K,k+7}
BD SPTTRUNEEI SIS SRR e,
k=ko k=ko—7 t=max{ko,k}
ko—1 min{K,k+7} K min{K,k+7}
==Y Y emaBP®) -]+ Y (e Y e | BFEY) - C]
k=ko—7 t=max{ko,k} k=ko t=max{ko,k}

(A8) § QOLkOTCF,

where the inequality holds by the nonincreasing monotonicity of {ay} and the fact |F(x®))| < Cp,V k.
In addition, from the nonincreasing monotonicity of {a} and 7 < 7,V k, it holds

K —r K _ K _
Dot X = x W2 < ag, 72 350 D = x W2 < g 72 3T x D — <2,
Hence, by (3.22) and (3.24), and the definitions of C; and Cs in (3.27), we have from the above that
(A.9) S clx BT — x W2 < 0y 72 (01 + C2 Y04 F)
Finally, similar to (A.5), we have
K o K _
(A.10) Zk:ko [_ak<x(k) _ x(k k),v(k)>] < Mt Zk:ko ak||x(k) — x(k 1)||'

By the Cauchy-Schwarz inequality and Jensen’s inequality, it holds

K K K
> aB[x® —x*DIT < 1Y a2 | Y E[|Ix®) - xt-D)j2] < Z a2, | Cy +CQZ%
k=ko k=ko k=ko k=ko

which together with (A.10) gives

(A.11) Zf:ko E [—ay(x®) — xb=m) v())] < MT\/ZkK:kO a? \/C’l + O a2
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Now (3.25) follows from (A.8), (A.9), and (A.11), and also 1 — ayp < 1 and Zle o <a*(l+hnK). O

Proof of Lemma 4.2. As in the proof of Lemma 3.3, we denote § = 1—ay,p and take conditional expectation
about & over both sides of (A.1) to have

~ ~ ~ _ 2
]Egk||x(k+1) _ X(k)||2 < Engé(x(k) _ X(k)) _ ak(g(’“) _ V(k)) + ,Bk(x(’“) _ x(k 1))”
= Eg, |[6(x® = x®)) — ap(VF(x®) = VF(ERM)) + B (x® — x*D) — qpew® |
~ ~ _ 2
= [[6(x* —x¥)) — ap(VF(x) = VF(EM)) + B(x¥) — x* D) || + afEe, [|w)|?
— 20 Ee, (6(x® — W) — oy (VE(x™) — VEE®)) + B (x*) — xF=1), wk))
(A.12) < ((0+ arp)[x® = %O + Bil|x® — xEV ) 4 0F (02 + p|xE) —xP|2) 4 &,

where we have used Assumption 6 and Lemma 4.1 to obtain the last inequality, and we denote w(*) =
g — vV (x*®) and

&= =20, (6(x®) — %) — i (VF(xP) — VFEW)) + g1 (x*) — xE=D) vExF)) - vE(xHK)).
Now we apply the Young’s inequality to bound the first square term in (A.12) to obtain
g el RO a6+ anp) I - O
+ (L4 B = x4 afo? + afp? [x BT = x B 1 €,

where ¢, is any positive number. Recall 6 = 1 — aip, and thus

(L +er) (@ +arp)? = (1+cr) (1 —ar(p—p)(2 = ar(d—p)) < (L+a) (1 - aw(p—p) < 1+cx—ar(d—p),
where the two inequalities follow from 0 < ax(p — p) < 1 and ¢, > 0. Hence, (A.13) implies

AL Eg, [x* ) —xM|12 < (14 ¢ — ap(p— p)) [x®) —x P2

A + (14 DRI XD 4 ado? + gt — x4 £

Below we bound £. We have by the triangle inequality and the p-smoothness of F' that
€ < 201p((5 + ap) [x® — KO|| 4 Bl — xE=D) ) Jsck=) — x|
~ 2 —T
(A.15) < Jan(p— p)[[x®) — RO |2 + 22827 xclhrn) — (B2

+ BRI - xEDI 4 o ) — <02,

where we have used 0 + axp = 1 — ai(p — p) < 1 and the Young’s inequality twice to obtain the second
inequality. Plug (A.15) into (A.14) and rearrange terms. We obtain (4.1) and complete the proof. O

Lemma A.1. Let {X(k)}k21 and {g(k)}kzl be generated from Algorithm 1, and let {qi}r>1 be a sequence
of constants. Under Assumptions 2 and 7, we have

k e k k k k
(A.16) E(| X5 48P ||” < Xl @ X quy + X g+ 0 X0, 65
Proof of Lemma A.1. From Algorithm 1, we have
(A.17) Z?;l 38 = 2521 GV f(xUTT); ).

Taking a total expectation and using Assumption 2 results in

(A.18) E[ Z§:1 ‘Jjg(j)} = Z?:l qu[VF(x(j*TJ‘))] = Z?:l quu(j),
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which further implies that

. 2 .
(A.19) B[ agP]|)” < S e X B2 =, a X5, g5u;.

n (A.19), the inequality is obtained by using the triangle inequality, Cauchy-Schwarz inequality, and then
Jensen’s inequality. We further bound the variance as follows:

El| S5 a8 —E[ S ai8@]|” =E|l 5o, 05 (VF(xU=);¢5) — Bu@)||”
E] 1%E|Wf X(y 75). (&) — ]Eu(j)”2
=30 AEIVFEI);6) —u? |2 + E[ul®) — Eu®|2)
(A.20) <Y 4 (0% + ).

Here, the second equality is because the expectations are null for all cross terms E (g —Eg()) T (gl@) —Eg(")
with j > j’, since each ¢; is independent from {x() ... x(V} and &;; the third equality is because of
Assumption 2; the inequality is by Assumption 7 and that the variance is upper-bounded by the second
moment. Combine (A.19) and (A.20) gives (A.16). O

Proof of Lemma 5.1. By definition (5.3), we obtain the equality in (5.4). Then the first inequality in (5.4)
follows from

k—1 ) _ k-1 1—¢k—d 1—¢7k k=T jh—rp—j _ T(1—t)—t* 7Tk (1-t7k) T
ijl ﬂ-k’J(t)_Ej:k*TkJrl 1—¢ + 1—¢ Z] 1 t - (1—¢)2 < 1—t°

and the second inequality follows from

k—1 2o _ k-1 1_2t’€*j+t2(kﬂ) (1—t"F)% k- Tk 2(k—71—7)
21 T () =225 ki1 (=L T g1

_ (1=t =247k ) (A 44) +(1—>TF ) (1—7k ) (17{“ 7)) < 7
(1-t)2(1-1t2) = [1-nz-

Proof of Lemma 5.2. From (1.4) and Assumption 2, we have m®*) = Z§=1 BE=i(1 — B)g\); apply
Lemma A.1 with the choice of ¢; = 8¥77(1 — 3) for all j € [k] to obtain (5.5) from (A.16). Meanwhile,

=0
=3 e Yy T R g) = S gy g )

by (1.5) and (5.3). Apply Lemma A.1 with the choice of g; = 6y ; for all j € [k]. We have (5.6) from (A.16).
O

(k=) _ (k) — _ Zm—l (X(k—l) _ X(k—l—l)) I a]i Lﬁlm(k 1-1)

Proof of Lemma 5.3. From (5.7), we have that for k > 1,

20D — g8 — L (D) _ x(9)) LB () _ x(k-D)

1-8

_ﬁakm(k) _|_ ﬁak_lm(kfl)

= g ar(BmEY + (1 - £)g®)) + 7Zmap m*—D

= W(O‘k—l — ap)mF~l — g (k)

=15 (]_ — ak/ak 1) ,3 m(k 1) _ Oiklgg(k)
The second equality is by (1.5); the third equality is by (1.4). The above equality together with (1.5) gives
(5.8), and (5.9) trivially holds by the smoothness of F' and (5.7). O

The inequalities in the lemma below are easy to show.
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Lemma A.2. Let a be a positive integer. Then
K a+K
D k=1 \/ﬁ > [ ﬁdw =2(Va+ K —+/a),

K +K—1 _
Yimiamr S1H [0 pde =14 et

Proof of Corollary 5.7. With oy = o/va+k—1,Vk > 1, (5.11) holds if and only if

2 _ 1
(A.21) spvarieT = U~ Vatk=2/Vatk-1)* = v
Notice m < 4—1(1, and thus av/a+1 > % indicates o > %, which further implies

the inequality in (A.21) for all £ > 2. Moreover, when (5.26) holds, it is not difficult to verify that the two
inequalities in (5.25) are true, so we have (5.12) and thus (5.13) from Theorem 5.4.
Below we simplify the inequality in (5.13) for the setting of «y. First,

K 2 K o K 2a°
2ok=1 M Omax (- 1} S 2ok=1 VaFhT(arho1=r) = 2k=1 VaTh=t(ath=1)

a+K-1 2a°(14-2a)
< 207 (a\l/aJrfa ﬁdm) §7a(\/a ),

A

second, by Lemma A.2,
K — VK a K 2 __ K o? 2 atK—1
D1 Yk =D O e 20(Va+ K —+/a), and 35 0f =30 57 < o’(1+In ==
Substituting the above three inequalities into (5.13) gives (5.27). O

Appendix B. Proof of Theorem 4.7.  The key of the proof is to bound 3, E[[|x*®) — x(*+1)|12]
while using Theorem 4.3. First, similar to (A.7), we have

(B.1) 04D — xR 2 < (x®) — xE+D 0 (Tr(xBD) 4 g®) — g (xB) — x kD)),
where @r(x(kﬂ)) is a subgradient of r at x(*t1). By the convexity of r, it holds

(B.2) (x®) — x) wr(x D)) < p(x®)) — p(xEFD).

In addition, from the p-smoothness of F' and the Young’s inequality, we have

(x) — x (D) gy = (x0) _ x(:+1) gR(x®) 4 g _ vR(x®))

(B.3) < Fx®) = FaFED) 4 gx® — x D)2 4 o |x®) — xEFV12 4y g™ — VF(xW)|]2,
and
(B.4) <X(k) — x(k+1) —ﬂk(x(k) — X(k—l))> < i”x(k) — X(k+1)||2 4 ﬁ%”X(k) _ X(k—1)||2

Plugging (B.2), (B.3) and (B.4) into (B.1) and rearranging terms yield
(B-5) 3(1—app)[x* —x®|? < ap (¢(x®) — p(x*H1)) +af g™ — VF(xP)||? + 57 x*) — xF=D]2,
Moreover, by Assumptions 7 and 8 and the p-smoothness of F'; we have

E[lg® - VFx®)|?] < 2E[lg") — VEx*™)|P] + 2E[| VF(x*™)) = VF(xV))?]
(B.6) <202 4+ 2p°E[|lx*7%) — xM|12] <202 +27p? 37T E[||xF77) — x(B=it0) 2],
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Now taking full expectation on (B.5), substituting (B.6) there, and summing over k = 1 to K, we obtain
by rearranging terms that

S 21— awp — B E[IxFHD — x®)]J2]

BT _ <k E(6(x®) — o(x*+D)) + 202 5K o2 49702 5°E 0257 Bllxb—9) — xB—it1)|[2
< Dpmr Ok (¢(x ) — o(x ))"‘ 0% ey O+ 27p Zk:laijzl [”X X | L

where we have used x(©) = x(1). Since «y, is nonincreasing, we have

Yorimr 0f i E[llx ) — xG=it0|2] < 737 | afE[[x® - x*=)12],

which substituted into (B.7) and together with (3.23) gives

K
(B.8) Zk (= app — By, — 272020} E[[[x*HD — xW) 2] <204 Cy + 207 3, af.

By the choice of parameters and the definition of 4 in (4.17), we have from (B.8) and Lemma A.2 that

K atK—

(B.9) S E[Jlx*HD — x(®)12] < % (1Cy + 02a?(1 + In 2EE=1Y)
M 2 (o4 ()(2 (o3
Notice (2+ i p))ﬂk <282 + a(‘%ﬁ_p) and af + S <o m,Vk > 1. Therefore,
80 (2+ qrgp=) BREIX™) — xED 4 2p? T, (o + 25 ) Elx ) — x|
< (5(262 a(p p)) + 72 pp ( — + 7\[(%_/)))) Zk:l E||x(k) — x(k—l)H2
(B.10) < (§(252 ) + 0 (% + e p)))% (1Cy + 022(1 + In =£E=1))
Now plug (B.10) and the choice of {ay} into (4.2) to obtain the desired result. O
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