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Abstract.
Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimization. On smooth

nonconvex problems, a few acceleration techniques have been applied to improve the convergence rate of SGMs.
However, little exploration has been made on applying a certain acceleration technique to a stochastic subgradient
method (SsGM) for nonsmooth nonconvex problems. In addition, few efforts have been made to analyze an (ac-
celerated) SsGM with delayed derivatives. The information delay naturally happens in a distributed system, where
computing workers do not coordinate with each other.

In this paper, we propose an inertial proximal SsGM for solving nonsmooth nonconvex stochastic optimization
problems. The proposed method can have guaranteed convergence even with delayed derivative information in a
distributed environment. Convergence rate results are established to three classes of nonconvex problems: weakly-
convex nonsmooth problems with a convex regularizer, composite nonconvex problems with a nonsmooth convex

regularizer, and smooth nonconvex problems. For each problem class, the convergence rate is O(1/K
1
2 ) in the

expected value of the gradient norm square, for K iterations. In a distributed environment, the convergence rate of
the proposed method will be slowed down by the information delay. Nevertheless, the slow-down effect will decay
with the number of iterations for the latter two problem classes. We test the proposed method on three applications.
The numerical results clearly demonstrate the advantages of using the inertial-based acceleration. Furthermore, we
observe higher parallelization speed-up in asynchronous updates over the synchronous counterpart, though the former
uses delayed derivatives. Our source code is released at https://github.com/RPI-OPT/Inertial-SsGM
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1. Introduction. The stochastic approximation method is one popular approach for solving
stochastic problems. It can date back to [52] for solving root-finding problems. Nowadays, its first-
order versions, such as the stochastic gradient method (SGM), have been extensively used to solve
stochastic problems or deterministic problems that involve a huge amount of data (e.g., see [42,56]).
A standard (or vanilla) SGM often converges slowly. Several acceleration techniques have been used
to improve its theoretical and/or empirical convergence speed (e.g., [3, 15, 24, 62, 65]) for solving
convex or smooth nonconvex problems. However, for nonsmooth nonconvex problems, it appears
that it is still unknown whether a proximal SGM or a stochastic subgradient method (SsGM) can
still have guaranteed convergence if a certain acceleration technique is applied. In this paper, we
give a positive answer to this open question by using an inertial-type acceleration technique, even
if the derivative information can be delayed in a distributed environment.

Our study focuses on stochastic optimization problems in the form of

(1.1) φ∗ = minimize
x∈Rn

φ(x) := F (x) + r(x), with F (x) := Eξ[f(x; ξ)].

Here, ξ is a random variable that can represent a stochastic scenario or a data point, F is often
called a loss function or a data-fitting term, and r can include a hard constraint and/or a soft
regularization term. We will study a few problem classes, where F is nonconvex and can be
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smooth or nonsmooth but r is convex and nondifferentiable if it exists. As a special case, when
ξ is distributed on a finite (but possibly very large-scale) dataset, F will reduce to a finite-sum
structured function that appears in any application involving a pre-collected dataset.

Applications in the form of (1.1) include the robust phase retrieval that has been used in imaging
and speech processing [16,17], the blind deconvolution in astronomy and computer vision [8,27], the
robust principal component analysis in image deconvolution [7, 9], the online nonnegative matrix
factorization in image processing and pattern recognition [21], and the sparsity-regularized deep
learning [53]. Specific formulations of some applications are given in section 6.
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Figure 1: A master-worker archi-

tecture. The master performs up-

date to x; workers compute sample

(sub)gradients.

1.1. Proposed algorithm. We propose to solve (1.1) in a
distributed environment. Suppose there are multiple agents.
One agent is designated as the master and all the others as
workers. The master performs update to x while the work-
ers compute sample (sub)gradients; see Fig. 1 for an illus-
tration. The master-worker architecture has been adopted in
many works. It can naturally happen, either because data are
collected from local devices and then sent to a central server
for processing such as in a sensor network application [38], or
because the pre-collected dataset is too large to fit on a single
machine and must be distributed over multiple machines.

We assume that each worker can acquire samples of ξ and
compute the (sub)gradient of each sampled function f( · ; ξ).
Each worker sends its computed sample (sub)gradient g to the master, and the latter updates x
by using its received sample (sub)gradients and then sends the updated x to workers. Our scheme
is described in Alg. 1, which is from the master’s point of view.

Algorithm 1: A distributed stochastic inertial subgradient method for (1.1)

1 Initialization: choose x(0) ∈ dom(r) and set x(1) = x(0)

2 for k = 1, 2, . . . do

3 Let g(k) = ∇̃f(x(k−τk); ξk) computed by a worker, where ξk is a sample of ξ and τk
measures the possible delay;

4 Choose stepsize αk > 0 and inertial parameter βk ≥ 0;
5 Update the variable x by

(1.2) x(k+1) = proxαkr

(
x(k) − αkg(k) + βk(x

(k) − x(k−1))
)
.

Here, ∇̃h(x) denotes a subgradient of a function h at x, and it reduces to gradient if h is
differentiable at x. In (1.2), the proximal mapping is defined as

(1.3) proxαr(x) = arg min
y∈Rn

{
r(y) + 1

2α‖y − x‖2
}
.

We use k to count the number of updates performed by the master. Notice that the master
will update x once it receives a sample (sub)gradient from one worker, and we do not enforce
coordination between the workers. Hence, the g(k) used in (1.2) may not be a sample (sub)gradient
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computed at x(k) but at an outdated iterate x(k−τk). This setup with delayed information is the
same as that in [1]. Also, instead of using a single sample, we can take multiple samples to compute
g(k) as the average of the multiple sample (sub)gradients.

Consider a special case, where f( · ; ξ) is differentiable for each ξ and r(·) ≡ 0. Then the update
in (1.2) becomes x(k+1) = x(k) − αkg(k) + βk(x

(k) − x(k−1)). Let βk = αk
αk−1

β for all k ≥ 1 and for

some β ∈ (0, 1). Define a recursive sequence by

(1.4) m(k) = βm(k−1) + (1− β)g(k), ∀ k ≥ 1, with m(0) = 0.

Then the x-update can be rewritten to

(1.5) x(k+1) = x(k) − αk
1−βm

(k),

which is often referred as a momentum SGM in the literature (e.g., [20, 67])

Why use inertial force or momentum? Different from a standard proximal SsGM, we introduce
an inertial force (or heavy-ball momentum term) βk(x

(k) − x(k−1)) in the update (1.2). If βk = 0,
the update reduces to the standard proximal SsGM step. The heavy-ball momentum acceleration
technique was first used in [48]. With the inertial force, a heavy-ball gradient method can mitigate
the zigzagging behavior of a standard gradient descent method and potentially achieve faster con-
vergence. For unconstrained strongly-convex quadratic optimization, it has been shown (cf. [50])
that the heavy-ball gradient method can achieve an optimal convergence rate. The advantage of
using inertia has also been studied for deterministic composite nonconvex problems and stochastic
smooth nonconvex problems. For example, the work [20] studies a more general momentum-based
method, called Quasi-Hyperbolic Momentum (QHM), which includes the heavy-ball momentum as
a special case. For unconstrained smooth problems, [20] gives a local linear convergence result that
suggests the advantage of adding a heavy-ball momentum term in the update of a standard SGM.
In addition, it provides supporting experiments to demonstrate that the optimal inertial parameter
has a positive correlation with the condition number of the underlying problem. Although a heavy-
ball momentum SGM has been extensively used in practice, a theoretical convergence guarantee
is not yet achieved in the literature for nonconvex nonsmooth stochastic problems. We will pro-
vide a novel guideline of parameter setting for the inertial SGM or SsGM along with convergence
guarantee, even if each g(k) is computed at an outdated iterate. It is worth mentioning that for
unconstrained smooth problems, a heavy-ball momentum SGM and Nesterov’s Accelerated Gradi-
ent (NAG) are different special cases of QHM [20]. Though beyond the scope of this paper, our
work may shed light on the acceleration effect of general momentum-based methods for nonsmooth
nonconvex problems, such as QHM and NAG.

1.2. Related works. Our method has a few key ingredients, including “stochastic subgradient”,
“inertia”, “nonsmooth nonconvex”, and “distributed delayed”, which differentiate our method from
existing ones. Below we review prior methods that share some ingredients with ours. We list a few
closely-related methods with corresponding ingredients in Table 1.

Heavy-ball and inertial methods. Early advances based on the heavy-ball or inertial momen-
tum acceleration technique can date back to [43,48]. For decades, researchers have been designing
heavy-ball or inertial methods for deterministic optimization [18,30,44–46,68], structured stochas-
tic optimization [19, 31, 32, 49, 61, 63], and even in the framework of maximal monotone opera-
tors [4, 5, 37]. Convergence analysis has been conducted to convex problems and also nonconvex



4 YANGYANG XU, YIBO XU, YONGGUI YAN, AND JIE CHEN

Table 1: A comparison of ingredients amongst several algorithms for solving problems in the form of (1.1). In

the second column, “property of F” is to reflect the underlying assumption of F : “w.c.” for weak convexity,

“smooth” for Lipschitz continuous gradient, and “cvx” for convexity. In the third column, “inertia” is to

reflect whether the algorithm introduces inertia. In the fourth column, “composite model” is to reflect the

existence of r in (1.1): “proj.” indicates a simple convex constraint, and “prox.” indicates a proximable

regularizer. In the fifth column, “distributed delayed” is to reflect whether the algorithm can handle a

distributed setting with delayed (sub)gradient information. In the last column, convergence rate results for

nonconvex models are listed: τ for the upper bound on the delay and K for the total number of iterations.

Method property of F inertia composite model distributed delayed convergence rate

Mirror Descent [1] smooth & cvx no no yes —
AdaptiveRevision [35] smooth & cvx no no yes —

Random Incremental Subgrad. [41] cvx no proj. yes —
AdaDelay [57] smooth & cvx no proj. yes —

AsySG-con [28] smooth no no yes (1 + τ/
√
K)/
√
K

APAM [66]
smooth & cvx yes proj. yes —

smooth yes no yes (1 + τ/K1/4 + τ2/
√
K)/
√
K

SHB [33] w.c. yes proj. no 1/
√
K

This paper
w.c. yes proj. & prox. yes (1 + τ/

√
K + τ)/

√
K

smooth yes proj. & prox. yes (1 + τ2/
√
K)/
√
K

smooth yes no yes (1 + τ/
√
K)/
√
K

problems. For a convex deterministic model, [59, 60] provide last-iterate convergence for inertial
methods. For a convex stochastic model, [40] proposes an inertial mirror descent method and estab-
lishes an O(1/

√
K) convergence rate result. Under a bounded-gradient assumption, [67] provides

a unified convergence analysis of stochastic momentum methods for unconstrained smooth non-
convex stochastic optimization. [19] incorporates momentum acceleration in SGM and achieves an
optimal oracle complexity result for (1.1) when F is smooth. The work [58] studies how heavy-ball
technique can help SGM escape saddle points.

Distributed/parallel stochastic methods with delayed (sub)gradient information. There
have been quite a few works about distributed delayed or asynchronous (async) parallel SGMs for
convex or nonconvex problems and SsGMs for convex problems.

Similar to our method, [1] also adopts a master-worker setup. It analyzes a distributed delayed

SGM for convex problems and establishes a convergence rate of O(1+τ2/
√
K√

K
), where τ denotes the

maximum delay of stochastic gradient and K is the total number of updates. Under a shared-
memory setting, [51] proposes an async-parallel SGM for strongly-convex problems with a special

sparsity structure and establishes a convergence rate of O(1+τ2/
√
n

K lnK), where n is the number
of coordinates. [35] gives delay-tolerant algorithms for async distributed convex online learning
problems. Its algorithms can achieve a regret of O(

√
(1 + τ)K) if a uniform upper bound τ on

the delay is known and O((1 + τ)
√
K) otherwise. For smooth convex stochastic problems, [6,

57] adapt the stepsize of an async-parallel SGM to the staleness of stochastic gradient. More
precisely, let τk denote the actual delay at iteration k. The stepsize of the methods in [6, 57]
depends on τk. [57] analyzes its projected stochastic gradient scheme under the assumption that
the delay has a bounded expectation E[τk] = τ̄ <∞ and a bounded second moment E[τ2

k ] = Ω(τ̄2).

The convergence rate is O(
√

1+τ̄+τ̄4/
√
K√

K
) if τ̄ is known and O(1+τ̄+τ̄4/

√
K√

K
) otherwise. Under the

assumption E[τk] = τ̄ , [6] achieves a rate of O(1+τ̄2/K
K lnK) for unconstrained strongly convex
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problems.
Async-parallel SGMs have also been studied for smooth non-convex problems. For exam-

ple, [28] analyzes an async-parallel SGM for unconstrained stochastic problems and obtains a con-

vergence rate of O(1+τ/
√
K√

K
) in terms of the expected value of gradient norm square; [23] analyzes

an async-parallel variance-reduced SGM for a finite-sum structured problem and shows a sub-
linear convergence when τ = O(1); [66] focuses on async distributed and parallel adaptive (i.e.,
quasi-Newton-type) SGM for unconstrained stochastic problems and gives a convergence rate of

O(1+τ/K1/4+τ2/
√
K√

K
). The studies on delayed SsGMs are still limited and only for convex prob-

lems. For example, [41] proposes an async projected SsGM and shows an almost-sure subsequence
convergence result but with no convergence rate result.

The distributed/parallel methods mentioned above either adopt a master-worker setup (i.e.,
centralized) or assume a shared-memory setting. Many other works about SGMs or SsGMs are
built on a decentralized setting, where multiple agents are distributed on a connected network
and can only communicate with their neighbors but not a central master agent. Extending our
discussions to the decentralized setting is beyond the scope of this paper. The interested readers
can refer to [13,29,34,64] and the references therein.

Most closely-related works. The methods in [10, 33] are perhaps the most closely related to
ours. [10] gives a decentralized projected deterministic subgradient method for weakly-convex opti-
mization. It establishes a sublinear convergence result for the deterministic method. A stochastic
variant is also given in [10] with subsequence convergence but no convergence rate. In comparison
to [10], we incorporate the inertial-force acceleration in a proximal SsGM to achieve empirically
faster convergence, and in addition, we allow for delayed subgradient and can still achieve sublinear
convergence. [33] proposes a projected inertial SsGM for weakly-convex stochastic optimization.
The method appears similar to Alg. 1. However, its analysis is completely different from ours, and
it does not consider the delayed case. More importantly, its theoretical result is not established on
the inertial-generated sequence. This is explained as follows. The update of the method in [33] is

(1.6) x(k+1) = ProjX

(
x(k) − αβg(k) + (1− β)(x(k) − x(k−1))

)
,

where ProjX denotes the projection onto a closed convex set X. Its analysis is only on the choice
of αβ = Θ( 1

K ) for a given maximum number K of updates and 1 − β = 1 − 1√
K

. The sequence

generated from (1.6) is similar to that we generate from (1.2), i.e., inertial-generated sequence.
However, the theoretical result in [33] is not about {x(k)} but on the extrapolated sequence {x̄(k) :=
x(k) + 1−β

β (x(k)−x(k−1))}. There are two potential issues on analyzing the property of {x̄(k)}. First,

if X 6= Rn, the sequence may not be in X. In fact, x̄(k) can be far away from X if x(k)−x(k−1) 6= 0
as 1−β

β =
√
K−1 is big. Second, if X = Rn, it holds x̄(k+1) = x̄(k)−αg(k), and in this case, {x̄(k)} is

more like a non-inertial sequence, as compared to the sequence generated by the momentum SGM
in (1.5). In contrast, our analysis will be on the inertial-generated sequence.

1.3. Contributions.
• We propose a proximal inertial stochastic subgradient method in Alg. 1 for solving non-

convex stochastic Problem (1.1). The method can tolerate a delay of derivative information
in a distributed environment. To the best of our knowledge, it is the first method that
applies the inertial-acceleration technique in a proximal stochastic subgradient method for
non-convex problems.
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• We provide convergence rate analysis of the proposed method for three problem classes
in the form of (1.1). For each problem class, the method, with an appropriate setting of
parameters, enjoys an O( 1√

K
) convergence rate in terms of the expected value of a gradient

norm square, where K is the number of total iterations. First, when F is weakly-convex
(see Def. 2.1 below) and possibly nondifferentiable and r is convex, we establish the O( 1√

K
)

convergence rate by choosing αk = Θ( 1√
K

) and βk = Θ( 1
K1/4 ),∀ k ≤ K, provided that the

delay τk follows a static distribution and is bounded by τ = O(1). Second, when F is
smooth but possibly non-convex and r is convex, we obtain the O( 1√

K
) convergence rate

by the same choice of αk and βk as in the first case, under a relaxed condition on τk, i.e.,
τk = O(K1/4) for all k. Third, for the case of a smooth F and r ≡ 0, we obtain the O( 1√

K
)

convergence rate with the choice of αk = Θ( 1√
K

) and βk = β ∈ (0, 1),∀ k ≤ K, provided

that τk = O(
√
K) for all k. Hence, the proposed method can tolerate a larger delay if the

problem has a nicer structure.
• We conduct numerical experiments of the proposed method on three applications to demon-

strate the effect of the inertial acceleration and also to demonstrate the higher parallelization
speed-up by the asynchronous implementation over a synchronous counterpart.

1.4. Notation and organization. We use lower-case bold letters x,y, . . . for vectors. A super-
script (k) is used to specify the iterate, i.e., x(k) denotes the k-th iterate. We use ‖ · ‖ to denote
the Euclidean norm of a vector and also the spectral norm of a matrix. We use the big-O notation
with the standard meaning to compare two quantities that can both approach to infinity or zero.
The randomness of Alg. 1 comes from the samples {ξk}k≥1. In our analysis, we use Ek for the

conditional expectation with the history until the k-th iteration, i.e., Ek[ · ] = E
[
· | {ξj}k−1

j=1

]
.

The rest of the paper is organized as follows. In section 2, we give some basic concepts and
preliminary results. The detailed analysis and convergence rate results are shown in section 3-5
for three different problem classes. Numerical results are given in section 6. Finally, section 7
concludes the paper.

2. Preliminaries. In this section, we give some basic concepts and preliminary results that will
be used in our analysis. For a function φ : Rn → R ∪ {∞}, we let ∂φ(x) denote its subdifferential
at x, i.e., the set of subgradients, which consists of all vectors v satisfying

φ(y) ≥ φ(x) + 〈v,y − x〉+ o (‖y − x‖) as y→ x.

The definition and results below can be found in [11,14].

Definition 2.1. A function φ is ρ-weakly convex if φ(·) + ρ
2‖ · ‖2 is convex for some ρ > 0.

Lemma 2.2. If φ is ρ-weakly convex, then

(2.1) φ(y) ≥ φ(x) + 〈v,y − x〉 − ρ
2 ‖y − x‖2 ,∀x, y ∈ dom(φ), ∀v ∈ ∂φ(x),

and

(2.2) 〈v −w,x− y〉 ≥ −ρ ‖y − x‖2 ,∀x, y ∈ dom(φ), ∀v ∈ ∂φ(x),w ∈ ∂φ(y).

The class of weakly-convex functions is rather big. It includes all convex functions and all
smooth functions. In addition, the composition function h(c(x)) is also weakly-convex, if h : Rm →
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R is convex and Lipschitz continuous and c : Rn → Rm is smooth. Specific applications that have
weakly-convex objectives include nonlinear least squares, phase retrieval, robust PCA, robust low
rank matrix recovery, optimization of the Conditional Value-at-Risk, and graph synchronization.
More examples can be found in [14].

A key tool used in recent works (e.g., [2, 10, 11, 33, 39]) about stochastic weakly-convex mini-
mization is the Moreau envelope [36], which is defined as follows.

Definition 2.3. For a ρ-weakly convex function φ and λ ∈ (0, 1/ρ), the Moreau envelope φλ(·) is
defined as

(2.3) φλ(x) = min
y

{
φ(y) + 1

2λ ‖y − x‖2
}
.

The Moreau envelope is useful to characterize near-stationarity of a point x because of the
results in the following lemma. From (2.4), we notice that if ‖∇φλ(x)‖ is small, then x̃ := proxλφ(x)
will be a near-stationary point of φ and x is close to x̃.

Lemma 2.4. Let φ be ρ-weakly convex, then for any λ ∈ (0, 1/ρ), the Moreau envelope φλ is
smooth with gradient given by

∇φλ(x) = λ−1
(
x− x̃

)
,

where x̃ := proxλφ(x). Moreover,

(2.4) ‖x− x̃‖ = λ ‖∇φλ(x)‖ , φ(x̃) ≤ φ(x), and dist(0, ∂φ(x̃)) ≤ ‖∇φλ(x)‖ .

Besides the class of weakly-convex functions, we will also consider smooth functions in our
analysis, for which we are able to obtain stronger theoretical results. By slightly abusing the
notation, we also use ρ to denote the Lipschitz constant of a smooth function, as a ρ-smooth
function must be ρ-weakly convex.

Definition 2.5. A function φ is ρ-smooth, if it is differentiable, and

‖∇φ(x)−∇φ(y)‖ ≤ ρ‖x− y‖,∀x,y ∈ Rn.

If φ is ρ-smooth, then

(2.5) |φ(x)− φ(y)− 〈∇φ(y),x− y〉| ≤ ρ
2‖x− y‖2, ∀x,y ∈ Rn.

3. Convergence analysis for nonsmooth weakly-convex problems. In this section, we analyze
Alg. 1 for problems in the form of (1.1), where F is possibly nondifferentiable. Throughout this
section, we make the following assumptions.

Assumption 1 (weak convexity). F is ρ-weakly convex with ρ > 0.

Assumption 2 (unbiased subgradient). g(k) is an unbiased stochastic subgradient of F at x(k−τk)

for each k, i.e., Eξk [g(k)] ∈ ∂F (x(k−τk)).

Assumption 3 (bounded subgradient). There is a real numberM ≥ 0 such that Eξ‖∇̃f(x; ξ)‖2 ≤
M2 for all x ∈ dom(r) and all subgradient ∇̃f(x; ξ) ∈ ∂f(x; ξ).
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3.1. Preparatory lemmas. For a fixed ρ > ρ, we denote

v(k) = Eξk
[
g(k)

]
∈ ∂F (x(k−τk)), x̃(k) = proxφ/ρ(x

(k)),(3.1a)

and choose

ṽ(k) ∈ ∂F (x̃(k)) such that ρ(x(k) − x̃(k)) ∈ ∂r(x̃(k)) + ṽ(k).(3.1b)

Note that the existence of ṽ(k) is guaranteed from the definition of x̃(k). By Assumption 3, it holds
that

(3.2) Eξk‖g(k)‖2 ≤M2, ‖v(k)‖2 ≤M2, and ‖ṽ(k)‖2 ≤M2.

The next result is from [11, Lemma 3.2]. Its proof only relies on the definition of x̃(k) and the
choice of ṽ(k). Hence, the result still holds for our case, though the algorithm in [11, Lemma 3.2]
does not have an inertial term in its update.

Lemma 3.1. Let x̃(k) and ṽ(k) be defined as in (3.1a) and (3.1b). Then

(3.3) x̃(k) = proxαkr
(
αkρx

(k) − αkṽ(k) + (1− αkρ)x̃(k)
)
.

The next lemma extends the hypomonotonicity property of a weakly-convex function, in order
to deal with the case with delayed subgradients.

Lemma 3.2. Let x̃(k), v(k) and ṽ(k) be defined as in (3.1). Then under Assumption 1, it holds

(3.4)
−
〈
x(k) − x̃(k),v(k) − ṽ(k)

〉
≤ F (x(k))− F (x(k−τk)) + ρ

2‖x(k) − x̃(k)‖2 + ρ
2‖x(k−τk) − x̃(k)‖2 −

〈
x(k) − x(k−τk),v(k)

〉
.

Proof. From the ρ-weak convexity of F , it follows that

(3.5)
〈
x(k) − x̃(k), ṽ(k)

〉
≤ F (x(k))− F (x̃(k)) + ρ

2‖x(k) − x̃(k)‖2,
and

(3.6) −
〈
x(k−τk) − x̃(k),v(k)

〉
≤ F (x̃(k))− F (x(k−τk)) + ρ

2‖x(k−τk) − x̃(k)‖2.
Hence, we obtain the desired result by adding the two inequalities in (3.5) and (3.6), and also
noticing

−
〈
x(k) − x̃(k),v(k) − ṽ(k)

〉
=
〈
x(k) − x̃(k), ṽ(k)

〉
−
〈
x(k−τk) − x̃(k),v(k)

〉
−
〈
x(k) − x(k−τk),v(k)

〉
.

This completes the proof. �

The result in the next lemma establishes a descent property of the iterate sequence from Alg. 1
by relating it to the virtual sequence {x̃(k)}. It extends the result in [11, Lemma 3.3].

Lemma 3.3. Let ρ ∈ (ρ, 2ρ] and αk ∈ (0, 1/ρ] for all k. Under Assumptions 1–3, the iterate
sequence {x(k)} from Alg. 1 with stepsize sequence {αk} and inertial parameter {βk} satisfies

(3.7)
Eξk‖x(k+1) − x̃(k)‖2 ≤

(
1− 2αk(ρ− ρ) + ck

)
‖x(k) − x̃(k)‖2 + (2 + 1

ck
)β2
k‖x(k) − x(k−1)‖2

+ 8α2
kM

2 + 2αk(1− αkρ)Êk,

where x̃(k) is defined in (3.1a), ck is any positive number, and

(3.8) Êk := F (x(k))− F (x(k−τk))− ρ
2‖x(k) − x̃(k)‖2 + ρ

2‖x(k−τk) − x̃(k)‖2 −
〈
x(k) − x(k−τk),v(k)

〉
.
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The next lemma will be used to bound
∑K

k=1 ‖x(k+1) − x(k)‖2 for any given integer K.

Lemma 3.4. Let {x(k)} be generated from Alg. 1. Under Assumptions 1 and 3, it holds for any
γ > 0 that

(3.9)
(
1−γ− αkρ

2 −
βk
2

)
E‖x(k+1)−x(k)‖2 ≤ αkE

(
φ(x(k))−φ(x(k+1))

)
+ βk

2 E‖x(k)−x(k−1)‖2 +
α2
kM

2

γ .

Proof. By the convexity of r, we have
〈
x(k)−x(k+1), ∇̃r(x(k+1))

〉
≤ r(x(k))−r(x(k+1)). In addition,

it follows from (1.2) that 0 ∈ αk∂r(x(k+1)) + x(k+1) − x(k) + αkg
(k) − βk(x(k) − x(k−1)). Hence,

(3.10)
〈
x(k+1) − x(k),x(k+1) − x(k) + αkg

(k) − βk(x(k) − x(k−1))
〉
≤ αk

(
r(x(k))− r(x(k+1))

)
.

By the ρ-weak convexity of F , it holds〈
x(k+1) − x(k), ∇̃F (x(k+1))

〉
≥ F (x(k+1))− F (x(k))− ρ

2‖x(k+1) − x(k)‖2,
and thus

(3.11)

〈
x(k+1) − x(k), αkg

(k)
〉
≥ αk

〈
x(k+1) − x(k),g(k) − ∇̃F (x(k+1))

〉
+ αk

(
F (x(k+1))− F (x(k))− ρ

2
‖x(k+1) − x(k)‖2

)
.

Plugging (3.11) into (3.10) and rearranging terms give

(3.12)

(
1− αkρ

2

)
‖x(k+1) − x(k)‖2 ≤ αk

(
φ(x(k))− φ(x(k+1))

)
+ βk

〈
x(k+1) − x(k),x(k) − x(k−1)

〉
− αk

〈
x(k+1) − x(k),g(k) − ∇̃F (x(k+1))

〉
.

Now using Assumption 3 and the Young’s inequality, we have(
1− αkρ

2

)
E‖x(k+1) − x(k)‖2 ≤ αkE

(
φ(x(k))− φ(x(k+1))

)
+ βk

2 E
(
‖x(k+1) − x(k)‖2 + ‖x(k) − x(k−1)‖2

)
+ γE‖x(k+1) − x(k)‖2 +

α2
kM

2

γ .

Rearranging terms in the above inequality gives the desired result. �

3.2. Convergence rate results. In this subsection, we establish the convergence rate results of
Alg. 1 for nonsmooth weakly-convex problems by using the lemmas in the previous subsection. We
first give a generic result as follows.

Theorem 3.5. Given a positive integer K, let {x(k)}Kk=1 be generated from Alg. 1 with a stepsize
sequence {αk} and inertial parameter sequence {βk}. Under Assumptions 1–3, let ρ ∈ (ρ, 2ρ] and
assume αk ∈ (0, 1/ρ] for all k. Then
(3.13)

E
∥∥∇φ1/ρ(x

(T ))
∥∥2 ≤ 2ρ

(ρ−ρ)
∑K
k=k0

αk

[
E
[
φ1/ρ(x

(k0))− φ∗
]

+ ρ
2

∑K
k=k0

(2 + 2
αk(ρ−ρ))β2

kE‖x(k) − x(k−1)‖2

+ 4ρM2
∑K

k=k0
α2
k +

∑K
k=k0

αkρ(1− αkρ)E[Ek]
]
,

where k0 ≥ 1 is an integer, T is randomly selected from {k0, . . . ,K} by the distribution

(3.14) Prob(T = k) = αk∑K
j=k0

αj
, ∀ k = k0, . . . ,K,

and

(3.15) Ek := F (x(k))− F (x(k−τk)) +
(ρ

2 + ρ2

ρ−ρ
)
‖x(k−τk) − x(k)‖2 −

〈
x(k) − x(k−τk),v(k)

〉
.
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Proof. By the definition of φλ in (2.3) and Lemma 3.3, we have

Eξk
[
φ1/ρ(x

(k+1))
]

≤ Eξk
[
φ(x̃(k)) + ρ

2‖x(k+1) − x̃(k)‖2
]

≤ φ(x̃(k)) + ρ
2

[(
1− 2αk(ρ− ρ) + ck

)
‖x(k) − x̃(k)‖2 + (2 + 1

ck
)β2
k‖x(k) − x(k−1)‖2 + 8α2

kM
2
]

+ αkρ(1− αkρ)Êk
= φ1/ρ(x

(k))− ρ
2 (2αk(ρ− ρ)− ck) ‖x(k) − x̃(k)‖2 + ρ

2(2 + 1
ck

)β2
k‖x(k) − x(k−1)‖2 + 4ρα2

kM
2

+ αkρ(1− αkρ)Êk.(3.16)

where Êk is defined in (3.8). By the Young’s inequality, we have

−ρ
2‖x(k) − x̃(k)‖2 + ρ

2‖x(k−τk) − x̃(k)‖2 = ρ
2‖x(k−τk) − x(k)‖2 + ρ〈x(k−τk) − x(k),x(k) − x̃(k)〉

≤
(ρ

2 + ρ2

ρ̄−ρ
)
‖x(k−τk) − x(k)‖2 + ρ̄−ρ

4 ‖x(k) − x̃(k)‖2.

Using the definition of Êk in (3.8) and substituting the inequality above into (3.16), we have from
1− αkρ ≤ 1 and the definition of Ek in (3.15) that

Eξk
[
φ1/ρ(x

(k+1))
]

≤ φ1/ρ(x
(k))− ρ

2

(
3
2αk(ρ− ρ)− ck

)
‖x(k) − x̃(k)‖2 + ρ

2(2 + 1
ck

)β2
k‖x(k) − x(k−1)‖2 + 4ρα2

kM
2

+ αkρ(1− αkρ)Ek.(3.17)

Taking full expectation and summing the inequality in (3.17) over k = k0, . . . ,K, we have

E
[
φ1/ρ(x

(K+1))
]

≤ E
[
φ1/ρ(x

(k0))
]
− ρ

2

∑K
k=k0

(
3
2αk(ρ− ρ)− ck

)
E‖x(k) − x̃(k)‖2

+ ρ
2

∑K
k=k0

(2 + 1
ck

)β2
kE‖x(k) − x(k−1)‖2 + 4ρM2

∑K
k=k0

α2
k +

∑K
k=k0

αkρ(1− αkρ)Ek.

Choose ck = 1
2αk(ρ− ρ) for all k ≥ 1 and rearrange the above inequality. We obtain

(3.18)

ρ(ρ−ρ)
2

∑K
k=k0

αkE‖x(k) − x̃(k)‖2 ≤ E
[
φ1/ρ(x

(k0))− φ∗
]

+ 4ρM2
∑K

k=k0
α2
k

+ ρ
2

∑K
k=k0

(2 + 2
αk(ρ−ρ))β2

kE‖x(k) − x(k−1)‖2 +
∑K

k=k0
αkρ(1− αkρ)E[Ek],

where we have used the fact φ1/ρ(x) ≥ φ∗, ∀x ∈ dom(r). From Lemma 2.4, we have ‖x(k)−x̃(k)‖2 =

‖∇φ1/ρ(x
(k))‖2/ρ2. Hence, plugging this equation into the left-hand side of (3.18) and using the

choice of T in (3.14), we obtain the desired result. �

To show the convergence rate in (3.13), it suffices to bound the summation terms on E‖x(k) −
x(k−1)‖2 and the delay term E[Ek]. If the delay is arbitrary, it is impossible to have convergence,
and thus a certain condition on τk is needed. For nonsmooth problems, we make the following
assumption.

Assumption 4 (stochastic delay). There is an integer τ such that the staleness τk follows the
distribution

Prob(τk = j) = pj , for j = 0, 1, . . . , τ, ∀ k.
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If the computing environment does not change during all the iterations, the assumption will hold.
In addition, one can track the delay at the master node and thus estimate the probability. However,
we do not need to know the values of {pj} or τ in the computation and analysis, but we only require
their existence. A similar assumption has been made in [22,47,57].

In the rest of this section, we show convergence rate results separately for the case with a fixed
stepsize sequence and the one with a varying stepsize sequence.

3.2.1. Convergence rate with a fixed stepsize. In this subsubsection, we consider the case
where αk = α1 and βk = β1 for all k ≥ 1. In this case, it is easy to bound the summation term
about E‖x(k) − x(k−1)‖2.

Lemma 3.6. Given a positive integer K, let αk = α√
K
, ∀ k = 1, . . . ,K for some α > 0. Also, let

βk = β
K1/4 , ∀ k for some nonnegative β such that β

K1/4 < 1− αρ

2
√
K

. Then under Assumptions 1 and

3, it holds

∑K
k=1 E‖x(k+1) − x(k)‖2 ≤ α

γ
√
K

(
φ(x(1))− φ∗

)
+ α2M2

γ2
, where γ = 1

2

(
1− αρ

2
√
K
− β

K1/4

)
.(3.19)

Proof. Let γ = 1
2

(
1− αρ

2
√
K
− β

K1/4

)
in (3.9) and sum it up over k. We have

(
1− γ − αρ

2
√
K
− β

2K1/4

)∑K
k=1 E‖x(k+1) − x(k)‖2

≤ α√
K
E
(
φ(x(1))− φ(x(K+1))

)
+ β

2K1/4

∑K
k=1 E‖x(k) − x(k−1)‖2 + α2M2

γ .

Since x(0) = x(1) and φ(x(K+1)) ≥ φ∗, the above inequality together with the choice of γ implies
the desired result. We complete the proof. �

When a fixed stepsize sequence is used, we can bound
∑K

k=1 E[Ek] as in the next lemma.

Lemma 3.7. Let Ek be defined in (3.15). Given a positive integer K, let αk = α√
K
, ∀ k = 1, . . . ,K

for some α > 0. Also, let βk = β
K1/4 , ∀ k for some nonnegative β such that β

K1/4 < 1− αρ

2
√
K

. Suppose

that F (x) is upper bounded by CF for all x ∈ dom(r). Then under Assumptions 1, 3, and 4, we
have

(3.20)

∑K
k=1 E[Ek] ≤ τ max

{
0,−F (x(1))

}
+ τCF + τ2

(ρ
2 + ρ2

ρ̄−ρ
) (

α
γ
√
K

(
φ(x(1))− φ∗

)
+ α2M2

γ2

)
+Mτ

√
K
√

α
γ
√
K

(
φ(x(1))− φ∗

)
+ α2M2

γ2
,

where γ = 1
2

(
1− αρ

2
√
K
− β

K1/4

)
.

Now from Theorem 3.5 and Lemmas 3.6 and 3.7, we can easily show the following convergence
rate result.

Theorem 3.8 (convergence rate with fixed stepsize). Under Assumptions 1–3 and 4, let ρ ∈
(ρ, 2ρ] and K be the maximum number of iterations. Let {x(k)} be the sequence from Alg. 1 with
αk = α√

K
and βk = β

K1/4 , ∀ k = 1, . . . ,K for some α > 0 and nonnegative β such that α√
K
∈ (0, 1/ρ]
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and β
K1/4 < 1− αρ

2
√
K

. Suppose that F (x) is upper bounded by CF for all x ∈ dom(r). Then

(3.21)

E
∥∥∇φ1/ρ(x

(T ))
∥∥2 ≤ 2ρ

(ρ−ρ)α
√
K

[
ρ
2(2 + 2

√
K

α(ρ−ρ)) β2
√
K

(
α

γ
√
K

(
φ(x(1))− φ∗

)
+ α2M2

γ2

)
+ 4ρM2α2

+ αρτ√
K

(
max

{
0,−F (x(1))

}
+ CF + τ

(ρ
2 + ρ2

ρ̄−ρ
)(

α
γ
√
K

(
φ(x(1))− φ∗

)
+ α2M2

γ2

))
+ φ1/ρ(x

(1))− φ∗ +Mαρτ
√

α
γ
√
K

(
φ(x(1))− φ∗

)
+ α2M2

γ2

]
,

where γ = 1
2

(
1− αρ

2
√
K
− β

K1/4

)
and T is randomly selected from {1, . . . ,K} by (3.14).

Proof. Notice
∑K

k=1 αk = α
√
K and

∑K
k=1 α

2
k = α2. Then the inequality in (3.21) directly follows

by substituting (3.19) and (3.20) into (3.13) with k0 = 1, and also noticing 1− αρ√
K
≤ 1. �

Remark 3.9. The result in (3.21) indicates a convergence rate of O(1/
√
K). For the no-delay

case (i.e., τ = 0), the assumption F (x) ≤ CF , ∀x ∈ dom(r) is not needed. The delay case has the
same-order convergence as the no-delay case. However, their constants are different. Compared to
the no-delay case, the delay one has a few additional terms dependent on τ . The term dependent
on τ in the second line on the right-hand side of (3.21) is negligible if K is a large number, but
the term in the third line will not vanish as K → ∞. In other words, the delay always has a
non-negligible effect on the convergence rate. To take a clearer look at the effect, let ρ = 2ρ, β = 0,
and K → ∞. Then γ → 1

2 , and the terms enclosed in the big square brackets of (3.21) roughly

equal φ1/ρ(x
(1))− φ∗+ 8ρα2M2 + 4ρα2M2τ . Hence, the delay can slow down the convergence rate

by τ
τ+2+(φ1/ρ(x(1))−φ∗)/(4ρα2M2)

. This indicates that the delay will have a smaller effect if ρ is smaller

(i.e., F is closer to convexity) or if α is smaller (i.e., a smaller learning rate is used).

3.2.2. Convergence rate with varying stepsizes. When αk varies with k,
∑

k αk
(
φ(x(k)) −

φ(x(k+1))
)

may not be a telescoping series any more, so we cannot directly obtain a bound as
in (3.19) by summing up (3.9). Below we make an additional assumption and show a bound on∑K

k=1 ‖x(k+1) − x(k)‖2 when αk = α/
√
k for all k ≥ 1.

Assumption 5. At least one of the following conditions holds.
1. φ is bounded on dom(r), i.e., there is Cφ such that |φ(x)| ≤ Cφ,∀x ∈ dom(r).
2. The function r has the form of r = r1 + r2, where r1 is the indicator function of a closed

convex set X ⊆ Rn, and r2 is convex. In addition, there is Mr ≥ 0 such that ‖v‖ ≤Mr for
all x ∈ X and all v ∈ ∂r2(x).

In condition 1 of Assumption 5, the boundedness of φ can be guaranteed if φ is continuous and
dom(r) is compact. The second condition trivially holds if r2 ≡ 0, and it also holds if X = Rn and
r2 is a Lipschitz continuous function such as a certain norm.

Lemma 3.10. Under Assumptions 1 and 3, let {αk} be a positive nonincreasing sequence and
α1 <

2
ρ . Also, let βk ≤ β̃,∀ k ≥ 1 for some β̃ such that 0 ≤ β̃ < 1− α1ρ

2 . Then if the first condition
in Assumption 5 holds, we have for any positive integer K,

(3.22)
∑K

k=1 ‖x(k+1) − x(k)‖2 ≤ 2α1Cφ
γ +

∑K
k=1

α2
kM

2

γ2
, where γ = 1

2

(
1− α1ρ

2 − β̃
)
.

Proof. When condition 1 of Assumption 5 holds, i.e., |φ(x)| ≤ Cφ,∀x ∈ dom(r), we have from the
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nonincreasing monotonicity of αk that

(3.23)

∑K
k=1 αk

(
φ(x(k))− φ(x(k+1))

)
= α1φ(x(1)) +

∑K
k=2(αk − αk−1)φ(x(k))− αKφ(x(K+1))

≤ α1Cφ −
∑K

k=2(αk − αk−1)Cφ + αKCφ = 2α1Cφ.

Hence, let γ = 1
2

(
1 − α1ρ

2 − β̃
)

in (3.9) and sum it up over k. We have by γ ≤ 1 − γ − αkρ
2 −

βk+βk+1

2 , ∀ k ≥ 1 that

γ
∑K

k=1 ‖x(k+1) − x(k)‖2 ≤ 2α1Cφ +
∑K

k=1
α2
kM

2

γ ,

which apparently implies the desired result. �

Lemma 3.11. Suppose that Assumption 3 and condition 2 of Assumption 5 hold. Let {x(k)}
be the sequence from Alg. 1 with a stepsize sequence {αk} and inertial parameter {βk} such that
βk ≤ β̃ < 1. Then for any positive integer K,

(3.24)
∑K

k=1 E‖x(k+1) − x(k)‖2 ≤ (M2
r +M2)4(1+β̃2)

(1−β̃2)2

∑K
k=1 α

2
k.

We still need to bound
∑K

k=k0
αkρ(1− αkρ)E[Ek] in (3.13).

Lemma 3.12. Under Assumptions 1–5, let ρ ∈ (ρ, 2ρ] and αk = α√
k
, ∀ k ≥ 1 for some 0 < α ≤

1/ρ. Also, let βk = min
{
β̃, β

k1/4

}
, ∀ k, for some β̃ such that 0 ≤ β̃ < 1− αρ

2 . Furthermore, assume
|F (x)| ≤ CF ,∀x ∈ dom(r). Then for any integer K and 1 ≤ k0 ≤ K, it holds∑K

k=k0
αkρ(1− αkρ)E[Ek] ≤ 2αk0ρτCF + αk0τ

2ρ
(ρ

2 + ρ2

ρ−ρ
)(
C1 + C2α

2(1 + lnK)
)

(3.25)

+Mτρ
√∑K

k=k0
α2
k

√
C1 + C2α2(1 + lnK),

where Ek is defined in (3.15), and C1 and C2 are given in (3.27) below.

Now we are ready to show the convergence rate result for the case with varying stepsize.

Theorem 3.13 (convergence rate with varying stepsize). Under the same assumptions of Lemma 3.12,
let {x(k)} be the sequence from Alg. 1. We have

(3.26)

E
∥∥∇φ1/ρ(x

(T ))
∥∥2 ≤ ρ

(ρ−ρ)α(
√
K+1−

√
k0)

[
E
[
φ1/ρ(x

(k0))− φ∗
]

+ 4ρM2α2(1 + lnK − ln k0)

+ ρ
2

(
2β̃2 + 2β2

α(ρ−ρ)

)(
C1 + C2α

2(1 + lnK)
)

+ 2 α√
k0
ρτCF + α√

k0
τ2ρ
(ρ

2 + ρ2

ρ−ρ
)(
C1 + C2α

2(1 + lnK)
)

+ αMτρ
√

1 + lnK − ln k0

√
C1 + C2α2(1 + lnK)

]
,

where T is randomly selected from {k0, . . . ,K} by (3.14) and

C1 =
4αCφ

1−αρ
2
−β̃ , C2 = 4M2

(1−αρ
2
−β̃)2

, if condition 1 of Assumption 5 holds; or,(3.27a)

C1 = 0, C2 = (M2
r +M2)4(1+β̃2)

(1−β̃2)2
, if condition 2 of Assumption 5 holds.(3.27b)
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Proof. By the choice of {αk} and {βk}, we have∑K
k=k0

(2 + 2
αk(ρ−ρ))β2

kE‖x(k) − x(k−1)‖2 ≤ (2β̃2 + 2β2

α(ρ−ρ))
∑K

k=k0
E‖x(k) − x(k−1)‖2,

which, together with (3.22) and (3.24) and also Lemma A.2 with a = 1, gives

ρ
2

∑K
k=k0

(2 + 2
αk(ρ−ρ))β2

kE‖x(k) − x(k−1)‖2 ≤ ρ
2(2β̃2 + 2β2

α(ρ−ρ))
(
C1 + C2

∑K
k=1 α

2
k

)
≤ ρ

2(2β̃2 + 2β2

α(ρ−ρ))
(
C1 + C2α

2(1 + lnK)
)
,(3.28)

with C1 and C2 defined in (3.27). In addition,
∑K

k=k0
αk ≥ α

∫K+1
k0

1√
x
dx = 2α(

√
K + 1 −

√
k0)

and
∑K

k=k0
α2
k ≤ α2 +α2

∫K
k0

1
xdx = α2(1 + lnK − ln k0). Hence, substituting (3.25) and (3.28) into

(3.13) gives the desired result. �

Remark 3.14. For the no-delay case (i.e., τ = 0), we can set k0 = 1 in Theorem 3.13; then the
assumption |F (x)| ≤ CF ,∀x ∈ dom(r) is not needed anymore. When τ > 0, the negative effect
by the delay will not vanish as K →∞, similar to what we observe for the result in Theorem 3.8.
Suppose that we have an estimate on τ and K � τ4. We can set k0 = Ω(τ4). Then the terms
caused by the delay will near-linearly depend on τ .

4. Convergence analysis for nonconvex composite problems. In this section, we analyze
Alg. 1 for problems in the form of (1.1), where F is smooth and r is a possibly nonsmooth convex
function. Instead of the ρ-weak convexity, we assume the ρ-smoothness condition on F . Here,
we abuse the notation of ρ, which is used as the weak-convexity constant in the previous section.
Nevertheless, if F is ρ-smooth, it is also ρ-weakly convex. The stronger assumption will enable us
to obtain better convergence result in terms of the effect caused by the staleness of the gradient.

Assumption 6 (ρ-smoothness). F (x) is ρ-smooth in dom(r), i.e.,

‖∇F (x)−∇F (y)‖ ≤ ρ‖x− y‖,∀x,y ∈ dom(r).

When F is smooth, it is standard to replace Assumption 3 by the one below.

Assumption 7 (bounded variance). There is σ ≥ 0 such that Eξ‖∇f(x; ξ)−∇F (x)‖2 ≤ σ2 for
all x ∈ dom r.

In addition, when F is smooth, we only need a boundedness condition on the staleness but not
a static distribution anymore.

Assumption 8 (bounded staleness). There is a finite integer τ such that τk ≤ τ for all k ≥ 1.

We can track the delay and ensure the boundedness of delay by discarding too outdated sample
gradients.

Lemma 4.1. Under Assumptions 2, 6, and 7, the iterates {x(k)} from Algorithm 1 satisfy

Eξk‖g(k) −∇F (x(k))‖2 ≤ σ2 + ρ2‖x(k−τk) − x(k)‖2.
Proof. When F is differentiable, the condition in Assumption 2 becomes Eξk [g(k)] = ∇F (x(k−τk)).
Hence,

Eξk‖g(k) −∇F (x(k))‖2 = Eξk‖g(k) −∇F (x(k−τk)) +∇F (x(k−τk))−∇F (x(k))‖2

= Eξk‖g(k) −∇F (x(k−τk))‖2 + ‖∇F (x(k−τk))−∇F (x(k))‖2

≤ σ2 + ρ2‖x(k−τk) − x(k)‖2,
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where the second equality follows from Eξk
〈
g(k)−∇F (x(k−τk)),∇F (x(k−τk))−∇F (x(k))

〉
= 0, and

the inequality holds by using Assumptions 6 and 7. This completes the proof. �

Lemma 4.2. Under Assumptions 2, 6 and 7, let ρ > ρ and αk ∈ (0, 1/ρ] for all k. Then the
iterates {x(k)} from Algorithm 1 with a stepsize sequence {αk} satisfies

(4.1)
Eξk‖x(k+1) − x̃(k)‖2 ≤ ‖x(k) − x̃(k)‖2 −

(
1
2αk(ρ− ρ)− ck

)
‖x(k) − x̃(k)‖2

+ (2 + 1
ck

)β2
k‖x(k) − x(k−1)‖2 + α2

kσ
2 + 2

(
α2
k + αk

ρ−ρ
)
ρ2‖x(k−τk) − x(k)‖2,

where ck is any positive number, and x̃(k) is defined in (3.1a).

Using the previous two lemmas, we show a convergence result below for generic parameters.

Theorem 4.3. Under Assumptions 2, 6 and 7, let ρ > ρ and αk ∈ (0, 1/ρ] for all k ≥ 1. Given a
positive integer K, let {x(k)}Kk=1 be the sequence generated from Algorithm 1 with a stepsize sequence
{αk}Kk=1 and inertial parameter {βk}. Then

(4.2)
E‖∇φ1/ρ(x

(T ))‖2 ≤ 8ρ

(ρ−ρ)
∑K
k=1 αk

[
ρ
2

∑K
k=1

(
2 + 4

αk(ρ−ρ)

)
β2
kE‖x(k) − x(k−1)‖2

φ1/ρ(x
(1))− φ∗ + σ2ρ

2

∑K
k=1 α

2
k + ρρ2

∑K
k=1

(
α2
k + αk

ρ−ρ
)
E‖x(k−τk) − x(k)‖2

]
,

where T is randomly selected from {1, . . . ,K} by (3.14).

Proof. By the definition of φλ in (2.3) and Lemma 4.2, we have

Eξk
[
φ1/ρ(x

(k+1))
]

≤ Eξk
[
φ(x̃(k)) + ρ

2‖x(k+1) − x̃(k)‖2
]

≤ φ(x̃(k)) + ρ
2

[
‖x(k) − x̃(k)‖2 − (1

2αk(ρ− ρ)− ck)‖x(k) − x̃(k)‖2

+
(
2 + 1

ck

)
β2
k‖x(k) − x(k−1)‖2 + α2

kσ
2 + 2

(
α2
k + αk

ρ−ρ
)
ρ2‖x(k−τk) − x(k)‖2

]
= φ1/ρ(x

(k))− ρ
2(1

2αk(ρ− ρ)− ck)‖x(k) − x̃(k)‖2 + ρ
2

(
2 + 1

ck

)
β2
k‖x(k) − x(k−1)‖2(4.3)

+
ρα2
kσ

2

2 + 2
(
α2
k + αk

ρ−ρ
)ρρ2

2 ‖x(k−τk) − x(k)‖2.

Take full expectation on both sides of (4.3) and sum up it over k = 1, . . . ,K. Then we have

E
[
φ1/ρ(x

(K+1))
]

≤ E
[
φ1/ρ(x

(1))
]
− ρ

2

∑K
k=1

(
1
2αk(ρ− ρ)− ck

)
E‖x(k) − x̃(k)‖2 + ρ

2

∑K
k=1

(
2 + 1

ck

)
β2
kE‖x(k) − x(k−1)‖2

+ σ2ρ
2

∑K
k=1 α

2
k + ρρ2

∑K
k=1

(
α2
k + αk

ρ−ρ
)
E‖x(k−τk) − x(k)‖2.(4.4)

Choose ck = 1
4αk(ρ− ρ) for all k and replace ‖x(k) − x̃(k)‖2 by 1

ρ2
‖∇φ1/ρ(x

(k))‖2 from Lemma 2.4.

We have from (4.4) that

E
[
φ1/ρ(x

(K+1))
]

≤ E
[
φ1/ρ(x

(1))
]
− 1

8ρ

∑K
k=1 αk(ρ− ρ)E‖∇φ1/ρ(x(k))‖2 + ρ

2

∑K
k=1

(
2 + 4

αk(ρ−ρ)
)
β2
kE‖x(k) − x(k−1)‖2

+ σ2ρ
2

∑K
k=1 α

2
k + ρρ2

∑K
k=1

(
α2
k + αk

ρ−ρ
)
E‖x(k−τk) − x(k)‖2.(4.5)
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Rearrange terms in (4.5) and notice φ1/ρ(x
(K+1)) ≥ φ∗, we obtain the desired result by the definition

of T . �

To show the convergence rate, we still need the following result to bound
∑

k≥1 E‖x(k+1)−x(k)‖2.

Lemma 4.4. Let {x(k)} be generated from Alg. 1. Under Assumptions 6 and 7, it holds for any
γ > 0,

(4.6)
(1− γ − αkρ

2 −
βk
2 )Eξk‖x(k+1) − x(k)‖2 ≤ αkEξk

(
φ(x(k))− φ(x(k+1))

)
+ βk

2 ‖x(k) − x(k−1)‖2

+
α2
k

2γ

(
ρ2‖x(k) − x(k−τk)‖2 + σ2

)
.

Proof. By the ρ-smoothness of F and αk > 0, it holds

(4.7) αk
(
F (x(k+1))− F (x(k))

)
≤ αk

(
〈x(k+1) − x(k),∇F (x(k))〉+ ρ

2‖x(k+1) − x(k)‖2
)
.

Also notice that (3.10) still holds. Hence, we obtain, by adding (3.10) and (4.7) and rearranging
terms, that

(4.8)
(1− αkρ

2 )‖x(k+1) − x(k)‖2 ≤ αk
(
φ(x(k))− φ(x(k+1))

)
+ αk

〈
x(k+1) − x(k),∇F (x(k))− g(k)

〉
+ βk

〈
x(k+1) − x(k),x(k) − x(k−1)

〉
.

By the Young’s inequality, we have for any γ > 0,

(4.9) αk
〈
x(k+1) − x(k),∇F (x(k))− g(k)

〉
≤ γ‖x(k+1) − x(k)‖2 +

α2
k

4γ ‖∇F (x(k))− g(k)‖2,
and

(4.10) βk
〈
x(k+1) − x(k),x(k) − x(k−1)

〉
≤ βk

2

(
‖x(k+1) − x(k)‖2 + ‖x(k) − x(k−1)‖2

)
.

Plugging (4.9) and (4.10) into (4.8) gives

(4.11)
(1− αkρ

2 )‖x(k+1) − x(k)‖2 ≤ αk
(
φ(x(k))− φ(x(k+1))

)
+ γ‖x(k+1) − x(k)‖2

+
α2
k

4γ ‖∇F (x(k))− g(k)‖2 + βk
2

(
‖x(k+1) − x(k)‖2 + ‖x(k) − x(k−1)‖2

)
.

Now notice Eξk‖∇F (x(k)) − g(k)‖2 ≤ 2‖∇F (x(k)) − ∇F (x(k−τk))‖2 + 2Eξk‖∇F (x(k−τk)) − g(k)‖2
and use Assumptions 6 and 7. We obtain the desired result by taking a conditional expectation
about ξk over both sides of (4.11) and rearranging terms. �

Now we are ready to show the convergence rate result.

Theorem 4.5 (convergence rate with fixed stepsize). Under Assumptions 2, 6, 7 and 8, let ρ > ρ
and K be the maximum number of iterations. Choose αk = α√

K
and βk = β

K1/4 for some α > 0 and

β ≥ 0 such that γ̃ := 1
2 −

αρ

2
√
K
− τα2ρ2

K − β
K1/4 > 0. Let {x(k)} be the sequence from Alg. 1. Then

(4.12)

E‖∇φ1/ρ(x
(T ))‖2 ≤ 8ρ

(ρ−ρ)α
√
K

[
φ1/ρ(x

(1))− φ∗ + σ2ρα2

2

+ 1
γ̃

(
ρ
(
1 + 2

√
K

α(ρ−ρ)

) β2
√
K

+ τ2ρρ2
(
α2

K + α
(ρ−ρ)

√
K

)) (
α√
K
E(φ(x(1))− φ∗) + α2σ2

)]
,

where T is randomly selected from {1, . . . ,K} by (3.14) with k0 = 1.
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Proof. With αk = α√
K

and βk = β
K1/4 , we take full expectation over (4.6) with γ = 1

2 and sum it

up over k = 1 through K to have

(4.13)
(1

2 −
αρ

2
√
K
− β

2K1/4 )
∑K

k=1 E‖x(k+1) − x(k)‖2 ≤ α√
K
E
(
φ(x(1))− φ(x(K+1))

)
+ β

2K1/4

∑K
k=1 E‖x(k) − x(k−1)‖2 + α2

K

∑K
k=1

(
ρ2E‖x(k) − x(k−τk)‖2 + σ2

)
.

Notice that x(0) = x(1) and by Assumption 7, it holds

(4.14) ‖x(k) − x(k−τk)‖2 ≤ τ∑τ
j=1 ‖x(k+1−j) − x(k−j)‖2.

Hence, we have from (4.13) by rearranging terms and using φ(x) ≥ φ∗, ∀x ∈ dom(r) that(
1
2 −

αρ

2
√
K
− τ2α2ρ2

K − β
K1/4

)∑K
k=1 E‖x(k+1) − x(k)‖2 ≤ α√

K
E
(
φ(x(1))− φ∗

)
+ α2σ2.(4.15)

Therefore,

ρ
2

∑K
k=1

(
2 + 4

αk(ρ−ρ)

)
β2
kE‖x(k) − x(k−1)‖2 + τ2ρρ2

∑K
k=1

(
α2
k + αk

ρ−ρ
)
E‖x(k−τk) − x(k)‖2

≤
(
ρ
2

(
2 + 4

√
K

α(ρ−ρ)

) β2
√
K

+ τ2ρρ2
(
α2

K + α
(ρ−ρ)

√
K

))∑K
k=1 E‖x(k) − x(k−1)‖2

≤ 1
γ̃

(
ρ
2

(
2 + 4

√
K

α(ρ−ρ)

) β2
√
K

+ τ2ρρ2
(
α2

K + α
(ρ−ρ)

√
K

)) (
α√
K
E
(
φ(x(1))− φ∗

)
+ α2σ2

)
,(4.16)

where the first inequality follows from (4.14), and the second inequality is from (4.15) and the
definition of γ̃. Now plug (4.16) and the choice of {αk} into (4.2) to obtain the desired result. �

Remark 4.6. We make a few remarks here about Theorem 4.5. First, in the proof, we take
γ = 1

2 for simplicity while using (4.6). The analysis goes through for any γ > 0 such that 1 −
γ − αρ

2
√
K
− τ2α2ρ2

2γK − β
K1/4 > 0. Second, we see from (4.12) that a positive τ will slow down the

convergence but its effect will be reduced in an order of K−
1
4 . Hence, if K is big enough such that

K1/4 � τ , then the effect caused by the staleness is negligible.

The O( 1√
K

) convergence above is established by using a fixed stepsize sequence. We can show

a similar result for the choice of αk = Θ( 1√
k
) by assuming condition 1 of Assumption 5. The proof

is given in Appendix B.

Theorem 4.7 (convergence rate with varying stepsize). Suppose Assumptions 2, 6, 7 and 8, and
also condition 1 of Assumption 5 hold. Let ρ > ρ, αk = α√

k+a−1
and βk = min

{
β̃, β

(k+a−1)1/4

}
, for

all k ≥ 1, for some α > 0, β ≥ 0, β̃ ≥ 0, and a ≥ 1 such that

(4.17) γ̃ := 1
2

(
1− αρ√

a
− β̃2 − 2τ2ρ2α2

a

)
> 0.

Let {x(k)} be the sequence from Alg. 1. Then,

(4.18)

E‖∇φ1/ρ(x
(T ))‖2 ≤ 4ρ

(ρ−ρ)α(
√
K+a−

√
a)

[
φ1/ρ(x

(1))− φ∗ + σ2ρα2

2 (1 + ln a+K−1
a )

+
(
ρ
(
β̃2 + 2β2

α(ρ−ρ)

)
+ τ2ρρ2

(
α2

a + α√
a(ρ−ρ)

))
2
γ̃

(
α1Cφ + σ2α2(1 + ln a+K−1

a )
) ]
,

where T is randomly selected from {1, . . . ,K} by (3.14) with k0 = 1.
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Remark 4.8. When there is no delay, i.e., τ = 0, we can choose a = 1 and obtain a convergence
rate of Θ̃( 1√

K
). When there is delay, i.e., τ ≥ 1, (4.18) with a = Θ(τ4), which can ensure (4.17),

gives a rate of Θ̃( 1√
K+τ4−

√
τ4

) = Θ̃
(

1√
K

(
√

1 + τ4

K +
√

τ4

K )
)

. In this case, the delay will have a

negligible effect on the convergence speed if τ = o(K
1
4 ).

5. Convergence analysis for smooth nonconvex problems. In this section, we consider the
case where r = 0, i.e., a non-regularized smooth problem. For this special case, we are able to show
a stronger result under the same assumptions as we used in section 4, in the sense that the delay
has a weaker effect on the convergence speed. However, the analysis is significantly different from
those in the previous two sections. Throughout this section, we let

(5.1) βk = αk
αk−1

β, for all k ≥ 1 and for some β ∈ (0, 1).

Then the update in (1.2) reduces to (1.5) with m-vectors defined in (1.4). We declare the following
notation, as they appear extensively in this section:

(5.2) u(k) = ∇F (x(k−τk)) and uk = E‖u(k)‖2 for all k ≥ 1.

With the setting in (5.1), we define the following quantities that are critical for bounding the
staleness:

(5.3) θk,j =
∑min{τk−1,k−j−1}

l=0 αk−l−1β
k−j−l−1, and πk,j(t) =

∑min{τk−1,k−j−1}
l=0 tk−j−l−1.

Lemma 5.1. Let t ∈ (0, 1), we have the following results:

(5.4) πk,j(t) =

{
1−tk−j

1−t if j ≥ k − τk + 1,

1−tτk
1−t t

k−τk−j if j ≤ k − τk;
∑k−1

j=1 πk,j(t) ≤ τ
1−t ;

∑k−1
j=1 π

2
k,j(t) ≤ τ

(1−t)2 .

Lemma 5.2. Let {x(k)}k≥1 and {m(k)}k≥1 be generated from (1.5) and (1.4). Under Assump-
tions 2 and 7, it holds for k ≥ 1,

(5.5) E‖m(k)‖2 ≤ (1− β)
∑k

j=1 β
k−juj + (1− β)2

∑k
j=1 β

2(k−j)uj + (1−β)2

1−β2 σ
2,

(5.6) E‖x(k−τk) − x(k)‖2 ≤∑k−1
l=1 θk,l

∑k−1
j=1 θk,juj +

∑k−1
j=1 θ

2
k,juj + σ2

∑k−1
j=1 θ

2
k,j .

In the remaining analysis, we follow the analytical framework of [67]. We define an auxiliary
sequence z(k) as follows:

(5.7) z(k) = x(k) + β
1−β (x(k) − x(k−1)) = 1

1−βx
(k) − β

1−βx
(k−1), ∀ k ≥ 1.

Recall x(0) = x(1), so clearly, z(1) = x(1).

Lemma 5.3. Let z(k) be defined as in (5.7) and α0 = α1. We have for k ≥ 1,

(5.8) z(k+1) − z(k) = β
1−β (1− αk/αk−1)(x(k−1) − x(k))− αk

1−βg
(k),

and

(5.9) ‖∇F (z(k))−∇F (x(k))‖ ≤ ρβ
1−β‖x(k−1) − x(k)‖.
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Now we are ready to show the main result. We first show the convergence by imposing gen-
eral conditions on {αk} and then specify the choice of the parameters that satisfies the imposed
conditions.

Theorem 5.4. Given a maximum number K of iterations, let {x(k)}Kk=1 be generated from Alg. 1
with a non-increasing positive sequence {αk}Kk=1. Let x̄(K) be drawn from {x(k)}Kk=1 with probability

(5.10) Prob(x̄(K) = x(k)) = αk∑K
j=1 αj

, ∀k = 1, . . . ,K.

Under Assumptions 2 and 6–8, if for all k ≥ 2,

(5.11) (1− αk/αk−1)2 ≤ αk
2(1−β) ,

and for all j ≥ 1,

(5.12)
3ραj
1−β + ρ2

[
τ(τ−1)α1αj

(1−β)2
+

(τ−1)α2
j

(1−β)2
+

τα2
j

(1−β)3
+

α2
j

(1−β)2(1−β2)

]
+ 2(1+5ρ)β2

(1−β)2(1−β2)
αj ≤ 1,

then it holds

(5.13)
E‖∇F (x̄(K))‖2 ≤ 4σ2

(1−β)
∑K
k=1 αk

[
ρ2τ

2(1−β)

∑K
k=1 αkα

2
max{k−τk,1} + (1+5ρ)β2

2(1−β2)

∑K
k=2 α

2
k−1

+ ρ
∑K

k=1 α
2
k

]
+

4(1−β)[F (x(1))−infx F (x)]∑K
k=1 αk

.

Proof. By the ρ-smoothness of F, it follows from (2.5) that

0 ≤ F (z(k))− F (z(k+1)) +∇F (z(k))>(z(k+1) − z(k)) + ρ
2‖z(k+1) − z(k)‖2

= F (z(k))− F (z(k+1)) +∇F (x(k))>(z(k+1) − z(k))

+ (∇F (z(k))−∇F (x(k)))>(z(k+1) − z(k)) + ρ
2‖z(k+1) − z(k)‖2.(5.14)

Taking the conditional expectation and using (5.8) and Assumption 2, we have from (5.14) that

0 ≤ Ek[F (z(k))− F (z(k+1))] +∇F (x(k))>
( β

1−β (1− αk/αk−1)(x(k−1) − x(k))− αk
1−βu

(k)
)

+ (∇F (z(k))−∇F (x(k)))>
( β

1−β (1− αk/αk−1)(x(k−1) − x(k))− αk
1−βu

(k)
)

+ ρ
2Ek

∥∥ β
1−β (1− αk/αk−1)(x(k−1) − x(k))− αk

1−βg
(k)
∥∥2
.(5.15)

We bound the right-hand side of (5.15) as follows:
• in the first line of (5.15), applying the Cauchy-Schwarz inequality gives

∇F (x(k))> β
1−β (1−αk/αk−1)(x(k−1)−x(k)) ≤ 1

2(1− αk
αk−1

)2‖∇F (x(k))‖2+ β2

2(1−β)2
‖x(k−1)−x(k)‖2;

• in the second line of (5.15), it follows from (5.9) and 0 ≤ 1− αk
αk−1

≤ 1 that

(∇F (z(k))−∇F (x(k)))> β
1−β (1− αk/αk−1)(x(k−1) − x(k)) ≤ ρβ2

(1−β)2
‖x(k−1) − x(k)‖2

and in addition, by the Cauchy-Schwarz inequality,

(∇F (z(k))−∇F (x(k)))>(− αk
1−βu

(k)) ≤ ρ · β
1−β‖x(k−1) − x(k)‖ · αk1−β‖u(k)‖

≤ ρβ2

2(1−β)2
‖x(k−1) − x(k)‖2 +

ρα2
k

2(1−β)2
‖u(k)‖2;
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• in the last line of (5.15), using the Young’s inequality gives

ρ
2Ek‖

β
1−β (1−αk/αk−1)(x(k−1)−x(k))− αk

1−βg
(k)‖2 ≤ ρβ2

(1−β)2
‖x(k−1)−x(k)‖2+

ρα2
k

(1−β)2
Ek‖g(k)‖2;

• furthermore, by Assumption 7, we have

Ek‖g(k)‖2 = Ek‖∇f(x(k−τk); ξk)− u(k)‖2 + ‖u(k)‖2 ≤ σ2 + ‖u(k)‖2.

Substitute the above four items into (5.15), combine like terms, and take total expectation. We
have

0 ≤ E[F (z(k))− F (z(k+1))] + 1
2(1− αk

αk−1
)2E‖∇F (x(k))‖2 − αk

1−βE[∇F (x(k))>u(k)]

+ (1+5ρ)β2

2(1−β)2
E‖x(k−1) − x(k)‖2 +

ρα2
kσ

2

(1−β)2
+

3ρα2
k

2(1−β)2
uk

= E[F (z(k))− F (z(k+1))] +
1

2
(1− αk

αk−1
)2E‖∇F (x(k))‖2(5.16)

− αk
2(1−β)

[
E‖∇F (x(k))‖2 + uk − E‖∇F (x(k−τk))−∇F (x(k))‖2

]
+ (1+5ρ)β2

2(1−β)2
E‖x(k−1) − x(k)‖2 +

ρα2
kσ

2

(1−β)2
+

3ρα2
k

2(1−β)2
uk,

where the equality is due to a>b = 1
2 [‖a‖2 + ‖b‖2 − ‖a− b‖2], for any two vectors a and b.

Using (1.5) and the smoothness of F and then substituting (5.5) and (5.6) to (5.16), we have

0 ≤ E[F (z(k))− F (z(k+1))] + 1
2

[
(1− αk

αk−1
)2 − αk

1−β

]
E‖∇F (x(k))‖2

+ αkρ
2

2(1−β)

[∑k−1
l=1 θk,l

∑k−1
j=1 θk,juj +

∑k−1
j=1 θ

2
k,juj + σ2

∑k−1
j=1 θ

2
k,j

]
+ 1

2

( 3ρα2
k

(1−β)2
− αk

1−β
)
uk

+
(1+5ρ)β2α2

k−1

2(1−β)2

[∑k−1
j=1

(βk−j−1

1−β + β2(k−j−1)
)
uj + σ2

1−β2

]
+

ρα2
kσ

2

(1−β)2
.(5.17)

Summing the above inequality over k = 1, . . . ,K and utilizing (5.11) lead to

(5.18)

0 ≤ F (x(1))− E[F (z(K+1))]− 1
4(1−β)

∑K
k=1 αkE‖∇F (x(k))‖2 + 1

2

∑K
k=1

( 3ρα2
k

(1−β)2
− αk

1−β
)
uk

+ ρ2

2(1−β)

∑K
k=1 αk

[∑k−1
l=1 θk,l

∑k−1
j=1 θk,juj +

∑k−1
j=1 θ

2
k,juj

]
+ (1+5ρ)β2

2(1−β)2
∑K

k=1 α
2
k−1

∑k−1
j=1

(βk−j−1

1−β + β2(k−j−1)
)
uj

+
[

ρ2

2(1−β)

∑K
k=1 αk

∑k−1
j=1 θ

2
k,j + (1+5ρ)β2

2(1−β)2(1−β2)

∑K
k=1 α

2
k−1 + ρ

(1−β)2
∑K

k=1 α
2
k

]
σ2.

Since {αk} is non-increasing, it holds from (5.3) that

(5.19) θk,j ≤ αmax{k−τk,j}πk,j(β),

which together with the two inequalities in (5.4) gives

(5.20)
∑k−1

j=1 θk,j ≤ αmax{k−τk,1}
τ

1−β , and
∑k−1

j=1 θ
2
k,j ≤ α2

max{k−τk,1}
τ

(1−β)2
.
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Plugging the latter inequality of (5.20) into the fourth line of (5.18), and also interchanging the
summations in the second and third lines of (5.18) yield

0 ≤ F (x(1))− infx F (x)− 1
4(1−β)

∑K
k=1 αkE‖∇F (x(k))‖2 + 1

2

∑K
k=1

( 3ρα2
k

(1−β)2
− αk

1−β
)
uk

+ ρ2

2(1−β)

∑K−1
j=1 uj

∑K
k=j+1 αkθk,j

(
θk,j +

∑k−1
l=1 θk,l

)
+ (1+5ρ)β2

(1−β)3(1−β2)

∑K−1
j=1 ujα

2
j

+
[

ρ2τ
2(1−β)

∑K
k=1 αkα

2
max{k−τk,1} + (1+5ρ)β2

2(1−β2)

∑K
k=1 α

2
k−1 + ρ

∑K
k=1 α

2
k

]
σ2

(1−β)2
,(5.21)

where the last summation in the second line is simplified by utilizing the following summation
bound, ∑K

k=1 α
2
k−1

∑k−1
j=1 t

k−j−1uj =
∑K−1

j=1 uj
∑K

k=j+1 α
2
k−1t

k−j−1 ≤∑K−1
j=1 ujα

2
j/(1− t).

Furthermore, ∑K
k=j+1 αkθk,j

(
θk,j +

∑k−1
l=1 θk,l

)
≤ αj

∑K
k=j+1 αmax{k−τk,j}πk,j(β)

(
αmax{k−τk,j}πk,j(β) +

αmax{k−τk,1}τ

1−β
)

≤ αj
∑

k : j+1≤k≤K, k≤j+τ−1 αj
1

1−β
(
αj

1
1−β + α1τ

1−β
)

+ αj
∑

k : j+1≤k≤K, k≥j+τ αj
βk−τ−j

1−β
(
αj

βk−τ−j

1−β +
αjτ
1−β
)

≤ τ(τ−1)α1α2
j

(1−β)2
+

(τ−1)α3
j

(1−β)2
+

τα3
j

(1−β)3
+

α3
j

(1−β)2(1−β2)
.(5.22)

In the above, the first inequality follows from αk ≤ αj for all k ≥ j, (5.19) and (5.20); the second
inequality breaks the summation on k into two parts: in the first part k ≤ j + τ − 1, we used
πk,j(β) ≤ 1

1−β by (5.3) and also αmax{k−τk,j} ≤ αj and αmax{k−τk,1} ≤ α1; and in the second part

k ≥ j + τ , since k ≥ j + τk, we have πk,j(β) ≤ βk−τ−j

1−β from the second case in the equality of (5.4)
and also, αmax{k−τk,j} = αmax{k−τk,1} ≤ αj .

Now substitute (5.22) into (5.21), use the assumption in (5.12) to drop the non-positive terms
about uj , also use the definition of x̄(K) in (5.10), and then rearrange terms to obtain the desired
result in (5.13). �

Below we specify the setting of {αk} and show the sublinear convergence.

Corollary 5.5. Given a maximum number K of iterations, let αk = α/
√
K for all k = 1, . . . ,K,

and for some α > 0. If α > 0 and β > 0 are chosen such that

(5.23) τ2 + τ
1−β + β2

1−β2 ≤ (1−β)2K
2α2ρ2

, and 3ρ+ 2(1+5ρ)β2

(1−β)(1−β2)
≤ (1−β)

√
K

2α ,

then under Assumptions 2 and 6–8, the iterate x̄(K) given in (5.10) satisfies

(5.24) E‖∇F (x̄(K))‖2 ≤
(

ρ2ατ

2(1−β)
√
K

+ (1+5ρ)β2

2(1−β2)
+ ρ
)

4ασ2

(1−β)
√
K

+
4(1−β)[F (x(1))−infx F (x)]

α
√
K

.

Proof. When αk ≡ α/
√
K, (5.11) is trivially true, and in addition, when (5.23) hold, it is not hard

to verify

(5.25) ρ2

[
τ(τ−1)α1αj

(1−β)2
+

(τ−1)α2
j

(1−β)2
+

τα2
j

(1−β)3
+

α2
j

(1−β)2(1−β2)

]
≤ 1

2 , and
[

3ρ
1−β + 2(1+5ρ)β2

(1−β)2(1−β2)

]
αj ≤ 1

2 ,

which implies (5.12). Finally, (5.13) simplifies to (5.24). �
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Remark 5.6. From (5.24), we see that the delay can reduce the convergence speed of Alg. 1 by
roughly O( τ√

K
). When τ = o(

√
K), the slow-down effect is negligible.

Corollary 5.7. Given a maximum number K of iterations, let αk = α/
√
a+ k − 1 for all k =

1, . . . ,K, and for some a ≥ 2τ such that a
√
a+ 1 ≥ 1−β

2α . If

(5.26) τ2 + τ
1−β + β2

1−β2 ≤ (1−β)2a
2α2ρ2

, and 3ρ+ 2(1+5ρ)β2

(1−β)(1−β2)
≤ (1−β)

√
a

2α ,

then under Assumptions 2 and 6–8, the output of Alg. 1 satisfies

(5.27)
E‖∇F (x̄(K))‖2 ≤ 2(1−β)[F (x(1))−infx F (x)]

α(
√
a+K−

√
a)

+
[
ρ2α(1+2a)τ
(1−β)a

√
a

+ (1+5ρ)β2

2(1−β2)
(2 + ln a+K−2

a ) + ρ(1 + ln a+K−1
a )

]
· 2ασ2

(1−β)(
√
a+K−

√
a)
.

Remark 5.8. Note that the logarithmic terms in (5.27) dominate the τ -related term if τ ≤
√
a−1
αρ ,

which matches the condition in (5.26). When there is no delay, i.e., τ = 0, a convergence rate of
Θ̃( 1√

K
) can be achieved with a = 1; when there is a delay, i.e., τ > 0, (5.27) with a = Θ(τ2) gives

a rate of Θ̃( 1√
K+τ2−

√
τ2

) = Θ̃
(

1√
K

(
√

1 + τ2

K +
√

τ2

K )
)

. In this case, the delay will have a negligible

effect on the convergence speed if τ = o(
√
K).

6. Numerical experiments. In this section, we test Alg. 1 by numerical experiments on three
examples: phase retrieval problem, neural network training, and sparse bilinear logistic regression.
For each example, we test the effect of the inertial force with different βk. Also, we demonstrate
the advantage of the asynchronous implementation over the synchronous version (i.e., τk = 0,∀ k)
of Alg. 1. In all the tests, we compare the performance of Alg. 1 with different settings of {αk}
and {βk}, which are fixed to constants for all iterations k or decrease with respect to the number
of epochs.

6.1. Phase retrieval problem. The phase retrieval problem aims to recover a signal x∗ ∈ Rd
from m measuring vectors1 {ai}mi=1 and the correspondingly obtained magnitudes

{
bi
}m
i=1

. It can
be formulated into the following non-smooth minimization problem [12,16,17]:

(6.1) min
x∈Rd

1

m

m∑
i=1

∣∣|〈ai,x〉|2 − b2i ∣∣ ,
which is in the form of (1.1) with F (x) = 1

m

∑m
i=1

∣∣|〈ai,x〉|2 − b2i ∣∣ and r(x) ≡ 0. In the test, the
vector ai followed the standard multivariate Gaussian distribution, i.e., ai ∼ N (0, I), and we let
bi = |〈ai,x∗〉|,∀ i, for a ground truth x∗. Hence, the optimal objective value is zero.

Synthetic data. We first solved (6.1) with x∗ generated from a uniform distribution on the d-
dimensional unit sphere. Fig. 2 shows the results for m = 50, 000 and d = 20, 000. We tested
the algorithm for several pairs of (m, d) and observed similar results. In the test, we computed
a stochastic subgradient by using 100 data points, i.e., the minibatch size was set to 100. The
parameters either followed a constant scheme with αk = α, βk = β,∀ k where α = 5 × 10−5 and

1In general, the signal x and the measuring vectors {ai} can be complex-valued. For simplicity, we focus on the
real field.
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Figure 2: Results by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1) with randomly
generated x∗, m = 50, 000 and d = 20, 000. Left: non-parallel implementation of Alg. 1 with
different choices of {αk} and {βk}; Middle: async-parallel implementation of Alg. 1 with diminishing
{αk} and {βk}, and with different numbers of workers; Right: running time (in second) of the sync-
parallel and async-parallel implementation of Alg. 1 with different numbers of workers.

β ∈ {0, 0.2, 0.5, 0.8, 0.9}; or diminished with αk = 5×10−5
√
ek+1

and βk = min
{

0.9, 2
(ek+1)1/4

}
, ∀ k, or

βk = 0,∀ k. Here, ek denotes the epoch number at the k-th iteration. During the test, we also
experimented with different values of the constant α. We found that for a smaller α, the algorithm
converged more slowly but could reach a lower objective value. The choice α = 5 × 10−5 resulted
in a good trade-off between the convergence speed and the final objective value.

From the left subfigure in Fig. 2, we see that the algorithm with a bigger β converged faster
but achieved a higher objective value. The convergence of the algorithm with a diminishing {αk}
and constant βk = 0 is the slowest. The best results were obtained by the choice of diminishing
{αk} and {βk}. Comparing the curve with diminishing {αk} and {βk} to that with βk = 0.9,∀ k,
we notice that the two curves are almost the same within the first 5 epochs, i.e., before the latter
one becomes flat. However, the former can decrease the objective to a significantly smaller value.
Thus both the choices of {αk} and {βk} contribute to the best results. With the diminishing {αk}
and {βk} that yield the best results for the non-parallel case, we then compared the sync-parallel
and async-parallel implementations of Alg. 1. The middle subfigure in Fig. 2 shows the results for
the async-parallel version with different numbers of workers. The right subfigure shows the running
time of both versions. The results show that the convergence speed (in terms of epoch number) of
the async-parallel method is almost never affected by the asynchrony (or information delay). In
addition, we see that the async-parallel implementation yielded significantly higher parallelization
speed-up over the sync-parallel one, according to the right subfigure in Fig. 2.

Image data. We also solved (6.1) with x∗ flattened from an image. We tested with two images:
a CT scan image2 of size 94× 138 after downsampling and the cameraman image3 of size 196× 196
after cropping. Fig. 3 shows the ground-truth images, Fig. 4 and Fig. 6 show convergence curves
and computing times, and Fig. 5 and Fig. 7 show recovered images. In the test, for the CT scan

2https://aimi.stanford.edu/radiopaedia-list-ai-imaging-datasets
3https://github.com/antimatter15/cameraman
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Figure 3: Ground-truth images. Left: a CT scan image. Right: the cameraman image.

image, d = 12, 972, and we selected m = 40, 000, computed each stochastic subgradient by using
100 randomly sampled data points, and set αk = 10−4

√
ek+1

; for the cameraman image, d = 38, 416,

and we selected m = 60, 000, computed each stochastic subgradient by using 60 randomly sampled
data points and set αk = 5×10−5

√
ek+1

. We first tested the non-parallel version of Alg. 1 with βk = β,∀k,

where β ∈ {0, 0.2, 0.5, 0.8, 0.9}, and then tested the parallel version by different numbers of workers.
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Figure 4: Results by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1) with a CT scan
image as x∗ and m = 40, 000. Left: non-parallel implementation of Alg. 1 with diminishing {αk}
and different choices of {βk}; Middle: async-parallel implementation of Alg. 1 with diminishing
{αk} and βk = 0.8, and with different numbers of workers; Right: running time (in second) of the
sync-parallel and async-parallel implementation of Alg. 1 with different numbers of workers.

From the left subfigures in Fig. 4 and Fig. 6, we see that the algorithm with a bigger β converged
faster. After 400 epochs, the algorithm achieved the lowest objective value and the smallest distance
from x∗ with βk = 0.8,∀ k for the CT scan image, and with βk = 0.9,∀ k for the cameraman image.
Alg. 1 recovered the image clearly for the CT scan image with βk ≡ β ∈ {0.9, 0.8, 0.5} shown in
the top subfigures in Fig. 5 and for the cameraman image with βk = 0.9,∀ k in the top subfigures
in Fig. 7. The recovered images became clearer as the β value increases. The middle subfigures in
Fig. 4 and Fig. 6 show the results for the async-parallel version of Alg. 1 with different numbers of
workers, and the bottom subfigures in Fig. 5 and Fig. 7 show the corresponding recovered images.
The right subfigures in Fig. 4 and Fig. 6 show the running time of both sync-parallel and async-
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Figure 5: Recovered images by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1)
with a CT scan image as x∗ and m = 40, 000. Top: non-parallel implementation of Alg. 1 with
diminishing {αk} and different choices of {βk}; Bottom: async-parallel implementation of Alg. 1
with diminishing {αk} and βk = 0.8, and with different numbers of workers.
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Figure 6: Results by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1) with the
crameman image as x∗ and m = 60, 000. Left: non-parallel implementation of Alg. 1 with dimin-
ishing {αk} and different choices of {βk}; Middle: async-parallel implementation of Alg. 1 with
diminishing {αk} and βk = 0.9, and with different numbers of workers; Right: running time (in
second) of the sync-parallel and async-parallel implementation of Alg. 1 with different numbers of
workers.

parallel versions of Alg. 1. The results show that the convergence speed (in terms of epoch number)
of the async-parallel method is rarely affected by the asynchrony (or information delay). In addition,
we see that the async-parallel implementation yielded significantly higher parallelization speed-up
over the sync-parallel one.

6.2. Neural network models training. In this subsection, we trained two neural network models
by Alg. 1. One is LeNet5 on the MNIST dataset [26] and the other AllCNN [55] on the Cifar10
dataset [25]. LeNet5 has 2 convolutional, 2 max-pooling, and 3 fully-connected layers. AllCNN has 9
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Figure 7: Recovered images by Alg. 1 on solving instances of the Phase Retrieval Problem (6.1)
with the crameman image as x∗ and m = 60, 000. Top: non-parallel implementation of Alg. 1 with
diminishing {αk} and different choices of {βk}; Bottom: async-parallel implementation of Alg. 1
with diminishing {αk} and βk = 0.9, and with different numbers of workers.

convolutional and 1 avg-pooling layers. The outputs of the two models are re-scaled as probabilities
in all classes for each data sample by the softmax function. The estimated probabilities and the true
class labels are fed to the negative log likelihood loss function to get the losses. The objective is to
minimize the mean loss over all data samples, which is in the form of (1.1) with the model weights
as x, the mean loss as F (x) and r(x) ≡ 0. For both trainings, we set αk = α,∀ k and selected the
best α from {0.01, 0.005, 0.001, 0.0005, 0.0001}. For training LeNet5, we used αk = 0.001, and for
training Cifar10, we used αk = 0.005,∀ k.

The results of training LeNet5 on the MNIST dataset are shown in Fig. 8. In the test, we com-
puted a stochastic subgradient by using 40 data samples, i.e., the minibatch size was set to 40. We
first tested Alg. 1 with βk = β,∀k, where β ∈ {0, 0.2, 0.5, 0.8, 0.9}, or βk = min

{
0.9, 2

(ek+1)1/4

}
,∀ k.

The first column of Fig. 8 shows that the algorithm with a bigger β gave better results. Notice
that the algorithm with βk = 0.9 or βk = min

{
0.9, 2

(ek+1)1/4

}
,∀ k give the highest testing accu-

racy. For these two choices, we ran the async-parallel version of Alg. 1 with different numbers of
workers. From the results in the second and third columns of Fig. 8, we see that the asynchrony
had negative effect on the behavior of the algorithm, especially when more workers were used.
Nevertheless, the final training loss for all different number of workers is almost the same, and the
final testing accuracy by using 10 or 20 workers is slightly lower than that produced by using fewer
workers. The fourth column compares the running time of the sync-parallel and async-parallel
implementations of Alg. 1 with βk = min

{
0.9, 2

(ek+1)1/4

}
,∀ k. Again, the bars show significantly

higher parallelization speed-up by the async-parallel implementation over the sync-parallel one.
The results of training AllCNN on the Cifar10 dataset are shown in Fig. 9. In the test, we set

the minibatch size to 100 and βk = β,∀k, where β ∈ {0, 0.2, 0.5, 0.8, 0.9}. The left column of Fig. 9
shows that the algorithm with a bigger β gave better results. The choice of βk = 0.9, ∀ k yielded the
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Figure 8: Results by Alg. 1 on training LeNet5 on the MNIST dataset. First column: non-parallel
implementation of Alg. 1 with αk = 0.001, ∀ k and different choices of {βk}; Second column: async-
parallel implementation of Alg. 1 with αk = 0.001 and βk = 0.9,∀ k; Third column: async-parallel
implementation of Alg. 1 with αk = 0.001 and βk = min

{
0.9, 2

(ek+1)1/4

}
, ∀ k; Fourth column:

running time (in second) of the sync-parallel and async-parallel implementations of Alg. 1 with
different numbers of workers.

best results. With this choice, we compared the sync-parallel and async-parallel implementations
of Alg. 1. The middle column in Fig. 9 shows the results for the async-parallel version with different
numbers of workers. The right column shows the running time of both versions. From the results,
we see that the convergence speed (in terms of epoch number) of the async-parallel method is almost
not affected by the asynchrony. In addition, we see again that the async-parallel implementation
yielded higher parallelization speed-up over the sync-parallel one.

6.3. Sparse bilinear logistic regression. In this subsection, we test Alg. 1 on solving the sparse
bilinear logistic regression (BLR) built in [54]. Let {(Xi, yi)}mi=1 be the training data set with each
data sample Xi ∈ Rs×t and label yi ∈ {1, 2, ..., C} for i = 1, 2, ...,m, where C is the number of
classes. The sparse BLR is modeled as

(6.2) min
U ,V,b

− 1

m

m∑
i=1

log

(
exp[tr(UyiXiVyi) + byi ]∑C
j=1 exp[tr(UjXiVj) + bj ]

)
+ λ(‖U‖1 + ‖V‖1 + ‖b‖1),

where U = (U1, U2, ..., UC),V = (V1, V2, ..., VC),b = (b1, b2, ..., bC) with Uj ∈ Rp×s, Vj ∈ Rt×p, bj ∈
R for j = 1, 2, ..., C, ‖U‖1 :=

∑C
j=1

∑p
i=1

∑s
l=1 |(Uj)i,l|, λ ≥ 0 is the weight for the sparse regularizer,

and tr(S) :=
∑p

i=1 Si,i for any matrix S ∈ Rp×p. To solve (6.2), we apply Alg. 1 with x = (U ,V,b),
F (x) being the first term in (6.2), and r(x) = λ(‖U‖1 + ‖V‖1 + ‖b‖1).

In this test, we used the MNIST dataset [26] and set the minibatch to 100 while computing
a stochastic gradient of F . To obtain a relatively high accuracy and also relatively cheap com-
putation, we chose p = 5 and λ = 10−3. The learning rate was set to αk = α,∀k with α tuned
from {0.01, 0.005, 0.001, 0.0005, 0.0001}. To ensure convergence and also satisfactory final testing
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Figure 9: Results by Alg. 1 on training AllCNN on the Cifar10 dataset. Left:non-parallel imple-
mentation of Alg. 1 with αk = 0.005 and different {βk}; Middle: async-parallel implementation of
Alg. 1 with αk = 0.005, βk = 0.9, and with different numbers of workers; Right: running time (in
second) of the sync-parallel and async-parallel implementations of Alg. 1 with different numbers of
workers.

accuracy for both async-parallel and sync-parallel implementations of Alg. 1, we set α = 0.0005.
Note that the sync-parallel version could converge faster in the beginning with a larger α but the
final testing accuracy and training loss were similar to those produced by using α = 0.0005.
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Figure 10: Results by Alg. 1 to solve the sparse bilinear logistic regression (6.2) on the MNIST
dataset with p = 5 and λ = 0.001. Left: non-parallel implementation of Alg. 1 with αk = 0.0005
and different {βk}; Middle: async-parallel implementation of Alg. 1 with αk = 0.0005, βk = 0.9,∀ k,
and with different numbers of workers; Right: running time (in second) of the sync-parallel and
async-parallel implementations of Alg. 1 with different numbers of workers.

The left column of Fig. 10 shows the results by Alg. 1 with βk = β ∈ {0, 0.2, 0.5, 0.8, 0.9},∀k.
We see that the algorithm with a bigger β converges faster. The middle column in Fig. 10 shows the
results by the async-parallel implementation of Alg. 1 with βk = 0.9,∀k and with different numbers
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of workers. The right column shows the running time of both sync-parallel and async-parallel
implementations. The results show that the convergence speed (in terms of epoch number) of the
async-parallel method is almost not affected by the asynchrony. In addition, we see that the async-
parallel implementation yielded significantly higher parallelization speed-up over the sync-parallel
one.

7. Conclusions. We have proposed an inertial-accelerated proximal stochastic subgradient
method for solving non-convex stochastic optimization. An O(1/K

1
2 ) convergence rate result is

established for three different problem classes, by the measure of the expected value of the gra-
dient norm square of the objective function or its Moreau envelope, where K is the number of
total iterations. The same-order convergence rate can be shown even if the derivative information
is outdated in an asynchronous distributed computing environment, provided that the delay (or
staleness) of the derivative is in a tolerable range. Numerical experiments on phase retrieval, neural
network training, and sparse bilinear logistic regression demonstrate faster convergence by using
the inertial-acceleration technique and also the higher parallelization speed-up of the asynchronous
computing over the synchronous counterpart.
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Appendix A. Remaining proofs. In this section, we provide proofs of the lemmas that are used in
our analysis.
Proof of Lemma 3.3. For ease of notation, we denote δ = 1− αkρ in this proof. We have

‖x(k+1) − x̃(k)‖2

=
∥∥proxαkr(x(k) − αkg(k) + βk(x(k) − x(k−1))

)
− proxαkr

(
αkρx

(k) − αkṽ(k) + (1− αkρ)x̃(k)
)∥∥2

≤
∥∥δ(x(k) − x̃(k))− αk(g(k) − ṽ(k)) + βk(x(k) − x(k−1))

∥∥2(A.1)

=
∥∥δ(x(k) − x̃(k)) + βk(x(k) − x(k−1))

∥∥2 + α2
k

∥∥g(k) − ṽ(k)
∥∥2(A.2)

− 2αk
〈
δ(x(k) − x̃(k)) + βk(x(k) − x(k−1)),g(k) − ṽ(k)

〉
,

where the first equality is from (1.2) and (3.3), and the inequality follows from the nonexpansiveness of the
proximal mapping. Taking conditional expectation on ξk over the equation in (A) gives

Eξk‖x(k+1) − x̃(k)‖2

≤
∥∥δ(x(k) − x̃(k)) + βk(x(k) − x(k−1))

∥∥2 + α2
kEξk

∥∥g(k) − ṽ(k)
∥∥2

− 2αk
〈
δ(x(k) − x̃(k)) + βk(x(k) − x(k−1)),v(k) − ṽ(k)

〉
≤
(
δ‖x(k) − x̃(k)‖+ βk‖x(k) − x(k−1)‖

)2
+ 4α2

kM
2

− 2αkδ
〈
x(k) − x̃(k),v(k) − ṽ(k)

〉
− 2αkβk

〈
x(k) − x(k−1),v(k) − ṽ(k)

〉
≤ δ2(1 + ck)‖x(k) − x̃(k)‖2 + (1 + 1

ck
)β2
k‖x(k) − x(k−1)‖2 + 4α2

kM
2

− 2αkδ
〈
x(k) − x̃(k),v(k) − ṽ(k)

〉
+ β2

k‖x(k) − x(k−1)‖2 + α2
k‖v(k) − ṽ(k)‖2,

where the second inequality holds by (3.2), and the third inequality follows from the Young’s inequality
along with a scalar ck > 0. Now we obtain the desired result by plugging (3.4) into the above inequality,
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bounding ‖v(k) − ṽ(k)‖2 ≤ 4M2, and noticing

δ2(1 + ck) + 2αkδρ = 1− 2αk(ρ− ρ)− α2
kρ(2ρ− ρ) + ckδ

2 ≤ 1− 2αk(ρ− ρ) + ck,

where the equality holds because δ = 1− αkρ, and the inequality follows from δ < 1, ck > 0, and ρ ≤ 2ρ. �

Proof of Lemma 3.7. Taking conditional expectation on τk, we have Eτk [F (x(k−τk))] =
∑τ
j=0 pjF (x(k−j)),

where we let x(k) = x(1),∀ k ≤ 0. Hence,∑K
k=1 E

[
F (x(k−τk))

]
=
∑K
k=1

∑τ
j=0 pjE

[
F (x(k−j))

]
=
∑K
k=1

∑k
t=k−τ pk−tE

[
F (x(t))

]
=
∑K
t=1−τ

∑min{K,t+τ}
k=max{1,t} pk−tE

[
F (x(t))

]
,

and

K∑
k=1

E
[
F (x(k))− F (x(k−τk))

]
=

K∑
k=1

E
[
F (x(k))

]
−

K∑
k=1−τ

min{K,k+τ}∑
t=max{1,k}

pt−kE
[
F (x(k))

]
=

(
1−

1∑
k=1−τ

k+τ∑
t=1

pt−k

)
F (x(1)) +

K∑
k=K−τ+1

(
1−

K∑
t=k

pt−k

)
E
[
F (x(k))

]
≤ τ max

{
0,−F (x(1))

}
+ τCF .(A.3)

In addition, because τk ≤ τ,∀ k, it holds
∑K
k=1 ‖x(k−τk) − x(k)‖2 ≤ τ2

∑K
k=1 ‖x(k−1) − x(k)‖2, which

together with (3.19) gives∑K
k=1 ‖x(k−τk) − x(k)‖2 ≤ τ2

(
α

γ
√
K

(
φ(x(1))− φ∗

)
+ α2M2

γ2

)
.(A.4)

For the last term in Ek, we use (3.2) and Assumption 4 to bound it as follows

−
〈
x(k) − x(k−τk),v(k)

〉
≤M‖x(k) − x(k−τk)‖ ≤M∑τ

j=1 ‖x(k+1−j) − x(k−j)‖,

and thus ∑K
k=1−

〈
x(k) − x(k−τk),v(k)

〉
≤Mτ

∑K
k=1 ‖x(k) − x(k−1)‖.(A.5)

By the Cauchy-Schwarz inequality and Jensen’s inequality, we have∑K
k=1 E‖x(k) − x(k−1)‖ ≤

√
K

√∑K
k=1

(
E‖x(k) − x(k−1)‖

)2 ≤ √K√∑K
k=1 E‖x(k) − x(k−1)‖2,

which together with (3.19) and (A.5) gives

(A.6)
∑K
k=1 E

[
−
〈
x(k) − x(k−τk),v(k)

〉]
≤Mτ

√
K
√

α
γ
√
K

(
φ(x(1))− φ∗

)
+ α2M2

γ2 .

Now we obtain the desired result from (A.3), (A.4), and (A.6). �

Proof of Lemma 3.11. When condition 2 of Assumption 5 holds, the update in (1.2) indicates that there
exists a subgradient ∇̃r2(x(k+1)) such that〈

y − x(k+1), αk∇̃r2(x(k+1)) + x(k+1) − x(k) + αkg
(k) − βk(x(k) − x(k−1))

〉
≥ 0, for all y ∈ X.

Letting y = x(k) and rearranging terms in the above inequality, we have

(A.7) ‖x(k+1) − x(k)‖2 ≤
〈
x(k) − x(k+1), αk(∇̃r2(x(k+1)) + g(k))− βk(x(k) − x(k−1))

〉
,
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which together with the Cauchy-Schwarz inequality gives

‖x(k+1) − x(k)‖ ≤ ‖αk(∇̃r2(x(k+1)) + g(k))− βk(x(k) − x(k−1))‖.

Hence, by the triangle inequality and the Young’s inequality, we have for any c > 0,

‖x(k+1) − x(k)‖2 ≤ (αk‖∇̃r2(x(k+1)) + g(k)‖+ βk‖x(k) − x(k−1)‖)2

≤ α2
k(1 + 1

c )‖∇̃r2(x(k+1)) + g(k)‖2 + β2
k(1 + c)‖x(k) − x(k−1)‖2

≤ 2α2
k(1 + 1

c )(‖∇̃r2(x(k+1))‖2 + ‖g(k)‖2) + β2
k(1 + c)‖x(k) − x(k−1)‖2.

Take full expectation on both sides of the above inequality and use Assumption 3 and condition 2 of As-
sumption 5 to obtain

E‖x(k+1) − x(k)‖2 ≤ 2α2
k(1 + 1

c )
(
M2
r +M2

)
+ β2

k(1 + c)E‖x(k) − x(k−1)‖2.

Let c = 1
2 (1/β̃2 − 1) and sum up the above inequality over k = 1 to K. We obtain (3.24) by rearranging

terms and using x(0) = x(1). �

Proof of Lemma 3.12. By similar arguments as in the proof to obtain (A.3), we have

K∑
k=k0

αkE
[
F (x(k))− F (x(k−τk))

]
=

K∑
k=k0

αkE
[
F (x(k))− CF

]
−

K∑
k=k0−τ

min{K,k+τ}∑
t=max{k0,k}

αtpt−kE
[
F (x(k))− CF

]

= −
k0−1∑

k=k0−τ

min{K,k+τ}∑
t=max{k0,k}

αtpt−kE
[
F (x(k))− CF

]
+

K∑
k=k0

αk − min{K,k+τ}∑
t=max{k0,k}

αtpt−k

E
[
F (x(k))− CF

]
≤ 2αk0τCF ,(A.8)

where the inequality holds by the nonincreasing monotonicity of {αk} and the fact |F (x(k))| ≤ CF ,∀ k.
In addition, from the nonincreasing monotonicity of {αk} and τk ≤ τ,∀ k, it holds∑K

k=k0
αk‖x(k−τk) − x(k)‖2 ≤ αk0τ

2
∑K
k=k0−τ+1 ‖x(k−1) − x(k)‖2 ≤ αk0τ2

∑K
k=2 ‖x(k−1) − x(k)‖2.

Hence, by (3.22) and (3.24), and the definitions of C1 and C2 in (3.27), we have from the above that

(A.9)
∑K
k=k0

αk‖x(k−τk) − x(k)‖2 ≤ αk0τ2
(
C1 + C2

∑K
k=1 α

2
k

)
Finally, similar to (A.5), we have∑K

k=k0

[
−αk

〈
x(k) − x(k−τk),v(k)

〉]
≤Mτ

∑K
k=k0

αk‖x(k) − x(k−1)‖.(A.10)

By the Cauchy-Schwarz inequality and Jensen’s inequality, it holds

K∑
k=k0

αkE
[
‖x(k) − x(k−1)‖

]
≤

√√√√ K∑
k=k0

α2
k

√√√√ K∑
k=k0

E
[
‖x(k) − x(k−1)‖2

]
≤

√√√√ K∑
k=k0

α2
k

√√√√C1 + C2

K∑
k=1

α2
k,

which together with (A.10) gives∑K
k=k0

E
[
−αk

〈
x(k) − x(k−τk),v(k)

〉]
≤Mτ

√∑K
k=k0

α2
k

√
C1 + C2

∑K
k=1 α

2
k.(A.11)
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Now (3.25) follows from (A.8), (A.9), and (A.11), and also 1− αkρ ≤ 1 and
∑K
k=1 α

2
k ≤ α2(1 + lnK). �

Proof of Lemma 4.2. As in the proof of Lemma 3.3, we denote δ = 1−αkρ and take conditional expectation
about ξk over both sides of (A.1) to have

Eξk‖x(k+1) − x̃(k)‖2 ≤ Eξk
∥∥δ(x(k) − x̃(k))− αk(g(k) − ṽ(k)) + βk(x(k) − x(k−1))

∥∥2
= Eξk

∥∥δ(x(k) − x̃(k))− αk(∇F (x(k))−∇F (x̃(k))) + βk(x(k) − x(k−1))− αkw(k)
∥∥2

=
∥∥δ(x(k) − x̃(k))− αk(∇F (x(k))−∇F (x̃(k))) + βk(x(k) − x(k−1))

∥∥2 + α2
kEξk‖w(k)‖2

− 2αkEξk
〈
δ(x(k) − x̃(k))− αk(∇F (x(k))−∇F (x̃(k))) + βk(x(k) − x(k−1)),w(k)

〉
≤
(
(δ + αkρ)‖x(k) − x̃(k)‖+ βk‖x(k) − x(k−1)‖

)2
+ α2

k

(
σ2 + ρ2‖x(k−τk) − x(k)‖2

)
+ E ,(A.12)

where we have used Assumption 6 and Lemma 4.1 to obtain the last inequality, and we denote w(k) =
g(k) −∇F (x(k)) and

E := −2αk
〈
δ(x(k) − x̃(k))− αk(∇F (x(k))−∇F (x̃(k))) + βk(x(k) − x(k−1)),∇F (x(k−τk))−∇F (x(k))

〉
.

Now we apply the Young’s inequality to bound the first square term in (A.12) to obtain

(A.13)
Eξk‖x(k+1) − x̃(k)‖2 ≤ (1 + ck)(δ + αkρ)2‖x(k) − x̃(k)‖2

+ (1 + 1
ck

)β2
k‖x(k) − x(k−1)‖2 + α2

kσ
2 + α2

kρ
2‖x(k−τk) − x(k)‖2 + E ,

where ck is any positive number. Recall δ = 1− αkρ, and thus

(1 + ck)(δ+αkρ)2 = (1 + ck) (1− αk(ρ− ρ)(2− αk(ρ− ρ))) ≤ (1 + ck) (1− αk(ρ− ρ)) ≤ 1 + ck −αk(ρ− ρ),

where the two inequalities follow from 0 < αk(ρ− ρ) < 1 and ck > 0. Hence, (A.13) implies

(A.14)
Eξk‖x(k+1) − x̃(k)‖2 ≤ (1 + ck − αk(ρ− ρ)) ‖x(k) − x̃(k)‖2

+ (1 + 1
ck

)β2
k‖x(k) − x(k−1)‖2 + α2

kσ
2 + α2

kρ
2‖x(k−τk) − x(k)‖2 + E .

Below we bound E . We have by the triangle inequality and the ρ-smoothness of F that

E ≤ 2αkρ
(
(δ + αkρ)‖x(k) − x̃(k)‖+ βk‖x(k) − x(k−1)‖

)
‖x(k−τk) − x(k)‖

≤ 1
2αk(ρ− ρ)‖x(k) − x̃(k)‖2 + 2αkρ

2

ρ−ρ ‖x(k−τk) − x(k)‖2(A.15)

+ β2
k‖x(k) − x(k−1)‖2 + α2

kρ
2‖x(k−τk) − x(k)‖2,

where we have used δ + αkρ = 1 − αk(ρ − ρ) < 1 and the Young’s inequality twice to obtain the second
inequality. Plug (A.15) into (A.14) and rearrange terms. We obtain (4.1) and complete the proof. �

Lemma A.1. Let {x(k)}k≥1 and {g(k)}k≥1 be generated from Algorithm 1, and let {qk}k≥1 be a sequence
of constants. Under Assumptions 2 and 7, we have

(A.16) E
∥∥∑k

j=1 qjg
(j)
∥∥2 ≤∑k

l=1 ql
∑k
j=1 qjuj +

∑k
j=1 q

2
juj + σ2

∑k
j=1 q

2
j .

Proof of Lemma A.1. From Algorithm 1, we have

(A.17)
∑k
j=1 qjg

(j) =
∑k
j=1 qj∇f(x(j−τj); ξj).

Taking a total expectation and using Assumption 2 results in

(A.18) E
[∑k

j=1 qjg
(j)
]

=
∑k
j=1 qjE[∇F (x(j−τj))] =

∑k
j=1 qjEu(j),



DISTRIBUTED STOCHASTIC INERTIAL-ACCELERATED METHODS WITH DELAYED DERIVATIVES 33

which further implies that

(A.19)
∥∥E[∑k

j=1 qjg
(j)
]∥∥2 ≤∑k

l=1 ql
∑k
j=1 qjE‖u(j)‖2 =

∑k
l=1 ql

∑k
j=1 qjuj .

In (A.19), the inequality is obtained by using the triangle inequality, Cauchy-Schwarz inequality, and then
Jensen’s inequality. We further bound the variance as follows:

E
∥∥∑k

j=1 qjg
(j) − E

[∑k
j=1 qjg

(j)
]∥∥2 =E

∥∥∑k
j=1 qj

(
∇f(x(j−τj); ξj)− Eu(j)

)∥∥2
=
∑k
j=1 q

2
jE
∥∥∇f(x(j−τj); ξj)− Eu(j)

∥∥2
=
∑k
j=1 q

2
j

(
E‖∇f(x(j−τj); ξj)− u(j)‖2 + E‖u(j) − Eu(j)‖2

)
≤∑k

j=1 q
2
j

(
σ2 + uj

)
.(A.20)

Here, the second equality is because the expectations are null for all cross terms E(g(j)−Eg(j))>(g(j′)−Eg(j′))
with j > j′, since each ξj is independent from {x(j), . . . ,x(1)} and ξj′ ; the third equality is because of
Assumption 2; the inequality is by Assumption 7 and that the variance is upper-bounded by the second
moment. Combine (A.19) and (A.20) gives (A.16). �

Proof of Lemma 5.1. By definition (5.3), we obtain the equality in (5.4). Then the first inequality in (5.4)
follows from∑k−1

j=1 πk,j(t) =
∑k−1
j=k−τk+1

1−tk−j
1−t + 1−tτk

1−t
∑k−τk
j=1 tk−τk−j = τk(1−t)−tk−τk (1−tτk )

(1−t)2 ≤ τ
1−t ,

and the second inequality follows from∑k−1
j=1 π

2
k,j(t) =

∑k−1
j=k−τk+1

1−2tk−j+t2(k−j)
(1−t)2 + (1−tτk )2

(1−t)2
∑k−τk
j=1 t2(k−τk−j)

= τk(1−t2)−2(1−tτk )(1+t)+(1−t2τk )+(1−tτk )2(1−t2(k−τk))
(1−t)2(1−t2) ≤ τ

(1−t)2 .

Proof of Lemma 5.2. From (1.4) and Assumption 2, we have m(k) =
∑k
j=1 β

k−j(1 − β)g(j); apply

Lemma A.1 with the choice of qj = βk−j(1− β) for all j ∈ [k] to obtain (5.5) from (A.16). Meanwhile,

x(k−τk) − x(k) = −∑τk−1
l=0

(
x(k−l) − x(k−l−1)) =

∑τk−1
l=0

αk−l−1

1−β m(k−l−1)

=
∑τk−1
l=0 αk−l−1

∑k−l−1
j=1 βk−l−j−1g(j) =

∑k−1
j=1 θk,jg

(j)

by (1.5) and (5.3). Apply Lemma A.1 with the choice of qj = θk,j for all j ∈ [k]. We have (5.6) from (A.16).
�

Proof of Lemma 5.3. From (5.7), we have that for k ≥ 1,

z(k+1) − z(k) = 1
1−β (x(k+1) − x(k))− β

1−β (x(k) − x(k−1))

= − 1
(1−β)2αkm

(k) + β
(1−β)2αk−1m

(k−1)

= −1
(1−β)2αk(βm(k−1) + (1− β)g(k)) + β

(1−β)2αk−1m
(k−1)

= β
(1−β)2 (αk−1 − αk)m(k−1) − αk

1−βg
(k)

= β
1−β (1− αk/αk−1)αk−1

1−β m(k−1) − αk
1−βg

(k).

The second equality is by (1.5); the third equality is by (1.4). The above equality together with (1.5) gives
(5.8), and (5.9) trivially holds by the smoothness of F and (5.7). �

The inequalities in the lemma below are easy to show.
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Lemma A.2. Let a be a positive integer. Then∑K
k=1

1√
a+k−1 ≥

∫ a+K
a

1√
x
dx = 2(

√
a+K −√a),

∑K
k=1

1
a+k−1 ≤ 1 +

∫ a+K−1
a

1
xdx = 1 + ln a+K−1

a .

Proof of Corollary 5.7. With αk = α/
√
a+ k − 1,∀ k ≥ 1, (5.11) holds if and only if

(A.21) α
2(1−β)

√
a+k−1 ≥ (1−

√
a+ k − 2/

√
a+ k − 1)2 = 1

((
√
a+k−2+

√
a+k−1)

√
a+k−1)2 .

Notice 1
(
√
a+1+

√
a)2
≤ 1

4a , and thus a
√
a+ 1 ≥ 1−β

2α indicates α ≥ 2(1−β)√
a+1(

√
a+1+

√
a)2

, which further implies

the inequality in (A.21) for all k ≥ 2. Moreover, when (5.26) holds, it is not difficult to verify that the two
inequalities in (5.25) are true, so we have (5.12) and thus (5.13) from Theorem 5.4.

Below we simplify the inequality in (5.13) for the setting of αk. First,∑K
k=1 αkα

2
max{k−τk,1} ≤

∑K
k=1

α3
√
a+k−1(a+k−1−τ) ≤

∑K
k=1

2α3
√
a+k−1(a+k−1)

≤ 2α3
(

1
a
√
a

+
∫ a+K−1
a

1
x
√
x
dx
)
≤ 2α3(1+2a)

a
√
a

;

second, by Lemma A.2,∑K
k=1 αk =

∑K
k=1

α√
a+k−1 ≥ 2α(

√
a+K −√a), and

∑K
k=1 α

2
k =

∑K
k=1

α2

a+k−1 ≤ α2(1 + ln a+K−1
a ).

Substituting the above three inequalities into (5.13) gives (5.27). �

Appendix B. Proof of Theorem 4.7. The key of the proof is to bound
∑
k E[‖x(k) − x(k+1)‖2]

while using Theorem 4.3. First, similar to (A.7), we have

(B.1) ‖x(k+1) − x(k)‖2 ≤
〈
x(k) − x(k+1), αk(∇̃r(x(k+1)) + g(k))− βk(x(k) − x(k−1))

〉
,

where ∇̃r(x(k+1)) is a subgradient of r at x(k+1). By the convexity of r, it holds

(B.2)
〈
x(k) − x(k+1), ∇̃r(x(k+1))

〉
≤ r(x(k))− r(x(k+1)).

In addition, from the ρ-smoothness of F and the Young’s inequality, we have〈
x(k) − x(k+1),g(k)

〉
=
〈
x(k) − x(k+1),∇F (x(k)) + g(k) −∇F (x(k))

〉
≤ F (x(k))− F (x(k+1)) + ρ

2‖x(k) − x(k+1)‖2 + 1
4αk
‖x(k) − x(k+1)‖2 + αk‖g(k) −∇F (x(k))‖2,(B.3)

and

(B.4)
〈
x(k) − x(k+1),−βk(x(k) − x(k−1))

〉
≤ 1

4‖x(k) − x(k+1)‖2 + β2
k‖x(k) − x(k−1)‖2

Plugging (B.2), (B.3) and (B.4) into (B.1) and rearranging terms yield

(B.5) 1
2 (1−αkρ)‖x(k+1)−x(k)‖2 ≤ αk

(
φ(x(k))−φ(x(k+1))

)
+α2

k‖g(k)−∇F (x(k))‖2 + β2
k‖x(k)−x(k−1)‖2.

Moreover, by Assumptions 7 and 8 and the ρ-smoothness of F , we have

E
[
‖g(k) −∇F (x(k))‖2

]
≤ 2E

[
‖g(k) −∇F (x(k−τk))‖2

]
+ 2E

[
‖∇F (x(k−τk))−∇F (x(k))‖2

]
≤ 2σ2 + 2ρ2E

[
‖x(k−τk) − x(k)‖2

]
≤ 2σ2 + 2τρ2

∑τ
j=1 E

[
‖x(k−j) − x(k−j+1)‖2

]
.(B.6)
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Now taking full expectation on (B.5), substituting (B.6) there, and summing over k = 1 to K, we obtain
by rearranging terms that

(B.7)

∑K
k=1

1
2 (1− αkρ− β2

k+1)E
[
‖x(k+1) − x(k)‖2

]
≤ ∑K

k=1 αkE
(
φ(x(k))− φ(x(k+1))

)
+ 2σ2

∑K
k=1 α

2
k + 2τρ2

∑K
k=1 α

2
k

∑τ
j=1 E

[
‖x(k−j) − x(k−j+1)‖2

]
,

where we have used x(0) = x(1). Since αk is nonincreasing, we have∑K
k=1 α

2
k

∑τ
j=1 E

[
‖x(k−j) − x(k−j+1)‖2

]
≤ τ∑K

k=1 α
2
kE
[
‖x(k) − x(k−1)‖2

]
,

which substituted into (B.7) and together with (3.23) gives

(B.8)
∑K
k=1

1
2 (1− αkρ− β2

k+1 − 2τ2ρ2α2
k+1)E

[
‖x(k+1) − x(k)‖2

]
≤ 2α1Cφ + 2σ2

∑K
k=1 α

2
k.

By the choice of parameters and the definition of γ̃ in (4.17), we have from (B.8) and Lemma A.2 that

(B.9)
∑K
k=1 E

[
‖x(k+1) − x(k)‖2

]
≤ 2

γ̃

(
α1Cφ + σ2α2(1 + ln a+K−1

a )
)
.

Notice
(
2 + 4

αk(ρ−ρ)
)
β2
k ≤ 2β̃2 + 4β2

α(ρ−ρ) and α2
k + αk

ρ−ρ ≤ α2

a + α√
a(ρ−ρ) ,∀ k ≥ 1. Therefore,

ρ
2

∑K
k=1

(
2 + 4

αk(ρ−ρ)
)
β2
kE‖x(k) − x(k−1)‖2 + ρρ2

∑K
k=1

(
α2
k + αk

ρ−ρ
)
E‖x(k−τk) − x(k)‖2

≤
(
ρ
2

(
2β̃2 + 4β2

α(ρ−ρ)
)

+ τ2ρρ2
(
α2

a + α√
a(ρ−ρ)

))∑K
k=1 E‖x(k) − x(k−1)‖2

≤
(
ρ
2

(
2β̃2 + 4β2

α(ρ−ρ)
)

+ τ2ρρ2
(
α2

a + α√
a(ρ−ρ)

))
2
γ̃

(
α1Cφ + σ2α2(1 + ln a+K−1

a )
)
.(B.10)

Now plug (B.10) and the choice of {αk} into (4.2) to obtain the desired result. �
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