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Abstract

In this paper, a high order finite difference conservative scheme is proposed to solve
two-medium flows. Our scheme has four advantages: First, our scheme is conservative,
which is important to ensure the numerical solution captures the main features properly.
Second, our scheme directly applies the WENO interpolation method to the primitive
variables so that it can maintain the equilibrium of velocity and pressure across the
interface, which is very helpful to obtain a non-oscillatory solution. Third, the usage
of nodal values enables us to manipulate algebraic functions easily. Fourth, the scheme
can maintain high order accuracy when the solution is smooth. Extensive numerical
experiments are performed to verify the high resolution and non-oscillatory performance

of this new scheme.
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1 Introduction

The computation of two-medium flows is one of the most popular issues in computa-
tional fluid dynamics (CEFD). It is relevant to many applications including hydrodynamics,
aeronautics, material science, and so on. The main difficulty for the computation of two-
medium flow is to maintain the equilibrium of velocity and pressure across the material
interface, which is the property of the physical interface discontinuities. If the interface
is not properly treated numerically, non-physical oscillations will occur, and such oscilla-
tions cannot be eliminated by using high resolution methods, such as the total variation
diminishing (TVD) method and the weighted essentially non-oscillatory (WENO) method

[24]. They even appear when we construct first order schemes.

Numerical methods for the two-medium flow can be divided into two categories:
one is the shock-capturing method, and the other is the interface tracking method. An
advantage for the shock-capturing method is its simplicity and easiness in its extension
to multi-dimensions. The interface is allowed to diffuse numerically and is not explicitly
tracked. Abgrall proposed a quasi-conservative scheme based on the 7-law model [1].
Then, Shyue extended the method to more general equations of state [27, 28, 29]. Allaire
et al. introduced the usage of volume fraction and constructed a five-equation model for
the simulation [4]. Abgrall and Saurel further applied the method to different numerical
fluxes for multi-phase flows [3, 23]. Although the shock-capturing method has achieved
great success, it still has some drawbacks: First, the method diffuses the interface, so
it is not very clear where the interface is. Second, in order to avoid the jump near the
interface, the intermediate state of either the physical parameters or the volume fraction
would be introduced, which is inconsistent with what is really happening in physics.
Comparing with the shock-capturing method, a sharp interface can be obtained by using
the interface tracking method, where the level set method is used to track the interface
[18]. Among all methods of this type, the ghost fluid method (GFM) with the isobaric fix

is undoubtedly the most successful [8, 9]. The method is essentially only solving single



medium fluids through a Riemann solver at the interface (which is determined by the level
set function) and defining the value of the ghost fluids across the interface. The interface
is not explicitly tracked, its location is automatically determined by a level set function,
hence the extension of this method to multi-dimensions becomes fairly straightforward.
Liu et al. proposed a modified GFM (MGFM) which improves upon the original GFM
[16]. The GFM and MGFM work well for strong shock impedance matching problems.
Later, Wang et al. proposed the real GFM method focusing on simultaneous influence of
different fluids [31]. There are also other similar methods, such as the interface treatment
method [7], the simple single fluid algorithm [2], the path-conservative schemes [33] and so
on. The drawback of these methods is that the scheme is not conservative, so theoretically
we are not assured of the convergence to weak solutions from the numerical solutions. We

refer to [2] for a good review of these methods for multi-medium and multi-phase flows.

Our goal is to design a finite difference scheme that is conservative and has a sharp
and non-oscillatory interface. Conservative schemes have many advantages in solving
hyperbolic problems. The most important property is that the numerical solution will
converge to a weak solution as long as it converges (the Lax-Wendroff theorem). However,
for the two-medium problem, conservative schemes tend to give oscillatory results if no
special care is taken [32]. In [20], the authors designed a discontinuous Galerkin (DG)
method [5] to solve the two-medium problem by using the classical DG scheme away from
the interface and developing a DG scheme specially for treating the moving interface in
one space dimension. High resolution and sharp interface results were achieved. Simi-
lar idea is used in [11]. In this paper we use a finite difference framework. Traditional
conservative finite difference schemes perform reconstructions on the fluxes [25, 26, 13].
As is well known, across material interfaces, density will have a discontinuity, but ve-
locity and pressure remain continuous. If the reconstruction is performed on the fluxes
or on the conserved variables, then all components will have discontinuities, hence the
approximation to velocity and pressure, which are nonlinear functions of the conserved

variables or fluxes, will be poor. Moreover, traditional local characteristic decompositions



to reduce oscillations has a reduced effect at the interface, whose characteristic structure
is not clear since two different fluids are at the two sides of this interface. One possible
way to get better results is to perform approximation directly on the primitive variables,
namely density, velocity and pressure. However, for finite volume methods of order of
accuracy higher than two, this is not possible, since we only have the information of cell
averages of the conserved variables. For traditional finite difference schemes, this is not
possible either, since the computation of numerical fluxes is through the reconstruction
on the fluxes [25, 26]. If we use the alternative formulation of high order finite difference
schemes in [14], which is based on the high order flux expansion in [25], we will be per-
forming interpolation, rather than reconstruction, on the conserved variables, not on the
fluxes. In this paper, we modify the approach in [14] to use point values of the primitive
variables, which are readily available from the point values of the conserved variables, to
perform high order interpolation for obtaining the numerical fluxes. This would ensure
non-oscillatory results for velocity and pressure from high order WENO interpolation.
Near the interface, we will also use the specific information of the interface location as
determined by the level set method to modify the approximation, based on the ideas in
20, 11, 15]. Both the distance function and the computational variables are updated at
each time step by the third order TVD Runge-Kutta time discretization [25]. Conser-
vative property and sharp and non-oscillatory interface can be obtained for our scheme.
Extensive numerical experiments are performed for benchmark problems to verify the

capability of the algorithm in obtaining non-oscillatory and high resolution solutions.

The organization of this paper is as follows. In section 2, we introduce our scheme
in the one dimensional case. In section 3, we extend our scheme to the two dimensional
case. In section 4, numerical benchmarks are shown to demonstrate the performance of

our schemes. In section 5, we make some concluding remarks.



2 One-dimensional numerical schemes

The one-dimensional system for the compressible fluid can be written as follows:
U+ FU),=0

where U = (p, pu, E)T, F(U) = (pu, pu® + p,u(E + p))*. Here p is the density, u is the
velocity, F is the total energy, p is the pressure. To make the system closed, the equation

of state (EOS) is required. In this paper, we mainly use the following EOS:

o ~-law:
1 P
E=—pu®>+ ——
2pu +7_1,

where v is adiabatic index. The ~-law is used for gases in this paper.

e Tait EOS:

1 _
polyp PP
2 v—1

where v = 7.15, p = 3.309 x 108Pa. The Tait EOS is used for water in this paper.

2.1 Review of one-dimensional high order finite difference schemes
for single medium

Considering the following one-dimensional scalar equation:

The computational domain is divided into N grid points: a = xg < 1 < --- < xy = b.

For the nodal value u;, we have the following semi-discrete scheme:

dui 1 - -~

dt _E(fi—i—% — fi-

)

=

where the numerical flux fshould satisfy the following condition:
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for a fifth order scheme. It has been shown in [25] that the following formula can guarantee

the fifth order of accuracy:

~ _ 1
.fz'—i— = (UH_%,U;:_%) - ﬂAlzfmc ; ASLAfmmmm i (1)

2
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The first term in (1) is a monotone numerical flux in the scalar case or an appropriate

Riemann-solver-based flux for systems. For example, we can use the Lax-Friedrichs flux:
Flo— ot 1 - + 1 + -
flumu™) = 5(fw?) + f(u™)) = galu” —u7)

where a = max |f’(u)|. uil are the right and left limits of u at x;4;/2, which can be
u T3

obtained from a WENO interpolation. The remaining terms can be approximated by

simple central differences, as their effect on spurious oscillations is minimal due to the

small coefficients involving at least Az?. We use

_ =5 f(ui—2) + 39 (wi—1) — 34 (u;) — 34f (wir1) + 39S (wir2) — 57 (wits)

S - TN (2)
and
f _ f(uizg) = 3f(ui1) +2f(wi) +2f(wiy1) — 3f (uiy2) + f(uiys) (3)

2.2 Description of the finite difference scheme for two-medium
flows in 1D

Now, we describe the high order finite difference scheme for two-medium flows in the

one dimensional case. In our scheme, we take the CFL number as 0.5.

The same as before, the computational domain is divided into N grid points: a =
T9 < x1 < --- < xy = b. We denote cell I; = [xi_%,atiJr%] as the corresponding cell of
the node z;. Here, we set z;,1 = (r; + xi11)/2. We denote the nodal value for fluid T as
UM" and the nodal value for fluid II as U/, We introduce the distance function ¢ which
is defined at the half nodes. By using this distance function ¢, we can determine the
location of the interface x(¢") at time level t". We define i,, as the sequence of the index

in—35

of the cell containing the interface at time level ¢", then we have z(t") € [x; _1,z; 41].

6



We can define the computational variable {U*}, which will be the variables updated in
time in a conservative fashion, in the following way:
ur =ut, if i<y,
ur =un', if >, (4)
Ur = ;UM + (1 — ap)UM, if i =y,

o(t")—xi_1/2

where «; is the volume fraction of fluid I in the cell I;. We set «; = ~

Then, we can update the computational variable {U'} to the next time level ¢*

At~ ~
Up = U7 — S (Fr, — B ) )

In order to guarantee high resolution when discontinuities appear and high precision in
the smooth region, we need to design suitable numerical fluxes. For the fluxes far from
the interface, they will be approximated by single fluid numerical fluxes whose explicit
expressions are similar to (1). We denote these numerical fluxes as FH. For the fluxes
near the interface, in order to maintain the equilibrium of the velocity and pressure across
the interface, we need to calculate the special low order fluxes, denoted as ﬁL, and we
will use a combination of F¥ and F* to obtain the numerical fluxes. This combination

will be performed carefully in order to ensure high order accuracy.

For the flux F'H , we have the following expression:

7
- —Ax4memm

B
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where ¢, 1 is a discontinuity indicator at w;y;/, which can improve the resolution when

discontinuities appear and maintain high order accuracy in smooth areas. The detailed

steps to compute the discontinuity indicator is given in subsection 2.2.4. F (U;r 1 U;_’F 1)
2 2

is the Lax-Friedrichs flux. Instead of computing the interpolated values U=

1/ from the

point values of the conserved variables, we will interpolate the primitive variables using
the WENO method. As we know, the variables near the two-medium interface satisfy
the contact discontinuity condition. Density and physical parameters will jump, while

velocity and pressure will keep continuous. As mentioned in the introduction, it is better
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to interpolate density, velocity and pressure directly. Therefore, based on the framework
in [14], we perform the interpolation on the primitive variables, which are readily available
from the nodal values of the conserved variables. This gives us better chance to obtain
non-oscillatory results for velocity and pressure from high order WENO interpolation
near the interface. As to the higher order derivative terms, we can apply the simple
central difference method in a component by component fashion. It should be noted that
the nodal values used in the interpolation are chosen with respect to the position of the
interface. When calculating the fluxes at a location in fluid I, we will use nodal values of
fluid T in the interpolation if they are defined, otherwise we will use the nodal values of
fluid II; when calculating the fluxes at a location in fluid II, we will use nodal values of

fluid II in the interpolation if they are defined, otherwise we use the nodal values of fluid

L.

Next, we will describe the detailed steps to calculate the low order special flux FL

near the interface.

First, by using the level set method, we can evolve the distance function ¢” to time
level t* and obtain ¢*. Then we can use ¢* to determine the interface position x(t*) at the
new time level ¢*. We can use the WENO method in a component by component fashion
to determine the left and right states of the Riemann problem at the interface. The same
as before, we interpolate the primitive variables instead of the conserved variables. The
detailed steps of the level set method and WENO method are described in subsections

2.2.1 and 2.2.3.

We assume the interface x(t") at time level t" satisfies x(t") € [;,-1/2, Ti,41/2], and
the interface x(¢*) at the next time level t* satisfies x(t*) € [x;,_1/2, %4, 11/2]. We denote ay,
as the volume fraction of fluid I in the cell 7;,. The mixed cell I; should not be calculated
for a full time step. It is suggested that the cell should be merged with a neighboring cell,
in order to avoid the small “cut-cell” problem. We will merge the cells in the following

way:



- If o;, < 0.5, then we choose the cells [;, ; and I;, as the interface stencil, and merge
them to form two new interface cells: the cell [xl-*_% ,(t")] occupied by fluid I, and

the cell [x(t"), xiﬁ%] occupied by fluid IT;

- If a;, > 0.5, then we choose the cells I;, and I;, ;1 as the interface stencil, and merge
them to form two new interface cells: the cell [xi*_% , z(t")] occupied by fluid I, and

the cell [x(t"), xiﬁg] occupied by fluid II.

Due to the CFL number and the way to generate the interface stencil, the interface
stencil chosen above will contain the mixed cell both at the time level t" and at the time
level t*. For simplicity, we assume cells [; and I; ; have been merged together, see

Figure 1. Then, we need to calculate the fluxes FL at the positions ;,+1/2 and z;,43/2.

Figure 1: Sketch for the interface stencil. Red: fluid I

Regarding the flux at z;,_1/2, it is in the fluid I. Therefore, if U}’ ’il is not defined, we

I N N I I I 11
will set U;",; = U;"". Then we will use the nodal values {U;"", U2, U"_, U U, UV

to compute the numerical flux FZ.L _1 based on equation (6). Regarding the flux at x;,13/s,
no2

it is in the fluid II. Similarly, if U is not defined, we will set U;""" = U}"!. Then we

I g1 11yl gl
will use the nodal values {U7"", U/"" o1 Uil UM UMY to compute the numer-

ical flux FZ.L L8 based on equation (6). As to the flux F L L it can be obtained by the

nT2 +3

conservation law, as described below in details.

For fluid I, similar to the ALE method, we have the following integrated conservation

/ dt/ Ut+FU) )dx:o (7)

law:



According to the Green’s formula, we have

/ —Udx + F(U)dt
0N

x(t™) (z(t*),t*) x(t*) t* 8
:—/ de+/ —de+F(U)dt+/ de—/ Fany| a ©®)

T, 1 (z(t™),tm) T, 1 tn

=0
where () is the control volume for fluid I. We denote the velocity of the fluid at the interface

as u. Then, we can rewrite the flux F(U) as
FU)=u-U+ F,

where F, = (0,p,u-p)T. We also assume the location of the interface satisfies the following
formula:

x(t) = x(t") + u(t —t")

Then, we can simplify the integration in (8):

(2(t*).1°)
/ ~Udx + F(U)dt
(

x(tm),t")

n

:/t —u U+ F(U)dt 9)
_AF,

We define the numerical flux E:

—~

Fs - (O,p,u-p)T.

The values of p and u in E can be obtained through solving the Riemann problem
RP(UL,Ug) at the interface. The left and right states U, and Ug can be obtained by

WENO interpolation using the primitive variables. Then, we have the average value for

fluid I:
1 z(t") N
U*——</ U"dx—At(Fs—F,L 1)) (10)

I — x(t*) — xln_g xini% in—

We notice that the mass of each component of the fluid is actually conserved at this stage,
since the first component of the numerical flux E is zero. We also take

z(t™)
/ Urdx = Azal U

x.
in—%
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Similarly, we can obtain the average values for fluid II:

. 1 xin+% " B =1 _/-\
Us, = —(t*)</x Udx — At(F 5 Fs)) (11)

Now, we can define the temporary nodal values UZ;t and U;:l according to the

interface z(t*):

1. If l’(t ) € [$i7l—%’$i7l+%]’

z(t*)—x, 1

*t _ x * * * *,t _ * * in—%
then we define U;" = o Uy + (1 —aj )Uj; and U; 7, = Uj;, where o = ——5—"—=

is the volume fraction of fluid I in the cell I; .

2. If z(t*) € [:EZ-HJF%,:BZ-HJF%],

then we define U;’t = Uj and U;’irl = af Ui+ (1 —af )Uf;, where of || =
a(t)—z, 1 . . .
T"“ is the volume fraction of fluid I in the cell I; ;4.

Now, we can compute the flux at the position x;,41/2, see Figure 2:

*,t *,1
Ui, Ui+
t*
FEL FL FL
in—} int} int3
tn
Zip—1 Un Tints  pn Tip+3
in intl

Figure 2: Sketch for computing FL

From the left part, we have:

At /- ~
*7t _ n L L
Uz‘n - Uin - Ar <Fin+1/2 - F;'n—l/2)

Then, we get:

N Ui*,t _ UZn
Fiﬁ+1/2 - Fiﬁ—1/2 - % (12)
Az

~

From the right part, we have:

At 7/~ ~
*7t — n L L
Uz'n—i-l - Uin+1 - Ar <Fin+3/2 - Fz'n+1/2)

11



Then, we get:

*,t
L U'n+1 B

~
(2

U1
i1 = AL = F (13)
Az

Finally, we take an average of formula (12) and formula (13) to compute the flux FZ:
Elyy = % <ﬁz~ﬁ—1/z - %) + % (% + ﬁz’i+3/z) (14)
Az Ax
Now, we can define the flux {ﬁﬁ%} which will be used to evolve the computational
variables:
Floyp=Fl,  for idi,—1 & i, & in+1 (15)
and
ﬁiﬁ-lﬂ = ﬁ’iﬁ-lﬁ + ¥ (E{{FI/Q - ﬁzﬁlﬁ) for i =ip—1,in,in+1 (16)
where ¢ = min(e;,—1/2, Pi,+1/2, Pin+3/2)- Here ©; 11/2, @i, +3/2 are the discontinuity indi-

cators at x;,+1/2 and ;,13/2.
Then, we can advance the computational variables based on the formula (5).

Now, we can define the nodal values {U;'} and {U''} for fluid I and fluid II at
time level t* respectively. We assume the interface at time level t* satisfies x(t*) €

[xi*—1/2axi*+1/2]- Then, we have

e When 7 < 1,,
e When 7 > 1,,

e When ¢ = 1,,

(1) If o > 0.5, then the cell I;, is a small cell for fluid II. Therefore, we take
Ui**’H = Ui, + (L= )Up;
o U= —an)ust (19)

Tx Uk

U

Uk *
a;,

where U comes from formula (5), and Uj; is the average value for fluid II

which comes from formula (11).

12



(2) If o < 0.5, then the cell I;, is a small cell for fluid I. Therefore, we take

UPt = @U; + (1= ¢)U;

Ui —ar Ut (20)

urt =
Tx 1 _ a;k*
where U} comes from formula (5), and U} is the average value for fluid I which

comes from formula (10).
In the formula (19) and (20), we also take

¢ = min{e;, 1/2, Pi,+1/2: Pin+3/2}-

Remark 1. In formula (19), when the solution is smooth, the formula (5) which is used
to compute the nodal value U} is high order accurate [25, 14]. Therefore, we can maintain
high order accuracy if the nodal value U;:I for fluid I and the nodal value UZ-**’H for fluid
II are close to the nodal value U} . When discontinuity appears at the interface, Uf; is
the average value obtained by the formula specifically designed for the interface, so it is
more likely to obtain a non-oscillatory solution if the nodal value U;:H 15 close to Uj;.
Therefore, we introduce the discontinuity indicator in formula (19) which approaches one

in the smooth region and tends to zero when discontinuity appears. Similarly, we apply

the same idea to the formula (20).

To summarize, we have the following algorithm:

Algorithm 1
Input: UM, UM ¢7) At, Az

Output: U™, U ﬁ[jrl/z, oy
Apply U™ and U™ to define the computational variables U.

Compute the fluxes FH.

Update the distance function, and obtain ¢;.

Merge cells and compute the fluxes FL.

Define the flux F™.

Update the computational variables U}

Define the nodal values U;”" for fluid I, and the nodal values U;*"" for fluid II.

Now, we elaborate on the above ideas and implementation details.

13



2.2.1 Level set method

We associate the computational domain with the distance function ¢, which satisfies
the following expressions:

G+ ValVo| =0 (21)

where V), is the normal velocity which can be obtained through solving the Riemann
problem at the interface. We define the distance function at the half nodes. Then, we

have the following formula

d

d_f — —(v;;% \/max ((at)2,(b)2) + U;r%\/max ((a™)2, (b7)?)) (22)
where v;;% = maX(UH%, 0), v;r% = min(vH%, 0), and Vil is the normal velocity at Tipl.
The definition of a* and b* is similar. We take a = ¢, and b = ¢, where ¢= can be

obtained by the WENO method.
2.2.2 Characteristic projection 1D

The WENO method is performed in the local characteristic fields. In systems of
nonlinear equations, oscillations can develop in component-wise interpolation [24, 21]. In
this paper, we will use the local characteristic field decomposition. Because we perform
the interpolation using primitive variables rather than conserved variables, we will use the
left and right eigenvectors corresponding to the primitive variables for the characteristic

projections. Considering the following quasi-linear form of the Euler equation:

W, + AW)W, =0

where
p u p O
W=1| u AW)=1[ 0 u 1/p
p 0 pc® u

Here ¢ refers to the sound speed. We then give the left and right eigenvector matrices of

matrix A(W) as:

1 1 1 0 -2 5
RW)=| —-¢ 0 ¢ LW)=11 0 —1%2
0 2 0 £ 5

14



Firstly, we use the left eigenvector matrices L(W) to project the variables into the re-
spective characteristic fields. Secondly, we interpolate the values in each characteristic
fields. Finally, we use the right eigenvector matrices R(W) to project the values back into
the physical space [24]. Although it is more expensive computationally, more satisfactory

results can be obtained.

2.2.3 WENO method

The WENO method is one of the important parts in our schemes. We need two
different types of WENO method: one is for function values, and the other one is for
derivative values. The detailed steps to obtain derivative values can be seen in [12]. Here
we describe the procedure to obtain the value w at = € [:)si_%,a:i 1 | in fluid I using the
WENO interpolation, where w denotes the interpolation variable.

1. Based on the small stencils S, = {z;_o1r, Ti_147, Tizr }, 7 = 0, 1,2 and a big stencil

S = {wi_9,Ti1,T;, Tir1, Tiya}, We construct polynomials p,(x),r = 0,1,2 and ¢(x). We

have:

r — Ti— r—I; r — X;— r — T r — T— r — Ti—
po(x) = ( QAI); )wi—2 - ( Azig )wi—l + ( 22;2 1>wi
_ (@ =)@ — @) (z — 2im1) (@ — Ti1) (z — @) (z — )
pie) = 2A72 Wit Aq? i 2Az2 Wit
pa(x) = ( J;g(xg +2)wi o sz +2)wi+1 + ( 2)2932 +1)wi+2

(@ —zi1) (@ — ) (@ — 1) (T — Tip0)
q(z) = Wi—2
24 Ax?
(@ — zi0) (@ — i) (2 — it1) (@ — Tip0)
B 6 Az Wi
(z — @i2)(@ — xi-1) (T — Ti41) (T — Tiy2)
* 4Ax* i
(@ — i) (@ — i) (x — ) (@ — Tiga)
a 6Az* Witt
N (x —;_9)(x — :cleA)i:Z — ;) (z — xi+1)wi+2

The same as before, we use the position of the interface to decide the nodal values used
in the interpolation. If we are interpolating the value w in fluid I, then we will use the

nodal values of fluid I in the interpolation if they are defined, otherwise we use the nodal

15



values of fluid II. Likewise, if we are calculating the value w in fluid II, then we will use
nodal values of fluid II in the interpolation if they are defined, otherwise we use the nodal

values of fluid 1.

2. We find the linear weights, denoted as ~g, 71, 2, such that

2

q(x) = Z Yipr ()

k=0

for all possible nodal values w;. Then, we can obtain:

T — Tip1) (T — 24 T — i) (x — i
0= Biﬁ £2) g, = 152:52 L S

3. We compute the smoothness indicator, which measures the smoothness of the

function. We use the same recipe as in [13]:

m:é/

Ti—1/2

Tit1/2 oF 2
2k—1 _
e ( — (pr(z))> dx, r=0,1,2

The expression can be written out explicitly:

13 1

o = E(wi—2 — 2w +w;)? + Z(wi—2 — 4wy + 3w;)*
13 1

B = E(wi—l — 2w; + ’lUi+1>2 + Z(wi—l - wz’+1)2 (23)
13

1
(w; — 2wi1 + Wiga)® + 1(3102' — 4w + Wigo)?

=15

4. Based on the smoothness indicator, we can compute the nonlinear weights:

wr — Yk

T T B ey

where ¢ is a small number to avoid the denominator to become zero. Here, we set ¢ = 1076,

Wy

(24)

The final WENO expression is given by:
2
w = Z wipk(x)
k=0

2.2.4 Discontinuity indicator

The idea of the discontinuity indicator ¢;,1 comes from [34]. It can maintain high

order accuracy in the smooth region and can achieve high resolution when discontinuities

16



appear. In practice, we take density and pressure as the indicator variables and choose the
smaller one. Before discussing the detailed steps to construct the discontinuity indicator,
we would like to analyze the accuracy requirement of the indicator in the smooth case

first.

We use the discontinuity indicator in three different places: (1) We use the indicator
to compute the fluxes F¥, see formula (6); (2) We use the indicator to make a convex
combination of the fluxes F# and the fluxes FZ, see formula (16); (3) We use the indicator
to update the nodal values for fluid I and fluid II, see formula (19). Then, we will analyze
the accuracy requirement respectively. We always assume the values at time level ¢ are

accurate.

Proposition 2.1. The numerical fluz (6) satisfies

(SIS
N[=

B, -F
T2 e P(U).] 4+ O(AZY) (25)
Ax T;

if the discontinuity indicator satisfies:
Pz =1+ O(Az?)

where the F(U) refers to the exact flux.

Proof. As we know, if we define the flux F as follows:

7

= 1
Fio1=F(U — —A2*F(U) s —— A2 F(U) 00
ity = F( )w g A ) iy T 576020 FU) iy
where F'(U) is the exact flux, then we have
ﬁ'_;’_l _ﬁ_l
T3 3 - F Ax®
- 0}, +0(as

Therefore, in order to prove the equation (25), it is sufficient to prove the relation:

»

Fipi=Fi1 +0(A2%) (26)

N

if the numerical flux is Lipschitz continuous with respect to its arguments.
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According to (6), we have:

7
- —Ax4memm
z,1 5760
2

3 TT— 1
E+% - F(Ui.g-%v UZ—:_%) - 902‘-4-% (ﬂA$2me

i+%>

The values Uil are obtained from the WENO interpolation and we have

2

U=, = Ulwir1) + O(Az°).

z+2

Based on the consistency and Lipschitz continuity of the numerical flux, we have:

F(U_,.U,)=F(U)

2+1’ 2+2

+ O(Az?)

"Ei+%

In addition, we use central difference methods in a component by component fashion to

approximate the derivatives terms, see equations (2) and (3). Therefore, we have:

Fps =F(U)s +O(Az?)
:Ei+% "Ei+%
xH% xH%

If we have
Pitl = 1+0(Az%)

then we can obtain

~ ~ 1

7
— — A2 Fpns
T 5760 Hg)

_ 1 2 7 4
=F(U)| = AP U)ea| o+ g A F (U s

i+ b xi+§

éﬁH% + O(Az?)

Proposition 2.2. The convex combination of FH gnd FE (16) satisfies formula (26), if

the parameter p = 1+ O(Az®) and At = O(Az"),r < 2.
The detailed proof is given in Appendix .1.
Proposition 2.3. In formulas (19) and (20), if ¢ = 1+ O(Ax?), then we have
Ut =Ur +0(A2), UM =Ur +0(Ar”)
where i, is the subscript of the cell where the interface is located at time level t*.

18



Proof. We take i, = i,, + 1 as example. The proof for ¢, = 4, or 7, =1, — 1 is similar.
Due to our CFL number, we have o ; < 0.5. So, we can obtain

At /~ ~
Ul = Ui, 11,t") — N (Fin+3/2 - Fz'n+1/2) =U(24,11,t") + O(At)

According to (43), We have

Up = Ui, 41, t") + O(Ax) = U, + O(Ax)

2

Then, we obtain
*,1 * * * *
Uoyr — Ui =9U; 1 + (1 —=p)Ur — in+1

=(1 - ¢)O(Az) = O(Az”)

Therefore, we should have

o =1+0(Az")

O

Based on the previous analysis, in order to maintain the accuracy, the discontinuity

indicator should satisfy:

Pi1 =1+ 0(A2%) & At=0(A"), 1 <2

Now, we describe the detailed steps to calculate the discontinuity indicator satisfying
Piy1 = 1+ O(Az). Later, in the numerical tests section, we will further require the time
stepping to satisfy At = O(Ax"), r < 2. For simplicity, we use w as the indicator variable.

Step 1. We define a big stencil Sy = {x;_2, Ti_1, Ti, Tis1, Tir2, Tir3}, and four small
stencils Sy = {29, 21,7}, So = {@i_1, Ti, Tiy1 }, S = {Ti, Tiy1, Tiga}, S4 = {Tiy1, Tito, Tiys}

Then we need to construct polynomials po(x), p1(x), pa(x), p3(x), ps(z), such that:

po(Tiyr) = Wiy 1=—2,---,3
p1(Tiy) = Wiy [=—2,---,0
p2(Tiy) = wiyy I=—1,---,1
p3(Tipy) =wiyg 1=0,---,2
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p4(xi+l):wi+l | = ]_’ ’3

Step 2. We use the same recipe as in [13] to compute the smoothness indicators for

each polynomial on cell [z;, ;1]

Tit1 k 2
Z/ A () s, r=0,1,234

We have the following expressions:

5 1421461 [ 1 1 1 1 1 1 2
Bo = (—w; + wi1)” + o975 (@wi—2 BT + oq Wi + oq Wikl T T Wit2 + @wws)
13 131 391 521 521 391 131 2
3 (‘ﬁ““ 1040~ 1560~ 1560 T 10402 T 3120“’%)
781 ([ 617 31123 14019 14019 31123 617 2
20 (mwi—z ~ 31203 Vi + 21868 %Y T 21ReR Vit + 131208 V2 mwz’H)
21520059541 (1 1 1 1 1 1 ?
1377684 <_Eowi‘2 T T T i T e ﬁwi“’)

13 /1 1\’
Br = (wi—s — 3wi—y + 2w;)” + 3 <§wi—2 —wi—1 + §wz~)

13 /1 1 2
B2 = (Wit1 — wi)2 + 3 <§wi+1 —w; + iwi—l)

13 (1 ?
By = (wis1 — w;)* + 3 <§wi+2 — Wiy1 + 5102)

13 /1 1 2
By = (—2wiy1 + 3wito — wi+3) + 3 §wi+1 — Wit2 + §wi+3

Step 3. Similar to [35], We define the parameter 7:

_ (Bo — B1)* + (Bo — B2)* + (Bo — B3)* + (Bo — fa)?
4

and the parameter (:

+ o+

4

T T —l_ T
Ba+e B3+e Ba+te

-
ﬁ _ Bi+e

Then, we can construct the discontinuity indicator ¢:

1 2

It has the following properties:
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® Y1 =1+ O(Az®) in smooth areas;
® Y1 is close to 0 near discontinuities.
The detailed proof of these properties is given in Appendix .2.

2.2.5 Time discretization

In practice, we will use the third order TVD Runge-Kutta method to advance the

nodal values:
UM =U" + AtL(um)

U@ =U"+ %At (U™ + £ (UuM)) (27)
Ut =U" + %At (L(U™) +4L (UP) + £ (UW))

In fact, we have only described the first step of the third order Runge-Kutta method
(27). As to the second and third steps, we will use the same idea used in the first step.
Therefore, for each step, we need to construct the fluxes FH and the fluxes FL. Take
the second step as an example. For the fluxes 2 , they can be constructed by combining
fluxes from time levels ¢ and t() together according to equation (27). For the fluxes F L
we need to calculate the fluxes F'L at those positions where they have been calculated in
the time levels t* and ¢™"). At this time, we can also obtain the corresponding interface
stencil. For those FX located inside the interface stencil, we can use the conservation
law to obtain the fluxes; for those FL located outside the interface stencil, we can follow
the equation (6) to compute them. Then, we can construct the fluxes, advance the
computational variables and finally define the new nodal values for fluid I and fluid II.

Similar method can be applied to calculate the third step.

To summarize, we have the following general algorithm:

2.2.6 Flowchart 1D

Step 1. According to Algorithm 1, input U', U™ ¢7 At, Az, output Ui(l)’l,
Ui(l)’H, F 120 ¢§1’. Up to now, we have finished the first step of the third order TVD

)

Runge-Kutta method (27).
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Algorithm 2
Input: U, UM, ¢, o5, Bl o,
Output: U, U
1: Apply U™ and U""" to define the computational variables U;".
Based on the equations (6)-(14), compute the fluxes FL.
Define the flux F™.
Update the computational variables U.

Define the nodal values U’ for fluid I and nodal values U;”"" for fluid II based on the
equations (19)-(20)-(17)-(18).

At, Az

Step 2. According to Algorithm 1, input Ui(l)’l, Ul-(l)’H, ¢£1), At, Ax, output ﬁi(2)’l,

7@ (1) 5(2)
Uz’ >F’i+1/2> ¢z .

We construct F# for the second step of the third order TVD Runge-Kutta method
(27):

on (1)
(Fry+ ),

1
i+

and the distance function ¢ at the time level t2) = ¢" + At/2:
@ _ 3 ., Ly
¢Z 4¢Z —"_ 4¢Z :

Then, according to Algorithm 2, input U™, U™ ¢, ¢§2), ﬁﬁ-l/? At/2, Ax,
output Ui(Q)’I, Ui(z),n. Up to now, we have finished the second step of the third order TVD

Runge-Kutta method (27).
Step 3. According to Algorithm 1, input UZ@)’I, Ui(z),n’ qﬁf), At, Az, output ﬁi(3)’l,
73 m(2)  5(3)
Ui ) F’Z‘+1/2> ¢z .
We construct FZ for the third step of the third order TVD Runge-Kutta method
(27):
. 1/~ . .
H __ n (2) 1)
Fai=c <Fi+% +4Fi+§ +Fz‘+%)’
and the distance function ¢! at the time level t"*! = " + At:
1 2~
n+1 n (3)
il T g
¢Z 3¢2 3¢Z
Then, according to Algorithm 2, input U™, U™, ¢n, ¢ FH. At Az, output

i i+1/20
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U/ LI U/ LI Up to now, we have finished the third step of the third order TVD Runge-

Kutta method (27).

2.3 Conservation

In summary, our method can be divided into three steps:

1. We use the nodal values for fluid I and fluid II at time level t" to construct the

nodal values for the computational variables.

2. Then, we update the nodal values for the computational variables:

At PN
Uin+l =U" - Ar <Fz’+1/2 - Fz’—1/2>

where

~

Frap=Fl, fo i#i,—1 & i, & i,+1

and
ﬁi+1/2 = ﬁ’iﬁ-l/2 T (ﬁﬁlﬂ - ﬁ’iﬁ—l/Z) for @=1, —1,iy,1, +1
Here, we take ]?;'I—{i-l/2 =3 (ﬁﬁ% + 4]3,% + ﬁﬁé) and ¢ = min(pi,—1/2; Pi,+1/2; Pin+3/2)-
3. Finally, we redistribute and obtain the nodal values for fluid I and fluid II at time

level 71,

We can see that the construction and redistribution in the first step and the third
step do not violate the conservation law. As to the second step, we use the conservative
scheme to update the values of the computational variables. Therefore, our method is

conservative.

3 Two-dimensional numerical schemes

The two-dimensional system for the compressible fluid can be written as follows:

U+ FU),+GU), =0, (28)
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where U = (p, pu, pv, E)", F(U) = (pu, pu*+p, puv,u(E+p))" and G(U) = (pv, puv, pv*+
v(E + p))*. Here (u,v) is the velocity vector, and the definition of p, E and p is the

same as before. The equation of state for 2D is as follows:

1 ) _
y-law : B = 50(“2 +%) + Ll’ Tait EOS : E = §p(u2 +v%) + PP

v - 71

3.1 Description of the finite difference scheme in 2D

Now, we describe the high order finite difference scheme in the two dimensional case.

In our scheme, we again take the CFL number as 0.5.

For simplicity, the computational domain is equally divided: a = 2y < z; < --- <
vy, = b,and ¢ = yp < y1 < --- < yn, = d. We denote the cell I;; = [xi_%,xH%] X
[yj_%,yﬂ%] as the corresponding cell of the node (z;, y;).

We denote the nodal values for fluid I as {U; ”I} and nodal values for fluid II as

{u; J’»H}. Now, we can define the computational variable {U}"; }:

e When cell /;; is fully covered by fluid I at time level ", we take U, = U, ml

Z?]

e When cell /; ; is fully covered by fluid IT at time level t", we take U"; = U, Il

Z?]

o When cell J;; is a mixed cell at time level t*: UP; = oy ;U + (1 — a; /)US

where «; ; is the volume fraction of the fluid I in the cell I, ;.

Then, we can update the computational variable {UZ"J} to next time level t*

oSG S -~ (e RYE (20)

i — Yig Ax( i+3.J =5 Ay bits

We also need to build the flux F¥ and the flux F in order to construct our numerical

flux. For the flux F¥| similar to the one dimensional case, we have

7
- —Ax4memm

~ 1
H _ + = 2
Fili, = F(Uz+l,g’Uz+ ]) Pisd (24Ax Fiz e 5760
L)

Similarly, we can obtain the fluxes GH] L1
2
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Next, we will describe the way to construct the low order flux FL.

Similar to the one dimensional case, we evolve the distance function based on the
velocity obtained by solving the Riemann problem at the interface, and determine the
interface position at the new time level. We will also use the WENO interpolation at the
interface. The value will be obtained by calculating the WENO interpolation in the z
and y directions and taking the average of them. For simplicity, we regard the interface
in the mixed cell as a straight line, and choose the center of the line as the interpolation

position in the x and y directions.

When the cell I;, ;, contains the interface, it is not suitable to be computed for a

full time step. Therefore it is suggested that the cell I; should be merged with its

nyjn
neighboring cells to generate an interface stencil. The detailed steps will be introduced
in subsection 3.1.2. Now, we denote the r-th interface stencil at time level " as AT (t").
The interface I'(¢™) divide the interface stencil into two parts: AY) (t) for fluid T and Ag’}) (t)

for fluid II. Now, we begin to deduce the formula for AY)(t).

Similar to the ALE method, we integrate the equation (28) in space and time, then

we have

/t " / /A . (U, + F), + C(W), )dsdy = 0 (31)

According to the Gauss theorem, we obtain

t* t*
/ dt// Utdxdy+/ dt% (F(U) ‘ng + G(U) -ny>ds:0 (32)
tn A () tn dAL (1)

Then, we use the Reynold’s transport theorem:

d
d / / Udsdy — / / Usdxdy + ]{ UV - 7)ds (33)
dt JJAP AP 24 (1)

where V is the normal velocity along the interface. Combining (32) and (33), we get the

following equation:

¢ ¢
/ i// dedydt—l—/ dt% (F(U)-nx+G(U)-ny)—U(7-
o At ) )40 tn aA" (1)

It can be represented by two parts: one consists of the four segments of the interface

=

)ds =0 (34)
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zone being cut by the interface; the other one consists of the segment of the interface

inside the interface zone. Hence, we can rewrite the equation (34):

Figure 3: Example for the interface stencil. Line: the interface stencil; Dotted line: cells
within the interface stencil. Red: fluid I.

U],Am(tn) — ﬁ< Z OémU[ - Z MFSM
Wy LgeAl @) figeAn(en)
Ii,jeA] (t”) 1,] I
At & ~1 o~ 35
~ 30 2 e0baF 0 — S0P )1 .

At 2 /\L /\L
- Ay Z[S@jz(i)Jr%Gi,j?(z‘)Jr% - Sivjl(i)—%Gi,jl(i)—%])

=11

Here, we choose iy, 19, j1, j2 such that the set {; ; : i1 <1 <1y, j; < j < jo} is the smallest
stencil to cover AT (t"). i%(j) and i'(j) represent the maximum and minimum indices
in the = direction when j is given. Likewise, j2(i) and j!(7) represent the maximum and
minimum indices in the y direction when 7 is given. See Figure 3 for an example. Now,
{Lij:in <1 <i,+1,j, <j < jn+1} covers the interface stencil. When j = j,, +1, there
is only one cell I;, ; ;1 inside the interface stencil. Hence we know that the maximum
index in the z direction is i*(j) = i,, and the minimum index is also i'(j) = 4,. When
J = Jn, both the cell I;, ; and the cell I; 1, ;, are inside the interface stencil. Hence the
maximum index in the z direction is i*(j) = i, + 1, and the minimum index is ' (j) = i,,

and so on. Similar approach can be used to determine the maximum and minimum indices
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in the stencil in the y direction when 7 is given. aj';, a7, Siy1 ; and 5; ;.1 are the fraction

3,70 1,70 M1

volumes of fluid I, see section 3.1.1 for detailed steps to determine them. U is the

A(r) t”

cell average in the interface stencil for fluid I at time level ¢t":

1
n N d d
ULA( )(t ) ‘Agr)(tn” //AY)(tn) U xXay

Here, we assign U} to the nodes in fluid IT in the interface stencil A" (¢"), and then

A (gn)
compute the numerical fluxes FL and GL. (7 ; is the length of the interface inside the cell
I ;. E” is the interface flux:

—

F, = (O,p-nx,p~ny,p(u~nm—i—v-ny))T (36)

where (n,,n,) is the unit normal at the interface, and p and (u,v) are the pressure and

velocity which can be obtained by solving the Riemann problem at the interface.

Similarly, we can also obtain the cell average U7 for fluid II in the stencil

II, A('r) t”

AT (™). Then, we can define the temporary nodal value using U; and U7

I,LA() (tn) Ir A(ﬂ(tn)

U*t = Oé U A(r) t" -+ (1 — O{;]‘)U;I,A(T')(t”) (’l,j) € A(T)(tn)

2Y)

where o] ; is the fraction volume of fluid I in the cell ; ; at time level ¢*. Then, similar
to the one dimensional case, we can figure out the fluxes inside the interface stencil, for

example, F and @i,jnﬂﬁ in Figure 3.

nt+1/2,9n
Now, we can determine the flux. Regarding the flux F if (2;41/2,y;) is not in any

interface stencil, we take

on . H
Fi+1/2,j = Fz’+1/2,j

Otherwise, we have

on L
it1/2, = F;+1/2] t (Fz+1/23 Fz’+1/2,j>

where ¢ = min {%il/gd, ©ijr12|li; € AN (), r =1,2,3,- - } Similar approach can be

used to calculate G™.

Next, we can evolve the computational variables based on equation (29). Now, we

can determine the updated nodal values {UZ*]I} and {U:fl}:
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e When cell /;; is fully covered by fluid I at time level t*, we take
w1 _ rrx
e When cell /; ; is fully covered by fluid II at time level t*, we take

*IT _ prx
Ut =z, (38)

2]
e When cell [; ; is a mixed cell at time level ¢*:

(1) If aj; > 0.5, then it is a small cell for fluid II. We choose:

*, 1T * *
U, = QpUz’,j + (1 - SO)UH,A(T)(tn)

1,J
I
i, a;‘k,j

*

1AW (g 19 the cell average value for

where U; is obtained by equation (29)

fluid II in the interface stencil AT (t") at time level ¢*.
(2) If aj; < 0.5, then it is a small cell for fluid I. We choose:

*, * *
Ui,j = SOUi,j + (1 - (p)UI,A(")(t”)

* * *,1
eIl Uy —a3;Us) (40)
VA 1 — aoF.
27-]

where U;; is obtained by equation (29), Uy is the cell average value for

ILA() (tn)

fluid I in the interface stencil A (") at time level t*.

Similarly, we take ¢ = min {(piil/g,j, ©ijr12|li € AN (), r =1,2,3,--- }

Then, we can perform our two-dimensional scheme following the flowchart similar to

the one dimensional one. To save space, we omit the detailed steps here. It should be

noted that in two dimensional case we will perform the reinitialization routine every 100

steps to avoid the distance function ¢ from becoming too flat or too steep.

In the remainder of this section, we elaborate on describing the implementations in

detail, including the way to generate the interface stencils, the way to calculate the volume

fraction, the way to implement the level set method, and so on.
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3.1.1 Volume fraction

The volume fraction is computed based on the distance function ¢. It measures the
ratio of ¢ < 0 to the whole cell. We treat the interface as a straight line in the cell for
simplicity. In general, we have many cases which need to be considered. By rotation,

they can be divided into five generic cases:
1. gbi_%’j_‘_% > 0, gbi—%,j—% > 0, ng_%’j_% > 0, ¢i+%,j+% >0
In this case, we take a; ; = 0.
2. ¢i—%,j+% <0, (bi—%,j—% > 0, ¢i+§,j—% >0, ¢i+%7j+% >0

See Figure 4(a). According to the proportion, we have

a = ‘ —3.d+3 b= ’ ¢ 303
)
qbz_, J= T Pimtis Pivd gt — Pictjrd

Then, based on the triangle area formula, we have:

¢i—%,j+%

7.7+2

2’¢Z— — 5 _QSZ—E,]"F%

3. ¢ 1511 <0,0;, 15 1<0,¢,1;1>0,¢,1;,1>0

Qij =5

See Figure 4(b). Based on the trapezoidal area formula, we have

i~3.0+3

N———

S (Frpreeryeyn A
‘¢ 1 ¢i+§,j—% ¢z+ Li+s ™ ¢i—%,j+%
See Figure 4(c). Based on the triangle area formula, we have:

1 Pitl,-1 T

2011 = Piyl -t

5. ¢ 1511 <0,0; 1;1<0,¢;1;1<0,¢1,;,1<0

@i =1~

i+5.0+5 ¢i+%,j—%

In this case, we take a; ; = 1.
3.1.2 Mixing procedure

In this subsection, we will introduce a way to generate interface stencil. It is based

on the normal vector of the interface which can change dynamically with the interface
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Pivlj+l  Pimlg+l Pit1,i+1

(a) case 2 (b) case 3 (c) case 4
Figure 4: Red: The part for ¢ < 0; Line: interface.
evolution. Now, we will introduce the procedure in detail.
1. Obtain the normal vector

We need to obtain the normal vector at the corners of the cell. We can use the

following equation to compute the normal vector at the node (z,, 1, Y4 E

*
= v¢i+%,j+%
1 = =
t+3,0+3 |v¢:+l j+l|
27 2

where ng; 141 2D be obtained using the distance function at time level t* by the

WENO method.

Then, for any cell I; ; which is mixed at time level " or t*, we can compute the sum

of the x and y components of the normal vector at the corners of the cell:

Sniy = Z |¢Zii%7ji%|’ Sny; = Z |¢Zi:|:%7j:l:%|
We also need to compute the fraction volume of the fluid I in the cell, denoted as o ;.

2. Generate the interface stencils [15]

o Ifaf; > 0.5

O Ifajy; <ajyyy, cell ;; will merge with the cell I;_; ;. Otherwise, cell ;

will merge with the cell /1 ;.
@ Otherwise,
¢ If |Sng ;| > |Snj,l,
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*If af

1 < ajpqy cell I; ; will merge with the cell 1;_ j. Otherwise, cell

I; ; will merge with the cell I;1; ;. See cell C' in Figure 5.
¢ Otherwise,

*If af ;< afjy, cell I;; will merge with the cell I ;1. Otherwise, cell

I; ; will merge with the cell 1; ;_;. See cell B in Figure 5.
e Otherwise,

O If ||Snf,| — [Sn;|| < 1079,

¢ Ifaj ;> ajy,, cell I;; will merge with the cell I;_; ;. Otherwise, cell [;

will merge with the cell 11 ;.
Q@ Otherwise,
¢ If |Sng | > |[Snj ],

*If of

T1j > ajyq s cell I will merge with the cell 1;_ ;. Otherwise, cell

I; ; will merge with the cell 1;1; ;. See cell D in Figure 5.

& Otherwise,

*

*If oy, > af; g, cell I;; will merge with the cell ; ;. Otherwise, cell

I; ; will merge with the cell I; ;_;. See cell A in Figure 5.

Then, we can obtain the interface stencils.

= fuid 11
NN

2

Figure 5: Formation of the interface stencils. Pink: the interface stencil. Curve: the
interface. Fluid I: ¢ < 0. Fluid II: ¢ > 0
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3.1.3 Characteristic projection in 2D

Considering the following quasi-linear form of the Euler equation:

W, + A(W)W, + B(W)W, =0

where
p uw o p 0 0 v 0 p 0
| 0w 0 1/p [0 v 0O 0
W= v AW) = 0 0 w 0 Bw) = 0 0 v 1/p
P 0 pi2 0 u 0 0 pc* v

We then give the left and right eigenvector matrices of matrix A(W) as:

1 1 0 1 0 -2 0 5L
-< 0 0 ¢ 1 0 0 -3
T — P p r = c
R (W) 0 0 1 0 FWI=1o o 1 4
@ 0 0 ¢ 0o £ 0 %

and we also give the left and right eigenvector matrices of matrix B(W) as:

1 1 0 1 00 -2 5

0 0 1 0 1 0 0 —3%

Y _ Y _ c2?
RY(W) = _% 0 0 ﬁ Lrw) = 0 1 0 0
¢ 0 0 0o 0 £ ﬁ

Here, ¢ refers to sound speed. It is advised that, when the fluxes are computed along a cell
boundary, a one dimensional local characteristic decomposition normal to the boundary

is performed. The detailed steps can be seen in section 2.2.2.
3.1.4 Level set method

In the two dimensional case, the distance function satisfies the following expression:
G+ Vol V| =0 (41)

where ¢ is the distance function defined at the half nodes. V,, is the normal velocity which
can be obtained by solving the Riemann problem in the mixed cells, assigning the values

to the corners of the cells, and extrapolating the values by extending functions [19]:

\Y%
¢+ sign(cb)ﬁw =0
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Here, ¢ is the extended variable. Then, we can obtain the semi-discrete scheme of equation

(41):
d
O o uynax (@2 () s ()%, (@)
S (42)
+o,v/max ((a7)2, (57)?2) + max ((c0)?, (d)?))
i+3.0+3
where v; 1 ;.1 s the normal velocity at the half node (:L"H%,yﬂé), rt = max(z,0),
2~ = min(x,0). Here a,b,c,d refer to ¢, , ¢, by gb; respectively. The values of ¢~ and

(;S;t can be obtained by the WENO method. The third order TVD Runge-Kutta method

will be used to improve the temporal accuracy for the scheme (42).
3.1.5 Reinitialization

In order to ensure the ¢ does not become too flat or too steep along the interface,

we need to use the reinitialization procedure [30]:

¢r + sign(do) (Ve[ —1) = 0

where ¢q is obtained from the level set method. Then, we have:

d¢ _ _< L (ymax ((ah)?, (7)) + max ((¢7)?, (d)2) — 1)

st
dr 3.0+

570 (Vimax (@)%, (0F)2) + max (e )2, (@9)2) — 1))

Here, ;1 ;.1 is a sign function valued at (xH%,ijr%). rt = max(z,0), z~ = min(z,0).
The definition of a*, b*, ¢*, d* is the same as before. In practice, third order TVD
Runge-Kutta method will be used to discretize the pseudo-time derivative. The stopping
criterion for this iteration is e; < ATAzAy or k < 20, where the e; is the L, difference
between two consecutive iteration steps and k is the total iteration number. We take
A7 = 0.1min(Az, Ay) in the experiment. The re-initialization procedure is performed

every 100 time steps.

3.2 Conservation

In summary, our method in the two dimensional case can also be divided into three

steps:
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1. We use the nodal values for fluid I and fluid II at time level " to construct the

nodal values for the computational variables.

2. Then, we update the computational variables

n VAN =~ At [~ ~
Ui’j—l =U;; — Ar (Fi+1/2,j - i—1/2,j> - A—y (Gi,j+1/2 - Gi,j—1/2)

3. Finally, we redistribute and obtain the nodal values for fluid I and fluid II.

The first and third steps are performed in a conservative manner. As to the second
step, we update the nodal values based on a conservative scheme. Therefore, our method

1S conservative.

4 Numerical tests

In this section, we present the results of our numerical experiments. The CFL num-
bers are taken as 0.5 for both the one-dimensional and the two-dimensional cases, except
that we will choose At = O(Axz°/3) to guarantee that the spatial error dominates for the
accuracy tests. In order to plot the final result, we will restore the computational value
using nodal values for fluid I and fluid II, and impose the following conditions to compute
density velocity and pressure in the mixed cell:

IT=11

1 a  l-a 95 _arp  (1-ap'p
R L B L B L =1

where v and p are the physical parameters defined in the mixed cell, « is the volume
fraction of fluid I. 4/ and p’ are the physical parameters defined in the fluid I, v// and p!’
are the physical parameters defined in the fluid II. We emphasize that these definitions of
mixed equation of state in the mixed cells are introduced only for the purpose of plotting
the final results, they do not participate in the computation of time evolution of the

numerical solution at all.

We also list the CPU cost for Example 1 to Example 7, see Table 1.

Example 1. Artificial accuracy test in 1D
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Table 1: CPU time.
Example 1 2 3 4 ) 6 7

Time(s) | 64.30 2.71 1.40 237 227 055 0.43

We consider the artificial accuracy test [10]. We take v = 3. The initial conditions

are:
1+ 0.2sin(x
p(x,0) = 1+ 0-25in(z) ),
2./

The computational domain is [0, 27]. Periodic boundary conditions are used in this test.

U(LL’,O) = ﬁp(x70>v p(x,O) = p(xvo)fy

By the special choice of the parameter -, initial conditions and boundary conditions, we

can verify that 2,/yp(z,t) is the exact solution of the following Burgers equation:

1
Hy + §(u2)m =0, wu(z,0)=140.2sin(x)

The velocity and pressure satisfy the following relation:

u(x,t) = ﬁp(m,t), p(l’,t) = p(‘%t)ﬂy'

It is easy to verify that the solution of the Burgers equation above is smooth up to time
T = 5. We set the final time 7" = 3. At this time, the solution is still smooth. We also
put an artificial interface for which the fluids I and II are the same to both sides of the
interface, however the full interface treating algorithm is applied. The initial artificial
interface is located at x = w. We list the error and numerical accuracy order in Table 2.
We can see that our method can achieve the designed fifth order of accuracy. We also test
the accuracy of the discontinuity indicator by using the density from the final time, see

Table 3. We can see that the discontinuity indicator can achieve the designed precision.

Table 2: Accuracy test for density in 1D.

L., error order Ly error order L; error order
80 | 1.48E-04 3.32E-05 1.05E-05

120 | 2.81E-05 4.09 5.21E-06 4.57 1.55E-06 4.72
160 | 6.97E-06 4.84 1.28E-06 4.87 3.67TE-07 5.01
200 | 2.48E-06 4.63 4.22E-07 4.98 1.19E-07 5.07
240 | 9.81E-07 5.09 1.69E-07 5.03 4.68E-08 5.10
280 | 4.63E-07 4.87 7.72E-08 5.07 2.12E-08 5.15
320 | 2.33E-07 5.15 3.91E-08 5.09 1.07E-08 5.14
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Table 3: Accuracy test for discontinuity indicator in 1D.
L., error order Ly error order L; error order
80 | 2.38E-06 4.33E-07 1.30E-07

120 | 3.07E-07 5.05 4.81E-08 5.42 1.24E-08 5.80
160 | 6.30E-08 5.51 9.36E-09 5.69 2.28E-09 5.89
200 | 1.76E-08 5.71 2.56E-09 5.81 6.07E-10 5.94
240 | 6.09E-09 5.82 &8.76E-10 5.88 2.05E-10 5.96
280 | 2.46E-09 5.88 3.52E-10 5.91 8.15E-11 5.97
320 | 1.12E-09 5.92 1.59E-10 5.93 3.67E-11 5.98

Example 2. A pure interface problem in 1D

We solve a Riemann problem consisting of a single contact discontinuity in gas dy-

namics:
( %) — ( 1,1,1,1.4,0), x<02
PP D)= 00.125,1,1, 4,1), x> 0.2

The computational domain is [0, 1]. We set the final time 7" = 0.32 and N = 200. Figure 6
shows the result. The base velocity and pressure have been subtracted. From the figures,
we can see that the interface propagates at the correct speed, and the oscillations solved
by using the current WENO method in velocity and pressure are much smaller than the
one solved by using the classical WENO method in [13], denoted as the WENO-JS method
in the figure.

[m} WENO —H8— WENO —H8— WENO
WENO-JS N —+—— WENO-JS N —+—— WENO-JS
Exact

Figure 6: Pure interface problem. From left to right: density, velocity, pressure. Line:
exact solution; Square: numerical solution obtained by using the current WENO method
(in velocity and pressure, the base has been subtracted); Plus: numerical solution obtained
by using WENO-JS method (in velocity and pressure, the base has been subtracted).

Example 3. Shock interacting with sine waves
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This example is tested in [32]. We solve the Euler equation with the following initial

conditions

(oupi1.5) = ( 3.857143,2.629369,10.333333, 1.4,0), z < —4.0
P WD P) = (1 4 0.2 5in(52), 0, 1,1.666666,0), x> —4.0

The computational domain is [—5,5]. We compute the solution of this problem to 7" = 1.8
with N = 300, and show the final result in Figure 7. The reference solution is obtained
with N = 2000. We compare the computed result using the current WENO method with
the one using the WENO-JS method, we can see that they are nearly the same. We
also compare our result with the one in [6], we can see that the results are comparable

although our scheme uses fewer degrees of freedom.

o WENO
WENO-JS
Reference

o WENO
WENO-JS
Reference

Figure 7: Shock interacting with sine waves. From left to right: density, velocity, pres-
sure. Square: numerical solution obtained by present WENO method, N = 300; Plus:
numerical solution obtained by using WENO-JS method, N = 300; Line: Reference,
N = 2000.

Example 4. Strong shock impacting on a gas-gas interface

We consider the following initial condition:

( 5) = [ (0.3856,27.0784,100.0,5/3,0), & <0
PUOBTLPI =00, 0, 1,1.4,0), z>0

The example is taken from [16]. The domain is [—500, 500] and the grid number N = 200.
We list the results using the current WENO method, WENO-JS method, and the finite
difference WENO based original GFM at time ¢ = 20 in Figure 8. It is clear that there
are discrepancies in locations of the shock front and interface for the result obtained by
GFM in comparison to the analytical solution. These incorrect features do not occur for

our scheme.
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Figure 8 Strong shock impacting on a gas-gas interface. N = 200. From left to right: den-
sity, velocity, pressure. Square: numerical solution obtained by present WENO method;
Star: numerical solution obtained by finite difference WENO based GFM; Line: exact

solution.

Example 5. Gas-water Riemann problem [

We consider the following initial condition:

- f(1.241,0, 2.753,1.4, 0), z<0
(P87, P) = | (0.991,0,3.050 x 10-4,5.5,1.505), = >0

The example is taken from [6]. The domain is [—5,5] and the grid number N = 300.
We list the computed results using both the current WENO method and the WENO-I5
method at time £ = 1 in Figure 9. From the figures, we can see that both methods obtain
correct interface location and high resolution. Comparing with the one in [6], we can see
that our scheme produces a small trough along the interface in the density plot, but is

otherwise a good approximation to the exact solution.

O wesa O wWesD 0 WeND
+  WENO-E +  WEND-E s  WENDSS
1=y Exsct Exact L Ersct
E os o
F r asf
o [] a o
E B o4 5 [
1ef E H :F
£ B ! a na ] [
uf 5] o
= F % a F B g=F -]
ﬂmrs: e & g f F
3 2 o § )
F [ ] r
of @ H ; ]
E T— o E
5] asf
. —

[::]
pabt e L By | -
F] E] 3 ] F] = 3 ] ] T ] ] r

T

Figure 9: Gas-water Riemann problem I. N = 300. From left to right: density, ve-
locity, pressure. Square: numerical solution obtained by present WENO method; Plus:
numerical solution obtained by WENO-JS method; Line: exact solution.

Example 6. Gas-water Riemann problem IT
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We consider the following initial condition:

(oo p..5) = ( 0.01,—100.0,100.0, 1.4, 0), z<0
P P) = (1,002, 0, 50,7.15,3309), x>0

The example is taken from [17]. The domain is [-5,5] and the grid number N = 200.
In this case, double rarefaction waves are generated in gas and water media respectively.
We show the computed results using both the current WENO method and the WENO-JS
method at time ¢ = 0.01 in Figure 10. From the figures, we can see that both methods

obtain correct interface location and high resolution.

o WENO o WENO
WENO-JS + WENO-JS
Exact r

1k L)

Figure 10: Gas-water Riemann problem II. N = 200. From left to right: density, ve-
locity, pressure. Square: numerical solution obtained by present WENO method; Plus:
numerical solution obtained by WENO-JS method; Line: exact solution.

Example 7. Gas-water Riemann problem II1

We consider the following initial condition:

(oo poy.5) = { (1000, 0,25000,7.15,3309), = <2
POPTLPI= 0 1,10, 1, 14, 0), z>2

The domain is [—5, 5] and the grid number N = 200. In this case, a very strong rarefaction
wave is reflected back into the water. We plot the numerical result at time ¢ = 0.25. From
Figure 11, we can see that the result obtained by using WENO-JS method produces a
jump at the interface, while the correct interface location and high resolution are obtained

by our method.

Example 8. Artificial accuracy test in 2D
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Figure 11: Gas-water Riemann problem III. N = 200. From left to right: density,
velocity, pressure. Square: numerical solution obtained by present WENO method; Plus:
numerical solution obtained by WENO-JS method; Line: exact solution.

We consider the 2D artificial accuracy test. We take v = 3. The initial conditions

are:
1+ 0.2sin(ZY)
p(l’,y,O) = 2
V2

The computational domain is [0,47] x [0,47]. Periodic boundary conditions are used in

Y
U(Z’,y,O) = U([L’,y,O) = \/;P(x>y>0) p(l’,y,O) = ,0(517,.%0)7

this test. By the special choice of parameter +, initial conditions and boundary conditions,
we can verify that /2yp(z,y,t) is the exact solution of the following Burgers equation:

1 1 . T
pe+ 5 (%) + 5(1%)y =0 p(a,y,0) =14 0.2sin(

+y)
2 2

and the velocity and pressure satisfy the relation: w(z,y,t) = v(z,y,t) = \/gp(:c,y,t),
p(z,y,t) = p(x,y,t)7. It is easy to verify that the solution of the Burgers equation above

is smooth up to time T = 5. We set the final time 7" = 3. At this time, the solution is

still smooth. The initial artificial interface is located at \/(z — 2m)% + (y — 27)% = m. We
list the error and numerical accuracy order in Table 4. We can see that our method can

achieve the designed fifth order accuracy.

Example 9. Pure interface problem in 2D

We solve a pure interface problem in 2D where the interface is a straight line:

ovpryg) = LLLLIA0), w45y —15>0
PGP P) = 90.125,1,1,1, 4,1), 45y —1.5<0

The computational domain is [0, 1] x [0,1]. We set the final time 7" = 0.32. Figure 12

shows the result. The solutions along the cut line y = x are also shown in the figures.
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Table 4: Accuracy test for density in 2D.

L., error order Ly error order L; error order
80x 80 | 1.52E-04 3.19E-05 9.57E-06

120x 120 | 3.13E-05 3.90 5.51E-06 4.33 1.57E-06 4.46
160x 160 | 8.02E-06 4.73 1.43E-06 4.70 3.96E-07 4.79
200x 200 | 2.89E-06 4.57 4.82E-07 4.87 1.32E-07 4.91
240x 240 | 1.15E-06  5.04 1.96E-07 4.95 5.32E-08 5.00
280x 280 | 5.49E-07 4.81 9.06E-08 4.99 2.44E-08 5.04
320x 320 | 2.78E-07 5.10 4.63E-08 5.03 1.24E-08 5.06

The base velocity and pressure have been subtracted. From the figures, we can see that
the interface propagates at the correct speed, and no oscillations other than those at the

round-off error are observed in velocity and pressure.

Example 10. Shock impacting on a gas-gas interface in 2D

We next consider an air shock impacting on a helium bubble. The schematic for
this problem is given in Figure 13 where the upper and lower boundary conditions are
non-reflective open boundaries. The left and right boundary conditions are the inflow and
outflow, respectively. The initial conditions are:

( 1, 0,0, 1, 1.4,0), Pre-shocked air
(p,u,v,p,7,P) = ] (1.3764,0.394,0,1.5698, 1.4,0), Post-shocked air
(0138, 0,0,  1,5/3,0), Helium

and the level set function ¢ = /22 + y? — 1, where ¢ < 0 represents helium and ¢ > 0

represents the air. The post-shock air state is given for x < —1.2.

In order to eliminate the “start-up” error mentioned in [22], we will use the numerical
shock, namely we run our code for the pure shock condition until it settles down, then
we add the bubble and start the computation. We plot density contours at time ¢ = 0.5,
t =1.0,¢t = 2.0 and t = 4.0. From Figure 14, we can see that the main features of the

solution are correctly captured.

Example 11. Shock impacting on a water-gas interface in 2D

In the final problem, we consider an underwater shock interacting with a gas bubble

in an open domain. We examine an underwater shock wave making impact on a gas
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Figure 12: Pure interface problem. 100 x 100 cells. From top to bottom: density, velocity
in the x direction, velocity in the y direction, pressure. From left to right: solution in
the whole domain, solution along the cut line y = x. Square: numerical solution (in
velocity and pressure, the base has been subtracted); Line: exact solution (in velocity
and pressure, the base has been subtracted).
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(3,3) (4,3)

Post- Pre-shocked Water Post- Pre-shocked Air
shocked shocked
Water Air

(—4,-3) r=-12 {-8,-8) z=-12

Figure 13: Schematic for Example 10 and Example 11. Left: Example 10; Right: Example
11

Figure 14: Shock impacting on a gas-gas interface in 2D, with 280 x 240 cells, 30 equally
spaced density contours from 0.1 to 1.6. Top left: ¢ = 0.5; Top right: t = 1.0; Bottom
left: t = 2.0; Bottom right: ¢ = 4.0.
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bubble. The schematic for this problem is given in Figure 13. The non-dimensionalized

initial conditions are:

( 1000, 0,0, 1,7.15,3309), Pre-shocked water
(p,u,v,p,7v,p) = < (1176.3576,1.1692,0,9120,7.15,3309), Post-shocked water
( 1, 0,0, 1, 1.4, 0), Gas

and the level set function ¢ = /22 + y? — 1, where ¢ < 0 represents the gas and ¢ > 0

represents the water. The post-shock water state is given for z < —1.2.

In this problem, very complex physics will occur at later time, and we stop our
computation before the bubble collapse. We plot the contours of density for the numerical
shock in Figure 15 at t = 0.06, t = 0.19, ¢t = 0.357 and ¢ = 0.471 respectively. From the

figures, we can see that high resolution is obtained by our method.

Figure 15: Shock impacting on a water-gas interface in 2D, with 280 x 240 cells, 30 equally
spaced density contours from 0 to 1200. Top left: ¢t = 0.06; Top right: ¢ = 0.19; Bottom
left: t = 0.357; Bottom right: ¢t = 0.471.
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5 Concluding remarks

In this paper, we propose a conservative finite difference method to solve the two-
medium flows. An alternative high order finite difference formulation is adopted to allow
WENO interpolation on the physical variables of velocity and pressure, instead of WENO
reconstruction or interpolation on the conserved variables. Numerical benchmarks show
that the proposed scheme has high order accuracy and high resolution, ability to locate
the correct interface position and non-oscillatory velocity and pressure transition across
interfaces. Further research to improve efficiency and robustness of the conservative finite
difference scheme for two-medium flows is ongoing. Extension to three-medium flows will
also be considered in the future. The methodology extends naturally, however careful

algebraic manipulations are needed in the mixed cells where all three media co-exist.
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7 Appendix
.1 The proof of proposition 2.2

Proof. The same as before, we assume the interface x(¢") at time level t" satisfies z(t") €
[%4,-1/2, i, +1/2]. Due to the C'F L condition, the interface z(t*) at time level ¢* could only

be in the cell I; ¢, I

n in

or I;, 1. For simplicity, we assume x(t*) € [%;,41/2, Ti, +3/2), S€e

Figure 1. The proof for the other cases is similar.

According to Figure 1, we need to calculate the convex combination of FH and
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FL at Ti,—1/2, Tip41/2, Tin+3/2. We analyze F 12 and F 132 first. Because the flux

F\L

it1/2:1 = n + 1 is only first order accurate, we have

FLy = F(U)ipre + O(Ax), i=i, 1

)

where the F(U);y1/2 refers to the exact flux at x;41/2. Therefore, if we require ¢ =
1+ O(Ax?), then we have
AiT—Li-l/2 - F(U)z+1/2 = Fz+1/2 + ‘P(Fz+1/2 Fz+1/2) F(U)z’+1/2
=0O(A7%), i=i,+1
Next, we will analyze the flux F 1)
We assume U(z;,t") is the exact solution at x; at time level t". We denote o} =

a(t*) — @i, 12, OF = 2(t") — 24,19, U = UPT, Uy, 17) = afUM + (1 — o) U,

(2

In the smooth region, {¢j+1/2} and {¢?+1/2} satisfy:

Gz = laja — Aty s (G2 (G ) + g, /e (((97) )% ((6) 7))

where ¢ can be obtained by the WENO method. Due to the property of the distance

function, we have |¢£| = 1+ O(Ax®). Therefore, we obtain the following equation:

Giri12 = Pp 12 — Atu + O(Az”)

As to z(t"), z(t*) and ¢", ¢*, we have

OK? :x(t*) - xin_l/Q _ SL’(t*) — xin_l/2 _ 0 - ¢:n_1/2
2Ax 2Ax Tin43/2 — Tip—1/2 ¢fn+3/2 — gbjn_l/z
i U gty = ATz BBL L o)
int+3/2 ¢in—1/2 2Ax 2Ax
af +ult A
=+ 0(A
2Az +0(Ax7)

So, we have

o = af +ult+ O(Az®)

As to the flux, we have

_ R U+ o —A 2me ——A 4szmm
U V) =i (24 C, T
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pu

—FU)| o) = | putp ‘ +O(A?)
u(E+p)) e
p 0

=y, 1 | pu + 1 p + O(Az?)

E ) Fin-3 up in—%
= Uin—1/2UZL’£1/2 + Fi—12 + O(Az?)

—uU + Fuyy 1o+ O(A)

and

Up =UM = aUM + (1 —a})

UM+ O(Ax) = Uz, , ") + O(Ax)

Therefore, according to Figure 1, we have

1 .
Ut = U =— (a?U? NI FZ.L_1)>
(6% no2

in *

I
(a?U}L + Aty — AHE, — Fsl-n_%)) + O(AzAl)
- Qg (43)
_ (a}U} + AtuU7) + O(AzAt)
g

=Ur 4+ O(At) = U(x;,,t") + O(Ax)

Similarly, we can also obtain
Uty = Uz, 1,t") + O(Ax)

If At =O(Az"),r <2, according to formula (14) we obtain

- Ust —pyn 1 (U, —Ur ~
L in in in+1 in+1 L
<Fz’n—1/2 S — ) + 3 <— At + Fi s
Ax Ax
™)

~

L _
Fiigi)2 =

|~

Lz Uy = Ui, 1 (U = Ui, ") o
Azx Az
1 o o —r
=3 (Fiﬁ—l/2 + F’ii+3/2) + O(Az*)
1 7
= F(U) = =A2’F(U) s + ——Az*F(U) p22s O(Az*>"
(FO) = AP F W)+ b FU)an ) | O()

That means the flux ﬁ’ZLL 12 would be at least zero order accuracy to approximate the
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flux ﬁin+1/2. Due to ¢ = 1+ O(Az®), as to the formula (16), we have

~
~

An
Fin+1/2 - Fz'n+1/2

N ~ 1 7
=(1-)Ft,, o+ oFH 2 — (F(U) — —AL*F(U) e + —A:):A‘F(U)mm)

24 5760
=(1 - )O(AZ*™") + O(Az)

Tip+1/2

=0(Az”)

To conclude, if ¢ = 1+ O(Ax®) and At = O(Az"),r < 2, then the convex combina-
tion of F# and F- (16) satisfies formula (26). O

.2 The proof for properties of discontinuity indicator

Firstly, due to 8 > 0, we have

0§<,0i+%§1

Secondly, we verify the accuracy order in the smooth region. Based on Taylor expan-
sion at Tipl, We have:

13 2 1
Bo = ($z+1/2) Ax? + <12 @ ($i+1/2) + Ew(l)(xi+l/2)w(3)(xi+l/2)) Az'
1043

@) (. 5B (. "
W (Tig1/2)w” (Tig1/2) + 960

7 2
+ (g sy o) + W)’ ) A+ O

960
— w M (2i10) A2 (1 4+ O(A2?)) = O(A2?)

13
B =w! ($z+1/2) Ax? + <

(2)( 2 23
12

$i+1/2) - Ew(l)(%ﬂ/z)w(g) ($i+1/2)) Az'

13
+ <—Zw(2) (l’i+1/2)w(3) (Ii+l/2) + 211)(1) (xi+1/2)w(4) (ZL’H_l/g)) ALE‘5 + O(ALE6)

— w D (2110) A2 (14 O(A2?)) = O(A2?)

13 2 1
B = (33@+1/2) Ax? + (12 (2)($z‘+1/2) + Ew(l)<$i+l/2>w(3)(xi+1/2)) Az'

13
-+ <—Ew(2) (1’,’_,.1/2)11)(3) (Ii+l/2>) A.flfs + O(Alﬁ)

— W (2110) A2 (1 4+ O(Az?)) = O(A2?)

13 2 1
B = ($z+1/2) Az® + (12 (2)($i+1/2) + Ew(l)($i+l/2>w(3)(xi+1/2)) Az’
13
+ (Ew@) ($i+1/2>w(3) (Ii+1/2)) A.flfs + O(ALE6)

48



= w M (i12) A2 (1+ O(A2?)) = O(Az?)

13 2 23
B4 Zw(l)($i+1/2) Az? + (12 (2)(Ii+1/2) - Ew(l)(Ii+1/2)w(3)(93i+1/2)) Az
13
(0 20 11172 - 200 i) i) ) A+ O8a)

= w M (i412) A2 (1 + O(A2?)) = O(Az?)

Therefore, we obtain the following relation:

51 ﬁo —211) )(Ii+1/2)w(3) (ZIZ,’+1/2)ASL’4 + O(ASL’5>
13
Ba — Bo = —Ew(z) (331'+1/2)w(3) (%’+1/2)A355 + O(ASL’G)
1
B3 — Bo=

3
W (2ip1/2) 0 (254172) A® + O(Ax®)
Br— Bo= =20 (141/2)w® (2i41/0) Ax* + O(AZP)

It is easy to verify

:(50 — B1)* + (Bo — B2)* + (Bo — B3)* + (Bo — Ba)” = O(Ar®)
4

and

1 T T T T

= + + + = O(Az"
0 4(ﬁ1+€ Pote Pste 54+6) (A7)

Therefore, in the smooth region, the discontinuity indicator ¢, 11 satisfies:

1

Pirl = (m)Z =1+ O(Aa®)

Thirdly, when the big stencil contains a discontinuity, we have

Bo=0(1)

As to the small stencils Si, S, S3, S4, one of them can avoid the discontinuity. For

example, we assume S can avoid discontinuity, then we have:
Bl = O(Al’z)

As to 7 and 3, we obtain

_ (Bo=B1)?+ (Bo = 2)* + (Bo — B3)* + (Bo — Ba)?
4

—0(1)
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and

5_1( T N T N T N T
4 b1+e By + e B3+ e by +¢€

) = o)

Therefore, the discontinuity indicator satisfies:

1 \2
References
[1] R. Abgrall. How to prevent pressure oscillations in multicomponent flow calculations:

a quasi conservative approach. Journal of Computational Physics, 125:150-160, 1996.

R. Abgrall and S. Karni. Computations of compressible multifluids. Journal of

Computational Physics, 169:594-623, 2001.

R. Abgrall and R. Saurel. Discrete equations for physical and numerical compressible

multiphase mixtures. Journal of Computational Physics, 186:361-396, 2003.

G. Allaire, S. Clerc and S. Kokh. A Five-equation model for the simulation of
interfaces between compressible fluids. Journal of Computational Physics, 181:577—

616, 2002.

S. Bertoluzza, S. Falletta, G. Russo, and C.-W. Shu. Numerical Solutions of Partial

Differential Equations. Birkhauser Verlag, 2009.

J. Cheng, F. Zhang, and T. Liu. A discontinuous Galerkin method for the simulation
of compressible gas-gas and gas-water two-medium flows. Journal of Computational

Physics, 403:109059, 2020.

A. Chertock, S. Karni, and A. Kurganov. Interface tracking method for compressible
multifluids. ESAIM: Mathematical Modelling and Numerical Analysis, 42:991-1019,
2008.

50



8]

[10]

[12]

[13]

[14]

[15]

R.P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory Eulerian
approach to interfaces in multimaterial flows (the ghost fluid method). Journal of

Computational Physics, 152:457-492, 1999.

R.P. Fedkiw, A. Marquina, and B. Merriman. An isobaric fix for the overheating
problem in multimaterial compressible flows. Journal of Computational Physics,

148:545-578, 1999.

G. Fu and C.-W. Shu. A new troubled-cell indicator for discontinuous Galerkin meth-
ods for hyperbolic conservation laws. Journal of Computational Physics, 347:305-327,
2017.

X.Y. Hu, B.C. Khoo, N.A. Adams, and F.L. Huang. A conservative interface method

for compressible flows. Journal of Computational Physics, 219:553-578, 2006.

G.-S. Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi equations.
SIAM Journal on Scientific Computing, 21:2126-2143, 2000.

G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes.
Journal of Computational Physics, 126:202—-228, 1996.

Y. Jiang, C.-W. Shu, and M. Zhang. An alternative formulation of finite difference
WENO schemes with Lax-Wendroff time discretization for conservation laws. STAM

Journal on Scientific Computing, 35:A1137-A1160, 2013.

J.-Y. Lin, Y. Shen, H. Ding, N.-S. Liu, and X.-Y. Lu. Simulation of compressible two-
phase flows with topology change of fluid-fluid interface by a robust cut-cell method.
Journal of Computational Physics, 328:140-159, 2017.

T.G. Liu, B.C. Khoo, and C.W. Wang. Ghost fluid method for strong shock impacting

on material interface. Journal of Computational Physics, 190:651-681, 2003.

T.G. Liu, B.C. Khoo, and K.S. Yeo. The ghost fluid method for compressible gas-

water simulation. Journal of Computational Physics, 204:193-221, 2005.

51



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer,
2003.

D.P. Peng, B. Merriman, S. Osher, H.K. Zhao, and M. Kang. A level set approach
for computing solutions to incompressible two-phase flow. Journal of Computational

Physics, 155:410-438, 1999.

J.X. Qiu, T.G. Liu, and B.C. Khoo. Runge-Kutta discontinuous Galerkin methods
for compressible two-medium flow simulations: One-dimensional case. Journal of

Computational Physics, 222:353-373, 2007.

J. Qiu and C.-W. Shu. On the construction, comparison, and local characteristic
decomposition for high-order central WENO schemes. Journal of Computational

Physics, 183:187-209,2002.

J.J. Quirk and S. Karni. On the dynamics of a shock-bubble interaction. Journal of
Fluid Mechanics, 318:129-163,1996.

R. Saurel and R. Abgrall. A simple method for compressible multifluid flows. STAM
Journal on Scientific Computing, 21:1115-1145, 1999.

C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. in Advanced Numerical Approzimation of
Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tad-
mor (Editor: A. Quarteroni), Lecture Notes in Mathematics, volume 1697, Springer,

Berlin, 1998, pp.325-432.

C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes. Journal of Computational Physics, 77:439-471, 1988.

C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes I1. Journal of Computational Physics, 83:32-78, 1989.

52



[27]

28]

[29]

[32]

[33]

[34]

[35]

K.-M. Shyue. An efficient shock-capturing algorithm for compressible multicompo-

nent problems. Journal of Computational Physics, 142:208-242, 1998.

K.-M. Shyue. A fluid-mixture type algorithm for compressible multicomponent flow
with van der Waals equation of state. Journal of Computational Physics, 156:43-88,
1999.

K.-M. Shyue. A fluid-mixture type algorithm for compressible multicomponent flow
with Mie-Griineisen equation of state. Journal of Computational Physics, 171:678—
707, 2001.

M. Sussman, P. Smereka, and S. Osher. A PDE-based fast local level set method.
Journal of Computational Physics, 134:146-159, 1994.

C. Wang, T.G. Liu, and B.C. Khoo. A real ghost fluid method for the simulation of
multimedium compressible flow. STAM Journal on Scientific Computing, 28:278-302,
2006.

C. Wang and C.-W. Shu. An interface treating technique for compressible multi-
medium flow with Runge-Kutta discontinuous Galerkin method. Journal of Compu-

tational Physics, 229:8823-8843, 2010.

T. Xiong, C.-W. Shu, and M. Zhang. WENO scheme with subcell resolution for com-
puting nonconservative Euler equations with applications to one-dimensional com-

pressible two-medium flows. Journal of Scientific Computing, 53:222-247, 2012.

Z. Xu and C.-W. Shu. Anti-diffusive flux corrections for high order finite difference

WENO schemes. Journal of Computational Physics, 205:458-485, 2005.

J. Zhu and J.X. Qiu. A new fifth order finite difference WENO scheme for solving

hyperbolic conservation laws. Journal of Computational Physics, 318:110-121, 2016.

53



