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Abstract

In this paper, a high order finite difference conservative scheme is proposed to solve

two-medium flows. Our scheme has four advantages: First, our scheme is conservative,

which is important to ensure the numerical solution captures the main features properly.

Second, our scheme directly applies the WENO interpolation method to the primitive

variables so that it can maintain the equilibrium of velocity and pressure across the

interface, which is very helpful to obtain a non-oscillatory solution. Third, the usage

of nodal values enables us to manipulate algebraic functions easily. Fourth, the scheme

can maintain high order accuracy when the solution is smooth. Extensive numerical

experiments are performed to verify the high resolution and non-oscillatory performance

of this new scheme.
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1 Introduction

The computation of two-medium flows is one of the most popular issues in computa-

tional fluid dynamics (CFD). It is relevant to many applications including hydrodynamics,

aeronautics, material science, and so on. The main difficulty for the computation of two-

medium flow is to maintain the equilibrium of velocity and pressure across the material

interface, which is the property of the physical interface discontinuities. If the interface

is not properly treated numerically, non-physical oscillations will occur, and such oscilla-

tions cannot be eliminated by using high resolution methods, such as the total variation

diminishing (TVD) method and the weighted essentially non-oscillatory (WENO) method

[24]. They even appear when we construct first order schemes.

Numerical methods for the two-medium flow can be divided into two categories:

one is the shock-capturing method, and the other is the interface tracking method. An

advantage for the shock-capturing method is its simplicity and easiness in its extension

to multi-dimensions. The interface is allowed to diffuse numerically and is not explicitly

tracked. Abgrall proposed a quasi-conservative scheme based on the γ-law model [1].

Then, Shyue extended the method to more general equations of state [27, 28, 29]. Allaire

et al. introduced the usage of volume fraction and constructed a five-equation model for

the simulation [4]. Abgrall and Saurel further applied the method to different numerical

fluxes for multi-phase flows [3, 23]. Although the shock-capturing method has achieved

great success, it still has some drawbacks: First, the method diffuses the interface, so

it is not very clear where the interface is. Second, in order to avoid the jump near the

interface, the intermediate state of either the physical parameters or the volume fraction

would be introduced, which is inconsistent with what is really happening in physics.

Comparing with the shock-capturing method, a sharp interface can be obtained by using

the interface tracking method, where the level set method is used to track the interface

[18]. Among all methods of this type, the ghost fluid method (GFM) with the isobaric fix

is undoubtedly the most successful [8, 9]. The method is essentially only solving single
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medium fluids through a Riemann solver at the interface (which is determined by the level

set function) and defining the value of the ghost fluids across the interface. The interface

is not explicitly tracked, its location is automatically determined by a level set function,

hence the extension of this method to multi-dimensions becomes fairly straightforward.

Liu et al. proposed a modified GFM (MGFM) which improves upon the original GFM

[16]. The GFM and MGFM work well for strong shock impedance matching problems.

Later, Wang et al. proposed the real GFM method focusing on simultaneous influence of

different fluids [31]. There are also other similar methods, such as the interface treatment

method [7], the simple single fluid algorithm [2], the path-conservative schemes [33] and so

on. The drawback of these methods is that the scheme is not conservative, so theoretically

we are not assured of the convergence to weak solutions from the numerical solutions. We

refer to [2] for a good review of these methods for multi-medium and multi-phase flows.

Our goal is to design a finite difference scheme that is conservative and has a sharp

and non-oscillatory interface. Conservative schemes have many advantages in solving

hyperbolic problems. The most important property is that the numerical solution will

converge to a weak solution as long as it converges (the Lax-Wendroff theorem). However,

for the two-medium problem, conservative schemes tend to give oscillatory results if no

special care is taken [32]. In [20], the authors designed a discontinuous Galerkin (DG)

method [5] to solve the two-medium problem by using the classical DG scheme away from

the interface and developing a DG scheme specially for treating the moving interface in

one space dimension. High resolution and sharp interface results were achieved. Simi-

lar idea is used in [11]. In this paper we use a finite difference framework. Traditional

conservative finite difference schemes perform reconstructions on the fluxes [25, 26, 13].

As is well known, across material interfaces, density will have a discontinuity, but ve-

locity and pressure remain continuous. If the reconstruction is performed on the fluxes

or on the conserved variables, then all components will have discontinuities, hence the

approximation to velocity and pressure, which are nonlinear functions of the conserved

variables or fluxes, will be poor. Moreover, traditional local characteristic decompositions
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to reduce oscillations has a reduced effect at the interface, whose characteristic structure

is not clear since two different fluids are at the two sides of this interface. One possible

way to get better results is to perform approximation directly on the primitive variables,

namely density, velocity and pressure. However, for finite volume methods of order of

accuracy higher than two, this is not possible, since we only have the information of cell

averages of the conserved variables. For traditional finite difference schemes, this is not

possible either, since the computation of numerical fluxes is through the reconstruction

on the fluxes [25, 26]. If we use the alternative formulation of high order finite difference

schemes in [14], which is based on the high order flux expansion in [25], we will be per-

forming interpolation, rather than reconstruction, on the conserved variables, not on the

fluxes. In this paper, we modify the approach in [14] to use point values of the primitive

variables, which are readily available from the point values of the conserved variables, to

perform high order interpolation for obtaining the numerical fluxes. This would ensure

non-oscillatory results for velocity and pressure from high order WENO interpolation.

Near the interface, we will also use the specific information of the interface location as

determined by the level set method to modify the approximation, based on the ideas in

[20, 11, 15]. Both the distance function and the computational variables are updated at

each time step by the third order TVD Runge-Kutta time discretization [25]. Conser-

vative property and sharp and non-oscillatory interface can be obtained for our scheme.

Extensive numerical experiments are performed for benchmark problems to verify the

capability of the algorithm in obtaining non-oscillatory and high resolution solutions.

The organization of this paper is as follows. In section 2, we introduce our scheme

in the one dimensional case. In section 3, we extend our scheme to the two dimensional

case. In section 4, numerical benchmarks are shown to demonstrate the performance of

our schemes. In section 5, we make some concluding remarks.
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2 One-dimensional numerical schemes

The one-dimensional system for the compressible fluid can be written as follows:

Ut + F (U)x = 0

where U = (ρ, ρu, E)T , F (U) = (ρu, ρu2 + p, u(E + p))T . Here ρ is the density, u is the

velocity, E is the total energy, p is the pressure. To make the system closed, the equation

of state (EOS) is required. In this paper, we mainly use the following EOS:

• γ-law:

E =
1

2
ρu2 +

p

γ − 1
,

where γ is adiabatic index. The γ-law is used for gases in this paper.

• Tait EOS:

E =
1

2
ρu2 +

p+ γp

γ − 1
,

where γ = 7.15, p = 3.309× 108Pa. The Tait EOS is used for water in this paper.

2.1 Review of one-dimensional high order finite difference schemes

for single medium

Considering the following one-dimensional scalar equation:

ut + f(u)x = 0

The computational domain is divided into N grid points: a = x0 < x1 < · · · < xN = b.

For the nodal value ui, we have the following semi-discrete scheme:

dui

dt
= − 1

∆x
(f̂i+ 1

2
− f̂i− 1

2
)

where the numerical flux f̂ should satisfy the following condition:

f̂i+ 1
2
− f̂i− 1

2

∆x
= f(u)x

∣∣∣
xi

+O(∆x5)
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for a fifth order scheme. It has been shown in [25] that the following formula can guarantee

the fifth order of accuracy:

f̂i+ 1
2
= f̂(u−

i+ 1
2

, u+
i+ 1

2

)− 1

24
∆x2fxx

∣∣∣
i+ 1

2

+
7

5760
∆x4fxxxx

∣∣∣
i+ 1

2

(1)

The first term in (1) is a monotone numerical flux in the scalar case or an appropriate

Riemann-solver-based flux for systems. For example, we can use the Lax-Friedrichs flux:

f̂(u−, u+) =
1

2
(f(u−) + f(u+))− 1

2
α(u+ − u−)

where α = max
u

|f ′(u)|. u±

i+ 1
2

are the right and left limits of u at xi+1/2, which can be

obtained from a WENO interpolation. The remaining terms can be approximated by

simple central differences, as their effect on spurious oscillations is minimal due to the

small coefficients involving at least ∆x2. We use

fxx

∣∣∣
x
i+1

2

=
−5f(ui−2) + 39f(ui−1)− 34f(ui)− 34f(ui+1) + 39f(ui+2)− 5f(ui+3)

48∆x2
(2)

and

fxxxx

∣∣∣
x
i+1

2

=
f(ui−2)− 3f(ui−1) + 2f(ui) + 2f(ui+1)− 3f(ui+2) + f(ui+3)

2∆x4
(3)

2.2 Description of the finite difference scheme for two-medium
flows in 1D

Now, we describe the high order finite difference scheme for two-medium flows in the

one dimensional case. In our scheme, we take the CFL number as 0.5.

The same as before, the computational domain is divided into N grid points: a =

x0 < x1 < · · · < xN = b. We denote cell Ii = [xi− 1
2
, xi+ 1

2
] as the corresponding cell of

the node xi. Here, we set xi+ 1
2
= (xi + xi+1)/2. We denote the nodal value for fluid I as

Un,I
i and the nodal value for fluid II as Un,II

i . We introduce the distance function φ which

is defined at the half nodes. By using this distance function φ, we can determine the

location of the interface x(tn) at time level tn. We define in as the sequence of the index

of the cell containing the interface at time level tn, then we have x(tn) ∈ [xin−
1
2
, xin+

1
2
].
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We can define the computational variable {Un
i }, which will be the variables updated in

time in a conservative fashion, in the following way:

Un
i = Un,I

i , if i < in

Un
i = Un,II

i , if i > in

Un
i = αiU

n,I
i + (1− αi)U

n,II
i , if i = in

(4)

where αi is the volume fraction of fluid I in the cell Ii. We set αi =
x(tn)−xi−1/2

∆x
.

Then, we can update the computational variable {Un
i } to the next time level t∗

U∗

i = Un
i − ∆t

∆x
(F̂ n

i+ 1
2
− F̂ n

i− 1
2
) (5)

In order to guarantee high resolution when discontinuities appear and high precision in

the smooth region, we need to design suitable numerical fluxes. For the fluxes far from

the interface, they will be approximated by single fluid numerical fluxes whose explicit

expressions are similar to (1). We denote these numerical fluxes as F̂H . For the fluxes

near the interface, in order to maintain the equilibrium of the velocity and pressure across

the interface, we need to calculate the special low order fluxes, denoted as F̂L, and we

will use a combination of F̂H and F̂L to obtain the numerical fluxes. This combination

will be performed carefully in order to ensure high order accuracy.

For the flux F̂H , we have the following expression:

F̂H
i+ 1

2
= F̂ (U−

i+ 1
2

, U+
i+ 1

2

)− ϕi+ 1
2

(
1

24
∆x2Fxx

∣∣∣
x
i+1

2

− 7

5760
∆x4Fxxxx

∣∣∣
x
i+1

2

)
(6)

where ϕi+ 1
2
is a discontinuity indicator at xi+1/2 which can improve the resolution when

discontinuities appear and maintain high order accuracy in smooth areas. The detailed

steps to compute the discontinuity indicator is given in subsection 2.2.4. F̂ (U−

i+ 1
2

, U+
i+ 1

2

)

is the Lax-Friedrichs flux. Instead of computing the interpolated values U±

i+1/2 from the

point values of the conserved variables, we will interpolate the primitive variables using

the WENO method. As we know, the variables near the two-medium interface satisfy

the contact discontinuity condition. Density and physical parameters will jump, while

velocity and pressure will keep continuous. As mentioned in the introduction, it is better
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to interpolate density, velocity and pressure directly. Therefore, based on the framework

in [14], we perform the interpolation on the primitive variables, which are readily available

from the nodal values of the conserved variables. This gives us better chance to obtain

non-oscillatory results for velocity and pressure from high order WENO interpolation

near the interface. As to the higher order derivative terms, we can apply the simple

central difference method in a component by component fashion. It should be noted that

the nodal values used in the interpolation are chosen with respect to the position of the

interface. When calculating the fluxes at a location in fluid I, we will use nodal values of

fluid I in the interpolation if they are defined, otherwise we will use the nodal values of

fluid II; when calculating the fluxes at a location in fluid II, we will use nodal values of

fluid II in the interpolation if they are defined, otherwise we use the nodal values of fluid

I.

Next, we will describe the detailed steps to calculate the low order special flux F̂L

near the interface.

First, by using the level set method, we can evolve the distance function φn to time

level t∗ and obtain φ∗. Then we can use φ∗ to determine the interface position x(t∗) at the

new time level t∗. We can use the WENO method in a component by component fashion

to determine the left and right states of the Riemann problem at the interface. The same

as before, we interpolate the primitive variables instead of the conserved variables. The

detailed steps of the level set method and WENO method are described in subsections

2.2.1 and 2.2.3.

We assume the interface x(tn) at time level tn satisfies x(tn) ∈ [xin−1/2, xin+1/2], and

the interface x(t∗) at the next time level t∗ satisfies x(t∗) ∈ [xi∗−1/2, xi∗+1/2]. We denote αi∗

as the volume fraction of fluid I in the cell Ii∗ . The mixed cell Iin should not be calculated

for a full time step. It is suggested that the cell should be merged with a neighboring cell,

in order to avoid the small “cut-cell” problem. We will merge the cells in the following

way:
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- If αi∗ < 0.5, then we choose the cells Ii∗−1 and Ii∗ as the interface stencil, and merge

them to form two new interface cells: the cell [xi∗−
3
2
, x(tn)] occupied by fluid I, and

the cell [x(tn), xi∗+
1
2
] occupied by fluid II;

- If αi∗ ≥ 0.5, then we choose the cells Ii∗ and Ii∗+1 as the interface stencil, and merge

them to form two new interface cells: the cell [xi∗−
1
2
, x(tn)] occupied by fluid I, and

the cell [x(tn), xi∗+
3
2
] occupied by fluid II.

Due to the CFL number and the way to generate the interface stencil, the interface

stencil chosen above will contain the mixed cell both at the time level tn and at the time

level t∗. For simplicity, we assume cells Iin and Iin+1 have been merged together, see

Figure 1. Then, we need to calculate the fluxes F̂L at the positions xin±1/2 and xin+3/2.

Figure 1: Sketch for the interface stencil. Red: fluid I

Regarding the flux at xin−1/2, it is in the fluid I. Therefore, if Un,I
in+1 is not defined, we

will set Un,I
in+1 = Un,I

in
. Then we will use the nodal values {Un,I

in−3, U
n,I
in−2, U

n,I
in−1, U

n,I
in

, Un,I
in+1, U

n,II
in+2}

to compute the numerical flux F̂L
in−

1
2

based on equation (6). Regarding the flux at xin+3/2,

it is in the fluid II. Similarly, if Un,II
in is not defined, we will set Un,II

in = Un,II
in+1. Then we

will use the nodal values {Un,I
in−1, U

n,II
in , Un,II

in+1, U
n,II
in+2, U

n,II
in+3, U

n,II
in+4} to compute the numer-

ical flux F̂L
in+

3
2

based on equation (6). As to the flux F̂L
in+

1
2

, it can be obtained by the

conservation law, as described below in details.

For fluid I, similar to the ALE method, we have the following integrated conservation

law: ∫ t∗

tn
dt

∫ x(t)

x
in−

1
2

(
Ut + F (U)x

)
dx = 0 (7)
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According to the Green’s formula, we have
∫

∂Ω

−Udx + F (U)dt

=−
∫ x(tn)

x
in−

1
2

Udx +

∫ (x(t∗),t∗)

(x(tn),tn)

−Udx + F (U)dt +

∫ x(t∗)

x
in−

1
2

Udx −
∫ t∗

tn
F (U)

∣∣∣
x
in−

1
2

dt

=0

(8)

where Ω is the control volume for fluid I. We denote the velocity of the fluid at the interface

as u. Then, we can rewrite the flux F (U) as

F (U) = u · U + Fs

where Fs = (0, p, u ·p)T . We also assume the location of the interface satisfies the following

formula:

x(t) = x(tn) + u(t− tn)

Then, we can simplify the integration in (8):

∫ (x(t∗),t∗)

(x(tn),tn)

−Udx + F (U)dt

=

∫ t∗

tn
−u · U + F (U)dt

=∆tFs

(9)

We define the numerical flux F̂s:

F̂s = (0, p, u · p)T .

The values of p and u in F̂s can be obtained through solving the Riemann problem

RP (UL, UR) at the interface. The left and right states UL and UR can be obtained by

WENO interpolation using the primitive variables. Then, we have the average value for

fluid I:

U∗

I =
1

x(t∗)− xin−
1
2

(∫ x(tn)

x
in−

1
2

Undx−∆t(F̂s − F̂L
in−

1
2
)
)

(10)

We notice that the mass of each component of the fluid is actually conserved at this stage,

since the first component of the numerical flux F̂s is zero. We also take

∫ x(tn)

x
in−

1
2

Undx = ∆xαn
inU

n,I
in .
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Similarly, we can obtain the average values for fluid II:

U∗

II =
1

xin+
3
2
− x(t∗)

(∫ x
in+3

2

x(tn)

Undx−∆t(F̂L
in+

3
2
− F̂s)

)
(11)

Now, we can define the temporary nodal values U∗,t
in

and U∗,t
in+1 according to the

interface x(t∗):

1. If x(t∗) ∈ [xin−
1
2
, xin+

1
2
],

then we define U∗,t
in

= α∗
inU

∗
I +(1−α∗

in)U
∗
II and U∗,t

in+1 = U∗
II , where α

∗
in =

x(t∗)−x
in−

1
2

∆x

is the volume fraction of fluid I in the cell Iin .

2. If x(t∗) ∈ [xin+
1
2
, xin+

3
2
],

then we define U∗,t
in = U∗

I and U∗,t
in+1 = α∗

in+1U
∗
I + (1 − α∗

in+1)U
∗
II , where α∗

in+1 =
x(t∗)−x

in+1
2

∆x
is the volume fraction of fluid I in the cell Iin+1.

Now, we can compute the flux at the position xin+1/2, see Figure 2:

Figure 2: Sketch for computing F̂L

From the left part, we have:

U∗,t
in

= Un
in − ∆t

∆x

(
F̂L
in+1/2 − F̂L

in−1/2

)

Then, we get:

F̂L
in+1/2 = F̂L

in−1/2 −
U∗,t
in

− Un
in

∆t
∆x

(12)

From the right part, we have:

U∗,t
in+1 = Un

in+1 −
∆t

∆x

(
F̂L
in+3/2 − F̂L

in+1/2

)
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Then, we get:

F̂L
in+1/2 =

U∗,t
in+1 − Un

in+1
∆t
∆x

+ F̂L
in+3/2 (13)

Finally, we take an average of formula (12) and formula (13) to compute the flux F̂L:

F̂L
in+1/2 =

1

2

(
F̂L
in−1/2 −

U∗,t
in − Un

in
∆t
∆x

)
+

1

2

(
U∗,t
in+1 − Un

in+1
∆t
∆x

+ F̂L
in+3/2

)
(14)

Now, we can define the flux {F̂ n
i+ 1

2

} which will be used to evolve the computational

variables:

F̂ n
i+1/2 = F̂H

i+1/2 for i 6= in − 1 & in & in + 1 (15)

and

F̂ n
i+1/2 = F̂L

i+1/2 + ϕ
(
F̂H
i+1/2 − F̂L

i+1/2

)
for i = in − 1, in, in + 1 (16)

where ϕ = min(ϕin−1/2, ϕin+1/2, ϕin+3/2). Here ϕin±1/2, ϕin+3/2 are the discontinuity indi-

cators at xin±1/2 and xin+3/2.

Then, we can advance the computational variables based on the formula (5).

Now, we can define the nodal values {U∗,I
i } and {U∗,II

i } for fluid I and fluid II at

time level t∗ respectively. We assume the interface at time level t∗ satisfies x(t∗) ∈

[xi∗−1/2, xi∗+1/2]. Then, we have

• When i < i∗,

U∗,I
i = U∗

i (17)

• When i > i∗,

U∗,II
i = U∗

i (18)

• When i = i∗,

(1) If α∗
i∗ > 0.5, then the cell Ii∗ is a small cell for fluid II. Therefore, we take

U∗,II
i∗

= ϕU∗

i∗ + (1− ϕ)U∗

II

U∗,I
i∗ =

U∗
i∗ − (1− α∗

i∗)U
∗,II
i∗

α∗
i∗

(19)

where U∗
i∗ comes from formula (5), and U∗

II is the average value for fluid II

which comes from formula (11).
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(2) If α∗
i∗ ≤ 0.5, then the cell Ii∗ is a small cell for fluid I. Therefore, we take

U∗,I
i∗ = ϕU∗

i∗ + (1− ϕ)U∗

I

U∗,II
i∗ =

U∗
i∗ − α∗

i∗U
∗,I
i∗

1− α∗
i∗

(20)

where U∗
i∗ comes from formula (5), and U∗

I is the average value for fluid I which

comes from formula (10).

In the formula (19) and (20), we also take

ϕ = min{ϕin−1/2, ϕin+1/2, ϕin+3/2}.

Remark 1. In formula (19), when the solution is smooth, the formula (5) which is used

to compute the nodal value U∗
i∗ is high order accurate [25, 14]. Therefore, we can maintain

high order accuracy if the nodal value U∗,I
i∗

for fluid I and the nodal value U∗,II
i∗

for fluid

II are close to the nodal value U∗
i∗ . When discontinuity appears at the interface, U∗

II is

the average value obtained by the formula specifically designed for the interface, so it is

more likely to obtain a non-oscillatory solution if the nodal value U∗,II
i∗ is close to U∗

II .

Therefore, we introduce the discontinuity indicator in formula (19) which approaches one

in the smooth region and tends to zero when discontinuity appears. Similarly, we apply

the same idea to the formula (20).

To summarize, we have the following algorithm:

Algorithm 1

Input: Un,I
i , Un,II

i , φn
i , ∆t, ∆x

Output: U∗,I
i , U∗,II

i , F̂ n
i+1/2, φ

∗
i

1: Apply Un,I
i and Un,II

i to define the computational variables Un
i .

2: Compute the fluxes F̂H .
3: Update the distance function, and obtain φ∗

i .

4: Merge cells and compute the fluxes F̂L.
5: Define the flux F̂ n.
6: Update the computational variables U∗

i

7: Define the nodal values U∗,I
i for fluid I, and the nodal values U∗,II

i for fluid II.

Now, we elaborate on the above ideas and implementation details.
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2.2.1 Level set method

We associate the computational domain with the distance function φ, which satisfies

the following expressions:

φt + Vn|∇φ| = 0 (21)

where Vn is the normal velocity which can be obtained through solving the Riemann

problem at the interface. We define the distance function at the half nodes. Then, we

have the following formula

dφ

dt
= −(v+

i+ 1
2

√
max ((a+)2, (b−)2) + v−

i+ 1
2

√
max ((a−)2, (b+)2)) (22)

where v+
i+ 1

2

= max(vi+ 1
2
, 0), v−

i+ 1
2

= min(vi+ 1
2
, 0), and vi+ 1

2
is the normal velocity at xi+ 1

2
.

The definition of a± and b± is similar. We take a = φ−
x and b = φ+

x , where φ±
x can be

obtained by the WENO method.

2.2.2 Characteristic projection 1D

The WENO method is performed in the local characteristic fields. In systems of

nonlinear equations, oscillations can develop in component-wise interpolation [24, 21]. In

this paper, we will use the local characteristic field decomposition. Because we perform

the interpolation using primitive variables rather than conserved variables, we will use the

left and right eigenvectors corresponding to the primitive variables for the characteristic

projections. Considering the following quasi-linear form of the Euler equation:

Wt + A(W )Wx = 0

where

W =




ρ
u
p


 A(W ) =




u ρ 0
0 u 1/ρ
0 ρc2 u




Here c refers to the sound speed. We then give the left and right eigenvector matrices of

matrix A(W ) as:

R(W ) =




1 1 1
− c

ρ
0 c

ρ

c2 0 c2


 L(W ) =




0 − ρ
2c

1
2c2

1 0 − 1
c2

0 ρ
2c

1
2c2



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Firstly, we use the left eigenvector matrices L(W ) to project the variables into the re-

spective characteristic fields. Secondly, we interpolate the values in each characteristic

fields. Finally, we use the right eigenvector matrices R(W ) to project the values back into

the physical space [24]. Although it is more expensive computationally, more satisfactory

results can be obtained.

2.2.3 WENO method

The WENO method is one of the important parts in our schemes. We need two

different types of WENO method: one is for function values, and the other one is for

derivative values. The detailed steps to obtain derivative values can be seen in [12]. Here

we describe the procedure to obtain the value w at x ∈ [xi− 1
2
, xi+ 1

2
] in fluid I using the

WENO interpolation, where w denotes the interpolation variable.

1. Based on the small stencils Sr = {xi−2+r, xi−1+r, xi+r}, r = 0, 1, 2 and a big stencil

S = {xi−2, xi−1, xi, xi+1, xi+2}, we construct polynomials pr(x), r = 0, 1, 2 and q(x). We

have:

p0(x) =
(x− xi−1)(x− xi)

2∆x2
wi−2 −

(x− xi−2)(x− xi)

∆x2
wi−1 +

(x− xi−2)(x− xi−1)

2∆x2
wi

p1(x) =
(x− xi)(x− xi+1)

2∆x2
wi−1 −

(x− xi−1)(x− xi+1)

∆x2
wi +

(x− xi−1)(x− xi)

2∆x2
wi+1

p2(x) =
(x− xi+1)(x− xi+2)

2∆x2
wi −

(x− xi)(x− xi+2)

∆x2
wi+1 +

(x− xi)(x− xi+1)

2∆x2
wi+2

q(x) =
(x− xi−1)(x− xi)(x− xi+1)(x− xi+2)

24∆x4
wi−2

−(x− xi−2)(x− xi)(x− xi+1)(x− xi+2)

6∆x4
wi−1

+
(x− xi−2)(x− xi−1)(x− xi+1)(x− xi+2)

4∆x4
wi

−(x− xi−2)(x− xi−1)(x− xi)(x− xi+2)

6∆x4
wi+1

+
(x− xi−2)(x− xi−1)(x− xi)(x− xi+1)

24∆x4
wi+2

The same as before, we use the position of the interface to decide the nodal values used

in the interpolation. If we are interpolating the value w in fluid I, then we will use the

nodal values of fluid I in the interpolation if they are defined, otherwise we use the nodal
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values of fluid II. Likewise, if we are calculating the value w in fluid II, then we will use

nodal values of fluid II in the interpolation if they are defined, otherwise we use the nodal

values of fluid I.

2. We find the linear weights, denoted as γ0, γ1, γ2, such that

q(x) =
2∑

k=0

γkpk(x)

for all possible nodal values wi. Then, we can obtain:

γ0 =
(x− xi+1)(x− xi+2)

12∆x2
, γ2 =

(x− xi−2)(x− xi−1)

12∆x2
, γ1 = 1− γ0 − γ2.

3. We compute the smoothness indicator, which measures the smoothness of the

function. We use the same recipe as in [13]:

βr =

2∑

k=1

∫ xi+1/2

xi−1/2

∆x2k−1
( ∂k

∂xk
(pr(x))

)2

dx, r = 0, 1, 2

The expression can be written out explicitly:

β0 =
13

12
(wi−2 − 2wi−1 + wi)

2 +
1

4
(wi−2 − 4wi−1 + 3wi)

2

β1 =
13

12
(wi−1 − 2wi + wi+1)

2 +
1

4
(wi−1 − wi+1)

2

β2 =
13

12
(wi − 2wi+1 + wi+2)

2 +
1

4
(3wi − 4wi+1 + wi+2)

2

(23)

4. Based on the smoothness indicator, we can compute the nonlinear weights:

ωr =
ωr∑
k ωk

, ωk =
γk

(βk + ε)2
(24)

where ε is a small number to avoid the denominator to become zero. Here, we set ε = 10−6.

The final WENO expression is given by:

w =
2∑

k=0

ωkpk(x)

2.2.4 Discontinuity indicator

The idea of the discontinuity indicator ϕi+ 1
2
comes from [34]. It can maintain high

order accuracy in the smooth region and can achieve high resolution when discontinuities
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appear. In practice, we take density and pressure as the indicator variables and choose the

smaller one. Before discussing the detailed steps to construct the discontinuity indicator,

we would like to analyze the accuracy requirement of the indicator in the smooth case

first.

We use the discontinuity indicator in three different places: (1) We use the indicator

to compute the fluxes F̂H , see formula (6); (2) We use the indicator to make a convex

combination of the fluxes F̂H and the fluxes F̂L, see formula (16); (3) We use the indicator

to update the nodal values for fluid I and fluid II, see formula (19). Then, we will analyze

the accuracy requirement respectively. We always assume the values at time level tn are

accurate.

Proposition 2.1. The numerical flux (6) satisfies

F̂i+ 1
2
− F̂i− 1

2

∆x
= F (U)x

∣∣∣
xi

+O(∆x5) (25)

if the discontinuity indicator satisfies:

ϕi± 1
2
= 1 +O(∆x3)

where the F (U) refers to the exact flux.

Proof. As we know, if we define the flux
̂̂
F as follows:

̂̂
F i+ 1

2
= F (U)

∣∣∣
x
i+1

2

− 1

24
∆x2F (U)xx

∣∣∣
x
i+1

2

+
7

5760
∆x4F (U)xxxx

∣∣∣
x
i+1

2

where F (U) is the exact flux, then we have

̂̂
F i+ 1

2
− ̂̂
F i− 1

2

∆x
= F (U)x

∣∣∣
xi

+O(∆x5)

Therefore, in order to prove the equation (25), it is sufficient to prove the relation:

F̂i+ 1
2
=

̂̂
F i+ 1

2
+O(∆x5) (26)

if the numerical flux is Lipschitz continuous with respect to its arguments.

17



According to (6), we have:

F̂i+ 1
2
= F̂ (U−

i+ 1
2

, U+
i+ 1

2

)− ϕi+ 1
2

(
1

24
∆x2Fxx

∣∣∣
x
i+1

2

− 7

5760
∆x4Fxxxx

∣∣∣
x
i+1

2

)

The values U±

i+ 1
2

are obtained from the WENO interpolation and we have

U±

i+ 1
2

= U(xi+ 1
2
) +O(∆x5).

Based on the consistency and Lipschitz continuity of the numerical flux, we have:

F̂ (U−

i+ 1
2

, U+
i+ 1

2

) = F (U)
∣∣∣
x
i+1

2

+O(∆x5)

In addition, we use central difference methods in a component by component fashion to

approximate the derivatives terms, see equations (2) and (3). Therefore, we have:

Fxx

∣∣∣
x
i+1

2

= F (U)xx

∣∣∣
x
i+1

2

+O(∆x4)

Fxxxx

∣∣∣
x
i+1

2

= F (U)xxxx

∣∣∣
x
i+1

2

+O(∆x2)

If we have

ϕi+ 1
2
= 1 +O(∆x3)

then we can obtain

F̂i+ 1
2
= F̂ (U−, U+)− ϕi+ 1

2

(
1

24
∆x2Fxx

∣∣∣
x
i+1

2

− 7

5760
∆x4Fxxxx

∣∣∣
x
i+1

2

)

= F (U)
∣∣∣
x
i+1

2

− 1

24
∆x2F (U)xx

∣∣∣
x
i+1

2

+
7

5760
∆x4F (U)xxxx

∣∣∣
x
i+1

2

+O(∆x5)

,
̂̂
F i+ 1

2
+O(∆x5)

Proposition 2.2. The convex combination of F̂H and F̂L (16) satisfies formula (26), if

the parameter ϕ = 1 +O(∆x5) and ∆t = O(∆xr), r ≤ 2.

The detailed proof is given in Appendix .1.

Proposition 2.3. In formulas (19) and (20), if ϕ = 1 +O(∆x4), then we have

U∗,I
i∗ = U∗

i∗ +O(∆x5), U∗,II
i∗ = U∗

i∗ +O(∆x5)

where i∗ is the subscript of the cell where the interface is located at time level t∗.
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Proof. We take i∗ = in + 1 as example. The proof for i∗ = in or i∗ = in − 1 is similar.

Due to our CFL number, we have α∗
in+1 ≤ 0.5. So, we can obtain

U∗

in+1 = U(xin+1, t
n)− ∆t

∆x

(
F̂in+3/2 − F̂in+1/2

)
=U(xin+1, t

n) +O(∆t)

According to (43), We have

U∗

I = U(xin+1, t
n) +O(∆x) = U∗

in+1 +O(∆x)

Then, we obtain
U∗,I
in+1 − U∗

in+1 = ϕU∗

in+1 + (1− ϕ)U∗

I − U∗

in+1

=(1− ϕ)O(∆x) = O(∆x5)

Therefore, we should have

ϕ = 1 +O(∆x4)

Based on the previous analysis, in order to maintain the accuracy, the discontinuity

indicator should satisfy:

ϕi+ 1
2
= 1 +O(∆x5) & ∆t = O(∆xr), r ≤ 2

Now, we describe the detailed steps to calculate the discontinuity indicator satisfying

ϕi+ 1
2
= 1+O(∆x5). Later, in the numerical tests section, we will further require the time

stepping to satisfy ∆t = O(∆xr), r ≤ 2. For simplicity, we use w as the indicator variable.

Step 1. We define a big stencil S0 = {xi−2, xi−1, xi, xi+1, xi+2, xi+3}, and four small

stencils S1 = {xi−2, xi−1, xi}, S2 = {xi−1, xi, xi+1}, S3 = {xi, xi+1, xi+2}, S4 = {xi+1, xi+2, xi+3}.

Then we need to construct polynomials p0(x), p1(x), p2(x), p3(x), p4(x), such that:

p0(xi+l) = wi+l l = −2, · · · , 3

p1(xi+l) = wi+l l = −2, · · · , 0

p2(xi+l) = wi+l l = −1, · · · , 1

p3(xi+l) = wi+l l = 0, · · · , 2
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p4(xi+l) = wi+l l = 1, · · · , 3

Step 2. We use the same recipe as in [13] to compute the smoothness indicators for

each polynomial on cell [xi, xi+1]:

βr =

5∑

k=1

∫ xi+1

xi

∆x2k−1
( ∂k

∂xk
(pr(x))

)2

dx, r = 0, 1, 2, 3, 4

We have the following expressions:

β0 = (−wi + wi+1)
2 +

1421461

2275

(
1

48
wi−2 −

1

16
wi−1 +

1

24
wi +

1

24
wi+1 −

1

16
wi+2 +

1

48
wi+3

)2

+
13

3

(
− 131

3120
wi−2 +

391

1040
wi−1 −

521

1560
wi −

521

1560
wi+1 +

391

1040
wi+2 −

131

3120
wi+3

)2

+
781

20

(
617

43736
wi−2 −

31123

131208
wi−1 +

14019

21868
wi −

14019

21868
wi+1 +

31123

131208
wi+2 −

617

43736
wi+3

)2

+
21520059541

1377684

(
− 1

120
wi−2 +

1

24
wi−1 −

1

12
wi +

1

12
wi+1 −

1

24
wi+2 +

1

120
wi+3

)2

β1 = (wi−2 − 3wi−1 + 2wi)
2 +

13

3

(
1

2
wi−2 − wi−1 +

1

2
wi

)2

β2 = (wi+1 − wi)
2 +

13

3

(
1

2
wi+1 − wi +

1

2
wi−1

)2

β3 = (wi+1 − wi)
2 +

13

3

(
1

2
wi+2 − wi+1 +

1

2
wi

)2

β4 = (−2wi+1 + 3wi+2 − wi+3)
2 +

13

3

(
1

2
wi+1 − wi+2 +

1

2
wi+3

)2

Step 3. Similar to [35], We define the parameter τ :

τ =
(β0 − β1)

2 + (β0 − β2)
2 + (β0 − β3)

2 + (β0 − β4)
2

4

and the parameter β:

β =

τ
β1+ε

+ τ
β2+ε

+ τ
β3+ε

+ τ
β4+ε

4

Then, we can construct the discontinuity indicator ϕ:

ϕi+ 1
2
=

( 1

β + 1

)2

It has the following properties:

• 0 ≤ ϕi+ 1
2
≤ 1;
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• ϕi+ 1
2
= 1 +O(∆x6) in smooth areas;

• ϕi+ 1
2
is close to 0 near discontinuities.

The detailed proof of these properties is given in Appendix .2.

2.2.5 Time discretization

In practice, we will use the third order TVD Runge-Kutta method to advance the

nodal values: 



U(1) = Un +∆tL(Un)

U(2) = Un +
1

4
∆t

(
L (Un) + L

(
U(1)

))

Un+1 = Un +
1

6
∆t

(
L (Un) + 4L

(
U(2)

)
+ L

(
U(1)

))
(27)

In fact, we have only described the first step of the third order Runge-Kutta method

(27). As to the second and third steps, we will use the same idea used in the first step.

Therefore, for each step, we need to construct the fluxes F̂H and the fluxes F̂L. Take

the second step as an example. For the fluxes F̂H , they can be constructed by combining

fluxes from time levels tn and t(1) together according to equation (27). For the fluxes F̂L,

we need to calculate the fluxes F̂L at those positions where they have been calculated in

the time levels tn and t(1). At this time, we can also obtain the corresponding interface

stencil. For those F̂L located inside the interface stencil, we can use the conservation

law to obtain the fluxes; for those F̂L located outside the interface stencil, we can follow

the equation (6) to compute them. Then, we can construct the fluxes, advance the

computational variables and finally define the new nodal values for fluid I and fluid II.

Similar method can be applied to calculate the third step.

To summarize, we have the following general algorithm:

2.2.6 Flowchart 1D

Step 1. According to Algorithm 1, input Un,I
i , Un,II

i , φn
i , ∆t, ∆x, output U

(1),I
i ,

U
(1),II
i , F̂ n

i+1/2, φ
(1)
i . Up to now, we have finished the first step of the third order TVD

Runge-Kutta method (27).
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Algorithm 2

Input: Un,I
i , Un,II

i , φn
i , φ

∗
i , F̂

H
i+1/2, ∆t, ∆x

Output: U∗,I
i , U∗,II

i

1: Apply Un,I
i and Un,II

i to define the computational variables Un
i .

2: Based on the equations (6)-(14), compute the fluxes F̂L.

3: Define the flux F̂ n.
4: Update the computational variables U∗

i .
5: Define the nodal values U∗,I

i for fluid I and nodal values U∗,II
i for fluid II based on the

equations (19)-(20)-(17)-(18).

Step 2. According to Algorithm 1, input U
(1),I
i , U

(1),II
i , φ

(1)
i , ∆t, ∆x, output Ũ

(2),I
i ,

Ũ
(2),II
i , F̂

(1)
i+1/2, φ̃

(2)
i .

We construct F̂H for the second step of the third order TVD Runge-Kutta method

(27):

F̂H
i+ 1

2
=

1

4

(
F̂ n
i+ 1

2
+ F̂

(1)

i+ 1
2

)
,

and the distance function φ(2) at the time level t(2) = tn +∆t/2:

φ
(2)
i =

3

4
φn
i +

1

4
φ̃
(2)
i .

Then, according to Algorithm 2, input Un,I
i , Un,II

i , φn
i , φ

(2)
i , F̂H

i+1/2, ∆t/2, ∆x,

output U
(2),I
i , U

(2),II
i . Up to now, we have finished the second step of the third order TVD

Runge-Kutta method (27).

Step 3. According to Algorithm 1, input U
(2),I
i , U

(2),II
i , φ

(2)
i , ∆t, ∆x, output Ũ

(3),I
i ,

Ũ
(3),II
i , F̂

(2)
i+1/2, φ̃

(3)
i .

We construct F̂H for the third step of the third order TVD Runge-Kutta method

(27):

F̂H
i+ 1

2
=

1

6

(
F̂ n
i+ 1

2
+ 4F̂

(2)

i+ 1
2

+ F̂
(1)

i+ 1
2

)
,

and the distance function φn+1 at the time level tn+1 = tn +∆t:

φn+1
i =

1

3
φn
i +

2

3
φ̃
(3)
i .

Then, according to Algorithm 2, input Un,I
i , Un,II

i , φn
i , φ

n+1
i , F̂H

i+1/2, ∆t, ∆x, output
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Un+1,I
i , Un+1,II

i . Up to now, we have finished the third step of the third order TVD Runge-

Kutta method (27).

2.3 Conservation

In summary, our method can be divided into three steps:

1. We use the nodal values for fluid I and fluid II at time level tn to construct the

nodal values for the computational variables.

2. Then, we update the nodal values for the computational variables:

Un+1
i = Un

i − ∆t

∆x

(
F̂i+1/2 − F̂i−1/2

)

where

F̂i+1/2 = F̂H
i+1/2 for i 6= in − 1 & in & in + 1

and

F̂i+1/2 = F̂L
i+1/2 + ϕ

(
F̂H
i+1/2 − F̂L

i+1/2

)
for i = in − 1, in, in + 1

Here, we take F̂H
i+1/2 =

1
6

(
F̂ n
i+ 1

2

+ 4F̂
(2)

i+ 1
2

+ F̂
(1)

i+ 1
2

)
and ϕ = min(ϕin−1/2, ϕin+1/2, ϕin+3/2).

3. Finally, we redistribute and obtain the nodal values for fluid I and fluid II at time

level tn+1.

We can see that the construction and redistribution in the first step and the third

step do not violate the conservation law. As to the second step, we use the conservative

scheme to update the values of the computational variables. Therefore, our method is

conservative.

3 Two-dimensional numerical schemes

The two-dimensional system for the compressible fluid can be written as follows:

Ut + F (U)x +G(U)y = 0, (28)
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where U = (ρ, ρu, ρv, E)T , F (U) = (ρu, ρu2+p, ρuv, u(E+p))T andG(U) = (ρv, ρuv, ρv2+

p, v(E + p))T . Here (u, v) is the velocity vector, and the definition of ρ, E and p is the

same as before. The equation of state for 2D is as follows:

γ-law : E =
1

2
ρ(u2 + v2) +

p

γ − 1
, Tait EOS : E =

1

2
ρ(u2 + v2) +

p + γp

γ − 1

3.1 Description of the finite difference scheme in 2D

Now, we describe the high order finite difference scheme in the two dimensional case.

In our scheme, we again take the CFL number as 0.5.

For simplicity, the computational domain is equally divided: a = x0 < x1 < · · · <

xNx = b, and c = y0 < y1 < · · · < yNy = d. We denote the cell Ii,j = [xi− 1
2
, xi+ 1

2
] ×

[yj− 1
2
, yj+ 1

2
] as the corresponding cell of the node (xi, yj).

We denote the nodal values for fluid I as {Un,I
i,j }, and nodal values for fluid II as

{Un,II
i,j }. Now, we can define the computational variable {Un

i,j}:

• When cell Ii,j is fully covered by fluid I at time level tn, we take Un
i,j = Un,I

i,j

• When cell Ii,j is fully covered by fluid II at time level tn, we take Un
i,j = Un,II

i,j

• When cell Ii,j is a mixed cell at time level tn: Un
i,j = αi,jU

n,I
i,j + (1− αi,j)U

n,II
i,j

where αi,j is the volume fraction of the fluid I in the cell Ii,j .

Then, we can update the computational variable {Un
i,j} to next time level t∗

U∗

i,j = Un
i,j −

∆t

∆x
(F̂ n

i+ 1
2
,j
− F̂ n

i− 1
2
,j
)− ∆t

∆y
(Ĝn

i,j+ 1
2
− Ĝn

i,j− 1
2
) (29)

We also need to build the flux F̂H and the flux F̂L in order to construct our numerical

flux. For the flux F̂H , similar to the one dimensional case, we have

F̂H
i+ 1

2
,j
= F̂ (U−

i+ 1
2
,j
, U+

i+ 1
2
,j
)− ϕi+ 1

2
,j

(
1

24
∆x2Fxx

∣∣∣
x
i+1

2
,yj

− 7

5760
∆x4Fxxxx

∣∣∣
x
i+1

2
,yj

)
(30)

Similarly, we can obtain the fluxes ĜH
i,j+ 1

2

.
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Next, we will describe the way to construct the low order flux F̂L.

Similar to the one dimensional case, we evolve the distance function based on the

velocity obtained by solving the Riemann problem at the interface, and determine the

interface position at the new time level. We will also use the WENO interpolation at the

interface. The value will be obtained by calculating the WENO interpolation in the x

and y directions and taking the average of them. For simplicity, we regard the interface

in the mixed cell as a straight line, and choose the center of the line as the interpolation

position in the x and y directions.

When the cell Iin,jn contains the interface, it is not suitable to be computed for a

full time step. Therefore it is suggested that the cell Iin,jn should be merged with its

neighboring cells to generate an interface stencil. The detailed steps will be introduced

in subsection 3.1.2. Now, we denote the r-th interface stencil at time level tn as A(r)(tn).

The interface Γ(tn) divide the interface stencil into two parts: A
(r)
I (t) for fluid I and A

(r)
II (t)

for fluid II. Now, we begin to deduce the formula for A
(r)
I (t).

Similar to the ALE method, we integrate the equation (28) in space and time, then

we have ∫ t∗

tn
dt

∫∫

A
(r)
I (t)

(
Ut + F (U)x +G(U)y

)
dxdy = 0 (31)

According to the Gauss theorem, we obtain

∫ t∗

tn
dt

∫∫

A
(r)
I (t)

Utdxdy +

∫ t∗

tn
dt

∮

∂A
(r)
I (t)

(
F (U) · nx + G(U) · ny

)
ds = 0 (32)

Then, we use the Reynold’s transport theorem:

d

dt

∫∫

A
(r)
I (t)

Udxdy =

∫∫

A
(r)
I (t)

Utdxdy +

∮

∂A
(r)
I (t)

U(
−→
V · −→n )ds (33)

where
−→
V is the normal velocity along the interface. Combining (32) and (33), we get the

following equation:

∫ t∗

tn

d

dt

∫∫

A
(r)
I (t)

Udxdydt+

∫ t∗

tn
dt

∮

∂A
(r)
I (t)

(F (U) ·nx+G(U) ·ny)−U(
−→
V ·−→n )ds = 0 (34)

It can be represented by two parts: one consists of the four segments of the interface
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zone being cut by the interface; the other one consists of the segment of the interface

inside the interface zone. Hence, we can rewrite the equation (34):

Figure 3: Example for the interface stencil. Line: the interface stencil; Dotted line: cells
within the interface stencil. Red: fluid I.

U∗

I,A(r)(tn) =
1∑

Ii,j∈A
(r)
I (tn)

α∗
i,j

( ∑

Ii,j∈A
(r)
I (tn)

αn
i,jU

n
I −

∑

Ii,j∈A(r)(tn)

ℓni,j∆t

∆x∆y
F̂si,j

− ∆t

∆x

j2∑

j=j1

[Si2(j)+ 1
2
,jF̂

L
i2(j)+ 1

2
,j
− Si1(j)− 1

2
,jF̂

L
i1(j)− 1

2
,j
]

− ∆t

∆y

i2∑

i=i1

[Si,j2(i)+ 1
2
ĜL

i,j2(i)+ 1
2
− Si,j1(i)− 1

2
ĜL

i,j1(i)− 1
2
]
)

(35)

Here, we choose i1, i2, j1, j2 such that the set {Ii,j : i1 ≤ i ≤ i2, j1 ≤ j ≤ j2} is the smallest

stencil to cover A(r)(tn). i2(j) and i1(j) represent the maximum and minimum indices

in the x direction when j is given. Likewise, j2(i) and j1(i) represent the maximum and

minimum indices in the y direction when i is given. See Figure 3 for an example. Now,

{Ii,j : in ≤ i ≤ in+1, jn ≤ j ≤ jn+1} covers the interface stencil. When j = jn+1, there

is only one cell Iin,jn+1 inside the interface stencil. Hence we know that the maximum

index in the x direction is i2(j) = in, and the minimum index is also i1(j) = in. When

j = jn, both the cell Iin,jn and the cell Iin+1,jn are inside the interface stencil. Hence the

maximum index in the x direction is i2(j) = in +1, and the minimum index is i1(j) = in,

and so on. Similar approach can be used to determine the maximum and minimum indices
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in the stencil in the y direction when i is given. αn
i,j, α

∗
i,j, Si± 1

2
,j and Si,j± 1

2
are the fraction

volumes of fluid I, see section 3.1.1 for detailed steps to determine them. Un
I,A(r)(tn)

is the

cell average in the interface stencil for fluid I at time level tn:

Un
I,A(r)(tn) =

1

|A(r)
I (tn)|

∫∫

A
(r)
I (tn)

Udxdy

Here, we assign Un
I,A(r)(tn)

to the nodes in fluid II in the interface stencil A(r)(tn), and then

compute the numerical fluxes F̂L and ĜL. ℓni,j is the length of the interface inside the cell

Ii,j. F̂si,j is the interface flux:

F̂s = (0, p · nx, p · ny, p(u · nx + v · ny))
T (36)

where (nx, ny) is the unit normal at the interface, and p and (u, v) are the pressure and

velocity which can be obtained by solving the Riemann problem at the interface.

Similarly, we can also obtain the cell average U∗

II,A(r)(tn)
for fluid II in the stencil

A(r)(tn). Then, we can define the temporary nodal value using U∗

I,A(r)(tn)
and U∗

II,A(r)(tn)
:

U∗,t
i,j = α∗

i,jU
∗

I,A(r)(tn) + (1− α∗

i,j)U
∗

II,A(r)(tn) (i, j) ∈ A(r)(tn)

where α∗
i,j is the fraction volume of fluid I in the cell Ii,j at time level t∗. Then, similar

to the one dimensional case, we can figure out the fluxes inside the interface stencil, for

example, F̂L
in+1/2,jn

and ĜL
in,jn+1/2 in Figure 3.

Now, we can determine the flux. Regarding the flux F̂ n, if (xi+1/2, yj) is not in any

interface stencil, we take

F̂ n
i+1/2,j = F̂H

i+1/2,j

Otherwise, we have

F̂ n
i+1/2,j = F̂L

i+1/2,j + ϕ
(
F̂H
i+1/2,j − F̂L

i+1/2,j

)

where ϕ = min
{
ϕi±1/2,j , ϕi,j±1/2

∣∣∣Ii,j ∈ A(r)(tn), r = 1, 2, 3, · · ·
}
. Similar approach can be

used to calculate Ĝn.

Next, we can evolve the computational variables based on equation (29). Now, we

can determine the updated nodal values {U∗,I
i,j } and {U∗,II

i,j }:
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• When cell Ii,j is fully covered by fluid I at time level t∗, we take

U∗,I
i,j = U∗

i,j (37)

• When cell Ii,j is fully covered by fluid II at time level t∗, we take

U∗,II
i,j = U∗

i,j (38)

• When cell Ii,j is a mixed cell at time level t∗:

(1) If α∗
i,j > 0.5, then it is a small cell for fluid II. We choose:

U∗,II
i,j = ϕU∗

i,j + (1− ϕ)U∗

II,A(r)(tn)

U∗,I
i,j =

U∗
i,j − (1− α∗

i,j)U
∗,II
i,j

α∗
i,j

(39)

where U∗
i,j is obtained by equation (29). U∗

II,A(r)(tn)
is the cell average value for

fluid II in the interface stencil A(r)(tn) at time level t∗.

(2) If α∗
i,j ≤ 0.5, then it is a small cell for fluid I. We choose:

U∗,I
i,j = ϕU∗

i,j + (1− ϕ)U∗

I,A(r)(tn)

U∗,II
i,j =

U∗
i,j − α∗

i,jU
∗,I
i,j

1− α∗
i,j

(40)

where U∗
i,j is obtained by equation (29), U∗

I,A(r)(tn)
is the cell average value for

fluid I in the interface stencil A(r)(tn) at time level t∗.

Similarly, we take ϕ = min
{
ϕi±1/2,j , ϕi,j±1/2

∣∣∣Ii,j ∈ A(r)(tn), r = 1, 2, 3, · · ·
}
.

Then, we can perform our two-dimensional scheme following the flowchart similar to

the one dimensional one. To save space, we omit the detailed steps here. It should be

noted that in two dimensional case we will perform the reinitialization routine every 100

steps to avoid the distance function φ from becoming too flat or too steep.

In the remainder of this section, we elaborate on describing the implementations in

detail, including the way to generate the interface stencils, the way to calculate the volume

fraction, the way to implement the level set method, and so on.
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3.1.1 Volume fraction

The volume fraction is computed based on the distance function φ. It measures the

ratio of φ < 0 to the whole cell. We treat the interface as a straight line in the cell for

simplicity. In general, we have many cases which need to be considered. By rotation,

they can be divided into five generic cases:

1. φi− 1
2
,j+ 1

2
> 0, φi− 1

2
,j− 1

2
> 0, φi+ 1

2
,j− 1

2
> 0, φi+ 1

2
,j+ 1

2
> 0

In this case, we take αi,j = 0.

2. φi− 1
2
,j+ 1

2
< 0, φi− 1

2
,j− 1

2
> 0, φi+ 1

2
,j− 1

2
> 0, φi+ 1

2
,j+ 1

2
> 0

See Figure 4(a). According to the proportion, we have

a =
∣∣∣

φi− 1
2
,j+ 1

2

φi− 1
2
,j− 1

2
− φi− 1

2
,j+ 1

2

∣∣∣, b =
∣∣∣

φi− 1
2
,j+ 1

2

φi+ 1
2
,j+ 1

2
− φi− 1

2
,j+ 1

2

∣∣∣

Then, based on the triangle area formula, we have:

αi,j =
1

2
ab =

1

2

∣∣∣
φi− 1

2
,j+ 1

2

φi− 1
2
,j− 1

2
− φi− 1

2
,j+ 1

2

∣∣∣
∣∣∣

φi− 1
2
,j+ 1

2

φi+ 1
2
,j+ 1

2
− φi− 1

2
,j+ 1

2

∣∣∣

3. φi− 1
2
,j+ 1

2
< 0, φi− 1

2
,j− 1

2
< 0, φi+ 1

2
,j− 1

2
> 0, φi+ 1

2
,j+ 1

2
> 0

See Figure 4(b). Based on the trapezoidal area formula, we have

αi,j =
1

2

(∣∣∣
φi− 1

2
,j− 1

2

φi− 1
2
,j− 1

2
− φi+ 1

2
,j− 1

2

∣∣∣+
∣∣∣

φi− 1
2
,j+ 1

2

φi+ 1
2
,j+ 1

2
− φi− 1

2
,j+ 1

2

∣∣∣
)

4. φi− 1
2
,j+ 1

2
< 0, φi− 1

2
,j− 1

2
< 0, φi+ 1

2
,j− 1

2
> 0, φi+ 1

2
,j+ 1

2
< 0

See Figure 4(c). Based on the triangle area formula, we have:

αi,j = 1− 1

2

∣∣∣
φi+ 1

2
,j− 1

2

φi− 1
2
,j− 1

2
− φi+ 1

2
,j− 1

2

∣∣∣
∣∣∣

φi+ 1
2
,j− 1

2

φi+ 1
2
,j+ 1

2
− φi+ 1

2
,j− 1

2

∣∣∣

5. φi− 1
2
,j+ 1

2
< 0, φi− 1

2
,j− 1

2
< 0, φi+ 1

2
,j− 1

2
< 0, φi+ 1

2
,j+ 1

2
< 0

In this case, we take αi,j = 1.

3.1.2 Mixing procedure

In this subsection, we will introduce a way to generate interface stencil. It is based

on the normal vector of the interface which can change dynamically with the interface
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(a) case 2 (b) case 3 (c) case 4

Figure 4: Red: The part for φ < 0; Line: interface.

evolution. Now, we will introduce the procedure in detail.

1. Obtain the normal vector

We need to obtain the normal vector at the corners of the cell. We can use the

following equation to compute the normal vector at the node (xi+ 1
2
, yj+ 1

2
):

−→n i+ 1
2
,j+ 1

2
=

∇φ∗

i+ 1
2
,j+ 1

2

|∇φ∗

i+ 1
2
,j+ 1

2

|

where ∇φ∗

i+ 1
2
,j+ 1

2

can be obtained using the distance function at time level t∗ by the

WENO method.

Then, for any cell Ii,j which is mixed at time level tn or t∗, we can compute the sum

of the x and y components of the normal vector at the corners of the cell:

Snx
i,j =

∑
|φ∗

xi± 1
2
,j± 1

2
|, Sny

i,j =
∑

|φ∗

yi± 1
2
,j± 1

2

|

We also need to compute the fraction volume of the fluid I in the cell, denoted as α∗
i,j .

2. Generate the interface stencils [15]

• If α∗
i,j > 0.5

♥ If
∣∣∣|Snx

i,j| − |Sny
i,j|

∣∣∣ < 10−6,

♦ If α∗
i−1,j < α∗

i+1,j , cell Ii,j will merge with the cell Ii−1,j. Otherwise, cell Ii,j

will merge with the cell Ii+1,j .

♥ Otherwise,

♦ If |Snx
i,j| > |Sny

i,j|,

30



* If α∗
i−1,j < α∗

i+1,j, cell Ii,j will merge with the cell Ii−1,j. Otherwise, cell

Ii,j will merge with the cell Ii+1,j. See cell C in Figure 5.

♦ Otherwise,

* If α∗
i,j+1 < α∗

i,j−1, cell Ii,j will merge with the cell Ii,j+1. Otherwise, cell

Ii,j will merge with the cell Ii,j−1. See cell B in Figure 5.

• Otherwise,

♥ If
∣∣∣|Snx

i,j| − |Sny
i,j|

∣∣∣ < 10−6,

♦ If α∗
i−1,j > α∗

i+1,j , cell Ii,j will merge with the cell Ii−1,j. Otherwise, cell Ii,j

will merge with the cell Ii+1,j .

♥ Otherwise,

♦ If |Snx
i,j| > |Sny

i,j|,

* If α∗
i−1,j > α∗

i+1,j, cell Ii,j will merge with the cell Ii−1,j. Otherwise, cell

Ii,j will merge with the cell Ii+1,j. See cell D in Figure 5.

♦ Otherwise,

* If α∗
i,j+1 > α∗

i,j−1, cell Ii,j will merge with the cell Ii,j+1. Otherwise, cell

Ii,j will merge with the cell Ii,j−1. See cell A in Figure 5.

Then, we can obtain the interface stencils.

11 22 33 44 55 66 77 88

11

22

33

44

55

66

77

88

00

AA

BB

CC

DD

CC

DD

fluid I

fluid II

Figure 5: Formation of the interface stencils. Pink: the interface stencil. Curve: the
interface. Fluid I: φ < 0. Fluid II: φ > 0
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3.1.3 Characteristic projection in 2D

Considering the following quasi-linear form of the Euler equation:

Wt + A(W )Wx +B(W )Wy = 0

where

W =




ρ
u
v
p


 A(W ) =




u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 ρc2 0 u


 B(W ) =




v 0 ρ 0
0 v 0 0
0 0 v 1/ρ
0 0 ρc2 v




We then give the left and right eigenvector matrices of matrix A(W ) as:

Rx(W ) =




1 1 0 1
− c

ρ
0 0 c

ρ

0 0 1 0
c2 0 0 c2


 Lx(W ) =




0 − ρ
2c

0 1
2c2

1 0 0 − 1
c2

0 0 1 0
0 ρ

2c
0 1

2c2




and we also give the left and right eigenvector matrices of matrix B(W ) as:

Ry(W ) =




1 1 0 1
0 0 1 0
− c

ρ
0 0 c

ρ

c2 0 0 c2


 Ly(W ) =




0 0 − ρ
2c

1
2c2

1 0 0 − 1
c2

0 1 0 0
0 0 ρ

2c
1
2c2




Here, c refers to sound speed. It is advised that, when the fluxes are computed along a cell

boundary, a one dimensional local characteristic decomposition normal to the boundary

is performed. The detailed steps can be seen in section 2.2.2.

3.1.4 Level set method

In the two dimensional case, the distance function satisfies the following expression:

φt + Vn|∇φ| = 0 (41)

where φ is the distance function defined at the half nodes. Vn is the normal velocity which

can be obtained by solving the Riemann problem in the mixed cells, assigning the values

to the corners of the cells, and extrapolating the values by extending functions [19]:

qτ + sign(φ)
∇φ

|∇φ|∇q = 0
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Here, q is the extended variable. Then, we can obtain the semi-discrete scheme of equation

(41):
dφ

dt
= −(v+

i+ 1
2
,j+ 1

2

√
max ((a+)2, (b−)2) + max ((c+)2, (d−)2)

+v−
i+ 1

2
,j+ 1

2

√
max ((a−)2, (b+)2) + max ((c−)2, (d+)2))

(42)

where vi+ 1
2
,j+ 1

2
is the normal velocity at the half node (xi+ 1

2
, yj+ 1

2
), x+ = max(x, 0),

x− = min(x, 0). Here a, b, c, d refer to φ−
x , φ

+
x , φ

−
y , φ

+
y respectively. The values of φ±

x and

φ±
y can be obtained by the WENO method. The third order TVD Runge-Kutta method

will be used to improve the temporal accuracy for the scheme (42).

3.1.5 Reinitialization

In order to ensure the φ does not become too flat or too steep along the interface,

we need to use the reinitialization procedure [30]:

φτ + sign(φ0)(|∇φ| − 1) = 0

where φ0 is obtained from the level set method. Then, we have:

dφ

dτ
= −

(
s+
i+ 1

2
,j+ 1

2

(
√

max ((a+)2, (b−)2) + max ((c+)2, (d−)2)− 1)

+s−
i+ 1

2
,j+ 1

2

(
√

max ((a−)2, (b+)2) + max ((c−)2, (d+)2)− 1)
)

Here, si+ 1
2
,j+ 1

2
is a sign function valued at (xi+ 1

2
, yj+ 1

2
). x+ = max(x, 0), x− = min(x, 0).

The definition of a±, b±, c±, d± is the same as before. In practice, third order TVD

Runge-Kutta method will be used to discretize the pseudo-time derivative. The stopping

criterion for this iteration is e1 < ∆τ∆x∆y or k ≤ 20, where the e1 is the L1 difference

between two consecutive iteration steps and k is the total iteration number. We take

∆τ = 0.1min(∆x,∆y) in the experiment. The re-initialization procedure is performed

every 100 time steps.

3.2 Conservation

In summary, our method in the two dimensional case can also be divided into three

steps:
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1. We use the nodal values for fluid I and fluid II at time level tn to construct the

nodal values for the computational variables.

2. Then, we update the computational variables

Un+1
i,j = Un

i,j −
∆t

∆x

(
F̂i+1/2,j − F̂i−1/2,j

)
− ∆t

∆y

(
Ĝi,j+1/2 − Ĝi,j−1/2

)

3. Finally, we redistribute and obtain the nodal values for fluid I and fluid II.

The first and third steps are performed in a conservative manner. As to the second

step, we update the nodal values based on a conservative scheme. Therefore, our method

is conservative.

4 Numerical tests

In this section, we present the results of our numerical experiments. The CFL num-

bers are taken as 0.5 for both the one-dimensional and the two-dimensional cases, except

that we will choose ∆t = O(∆x5/3) to guarantee that the spatial error dominates for the

accuracy tests. In order to plot the final result, we will restore the computational value

using nodal values for fluid I and fluid II, and impose the following conditions to compute

density velocity and pressure in the mixed cell:

1

γ − 1
=

α

γI − 1
+

1− α

γII − 1

γp

γ − 1
=

αγIpI

γI − 1
+

(1− α)γIIpII

γII − 1

where γ and p are the physical parameters defined in the mixed cell, α is the volume

fraction of fluid I. γI and pI are the physical parameters defined in the fluid I, γII and pII

are the physical parameters defined in the fluid II. We emphasize that these definitions of

mixed equation of state in the mixed cells are introduced only for the purpose of plotting

the final results, they do not participate in the computation of time evolution of the

numerical solution at all.

We also list the CPU cost for Example 1 to Example 7, see Table 1.

Example 1. Artificial accuracy test in 1D
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Table 1: CPU time.
Example 1 2 3 4 5 6 7
Time(s) 64.30 2.71 1.40 2.37 2.27 0.55 0.43

We consider the artificial accuracy test [10]. We take γ = 3. The initial conditions

are:

ρ(x, 0) =
1 + 0.2 sin(x)

2
√
γ

, u(x, 0) =
√
γρ(x, 0), p(x, 0) = ρ(x, 0)γ

The computational domain is [0, 2π]. Periodic boundary conditions are used in this test.

By the special choice of the parameter γ, initial conditions and boundary conditions, we

can verify that 2
√
γρ(x, t) is the exact solution of the following Burgers equation:

µt +
1

2
(µ2)x = 0, µ(x, 0) = 1 + 0.2 sin(x)

The velocity and pressure satisfy the following relation:

u(x, t) =
√
γρ(x, t), p(x, t) = ρ(x, t)γ .

It is easy to verify that the solution of the Burgers equation above is smooth up to time

T = 5. We set the final time T = 3. At this time, the solution is still smooth. We also

put an artificial interface for which the fluids I and II are the same to both sides of the

interface, however the full interface treating algorithm is applied. The initial artificial

interface is located at x = π. We list the error and numerical accuracy order in Table 2.

We can see that our method can achieve the designed fifth order of accuracy. We also test

the accuracy of the discontinuity indicator by using the density from the final time, see

Table 3. We can see that the discontinuity indicator can achieve the designed precision.

Table 2: Accuracy test for density in 1D.
L∞ error order L2 error order L1 error order

80 1.48E-04 3.32E-05 1.05E-05
120 2.81E-05 4.09 5.21E-06 4.57 1.55E-06 4.72
160 6.97E-06 4.84 1.28E-06 4.87 3.67E-07 5.01
200 2.48E-06 4.63 4.22E-07 4.98 1.19E-07 5.07
240 9.81E-07 5.09 1.69E-07 5.03 4.68E-08 5.10
280 4.63E-07 4.87 7.72E-08 5.07 2.12E-08 5.15
320 2.33E-07 5.15 3.91E-08 5.09 1.07E-08 5.14
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Table 3: Accuracy test for discontinuity indicator in 1D.
L∞ error order L2 error order L1 error order

80 2.38E-06 4.33E-07 1.30E-07
120 3.07E-07 5.05 4.81E-08 5.42 1.24E-08 5.80
160 6.30E-08 5.51 9.36E-09 5.69 2.28E-09 5.89
200 1.76E-08 5.71 2.56E-09 5.81 6.07E-10 5.94
240 6.09E-09 5.82 8.76E-10 5.88 2.05E-10 5.96
280 2.46E-09 5.88 3.52E-10 5.91 8.15E-11 5.97
320 1.12E-09 5.92 1.59E-10 5.93 3.67E-11 5.98

Example 2. A pure interface problem in 1D

We solve a Riemann problem consisting of a single contact discontinuity in gas dy-

namics:

(ρ, u, p, γ, p) =

{
( 1,1,1,1.4,0), x < 0.2
(0.125,1,1, 4,1), x ≥ 0.2

The computational domain is [0, 1]. We set the final time T = 0.32 and N = 200. Figure 6

shows the result. The base velocity and pressure have been subtracted. From the figures,

we can see that the interface propagates at the correct speed, and the oscillations solved

by using the current WENO method in velocity and pressure are much smaller than the

one solved by using the classical WENO method in [13], denoted as the WENO-JS method

in the figure.
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Figure 6: Pure interface problem. From left to right: density, velocity, pressure. Line:
exact solution; Square: numerical solution obtained by using the current WENO method
(in velocity and pressure, the base has been subtracted); Plus: numerical solution obtained
by using WENO-JS method (in velocity and pressure, the base has been subtracted).

Example 3. Shock interacting with sine waves
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This example is tested in [32]. We solve the Euler equation with the following initial

conditions

(ρ, u, p, γ, p) =

{
( 3.857143,2.629369,10.333333, 1.4,0), x < −4.0
(1 + 0.2 sin(5x), 0, 1,1.666666,0), x ≥ −4.0

The computational domain is [−5, 5]. We compute the solution of this problem to T = 1.8

with N = 300, and show the final result in Figure 7. The reference solution is obtained

with N = 2000. We compare the computed result using the current WENO method with

the one using the WENO-JS method, we can see that they are nearly the same. We

also compare our result with the one in [6], we can see that the results are comparable

although our scheme uses fewer degrees of freedom.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+++++++++++++++++++++++++++

+
+
+++++++++++++++++++++++++++

+
+
++
+++++++++++++++++++++++++

+
+
++
+++++++++

+

+

+
+
++++
+
+
+
+++
+
+
+
+
++++
+
+
+++
+
+
+
+++
+

+

+
+
++
+
+
+
++++
+

+
+
+++
+
+

+
+
+
++
+

+

+
++
+
+

+

+
+

+

+

+
++++++++++++++++++++

+++
+++
++++
++++++++++++++++++++++++++

+++++

x

d
e

n

­4 ­2 0 2 4

1

1.5

2

2.5

3

3.5

4

WENO

WENO­JS
Reference

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++
++++++
+++++
++++++++++++

++++++
++++++
+++++
++++++++++++

+++++
+++++
++++++++++++++++++++

+++++
+++++
++++++++++++++++++++++++++

++++
++++
++++++++++++++++++++++++

+

+

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

v
e

x

­4 ­2 0 2 4

0

0.5

1

1.5

2

2.5

WENO

WENO­JS
Reference

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+++++++++++++++++++++++++++

+
+
++
+++++++++++++++++++++++++

+
+
++
+++++++++++++++++++++++++

+
+
++
++++++++++++++++++++++++++++

+
+
++
+++
++++++++++++++++++++++++++++

++
++
++
+++
++++++

+

+

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

x

p
re

­4 ­2 0 2 4

2

4

6

8

10

12

WENO

WENO­JS
Reference

+

Figure 7: Shock interacting with sine waves. From left to right: density, velocity, pres-
sure. Square: numerical solution obtained by present WENO method, N = 300; Plus:
numerical solution obtained by using WENO-JS method, N = 300; Line: Reference,
N = 2000.

Example 4. Strong shock impacting on a gas-gas interface

We consider the following initial condition:

(ρ, u, p, γ, p) =

{
(0.3856,27.0784,100.0,5/3,0), x < 0
( 1, 0, 1, 1.4,0), x ≥ 0

The example is taken from [16]. The domain is [−500, 500] and the grid number N = 200.

We list the results using the current WENO method, WENO-JS method, and the finite

difference WENO based original GFM at time t = 20 in Figure 8. It is clear that there

are discrepancies in locations of the shock front and interface for the result obtained by

GFM in comparison to the analytical solution. These incorrect features do not occur for

our scheme.
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E x a m pl e 6. G a s- w at e r Ri e m a n n p r o bl e m II
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We consider the following initial condition:

(ρ, u, p, γ, p) =

{
( 0.01,−100.0,100.0, 1.4, 0), x < 0
(1.002, 0, 50,7.15,3309), x ≥ 0

The example is taken from [17]. The domain is [−5, 5] and the grid number N = 200.

In this case, double rarefaction waves are generated in gas and water media respectively.

We show the computed results using both the current WENO method and the WENO-JS

method at time t = 0.01 in Figure 10. From the figures, we can see that both methods

obtain correct interface location and high resolution.
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Figure 10: Gas-water Riemann problem II. N = 200. From left to right: density, ve-
locity, pressure. Square: numerical solution obtained by present WENO method; Plus:
numerical solution obtained by WENO-JS method; Line: exact solution.

Example 7. Gas-water Riemann problem III

We consider the following initial condition:

(ρ, u, p, γ, p) =

{
(1000, 0,25000,7.15,3309), x < 2
( 1,−10, 1, 1.4, 0), x ≥ 2

The domain is [−5, 5] and the grid number N = 200. In this case, a very strong rarefaction

wave is reflected back into the water. We plot the numerical result at time t = 0.25. From

Figure 11, we can see that the result obtained by using WENO-JS method produces a

jump at the interface, while the correct interface location and high resolution are obtained

by our method.

Example 8. Artificial accuracy test in 2D
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Figure 11: Gas-water Riemann problem III. N = 200. From left to right: density,
velocity, pressure. Square: numerical solution obtained by present WENO method; Plus:
numerical solution obtained by WENO-JS method; Line: exact solution.

We consider the 2D artificial accuracy test. We take γ = 3. The initial conditions

are:

ρ(x, y, 0) =
1 + 0.2 sin(x+y

2
)√

2γ
u(x, y, 0) = v(x, y, 0) =

√
γ

2
ρ(x, y, 0) p(x, y, 0) = ρ(x, y, 0)γ

The computational domain is [0, 4π]× [0, 4π]. Periodic boundary conditions are used in

this test. By the special choice of parameter γ, initial conditions and boundary conditions,

we can verify that
√
2γρ(x, y, t) is the exact solution of the following Burgers equation:

µt +
1

2
(µ2)x +

1

2
(µ2)y = 0 µ(x, y, 0) = 1 + 0.2 sin(

x+ y

2
)

and the velocity and pressure satisfy the relation: u(x, y, t) = v(x, y, t) =
√

γ
2
ρ(x, y, t),

p(x, y, t) = ρ(x, y, t)γ. It is easy to verify that the solution of the Burgers equation above

is smooth up to time T = 5. We set the final time T = 3. At this time, the solution is

still smooth. The initial artificial interface is located at
√
(x− 2π)2 + (y − 2π)2 = π. We

list the error and numerical accuracy order in Table 4. We can see that our method can

achieve the designed fifth order accuracy.

Example 9. Pure interface problem in 2D

We solve a pure interface problem in 2D where the interface is a straight line:

(ρ, u, v, p, γ, p) =

{
( 1,1,1,1,1.4,0), x+ 5y − 1.5 > 0
(0.125,1,1,1, 4,1), x+ 5y − 1.5 ≤ 0

The computational domain is [0, 1] × [0, 1]. We set the final time T = 0.32. Figure 12

shows the result. The solutions along the cut line y = x are also shown in the figures.
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Table 4: Accuracy test for density in 2D.
L∞ error order L2 error order L1 error order

80× 80 1.52E-04 3.19E-05 9.57E-06
120× 120 3.13E-05 3.90 5.51E-06 4.33 1.57E-06 4.46
160× 160 8.02E-06 4.73 1.43E-06 4.70 3.96E-07 4.79
200× 200 2.89E-06 4.57 4.82E-07 4.87 1.32E-07 4.91
240× 240 1.15E-06 5.04 1.96E-07 4.95 5.32E-08 5.00
280× 280 5.49E-07 4.81 9.06E-08 4.99 2.44E-08 5.04
320× 320 2.78E-07 5.10 4.63E-08 5.03 1.24E-08 5.06

The base velocity and pressure have been subtracted. From the figures, we can see that

the interface propagates at the correct speed, and no oscillations other than those at the

round-off error are observed in velocity and pressure.

Example 10. Shock impacting on a gas-gas interface in 2D

We next consider an air shock impacting on a helium bubble. The schematic for

this problem is given in Figure 13 where the upper and lower boundary conditions are

non-reflective open boundaries. The left and right boundary conditions are the inflow and

outflow, respectively. The initial conditions are:

(ρ, u, v, p, γ, p) =




( 1, 0,0, 1, 1.4,0), Pre-shocked air
(1.3764,0.394,0,1.5698, 1.4,0), Post-shocked air
( 0.138, 0,0, 1,5/3,0), Helium

and the level set function φ =
√

x2 + y2 − 1, where φ < 0 represents helium and φ > 0

represents the air. The post-shock air state is given for x < −1.2.

In order to eliminate the “start-up” error mentioned in [22], we will use the numerical

shock, namely we run our code for the pure shock condition until it settles down, then

we add the bubble and start the computation. We plot density contours at time t = 0.5,

t = 1.0, t = 2.0 and t = 4.0. From Figure 14, we can see that the main features of the

solution are correctly captured.

Example 11. Shock impacting on a water-gas interface in 2D

In the final problem, we consider an underwater shock interacting with a gas bubble

in an open domain. We examine an underwater shock wave making impact on a gas
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Figure 12: Pure interface problem. 100×100 cells. From top to bottom: density, velocity
in the x direction, velocity in the y direction, pressure. From left to right: solution in
the whole domain, solution along the cut line y = x. Square: numerical solution (in
velocity and pressure, the base has been subtracted); Line: exact solution (in velocity
and pressure, the base has been subtracted).
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Figure 13: Schematic for Example 10 and Example 11. Left: Example 10; Right: Example
11
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Figure 14: Shock impacting on a gas-gas interface in 2D, with 280× 240 cells, 30 equally
spaced density contours from 0.1 to 1.6. Top left: t = 0.5; Top right: t = 1.0; Bottom
left: t = 2.0; Bottom right: t = 4.0.
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bubble. The schematic for this problem is given in Figure 13. The non-dimensionalized

initial conditions are:

(ρ, u, v, p, γ, p) =




( 1000, 0,0, 1,7.15,3309), Pre-shocked water
(1176.3576,1.1692,0,9120,7.15,3309), Post-shocked water
( 1, 0,0, 1, 1.4, 0), Gas

and the level set function φ =
√
x2 + y2 − 1, where φ < 0 represents the gas and φ > 0

represents the water. The post-shock water state is given for x < −1.2.

In this problem, very complex physics will occur at later time, and we stop our

computation before the bubble collapse. We plot the contours of density for the numerical

shock in Figure 15 at t = 0.06, t = 0.19, t = 0.357 and t = 0.471 respectively. From the

figures, we can see that high resolution is obtained by our method.
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Figure 15: Shock impacting on a water-gas interface in 2D, with 280×240 cells, 30 equally
spaced density contours from 0 to 1200. Top left: t = 0.06; Top right: t = 0.19; Bottom
left: t = 0.357; Bottom right: t = 0.471.
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5 Concluding remarks

In this paper, we propose a conservative finite difference method to solve the two-

medium flows. An alternative high order finite difference formulation is adopted to allow

WENO interpolation on the physical variables of velocity and pressure, instead of WENO

reconstruction or interpolation on the conserved variables. Numerical benchmarks show

that the proposed scheme has high order accuracy and high resolution, ability to locate

the correct interface position and non-oscillatory velocity and pressure transition across

interfaces. Further research to improve efficiency and robustness of the conservative finite

difference scheme for two-medium flows is ongoing. Extension to three-medium flows will

also be considered in the future. The methodology extends naturally, however careful

algebraic manipulations are needed in the mixed cells where all three media co-exist.
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7 Appendix

.1 The proof of proposition 2.2

Proof. The same as before, we assume the interface x(tn) at time level tn satisfies x(tn) ∈

[xin−1/2, xin+1/2]. Due to the CFL condition, the interface x(t∗) at time level t∗ could only

be in the cell Iin−1, Iin or Iin+1. For simplicity, we assume x(t∗) ∈ [xin+1/2, xin+3/2], see

Figure 1. The proof for the other cases is similar.

According to Figure 1, we need to calculate the convex combination of F̂H and
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F̂L at xin−1/2, xin+1/2, xin+3/2. We analyze F̂ n
in−1/2 and F̂ n

in+3/2 first. Because the flux

F̂L
i+1/2, i = in ± 1 is only first order accurate, we have

F̂L
i+1/2 = F (U)i+1/2 +O(∆x), i = in ± 1

where the F (U)i+1/2 refers to the exact flux at xi+1/2. Therefore, if we require ϕ =

1 +O(∆x4), then we have

F̂ n
i+1/2 − F (U)i+1/2 = F̂L

i+1/2 + ϕ(F̂H
i+1/2 − F̂L

i+1/2)− F (U)i+1/2

= O(∆x5), i = in ± 1

Next, we will analyze the flux F̂ n
in+1/2.

We assume U(xi, t
n) is the exact solution at xi at time level tn. We denote α∗

I =

x(t∗)− xin−1/2, α
n
I = x(tn)− xin−1/2, U

n
I = Un,I

in
, U(xin , t

n) = αn
IU

n,I
in

+ (1− αn
I )U

n,II
in

.

In the smooth region, {φ∗

i+1/2} and {φn
i+1/2} satisfy:

φ∗

i+1/2 = φn
i+1/2 −∆t(u+

i+ 1
2

√
max (((φ−

x )
+)2, ((φ+

x )
−)2) + u−

i+ 1
2

√
max (((φ−

x )
−)2, ((φ+

x )
+)2))

where φ±
x can be obtained by the WENO method. Due to the property of the distance

function, we have |φ±
x | = 1 +O(∆x5). Therefore, we obtain the following equation:

φ∗

in+1/2 = φn
in+1/2 −∆tu +O(∆x5)

As to x(tn), x(t∗) and φn, φ∗, we have

α∗
I

2∆x
=
x(t∗)− xin−1/2

2∆x
=

x(t∗)− xin−1/2

xin+3/2 − xin−1/2

=
0− φ∗

in−1/2

φ∗

in+3/2 − φ∗

in−1/2

=
0− φn

in−1/2 + u∆t

φn
in+3/2 − φn

in−1/2

+O(∆x4) =
x(tn)− xin−1/2

2∆x
+

u∆t

2∆x
+O(∆x4)

=
αn
I + u∆t

2∆x
+O(∆x4)

So, we have

α∗

I = αn
I + u∆t +O(∆x5)

As to the flux, we have

F̂in−
1
2
= F̂ (U−, U+)− ϕin−

1
2

(
1

24
∆x2Fxx

∣∣∣
x
in−

1
2

− 7

5760
∆x4Fxxxx

∣∣∣
x
in−

1
2

)

46



= F (U)
∣∣∣
x
in−

1
2

+O(∆x2) =




ρu
ρu2 + p
u(E + p)




∣∣∣
x
in−

1
2

+O(∆x2)

= uin−
1
2




ρ
ρu
E




∣∣∣
x
in−

1
2

+




0
p
up




∣∣∣
x
in−

1
2

+O(∆x2)

, uin−1/2U
n,I
in−1/2 + Fsin−1/2 +O(∆x2)

= uUn
I + Fsin−1/2 +O(∆x)

and

Un
I = Un,I

in
= αn

IU
n,I
in

+ (1− αn
I )U

n,II
in

+O(∆x) = U(xin , t
n) +O(∆x)

Therefore, according to Figure 1, we have

U∗,t
in

= U∗

I =
1

α∗
I

(
αn
IU

n
I −∆t(F̂s − F̂L

in−
1
2
)
)

=

(
αn
IU

n
I +∆tuUn

I −∆t(F̂s − Fsin−
1
2
)
)
+O(∆x∆t)

α∗
I

=
(αn

IU
n
I +∆tuUn

I ) +O(∆x∆t)

α∗
I

=Un
I +O(∆t) = U(xin , t

n) +O(∆x)

(43)

Similarly, we can also obtain

U∗,t
in+1 = U(xin+1, t

n) +O(∆x)

If ∆t = O(∆xr), r ≤ 2, according to formula (14) we obtain

F̂L
in+1/2 =

1

2

(
F̂L
in−1/2 −

U∗,t
in

− Un
in

∆t
∆x

)
+

1

2

(
U∗,t
in+1 − Un

in+1
∆t
∆x

+ F̂L
in+3/2

)

=
1

2

(
F̂L
in−1/2 −

U∗,t
in

− U(xin , t
n)

∆t
∆x

)
+

1

2

(
U∗,t
in+1 − U(xin+1, t

n)
∆t
∆x

+ F̂L
in+3/2

)

=
1

2

(
F̂L
in−1/2 + F̂L

in+3/2

)
+O(∆x2−r)

=

(
F (U)− 1

24
∆x2F (U)xx +

7

5760
∆x4F (U)xxxx

) ∣∣∣
xin+1/2

+O(∆x2−r)

That means the flux F̂L
in+1/2 would be at least zero order accuracy to approximate the
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flux
̂̂
F in+1/2. Due to ϕ = 1 +O(∆x5), as to the formula (16), we have

F̂ n
in+1/2 −

̂̂
F in+1/2

=(1− ϕ)F̂L
in+1/2 + ϕF̂H

in+1/2 −
(
F (U)− 1

24
∆x2F (U)xx +

7

5760
∆x4F (U)xxxx

) ∣∣∣
xin+1/2

=(1− ϕ)O(∆x2−r) +O(∆x5)

=O(∆x5)

To conclude, if ϕ = 1 +O(∆x5) and ∆t = O(∆xr), r ≤ 2, then the convex combina-

tion of F̂H and F̂L (16) satisfies formula (26).

.2 The proof for properties of discontinuity indicator

Firstly, due to β ≥ 0, we have

0 ≤ ϕi+ 1
2
≤ 1

Secondly, we verify the accuracy order in the smooth region. Based on Taylor expan-

sion at xi+ 1
2
, we have:

β0 =w(1)(xi+1/2)
2
∆x2 +

(
13

12
w(2)(xi+1/2)

2
+

1

12
w(1)(xi+1/2)w

(3)(xi+1/2)

)
∆x4

+

(
7

80
w(2)(xi+1/2)w

(4)(xi+1/2) +
1

960
w(1)(xi+1/2)w

(5)(xi+1/2) +
1043

960
w(3)(xi+1/2)

2
)
∆x6 +O(∆x8)

=w(1)(xi+1/2)
2
∆x2

(
1 +O(∆x2)

)
= O(∆x2)

β1 =w(1)(xi+1/2)
2
∆x2 +

(
13

12
w(2)(xi+1/2)

2 − 23

12
w(1)(xi+1/2)w

(3)(xi+1/2)

)
∆x4

+

(
−13

4
w(2)(xi+1/2)w

(3)(xi+1/2) + 2w(1)(xi+1/2)w
(4)(xi+1/2)

)
∆x5 +O(∆x6)

=w(1)(xi+1/2)
2
∆x2

(
1 +O(∆x2)

)
= O(∆x2)

β2 =w(1)(xi+1/2)
2
∆x2 +

(
13

12
w(2)(xi+1/2)

2
+

1

12
w(1)(xi+1/2)w

(3)(xi+1/2)

)
∆x4

+

(
−13

12
w(2)(xi+1/2)w

(3)(xi+1/2)

)
∆x5 +O(∆x6)

=w(1)(xi+1/2)
2
∆x2

(
1 +O(∆x2)

)
= O(∆x2)

β3 =w(1)(xi+1/2)
2
∆x2 +

(
13

12
w(2)(xi+1/2)

2
+

1

12
w(1)(xi+1/2)w

(3)(xi+1/2)

)
∆x4

+

(
13

12
w(2)(xi+1/2)w

(3)(xi+1/2)

)
∆x5 +O(∆x6)
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=w(1)(xi+1/2)
2
∆x2

(
1 +O(∆x2)

)
= O(∆x2)

β4 =w(1)(xi+1/2)
2
∆x2 +

(
13

12
w(2)(xi+1/2)

2 − 23

12
w(1)(xi+1/2)w

(3)(xi+1/2)

)
∆x4

+

(
13

4
w(2)(xi+1/2)w

(3)(xi+1/2)− 2w(1)(xi+1/2)w
(4)(xi+1/2)

)
∆x5 +O(∆x6)

=w(1)(xi+1/2)
2
∆x2

(
1 +O(∆x2)

)
= O(∆x2)

Therefore, we obtain the following relation:

β1 − β0 = −2w(1)(xi+1/2)w
(3)(xi+1/2)∆x4 +O(∆x5)

β2 − β0 = −13

12
w(2)(xi+1/2)w

(3)(xi+1/2)∆x5 +O(∆x6)

β3 − β0 =
13

12
w(2)(xi+1/2)w

(3)(xi+1/2)∆x5 +O(∆x6)

β4 − β0 = −2w(1)(xi+1/2)w
(3)(xi+1/2)∆x4 +O(∆x5)

It is easy to verify

τ =
(β0 − β1)

2 + (β0 − β2)
2 + (β0 − β3)

2 + (β0 − β4)
2

4
= O(∆x8)

and

β =
1

4

(
τ

β1 + ε
+

τ

β2 + ε
+

τ

β3 + ε
+

τ

β4 + ε

)
= O(∆x6)

Therefore, in the smooth region, the discontinuity indicator ϕi+ 1
2
satisfies:

ϕi+ 1
2
=

( 1

β + 1

)2

= 1 +O(∆x6)

Thirdly, when the big stencil contains a discontinuity, we have

β0 = O(1)

As to the small stencils S1, S2, S3, S4, one of them can avoid the discontinuity. For

example, we assume S1 can avoid discontinuity, then we have:

β1 = O(∆x2)

As to τ and β, we obtain

τ =
(β0 − β1)

2 + (β0 − β2)
2 + (β0 − β3)

2 + (β0 − β4)
2

4
= O(1)
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and

β =
1

4

(
τ

β1 + ε
+

τ

β2 + ε
+

τ

β3 + ε
+

τ

β4 + ε

)
= O(∆x−2)

Therefore, the discontinuity indicator satisfies:

ϕi+ 1
2
=

( 1

β + 1

)2

= O(∆x4) −→ 0
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