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Abstract

In this paper, a new type of high-order finite volume and finite difference multi-resolution

Hermite weighted essentially non-oscillatory (HWENO) schemes are designed for solving

hyperbolic conservation laws on structured meshes. Here we only use the information defined

on a hierarchy of nested central spatial stencils but do not introduce any equivalent multi-

resolution representation, the terminology of multi-resolution HWENO follows that of the

multi-resolution WENO schemes [J. Comput. Phys., 375 (2018), 659-683]. The main idea

of our spatial reconstruction is derived from the original HWENO schemes [J. Comput.

Phys., 193 (2004), 115-135], in which both the function and its first-order derivative values

are evolved in time and used in the reconstruction. Our HWENO schemes use the same

large stencils as the classical HWENO schemes which are narrower than the stencils of the

classical WENO schemes for the same order of accuracy. Only the function values need

to be reconstructed by our HWENO schemes, the first-order derivative values are obtained

from the high-order linear polynomials directly. Furthermore, the linear weights of such

HWENO schemes can be any positive numbers as long as their sum equals one, and there

is no need to do any modification or positivity-preserving flux limiting in our numerical

experiments. Extensive benchmark examples are performed to illustrate the robustness and

good performance of such finite volume and finite difference HWENO schemes.
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1 Introduction

In this paper, a new type of high-order finite volume and finite difference multi-resolution

Hermite weighted essentially non-oscillatory (HWENO) schemes are designed for solving the

hyperbolic conservation laws

{

ut +∇ · f(u) = 0,
u(x1, ..., xn, 0) = u0(x1, ..., xn).

(1.1)

Hyperbolic conservation laws can be used to model a wide variety of phenomena in-

volving wave motion and the advection transport of substances. The problem is that it is

quite difficult to solve these problems on both mathematical and numerical aspects, since

discontinuities may appear in the solutions of these nonlinear equations even though the

initial conditions are smooth enough. This is also why designing high-order and efficient ap-

proaches to solve these problems is of great importance and why more and more researchers

are interested in it. Under this background, many numerical methods have emerged. Here,

we would like to mention essentially non-oscillatory (ENO) [9, 22, 23], weighted essentially

non-oscillatory (WENO) schemes [12, 17] and Hermite weighted essentially non-oscillatory

(HWENO) schemes [19, 20, 25, 27, 28], which work quite well to solve these problems with

strong shocks or contact discontinuities.

In 1987, Harten et al. proposed a series of finite volume ENO schemes for one-dimensional

problems in [9] based on the total variation diminishing (TVD) schemes in [8]. In 1988 and

1989, Shu and Osher presented a class of finite difference ENO schemes in [22, 23], which

are more efficient for multi-dimensional problems. The main idea of these ENO schemes

is to choose the locally smoothest stencil automatically among all the central and biased

spatial stencils to keep high-order accuracy in smooth regions and to avoid oscillations near

discontinuities. In 1994, Liu et al. proposed the first WENO schemes in [17], which use a

nonlinear convex combination of all the candidate stencils instead of the locally smoothest

stencil to improve the order of accuracy in smooth regions without destroying the non-

oscillatory behavior near discontinuities. In 1996, Jiang and Shu improved the WENO

2



schemes to fifth order and designed general smoothness indicators and nonlinear weights in

[12]. Thereafter, compact central WENO (CWENO) schemes in [7, 13, 14], monotonicity

preserving WENO schemes in [3], optimized WENO schemes in [24], hybrid compact WENO

schemes in [18], multi-domain hybrid spectral-WENO in [6], WENO-Z in [4], robust WENO

schemes in [11], multi-resolution WENO schemes in [29, 30], an efficient class of WENO

schemes with adaptive order for structured and unstructured meshes in [1, 2] were developed.

ENO and WENO schemes have the following advantages: uniform high-order accuracy in

smooth regions including smooth extrema and non-oscillatory behavior near discontinuities.

In 2004, based on the idea of WENO schemes, Qiu and Shu proposed a class of HWENO

schemes on a finite volume formulation for one-dimensional problems in [19] and then in

2005, they extended these HWENO schemes to two-dimensional problems in [20], where two

different stencils were used to reconstruct the function and its first-order derivative values.

However, the first HWENO schemes in [19, 20] failed in simulating several severe problems

stably, including the double Mach and the forward step problems. This is because the

solutions of these nonlinear hyperbolic conservation laws contain strong discontinuities, and

their first-order derivative values may be very large near these discontinuities. If such large

first-order derivative values are used straightforwardly, stability issues may arise. Thereafter,

in 2008, Zhu and Qiu proposed a new procedure to reconstruct the first-order derivative

values to solve this problem in [28], while in 2015 and 2016, Liu and Qiu also solved this

problem by applying an additional positivity-preserving procedure in [15, 16]. Then in 2020,

Zhao et al. took the idea of the limiter for the discontinuous Galerkin (DG) method in [5]

to modify the first-order moments near the discontinuities in [26], in which high-order linear

approximation was used in smooth regions, while the first-order moments on the troubled-

cells were modified with the HWENO reconstruction. Later, Zhao and Qiu improved the

above hybrid HWENO scheme by using a nonlinear convex combination of a high-degree

polynomial with several lower-degree polynomials, with the linear weights being any positive

numbers as long as their sum equals one, in [27]. The main difference of HWENO schemes
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from WENO schemes is that both the function and its first-order derivative values are

evolved in time and used in the reconstruction, not like the WENO schemes in which only

the function values are evolved and used. This also allows the HWENO schemes to obtain

the same order of accuracy as the WENO schemes with narrower stencils.

In this paper, following the idea of multi-resolution WENO schemes proposed by Zhu

and Shu in [29, 30], we present a new type of multi-resolution HWENO schemes. Comparing

with the multi-resolution WENO schemes in [29, 30], there are several features in common:

the first is that we also use a hierarchy of central spatial stencils; the second is that the

linear weights can also be any positive numbers as long as their sum equals one. There are

also some differences: the first is that not only the function values but also its first-order

derivative values are evolved and used, thus we can obtain higher order accuracy with the

same number of cells in comparison with the multi-resolution WENO schemes; the second

is that only the function values are reconstructed by the multi-resolution HWENO schemes,

its first-order derivative values are reconstructed by the high-order linear approximation,

which is also different from the previous HWENO schemes. Comparing with the HWENO

schemes proposed before, our HWENO schemes do have a few other advantages: the first is

that there is no need to modify the first-order derivative values of the target cell before the

reconstruction or apply any positivity-preserving flux limiter, to run the numerical experi-

ments with strong shocks stably, at least for the examples we have calculated; the second is

that the CFL number can be taken to be 0.6 for both the one and two dimensional cases,

while the CFL number is taken to be 0.2 in [15, 16]. In the meantime, our HWENO schemes

could also obtain the optimal high-order of accuracy in smooth regions and simultaneously

keep sharp transitions with non-oscillatory performance near discontinuities.

The organization of this paper is as follows: In Section 2, at first, we will describe

the reconstruction procedure of finite volume multi-resolution HWENO schemes for solving

the conservation laws in one and two dimensions in detail. Then, we will describe the

reconstruction procedure of finite difference multi-resolution HWENO schemes for solving
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the conservation laws in one and two dimensions in detail. In Section 3, we will propose a

number of numerical examples to illustrate the accuracy and resolution of these HWENO

schemes. Concluding remarks are given in Section 4.

2 Multi-resolution HWENO schemes

In this section, we introduce the finite volume and finite difference multi-resolution

HWENO schemes for solving the hyperbolic conservation laws in one and two dimensions in

detail.

2.1 Finite volume multi-resolution HWENO schemes

2.1.1 One dimensional case

We first consider the hyperbolic conservation laws (1.1) in one dimension

{

ut + f(u)x = 0,
u(x, 0) = u0(x).

(2.1)

Let v = ux, and then from (2.1) and its spacial derivative, we obtain the following

equations
{

ut + f(u)x = 0, u(x, 0) = u0(x),
vt + g(u, v)x = 0, v(x, 0) = v0(x),

(2.2)

where g(u, v) = f ′(u)ux = f ′(u)v. For simplicity, we consider a uniform cell mesh {xi+1/2}

with the uniform mesh size h = xi+1/2 − xi−1/2 and denote the cell by Ii = [xi−1/2, xi+1/2]

and its center by xi =
1
2
(xi−1/2 + xi+1/2).

We denote the one-dimensional cell averages of u and v as

{

ui(t) =
1
h

∫

Ii
u(x, t)dx,

vi(t) =
1
h

∫

Ii
v(x, t)dx,

(2.3)

then integrate (2.2) over the target cell Ii to obtain the integral formulation of the conser-

vation laws






dui(t)
dt

= − 1
h

(

f
(

u(xi+1/2, t)
)

− f
(

u(xi−1/2, t)
)

)

,

dvi(t)
dt

= − 1
h

(

g
(

u(xi+1/2, t), v(xi+1/2, t)
)

− g
(

u(xi−1/2, t), v(xi−1/2, t)
)

)

.
(2.4)
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We approximate (2.4) by the following semi-discrete conservative scheme
{

dui(t)
dt

= − 1
h
(f̂i+1/2 − f̂i−1/2),

dvi(t)
dt

= − 1
h
(ĝi+1/2 − ĝi−1/2),

(2.5)

where the numerical fluxes f̂i+1/2 and ĝi+1/2 are defined by
{

f̂i+1/2 = f̂(u−
i+1/2, u

+
i+1/2),

ĝi+1/2 = ĝ(u−
i+1/2, u

+
i+1/2; v

−
i+1/2, v

+
i+1/2),

(2.6)

where u±
i+1/2 and v±i+1/2 are the numerical approximations to the point values of u(xi+1/2, t)

and v(xi+1/2, t) respectively from left and right by the HWENO reconstruction procedure.

We choose the Lax-Friedrichs fluxes, which are subject to the usual conditions for numerical

fluxes, such as Lipschitz continuity and consistency with the physical fluxes






f̂(a, b) = 1
2

[

f
(

a
)

+ f
(

b
)

− α
(

b− a
)

]

,

ĝ(a, b; c, d) = 1
2

[

g
(

a, c
)

+ g
(

b, d
)

− α
(

d− c
)

]

,
(2.7)

where α = max
u

|f ′(u)| over the whole range of u.

The most important part of the HWENO schemes is the spatial reconstruction of the

point values {u±
i+1/2, v

±
i+1/2} from the given cell-average values {ui, vi}, which should not only

achieve high-order accuracy, but also maintain the essentially non-oscillatory property. The

procedure of the reconstruction for the sixth-order case is summarized as follows:

1D reconstruction algorithm:

Step 1. Select a series of central spatial stencils and reconstruct different degree polyno-

mials.

Step 1.1. Reconstruct a zeroth degree polynomial q1(x) which satisfies

1

h

∫

Ik

q1(x)dx = uk, k = i. (2.8)

Step 1.2. Reconstruct a quadratic polynomial q2(x) which satisfies

1

h

∫

Ik

q2(x)dx = uk, k = i− 1, i, i+ 1. (2.9)

Step 1.3. Reconstruct a cubic polynomial q3(x) which satisfies

1

h

∫

Ik

q3(x)dx = uk, k = i− 1, i, i+ 1;
1

h

∫

Ikx

q′3(x)dx = vkx , kx = i. (2.10)
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Step 1.4. Reconstruct a quintic polynomial q4(x) which satisfies

1

h

∫

Ik

q4(x)dx = uk, k = i− 1, i, i+ 1;
1

h

∫

Ikx

q′4(x)dx = vkx , kx = i− 1, i, i+ 1. (2.11)

Step 2. Obtain equivalent expressions for above reconstructed polynomials as shown in

[29, 30]. To keep consistent notation, we denote p1(x) = q1(x) and define

pl2(x) =
1

γl2,l2
ql2(x)−

l2−1
∑

l=1

γl,l2
γl2,l2

pl(x), (2.12)

with
∑l2

l=1 γl,l2 = 1, γl2,l2 6= 0, l2 = 2, 3, 4, where these γl1,l2 for l1 = 1, ..., l2; l2 = 2, 3, 4 are

the linear weights and are defined as

γl1,l2 =
γl1,l2

∑l2
l=1 γl,l2

; γl1,l2 = 10l1−1; l1 = 1, ..., l2; l2 = 2, 3, 4. (2.13)

For example, we take γ1,4 = 1, γ2,4 = 10, γ3,4 = 100 and γ4,4 = 1000 for our sixth-

order approximation. Correspondingly, we obtain γ1,4 = 1
1111

, γ2,4 = 10
1111

, γ3,4 = 100
1111

and

γ4,4 = 1000
1111

. Putting these linear weights for our sixth-order approximation into (2.12), we

obtain

p1(x) = q1(x),

p2(x) =
11

10
q2(x)−

1

10
q1(x),

p3(x) =
111

100
q3(x)−

11

100
q2(x),

p4(x) =
1111

1000
q4(x)−

111

1000
q3(x). (2.14)

Step 3. Compute the smoothness indicators βl2 , which measure how smooth the functions

pl2(x) are in the interval Ii = [xi−1/2, xi+1/2]:

βl2 =

κ
∑

α=1

∫

Ii

h2α−1

(

dαpl2(x)

dxα

)2

dx, l2 = 2, 3, 4, (2.15)

where κ = 2, 3, 5 for l2 = 2, 3, 4. The only exception is β1, which is slightly magnified from

zero to a positive value as follows:
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First, take two stencils {Ii−1, Ii} and {Ii, Ii+1} and obtain their associated smoothness

indicators

β1L = (ui − ui−1)
2, β1R = (ui+1 − ui)

2. (2.16)

Then, according to [29], we define the linear weights of these stencils as

γ1L =

{

1, β1L ≥ β1R,

10, otherwise,
γ1R = 11− γ1L, (2.17)

γ1L =
γ1L

γ1L + γ1R

, γ1R = 1− γ1L. (2.18)

Next, we calculate the non-linear weights of these stencils

ω1L =
ω1L

ω1L + ω1R
, ω1R =

ω1R

ω1L + ω1R
, (2.19)

ω1L = γ1L

(

1 +
|β1R − β1L|2

β1L + ε

)

, ω1R = γ1R

(

1 +
|β1R − β1L|2
β1R + ε

)

, (2.20)

where ε = 10−10 is a small positive number which is used to avoid the denominator of (2.20)

to be zero.

Finally, we set

β1 =
(

ω1L

(

ui − ui−1

)

+ ω1R

(

ui+1 − ui

)

)2

. (2.21)

Step 4. Compute the nonlinear weights based on the linear weights and the smoothness

indicators. Here we adopt the idea of WENO-Z as shown in [4] with the quantity τ4 defined

as the absolute difference among the smoothness indicators:

τ4 =

(

∑3
l=1 |β4 − βl|

3

)2

, (2.22)

and we define the nonlinear weights as

ωl1,4 =
ωl1,4

∑4
l=1 ωl,4

, ωl1,4 = γl1,4

(

1 +
τ4

βl1 + ε

)

, l1 = 1, ..., 4, (2.23)

where ε = 10−10 in all the formulas.

Step 5. The new final reconstruction polynomials of ui(x) and vi(x) are defined as

ui(x) =

4
∑

l=1

ωl,4pl(x), vi(x) = q′4(x). (2.24)
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Remark 1. In Step 2 above, the choice of γl1,l2 for l1 = 1, ..., l2 is not unique, that is to

say, the choice of the linear weights γl1,l2 for l1 = 1, ..., l2 is also not unique. For example,

we can also take γl1,l2 = 1 for all l1 = 1, ..., l2, thus γl1,l2 = 1
l2

for all l1 = 1, ..., l2. But from

our numerical experiments, we find that even though different choices of the linear weights

do not affect the order of accuracy in the smooth regions, the bigger the linear weights for

higher-degree polynomials, the steeper the shock transitions near the discontinuities. Of

course, the gap between these linear weights should not be too large, otherwise it could

become too close to the linear interpolation, which could cause oscillations. We must find a

balance. Our choice above works well for all our numerical examples.

Remark 2. In Step 3 above, the definition of β1 is quite different from the other βl’s.

This is because if we use the same method to define β1 as other βl’s, it would be zero. Even

though this does not affect the order of accuracy in the smooth regions, it does lead to more

smeared discontinuity transitions, especially when the problem contains strong shocks or

contact discontinuities. Therefore, we magnify β1 from zero to a positive value (dictated by

the smoothness in the target cell together with one of its neighboring cells) and this works

well in our numerical experiments.

Remark 3. In Step 4 above, through a series of Taylor expansion analyses, we can verify

that β4 − βl = O(h3) for l < 4, thus τ4 = O(h6) and

u(x)− ui(x) = u(x)−
4

∑

l=1

ωl,4pl(x)

= u(x)

[

1 +
4

∑

l=1

(ωl,4 − γl,4)

]

−
[

4
∑

l=1

(ωl,4 − γl,4)pl(x) +
4

∑

l=1

γl,4pl(x)

]

=

[

u(x)−
4

∑

l=1

γl,4pl(x)

]

+
4

∑

l=1

(ωl,4 − γl,4)
(

u
(

x
)

− pl
(

x
)

)

= O(h6) +O(h6) ∗O(h)

= O(h6).

(2.25)

According to above Taylor expansion analyses, we find that setting the power of τ4 as 2 is

enough to ensure the expected accuracy in the smooth regions. There is no need to set it to
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be 3 as was done in [29].

Remark 4. In Step 5 above, it is easy to see that if we take ωl,4 = γl,4 for l = 1, ..., 4

in (2.24), then ui(x) = q4(x). This fact is important to maintain the order of accuracy. For

v(x), only the first-order derivative of the highest-degree polynomial q4(x) is used, which is

easy to apply and saves the cost of calculating the nonlinear weights. The reason that we

compute the first derivative vi(x) directly from q4(x) without any limiter is that only the

information defined on a hierarchy of nested central spatial stencils is used to reconstruct

ui(x) and the information of the first derivative is not used at all in the stencils of the

first two layers. Thus even if there is an oscillation associated with vi(x), its effect on the

oscillation in ui(x) is minimal.

After all these point values on the cell boundaries are obtained, we put them into (2.6).

Then we write the semi-discrete scheme (2.5) as an ordinary differential equation system

Ut = L(U), (2.26)

and discretize (2.26) by a third-order TVD (total variation diminishing) Runge-Kutta method

in time






U (1) = Un +∆tL(Un),
U (2) = 3

4
Un + 1

4
U (1) + 1

4
∆tL(U (1)),

Un+1 = 1
3
Un + 2

3
U (2) + 2

3
∆tL(U (2)),

(2.27)

to obtain a fully discrete scheme.

2.1.2 Two dimensional case

We then consider the hyperbolic conservation laws (1.1) in two dimensions

{

ut + f(u)x + g(u)y = 0,
u(x, y, 0) = u0(x, y).

(2.28)

Let v = ux, w = uy, and then from (2.28) and its spacial derivatives, we obtain the

following equations







ut + f(u)x + g(u)y = 0, u(x, y, 0) = u0(x, y),
vt + p(u, v)x + r(u, v)y = 0, v(x, y, 0) = v0(x, y),
wt + q(u, w)x + s(u, w)y = 0, w(x, y, 0) = w0(x, y),

(2.29)
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where

p(u, v) = f ′(u)ux = f ′(u)v, r(u, v) = g′(u)ux = g′(u)v,

q(u, w) = f ′(u)uy = f ′(u)w, s(u, w) = g′(u)uy = g′(u)w.

For simplicity, we consider a uniform cell mesh {(xi+1/2, yj+1/2)} with the uniform mesh size

h = xi+1/2−xi−1/2 = yj+1/2−yj−1/2 and denote the cell by Iij = [xi−1/2, xi+1/2]×[yj−1/2, yj+1/2]

and its center by (xi, yj) =
(

1
2

(

xi−1/2 + xi+1/2

)

, 1
2

(

yj−1/2 + yj+1/2

)

)

.

We denote the two-dimensional cell averages of u, v and w as










ũij(t) =
1
h2

∫

Iij
u(x, y, t)dxdy,

ṽij(t) =
1
h2

∫

Iij
v(x, y, t)dxdy,

w̃ij(t) =
1
h2

∫

Iij
w(x, y, t)dxdy.

(2.30)

Integrating (2.29) over the target cell Iij to obtain the integral formulation of the conservation

laws

dũij(t)

dt
= − 1

h2

[
∫ yj+1/2

yj−1/2

f
(

u
(

xi+1/2, y, t
)

)

dy −
∫ yj+1/2

yj−1/2

f
(

u
(

xi−1/2, y, t
)

)

dy+

∫ xi+1/2

xi−1/2

g
(

u
(

x, yj+1/2, t
)

)

dx−
∫ xi+1/2

xi−1/2

g
(

u
(

x, yj−1/2, t
)

)

dx

]

,

dṽij(t)

dt
= − 1

h2

[
∫ yj+1/2

yj−1/2

p
(

u
(

xi+1/2, y, t
)

, v
(

xi+1/2, y, t
)

)

dy−
∫ yj+1/2

yj−1/2

p
(

u
(

xi−1/2, y, t
)

, v
(

xi−1/2, y, t
)

)

dy+

∫ xi+1/2

xi−1/2

r
(

u
(

x, yj+1/2, t
)

, v
(

x, yj+1/2, t
)

)

dx−
∫ xi+1/2

xi−1/2

r
(

u
(

x, yj−1/2, t
)

, v
(

x, yj−1/2, t
)

)

dx

]

,

dw̃ij(t)

dt
= − 1

h2

[
∫ yj+1/2

yj−1/2

q
(

u
(

xi+1/2, y, t
)

, w
(

xi+1/2, y, t
)

)

dy−
∫ yj+1/2

yj−1/2

q
(

u
(

xi−1/2, y, t
)

, w
(

xi−1/2, y, t
)

)

dy+

∫ xi+1/2

xi−1/2

s
(

u
(

x, yj+1/2, t
)

, w
(

x, yj+1/2, t
)

)

dx−
∫ xi+1/2

xi−1/2

s
(

u
(

x, yj−1/2, t
)

, w
(

x, yj−1/2, t
)

)

dx

]

.

(2.31)
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We then approximate (2.31) by the following semi-discrete conservative scheme










dũij(t)

dt
= − 1

h
(f̂i+1/2,j − f̂i−1/2,j)− 1

h
(ĝi,j+1/2 − ĝi,j−1/2),

dṽij(t)

dt
= − 1

h
(p̂i+1/2,j − p̂i−1/2,j)− 1

h
(r̂i,j+1/2 − r̂i,j−1/2),

dw̃ij(t)

dt
= − 1

h
(q̂i+1/2,j − q̂i−1/2,j)− 1

h
(ŝi,j+1/2 − ŝi,j−1/2),

(2.32)

where the numerical fluxes {f̂i±1/2,j , p̂i±1/2,j, q̂i±1/2,j} in the x-direction are defined as










f̂i±1/2,j =
∑κ

l=1̟lf̂(u
−
i±1/2,j+σl

, u+
i±1/2,j+σl

),

p̂i±1/2,j =
∑κ

l=1̟lp̂(u
−
i±1/2,j+σl

, u+
i±1/2,j+σl

; v−i±1/2,j+σl
, v+i±1/2,j+σl

),

q̂i±1/2,j =
∑κ

l=1̟lq̂(u
−
i±1/2,j+σl

, u+
i±1/2,j+σl

;w−
i±1/2,j+σl

, w+
i±1/2,j+σl

),

(2.33)

which approximate the integrations of {f(u), p(u, v), q(u, w)} in the y-direction along x =

xi±1/2 respectively. The numerical fluxes {ĝi,j±1/2, r̂i,j±1/2, ŝi,j±1/2} in the y-direction are

defined in the same way, which approximate the integrations of {g(u), r(u, v), s(u, w)} in the

x-direction along y = yj±1/2 respectively. Here ̟l and σl are the weights and nodes of the

κ-point Gaussian quadrature in the cell
[

−1
2
, 1
2

]

. The numerical fluxes f̂(a, b), p̂(a, b; c, d),

q̂(a, b; c, d) and ĝ(a, b), r̂(a, b; c, d), ŝ(a, b; c, d) are defined to be the Lax-Friedrichs fluxes as

defined in (2.7). u±
i±1/2,j+σl

, v±i±1/2,j+σl
, w±

i±1/2,j+σl
and u±

i+σl,j±1/2, v
±
i+σl,j±1/2, w

±
i+σl,j±1/2 are

the reconstructed approximations of u(x±
i±1/2, yj+σl

, t), v(x±
i±1/2, yj+σl

, t), w(x±
i±1/2, yj+σl

, t)

and u(xi+σl
, y±j±1/2, t), v(xi+σl

, y±j±1/2, t), w(xi+σl
, y±j±1/2, t) with suitable order of accuracy.

The most important part of the HWENO schemes is still the spatial reconstruction of

the point values {u±
i±1/2,j+σl

, v±i±1/2,j+σl
, w±

i±1/2,j+σl
; u±

i+σl,j±1/2, v
±
i+σl,j±1/2, w

±
i+σl,j±1/2} from

the given cell-average values {ũij , ṽij , w̃ij} which should not only achieve high-order of

accuracy, but also maintain the essentially non-oscillatory property. The procedure of the

reconstruction for the sixth-order accuracy case is summarized as follows.

2D reconstruction algorithm:
7 8 9 j + 1
4 5 6 j
1 2 3 j − 1

i− 1 i i+ 1
The big stencil and its new labels.

Step 1. Select a series of central spatial stencils and reconstruct different degree polyno-

mials.
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Step 1.1. Reconstruct a zeroth degree polynomial q1(x, y) which satisfies

1

h2

∫

Ik

q1(x, y)dxdy = ũk, k = 5. (2.34)

Step 1.2. Reconstruct a quadratic polynomial q2(x, y) which satisfies

1

h2

∫

Ik

q2(x, y)dxdy = ũk, k = 1, ..., 9. (2.35)

Step 1.3. Reconstruct a cubic polynomial q3(x, y) which satisfies

1

h2

∫

Ik

q3(x, y)dxdy = ũk, k = 1, ..., 9;

1

h2

∫

Ikx

∂q3(x, y)

∂x
dxdy = ṽkx , kx = 5;

1

h2

∫

Iky

∂q3(x, y)

∂y
dxdy = w̃ky , ky = 5. (2.36)

Step 1.4. Reconstruct a quintic polynomial q4(x, y) which satisfies

1

h2

∫

Ik

q4(x, y)dxdy = ũk, k = 1, ..., 9;

1

h2

∫

Ikx

∂q4(x, y)

∂x
dxdy = ṽkx , kx = 1, 3, 4, 5, 6, 7, 9;

1

h2

∫

Iky

∂q4(x, y)

∂y
dxdy = w̃ky , ky = 1, 2, 3, 5, 7, 8, 9. (2.37)

Note that for above quadratic polynomial q2(x, y), cubic polynomial q3(x, y) and quintic

polynomial q4(x, y), they all have the same cell average as u on the target cell Iij (to ensure

conservation) and match the other conditions in a least square sense as described in [10].

Step 2. Obtain equivalent expressions for the above reconstructed polynomials as shown

in [29, 30]. To keep consistent notation, we denote p1(x, y) = q1(x, y) and define

pl2(x, y) =
1

γl2,l2
ql2(x, y)−

l2−1
∑

l=1

γl,l2
γl2,l2

pl(x, y), (2.38)

with
∑l2

l=1 γl,l2 = 1, γl2,l2 6= 0, l2 = 2, 3, 4, where these γl1,l2 for l1 = 1, ..., l2; l2 = 2, 3, 4 are

still the linear weights and are defined as (2.13). Putting these linear weights into (2.38), we

13



can also obtain

p1(x, y) = q1(x, y),

p2(x, y) =
11

10
q2(x, y)−

1

10
q1(x, y),

p3(x, y) =
111

100
q3(x, y)−

11

100
q2(x, y),

p4(x, y) =
1111

1000
q4(x, y)−

111

1000
q3(x, y). (2.39)

Step 3. Compute the smoothness indicators βl2 , which measure how smooth the functions

pl2(x, y) are in the cell Iij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]:

βl2 =

κ
∑

|α|=1

∫

Iij

|Iij||α|−1

(

∂|α|

∂xαx∂yαy
pl2(x, y)

)2

dxdy, l2 = 2, 3, 4, (2.40)

where α = (αx, αy), |α| = αx + αy and κ = 2, 3, 5 for l2 = 2, 3, 4. The only exception is β1,

which is slightly magnified from zero to a positive value as follows:

First, take four stencils {Ii−1,j, Ii,j, Ii,j+1}, {Ii+1,j, Ii,j, Ii,j+1}, {Ii+1,j, Ii,j, Ii,j−1} and

{Ii−1,j, Ii,j , Ii,j−1} and construct four linear polynomials p1k(x, y) for k = 1, 2, 3, 4 which

satisfy

1

h2

∫

Ik

q11(x, y)dxdy = ũk, k = 4, 5, 8;

1

h2

∫

Ik

q12(x, y)dxdy = ũk, k = 5, 6, 8;

1

h2

∫

Ik

q13(x, y)dxdy = ũk, k = 2, 5, 6;

1

h2

∫

Ik

q14(x, y)dxdy = ũk, k = 2, 4, 5. (2.41)

Their associated smoothness indicators are

β11 = (−ũi−1,j + ũi,j)
2 + (ũi,j+1 − ũi,j)

2,

β12 = (ũi+1,j − ũi,j)
2 + (ũi,j+1 − ũi,j)

2,

β13 = (ũi+1,j − ũi,j)
2 + (−ũi,j−1 + ũi,j)

2,

β14 = (−ũi−1,j + ũi,j)
2 + (−ũi,j−1 + ũi,j)

2. (2.42)
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Then, according to [30], define the linear weights of these stencils as

γ1k = 1, γ1k =
γ1k

∑4
l=1 γ1l

=
1

4
, k = 1, 2, 3, 4. (2.43)

The nonlinear weights of these stencils are calculated as

ω1k =
ω1k

∑4
l=1 ω1l

, ω1k = γ1k

(

1 +
τ1

β1k + ε

)

, k = 1, 2, 3, 4, (2.44)

where the quantity τ1 is defined as the absolute difference among these smoothness indicators:

τ1 =

(

∑

k 6=l |β1k − β1l|
6

)2

, (2.45)

and as before ε = 10−10.

Finally, we set

β1 =
∑

|α|=1

|Iij ||α|
(

∂|α|

∂xαx∂yαy

4
∑

l=1

ω1lp1l(x, y)

)2

, (2.46)

where α = (αx, αy), |α| = αx + αy.

Step 4. Compute the nonlinear weights based on the linear weights and the smoothness

indicators. Here we still adopt the idea of WENO-Z with the quantity τ4 defined as the

absolute difference among the smoothness indicators:

τ4 =

(

∑3
l=1 |β4 − βl|

3

)2

, (2.47)

and we define the the non-linear weights as

ωl1,4 =
ωl1,4

∑4
l=1 ωl,4

, ωl1,4 = γl1,4

(

1 +
τ4

βl1 + ε

)

, l1 = 1, ..., 4, (2.48)

where ε = 10−10 in all the formulas.

Step 5. The new final reconstruction polynomials of uij(x, y), vij(x, y) and wij(x, y) are

defined as

uij(x, y) =
4

∑

l=1

ωl,4pl(x, y),

vij(x, y) =
∂

∂x
q4(x, y), wij(x, y) =

∂

∂y
q4(x, y). (2.49)
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Remark 5. In Step 2 above, in comparison to the classical finite volume HWENO

schemes in which the linear weights for HWENO reconstruction are dependent on the quadra-

ture points, we use only one set of the linear weights for the HWENO reconstruction at all

Gaussian quadrature points in this paper, thus we can reduce the cost of the spatial recon-

struction procedure.

Just as what we did for the one dimensional case, after all these Gaussian quadrature

point values on the boundaries are obtained, we put them into (2.33). Then we write the

semi-discrete scheme (2.32) as an ordinary differential equation system (2.26) and discretize

it by the third-order TVD Runge-Kutta method (2.27) in time to obtain a fully discrete

scheme.

2.2 Finite difference multi-resolution HWENO schemes

2.2.1 One dimensional case

We now design the finite difference multi-resolution HWENO schemes for one dimensional

hyperbolic conservation laws (2.1). We discrete the computational domain as before and

approximate (2.2) by conservative finite difference schemes
{

dui(t)
dt

= − 1
h
(f̂i+1/2 − f̂i−1/2),

dvi(t)
dt

= − 1
h
(ĝi+1/2 − ĝi−1/2),

(2.50)

where ui(t) and vi(t) are the numerical approximations to the point values u(xi, t) and v(xi, t)

respectively, and the numerical fluxes

{

f̂i+1/2 = f̂(ui−r, ..., ui+s),
ĝi+1/2 = ĝ(ui−r, ..., ui+s; vi−r, ..., vi+s),

(2.51)

satisfy the general conditions, such as Lipschitz continuity and consistency with the physical

fluxes.

To maintain stability, we also need to consider the upwind property of the scheme. Thus,

we split the fluxes f(u) and g(u, v) into two parts

{

f(u) = f+(u) + f−(u), d
du
f+(u) ≥ 0, d

du
f−(u) ≤ 0,

g(u, v) = g+(u, v) + g−(u, v), d
dv
g+(u, v) ≥ 0, d

dv
g−(u, v) ≤ 0,

(2.52)
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where






f±(u) = 1
2

(

f
(

u
)

± αu
)

,

g±(u, v) = 1
2

(

g
(

u, v
)

± αv
)

,
(2.53)

with α = max
u

|f ′(u)| over the whole range of u. Take ui = f+(ui), vi = g+(ui, vi), and repeat

the 1D reconstruction algorithm in Section 2.1.1 to obtain f̂+
i+1/2 = u−

i+1/2, ĝ
+
i+1/2 = v−i+1/2.

Likewise, take ui = f−(ui), vi = g−(ui, vi), and repeat the 1D reconstruction algorithm in

Section 2.1.1 to obtain f̂−
i+1/2 = u+

i+1/2, ĝ
−
i+1/2 = v+i+1/2. Then the numerical fluxes are given

by
{

f̂i+1/2 = f̂+
i+1/2 + f̂−

i+1/2,

ĝi+1/2 = ĝ+i+1/2 + ĝ−i+1/2.
(2.54)

After all these numerical fluxes on the cell boundaries are obtained, we discretize the

ordinary differential equation system (2.26) of the semi-discrete scheme (2.50) by the third-

order TVD Runge-Kutta method (2.27) to advance in time.

2.2.2 Two dimensional case

While the finite difference scheme has comparable cost and performance as the finite

volume scheme in one dimension, in two dimensions the finite difference scheme is simpler

and more cost-effective than the finite volume scheme, as we can perform differentiations

dimension by dimension, but integrals must be performed in two dimensional cells. To

be more specific, we describe in detail the design of the finite difference multi-resolution

HWENO schemes for two dimensional hyperbolic conservation laws (2.28). With the same

discretization of the computational domain as before, we approximate (2.29) by











duij(t)

dt
= − 1

h
(f̂i+1/2,j − f̂i−1/2,j)− 1

h
(ĝi,j+1/2 − ĝi,j−1/2),

dvij(t)

dt
= − 1

h
(p̂i+1/2,j − p̂i−1/2,j)− 1

h
(r̂i,j+1/2 − r̂i,j−1/2),

dwij(t)

dt
= − 1

h
(q̂i+1/2,j − q̂i−1/2,j)− 1

h
(ŝi,j+1/2 − ŝi,j−1/2),

(2.55)

where uij(t), vij(t) and wij(t) are the numerical approximations to the point values u(xi, yj, t),

v(xi, yj, t) and w(xi, yj, t) respectively and the numerical fluxes f̂i±1/2,j , p̂i±1/2,j , ĝi,j±1/2

and ŝi,j±1/2 are reconstructed by the method straightforwardly extended from the one-

dimensional method in a dimension-by-dimension manner. The only exception is the re-
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construction of q̂i±1/2,j and r̂i,j±1/2 for the mixed derivative quantities f(u)yx and g(u)xy

respectively.

2D reconstruction algorithm of the mixed derivative quantities:

Step 1. Flux splitting.

Firstly, split the fluxes into two parts

{

q(u, w) = q+(u, w) + q−(u, w), d
dw
q+(u, w) ≥ 0, d

dw
q−(u, w) ≤ 0,

r(u, v) = r+(u, v) + r−(u, v), d
dv
r+(u, v) ≥ 0, d

dv
r−(u, v) ≤ 0,

(2.56)

where






q±(u, w) = 1
2

(

q
(

u, w
)

± αw
)

,

r±(u, v) = 1
2

(

r
(

u, v
)

± αv
)

,
(2.57)

where α = max
u

|f ′(u)| over the whole range of u.

Step 2. Reconstruction of {q̂±i+1/2,j , r̂
±
i,j+1/2}.

Secondly, choose a stencil {Ii−1,j, Ii,j, Ii+1,j} at y = yj and interpolate a quadratic poly-

nomial Q(x) which satisfies

1

h

∫

Ik,j

Q(x)dx = q+k,j, k = i− 1, i, i+ 1, (2.58)

then the approximation of q+(xi+1/2, yj) is

q̂+i+1/2,j ≈ Q(x−
i+1/2) = −1

6
q+i−1,j +

5

6
q+i,j +

1

3
q+i+1,j . (2.59)

As for q̂−i+1/2,j , the reconstruction procedure is mirror symmetric with respect to xi+1/2 of

that for q̂+i+1/2,j above

q̂−i+1/2,j ≈ Q(x+
i+1/2) =

1

3
q−i,j +

5

6
q−i+1,j −

1

6
q−i+2,j . (2.60)

The reconstruction of r̂±i,j+1/2 in the y-direction is similar.

Step 3. Calculation of the numerical fluxes.

Finally, we obtain the numerical fluxes q̂i+1/2,j and r̂i,j+1/2 as

{

q̂i+1/2,j = q̂+i+1/2,j + q̂−i+1/2,j ,

r̂i,j+1/2 = r̂+i,j+1/2 + r̂−i,j+1/2.
(2.61)
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Remark 6. We would like to mention that we have tried many methods to treat the

mixed derivatives, but have encountered a common difficulty that they are all unstable except

for the method described above. A significant drawback of the method described above is

that the accuracy is now limited to fourth order. It would be interesting to obtain a stable

sixth-order discretization for these mixed derivatives in the finite difference setting.

Remark 7. For the systems, the reconstruction is performed in the local characteristic

directions to avoid oscillations near the discontinuities, see [21] for details.

Finally just as what we did for the one dimensional case, after all these numerical fluxes

on the cell boundaries are obtained, we discretize the ordinary differential equation system

(2.26) of the semi-discrete scheme (2.55) by the third-order TVD Runge-Kutta method (2.27)

to advance in time.

3 Numerical tests

In this section, we present a number of typical experiments to test the performances of

the finite volume and finite difference multi-resolution HWENO schemes which are termed

as HWENOκ-FV and HWENOκ-FD respectively where κ is the order of the scheme. For

all the numerical tests in this paper, the third-order Runge-Kutta method (2.27) is used in

time, and the CFL number is set as 0.6 for all the one and two dimensional cases, except for

the accuracy tests where a suitably reduced time step is used to guarantee the dominance

of the spatial error. As mentioned before, we take the linear weights as γ1,4 = 1, γ2,4 = 10,

γ3,4 = 100 and γ4,4 = 1000 for both the finite volume and finite difference schemes in the

one and two dimensions in this paper.

Example 3.1. First, we solve the following one-dimensional nonlinear scalar Burgers’ equa-

tion:

µt +

(

µ2

2

)

x

= 0, 0 < x < 2, (3.1)

with the initial condition µ(x, 0) = 0.5 + sin(πx) and periodic boundary condition. When

t = 0.5/π, the solution is still smooth, and the corresponding errors and orders by HWENO6-
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FV and HWENO6-FD schemes are listed in Table 3.1. When t = 1.5/π, the solution is

discontinuous, and the corresponding numerical solutions obtained by HWENO6-FV and

HWENO6-FD schemes are plotted in Fig 3.1 against the reference exact solution.

Table 3.1: µt +
(

µ2

2

)

x
= 0. The initial condition µ(x, 0) = 0.5 + sin(πx). Periodic boundary

condition. T = 0.5/π. HWENO6-FV and HWENO6-FD schemes. L1 and L∞.
HWENO6-FV scheme HWENO6-FD scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
100 9.87E-09 1.34E-07 8.18E-09 1.05E-07
120 3.21E-09 6.16 4.72E-08 5.73 2.34E-09 6.88 3.69E-08 5.72
140 1.29E-09 5.91 1.93E-08 5.79 8.41E-10 6.63 1.17E-08 7.43
160 5.71E-10 6.11 8.88E-09 5.83 3.55E-10 6.47 5.41E-09 5.79
180 2.84E-10 5.92 4.46E-09 5.86 1.68E-10 6.35 2.71E-09 5.87
200 1.52E-10 5.92 2.40E-09 5.88 8.76E-11 6.17 1.45E-09 5.91

x
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Figure 3.1: 1D-Burgers’ equation. T = 1.5/π. Left: the numerical and exact solutions;
right: the numerical and exact solutions zoomed in. Solid line: the exact solution; triangles:
the result of HWENO6-FV scheme; squares: the result of HWENO6-FD scheme. Number
of cells: 200.

Example 3.2. Next, we solve the following two-dimensional nonlinear scalar Burgers’ equa-

tion:

µt +

(

µ2

2

)

x

+

(

µ2

2

)

y

= 0, 0 < x, y < 4, (3.2)
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with the initial condition µ(x, y, 0) = 0.5+sin
(

π(x+y)/2
)

and periodic boundary condition.

When t = 0.5/π, the solution is still smooth, and the corresponding errors and orders by

HWENO6-FV and HWENO4-FD schemes are listed in Table 3.2. When t = 1.5/π, the

solution is discontinuous, and the corresponding numerical solutions at x = y obtained by

HWENO6-FV and HWENO4-FD schemes are plotted in Fig 3.2 against the reference exact

solution.

Table 3.2: µt +
(

µ2

2

)

x
+
(

µ2

2

)

y
= 0. The initial condition µ(x, y, 0) = 0.5+ sin

(

π(x+ y)/2
)

.

Periodic boundary condition. T = 0.5/π. HWENO6-FV and HWENO4-FD schemes. L1

and L∞.
HWENO6-FV scheme HWENO4-FD scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
100×100 1.01E-07 1.49E-06 1.45E-06 1.42E-05
120×120 3.68E-08 5.53 5.57E-07 5.38 6.97E-07 4.00 7.15E-06 3.76
140×140 1.54E-08 5.65 2.38E-07 5.51 3.77E-07 3.99 3.93E-06 3.88
160×160 7.13E-09 5.78 1.13E-07 5.60 2.20E-07 4.03 2.31E-06 3.99
180×180 3.67E-09 5.65 5.79E-08 5.66 1.36E-07 4.05 1.43E-06 4.05
200×200 2.00E-09 5.76 3.17E-08 5.71 8.89E-08 4.07 9.37E-07 4.03
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Figure 3.2: 2D-Burgers’ equation. T = 1.5/π. Left: the numerical and exact solutions at
x = y; right: the numerical and exact solutions at x = y zoomed in. Solid line: the exact
solution; triangles: the result of HWENO6-FV scheme; squares: the result of HWENO4-FD
scheme. Number of cells: 200×200.
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Example 3.3. Then, we solve the following one-dimensional compressible Euler equations:

∂

∂t





ρ
ρµ
E



 +
∂

∂x





ρµ
ρµ2 + p
µ(E + p)



 = 0, 0 < x < 2π, (3.3)

where ρ is the density, µ is the velocity, E is the total energy and p is the pressure. The

initial conditions are

ρ(x, 0) = 1+0.2 sin(x)

2
√
3

, µ(x, 0) =
√
γρ(x, 0), p(x, 0) = ρ(x, 0)γ . (3.4)

The boundary conditions are periodic. Under above initial conditions, boundary conditions

and special choice of the parameter γ = 3, we can prove that 2
√
3ρ(x, t) is the exact solution

of the following Burgers’ equation:

{

µt +
(

µ2

2

)

x
= 0, 0 < x < 2π,

µ(x, 0) = 1 + 0.2 sin(x),
(3.5)

and the corresponding velocity and pressure satisfy

µ(x, t) =
√
γρ(x, t), p(x, t) = ρ(x, t)γ . (3.6)

It is easy to verify that the solution of the above Burgers’ equation is smooth until time

T = 5. We compute the solution up to T = 3, and the corresponding errors and orders by

HWENO6-FV and HWENO6-FD schemes are listed in Table 3.3.

Table 3.3: 1D-Euler equations: The initial condition ρ(x, 0) = 1+0.2 sin(x)

2
√
3

, µ(x, 0) =
√
γρ(x, 0)

and p(x, 0) = ρ(x, 0)γ . Periodic boundary condition. T = 3. HWENO6-FV and HWENO6-
FD schemes. L1 and L∞.

HWENO6-FV scheme HWENO6-FD scheme
grid points L1 error order L∞ error order L1 error order L∞ error order

100 3.20E-08 7.37E-07 3.36E-08 7.87E-07
120 1.15E-08 5.63 2.67E-07 5.57 1.19E-08 5.69 2.84E-07 5.58
140 4.85E-09 5.59 1.21E-07 5.13 5.06E-09 5.54 1.26E-07 5.27
160 2.28E-09 5.66 5.48E-08 5.93 2.36E-09 5.72 5.75E-08 5.89
180 1.17E-09 5.65 2.97E-08 5.21 1.20E-09 5.70 3.06E-08 5.35
200 6.35E-10 5.81 1.56E-08 6.08 6.51E-10 5.84 1.63E-08 6.00
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Example 3.4. Next, we solve the following two-dimensional compressible Euler equations:

∂

∂t









ρ
ρµ
ρν
E









+
∂

∂x









ρµ
ρµ2 + p
ρµν

µ(E + p)









+
∂

∂y









ρν
ρµν

ρν2 + p
ν(E + p)









= 0, 0 < x, y < 4π, (3.7)

where ρ is the density, µ is the velocity in the x-direction, ν is the velocity in the y-direction,

E is the total energy and p is the pressure. The initial conditions are

ρ(x, y, 0) =
1+0.2 sin(x+y

2
)√

6
, µ(x, y, 0) = ν(x, y, 0) =

√

γ
2
ρ(x, y, 0), p(x, y, 0) = ρ(x, y, 0)γ.

(3.8)

The boundary conditions are periodic in both directions. Under above initial conditions,

boundary conditions and special choice of the parameter γ = 3, we can prove that
√
6ρ(x, y, t)

is the exact solution of the following Burgers’ equation:

{

µt +
(

µ2

2

)

x
+
(

µ2

2

)

y
= 0, 0 < x, y < 4π,

µ(x, y, 0) = 1 + 0.2 sin(x+y
2
),

(3.9)

and the corresponding velocity and pressure satisfy

µ(x, y, t) = ν(x, y, t) =
√

γ
2
ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ. (3.10)

It is easy to verify that the solution of the above Burgers’ equation is smooth until time

T = 5. We compute the solution up to T = 3, and the corresponding errors and orders by

HWENO6-FV and HWENO4-FD schemes are listed in Table 3.4.

Example 3.5. Consider the isentropic vortex problem [21] for the two-dimensional

compressible Euler equations (3.7). The mean flow is ρ = p = u = v = 1. We add an

isentropic vortex perturbation centered at (x0, y0) in (u, v) and T = p/ρ, with no perturbation

in S = p/ργ to the mean flow,

(δu, δv) =
ǫ

2π
e0.5(1−r2)(−ȳ, x̄), δT =

(γ − 1)ǫ2

8γπ2
e1−r2 (3.11)

where (x̄, ȳ) = (x − x0, y − y0), r
2 = x̄2 + ȳ2. The exact solution is the passive convection

of the vortex with the mean velocity. The domain is taken as [−10, 10] × [−10, 10] and
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Table 3.4: 2D-Euler equations: The initial condition ρ(x, y, 0) =
1+0.2 sin(x+y

2
)√

6
, µ(x, y, 0) =

ν(x, y, 0) =
√

γ
2
ρ(x, y, 0) and p(x, y, 0) = ρ(x, y, 0)γ. Periodic boundary condition. T = 3.

HWENO6-FV and HWENO4-FD schemes. L1 and L∞.
HWENO6-FV scheme HWENO4-FD scheme

grid points L1 error order L∞ error order L1 error order L∞ error order
100×100 7.24E-07 1.45E-05 7.27E-06 1.05E-04
120×120 2.90E-07 5.01 6.35E-06 4.54 3.71E-06 3.69 5.83E-05 3.24
140×140 1.29E-07 5.26 2.98E-06 4.91 2.10E-06 3.71 3.38E-05 3.54
160×160 6.28E-08 5.40 1.46E-06 5.36 1.27E-06 3.76 2.08E-05 3.62
180×180 3.41E-08 5.19 8.21E-07 4.86 8.11E-07 3.81 1.37E-05 3.58
200×200 1.94E-08 5.37 4.56E-07 5.58 5.43E-07 3.81 9.15E-06 3.81

(x0, y0) = (0, 0). The boundary conditions are periodic in both directions. We set γ = 1.4

and the vortex strength ǫ = 1.0. We compute the solution up to T = 5, and the corresponding

errors and orders by HWENO6-FV and HWENO4-FD schemes are listed in Table 3.5.

Table 3.5: The isentropic vortex problem: The initial condition ρ(x, y, 0) =

(1− (γ−1)ǫ2

8γπ2 e1−r2)
1

γ−1

, (µ(x, y, 0), ν(x, y, 0)) = 1 + ǫ
2π
e0.5(1−r2)(−ȳ, x̄) and p(x, y, 0) =

ρ(x, y, 0)γ. Periodic boundary condition. T = 5. HWENO6-FV and HWENO4-FD schemes.
L1 and L∞.

HWENO6-FV scheme HWENO4-FD scheme
grid points L1 error order L∞ error order L1 error order L∞ error order
100×100 2.98E-07 3.05E-05 6.80E-06 2.58E-04
120×120 1.17E-07 5.13 1.22E-05 5.04 3.56E-06 3.55 1.50E-04 2.95
140×140 5.21E-08 5.26 5.33E-06 5.36 2.09E-06 3.46 8.71E-05 3.54
160×160 2.56E-08 5.32 2.57E-06 5.46 1.31E-06 3.52 5.37E-05 3.62
180×180 1.36E-08 5.39 1.36E-06 5.38 8.60E-07 3.54 3.53E-05 3.56
200×200 7.67E-09 5.41 7.57E-07 5.59 5.91E-07 3.56 2.40E-05 3.66

Comment: According to the results listed in above five tables Table 3.1, Table 3.2, Table

3.3, Table 3.4 and Table 3.5, we can see that both the finite volume and finite difference

HWENO schemes achieve their designed order of accuracy and that the errors of the finite

volume schemes are bigger than those of the finite difference schemes on the same meshes

for Example 3.1, while Example 3.3 shows the opposite result. From Fig 3.1 and Fig 3.2,
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we can observe that both the finite volume and finite difference HWENO schemes work well

in comparison with the exact solutions and there is not much difference between these two

schemes.

Example 3.6. The Buckley-Leverett problem: one-dimensional nonlinear non-convex scalar

Buckley-Leverett problem:

µt +

(

4µ2

4µ2 + (1− µ)2

)

x

= 0, −1 < x < 1, (3.12)

with the initial condition:

µ =

{

1, −0.5 < x < 0,
0, elsewhere.

(3.13)

We present the computed solutions obtained by HWENO6-FV and HWENO6-FD schemes

at T = 0.4 in Fig 3.3 against the reference exact solution. The exact solution is a shock-

rarefaction-contact discontinuity mixture and some high-order schemes may fail to converge

to the correct entropy solution for this problem. From Fig 3.3, we can observe that both

the finite volume and finite difference HWENO schemes could converge to the right solution

and gain good resolution.
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Figure 3.3: The Buckley-Leverett problem. T = 0.4. Left: the numerical and exact
solutions; right: the numerical and exact solutions zoomed in. Solid line: the exact solution;
triangles: the result of HWENO6-FV scheme; squares: the result of HWENO6-FD scheme.
Number of cells: 200.

25



Example 3.7. The Lax problem: one-dimensional compressible Euler equations (3.3) with

the Riemann initial condition:

(ρ, µ, p)T =

{

(0.445, 0.698, 3.528)T , −0.5 < x < 0,
(0.5, 0, 0.571)T , 0 < x < 0.5.

(3.14)

We present the computed density ρ obtained by HWENO6-FV and HWENO6-FD schemes

at T = 0.16 in Fig 3.4 against the reference exact solution.
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Figure 3.4: The Lax problem. T = 0.16. Left: density; right: density zoomed in. Solid
line: the exact solution; triangles: the result of HWENO6-FV scheme; squares: the result of
HWENO6-FD scheme. Number of cells: 200.

Example 3.8. The shock density wave interaction problem: one-dimensional compressible

Euler equations (3.3) with a moving Mach=3 shock interaction with sine waves in density:

(ρ, µ, p)T =

{

(3.857143, 2.629369, 10.333333)T, −5 < x < −4,
(

1 + 0.2 sin(5x), 0, 1
)T
, −4 < x < 5.

(3.15)

We present the computed density ρ obtained by HWENO6-FV and HWENO6-FD schemes

at T = 1.8 in Fig 3.5 against the reference “exact” solution which is a converged solution

computed by the fifth-order finite difference WENO scheme [12] with 8000 grid points.

Example 3.9. The blast wave problem: one-dimensional compressible Euler equations (3.3)

with the initial condition:

(ρ, µ, p)T =







(1, 0, 103)T , 0 < x < 0.1,
(1, 0, 10−2)T , 0.1 < x < 0.9,
(1, 0, 102)T , 0.9 < x < 1.

(3.16)
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Figure 3.5: The shock density wave interaction problem. T = 1.8. Left: density; right:
density zoomed in. Solid line: the exact solution; triangles: the result of HWENO6-FV
scheme; squares: the result of HWENO6-FD scheme. Number of cells: 400.

We present the computed density ρ obtained by HWENO6-FV and HWENO6-FD schemes

at T = 0.038 in Fig 3.6 against the reference “exact” solution which is a converged solution

computed by the fifth-order finite difference WENO scheme [12] with 16000 grid points.
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Figure 3.6: The blast wave problem. T = 0.038. Left: density; right: density zoomed in.
Solid line: the exact solution; triangles: the result of HWENO6-FV scheme; squares: the
result of HWENO6-FD scheme. Number of cells: 800.

Example 3.10. The Lax problem: two-dimensional compressible Euler equations (3.7) with
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the Riemann initial condition:

(ρ, µ, ν, p)T =

{

(0.445, 0.698, 0, 3.528)T , −0.5 < x
′

< 0,
(0.5, 0, 0, 0.571)T , 0 < x

′

< 0.5,
(3.17)

where x
′

denotes the x-axis of the new rectangular coordinate system which is obtained by

rotating the original rectangular coordinate system counterclockwise by 45 degrees. The

similar one-dimensional boundary condition is applied in the x
′

-direction. Since the velocity

is zero in the y
′

-direction, all the variables have the same value along y
′

= constant. We

present the computed density ρ obtained by HWENO6-FV and HWENO4-FD schemes at

T = 0.16 along y = x in Fig 3.7 against the reference exact solution.
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Figure 3.7: The Lax problem. T = 0.16. Left: density cut along y = x; right: density
zoomed in. Solid line: the exact solution; triangles: the result of HWENO6-FV scheme;
squares: the result of HWENO4-FD scheme. Number of cells: 142×142 (The grid is selected
in this way to compare with the corresponding one-dimensional case, since there is a factor
of

√
2 adjustment to achieve effectively equivalent mesh sizes in 1D and in 2D along the

diagonal line).

Example 3.11. The shock density wave interaction problem: two-dimensional compressible

Euler equations (3.7) with a moving Mach=3 shock interaction with sine waves in density:

(ρ, µ, ν, p)T =

{

(3.857143, 2.629369, 0, 10.333333)T, −5 < x
′

< −4,
(

1 + 0.2 sin(5x
′

), 0, 0, 1
)T
, −4 < x

′

< 5,
(3.18)

where x
′

denotes the x-axis of the new rectangular coordinate system which is obtained by

rotating the original rectangular coordinate system counterclockwise by 45 degrees. The
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similar one-dimensional boundary condition is applied in the x
′

-direction. Since the velocity

is zero in the y
′

-direction, all the variables have the same value along y
′

= constant. We

present the computed density ρ obtained by HWENO6-FV and HWENO4-FD schemes at

T = 1.8 along y = x in Fig 3.8 against the reference “exact” solution which is a converged

solution computed by the fifth-order finite difference WENO scheme [12] with 8000 grid

points.
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Figure 3.8: The shock density wave interaction problem. T = 1.8. Left: density cut
along y = x; right: density zoomed in. Solid line: the exact solution; triangles: the result
of HWENO6-FV scheme; squares: the result of HWENO4-FD scheme. Number of cells:
283×283 (The grid is selected in this way to compare with the corresponding one-dimensional
case, since there is a factor of

√
2 adjustment to achieve effectively equivalent mesh sizes in

1D and in 2D along the diagonal line).

Example 3.12. Double Mach reflection problem: two-dimensional compressible Euler equa-

tions (3.7) in a computational domain [0, 4]×[0, 1] with a reflection wall lying at the bottom

of the domain starting from x = 1
6
, y = 0, making a 60◦ angle with the x-axis. For the

bottom of the domain, the reflection boundary condition is used at the reflection wall, and

the exact post-shock condition is imposed at the rest of the bottom boundary (the part from

x = 0 to x = 1
6
). For the top of the domain, the boundary is the exact motion of the Mach

10 shock with γ = 1.4. We present the computed density ρ obtained by HWENO6-FV and

HWENO4-FD schemes at t = 0.2 in the region of [0, 3]×[0, 1] in Fig 3.9 and the blow-up
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region around the double Mach stem in Fig 3.10.
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Figure 3.9: Double Mach reflection problem. T = 0.2. 30 equally spaced density contours
from 1.5 to 22.7. Top: HWENO6-FV; bottom: HWENO4-FD. Number of cells: 1600×400
in the region of [0, 4]×[0, 1].

Example 3.13. Forward step problem: two-dimensional compressible Euler equations (3.7)

in a Mach 3 wind tunnel with a step. The wind tunnel is one length unit wide and three

length units long with a 0.2 length units high step located 0.6 length units from the left-side

end of the tunnel. The problem is initialized by a right-going Mach 3 flow at the beginning.

The reflection boundary condition is used along the wall of the tunnel, the inflow boundary

condition is imposed at the entrance, and the outflow boundary condition is imposed at

the exit. We present the computed density ρ obtained by HWENO6-FV and HWENO4-FD

schemes at t = 4 in the region of [0, 3]×[0, 1] in Fig 3.11.

Comment: From above eight examples, we can see that both the finite volume and finite

difference HWENO schemes work well in comparison with their “exact” solutions. Further-
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Figure 3.10: Double Mach reflection problem. T = 0.2. 30 equally spaced density contours
from 1.5 to 22.7, zoom-in pictures around the Mach stem. Left: HWENO6-FV; right:
HWENO4-FD. Number of cells: 1600×400 in the region of [0, 4]×[0, 1].
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Figure 3.11: Forward step problem. T = 4. 30 equally spaced density contours from 0.32 to
6.15. Top: HWENO6-FV; bottom: HWENO4-FD. Number of cells: 600×200 in the region
of [0, 3]×[0, 1].
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more, there is not much difference between these two schemes for Example 3.6 and Example

3.7, while the finite volume HWENO schemes have better resolutions and sharper shock

transitions than the finite difference HWENO schemes on the same meshes for the other

examples except Example 3.10 and Example 3.13. This might be due to the fact that very

global Lax-Friedrichs flux splitting (where α is chosen as a scalar for all components and

all cells) is used in the finite difference scheme, causing larger numerical viscosity than the

finite volume scheme. Also, for the two dimensional case, an extra obvious reason is that the

finite volume HWENO scheme has a higher order of accuracy. We note that for Example

3.10 and Example 3.13, the result of the finite difference HWENO scheme is actually better

than that of the finite volume scheme, the reason of this is not clear.

4 Concluding remarks

In this paper, we have designed a new type of finite volume and finite difference multi-

resolution HWENO schemes for solving the hyperbolic conservation laws in one and two

dimensional cases on structured meshes. In comparison with the classical HWENO schemes,

the new features of these HWENO schemes are their simplicity since we only need to per-

form the spatial HWENO reconstruction for the function values but perform high-order linear

reconstruction for its first-order derivative values and hierarchical structure in obtaining in-

creasingly higher order of accuracy with unequal sized hierarchical central spatial stencils.

These HWENO schemes are achieved by artificially setting positive linear weights as long as

their sum equals one, calculating smoothness indicators, designing new nonlinear weights,

and then obtaining a nonlinear convex combination of all the candidate polynomials. The

features which are attractive include that there is no need to modify the first-order derivative

values of the target cell before the reconstruction; no need to apply any positivity-preserving

flux limiter for simulations with strong shocks, at least for the examples we have calculated

in this paper; and that the CFL number can be taken to be 0.6 for both the one and two

dimensional cases, which is an improvement from 0.2 in [15, 16]. In comparison with the
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multi-resolution WENO schemes, our major advantage is the compactness in the reconstruc-

tion. The framework of this multi-resolution HWENO spatial reconstruction procedure

would be particularly efficient and simple on unstructured meshes, the study of which is our

ongoing work.
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