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Abstract

In this paper, a new type of high-order finite volume and finite difference multi-resolution
Hermite weighted essentially non-oscillatory (HWENO) schemes are designed for solving
hyperbolic conservation laws on structured meshes. Here we only use the information defined
on a hierarchy of nested central spatial stencils but do not introduce any equivalent multi-
resolution representation, the terminology of multi-resolution HWENO follows that of the
multi-resolution WENO schemes [J. Comput. Phys., 375 (2018), 659-683]. The main idea
of our spatial reconstruction is derived from the original HWENO schemes [J. Comput.
Phys., 193 (2004), 115-135], in which both the function and its first-order derivative values
are evolved in time and used in the reconstruction. Our HWENO schemes use the same
large stencils as the classical HWENO schemes which are narrower than the stencils of the
clagsical WENO schemes for the same order of accuracy. Only the function values need
to be reconstructed by our HWENO schemes, the first-order derivative values are obtained
from the high-order linear polynomials directly. Furthermore, the linear weights of such
HWENO schemes can be any positive numbers as long as their sum equals one, and there
is no need to do any modification or positivity-preserving flux limiting in our numerical
experiments. Extensive benchmark examples are performed to illustrate the robustness and

good performance of such finite volume and finite difference HWENO schemes.
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1 Introduction

In this paper, a new type of high-order finite volume and finite difference multi-resolution
Hermite weighted essentially non-oscillatory (HWENO) schemes are designed for solving the

hyperbolic conservation laws

{ u+ V- flu) =0, (1.1)

w(xy,y ooy T, 0) = gy, ..oy ).

Hyperbolic conservation laws can be used to model a wide variety of phenomena in-
volving wave motion and the advection transport of substances. The problem is that it is
quite difficult to solve these problems on both mathematical and numerical aspects, since
discontinuities may appear in the solutions of these nonlinear equations even though the
initial conditions are smooth enough. This is also why designing high-order and efficient ap-
proaches to solve these problems is of great importance and why more and more researchers
are interested in it. Under this background, many numerical methods have emerged. Here,
we would like to mention essentially non-oscillatory (ENO) [9, 22, 23], weighted essentially
non-oscillatory (WENO) schemes [12, 17] and Hermite weighted essentially non-oscillatory
(HWENO) schemes [19, 20, 25, 27, 28], which work quite well to solve these problems with
strong shocks or contact discontinuities.

In 1987, Harten et al. proposed a series of finite volume ENO schemes for one-dimensional
problems in [9] based on the total variation diminishing (TVD) schemes in [8]. In 1988 and
1989, Shu and Osher presented a class of finite difference ENO schemes in [22, 23], which
are more efficient for multi-dimensional problems. The main idea of these ENO schemes
is to choose the locally smoothest stencil automatically among all the central and biased
spatial stencils to keep high-order accuracy in smooth regions and to avoid oscillations near
discontinuities. In 1994, Liu et al. proposed the first WENO schemes in [17], which use a
nonlinear convex combination of all the candidate stencils instead of the locally smoothest
stencil to improve the order of accuracy in smooth regions without destroying the non-

oscillatory behavior near discontinuities. In 1996, Jiang and Shu improved the WENO



schemes to fifth order and designed general smoothness indicators and nonlinear weights in
[12]. Thereafter, compact central WENO (CWENO) schemes in [7, 13, 14], monotonicity
preserving WENO schemes in [3], optimized WENO schemes in [24], hybrid compact WENO
schemes in [18], multi-domain hybrid spectral-WENO in [6], WENO-Z in [4], robust WENO
schemes in [11], multi-resolution WENO schemes in [29, 30], an efficient class of WENO
schemes with adaptive order for structured and unstructured meshes in [1, 2| were developed.
ENO and WENO schemes have the following advantages: uniform high-order accuracy in
smooth regions including smooth extrema and non-oscillatory behavior near discontinuities.

In 2004, based on the idea of WENO schemes, Qiu and Shu proposed a class of HWENO
schemes on a finite volume formulation for one-dimensional problems in [19] and then in
2005, they extended these HWENO schemes to two-dimensional problems in [20], where two
different stencils were used to reconstruct the function and its first-order derivative values.
However, the first HWENO schemes in [19, 20] failed in simulating several severe problems
stably, including the double Mach and the forward step problems. This is because the
solutions of these nonlinear hyperbolic conservation laws contain strong discontinuities, and
their first-order derivative values may be very large near these discontinuities. If such large
first-order derivative values are used straightforwardly, stability issues may arise. Thereafter,
in 2008, Zhu and Qiu proposed a new procedure to reconstruct the first-order derivative
values to solve this problem in [28], while in 2015 and 2016, Liu and Qiu also solved this
problem by applying an additional positivity-preserving procedure in [15, 16]. Then in 2020,
Zhao et al. took the idea of the limiter for the discontinuous Galerkin (DG) method in [5]
to modify the first-order moments near the discontinuities in [26], in which high-order linear
approximation was used in smooth regions, while the first-order moments on the troubled-
cells were modified with the HWENO reconstruction. Later, Zhao and Qiu improved the
above hybrid HWENO scheme by using a nonlinear convex combination of a high-degree
polynomial with several lower-degree polynomials, with the linear weights being any positive

numbers as long as their sum equals one, in [27]. The main difference of HWENO schemes



from WENO schemes is that both the function and its first-order derivative values are
evolved in time and used in the reconstruction, not like the WENO schemes in which only
the function values are evolved and used. This also allows the HWENO schemes to obtain
the same order of accuracy as the WENO schemes with narrower stencils.

In this paper, following the idea of multi-resolution WENQO schemes proposed by Zhu
and Shu in [29, 30], we present a new type of multi-resolution HWENO schemes. Comparing
with the multi-resolution WENO schemes in [29, 30], there are several features in common:
the first is that we also use a hierarchy of central spatial stencils; the second is that the
linear weights can also be any positive numbers as long as their sum equals one. There are
also some differences: the first is that not only the function values but also its first-order
derivative values are evolved and used, thus we can obtain higher order accuracy with the
same number of cells in comparison with the multi-resolution WENO schemes; the second
is that only the function values are reconstructed by the multi-resolution HWENO schemes,
its first-order derivative values are reconstructed by the high-order linear approximation,
which is also different from the previous HWENO schemes. Comparing with the HWENO
schemes proposed before, our HWENO schemes do have a few other advantages: the first is
that there is no need to modify the first-order derivative values of the target cell before the
reconstruction or apply any positivity-preserving flux limiter, to run the numerical experi-
ments with strong shocks stably, at least for the examples we have calculated; the second is
that the CFL number can be taken to be 0.6 for both the one and two dimensional cases,
while the CFL number is taken to be 0.2 in [15, 16]. In the meantime, our HWENO schemes
could also obtain the optimal high-order of accuracy in smooth regions and simultaneously
keep sharp transitions with non-oscillatory performance near discontinuities.

The organization of this paper is as follows: In Section 2, at first, we will describe
the reconstruction procedure of finite volume multi-resolution HWENO schemes for solving
the conservation laws in one and two dimensions in detail. Then, we will describe the

reconstruction procedure of finite difference multi-resolution HWENO schemes for solving



the conservation laws in one and two dimensions in detail. In Section 3, we will propose a
number of numerical examples to illustrate the accuracy and resolution of these HWENO

schemes. Concluding remarks are given in Section 4.

2 Multi-resolution HWENO schemes

In this section, we introduce the finite volume and finite difference multi-resolution
HWENO schemes for solving the hyperbolic conservation laws in one and two dimensions in

detail.

2.1 Finite volume multi-resolution HWENO schemes

2.1.1 One dimensional case

We first consider the hyperbolic conservation laws (1.1) in one dimension

ug + f(u), =0,
{ u(x,0) = uo(x). (2.1)

Let v = u,, and then from (2.1) and its spacial derivative, we obtain the following

equations

w+ (W) =0, u(z,0) = uo(a). 0
Ut+g(u>v)x =0, ’U(ZL’,O) :’U()(l'), ‘

where g(u,v) = f'(u)u, = f'(u)v. For simplicity, we consider a uniform cell mesh {z;}1/2}

with the uniform mesh size h = x;41/2 — x;_1/2 and denote the cell by I; = [2;_1/2, Zi11/2]

and its center by x; = %(93,-_1/2 + Tiy1/2).

We denote the one-dimensional cell averages of v and v as

{ w(t) = 3 [;, u(z, t)dz, (2.3)

v;(t) = %fh v(zx,t)dx,

then integrate (2.2) over the target cell I; to obtain the integral formulation of the conser-

vation laws

B = <4 (F (e, ) = Flulzioage. 1)),
1

dﬁéft) = —Hg(u(@iz1)2, 1), v(Tiz1/2, 1)) — g(u(l"z'—l/z,t)>U(93i—1/2>t))>-

(2.4)




We approximate (2.4) by the following semi-discrete conservative scheme

du; (t ; ;
dt() = _%(fi+1/2 - fi—1/2>7 (2 5)
dvi(t) _ _l(g, A ) ‘
i n\gi+1/2 — Gi—1/2),
where the numerical fluxes fi+1 /2 and gi41/9 are defined by
fisrje = F(Ui 0 U y2): . (2.6)
Jit1/2 = g(ui+1/2’ Uit1/25Vig1/2 Ui+1/2)>
where “iﬂ /2 and vil /o Are the numerical approximations to the point values of w(x;y1/2,t)

and v(241/2,t) respectively from left and right by the HWENO reconstruction procedure.
We choose the Lax-Friedrichs fluxes, which are subject to the usual conditions for numerical

fluxes, such as Lipschitz continuity and consistency with the physical fluxes

~

fla.b) = £ | () + £(b) —a(b—a).
gla,b;e,d) = %[g(a, c) —i—g(b, d) — a(d— c)],

where a = max|f’(u)| over the whole range of w.

(2.7)

The most important part of the HWENO schemes is the spatial reconstruction of the
point values {u" J2» v, /ot from the given cell-average values {u;, v;}, which should not only
achieve high-order accuracy, but also maintain the essentially non-oscillatory property. The
procedure of the reconstruction for the sixth-order case is summarized as follows:

1D reconstruction algorithm:

Step 1. Select a series of central spatial stencils and reconstruct different degree polyno-
mials.

Step 1.1. Reconstruct a zeroth degree polynomial ¢;(z) which satisfies

1
—/ G (x)de =1y, k=1. (2.8)
hJp,
Step 1.2. Reconstruct a quadratic polynomial ¢y (x) which satisfies
1 _ ) .
—/ @(x)dr =u,, k=i—1,i,i+ 1. (2.9)
h g,

Step 1.3. Reconstruct a cubic polynomial g3(z) which satisfies

1 1

—/qg(x)dx:ﬂk, k=i—1,i,1+ 1; —/ gy (z)dr =Ty, k, = 1. (2.10)
n, h)i



Step 1.4. Reconstruct a quintic polynomial g4(z) which satisfies

1 1
—/ Qu(z)dr =1y, k=1i—1,i,i+ 1; —/ ¢(x)de =y, k,=i—1,i,i+ 1. (2.11)
h i, hJr,.

Step 2. Obtain equivalent expressions for above reconstructed polynomials as shown in

29, 30]. To keep consistent notation, we denote p;(z) = ¢;(x) and define

lo—1
1 2
P, \x) = qi,(T) — —pi(z), 2.12
2( ) Via,lo 2( ) ;%m ( ) ( )

with Zﬁil Yis = Lm0, # 0,10 = 2,3,4, where these 7, ,, for [ = 1,..., 1yl = 2,3,4 are

the linear weights and are defined as

Vil = vhli 5 Ve = 1007 =1,y Iy =2,3,4. (2.13)
Zl 1 V1,

For example, we take 7, = 1, 7, = 10, 73, = 100 and 7,, = 1000 for our sixth-

order approximation. Correspondingly, we obtain ;4 = ﬁ, V2,4 = %, V34 = % and

Va4 = %. Putting these linear weights for our sixth-order approximation into (2.12), we

obtain

P1($) = Ch(x)a
11 1

pa(z) = qu( ) — 1—091( z),
po(w) = 1o (r) — 1o (),
pa(e) = qoo50a(e) — Tooas(@) (2.14)

Step 3. Compute the smoothness indicators J3;,, which measure how smooth the functions

pi, () are in the interval I; = [x;_1/2, Tit1/2]:

Z et (CP@N oy (2.15)
. d.flfa ) 2 — 4,9, .

where k = 2,3,5 for [, = 2,3,4. The only exception is 1, which is slightly magnified from

zero to a positive value as follows:



First, take two stencils {I;_1, I;} and {I;, I;11} and obtain their associated smoothness

indicators
Bir = (@ —T1)?,  bir= (Wp — W) (2.16)

Then, according to [29], we define the linear weights of these stencils as

_ 17 BIL Z Ble — _
= =11 — , 2.17
ML {10, otherwise, MR ML ( )
YL = #, Mr=1—"7r. (2-18)
YiL T Yir

Next, we calculate the non-linear weights of these stencils

wir W1iR
w = w = _——), 219
e Wi, +WiR H wir + WiR ( )
_ |Bir — Bio|? _ ik — Biol?
Ty = 1y PR AL | PR TP 2.20
1L = V1L ( B+ ¢ 1R = V1R Binte ( )

where £ = 107'% is a small positive number which is used to avoid the denominator of (2.20)
to be zero.
Finally, we set
B = <W1L (ﬂz — ﬂi—l) + WlR(ﬂiH — ﬂz)>2 (2.21)
Step 4. Compute the nonlinear weights based on the linear weights and the smoothness
indicators. Here we adopt the idea of WENO-Z as shown in [4] with the quantity 7, defined

as the absolute difference among the smoothness indicators:

3 2
Ty = (—Zl:l |§4 — 5”) , (2.22)

and we define the nonlinear weights as

Wi, 4 . T4
wpa= =24 o=y 1 ) =1, .4, 2.23
= S By M( ) (2.23)

where € = 10719 in all the formulas.

Step 5. The new final reconstruction polynomials of u;(x) and v;(z) are defined as
4
wil@) =Y wap(@),  vi(x) = gi(x). (2.24)
I=1

8



Remark 1. In Step 2 above, the choice of 7, ,, for Iy = 1,...,l5 is not unique, that is to
say, the choice of the linear weights 7, ;, for {; = 1,...,[5 is also not unique. For example,
we can also take 7, ,, =1 for all iy =1, ..., {5, thus v, 4, = i for all [y =1, ...,l5. But from
our numerical experiments, we find that even though different choices of the linear weights
do not affect the order of accuracy in the smooth regions, the bigger the linear weights for
higher-degree polynomials, the steeper the shock transitions near the discontinuities. Of
course, the gap between these linear weights should not be too large, otherwise it could
become too close to the linear interpolation, which could cause oscillations. We must find a
balance. Our choice above works well for all our numerical examples.

Remark 2. In Step 3 above, the definition of 5, is quite different from the other f;’s.
This is because if we use the same method to define 3; as other s, it would be zero. Even
though this does not affect the order of accuracy in the smooth regions, it does lead to more
smeared discontinuity transitions, especially when the problem contains strong shocks or
contact discontinuities. Therefore, we magnify 51 from zero to a positive value (dictated by
the smoothness in the target cell together with one of its neighboring cells) and this works
well in our numerical experiments.

Remark 3. In Step 4 above, through a series of Taylor expansion analyses, we can verify

that 8, — 8, = O(h?) for | < 4, thus 74, = O(h®) and

u(x) —ui(z) = u(x) — Z wiapi ()

4

4
Zwl4_7l4]_[2(wl4_714pl +Z%4P1 ]

= [Mx) - Z (@) |+ (Wia — 4) (u (z) —m (x))
= O(h%) + O_(h6) * O(h) :

(2.25)

= O(h°).
According to above Taylor expansion analyses, we find that setting the power of 74 as 2 is

enough to ensure the expected accuracy in the smooth regions. There is no need to set it to



be 3 as was done in [29].

Remark 4. In Step 5 above, it is easy to see that if we take w; 4 = y4 for { =1,...,4
in (2.24), then u;(x) = q4(x). This fact is important to maintain the order of accuracy. For
v(x), only the first-order derivative of the highest-degree polynomial q4(x) is used, which is
easy to apply and saves the cost of calculating the nonlinear weights. The reason that we
compute the first derivative v;(z) directly from g4(x) without any limiter is that only the
information defined on a hierarchy of nested central spatial stencils is used to reconstruct
u;(z) and the information of the first derivative is not used at all in the stencils of the
first two layers. Thus even if there is an oscillation associated with v;(x), its effect on the
oscillation in u;(x) is minimal.

After all these point values on the cell boundaries are obtained, we put them into (2.6).

Then we write the semi-discrete scheme (2.5) as an ordinary differential equation system
U= L(U), (2.26)
and discretize (2.26) by a third-order TVD (total variation diminishing) Runge-Kutta method

in time

Uh = U™+ AtL(U™),

U® =3pyn 4+ 1u®W + IAL(UW), (2.27)
Ut =10 + 2U® + 2AtL(U®),
to obtain a fully discrete scheme.
2.1.2 Two dimensional case
We then consider the hyperbolic conservation laws (1.1) in two dimensions
w + f(u)e + g(u), =0,
2.28
{ u(x,y,O):uo(x,y). ( )

Let v = u,,w = u,, and then from (2.28) and its spacial derivatives, we obtain the

following equations

ut+f(u)x+g(u)y:0a U(l’,y,O) :u0($ay)a
v+ p(u,v), +r(u,v), =0, v(x,y,0)=v(z,y), (2.29)
wy + q(u, w), + s(u,w), =0, w(z,y,0) =we(x,y),

10



where

For simplicity, we consider a uniform cell mesh {(@;41/2,y;41/2)} with the uniform mesh size
h = xz+1/2 Ti— 1/2 = Yj+1/2—Yj-1/2 and denote the cell by ]zy [LUZ 1/25 xz+1/2] [yj—1/27 yj+1/2]
and its center by (z;,y;) = (% (ziz1y2 + Tigr2) s 3 (Y12 + ?/j+1/2)>-

We denote the two-dimensional cell averages of u, v and w as

ﬁ] t) h2 f[ u(x,y, t)dzdy,
v5(t) fI v(z,y,t)dzdy, (2.30)
ﬁ t) fI (z,y,t)dxdy.

Integrating (2.29) over the target cell I;; to obtain the integral formulation of the conservation

laws

/N

d:i' t 1 Yi+1/2 Yj+1/2
ud]t( ) = _ﬁ |:/ f u(xi+l/27y7t))dy _/ f(u(xz—l/%yvt))dy—i_
Yj—1/2

J— Yj—1/2

Tit1/2 Tit1/2
/ g U(93>yj+1/2,t)>dif—/ g(u(%yj—l/mt))dil?},
Ti—1/2 Ti-1/2
dvi; (t)

Tt

/N

yg+1/2

p(“ $z+1/272/7 x2+1/27y7 )dy
Yj—1/2
yg+1/2

P\ U\ 1/272/7

\\

xl 1/272/7 )dy+
Yj—1/2
Tiy1/2

\

ryulr y]+1/27 55 yj+1/27 )dx
Ti—1/2
'L+1/2

rlw(z, yjm1ye,t), v(z, yj—1/2, 1) )dff}v

\

Ti—1/2

diw;(t)

dt :‘{

$Z+1/27y7 dy

—1/2
y]+1/2
qg\u Iz 1/2aya

\\

iF

—1/2
'L+1/2

(2.31)

s(u(z, yjr1/2,t), w(z, yjpr0,t) |do—
Ti—1/2

Tiy1/2

(u
(u
(
(
(u
(u

\\

s(u(z, yj_1/2,t)
Ti—1/2

11

ZE Yji— 1/27

)
(@i, y.t) )dy+

)

)

da).



We then approximate (2.31) by the following semi-discrete conservative scheme

~djzt(t) = _%( i+1/25 — fic1/25) — %(gmﬂ/z = ij-1/2);
v, (t N
d;d]t() = =5 (Birry2g — Pim1jag) — 3 (Figraje — Pig-1/2), (2:32)
wii(t
2 = L (Gisryag — Gi1/2) = 3 Bigans = 3i5o172),

where the numerical fluxes { fiil /2,5> Dit1/2,5, Qi+1/2,; } in the z-direction are defined as

; B o A +
fzil/% Zl 1wlf( z:|:1/2,]+al zi1/2,3+al)

- ut ot

Pix1/2,5 = Zl 1 wlp( z:|:1/2 J+op? z:|:1/2,]+al’ z:|:1/2,]+al7 z:|:1/2 ]-‘rO’l) (233)
- ut +

Qix1/2,5 = Zl 1 wlq( z:|:1/2 J+op? z:|:1/2,]+0l z:|:1/2 j4op? wz:l:l/2,]+al

which approximate the integrations of {f(u),p(u,v),q(u,w)} in the y-direction along = =
Ti+1/2 respectively. The numerical fluxes {g;j+1/2, 7ij+1/2, 8ij+1/2} in the y-direction are
defined in the same way, which approximate the integrations of {g(u), r(u,v), s(u, w)} in the
x-direction along y = y;11/2 respectively. Here w; and o; are the weights and nodes of the
k-point Gaussian quadrature in the cell [—1,1]. The numerical fluxes fla,b), pla,b;c,d),

G(a,b;c,d) and g(a,b), 7(a,b;c,d), $(a,b;c,d) are defined to be the Lax-Friedrichs fluxes as

+
Wit1/2 540, and |

defined in (2.7). u

:l: :l: 'UJ:t are
z:|:1/2 j4o;? i:|:1/2,j+al’ i+oy,jE£1/2° 7,+Jl,j:|:1/2’ i+oy,j+1/2

the reconstructed approximations of u(:ciiil/z,ijl,t), v(xiiil/z,ijl,t), w(milﬂ,yﬁgl,t)
and u(z4o,, yj.ll/z, t), V(Tito, yj.;l/w t), W(Tito,, y;.:ﬂ/? t) with suitable order of accuracy.

The most important part of the HWENO schemes is still the spatial reconstruction of

+

:I: + . + +
the point values {uz:l:l/2 jorr Yix1/2 40 Wit1/2, 5400 Yitorj+1/20 Vitop,j+1/2) wi+crl,j:|:1/2} from

the given cell-average values {;;, U;;, W;;} which should not only achieve high-order of
accuracy, but also maintain the essentially non-oscillatory property. The procedure of the
reconstruction for the sixth-order accuracy case is summarized as follows.

2D reconstruction algorithm:

7 (8] 9 |j+1
I |5 6 j
T (2] 3 |j—-1
i—1 i i+1

The big stencil and its new labels.

Step 1. Select a series of central spatial stencils and reconstruct different degree polyno-

mials.

12



Step 1.1. Reconstruct a zeroth degree polynomial ¢; (z,y) which satisfies

1 -

—/ G (z,y)dedy = U, k=>5. (2.34)
h* J;,

Step 1.2. Reconstruct a quadratic polynomial ¢s(x,y) which satisfies

1

5 @z, y)dedy =10, k=1,..,9. (2.35)
Iy,

Step 1.3. Reconstruct a cubic polynomial ¢3(x,y) which satisfies

1 -
W @z, y)dedy =y, k=1,..,9;
Iy,
1 dgs(,y) -
— —— 2 dxdy = k., = 5;
1 9g3(x, y) -
Yy

Step 1.4. Reconstruct a quintic polynomial q4(z,y) which satisfies

1 -
— | qu(z,y)dxdy =y, k=1,..,9;
h* Ji,
1 8q4($,y) =
— [ YY) gy — ky —1,3,4,5,6,7,9:
1 06_14(23,?/) -~
| gy dudy =k, K =1235789 (2.37)
ky

Note that for above quadratic polynomial ¢s(x,y), cubic polynomial ¢s(z,y) and quintic

polynomial g4(x,y), they all have the same cell average as u on the target cell I;; (to ensure

conservation) and match the other conditions in a least square sense as described in [10].
Step 2. Obtain equivalent expressions for the above reconstructed polynomials as shown

in [29, 30]. To keep consistent notation, we denote pi(x,y) = ¢1(z,y) and define

la—1
1 Vi
P, y) = ——a,(z.y) = > 2p(,y), (2.38)
izl 1 2.l

with 252:1 Yt = LY, # 0,10 = 2,3,4, where these 7, ,, for [y = 1,...,ly;lo = 2,3,4 are

still the linear weights and are defined as (2.13). Putting these linear weights into (2.38), we

13



can also obtain

pi(r,y) = q(z,y),

11 1
m@w%%mwaw—ﬁ@@w%
111 11
P3(Iay) = m%(%y) - m(&(%y)a
1111 111
_ _ . 2.
pa(z,y) 1000q4($,y) 1OOOQ3($,y) (2.39)

Step 3. Compute the smoothness indicators 3;,, which measure how smooth the functions

Py (x7y> are in the cell ]ij = [%’-1/2, $z’+1/2] X [yj—1/27yj+1/2]:

~ o olel 2
Pro = Z Iy [ 1|1 (pr(x’y)) drdy, 1y =2,3,4, (2.40)

jal=1
where o = (o, o), |o| = o + ay and k = 2,3,5 for I, = 2,3,4. The only exception is f,
which is slightly magnified from zero to a positive value as follows:

First, take four stencils {l;_1;, L;j, Lij+1}, {Liv1y, Lijs Lijs1}s {Liv1y, Lij, Lij—1} and

{li_1;, L, 1;j—1} and construct four linear polynomials pix(x,y) for k = 1,2,3,4 which

satisfy
1 ~
) qll(xv y)dl‘dy = U, k= 47 57 87
h? I
1 -
79 q12($ay)d$dy = Uy, k= 5a6>8;
h* Ji,
1 -
') q13($ay)d$dy = Uy, k= 2a5>6;
h* J;,
1 ~
7 /Ik qa(z,y)dedy = ug, k=2,4,5. (2.41)

Their associated smoothness indicators are
B = (_ﬁi—l,j + az‘,j)2 + (ﬁi,jﬂ - ﬁi,j>27
P12 = (ai—i-l,j - iz‘,j)z + (ﬁi,jﬂ — ﬁi,j)zv
Bz = (ai—i-l,j - az‘,j>2 + (_ii,j—l + ﬁi,j)27
514 = (_ﬁi—l,j -+ ii,j)z + (—i@j_l -+ i@j)z. (242)
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Then, according to [30], define the linear weights of these stencils as

5 1
Yie = 1, ’Ylkzzzil’%zz’ k=1,2,3,4. (2‘43)
=1 /1l

The nonlinear weights of these stencils are calculated as

-
Bk + €

Wik
Z?:l Wi 7
where the quantity 7 is defined as the absolute difference among these smoothness indicators:

2
S (Zk;ﬁl |5ék - ﬁll|) | (2.45)

Wik = wlk = Yk (1 + ) ) k= 17 27 3747 (244)

and as before e = 10710,

Finally, we set

2
. olel 4
:E:MNQ%%®%§:Mm”xy>, (2.46)

|laf=1

where o = (0w, o), o] = oy + @y
Step 4. Compute the nonlinear weights based on the linear weights and the smoothness
indicators. Here we still adopt the idea of WENO-Z with the quantity 74 defined as the

absolute difference among the smoothness indicators:

3 2
M:<;E%£ﬁg’ (2.47)

and we define the the non-linear weights as

@14 _ T4
Wi a4 = = — Wi 4= T, 1+ ) ) = 1a "'74a 2.48
st mem () 8 o

where e = 1071 in all the formulas.
Step 5. The new final reconstruction polynomials of u;j(x,y), vi;j(z,y) and w;;(z,y) are
defined as
iy, y) Zmey
0 0
vij (2, y) = %%(%y)a wij(z,y) = a—yQ4($,y)- (2.49)
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Remark 5. In Step 2 above, in comparison to the classical finite volume HWENQO
schemes in which the linear weights for HWENQO reconstruction are dependent on the quadra-
ture points, we use only one set of the linear weights for the HWENQO reconstruction at all
Gaussian quadrature points in this paper, thus we can reduce the cost of the spatial recon-
struction procedure.

Just as what we did for the one dimensional case, after all these Gaussian quadrature
point values on the boundaries are obtained, we put them into (2.33). Then we write the
semi-discrete scheme (2.32) as an ordinary differential equation system (2.26) and discretize
it by the third-order TVD Runge-Kutta method (2.27) in time to obtain a fully discrete

scheme.

2.2 Finite difference multi-resolution HWENO schemes

2.2.1 One dimensional case

We now design the finite difference multi-resolution HWENO schemes for one dimensional
hyperbolic conservation laws (2.1). We discrete the computational domain as before and

approximate (2.2) by conservative finite difference schemes

du; r o
dt(t) = _%(fi+1/2 - fi—1/2>7

dvi (1) 15 . (2.50)
a _ﬁ(gz‘ﬂ/z - 9i-1/2),

where u;(t) and v;(t) are the numerical approximations to the point values u(z;, t) and v(x;, t)

respectively, and the numerical fluxes

{ fi+1/2 = f(ui—r, oy Uigs), (2.51)

§i+1/2 = g(ui—r, ooy Wigsy Uiy vovy Ui—i—s)u
satisfy the general conditions, such as Lipschitz continuity and consistency with the physical
fluxes.
To maintain stability, we also need to consider the upwind property of the scheme. Thus,
we split the fluxes f(u) and g(u,v) into two parts

{ fu) = f7(u) + f~(u), %f*(ud)

>0, £f (u) <0,
9(u,0) = g (u,0) + g~ (u,0), Ly (u,0)

gHu) 20, Lo(woy<o, (2P
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where
1) = 5(/ () £ au)),
g (u,v) = %(g(u,v) + ow),

with @ = max|f’(u)| over the whole range of u. Take w; = f*(u;), T; = g7 (u;, v;), and repeat

(2.53)

~

the 1D reconstruction algorithm in Section 2.1.1 to obtain fi—:-l/2 = U1 /2 gi-:—l/2 = Uii1/2-
Likewise, take w; = f~(w;), U; = g~ (u;, v;), and repeat the 1D reconstruction algorithm in
Section 2.1.1 to obtain f;l 2 = u J20 Gipayy = vy Jo- Then the numerical fluxes are given

by

fiv12 = fz}l/Z + fz':rl/z7 (2.54)
9i+1/2 = 9it1/2 T Gigaye

After all these numerical fluxes on the cell boundaries are obtained, we discretize the

ordinary differential equation system (2.26) of the semi-discrete scheme (2.50) by the third-

order TVD Runge-Kutta method (2.27) to advance in time.

2.2.2 Two dimensional case

While the finite difference scheme has comparable cost and performance as the finite
volume scheme in one dimension, in two dimensions the finite difference scheme is simpler
and more cost-effective than the finite volume scheme, as we can perform differentiations
dimension by dimension, but integrals must be performed in two dimensional cells. To
be more specific, we describe in detail the design of the finite difference multi-resolution
HWENO schemes for two dimensional hyperbolic conservation laws (2.28). With the same

discretization of the computational domain as before, we approximate (2.29) by

dui- t P ¢ ~ A
dd—Jt(t) = — 5 (firrjag — ficrjag) = 7 (Gijere = Gig-12),
vl — _Lp (Pijr1/2 — Tij-1/2), (2.55)

dt “h

41725 — Dic1j25) — 7
1/~ ~
—dr ﬁ(qi+1/2,j — Gi—124) —

h
1
1/A PN
E(Si,j+1/2 - Si,j—1/2)a

where u;;(t), v;;(t) and w;;(t) are the numerical approximations to the point values u(z;, y;, t),
v(z;,y;,t) and w(w;,y;,t) respectively and the numerical fluxes ﬁ-il/zj, Dix1/2,5, Gij+1/2
and 8;;4+1/2 are reconstructed by the method straightforwardly extended from the one-

dimensional method in a dimension-by-dimension manner. The only exception is the re-
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construction of 1172, and 7; 112 for the mixed derivative quantities f(u)ye and g(u)a,
respectively.

2D reconstruction algorithm of the mixed derivative quantities:

Step 1. Flux splitting.

Firstly, split the fluxes into two parts

o(0) = )+ ), w20 Ee) <0,
r(u,v) = r(u,v) +r(u,v), Lrf(u,v) >0, Lr(u,v) <0, ’
where
¢ (u,w) = (a(u,w) = aw),

(2.57)

where a = max|f’(u)| over the whole range of w.
Step 2. Reconstruction of {cjil/zj, ffjﬂ/z}.
Secondly, choose a stencil {I;_1;,I; j, I;1+1;} at y = y; and interpolate a quadratic poly-

nomial Q(z) which satisfies

1

—/ Qr)dr =q;, k=1i—1,i,i+1, (2.58)
h I, :

then the approximation of ¢*(2;y1/2,¥;) is

. _ 1 5 1
qi—:—l/2,j ~ Q(Ii+l/2) = _ng’tl,j + aq;fj + ngtrlvj' (2.59)
As for g, /2> the reconstruction procedure is mirror symmetric with respect to 1/, of
that for (ji—:-l/2j above
A_ 1 _ 5 _ 1 _
Div1/2,5 ~ Q(%tﬂ/z) — 3% + gliv1g — gliv2ge (2.60)

The reconstruction of f’fj +1/2 in the y-direction is similar.
Step 3. Calculation of the numerical fluxes.
Finally, we obtain the numerical fluxes ¢;;1/2; and 7; j11/9 as
/\‘ L= /\_l’_ _l_ A—
{ di+1/2,j qz’:l/zj Tit1/2,5° (2.61)
Tig+1/2 = Tijyaye T jrye
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Remark 6. We would like to mention that we have tried many methods to treat the
mixed derivatives, but have encountered a common difficulty that they are all unstable except
for the method described above. A significant drawback of the method described above is
that the accuracy is now limited to fourth order. It would be interesting to obtain a stable
sixth-order discretization for these mixed derivatives in the finite difference setting.

Remark 7. For the systems, the reconstruction is performed in the local characteristic
directions to avoid oscillations near the discontinuities, see [21] for details.

Finally just as what we did for the one dimensional case, after all these numerical fluxes
on the cell boundaries are obtained, we discretize the ordinary differential equation system
(2.26) of the semi-discrete scheme (2.55) by the third-order TVD Runge-Kutta method (2.27)

to advance in time.

3 Numerical tests

In this section, we present a number of typical experiments to test the performances of
the finite volume and finite difference multi-resolution HWENO schemes which are termed
as HWENOk-FV and HWENO&-FD respectively where x is the order of the scheme. For
all the numerical tests in this paper, the third-order Runge-Kutta method (2.27) is used in
time, and the CFL number is set as 0.6 for all the one and two dimensional cases, except for
the accuracy tests where a suitably reduced time step is used to guarantee the dominance
of the spatial error. As mentioned before, we take the linear weights as 7, , = 1, 7, 4 = 10,
Y34 = 100 and 7, , = 1000 for both the finite volume and finite difference schemes in the

one and two dimensions in this paper.

Example 3.1. First, we solve the following one-dimensional nonlinear scalar Burgers’ equa-
tion:

2

m+<%) —0, 0<z<2, (3.1)

with the initial condition p(x,0) = 0.5 4 sin(rz) and periodic boundary condition. When

t = 0.5/, the solution is still smooth, and the corresponding errors and orders by HWENOG-
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FV and HWENOG-FD schemes are listed in Table 3.1. When ¢ = 1.5/7, the solution is
discontinuous, and the corresponding numerical solutions obtained by HWENOG6-FV and
HWENOG-FD schemes are plotted in Fig 3.1 against the reference exact solution.

Table 3.1: p; + (”2—2> = 0. The initial condition p(x,0) = 0.5+ sin(7z). Periodic boundary

xT

condition. T'= 0.5/7. HWENO6-FV and HWENOG-FD schemes. L' and L.

HWENOG6-FV scheme HWENOG6-FD scheme
grid points | L' error | order | L™ error | order | L' error | order | L> error | order
100 9.87TE-09 1.34E-07 8.18E-09 1.05E-07

120 3.21E-09 | 6.16 | 4.72E-08 | 5.73 | 2.34E-09 | 6.88 | 3.69E-08 | 5.72
140 1.29E-09 | 591 | 1.93E-08 | 5.79 | 8.41E-10 | 6.63 | 1.17TE-08 | 7.43
160 5.71E-10 | 6.11 | 8.88E-09 | 5.83 | 3.55E-10 | 6.47 | 5.41E-09 | 5.79
180 2.84E-10 | 5.92 | 4.46E-09 | 5.86 | 1.68E-10 | 6.35 | 2.71E-09 | 5.87
200 1.52E-10 | 5.92 | 2.40E-09 | 5.88 | 8.76E-11 | 6.17 | 1.45E-09 | 5.91

305F

-05F -05F
IR SRR N T IR

Figure 3.1:  1D-Burgers’ equation. 7" = 1.5/m. Left: the numerical and exact solutions;

right: the numerical and exact solutions zoomed in. Solid line: the exact solution; triangles:
the result of HWENOG-FV scheme; squares: the result of HWENOG-FD scheme. Number
of cells: 200.

Example 3.2. Next, we solve the following two-dimensional nonlinear scalar Burgers’ equa-

tion:
2 2

m+<%> +<%) —0, 0<z,y<4, (3.2)
x y
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with the initial condition p(x,y,0) = 0.5+sin (7(z+y)/2) and periodic boundary condition.
When ¢t = 0.5/7, the solution is still smooth, and the corresponding errors and orders by
HWENOG-FV and HWENO4-FD schemes are listed in Table 3.2. When t = 1.5/7, the
solution is discontinuous, and the corresponding numerical solutions at x = y obtained by
HWENOG6-FV and HWENO4-FD schemes are plotted in Fig 3.2 against the reference exact

solution.

2

Table 3.2: p; + <”72)m + (%)y = 0. The initial condition p(z,y,0) = 0.5+ sin (7(z + y)/2).

Periodic boundary condition. 7' = 0.5/7. HWENO6-FV and HWENO4-FD schemes. L'
and L.

HWENOG6-FV scheme HWENO4-FD scheme
grid points | L' error | order | L™ error | order | L' error | order | L* error | order
100x100 | 1.01E-07 1.49E-06 1.45E-06 1.42E-05

120x120 | 3.68E-08 | 5.53 | 5.57E-07 | 5.38 | 6.97E-07 | 4.00 | 7.15E-06 | 3.76
140x140 | 1.54E-08 | 5.65 | 2.38E-07 | 5.51 | 3.77E-07 | 3.99 | 3.93E-06 | 3.88
160x160 | 7.13E-09 | 5.78 | 1.13E-07 | 5.60 | 2.20E-07 | 4.03 | 2.31E-06 | 3.99
180x180 | 3.67E-09 | 5.65 | 5.79E-08 | 5.66 | 1.36E-07 | 4.05 | 1.43E-06 | 4.05
200200 | 2.00E-09 | 5.76 | 3.17TE-08 | 5.71 | 8.89E-08 | 4.07 | 9.37E-07 | 4.03

Figure 3.2: 2D-Burgers’ equation. 7" = 1.5/7. Left: the numerical and exact solutions at
x = y; right: the numerical and exact solutions at x = y zoomed in. Solid line: the exact
solution; triangles: the result of HWENOG-FV scheme; squares: the result of HWENO4-FD
scheme. Number of cells: 200x200.
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Example 3.3. Then, we solve the following one-dimensional compressible Euler equations:

o P o PH
a PH +8_ pu2+p =0, 0<z<2m, (33)
X
E 1(E +p)

where p is the density, p is the velocity, £ is the total energy and p is the pressure. The

initial conditions are

pla,0) = B2 yu(2,0) = Ap(x,0),  p(,0) = p(x,0)". (34)

The boundary conditions are periodic. Under above initial conditions, boundary conditions
and special choice of the parameter v = 3, we can prove that 2\/§p(x, t) is the exact solution

of the following Burgers’ equation:

ﬁ) — 9
,ut+<2 i 0, 0<ux<2m, (3.5)
w(z,0) =1+ 0.2sin(x),
and the corresponding velocity and pressure satisfy
wx,t) = \Ap(r,t), plz,t)=p(z,t). (3.6)

It is easy to verify that the solution of the above Burgers’ equation is smooth until time
T = 5. We compute the solution up to 7" = 3, and the corresponding errors and orders by

HWENOG6-FV and HWENOG6-FD schemes are listed in Table 3.3.

Table 3.3: 1D-Euler equations: The initial condition p(z,0) = %\j‘?(x), w(z,0) = /yp(x,0)

and p(z,0) = p(z,0)7. Periodic boundary condition. 7' = 3. HWENO6-FV and HWENOG6-
FD schemes. L' and L*.

HWENOG6-FV scheme HWENOG-FD scheme
grid points | L' error | order | L™ error | order | L' error | order | L* error | order
100 3.20E-08 7.37E-07 3.36E-08 7.87TE-07

120 1.15E-08 | 5.63 | 2.67E-07 | 5.57 | 1.19E-08 | 5.69 | 2.84E-07 | 5.58
140 4.85E-09 | 5.59 | 1.21E-07 | 5.13 | 5.06E-09 | 5.54 | 1.26E-07 | 5.27
160 2.28E-09 | 5.66 | 5.48E-08 | 5.93 | 2.36E-09 | 5.72 | 5.75E-08 | 5.89
180 1.17E-09 | 5.65 | 2.97E-08 | 5.21 | 1.20E-09 | 5.70 | 3.06E-08 | 5.35
200 6.35E-10 | 5.81 | 1.56E-08 | 6.08 | 6.501E-10 | 5.84 | 1.63E-08 | 6.00
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Example 3.4. Next, we solve the following two-dimensional compressible Euler equations:

ol . 9 A B "
pi pp® + p pv
— — — =0, 0< <4 3.7
ot | pv + ox PV + Oy pv? +p ’ DY = A (3.7)
E (E +p) v(E +p)

where p is the density, i is the velocity in the x-direction, v is the velocity in the y-direction,

E' is the total energy and p is the pressure. The initial conditions are

140.2 sin( Z1Y
p(x,y,O) = %7 :U’(xvyvo) - V Y y7 fp Y y7 7 $ y,O) = p($,y,0)7.

(3.8)
The boundary conditions are periodic in both directions. Under above initial conditions,
boundary conditions and special choice of the parameter v = 3, we can prove that \/ép(x, y,t)
is the exact solution of the following Burgers’ equation:
{ ,ut—|-<“2—2>x—l-<“2—2>y:0, 0 <2,y <dm, (3.9)
w(z,y,0) =14 0.2sin(22),

and the corresponding velocity and pressure satisfy

/L(I‘,y,t) - V x y7 fﬂ x y7 ) LIZ‘ yvt) = p(ﬂ?,y,t)ﬁ/. (310)

It is easy to verify that the solution of the above Burgers’ equation is smooth until time

T = 5. We compute the solution up to T' = 3, and the corresponding errors and orders by

HWENOG6-FV and HWENO4-FD schemes are listed in Table 3.4.

Example 3.5. Consider the isentropic vortex problem [21] for the two-dimensional
compressible Euler equations (3.7). The mean flow is p = p = u = v = 1. We add an
isentropic vortex perturbation centered at (o, yo) in (u,v) and T' = p/p, with no perturbation

in S =p/p? to the mean flow,

2
o € 0.5(1—7r2) - - (7_ 1)6 1—r2
(5u, 57)) = %6 <—y, I), (ST = W@ (311)
where (Z,7) = (x — o,y — y0), 7> = 7> + y°. The exact solution is the passive convection

of the vortex with the mean velocity. The domain is taken as [—10,10] x [—10,10] and
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in( 2ty
Table 3.4: 2D-Euler equations: The initial condition p(x,y,0) = w\/g(”, w(z,y,0) =

v(z,y,0) = \/gp(x,y,()) and p(z,y,0) = p(z,y,0)?. Periodic boundary condition. 7" = 3.
HWENO6-FV and HWENO4-FD schemes. L' and L.

HWENOG6-FV scheme HWENO4-FD scheme
grid points | L' error | order | L™ error | order | L' error | order | L* error | order
100x100 | 7.24E-07 1.45E-05 7.27E-06 1.05E-04

120x120 | 2.90E-07 | 5.01 | 6.35E-06 | 4.54 | 3.71E-06 | 3.69 | 5.83E-05 | 3.24
140x140 | 1.29E-07 | 5.26 | 2.98E-06 | 4.91 | 2.10E-06 | 3.71 | 3.38E-05 | 3.54
160x160 | 6.28E-08 | 5.40 | 1.46E-06 | 5.36 | 1.27E-06 | 3.76 | 2.08E-05 | 3.62
180x180 | 3.41E-08 | 5.19 | 8.21E-07 | 4.86 | 8.11E-07 | 3.81 | 1.37E-05 | 3.58
200x200 | 1.94E-08 | 5.37 | 4.56E-07 | 5.58 | 5.43E-07 | 3.81 | 9.15E-06 | 3.81

(20,%0) = (0,0). The boundary conditions are periodic in both directions. We set v = 1.4
and the vortex strength e = 1.0. We compute the solution up to 7" = 5, and the corresponding
errors and orders by HWENOG-FV and HWENO4-FD schemes are listed in Table 3.5.

Table 3.5: The isentropic vortex problem: The initial condition p(z,y,0) =
1

(1= 528 ") T (ua,9,0),0(0,9,0) = 1+ £2%07(=5,2) and p(r,y,0) =

p(x,y,0)". Periodic boundary condition. 7" = 5. HWENOG6-FV and HWENO4-FD schemes.
L' and L.

HWENOG6-FV scheme HWENO4-FD scheme
grid points | L' error | order | L error | order | L' error | order | L> error | order
100x100 | 2.98E-07 3.05E-05 6.80E-06 2.58E-04

120x120 | 1.17E-07 | 5.13 | 1.22E-05 | 5.04 | 3.56E-06 | 3.55 | 1.50E-04 | 2.95
140x140 | 5.21E-08 | 5.26 | 5.33E-06 | 5.36 | 2.09E-06 | 3.46 | 8.71E-05 | 3.54
160x160 | 2.56E-08 | 5.32 | 2.57E-06 | 5.46 | 1.31E-06 | 3.52 | 5.37E-05 | 3.62
180180 | 1.36E-08 | 5.39 | 1.36E-06 | 5.38 | 8.60E-07 | 3.54 | 3.53E-05 | 3.56
200x200 | 7.67E-09 | 5.41 | 7.57E-07 | 5.59 | 5.91E-07 | 3.56 | 2.40E-05 | 3.66

Comment: According to the results listed in above five tables Table 3.1, Table 3.2, Table
3.3, Table 3.4 and Table 3.5, we can see that both the finite volume and finite difference
HWENO schemes achieve their designed order of accuracy and that the errors of the finite
volume schemes are bigger than those of the finite difference schemes on the same meshes

for Example 3.1, while Example 3.3 shows the opposite result. From Fig 3.1 and Fig 3.2,
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we can observe that both the finite volume and finite difference HWENO schemes work well
in comparison with the exact solutions and there is not much difference between these two

schemes.

Example 3.6. The Buckley-Leverett problem: one-dimensional nonlinear non-convex scalar
Buckley-Leverett problem:

44

+
" (4M2 + (1= p)?

with the initial condition:

) =0, -l<zx<l1, (3.12)

1, =05 <2 <0,
a 0, elsewhere.

(3.13)
We present the computed solutions obtained by HWENOG6-FV and HWENOG6-FD schemes
at T'= 0.4 in Fig 3.3 against the reference exact solution. The exact solution is a shock-
rarefaction-contact discontinuity mixture and some high-order schemes may fail to converge
to the correct entropy solution for this problem. From Fig 3.3, we can observe that both

the finite volume and finite difference HWENO schemes could converge to the right solution

and gain good resolution.

08
06
041

02

Figure 3.3:  The Buckley-Leverett problem. T = 0.4. Left: the numerical and exact
solutions; right: the numerical and exact solutions zoomed in. Solid line: the exact solution;
triangles: the result of HWENOG-FV scheme; squares: the result of HWENOG-FD scheme.
Number of cells: 200.
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Example 3.7. The Lax problem: one-dimensional compressible Euler equations (3.3) with

the Riemann initial condition:

(0.445,0.698,3.528)T, —0.5 < x < 0,

T _
(po 1, p)" = { (0.5,0,0.571)7, 0 <2 < 0.5. (3.14)

We present the computed density p obtained by HWENOG6-FV and HWENOG-FD schemes

at T'=0.16 in Fig 3.4 against the reference exact solution.

L L L L L L | IR IR SR A
-0.4 -0.2 0 0.2 0.4 0.3 0.35 0.4 0.45
X

Figure 3.4: The Lax problem. T = 0.16. Left: density; right: density zoomed in. Solid
line: the exact solution; triangles: the result of HWENOG-FV scheme; squares: the result of
HWENOG-FD scheme. Number of cells: 200.

Example 3.8. The shock density wave interaction problem: one-dimensional compressible

Euler equations (3.3) with a moving Mach=3 shock interaction with sine waves in density:

(001" — (3.857143,2.629369, 10.333333)T, —5 < x < —4,
il (1+0.2sin(52),0,1)", —4 <z <5.

We present the computed density p obtained by HWENOG6-FV and HWENOG-FD schemes

(3.15)

at T'= 1.8 in Fig 3.5 against the reference “exact” solution which is a converged solution

computed by the fifth-order finite difference WENO scheme [12] with 8000 grid points.

Example 3.9. The blast wave problem: one-dimensional compressible Euler equations (3.3)

with the initial condition:
(1,0, 103)T, 0<z<0.1,
(p, i, p)" =< (1,0,10737, 0.1 <z < 0.9, (3.16)
(1,0,109)T, 09<z <1,
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Density

Figure 3.5: The shock density wave interaction problem. 7" = 1.8. Left: density; right:
density zoomed in. Solid line: the exact solution; triangles: the result of HWENOG6-FV
scheme; squares: the result of HWENOG-FD scheme. Number of cells: 400.

We present the computed density p obtained by HWENOG6-FV and HWENOG-FD schemes

at T'= 0.038 in Fig 3.6 against the reference “exact” solution which is a converged solution

computed by the fifth-order finite difference WENO scheme [12] with 16000 grid points.

Density
w
T
Density

R . L L L L _1;‘“l"Hl‘“‘lu“l“‘u““lu“l“‘
0 0.2 0.4 0.6 0.8 1 05 055 06 065 07 075 08 08 09
X X

Figure 3.6: The blast wave problem. 7" = 0.038. Left: density; right: density zoomed in.
Solid line: the exact solution; triangles: the result of HWENOG-FV scheme; squares: the

result of HWENOG-FD scheme. Number of cells: 800.

Example 3.10. The Lax problem: two-dimensional compressible Euler equations (3.7) with
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the Riemann initial condition:

(p 111, p)" = (0.445,0.698,0,3.528)7, —0.5 <2’ <0,
by = (0.5,0,0,0.571)7, 0 <2’ < 0.5,

(3.17)
where 2" denotes the z-axis of the new rectangular coordinate system which is obtained by
rotating the original rectangular coordinate system counterclockwise by 45 degrees. The
similar one-dimensional boundary condition is applied in the z'-direction. Since the velocity
is zero in the y'-direction, all the variables have the same value along y' = constant. We

present the computed density p obtained by HWENOG-FV and HWENO4-FD schemes at

T = 0.16 along y = x in Fig 3.7 against the reference exact solution.
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Figure 3.7: The Lax problem. T = 0.16. Left: density cut along y = x; right: density
zoomed in. Solid line: the exact solution; triangles: the result of HWENOG-FV scheme;
squares: the result of HWENO4-FD scheme. Number of cells: 142x142 (The grid is selected
in this way to compare with the corresponding one-dimensional case, since there is a factor
of V2 adjustment to achieve effectively equivalent mesh sizes in 1D and in 2D along the
diagonal line).

Example 3.11. The shock density wave interaction problem: two-dimensional compressible
Euler equations (3.7) with a moving Mach=3 shock interaction with sine waves in density:

(3.857143,2.629369,0,10.333333)", —5 <2’ < —4,

, : 3.18
(1+0.2sin(5z"),0,0, 1)T, —4 < x <5, (3.18)

(o, o v, 0)" = {

where 2’ denotes the z-axis of the new rectangular coordinate system which is obtained by

rotating the original rectangular coordinate system counterclockwise by 45 degrees. The
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similar one-dimensional boundary condition is applied in the z'-direction. Since the velocity
is zero in the y'-direction, all the variables have the same value along y' = constant. We
present the computed density p obtained by HWENOG-FV and HWENO4-FD schemes at
T = 1.8 along y = x in Fig 3.8 against the reference “exact” solution which is a converged

solution computed by the fifth-order finite difference WENO scheme [12] with 8000 grid

points.

Density

Figure 3.8:  The shock density wave interaction problem. T = 1.8. Left: density cut
along y = x; right: density zoomed in. Solid line: the exact solution; triangles: the result
of HWENOG-FV scheme; squares: the result of HWENO4-FD scheme. Number of cells:
283 %283 (The grid is selected in this way to compare with the corresponding one-dimensional
case, since there is a factor of v/2 adjustment to achieve effectively equivalent mesh sizes in
1D and in 2D along the diagonal line).

Example 3.12. Double Mach reflection problem: two-dimensional compressible Euler equa-
tions (3.7) in a computational domain [0, 4]x [0, 1] with a reflection wall lying at the bottom
of the domain starting from =z = %, y = 0, making a 60° angle with the z-axis. For the
bottom of the domain, the reflection boundary condition is used at the reflection wall, and
the exact post-shock condition is imposed at the rest of the bottom boundary (the part from
r=0tozr = %) For the top of the domain, the boundary is the exact motion of the Mach
10 shock with v = 1.4. We present the computed density p obtained by HWENOG6-FV and
HWENO4-FD schemes at ¢t = 0.2 in the region of [0, 3]x[0,1] in Fig 3.9 and the blow-up
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region around the double Mach stem in Fig 3.10.
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Figure 3.9: Double Mach reflection problem. T = 0.2. 30 equally spaced density contours
from 1.5 to 22.7. Top: HWENOG6-FV; bottom: HWENO4-FD. Number of cells: 1600x400
in the region of [0, 4]x[0, 1].

Example 3.13. Forward step problem: two-dimensional compressible Euler equations (3.7)
in a Mach 3 wind tunnel with a step. The wind tunnel is one length unit wide and three
length units long with a 0.2 length units high step located 0.6 length units from the left-side
end of the tunnel. The problem is initialized by a right-going Mach 3 flow at the beginning.
The reflection boundary condition is used along the wall of the tunnel, the inflow boundary
condition is imposed at the entrance, and the outflow boundary condition is imposed at
the exit. We present the computed density p obtained by HWENOG6-FV and HWENO4-FD

schemes at ¢t = 4 in the region of [0, 3] %[0, 1] in Fig 3.11.

Comment: From above eight examples, we can see that both the finite volume and finite

difference HWENO schemes work well in comparison with their “exact” solutions. Further-
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Figure 3.10: Double Mach reflection problem. 7" = 0.2. 30 equally spaced density contours
from 1.5 to 22.7, zoom-in pictures around the Mach stem. Left: HWENOG6-FV; right:
HWENO4-FD. Number of cells: 1600x400 in the region of [0,4]x[0, 1].
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Figure 3.11: Forward step problem. T" = 4. 30 equally spaced density contours from 0.32 to
6.15. Top: HWENOG6-FV; bottom: HWENO4-FD. Number of cells: 600x200 in the region
of [0, 3] %[0, 1].
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more, there is not much difference between these two schemes for Example 3.6 and Example
3.7, while the finite volume HWENO schemes have better resolutions and sharper shock
transitions than the finite difference HWENO schemes on the same meshes for the other
examples except Example 3.10 and Example 3.13. This might be due to the fact that very
global Lax-Friedrichs flux splitting (where « is chosen as a scalar for all components and
all cells) is used in the finite difference scheme, causing larger numerical viscosity than the
finite volume scheme. Also, for the two dimensional case, an extra obvious reason is that the
finite volume HWENO scheme has a higher order of accuracy. We note that for Example
3.10 and Example 3.13, the result of the finite difference HWENO scheme is actually better

than that of the finite volume scheme, the reason of this is not clear.

4 Concluding remarks

In this paper, we have designed a new type of finite volume and finite difference multi-
resolution HWENO schemes for solving the hyperbolic conservation laws in one and two
dimensional cases on structured meshes. In comparison with the classical HWENO schemes,
the new features of these HWENO schemes are their simplicity since we only need to per-
form the spatial HWENO reconstruction for the function values but perform high-order linear
reconstruction for its first-order derivative values and hierarchical structure in obtaining in-
creasingly higher order of accuracy with unequal sized hierarchical central spatial stencils.
These HWENO schemes are achieved by artificially setting positive linear weights as long as
their sum equals one, calculating smoothness indicators, designing new nonlinear weights,
and then obtaining a nonlinear convex combination of all the candidate polynomials. The
features which are attractive include that there is no need to modify the first-order derivative
values of the target cell before the reconstruction; no need to apply any positivity-preserving
flux limiter for simulations with strong shocks, at least for the examples we have calculated
in this paper; and that the CFL number can be taken to be 0.6 for both the one and two

dimensional cases, which is an improvement from 0.2 in [15, 16]. In comparison with the
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multi-resolution WENO schemes, our major advantage is the compactness in the reconstruc-

tion.

The framework of this multi-resolution HWENO spatial reconstruction procedure

would be particularly efficient and simple on unstructured meshes, the study of which is our

ongoing work.

References

1]

D.S. Balsara, S. Garain, V. Florinski and W. Boscheri, An efficient class of WENO
schemes with adaptive order for unstructured meshes, J. Comput. Phys., 404 (2020),
109062.

D.S. Balsara, S. Garain and C.-W. Shu, An efficient class of WENO schemes with
adaptive order, J. Comput. Phys., 326 (2016), 780-804.

D.S. Balsara, C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory

schemes with increasingly high order of accuracy, J. Comput. Phys., 160 (2000), 405-452.

M. Castro, B. Costa, W.S. Don, High order weighted essentially non-oscillatory WENO-

Z schemes for hyperbolic conservation laws, J. Comput. Phys., 230 (2011), 1766-1792.

B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws II: general framework, Math. Comput., 52

(1989), 411-435.

B. Costa and W.S. Don, Multi-domain hybrid spectral-WENO methods for hyperbolic

conservation laws, J. Comput. Phys., 224 (2007), 970-991.

M. Dumbser, W. Boscheri, M. Semplice and G. Russo, Central WENO schemes for
hyperbolic conservation laws on fixed and moving unstructured meshes, STAM J. Sci.

Comput., 39 (2017), A2564-A2591.

33



8]

[10]

[11]

[12]

[13]

[14]

[17]

[18]

A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys.,

49 (1983), 357-393.

A. Harten, B. Engquist, S. Osher, S. Chakravarthy, Uniformly high order accurate

essentially non-oscillatory schemes, 111, J. Comput. Phys., 71 (1987), 231-303.

C. Hu, C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes,

J. Comput. Phys., 150 (1999), 97-127.

G. Hu, R. Li, T. Tang, A robust WENO type finite volume solver for steady Euler

equations on unstructured grids, Commun. Comput. Phys., 9 (2011), 627-648.

G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput.

Phys., 126 (1996), 202-228.

D. Levy, G. Puppo and G. Russo, Central WENO schemes for hyperbolic systems of
conservation laws, Math. Model. Numer. Anal., 33 (1999), 547-571.

D. Levy, G. Puppo, G. Russo, Compact central WENO schemes for multidimensional
conservation laws, STAM J. Sci. Comput., 22 (2000), 656-672.

H. Liu, J. Qiu, Finite difference Hermite WENO schemes for conservation laws, J. Sci.

Comput., 63 (2015), 548-572.

H. Liu, J. Qiu, Finite difference Hermite WENO schemes for conservation laws, II: an

alternative approach, J. Sci. Comput., 66 (2016), 598-624.

X.D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput.
Phys., 115 (1994), 200-212.

S. Pirozzoli, Conservative hybrid compact-WENO schemes for shock-turbulence inter-

action, J. Comput. Phys., 178 (2002), 81-117.

34



[19]

[20]

[24]

[25]

2]

[27]

J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-
Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193

(2004), 115-135.

J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-
Kutta discontinuous Galerkin method II: two-dimensional case, Computers and Fluids,

34 (2005), 642-663.

C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes
for hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear
Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (Editor:
A. Quarteroni), Lecture Notes in Mathematics, volume 1697, Springer, Berlin, 1998,
pp.325-432.

C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock cap-
turing schemes, J. Comput. Phys., 77 (1988), 439-471.

C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock cap-
turing schemes, II, J. Comput. Phys., 83 (1989), 32-78.

7.J. Wang, R.F. Chen, Optimized weighted essentially non-oscillatory schemes for linear

waves with discontinuity, J. Comput. Phys., 174 (2001), 381-404.

Y.H. Zahran and A.H. Abdalla, Seventh order Hermite WENO scheme for hyperbolic
conservation laws, Comput. Fluid., 131 (2016), 66-80.

7. Zhao, Y. Chen, J. Qiu, A hybrid Hermite WENO scheme for hyperbolic conservation
laws, J. Comput. Phys., 405 (2020), 109175.

7. Zhao, J. Qiu, A Hermite WENO scheme with artificial linear weights for hyperbolic
conservation laws, J. Comput. Phys., 417 (2020), 109583.

35



(28] J. Zhu, J. Qiu, A class of fourth order finite volume Hermite weighted essentially non-
oscillatory schemes, Sci. China Ser. A, Math., 51 (2008), 1549-1560.

[29] J. Zhu, C.-W. Shu, A new type of multi-resolution WENO schemes with increasingly
higher order of accuracy, J. Comput. Phys., 375 (2018), 659-683.

[30] J. Zhu, C.-W. Shu, A new type of multi-resolution WENO schemes with increasingly

higher order of accuracy on triangular meshes, J. Comput. Phys., 392 (2019), 19-33.

36



