
Multi-layer perceptron estimator for the total variation bounded constant in

limiters for discontinuous Galerkin methods1

Xinyue Yu2 and Chi-Wang Shu3

Division of Applied Mathematics

Brown University

Providence, RI 02912, USA

1Research supported by NSF grant DMS-2010107 and AFOSR grant FA9550-20-1-0055.
2E-mail: xinyue yu@brown.edu
3Corresponding author. E-mail: chi-wang shu@brown.edu

1

Multi-layer perceptron estimator for the total variation bounded constant in

limiters for discontinuous Galerkin methods1

Abstract

The discontinuous Galerkin (DG) method is widely used in numerical solution of partial

differential equations, especially for hyperbolic equations. However, for problems containing

strong shocks, the DG method often needs to be supplemented by a limiter to control spurious

oscillations and to ensure nonlinear stability. The total variation bounded (TVB) limiter

is a popular choice and can maintain the original high order accuracy of the DG scheme

in smooth regions and keep a sharp and non-oscillatory discontinuity transition, when a

certain TVB constant M is chosen adequately. For scalar conservation laws, suitable choice

of this constant M can be based on solid mathematical analysis. However, for nonlinear

hyperbolic systems, there is no rigorous mathematical guiding principle for the determination

of this constant, and numerical experiments often use ad hoc choices based on experience

and through trial and error. In this paper, we develop a TVB constant artificial neural

network (ANN) based estimator by constructing a multi-layer perceptron (MLP) model. We

generate the training data set by constructing piecewise smooth functions containing local

maxima, local minima, and discontinuities. By using the supervised learning strategy, the

MLP model is trained offline. The proposed method gives the TVB constant M with robust

performance to capture sharp and non-oscillatory shock transitions while maintaining the

original high order accuracy in smooth regions. Numerical results using this new estimator in

the TVB limiter for DG methods in one and two dimensions are given, and its performance

is compared with the classical ad hoc choices of this TVB constant.

Key words: Discontinuous Galerkin method; total variation diminishing; total varia-

tion bounded; limiters; multi-layer perceptron; artificial neural network; supervised learning

strategy.

1Research supported by NSF grant DMS-2010107 and AFOSR grant FA9550-20-1-0055.

1

1 Introduction

The discontinuous Galerkin (DG) method was firstly proposed by Reed and Hill [31] to

solve the neutron transport problem, which is a linear hyperbolic equation. It was later

coupled with the total variation bounded (TVB) limiter [34] and the nonlinearly stable

Runge-Kutta time discretization [35] to solve nonlinear hyperbolic conservation laws by

Cockburn et al. [6, 5, 4, 7], and has been widely used in computational fluid dynamics (CFD)

applications, due to its high order accuracy and easy and efficient parallel implementation

in complicated geometry. As is well known, the solution of nonlinear conservation laws

often generates discontinuities, even with smooth initial and boundary conditions. Although

the DG method can be proved to be L2 and entropy stable for nonlinear hyperbolic scalar

equations and systems [16, 15, 2, 3], this does not prevent the numerical solution from

generating spurious oscillations near discontinuities. These oscillations are unpleasant in

visualization, and, more seriously, they may lead to nonlinear instability for hyperbolic

systems since hyperbolicity may be lost when such oscillations bring the numerical solution

outside of the physical constraints (e.g. the appearance of negative density or pressure

for compressible gas dynamics). To control these oscillations, nonlinear limiters are often

used. They might be applied in specific cells using shock detectors (also called troubled

cell indicators), such as the KXRCF shock detector developed by Krivodonova et al. [20],

the troubled cell indicator of Fu and Shu [10], and the artificial neural network (ANN)

based troubled cell indicator [29]. They may also be applied everywhere, with a careful

design attempting to retain the original high order accuracy in smooth regions. Examples

include the minmod-based total variation diminishing (TVD) limiters [14, 25], the minmod-

based total variation bounded (TVB) limiter [34], the moment limiter [1], the monotonicity-

preserving limiter [38], and the weighted essentially non-oscillatory (WENO) limiter [28]. A

summary and comparison of limiters can found in [44].

One drawback of many of the limiters, including the popular minmod-based TVD lim-

iters [14, 25], is that they may degenerate to first order accuracy near smooth extrema,

2

even though they could retain the original high order accuracy in smooth and monotone

regions [26]. To overcome this difficulty, Shu [34] designed a minmod-based TVB limiter,

which can retain the original high order accuracy in smooth regions, including regions near

smooth extrema. The adaptation and application of this TVB limiter to DG methods for

solving scalar one-dimensional hyperbolic conservation laws were carried out in [6], and this

limiter was further extended to DG methods solving one-dimensional systems and multidi-

mensional cases in [5, 4, 7]. Comparing with the minmod-based TVD limiters, this TVB

limiter significantly improves accuracy in smooth regions near solution extrema. However,

it involves a TVB parameter M , which must be determined in a problem-dependent fash-

ion. In the two extremes, M = 0 returns to the TVD limiter, and M = +∞ returns to

the original scheme without any limiter. If M is chosen too small, accuracy near smooth

extrema might be affected; while if M is chosen too large, noticeable spurious oscillations

may reappear near discontinuities. For scalar nonlinear conservation laws, there exists rig-

orous mathematical guidance on the choice of M to guarantee that accuracy is maintained

in smooth regions [34, 6]. However, for nonlinear systems, no such mathematical guidance

exists, and hence in practice, M is usually chosen in an ad hoc fashion based on experience

and through trial and error. With proper choices of the TVB constant M , DG schemes with

the TVB limiter can give excellent resolution in CFD simulations. Besides the examples for

compressible gas dynamics in [5, 7], we could also mention the application in [22], combined

with a wet-dry moving boundary treatment, for solving shallow water equations. Also for

solving shallow water equations, it works well on unstructured triangular meshes [42]. The

TVB limiter is used to indicate the troubled cells in the application of special relativistic

hydrodynamics [43]. Effort has also been made to provide guidance for an automated choice

of the TVB constant M . A unified approach for the determination of this constant in mixed

type meshes was studied and applied by Kontzialis et al. [19] and by Panourgias et al. [27],

where M was chosen according to the variation of the derivatives of the numerical solution.

In [39], Vuik and Ryan proposed an automatic parameter selection strategy for this TVB

3

constant M based on Tukey’s boxplot method of outlier-detection, and its application with

compact-WENO finite element method is shown in [11].

In this paper, we aim to introduce an artificial neural network (ANN) based estimator

for this TVB constant M by constructing a multi-layer perceptron (MLP) model. ANNs

have the ability to approximate mappings with high-level complexity and nonlinearity, and

thus they have undergone rapid developments and applications in numerical computation in

recent years. For example, the ANNs are studied to solve ordinary and partial differential

equations [21, 12, 33]. The multi-layer perceptron (MLP) is one of the most widely-used

ANN models. It consists of an input layer, an output layer, and functional hidden layers. In

[29, 30], Ray and Hesthaven constructed a troubled-cell indicator based on the MLP model,

and Wen et al. applied it in finite difference WENO methods [40]. A well trained MLP

model is free of problem-dependent parameter and hence suitable to be used as a unified

approach for determining the TVB constant M in the TVB limiter applied to DG methods

solving general conservation laws. We will construct function values containing information

of discontinuities and local smooth extrema, and give the corresponding values of M in the

training data set. The training process is performed offline, and the trained model should be

able to return suitable TV B constant M to keep high order accuracy in smooth regions and

eliminate spurious oscillations near discontinuities. The model will be added online into the

DG framework with minimal modification on the standard TVB DG code to solve general

conservation laws.

The outline of this paper is as follows. In Section 2, the background knowledge of the

discontinuous Galerkin method and the minmod-based TVB limiter will be given. We will

present the details for the construction of the training data set and the MLP model, as well

as its implementation in the DG method, in Section 3. Numerical examples in 1D and 2D

will be provided in Section 4, to demonstrate the good performance of the MLP-based TVB

limiter in comparison with the ad hoc choice of the TVB constant M . Concluding remarks

are given in Section 4.

4

2 Problem setup and preliminaries

2.1 Introduction of the DG method

We consider the following conservation law:

{

ut +∇ · F (u) = 0, on Ω ⊂ R
d, d = 1, 2,

u(·, 0) = u0(·),
(2.1)

where F is a linear or nonlinear flux function and Ω is a bounded domain in R
d. In the one

dimensional case, the conservation law is

{

ut + f(u)x = 0, on Ω ⊂ R,
u(x, 0) = u0(x),

(2.2)

where Ω = [a, b]. We discretize the domain by the partition a = x1/2 < x3/2 < · · · <

xN+1/2 = b. The cell Ii is denoted as Ii = {x : xi−1/2 < x < xi+1/2}, for 1 ≤ i ≤ N , and

the mesh sizes are hi = xi+1/2 − xi−1/2. In this paper we will use uniform meshes hi = h for

simplicity, unless specifically explained. We define a piecewise continuous polynomial space

V k
h = {p ∈ L2(Ω) : p|Ii ∈ P k(Ii)}, where P k(Ii) is the space of polynomials of degree ≤ k in

Ii. Then the one-dimensional DG method is stated as follows: Find uh(·, t) ∈ V k
h , such that

for all vh ∈ V k
h , uh satisfies:

d

dt

∫

Ii

uh(x, t)vh(x, t) dx−
∫

Ii

f(uh(x, t))(vh(x, t))x dx+ f̂i+ 1

2

vh(x
−

i+ 1

2

, t)− f̂i− 1

2

vh(x
+

i− 1

2

, t) = 0,

(2.3)

where f̂i+ 1

2

= f̂(uh(x
−

i+ 1

2

, t), uh(x
+

i+ 1

2

, t)) is a monotone numerical flux in the scalar case and

an exact or approximate Riemann-solver based numerical flux in the system case, see [6, 5].

To implement the DG method, one can use a local basis over Ii: vi = (v0i , . . . , v
k
i)

T , and

the numerical solution is expressed as

uh(x, t) =

k
∑

ℓ=0

uℓ
i(t)v

ℓ
i (x), for x ∈ Ii. (2.4)

The time dependent coefficients ui(t) = (u0

i (t), . . . , u
k
i (t))

T are the computational variables

to be evolved in time. If we take the test functions as vh = vli, l = 0, . . . , k, the scheme can

5

be written as

k
∑

ℓ=0

duℓ
i

dt

∫

Ii

vliv
ℓ
idx =

∫

Ii

f

(

k
∑

ℓ=0

uℓ
iv

ℓ
i

)

(vli)x dx− f̂i+ 1

2

vli(xi+ 1

2

) + f̂i− 1

2

vli(xi− 1

2

), l = 0, . . . , k.

(2.5)

The integrals in (2.5) can be computed either exactly or via suitable quadratures. The

coefficients ui can be obtained by using a proper time discretization to solve the ordinary

differential equation (ODE) (2.5). In this paper, we will use the third order TVD Runge-

Kutta scheme (RK3) [35] in the computation. Denote U(t) = (u1(t), . . . ,uN (t))
T , the

equation (2.5) can be written as

d

dt
U(t) = L(U(t)),

where L is the spatial discretization operator. With U
n = U(tn), where tn is n-th time step,

the third order Runge-Kutta scheme is stated as follows:

U
(1) = U

n +∆tL(Un),

U
(2) = 3

4
U

n + 1

4
(U (1) +∆tL(U (1))),

U
n+1 = 2

3
U

n + 1

3
(U (2) +∆tL(U (2))).

(2.6)

In the two dimensional case, the conservation law becomes

ut + f(u)x + g(u)y = 0, on Ω ⊂ R
2. (2.7)

We consider the simple box geometry, and let Ω = [ax, bx]× [ay, by]. Likewise, for simplicity

of presentation, we use a rectangular mesh to cover the domain, consisting of the cells

Iij = [xi− 1

2

, xi+ 1

2

]× [yj− 1

2

, yj+ 1

2

] for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny. Similar to the 1D case, we

define V k
h = {p ∈ L2(Ω) : p|Iij ∈ P k(Iij)} where P k(Iij) is the set of polynomials of degree

≤ k over the cell Iij. Recall the notation in (2.1) that F (u) = (f(u), g(u)). The 2D DG

method is stated as follows: Find uh(·, t) ∈ V k
h , such that for all vh ∈ V k

h , uh satisfies:

d

dt

∫

Iij

uh(x, y, t)vh(x, y)dxdy −
∫

Iij

F (uh(x, y, t)) · ∇vh(x, y)dxdy

+

∫ x
i+1

2

x
i− 1

2

ĝi,j+ 1

2

vh(x, y
−

j+ 1

2

)dx−
∫ x

i+1
2

x
i−1

2

ĝi,j− 1

2

vh(x, y
+

j− 1

2

)dx

+

∫ y
j+1

2

y
j− 1

2

f̂i+ 1

2
,j vh(x

−

i+ 1

2

, y)dy −
∫ y

j+1
2

y
j− 1

2

f̂i− 1

2
,j vh(x

+

i− 1

2

, y)dy = 0,

(2.8)

6

where f̂i+ 1

2
,j = f̂(uh(x

−

i+ 1

2

, y, t), uh(x
+

i+ 1

2

, y, t)) is a one-dimensional numerical flux as defined

before, likewise for ĝi,j+ 1

2

. Consider a proper local basis over Iij : vij = (v0ij, . . . , v
K
ij) where

K = (k + 1)(k + 2)/2, then the numerical solution is expressed as

uh(x, y, t) =

K
∑

ℓ=0

uℓ
ij(t)v

ℓ
ij(x, y), for (x, y) ∈ Iij . (2.9)

Define the coefficients as uij = (u0

ij, . . . , u
K
ij), and take the test functions as vh = vli, l =

0, . . . , K, then the scheme can be written as

k
∑

ℓ=0

duℓ
ij

dt

∫

Iij

vlijv
ℓ
ijdx =

∫

Iij

F (

K
∑

ℓ=0

uℓ
ij(t)v

ℓ
ij(x, y)) · ∇vlijdxdy

−
∫ x

i+1
2

x
i− 1

2

ĝi,j+ 1

2

vlij(x, y
−

j+ 1

2

)dx+

∫ x
i+1

2

x
i−1

2

ĝi,j− 1

2

vlij(x, y
+

j− 1

2

)dx

−
∫ y

j+1
2

y
j− 1

2

f̂i+ 1

2
,jv

l
ij(x

−

i+ 1

2

, y)dy +

∫ y
j+1

2

y
j− 1

2

f̂i− 1

2
,jv

l
ij(x

+

i− 1

2

, y)dy.

(2.10)

Again, the coefficients uij(t) can be obtained by solving the ODE (2.10) by the third order

Runge-Kutta time discretization (2.6).

2.2 The minmod-based TVB limiter

As mentioned in the introduction, the DG scheme provides high order accurate simulation

of smooth solutions, and maintains L2 and entropy stability for discontinuous solutions.

However, this does not prevent the DG solution from showing spurious Gibbs oscillations

near discontinuities, which may lead to nonlinear instability for solving nonlinear hyperbolic

systems. Various nonlinear limiters are designed in the literature to control those spurious

oscillations, while attempting to retain the original high order accuracy in smooth regions.

In this section we describe the minmod-based TVB limiter [34, 6], which is the focus of our

study in this paper.

In the one dimensional case, we denote the cell average of uh in each cell Ii as:

ūi =
1

hi

∫

Ii

uh(x)dx.

7

We further denote by ũi and ˜̃ui the differences between the point values of the numerical

solution at the cell boundaries and the cell average, and by ∆+ūi and ∆−ūi the differences

between the cell average of Ii and that of its neighboring cells:

ũi = uh(x
−

i+ 1

2

)− ūi, ˜̃ui = ūi − uh(x
+

i− 1

2

), ∆+ūi = ūi+1 − ūi, ∆−ūi = ūi − ūi−1. (2.11)

A nonlinear limiter changes the polynomial solution uh in the cell Ii, while keeping the cell

average ūi unchanged to maintain conservation. The purpose of the nonlinear limiter is to

control spurious oscillations near discontinuities, while attempting to retain the original high

order accuracy in smooth regions. The minmod-based TVD limiter [14, 25] modifies ũi and

˜̃ui by a limiter function:

ũmod
i = m(ũi,∆

+ūi,∆
−ūi), ˜̃umod

i = m(˜̃ui,∆
+ūi,∆

−ūi). (2.12)

Once the modified values ũ
(mod)
i and ˜̃u

(mod)
i are obtained, we can obtain the modified point

values of the numerical solution at the cell boundaries:

u
(mod)
h (x−

i+ 1

2

) = ūi + ũ
(mod)
i , u

(mod)
h (x+

i− 1

2

) = ūi − ˜̃u
(mod)
i .

With the two modified point values u
(mod)
h (x−

i+ 1

2

), u
(mod)
h (x+

i− 1

2

) and the original cell average

ūi, we can recover a unique pk polynomial with k ≤ 2 as the limited solution u
(mod)
h . For

k > 2, we still recover a quadratic polynomial if the limiter is enacted (that is, if the limiter

function m in (2.12) returns other than the first argument), since accuracy is not expected

to be maintained in this case.

We now turn to the specific choices of the limiter function m in (2.12).

For the minmod-based TVD limiter [14, 25], m is defined as the minmod function

m(a1, a2, a3) =

{

smin(|a1|, |a2|, |a3|), if s = sign(a1) = sign(a2) = sign(a3),
0, otherwise.

(2.13)

In words, the minmod function m returns the smallest argument (in magnitude), if all

arguments have the same sign; otherwise it returns zero.

8

It can be proved [6] that, when the minmod limiter (2.13) is used and if the time dis-

cretization is via a TVD Runge-Kutta method such as (2.6), then the limited DG solution is

total variation diminishing in the means (TVDM). This is a rather strong nonlinear stability

property and prevents completely any spurious oscillations in the means near discontinuities.

However, the drawback is that, as any TVD schemes, the method will suffer from accuracy

degeneracy to first order near smooth extrema [26], hence the global accuracy in L1 is at

most second order for generic smooth solutions with finitely many smooth extrema.

For the minmod-based TVB limiter [34], m is defined as

mtvb(a1, a2, a3, h,M) =

{

a1, if |a1| ≤ Mh2,
m(a1, a2, a3), otherwise,

(2.14)

where h is a local mesh size, M ≥ 0 is a TVB constant, and m is the minmod function

defined in (2.13). It can be shown [6] that, when the TVB limiter (2.14) is used and if the

time discretization is via a TVD Runge-Kutta method such as (2.6), then the limited DG

solution is total variation bounded in the means (TVBM). This is again a rather strong

nonlinear stability property.

It is expected that the performance of the TVB limiter depends strongly on the choice of

the TVB constant M . If M is chosen too large, noticeable spurious oscillations may reappear

near discontinuities. After all, for M = +∞, the limiter mtvb in (2.14) will always return

the first argument, namely we will obtain the unlimited solution. On the other hand, if

M is chosen too small, the scheme may lose the original high-order accuracy near smooth

extrema, just like the TVD minmod limiter. After all, for M = 0, we recover the TVD

minmod limiter defined in (2.13). On the approximation level, given a smooth function u,

the following result is proved in [6].

Lemma 2.1 If u is a smooth function, and M2 = maxx |uxx|. Then, if M is taken as

M ≥ 2

3
M2, (2.15)

the limiter (2.14) will not affect accuracy. That is, it will always return the first argument.

9

In fact, M2 can be taken as a upper bound for the magnitude of the second derivative

near the smooth extrema, rather than over the whole range of x.

The approximation result in the lemma above is also valid for linear or nonlinear scalar

conservation laws. For one dimensional scalar conservation laws (2.2), we have the following

lemma.

Lemma 2.2 If u is the solution of the one dimensional scalar conservation law (2.2), the

initial condition u0(x) is smooth near x = x0, and u′

0
(x0) = 0, then along the forward

characteristic line

x(t) = x0 + f ′(u0(x0))t,

we have

u(x, t) = u(x0), ux(x, t) = 0, uxx(x, t) = u′′

0
(x0).

That is, along a smooth local extremum, the second derivative uxx is invariant (constant in

time).

Lemma 2.2 can be easily proved by solving the ODEs involving the evolution of u, ux

and uxx along the forward characteristic line. Based on Lemmas 2.1 and 2.2, we conclude

that the choice of M by (2.15), where M2 = maxx |u′′

0
(x)|, ensures that the limiter (2.14)

will not affect accuracy. That is, it will always return the first argument. Thus, the choice

of M to ensure high order accuracy in smooth regions for scalar conservation laws can be

given with solid mathematical justification. In practice, because of the numerical errors near

smooth extrema, we often take a slightly larger value of M than that given by (2.15), e.g.

by M = cM2 with c > 2

3
.

However, for nonlinear hyperbolic systems, there is no such mathematical guidance for

the choice of the TVB constant M . This is because the value of uxx at a smooth extremum is

no longer invariant in time, hence cannot be determined based solely on the initial condition.

The choice of M in such cases is then often given in an ad hoc fashion, based on experience

and through trial and error. In this paper, we would like to develop a constant estimator for

10

M , based on an artificial neural network (ANN) based model, so that the TVB constant M

can be chosen automatically .

3 The multi-layer perceptron (MLP) limiter

Our work on the construction of an ANN-based constant estimator is enlightened by

the MLP troubled cell indicator developed by Hesthaven and Ray [29], which detects the

location of discontinuities according to the function values at the cell boundaries and the

local cell averages. Inspired by [29], we aim at constructing a constant estimator using the

ANN model, which is able to (1) distinguish the cells near local extrema, discontinuities and

in smooth monotone regions by the point values at the cell interface and the cell averages;

(2) directly return the TVB limiter constant M accordingly, that maintains high order

accuracy in smooth regions and non-oscillatory transaction at discontinuities. The multi-

layer perceptron (MLP) model is one of the most commonly used artificial neural network

model. The idea of developing a hypothetical nervous system (called a perceptron) and

imitating learning curves from neurological variables is introduced by Rosenblatt in 1958

[32]. In [24], Novikoff proved the perceptron convergence theorem, i.e., if the training data

set is linearly separable, the convergence of the perceptron is guaranteed. The capability

of approximating continuous functions of MLP is studied in [9, 13]. The MLP model is

well-known for its ability to estimate the relationship with high degree of complexity and

nonlinearity. The other advantage of the model is that, the main computational cost of the

model comes from the offline training procedure, and the online computational procedure

involves simple matrix multiplications with negligible extra cost over the original DG scheme.

As shown in Figure 3.1, the MLP model consists of an input layer, an output layer, and

several hidden layers, including a normalization layer and fully connected layers.

This model can be viewed as an approximation map from the input layer to the output

layer,

F : R
N1 7→ R

No, y = f(x|(w, b)), (3.16)

11

Figure 3.1: An MLP model with an input layer, a normalization layer, hidden layers, and
an output layer.

where the weights w, the bias b and the activation function contained in the hidden layer

determine the value of the predicted outputs. The cost function is then applied to measure

the error between the network predicted output and the true output value given in the

training data set. During the training process, proper training strategy, like the supervised

learning [18] we use in this paper, is utilized to minimize the error by adjusting the weight

and the bias. A well-trained model is capable of precisely predicting the outputs according

to the input data, even when the input is not included in the training set.

3.1 Construction of the training data

Now we will introduce the design of the MLP-based estimator. In our case, the input data

are function values in and near the cell Ii, i.e v = (ūi−1, ūi, ūi+1, uh(x
−

i+1/2), uh(x
+

i−1/2))
T ∈ R

5.

The output would be the corresponding TVB limiter constant Mi for the cell Ii. The input

and output training data sets are denoted as Vx and Vy respectively, which are generated

via the following two ways. Firstly, due to the fact that the DG solutions are piecewise

polynomial functions approximating the real PDE solution, the type I data are function

values from the L2 projection of designed functions into suitable piecewise polynomial spaces.

Secondly, inspired by the work of Sun et al. [37], we consider the effect of the numerical

12

method on the solution’s structure, such as the Gibbs oscillations near discontinuities or the

smearing caused by the numerical dissipation. To enable the model to learn the feature of

the numerical solutions, the data from numerical solutions of the DG method solving the

advection equation ut+aux = 0 with discontinuous initial conditions are added. The detailed

procedure is listed below.

Type I. Data from piecewise polynomial functions.

1. In the interval [a, b], choose piecewise smooth functions u(x) containing one or more

features listed below:

• Containing smooth monotone regions;

• Containing discontinuity points;

• Containing local smooth maxima and/or local smooth minima.

2. Pick a point x and a mesh size h randomly, such that a < x − 3

2
h < x + 3

2
h < b, and

construct a three-cell stencil containing Ii−1 = (x− 3

2
h, x− 1

2
h), Ii = (x− 1

2
h, x+ 1

2
h),

and Ii+1 = (x+ 1

2
h, x+ 3

2
h).

3. Use the standard L2 projection to project u(x) onto the piecewise polynomial space

with different degrees of freedom within each cell, and denote the obtained polynomials

in each cell of the three-cell stencil as ui−1(x), ui(x), and ui+1(x).

4. Collect the input data, i.e, v = (ūi−1, ūi, ūi+1, ui(x+ 1

2
h), ui(x− 1

2
h))T .

5. Determine corresponding output value y = M ∈ Vy by the following strategy:

• If the interval I = (x − 3

2
h, x + 3

2
h) contains a discontinuity point, the standard

minmod limiter should be applied to control spurious oscillations, i.e. y = M = 0;

• If the interval I contains a local maximum or a local minimum, we define M =

2

3
c maxx∈I |u′′

(x)|. Here c is a constant greater than 1, to make M a safer upper

13

bound according to Lemmas 2.1 and 2.2 for maintaining the original high order

accuracy. In our numerical computation, we have taken the value c = 5.

• If u(x) in the interval I is smooth and monotone, we choose M big enough so

that the minmod limiter is not enacted (i.e. it returns the first argument). In our

numerical computation, we have taken the value M = 1000 in this case.

Type II. Data from the numerical solution.

1. We generate the piecewise smooth initial condition u0 by the following procedure:

• Select the number of discontinuities contained in the initial condition: 1 ≤ Nd ≤ 6;

• Randomly select Nd locations for the discontinuities in the domain [−1, 1], and

divide the domain into Nd + 1 subdomains;

• Within each subdomain, create random Fourier series a0 +
∑Nf

n=1
(an cos(nx) +

bn sin(nx)) with different 1 ≤ Nf ≤ 6, and i.i.d random variables a0, an, and bn.

2. Use different mesh sizes h = 1

30
, 1

60
, 1

90
, 1

180
to generate uniform meshes with Nx cells.

3. With a random advection coefficient a ∈ [−1, 1], apply the Runge-Kutta DG (RKDG)

scheme with the degree of freedom k to compute the solution for Nt time steps, where

Nt = 1, 2, 3 and k = 1, 2, 3, 4. The time step size is chosen as ∆t = C h
a
, where the CFL

constant is chosen as C < 1

2k+1
. The obtained numerical solution in cell Ii is denoted

as ui.

4. Collect the data from the numerical solution, i.e, v = (ūi−1, ūhi, ūi+1, ui(x
−

i+1/2), ui(x
+

i−1/2))
T .

5. The cell is considered to contain a discontinuity or a local smooth extremum if the

exact solution u(x, t) = u0(x − aNt∆t) has discontinuity or a local extremum within

the cell or its left or right neighbor cell, and y = M ∈ Vy is determined using the same

strategy of step 5 in Type I. In general there could exist differences in the locations

of discontinuities between the exact and the numerical solutions. In our case, only a

14

few time steps are computed, therefore the difference can be neglected. It enables us

to use the location of discontinuities in the exact solution to determine M .

Based on the above guideline, the training data set is constructed, and the details of this

data set can be viewed in Table 3.1. For the Type I data, the mesh size h and the degrees

of freedom of the projected polynomial space k ∈ {1, 2, 3, 4} are varied.

Table 3.1: Rows 2-6 are the functions used to generate the Type I data. The last three
columns are the numbers of cells containing discontinuities, local extrema, and total cell
numbers. The second last row is the number of different types of cells in the data generated
by the numerical solution of the DG scheme. The last row is the total data number in the
data set, which is obtained by adding the data above within each column.

u(x) domain varied parameters discontinuities local extrema total

a|x| [-0.5,0.5] a ∈ [1, 10] 1000 0 1000

ulIx<a + urIx>a [-1,1] (ul, ur) ∈ [−4, 4]2 3200 0 3200
a ∈ [−0.56, 0.56]

sin(kπx) [0, k
4
] k=1,. . . ,25 0 720 6480

sin(2πx) cos(3πx) sin(4πx) [0,1] 0 504 1400

sin4(πx) [0,1] 0 144 1400

Type II data 950 1695 8451

Total 5150 3063 21931

3.2 The MLP model

We now briefly introduce the MLP training model. The input is a 5-dimensional vector

v. Before feeding the data into the hidden layers, we firstly add a normalization layer to

normalize the data as follows. Denote the l-th element of the input vector v as vl, l = 1 . . . 5.

The normalized function value would be ṽ, with the l-th element ṽl given by

ṽl =
vl − µ

σ
, (3.17)

where µ and σ are the mean and the standard deviation of the elements of all v in Vx.

We apply five hidden layers containing 128, 64, 32, and 16 neurons respectively. Within

each hidden layer, the weights and bias are randomly initialized using a normal distribution,

15

and Leaky rectified linear unit (Leaky ReLU) is chosen as the activation [23]. The output

layer has one neuron, as the output is the value of the limiter TVB constant M . The cost

function is given by the mean squared error (MSE) function. The data set is split into two

subsets, with 80% data used for training and the remaining 20% data for validation. The

model is trained using the Adam optimization [17] with the batch size Sb = 500, and with

2000 iterations. Keras API is used for the model training (https://keras.io/).

3.3 Implementation of the estimator

After obtaining the well-trained model, it is simple to implement the estimator. The

algorithm in the one-dimensional scalar case is described as follows:

1. Apply the DG method for the spatial discretization, and proceed with one Euler for-

ward step in the third order Runge-Kutta time discretization.

2. Generate vi = (ūi−1, ūi, ūi+1, uh(x
−

i+1/2), uh(x
+

i−1/2))
T within each cell Ii.

3. Feed the data into the estimator, and obtain the corresponding Mi for each cell.

4. Apply Mi in the minmod-based TVB limiter, and obtain the limited solution.

5. Repeat Steps 1-4 twice for the next two Runge-Kutta inner stages, and finish the

computation of the current time step.

There is no need to change the structure of the original DG code to implement the

estimator. Since vi in Step 2 is also needed in the minmod-based TVB limiter, the only

extra work is adding Step 3 to predict the value of M , and in practice it is an one-line

addition in the code.

In the two dimensional scalar case, we need to generate in the x direction and in the y

direction:
v
x
ij = (ūi−1,j, ūi,j, ūi+1,j, uh(x

−

i+ 1

2

, yj), uh(x
+

i− 1

2

, yj))
T ,

v
y
ij = (ūi,j−1, ūi,j, ūi,j+1, uh(xi, y

−

j+ 1

2

), uh(xi, y
+

j− 1

2

))T ,
(3.18)

16

we feed them into the estimator to obtain the predicted limiter TVB constants Mx
ij and My

ij

respectively, and apply them in the limiter. It is clear that there is a low coding cost for the

implementation of the estimator in the 2D case as well.

For hyperbolic systems, the estimator and the limiter could be applied component by

component, but they are more effective if they are applied in local characteristic fields,

which is the procedure that we adopt in our numerical tests. We refer to [5, 7] for more

details.

4 Numerical tests

In this section, we will perform several standard numerical tests in one- and two-dimensions.

For the scalar case, we will solve the linear advection equation and the nonlinear Burgers

equation, and in the case of systems, the Euler equation of compressible gas dynamics will

be approximated. Within each subsection, accuracy tests will be given for the DG scheme

with the MLP limiter for the degrees of freedom k = 1, 2, 3, when the exact solution is

smooth. The results will be compared against DG schemes without the limiter. In the case

that exact solutions are discontinuous, the performance of the MLP limiter will be presented

and compared to that of the TVB limiter with the TVB constant M chosen in an ad hoc

fashion through trial and error as given in the literature. In general, the MLP limiter has

outstanding performance when applied to the DG method of different degrees of freedom.

In all accuracy tests, periodic boundary condition is applied, and the simulations run until

t = 0.3. The CFL conditions are set to be CFL = 0.3 for k = 1, CFL = 0.18 for k = 2, and

CFL = 0.1 for k = 3, according to the linear stability analysis [8].

4.1 Linear advection equation

We firstly consider the one-dimensional linear advection equation with sine wave initial

condition:
{

ut + ux = 0,
u(x, 0) = sin(x), x ∈ [0, 2π].

(4.1)

17

Table 4.1 demonstrates the error and order of accuracy for the DG scheme with and

without the MLP limiter. The MLP limiter method obtains the desired second, third and

fourth order accuracy respectively, when applied to the DG scheme with degrees of freedom

k = 1, 2, 3. The error and order are very close to that of the DG method without the limiter,

indicating that the MLP limiter has the correct estimate for the TVB constant M and can

maintain the original high order of accuracy.

Table 4.1: Accuracy test for 1D linear advection equation

k=1 DG MLP-limiter k=1 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 4.83 E-03 3.10 E-03 4.39 E-03 2.27 E-03
32 1.29 E-03 1.90 6.51 E-03 2.25 1.22 E-03 1.84 6.25 E-03 1.86
64 3.15 E-04 2.03 1.60 E-03 2.02 3.41 E-04 1.95 1.60 E-03 1.96
128 7.86 E-05 2.00 4.01 E-04 2.00 7.86 E-05 2.00 4.01 E-04 2.00
256 1.96 E-05 2.00 1.00 E-04 2.00 1.96 E-05 2.00 1.09 E-04 2.00

k=2 DG MLP-limiter k=2 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 1.67 E-04 7.68 E-04 1.78 E-04 7.69 E-04
32 2.18 E-05 2.94 1.35 E-04 2.50 2.28 E-05 2.96 1.46 E-04 2.39
64 2.47 E-06 3.13 1.55 E-05 3.11 2.46 E-06 3.21 1.51 E-05 3.27
128 3.12 E-07 2.98 1.97 E-06 2.94 3.12 E-07 2.98 1.97 E-06 2.94
256 3.90 E-08 2.97 2.46 E-07 3.00 3.89 E-08 2.97 2.46 E-07 3.00

k=3 DG MLP-limiter k=3 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 4.02 E-06 2.07 E-05 4.02 E-06 2.07 E-05
32 2.67 E-07 3.91 1.69 E-06 3.62 2.67 E-07 3.91 1.69 E-06 3.62
64 1.34 E-08 4.31 1.09 E-07 3.95 1.34 E-08 4.31 1.09 E-07 3.95
128 8.75 E-10 3.94 6.51 E-09 4.07 8.75 E-10 3.94 6.51 E-09 4.07
256 5.67 E-11 3.95 4.09 E-10 3.99 5.67 E-11 3.95 4.09 E-10 3.99

To check the behavior of the limiter under discontinuous situation, we consider the multi-

18

wave problem, with the initial condition given by

u0(x) =



















































10(x− 0.2), 0.2 < x < 0.3,

10(0.4− x), 0.3 < x < 0.4,

1, 0.6 < x < 0.8,

100(x− 1)(1.2− x), 1.0 < x < 1.2,

0, otherwise.

(4.2)

The domain is [0, 1.4], and periodic boundary condition is applied. The solution is eval-

uated at t = 1.4 using N = 100 cells. In this case, we use the randomly perturbed meshes,

which is constructed based on a uniform mesh:

xi+ 1

2

→ xi+ 1

2

+ θhi+ 1

2

ωi+ 1

2

, ωi+ 1

2

∈ U([−0.5, 0.5]) i = 1, . . . , N − 1,

where we choose θ = 0.15. For all simulations as shown in Figure 4.1, the performance of

the TVB limiter with different TVB constants M = 0, 10, 100, 1000 and the MLP limiter

are compared. The choices of M = 0, 10 smear significantly at the two local maxima, and

M = 100, 1000 fail to control oscillations near the discontinuities. However, the MLP limiter

can precisely catch the local extrema without causing oscillation near the discontinuities.

Figure 4.2 depicts the temporal history of the TVB constant M chosen by the MLP model.

The MLP model precisely captures the discontinuous points and local extrema, and returns

the corresponding M .

In the two-dimensional linear case
{

ut + ux + uy = 0,
u(x, y, 0) = sin(x+ y), (x, y) ∈ [0, 2π]× [0, 2π],

(4.3)

the error and orders of the DG method with the MLP limiter and without the limiter are

listed in Table 4.2. The MLP limiter again preserves high order accuracy in this 2D example.

4.2 Burgers equation

We consider the nonlinear Burgers equation in 1D:
{

ut +
(

u2

2

)

x
= 0,

u(x, 0) = 1

4
+ sin(x), x ∈ [0, 2π].

(4.4)

19

0.00 0.35 0.70 1.05 1.40
X

0.00

0.35

0.70

1.05

1.40

Y

exa
TVB_M10

TVB_M100
TVB_M1000

TVD
MLP

0.5 0.6 0.7 0.8 0.9
X

0.90

0.95

1.00

1.05

1.10

Y

exa
TVB_M10

TVB_M100
TVB_M1000

TVD
MLP

Figure 4.1: Solution for the multi-wave problem using the fourth order DG method, at the
final time t = 1.4. The right figure is zoomed near x = 0.7.

0.0 0.35 0.7 1.0 1.4
x

0.0

0.35

0.7

1.0

1.4

Ti
m

e

value M

0

150

300

450

600

750

900

1050

Figure 4.2: Temporal history of the TVB constant M chosen by the MLP model of the
multiwave problem, k = 2.

20

Table 4.2: Accuracy test for 2D linear advection equation

k=1 DG MLP-limiter k=1 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 1.03 E-02 9.54 E-02 1.03 E-02 9.54 E-02
32× 32 2.60 E-03 1.98 2.52 E-03 1.91 2.60 E-03 1.98 2.52 E-03 1.91
64× 64 6.52 E-04 2.00 6.40 E-03 1.98 6.52 E-04 2.00 6.40 E-03 1.98
128× 128 1.62 E-04 2.00 1.60 E-03 2.00 1.62 E-04 2.00 1.60 E-03 2.00
256× 256 4.06 E-05 2.00 4.01 E-04 2.00 4.06 E-05 2.00 4.01 E-04 2.00

k=2 DG MLP-limiter k=2 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 9.48 E-04 5.84 E-03 9.48 E-04 5.84 E-03
32× 32 9.89 E-05 3.26 1.21 E-03 2.26 9.89 E-05 3.26 1.21 E-03 2.26
64× 64 1.14 E-05 3.11 1.46 E-04 3.05 1.14 E-05 3.11 1.46 E-04 3.05
128× 128 1.42 E-06 3.00 1.87 E-05 2.97 1.42 E-06 3.00 1.87 E-05 2.97
256× 256 1.78 E-07 3.00 2.34 E-06 3.00 1.78 E-07 3.00 2.34 E-06 3.00

k=3 DG MLP-limiter k=3 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 5.11 E-05 9.79 E-04 5.11 E-05 9.79 E-04
32× 32 3.20 E-06 3.99 6.09 E-05 4.00 3.20 E-06 3.99 6.09 E-05 4.00
64× 64 2.01 E-07 3.99 3.74 E-06 4.02 2.01 E-07 3.99 3.74 E-06 4.02
128× 128 1.27 E-08 3.98 2.05 E-07 4.05 1.27 E-08 3.98 2.05 E-07 4.05
256× 256 8.24 E-10 3.95 1.27 E-08 4.13 8.24 E-10 3.95 1.27 E-08 4.13

21

Before t = 1, the solution is smooth, and we can compare the accuracy of the DG scheme

with and without the MLP limiter. From Table 4.3, we observe that applying the limiter

does not affect accuracy also in this nonlinear case.

Table 4.3: Accuracy test for 1D Burgers equation

k=1 DG MLP-limiter k=1 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 4.53 E-03 2.67 E-02 4.53 E-03 2.67 E-02
32 1.05 E-03 2.10 6.41 E-03 2.05 1.05 E-03 2.10 6.41 E-03 2.05
64 2.62 E-04 2.00 1.63 E-03 1.97 2.62 E-04 2.00 1.63 E-03 1.97
128 6.56 E-05 2.00 4.11 E-04 1.99 6.56 E-05 2.00 4.11 E-04 1.99
256 1.63 E-05 2.00 1.03 E-04 1.99 1.63 E-05 2.00 1.03 E-04 1.99

k=2 DG MLP-limiter k=2 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 1.17 E-04 4.96 E-04 1.17 E-04 4.96 E-04
32 1.45 E-05 3.00 6.28 E-05 2.98 1.45 E-05 3.00 6.28 E-05 2.98
64 1.82 E-06 3.00 7.87 E-06 3.00 1.82 E-06 3.00 7.87 E-06 3.00
128 2.28 E-07 3.00 9.85 E-07 3.00 2.28 E-07 3.00 9.85 E-07 3.00
256 2.84 E-08 3.00 1.23 E-07 3.00 2.84 E-08 3.00 1.23 E-07 3.00

k=3 DG MLP-limiter k=3 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 9.88 E-06 1.51 E-04 9.88 E-06 1.51 E-04
32 5.84 E-07 4.08 1.07 E-05 3.81 5.84 E-07 4.08 1.07 E-05 3.81
64 3.63 E-08 4.00 7.05 E-07 3.92 3.63 E-08 4.00 7.05 E-07 3.92
128 2.26 E-09 4.00 4.46 E-08 3.94 2.26 E-09 4.00 4.46 E-08 3.94
256 1.41 E-10 4.00 2.95 E-09 3.97 1.41 E-10 4.00 2.95 E-09 3.97

Next we test the compound wave problem, with a discontinuous initial condition:

u0(x) =



















































l sin(πx), |x| ≥ 1,

3, −1 < x ≤ −0.5,

1, −0.5 < x ≤ 0,

3, 0 < x ≤ 0.5,

2, 0.5 < x ≤ 1,

(4.5)

The domain is [−4, 4] with a randomly perturbed mesh, and the periodic boundary condition

is applied. We can see the numerical result at t = 0.4 in Figure 4.3. The MLP limiter gives

good performance on capturing the discontinuities without spurious oscillations.

22

−4.000 −1.333 1.333 4.000
X

−1.5

0.0

1.5

3.0

4.5

Y

exa
TVB_M10

TVB_M100
TVB_M1000

TVD
MLP

Figure 4.3: Comparison of solutions on a randomly perturbed mesh for the compound wave
problem using the fourth order DG method with the TVB limiter with M = 0, 10, 100, 1000
and the MLP limiter. Here T = 0.4 and cell of number N = 200.

The two dimensional Burgers equation is stated as:

{

ut +
(

u2

2

)

x
+
(

u2

2

)

y
= 0,

u(x, y, 0) = 1

4
+ sin(x+ y), (x, y) ∈ [0, 2π]× [0, 2π].

(4.6)

The error and order of accuracy of the solution at t = 0.1 are in Table 4.4. Similar to the

one-dimensional case, the MLP-limiter does not affect the accuracy. When the time reaches

t = 1.2, there is a shock in the exact solution, and as we can see in Figure 4.4, compared to

the DG scheme without limiter, the MLP-limiter effectively controls the oscillation near the

shock.

4.3 Euler equation

In this subsection we apply the MLP limiter to solve nonlinear systems. We firstly

consider the compressible Euler equation in one dimension:

∂

∂t





ρ
ρµ
E



 +
∂

∂x





ρµ
ρµ2 + p
µ(E + p)



 = 0, 0 < x < 2π, (4.7)

where ρ, µ, and p denote the density, velocity and pressure of the fluids, respectively. The

total energy E = p
γ−1

+ 1

2
ρµ2, with γ = 1.4 for air. For the system case, we choose to

use the limiter in the local characteristic fields. That is, we firstly project the conserved

23

Table 4.4: Accuracy test for 2D Burgers equation

k=1 DG MLP-limiter k=1 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 1.32 E-02 8.80 E-02 1.32 E-02 8.80 E-02
32× 32 3.40 E-03 1.95 2.26 E-02 1.96 3.40 E-03 1.95 2.26 E-02 1.96
64× 64 8.67 E-04 1.97 5.73 E-03 1.98 8.67 E-04 1.97 5.73 E-03 1.98
128× 128 2.18 E-04 1.99 1.43 E-03 1.99 2.18 E-04 1.99 1.43 E-03 1.99
256× 256 5.47 E-05 2.00 3.60 E-04 1.99 5.47 E-05 2.00 3.60 E-04 1.99

k=2 DG MLP-limiter k=2 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 1.27 E-03 1.43 E-02 1.27 E-03 1.43 E-02
32× 32 1.61 E-04 2.98 1.72 E-03 3.06 1.61 E-04 2.98 1.72 E-03 3.06
64× 64 4.48 E-05 1.84 6.24 E-04 1.85 2.04 E-05 3.00 2.17 E-04 3.01
128× 128 2.48 E-06 4.17 2.92 E-05 7.73 2.48 E-06 3.00 2.92 E-05 3.01
256× 256 3.11 E-07 3.00 3.69 E-06 2.98 3.11 E-07 3.00 3.96 E-06 3.00

k=3 DG MLP-limiter k=3 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 9.53 E-05 1.06 E-04 9.53 E-05 1.06 E-04
32× 32 5.93 E-06 4.00 6.74 E-05 3.99 5.93 E-06 4.00 6.74 E-05 3.99
64× 64 3.67 E-07 4.01 4.88 E-06 3.79 3.67 E-07 4.01 4.88 E-06 3.79
128× 128 2.26 E-08 4.02 3.09 E-07 3.99 2.26 E-08 4.02 3.09 E-07 3.99
256× 256 1.47 E-09 3.95 1.43 E-08 3.97 1.47 E-09 3.95 1.43 E-08 3.97

0.000 1.571 3.142 4.712 6.283
X

−1.00

−0.25

0.50

1.25

2.00

Y

exa
TVB_M=1

Nolimiter MLP

Figure 4.4: Comparison of solutions of the 2D Burgers equation with the initial condition
u0(x, y) =

1

4
+ sin(x+ y) using the fourth order DG method without limiter, with the TVB

limiter with M = 1, and with the MLP limiter. Final time is t = 1.2 and the number of cells
corresponds to Nx = Ny = 40.

24

variable U = (ρ, ρµ, E)T into the local characteristic fields, and then apply the TVB or the

MLP limiter in each characteristic field. Finally we project the limited numerical solution

back to the conserved variable space. More details can be found in [5]. We will compare

the performance of the MLP-limiter with the TVB-limiter with ad hoc choices of the TVB

constant M through trial and error as adopted in the literature. In all the test cases, we

present the results for the density ρ as representations.

Example 4.3.1: Artificial accuracy test.

We firstly consider the accuracy test in [10]. We set the initial condition as:

ρ(x, 0) =
1 + 0.2 sin(x)

2
√
3

, µ(x, 0) =
√
γρ(x, 0), p(x, 0) = ρ(x, 0)γ . (4.8)

The computational domain is set to be [0, 2π], and periodic boundary condition is imposed.

We take γ = 3, which allows us to verify that 2
√
3ρ(x, t) is the exact solution of the Burgers

equation:

ut +

(

u2

2

)

x

= 0, u(x, 0) = 1 + 0.2 sin(x), (4.9)

and

µ(x, t) =
√
γρ(x, t), p(x, t) = ρ(x, t)γ . (4.10)

At t = 0.3, the solution is smooth, and the error and order of accuracy of density are

listed in Table 4.5. It is clear that the MLP limiter does not affect the accuracy in this 1D

nonlinear system example.

Example 4.3.2: The Sod problem.

This problem is a classic Riemann problem test, whose initial condition is

(ρ, µ, p) =

{

(1, 0, 1), x ≤ 0,
(0.125, 0, 0.1), x > 0.

(4.11)

The domain is x ∈ [−5, 5], and the simulation runs until t = 2.0 with the mesh size N = 100.

We test the DG scheme with different orders of accuracy. If the TVB constant M = 33 or

larger, the TVB limiter simulation fails with fourth or higher order DG schemes, due to the

25

Table 4.5: Accuracy test for 1D Euler equation

k=1 DG MLP-limiter k=1 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 4.96 E-03 8.86 E-03 4.96 E-03 8.86 E-03
32 1.10 E-03 2.16 1.31 E-03 2.75 1.10 E-03 2.16 1.31 E-03 2.75
64 2.76 E-04 2.00 3.28 E-04 1.97 2.76 E-04 2.00 3.28 E-04 1.97
128 6.90 E-05 2.00 8.22 E-05 1.99 6.90 E-05 2.00 8.22 E-05 1.99
256 1.72 E-05 2.00 2.06 E-05 1.99 1.72 E-05 2.00 2.06 E-05 1.99

k=2 DG MLP-limiter k=2 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 1.93 E-04 3.76 E-04 1.93 E-04 3.76 E-04
32 2.49 E-05 2.96 6.13 E-05 2.61 2.49 E-05 2.96 6.13 E-05 2.61
64 3.07 E-06 3.02 7.99 E-06 2.94 3.07 E-06 3.02 7.99 E-06 2.94
128 3.28 E-07 3.00 1.02 E-06 2.97 3.28 E-07 3.00 1.02 E-06 2.97
256 4.77 E-08 3.00 1.27 E-07 3.00 4.77 E-08 3.00 1.27 E-07 3.00

k=3 DG MLP-limiter k=3 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16 7.27 E-06 1.21 E-05 7.27 E-06 1.21 E-05
32 4.91 E-07 3.88 5.00 E-07 4.49 4.91 E-07 3.88 5.00 E-07 4.49
64 3.04 E-08 4.01 3.12 E-08 4.00 3.04 E-08 4.01 3.12 E-08 4.00
128 1.88 E-09 4.00 2.10 E-09 3.88 1.88 E-09 4.00 2.10 E-09 3.88
256 1.18 E-10 3.99 1.30 E-10 4.01 1.18 E-10 3.99 1.30 E-10 4.01

appearance of negative density. With M = 33, the TVB limiter gives good performance for

the DG scheme with second and third order. On the other hand, while the solutions of TVB

limiter with M = 15 smear a lot at discontinuities in lower order cases, it gives satisfying

non-oscillatory result with fourth and fifth order DG schemes. Meanwhile, the MLP limiter

gives good simulation in all cases, with results comparable to the M = 33 case in second and

third order schemes, and to the M = 15 case in fourth and fifth order schemes. The details

are shown in Figure 4.5.

Example 4.3.3: The Lax problem.

Another famous Riemann problem test is the Lax problem, with the initial condition

(ρ, µ, p) =

{

(0.445, 0.698, 0, 3.528), x ≤ 0,
(0.5, 0, 0, 0.571), x > 0.

(4.12)

The domain is x ∈ [−5, 5] and the number of cells is N = 100. We compute the solution

26

−5.0 −2.5 0.0 2.5 5.0
X

0.000

0.275

0.550

0.825

1.100
Y

exa
TVB_M33

(a) second order TVB

−5.0 −2.5 0.0 2.5 5.0
X

0.000

0.275

0.550

0.825

1.100

Y

exa
MLP

(b) second order MLP

−5.0 −2.5 0.0 2.5 5.0
X

0.000

0.275

0.550

0.825

1.100

Y

exa
TVB_M33

(c) third order TVB

−5.0 −2.5 0.0 2.5 5.0
X

0.000

0.275

0.550

0.825

1.100

Y

exa
MLP

(d) third order MLP

−5.0 −2.5 0.0 2.5 5.0
X

0.000

0.275

0.550

0.825

1.100

Y

exa
TVB_M15

(e) fourth order TVB

−5.0 −2.5 0.0 2.5 5.0
X

0.000

0.275

0.550

0.825

1.100

Y

exa
MLP

(f) fourth order MLP

−5.0 −2.5 0.0 2.5 5.0
X

0.000

0.275

0.550

0.825

1.100

Y

exa
TVB_M15

(g) fifth order TVB

−5.0 −2.5 0.0 2.5 5.0
X

0.000

0.275

0.550

0.825

1.100

Y

exa
MLP

(h) fifth order MLP

Figure 4.5: Comparison of solutions for the Sod problem using the DG method of degree of
freedom k = 1, 2, 3, 4 with the TVB limiter (left) and the MLP limiter (right). Final time
t = 2.0 and the number of cells N = 100.

27

until t = 1.3. In this case, we use M = 33 [5] which gives the best (sharpest) performance

at discontinuities (especially at the contact discontinuity) for the third order DG scheme.

Meanwhile, although the solution of the TVB limiter with M = 70 has huge oscillations at

the discontinuity in lower order cases, it gives the best performance for the fifth order DG

scheme. On the other hand, the MLP limiter works well for DG schemes with different orders

of accuracy. The performance of the MLP limiter is as good as that of the M = 33 TVB

limiter for the third order scheme, and of the M = 70 TVB limiter for the fifth order scheme.

For the second order scheme, the MLP limiter describes the edge of the discontinuity better

than that of the TVB limiters.

Example 4.3.4: The blast wave problem.

We now consider the interaction of two blast waves, with the initial condition:

(ρ, µ, p) =







(1, 0, 1000), 0 < x < 0.1,
(1, 0, 0.01), 0.1 < x < 0.9,
(1, 0, 100), 0.9 < x < 1.

(4.13)

The domain is x ∈ [0, 1] and reflective boundary condition is applied. We present the

numerical density of the TVB limiter DG method with the TVB constant M = 33 [5] and

the MLP limiter DG method at the time t = 0.038 in Figure 4.7. The solutions of the two

methods are comparable.

Example 4.3.5: The Shu-Osher problem.

This example is introduced in [36], as a simple model for shock-turbulence interactions.

Its initial condition is given by:

(ρ, µ, p) =

{

(3.857143, 2.629369, 10.33333), −5 ≤ x < −4,
(1 + 0.2 sin(5x), 0, 1), −4 ≤ x ≤ 5,

(4.14)

The domain is x ∈ [−5, 5]. We present the numerical density of the TVB and the MLP

limiter DG methods at the time t = 0.038 in Figure 4.8. To achieve the best performance,

the TVB constant is chosen as M = 300 [5] for k = 1, 2, 3 and M = 550 for k = 4. The

overall performance are increased when higher order method are applied. The MLP model

28

−5.0 −2.5 0.0 2.5 5.0
X

0.250

0.537

0.825

1.112

1.400
Y

exa TVB_M33

(a) second order TVB

−5.0 −2.5 0.0 2.5 5.0
X

0.250

0.537

0.825

1.112

1.400

Y

exa MLP

(b) second order MLP

−5.0 −2.5 0.0 2.5 5.0
X

0.250

0.537

0.825

1.112

1.400

Y

exa TVB_M33

(c) third order TVB

−5.0 −2.5 0.0 2.5 5.0
X

0.250

0.537

0.825

1.112

1.400

Y

exa MLP

(d) third order MLP

−5.0 −2.5 0.0 2.5 5.0
X

0.250

0.537

0.825

1.112

1.400

Y

exa TVB_M33

(e) fourth order TVB

−5.0 −2.5 0.0 2.5 5.0
X

0.250

0.537

0.825

1.112

1.400

Y

exa MLP

(f) fourth order MLP

−5.0 −2.5 0.0 2.5 5.0
X

0.250

0.537

0.825

1.112

1.400

Y

exa TVB_M70

(g) fifth order TVB

−5.0 −2.5 0.0 2.5 5.0
X

0.250

0.537

0.825

1.112

1.400

Y

exa MLP

(h) fifth order MLP

Figure 4.6: Comparison of solutions for the Lax problem using the DG method of degree of
freedom k = 1, 2, 3, 4 with the TVB limiter (left) and the MLP limiter (right). Final time
t = 1.3 and the number of cells N = 100.

29

0.0 0.2 0.4 0.6 0.8 1.0
X

0

1

2

3

4

5

6

Y

exa TVB_M33

(a) third order TVB

0.0 0.2 0.4 0.6 0.8 1.0
X

0

1

2

3

4

5

6

Y

exa MLP

(b) third order MLP

0.0 0.2 0.4 0.6 0.8 1.0
X

0

1

2

3

4

5

6

Y

exa TVB_M33

(c) fifth order TVB

0.0 0.2 0.4 0.6 0.8 1.0
X

0

1

2

3

4

5

6

Y

exa MLP

(d) fifth order MLP

Figure 4.7: Solution of the blast wave problem using the third order and fifth order DG
schemes with the M = 33 TVB limiter (left), and the MLP limiter (right). Final time
T = 0.038 and the number of cells N = 400.

30

shows the performance similar to the TVB model at the (physically) high frequency wave

area.

Now we consider the two-dimensional Euler equation:

∂

∂t









ρ
ρµ
ρν
E









+
∂

∂x









ρµ
ρµ2 + p
ρµν

µ(E + p)









+
∂

∂y









ρν
ρµν

ρν2 + p
ν(E + p)









= 0, (4.15)

where ρ is the density, µ and ν are the velocities in the x and y directions, respectively, and

p is the fluid pressure. The total energy E = p
γ−1

+ 1

2
ρ(µ2 + ν2), with γ = 1.4 for air.

Example 4.3.6: Artificial accuracy test for the 2D Euler equation.

We conduct an accuracy test for the 2D Euler equation. The initial condition is:

ρ(x, y, 0) =
1 + 0.2 sin(x+y

2
)√

6
, µ(x, y, 0) = ν(x, y, 0) =

√

γ

2
ρ(x, y, 0), p(x, y, 0) = ρ(x, y, 0)γ.

(4.16)

The computational domain is [0, 4π]× [0, 4π]. We set γ = 3, and it could be easily verified

that
√
6ρ(x, y, t) is the exact solution of the Burgers equation:

ut +

(

u2

2

)

x

+

(

u2

2

)

y

= 0, u(x, y, 0) = 1 + 0.2 sin(
x+ y

2
), (4.17)

and µ, ν and p satisfy:

µ(x, y, t) = µ(x, y, t) =

√

γ

2
ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ. (4.18)

At t = 0.3, the solution is smooth. The error and order of accuracy of density are

shown in Table 4.6. It can be observed that the MLP limiter does not affect the high order

accuracy of the scheme for this 2D nonlinear system test case. In Table 4.7, the cpu time of

the simulations on an 100× 100 mesh is analyzed and reported. The simulations have been

run on Jupyter Notebook using a 2 GHz Quad-Core Intel Core i5 processor. The execution

time of a single timestep (Tsp) increases when a higher order scheme is used. It can be

observed that the gap between the cost of the TVB and the MLP limiter narrows when k

31

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
de

ns
ity

exa
MLP
TVB-M300

(a) Second order MLP and TVB

0.000 0.625 1.250 1.875 2.500
x

3.0

3.5

4.0

4.5

5.0

de
ns
ity

exa
MLP
TVB-M300

(b) Second order zoom

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

de
ns
ity

exa
MLP
TVB-M300

(c) Third order TVB and MLP

0.000 0.625 1.250 1.875 2.500
x

3.0

3.5

4.0

4.5

5.0

de
ns
ity

exa
MLP
TVB-M300

(d) Third order zoom

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

de
ns
ity

exa
MLP
TVB-M300

(e) Forth order

0.000 0.625 1.250 1.875 2.500
x

3.0

3.5

4.0

4.5

5.0

de
ns
ity

exa
MLP
TVB-M300

(f) Fourth order zoom

−4 −2 0 2 4
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

de
ns
ity

exalax
MLP
TVB_M550

(g) Fifth order

0.5 1.0 1.5 2.0 2.5
x

3.0

3.5

4.0

4.5

5.0

de
ns

ity

exalax
MLP
TVB_M550

(h) Fifth order zoom

Figure 4.8: Numerical solution of the Shu-Osher problem (left). Zoomed region close to the
high frequency fluctuation area (right). Final time T = 1.8 and the number of cells N = 200.

32

Table 4.6: 2D Euler equation accuracy test.

k=1 DG MLP-limiter k=1 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 1.00 E-3 7.24 E-02 1.00 E-3 7.24 E-02
32× 32 2.52 E-04 1.99 1.94 E-03 1.90 2.52 E-04 1.99 1.94 E-03 1.90
64× 64 6.37 E-05 1.99 1.59 E-04 1.96 6.37 E-05 1.99 1.59 E-04 1.96
128× 128 1.59 E-05 2.00 1.25 E-04 1.99 1.59 E-05 2.00 1.25 E-04 1.99
256× 256 3.98 E-06 2.00 3.14 E-05 1.99 3.98 E-06 2.00 3.14 E-05 1.99

k=2 DG MLP-limiter k=2 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 1.17 E-04 4.96 E-04 1.27 E-03 1.43 E-02
32× 32 1.45 E-05 3.00 1.61 E-04 2.98 1.72 E-03 2.98 6.28 E-05 3.06
64× 64 1.82 E-06 3.00 2.04 E-05 3.00 2.17 E-04 3.01 7.87 E-06 2.98
128× 128 2.28 E-07 3.00 2.48 E-06 3.00 2.92 E-05 3.01 9.85 E-07 2.90
256× 256 2.84 E-08 3.00 3.11 E-07 3.00 3.96 E-06 3.00 1.23 E-07 3.00

k=3 DG MLP-limiter k=3 DG no limiter
cells L1 error order L∞ error order L1 error order L∞ error order
16× 16 9.53 E-05 1.06 E-04 9.53 E-05 1.06 E-04
32× 32 5.93 E-06 4.00 6.74 E-05 3.99 5.93 E-06 4.00 6.74 E-05 3.99
64× 64 3.67 E-07 4.01 4.88 E-06 3.79 3.67 E-07 4.01 4.88 E-06 3.79
128× 128 2.26 E-08 4.02 3.09 E-07 3.99 2.26 E-08 4.02 3.09 E-07 3.99
256× 256 1.47 E-09 3.95 1.43 E-08 3.97 1.47 E-09 3.95 1.43 E-08 3.97

33

Table 4.7: Computational times, number of timesteps and execution time of a single timestep
(TpS) for the 2D Euler problem. The total time and the time per timestep are expressed in
seconds

k=1 k=2 k=3 k=4
Limiters time Steps Tps time Steps Tps time Steps Tps time Steps Tps
TVB 26.99 29 0.93 61.76 47 1.31 132.12 66 2.00 308.14 85 3.62
MLP 39.73 29 1.37 74.91 47 1.59 137.75 66 2.08 317.06 85 3.72

increases. When k = 3, 4 the additional cost of applying the MLP model in the TVB DG

scheme is negligible.

Example 4.3.7: The double Mach reflection problem.

This problem was introduced by Woodward and Colella [41]. We use the same setup as

in [41], which describes a Mach 10 shock moving right into the undisturbed air, making a 60◦

angle with a reflecting wall. The density and pressure of the undisturbed air are 1.4 and 1

respectively. The computational domain is [0, 4]× [0, 1]. We use the exact flow values of the

Mach 10 shock at each time step as the top boundary condition. For the bottom boundary,

we apply the post-shock condition for x ∈ [0, 1

6
], and reflecting wall condition for x ∈ [1

6
, 4].

The numerical simulation is generated up to t = 0.2. The simulations on uniformed meshes

with 480 × 120 and 960 × 240 cells are shown in Figures 4.9 and 4.11, with the zoomed

version near the Mach stem shown in Figures 4.10 and 4.12. For the TVB limiter, the TVB

constant is chosen as M = 50 for the second and third order DG schemes [7]. Compared

to the traditional TVB limiter with empirically chosen M through trial and error, the MLP

limiter provides equally satisfying results.

5 Concluding remarks

In this paper, we design a MLP based TVB limiter for solving hyperbolic conservation

laws in one and two dimensional scalar and system cases using DG schemes. Numerical

results are shown on structured meshes.

In comparison with the classical minmod-based TVB limiter with an empirically chosen

34

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

(a) k=1 TVB

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

(b) k=1 MLP

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

(c) k=2 TVB

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

(d) k=2 MLP

Figure 4.9: Double Mach reflection problem. DG method with k = 1, 2. Left: results with
the TVB limiter. Right: results with the MLP limiter. Density ρ. 30 equally spaced contour
lines from ρ = 1.5 to ρ = 22.7. Mesh grid: 480× 120.

2.00 2.25 2.50 2.75 3.00
0.000

0.125

0.250

0.375

0.500

(a) k=1 TVB

2.00 2.25 2.50 2.75 3.00
0.000

0.125

0.250

0.375

0.500

(b) k=1 MLP

2.00 2.25 2.50 2.75 3.00
0.000

0.125

0.250

0.375

0.500

(c) k=2 TVB

2.00 2.25 2.50 2.75 3.00
0.000

0.125

0.250

0.375

0.500

(d) k=2 MLP

Figure 4.10: Double Mach reflection problem. DG method with k = 1, 2. Blown-up region
around the double Mach stem. Left: results with the TVB limiter. Right: results with the
MLP limiter. Density ρ. 30 equally spaced contour lines from ρ = 1.5 to ρ = 22.7. Mesh
grid: 480× 120.

35

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

(a) k=1 TVB

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

(b) k=1 MLP

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

(c) k=2 TVB

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

(d) k=2 MLP

Figure 4.11: Double Mach reflection problem. DG method with k = 1, 2, 3. Left: results
with the TVB limiter. Right: results with the MLP limiter. Mesh grid: 960× 240.

2.00 2.25 2.50 2.75 3.00
0.000

0.125

0.250

0.375

0.500

(a) k=1 TVB

2.00 2.25 2.50 2.75 3.00
0.000

0.125

0.250

0.375

0.500

(b) k=1 MLP

2.00 2.25 2.50 2.75 3.00
0.000

0.125

0.250

0.375

0.500

(c) k=2 TVB

2.00 2.25 2.50 2.75 3.00
0.000

0.125

0.250

0.375

0.500

(d) k=2 MLP

Figure 4.12: Double Mach reflection problem. DG method with k = 1, 2, 3. Blown-up region
around the double Mach stem. Left: results with the TVB limiter. Right: results with the
MLP limiter. Density ρ. 30 equally spaced contour lines from ρ = 1.5 to ρ = 22.7. Mesh
grid: 960× 240.

36

TVB constant M , the advantages of the new MLP based TVB limiter are as follows:

1. The MLP limiter is able to control spurious oscillations near discontinuities without ex-

cessive smearing, while maintaining the original high order accuracy in smooth regions

including near smooth extrema.

2. The MLP procedure automates the choice of the TVB constant M , thus eliminates

the need to choose M in an ad hoc fashion. This is especially important for hyperbolic

systems, for which no rigorous mathematical guidance exists for the choice of M .

3. The model training can be performed offline, leaving the online computation efficient

involving only a few low-cost matrix multiplications.Thus it is simple to modify the

standard DG code to apply the new limiter, and the extra coding only involves a few

lines.

4. The MLP based TVB limiter works well for the DG scheme of various orders of ac-

curacy, and give the same or even better performance than the classical TVB limiter

with manually chosen TVB constant M through trial and error, for an extensive list

of numerical test problems in 1D and 2D.

The methodology should work equally well for multi-dimensional unstructured meshes,

which consists of our ongoing work.

Conflict of interest statement: The authors have no relevant financial or non-financial

interests to disclose.

References

[1] R. Biswas, K. Devine and J. Flaherty, Parallel, adaptive finite element methods for

conservation laws, Applied Numerical Mathematics, 14, 1994, 255-283.

37

[2] T. Chen and C.-W. Shu, Entropy stable high order discontinuous Galerkin methods with

suitable quadrature rules for hyperbolic conservation laws, Journal of Computational

Physics, 345, 2017, 427-461.

[3] T. Chen and C.-W. Shu, Review of entropy stable discontinuous Galerkin methods for

systems of conservation laws on unstructured simplex meshes, CSIAM Transactions on

Applied Mathematics (CSAM), 1, 2020, 1-52.

[4] B. Cockburn, S. Hou and C.-W. Shu, TVB Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws IV: the multidimensional case,

Mathematics of Computation, 54, 1990, 545-581.

[5] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinu-

ous Galerkin finite element method for conservation laws III: one-dimensional systems,

Journal of Computational Physics, 84, 1989, 90-113.

[6] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws II: general framework, Mathematics of Com-

putation, 52, 1989, 411-435.

[7] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation law V: multidimensional systems, Journal of

Computational Physics, 141, 1998, 199-224.

[8] B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for

convection-dominated problems, Journal of Scientific Computing, 16, 2001, 173-261.

[9] G. Cybenko, Continuous valued neural networks with two hidden layers are sufficient,

Technical Report, Department of Computer Science, Tufts University, Medford, MA,

1988.

38

[10] G. Fu and C.-W. Shu, A new troubled-cell indicator for discontinuous Galerkin methods

for hyperbolic conservation laws, Journal of Computational Physics, 347, 2017, 305-327.

[11] Z. Gao, X. Wen and W.S. Don, Enhanced robustness of the hybrid compact-WENO

finite difference scheme for hyperbolic conservation laws with multi-resolution analysis

and Tukey’s boxplot method, Journal of Computational Physics, 73, 2017, 736-752.

[12] S. Golak, A MLP solver for first and second order partial differential equations, J.M. de

Sá, L.A. Alexandre, W. Duch, and D. Mandic, (eds), Artificial Neural Networks-ICANN

2007, Springer, Berlin, Heidelberg, 2007, 789-797.

[13] N.J. Guliyev and V.E. Ismailov, A single hidden layer feedforward network with only

one neuron in the hidden layer can approximate any univariate function, Neural Com-

putation, 28, 2016, 1289-1304.

[14] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Com-

putational Physics, 49, 1983, 357-393.

[15] S. Hou and X.-D. Liu. Solutions of multi-dimensional hyperbolic systems of conservation

laws by square entropy condition satisfying discontinuous Galerkin method, Journal of

Scientific Computing, 31, 2007, 127-151.

[16] G.-S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin meth-

ods, Mathematics of Computation, 62, 1994, 531-538.

[17] D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980,

2014.

[18] D. Kriesel, A brief introduction to neural networks, http://www.dkriesel.com, 2007.

[19] K. Kontzialis, K. Panourgias and J. Ekaterinaris, A limiting approach for DG discretiza-

tions on mixed type meshes, Computer Methods in Applied Mechanics and Engineering,

285, 2015, 587-620.

39

[20] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon and J. E. Flaherty, Shock de-

tection and limiting with discontinuous Galerkin methods for hyperbolic conservation

laws, Applied Numerical Mathematics, 48, 2004, 323-338.

[21] I.E. Lagaris, A. Likas and D.I. Fotiadis, Artificial neural networks for solving ordinary

and partial differential equations, IEEE Transactions on Neural Networks, 9, 1998, 987-

1000.

[22] H. Lee and N. Lee, Wet-dry moving boundary treatment for Runge-Kutta discontinuous

Galerkin shallow water equation model, KSCE Journal of Civil Engineering, 20, 2016,

978-989.

[23] A.L. Maas, A.Y. Hannun and A.Y. Ng, Rectifier nonlinearities improve neural network

acoustic models, In Proc. International Conference on Machine Learning, 30, 2013.

[24] A. B. Novikoff, On convergence proofs on perceptrons, Symposium on the Mathematical

Theory of Automata, 12, 1962, 615-622.

[25] S. Osher, Convergence of generalized MUSCL schemes, SIAM Journal on Numerical

Analysis, 22, 1985, 947-961.

[26] S. Osher and S. Chakravarthy, High resolution schemes and the entropy condition, SIAM

Journal on Numerical Analysis, 21, 1984, 955-984.

[27] K.T. Panourgias and J.A. Ekaterinaris, A discontinuous Galerkin approach for high-

resolution simulations of three-dimensional flows, Computer Methods in Applied Me-

chanics and Engineering, 299, 2016, 245-282.

[28] J. Qiu and C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO lim-

iters, SIAM Journal on Scientific Computing, 26, 2005, 907-929.

[29] D. Ray and J.S. Hesthaven, An artificial neural network as a troubled-cell indicator,

Journal of Computational Physics, 367, 2018, 166-191.

40

[30] D. Ray and J.S. Hesthaven, Detecting troubled-cells on two-dimensional unstructured

grids using a neural network, Journal of Computational Physics, 397, 2019, 108-845.

[31] W. Reed and T. Hill, Triangular mesh methods for neutron transport equation, Tech-

nical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.

[32] F. Rosenblatt, The perceptron: A probabilistic model for information storage and or-

ganization in the brain, Psychological Review, 65, 1958, 386-408.

[33] K. Rudd and S. Ferrari, A constrained integration (cint) approach to solving partial

differential equations using artificial neural networks, Neurocomputing, 155, 2015, 277-

285.

[34] C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Mathematics of

Computation, 49, 1987, 105-121.

[35] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-

capturing schemes, Journal of Computational Physics, 77, 1988, 439-471.

[36] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-

capturing schemes, II, Journal of Computational Physics, 83, 1989, 32-78,

[37] Z. Sun, S. Wang, L.-B. Chang, Y. Xing and D. Xiu, Convolution neural network shock

detector for numerical solution of conservation laws, Communications in Computational

Physics, 28, 2020, 2075-2108.

[38] A. Suresh and H. Huynth, Accurate monotonicity-preserving schemes with Runge-Kutta

time stepping, Computational Fluid Dynamics Conference, 13, 1997, 83-99.

[39] M.J. Vuik and J.K. Ryan, Automated parameters for troubled-cell indicators using

outlier detection, SIAM Journal on Scientific Computing, 38, 2016, A84-A104.

41

[40] X. Wen, W.S. Don, Z. Gao and J.S. Hesthaven, An edge detector based on artificial

neural network with application to hybrid compact-WENO finite difference scheme,

Journal of Scientific Computing, 83, 2020.

[41] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow

with strong shocks, Journal of Computational Physics, 54, 1984, 115-173.

[42] Y. Xing and X. Zhang, Positivity-preserving well-balanced discontinuous Galerkin meth-

ods for the shallow water equations on unstructured triangular meshes, Journal of Com-

putational Physics, 57, 2013, 19-41.

[43] J. Zhao and H. Tang, Runge-Kutta central discontinuous Galerkin methods for the spe-

cial relativistic hydrodynamics, Communications in Computational Physics, 22, 2017,

643-682.

[44] H. Zhu, Y. Cheng and J. Qiu, A comparison of the performance of limiters for Runge-

Kutta discontinuous Galerkin methods. Advances in Applied Mathematics and Mechan-

ics, 5, 2013, 365-390.

42

	title
	paper

