AN ESSENTIALLY OSCILLATION-FREE DISCONTINUOUS
GALERKIN METHOD FOR HYPERBOLIC SYSTEMS
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Abstract. In this paper, we develop an essentially oscillation-free discontinuous Galerkin
(OFDG) method for systems of hyperbolic conservation laws. Based on the standard discontinuous
Galerkin (DG) method, the numerical damping terms are introduced so as to control the spurious
oscillations, similar to the scalar case [19]. We use both the classical Runge-Kutta method and the
modified exponential Runge-Kutta method in time discretization. Particularly, the latter one could
avoid additional restrictions of time step size due to the numerical damping. Extensive numerical
experiments are shown to demonstrate our algorithm is robust and effective.
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1. Introduction. Among various numerical approaches for solving hyperbolic
conservation laws, discontinuous Galerkin (DG) methods have proven to be one of
the most attractive and advantageous approaches. Since complete discontinuous ba-
sis functions are used, they have some advantages different from classical finite element
methods, such as the allowance of arbitrary unstructured meshes with hanging nodes,
easy h-p adaptivity, and high parallel efficiency thanks to the very local data commu-
nication. The first DG method was introduced by Reed and Hill in 1973 to solve a
steady linear transport problem [20]. Later, Cockburn et al. used DG methods in spa-
tial discretization coupled with Runge-Kutta time discretization methods for solving
time dependent partial differential equations, including hyperbolic conservation laws,
convection diffusion equations, etc [9, 10, 8, 6, 11, 12]. In the last several decades,
there are a lot of literatures for the extension of DG methods to solve other types
of partial differential equations, we refer to several survey papers for more details
[7, 24, 25].

It is widely known that, due to the nonlinearity of the hyperbolic equations, the
solution could evolve into discontinuities in a finite time even with smooth initial and
boundary conditions. This causes difficulties in numerical simulation because many
numerical schemes cannot compute the shock speed correctly and even worse, the
generated spurious oscillations near the discontinuity may make the scheme less robust
and easily blow up for some tough problems. To control the spurious oscillations,
basically there are two classes of methods to deal with it. One is to apply slope
limiters after obtaining numerical solutions from DG methods, such as the minmod
type total variation diminishing (TVD) limiter, total variation bounded (TVB) limiter
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and weighted essentially non-oscillatory (WENO) limiter, etc. The limiting process
can be viewed as a post-processor for the DG solution, and troubled cell indicator is
often needed to identify which cell should be modified. The limiters are designed for
specific needs and often involve some parameters. With suitable adjustments of these
parameters, the schemes may work quite well to obtain excellent results. See e.g. [24,
34] and the references therein. Another is to add artificial diffusion terms in the weak
formulations, and the artificial diffusion coefficient of the artificial diffusion should be
chosen adequately, see e.g. [3, 13, 15]. More recently, in [19] we have developed an
approach to control oscillations for scalar conservation laws by adding damping terms
on high order coefficients of the basis functions. The formulations of added damping
terms are similar in spirit to the so-called “local projection stabilization” schemes, see
[1, 2]. As demonstrated in [19], the damping terms can not only control the spurious
oscillations, but also preserve some basic properties of the standard DG method such
as conservation, optimal a priori error estimates and superconvergence, etc.

In this paper, we extend our previous work [19] to hyperbolic systems. Our main
contribution in this paper is two folds. First, we carefully construct the damping terms
with the aid of the characteristic variables. In the characteristic decomposition of the
Jacobian of flux functions, we present the left eigenvector matrix for compressible
Euler equations as an illustration example. Then we add global damping terms for
each component of the system in the weak formulation. Secondly, for some tough
problems with very strong shock discontinuities, see Section 3, the damping coefficients
are so large that the damping terms become quite stiff. Therefore, directly using
explicit Runge-Kutta methods requires a more restricted time step size. In order
to avoid this problem, we follow the idea of the modified exponential Runge-Kutta
methods [16], which helps us obtain a fully discrete scheme with relatively relaxed
CFL condition comparing to the case of using explicit Runge-Kutta method directly.
Then we prove the strong stability properties of the modified exponential Runge-
Kutta methods, under the assumption that the first order forward Euler scheme is
strongly stable. We test extensive numerical examples to show that our method has
good performance to treat various problems. Particularly, we compute several tough
numerical examples such as the Sedov point blast problem, the high Mach number
astrophysical jets problem and the shock diffraction problem, etc. The proposed
algorithm works quite well without applying any limiters or artificial diffusion during
the simulation.

The outline of the paper is as follows. In Section 2, we present our essentially
OFDG methods for one- and two-dimensional systems of hyperbolic conservation laws,
and introduce the modified exponential Runge-Kutta time discretization. We also
show the numerical solutions are conservative, and prove the CFL condition would not
be affected by the damping terms. In Section 3, we test various numerical examples
including some very tough problems, to show that our algorithm not only controls
the oscillations but also preserves high order accuracy. Finally, we give concluding
remarks in Section 4.

2. Algorithm. In this section, we construct an essentially oscillation-free discon-
tinuous Galerkin (OFDG) scheme for solving the systems of hyperbolic conservation
laws. The idea of the proposed essentially OFDG scheme is to add numerical damping
terms to the classical DG method.
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2.1. One-dimensional system of hyperbolic conservation laws. In this
subsection we consider the one-dimensional hyperbolic system as follows.

2.1) {Ut FFU). =0,  (n.t) € (a,b) x (0,T),

U(z,0) = Uy(x), x € (a,b)

with periodic or compactly supported boundary conditions. Here U = (U, ..., U,,)7"

and F(U) = (Fy(U),... ,Fm(U))T. There exists a large amount of physical models
in the form of (2.1). For instance, the p-system includes two conservation laws that

U = (U1,U2)" and F(U) = (— U, —p(Ul))T, which arises from the scalar nonlinear

wave equation uy = p(ug),. For one-dimensional compressible Euler equations, we
have m = 3, U = (p,pu, E)' and F(U) = (pu, pu® + p,u(E +p))T, with £ =
p/(y — 1) + pu?/2 for the ideal gas.

Now let us turn to the construction of the essentially OFDG scheme for (2.1).
First, we take partition of the interval (a,b) into N cells, then we have

a=x1<$%

! <"'<‘TN+%:b7

Assume that the mesh is quasi-uniform, i.e. there exists a constant v > 0 such that

(2.3) h<vp, h=maxhj, p=minh;.
J J

Then we define the finite element space th as follows
(2.4) Vi = {v e L*(a,b]) : o[, € PH(IL;), j=1,...,N}.

The semi-discrete essentially OFDG scheme for (2.1) is as follows: Seek Uy (-,t) €
[th]m such that for any vy, € [V,ﬂm we have

‘/I (Up) - vpde = /] F(U,,) - (vh)m dr — ﬁj_’_% - (vh);r% + I/‘:‘]_% - (vh);i%
25) '
( ) k O'é(Uh) .
— . (Uh_Ph Uh)-vhd:r,
1=0 J Ij

where (vh)j_ar% =y (:zzj_ar%) and I?'J-Jr% is taken to be the local Lax-Friedrichs flux [8].

Details about the numerical flux can be found in Appendix A.1. P}, 1 > 0, is the
standard L? projection that for any vector function w, Plw € [V,ﬂm satisfies

(2.6) /1 (Plw —w) v, de =0, Yy € [P([;)]™.

Here we define P, 1 PY. The damping coefficients aé > 0 are chosen carefully such
that they are small in smooth region, and becomes large near the discontinuity. In
this paper, they are taken as follows

N|=

2(20+1) A
I _ l‘r 2 lV 2
2.7) 7T 2k —1) Ul 1955m ([[‘990 Ji-y 10 S]]j+%) ’
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j_+é
oV = (8iV1,...,8iVm)T are given by 9,V = R™'9,Uj, on x;, 1, where R™" is
the matrix derived from the characteristic decomposition F’ ((Uh)j +%) = RAR™ !,

where [v] ;1 = v(a:;.:%) —v(2> 1) denotes the jump of v at z = ;1. The variables

and () j+1 stands for some average at x;, 1 such as the arithmetic mean or the
2

Roe average (which is used in the numerical experiments later). In particular, for
one-dimensional compressible Euler equations of the ideal gas, we have R™! defined
as

1 1 1 1 1
Juet 2 (y = Lu? —5(r=Nu-ge S(v-1)

28) R '=(v-1)c | - %(7 — 1)u? (v—Du 1—v ,

(v—=1)

N =

1 1 1 1
TQueT Z(”Y— Du? —5(7— Du+ 5¢

where u and ¢ = \/yp/p are computed with the quantities (Uh)ﬂ%.

REMARK 2.1. The formulation of the damping coefficients given in (2.7) orig-
inates from our previous work [19]. The key idea in constructing the damping co-
efficients is to ensure they are small in the smooth region, and become large near
discontinuities. A natural and economical way is to use the jumps of the adjacent
elements in the DG framework. Therefore, We construct the damping coefficients
by using the jumps of the numerical solution at the element interfaces. Obuviously,
the formulation of damping coefficients is not unique because we can also use other
indicators to detect the smoothness of the numerical solution.

Without the extra damping terms in (2.5), the scheme is exactly the standard DG
scheme [11] and it would generate some spurious oscillations when there is a discon-
tinuity. This may lead to severe numerical difficulties such as blow-ups of numerical
solution when negative pressure and/or density occurs in computing compressible
FEuler equations.

PROPOSITION 2.1. The essentially OFDG scheme (2.5) preserves the conserva-
tion of quantities Uy, as time evolves.
Proof. Take vj, = (1,0,...,0)T in (2.5), we have

d

ko1
pn Ij(Ul)h dr = — (ﬁ1)j+% + (ﬁl)j,% - Z h_J/I (U)n — PN (T)) da

~ ~

== (F1)j41 + (F1);-1
Sum it over j, with the periodic or the compactly supported boundary conditions, we
obtain the conservation of U; that

d b
E/ (U1 ) d = 0.

Similarly, we can obtain the conservation of other components. O

For the error estimates of hyperbolic systems with smooth solutions, we can follow
[30] to obtain similar results under suitable assumptions.

THEOREM 2.1. For the symmetrizable system of conservation laws (2.1), assume
that the solution U and the fluzx function F(U) are sufficiently smooth with bounded
derivatives. Let Uy be the numerical solution of the semi-discrete essentially OFDG
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scheme (2.5). For the quasi-uniform meshes, if the finite element space V,f is of
piecewise polynomials of degree k > 1, then for small enough h there holds the following
estimate:

(2.9) U () = Un(8)[| 22 (fasy) < Ch**2,
where the positive constant C' is independent of h.
Proof. We give a detailed proof in Appendix A.2. O

2.2. Multidimensional system of hyperbolic conservation laws. In this
subsection, we extend the one-dimensional essentially OFDG scheme (2.5) to multi-
dimensional hyperbolic systems. The governing equations are given as follows

d
(2.10) U, + ;E(U)zi =0, (x,1)€Qx(0,T],

U(z,0) = Uy(x), x e,

with periodic or compactly supported boundary conditions. = = (x1,...,24)7 €
where the domain Q is open bounded in R? and U = (Uy,...,U,)", F;(U)

T
(FM(U), e ,Fi)m(U)) .
Assume we have the partition 7, of € and 7Tj is regular. We still adopt the
notations similar to Section 2.1 without causing any ambiguities.

h = max hgi, hx = diam K, p = min pg, pk is the diameter of the sphere inscribed in K.
KeTn KeTh

The essentially OFDG scheme for (2.10) is presented as follows: Find Uy, (-,t) € [V}¥] "
such that

/K(Uh)t cvpdr = g (/KE(Uh) (o), dz —

ko
_Z“—K/(Uh—P,i‘th)-vhdm, Yo € (V]
lith K

I?’Z(Uh)m - Up dS)
oK
(2.11)

where E(Uh) are taken as the Lax-Friedrichs flux on the element interfaces, and
n = (n1,...,nq)7 is the unit outward normal with respect to OK. V}* is the finite
element space containing polynomials of degree not greater than k, i.e.

(2.12) ViF={ve L*(Q):v|x € PY(K), VK¢eT,}.

P,ll is the standard L? projection into V,f, 1> 0 and we define P, = PY. The damping
coefficients o', are given as follows.

(2.13) a;_%?—; max > <NL > (ﬂaa‘/s]]\v)Q) )

o=l ¢ veaK

N|=

where the vector « is the multiindex of order

lo| = 1 + -+ + aa,
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and 0%w is defined as

olely
(6% _ _ @1, [o%]
7] w_iax‘f”w-axgd_azl Ogdw .

The variables 8"‘V}v = ((?O‘Vl, e ,8"‘Vm)T|v are obtained by 8°‘V|v = R’l}neaaUh}v,

where R™! ’n is the matrix derived from the characteristic decomposition
d _—
> niF/(({Ux)) = RAR™
i=1

on the element interface, n. = (n1,...,ny4) is the unit out forward normal vector of
the element interface, and (Uy,) is the arithmetic average or the Roe average (which is
used in the numerical experiments later) at the element interface. N, is the number
of edges of the element K and v € K are the vertices of K. [w]|, denotes the jump of
the function w on the vertex v. It should be noted that w may have several jumps on
the vertex v, and we only compute the jump between the element K and its adjacent
neighbors. More specifically, we take the two dimensional case as an illustration
example in the following.

| Fic. 2.1. Illustrating graph for the jumps in the
damping coefficient O'lK defined in (2.13).

In Figure 2.1, we consider the jump of the function w on the vertex v € K. The
triangular element K has three edges thus N, = 3. The adjacent neighbors of element
K are Ky, Ko, K3, then we have

(19wll,)” = [l — 0wl )? + (0wl ~ 9ulx,)?]|

Note that we do not take the elements Ky, K5, Kg into consideration, though we
still have jumps between the element K and them on the vertex v. Also, there
are various choices of R and R™! in the characteristic decomposition. Throughout
this paper, for two-dimensional compressible Euler equations, U = (p, pu, pv, E)T,
F = (pu, pu? + p, puv,u(E —i—p))T, F, = (pv,puv, pv? +p,u(E —I—p))T, we take R™!
as follows.

(2.14)
1 . 1 1 1
E(BQ + dc) —§(B1u+nlc) —§(B1v+ngc) §B1

e noC —nic 0
02 — Bg Blu Bl’U —Bl

1 1 1
—(Bg — 1c) —g(Blu—nlc) —5(310—7126) §B1

R '= (’y — l)c_l
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where u, v, ¢ and By are given as

2 2
U =uny +vny, U= —ung+wvny, = E, By =~v—1, Bg:Blu v
P

REMARK 2.2. The characteristic decomposition makes the algorithm complicated
and also requires extra computational cost. A natural choice is to add the damping
term to each component based on the current component. However, we have inves-
tigated many numerical examples and have observed that, even though this simpler
approach works well for many problems, it does not work well for some of the tough
problems. After testing a vast amount of problems numerically, we have decided to
adopt the characteristic decomposition in the algorithm.

PROPOSITION 2.2. The essentially OFDG scheme (2.11) preserves the conserva-
tion of quantities Uy, as time evolves.

Proof. Take v, = (1,0,...,0)7 in (2.11), we have

i /. (U1) da = — Z FUh i vpdS — Z /U ~ P7'U) - vp da,

:—Z/ Fi1(Up)n;dS .

Take summation over K € 7T, with the periodic or the compactly supported boundary
conditions, we obtain the following conservation result for the DG scheme (2.11).

- Z/ Uy)p dx = 0.

KeTy,

Similarly, we can obtain the conservation of the other components. O

REMARK 2.3. In this framework, we add the damping terms to all elements
including those in the smooth region. One can also use the idea of the troubled cell
indicators to determine the trouble cells and add the damping terms in these cells only,
then it could reduce the computational cost. This approach is feasible in implementa-
tion and it should also produce satisfactory numerical results. However, we have not
pursued this approach in this paper, as such treatments would require an adjustment
of some parameters (e.g. the TVB trouble cell indicators). Besides, it seems difficult
to theoretically prove some properties of the DG schemes with such treatments, even
for the scalar case [19].

2.3. Time discretization. In some numerical examples, with the explicit Runge-
Kutta method as the time-stepping method, the time step size of the essentially OFDG
schemes (2.5) and (2.11) could be very restricted for the sake of stability. Thus, we
would like to use an appropriate time discretization method which could relax this
restriction. For simplicity, we only consider the scalar case, i.e. m = 1 in (2.1) and
(2.10). We adopt the Legendre orthogonal basis functions denoted as ¢, =0,--- ,p
on each element K in finite element space. Now we assume

= Z Z U, ¢x,i(x)

KeTy 1=0

With the aforementioned spatial discretization, we obtain the following ODE system

(2.15) (up)t + D(up) + E(up)up, =0,
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where wu, denotes the coefficients of the basis functions, D(uy) is the DG approxi-
mation of Z'Z:l F;(U),, and X(uy) is a diagonal matrix coming from the damping
terms. Since the damping term vanishes for ux o from the definition, then we only
need to consider the integration for the remaining coefficients. In the following, we
set

wy = (uno, @), D(wn) = (Do(wn), D(wn))",  S(un) = (O i(uh)> 7

where i, denotes the coefficients of the basis functions except the first basis function,
and D(up,) denotes the vector of D(uy,) without Dg(up,), and X(up,) is the submatrix
of ¥(up). Then the ODE system (2.15) can be rewritten as

(2.16a) (un0), + Do(un) =0,

(2.16b) (@n)e + D(un) + S(up)ap, = 0.

For the ODE system (2.16), one can apply the explicit Runge-Kutta time discretiza-
tion for the time evolution directly. However, for some tough problems, the damping
terms would take effect and lead to a very restricted time step size. Thus, to re-

duce the influence of the damping terms on the CFL condition, we follow the idea of
exponential Runge-Kutta methods (see [16]) and (2.16b) is rewritten as follows.

(2.17) (ﬁh)t + lA)(uh) + (i(uh) — aoI)’IALh + apty, = 0,

where ag > 0 is a constant and I is the identity matrix. Then we obtain the following
exponential form.

(2.18) %(e‘“’tﬁh) + e (D(up) + (S(un) — aol)an) =0,

and we can apply the explicit Runge-Kutta method to discretize the ODE system
(2.18). For example, the classical third-order SSP RK method [26] is given as follows.

(2.19a) ug% =upo— 7Do(u}),
(2.19b) @) = e 7 (@} — 7(D(u}) + (S(u}) — aoD)ay)),
3 1
(219¢) uy’y = ot ZT(U% — Do(u;)),
@ 3 _tarm L otan (- - - ~
(2190) @ = Semrora 4 petr (@)~ r(DGl?) + S) - aDaf) ).

>~

" 1 n 2 2 2
(2.19) uph' = U0 T gT(uﬁl}) — Do(uy?)),
2

. 1 . 1 . ~ a .
(2.19f)  apt! = ge_“OTuZ +3e 3007 (ugf) - T(D(uf)) + (S?) - aoI)uEf))).
Before we proceed, we make the following assumption on (2.16):
ASSUMPTION 2.1. Assume the standard DG scheme (without damping terms)
with Fuler forward time discretization satisfies the strong stability: There exists Ty >
0, such that for any 0 < 7 < 1R, then

(2.20) lluno = 7Do(un) || < llunoll, 1@ = TD(un)| < @]
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For the first unknown wy, o, we already have the stability results by the assumption
(2.20). Now we present the stability result of @, in the following.
PROPOSITION 2.3. For the third-order RK scheme (2.19), if we have

1 S &
(2.21) 0<7<7pandag =3 max { || (wf) | oo, 12 | oos (S () oo}

then we can obtain the following stability results.

(2.22a) @Rl < e (1 + aor)ag | < lla]),
_ 1 1 _
(2.22D) a2 < e~ (1+2a07'—|— Zadr) @l < gl
1 1
(2.22¢) aptt| <e—a07(1+a07+2a07 +6a )Huhll < lug]l.

Proof. Since we have

(2.23) ag > —I\E(uh)lloo = |[Z(u) — aol |l < ao,

then from (2.19b), we obtain

~ 1 — ~ = S ~
a1l < e ([ — 7D (ui)|l + 7lIS(uf) — aol |l |1a7])
< e (14 7] S(up) — ao o) @R < e (1 + aor) @]

Therefore, we obtain (2.22a). Then with (2.19d) and (2.22a), we have

1 ~n
20+ aor)?) @]

< e—%a(ﬂ'(l + 1
- 2

Therefore, we obtain (2.22b). Similarly, by using (2.19c¢), (2.22a) and (2.22b), we have
. _ 1 2 1 1 N
@ < e (5 + 5+ aor ) (14 a0 + 7adr?) )z

1 1
< e @7 (1 + agT + 2a07' + 6a07' )HuhH

) < ——a()T 3
Jaf?| (5 +

1
Saor + qair? )]

O

REMARK 2.4. As mentioned in [16], the exponential function e~ 7 in (2.19) de-
cays too fast. The numerical solution would be smoothed when the damping terms take
effect mnear the shock discontinuities. To obtain a sharper transition, we recommend
to use the modified Runge-Kutta methods, i.e. replacing the exponential functions by
the Taylor expansion polynomials in the time discrete scheme.

1

(2.24a) ) = i 7(D(up) + (2(up) — aol)ay)),
(2.24D) a® = 2ap 4 2L (al) o (D) + (Sl?) — alyag) ),
h 452 48 h h h
n 1 2 P =~ a
(2.24c) aptt = o+ 22 (a2 - 7 (D) + S(uf?) - aol)a?)).

with s1 =14 z + 52 + %z?’, So =1+ %z + %22 + 4%23, z = aoT. More details about
this modified exponential Runge-Kutta methods can be found in [16].
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3. Numerical tests. In this section, we present some numerical examples to
demonstrate the effectiveness and robustness of the proposed algorithm. We take the
one- and two-dimensional Euler equations as illustration examples and many bench-
mark problems are considered. Throughout this section, we take the heat capacity
ratio v = 1.4 unless otherwise specified. Also, we take both the classic fourth or-
der Runge-Kutta method and the modified exponential Runge-Kutta method as our
time stepping method in this section, with the default being the classic fourth order
Runge-Kutta method as the time stepping method unless otherwise specified. The
CFL condition is different for these two kinds of RK methods for the reason that the
damping term does affect the CFL condition. In 1D, the CFL condition for the classic
fourth order Runge-Kutta method is

T:a/h—l—ao/h’ j,s j+%}7

where 7 and h are temporal step size and spatial step size, respectively. (\)T, |, s =

its’

1,...,m are the m real eigenvalues of the Jacobian F’(U) at zT |, and ag = max; a;?,

J+g’
a;-“ is the damping coefficient defined in (2.7). The time step would be small if ag is
large. But for the exponential Runge-Kutta or the modified Runge-Kutta method,

the CFL condition is normal that

CFL
a/h’

The CFL condition for two-dimensional problems is similar.

3.1. One-dimensional problems. In this subsection, we present several one-
dimensional numerical results. The phrase full polynomials in the Figures means we
plot 21 points in each cell, and the phrase cell averages means we only plot the cell
average within a cell.

EXaAMPLE 1. We test a smooth problem for one-dimensional Euler equation with
periodic boundary conditions. The initial conditions are

p(,0) = 1+ 0.5(sin(2))2, u(w,0) =1, p(z,0)=2,
so that the exact solutions are given as
p(x,t) =14 0.5(sin(z — )2, u(z,t) =1, p(x,t)=2.

The computational domain is Q@ = (0,27) and the final time T = 1.2.

In Table 3.1, we report the errors and convergence orders of density in L', L? and
L norms in Example 1. We can see the convergence order is k + 1 which is optimal.
This indicates the damping term would not pollute the order of accuracy which has
already been demonstrated in [19].

ExXAMPLE 2. We consider two well-known Riemann problems for 1D Euler equa-
tions. Both of them have the following Riemann type initial conditions:

Uy, <0,
Ur, x>0.

U(z,0) = {

The first test case is Sod’s problem [28]. The initial conditions are

(PL;ULapL) = (17 07 1)7 (pRauRupR) = (01257 07 01)
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TABLE 3.1
Density’s errors and orders in Example 1.

| | N || L' error order | L? error order | L* error  order |

16 || 1.156E-02 - 1.399E-02 - 2.469E-02 -
32 || 1.902E-03 2.604 | 2.440E-03 2.519 | 5.433E-03 2.184

p 64 || 3.414E-04 2.478 | 4.223E-04 2.531 | 9.492E-04 2.517
128 || 6.488E-05 2.396 | 8.175E-05 2.369 | 2.188E-04 2.117
256 || 1.430E-05 2.181 | 1.835E-05 2.156 | 6.206E-05 1.818
512 || 3.368E-06 2.086 | 4.436E-06 2.048 | 1.644E-05 1.916
16 || 1.057E-03 - 1.227E-03 - 2.787E-03 -
32 || 1.126E-04 3.230 | 1.450E-04 3.081 | 4.664E-04 2.579

P2 64 || 1.148E-05 3.294 | 1.614E-05 3.168 | 6.112E-05 2.932
128 || 1.304E-06 3.138 | 1.888E-06 3.095 | 7.599E-06 3.008
256 || 1.571E-07 3.054 | 2.295E-07 3.040 | 9.394E-07 3.016
512 || 1.938E-08 3.019 | 2.835E-08 3.017 | 1.165E-07 3.011
16 || 4.096E-05 - 5.290E-05 - 1.732E-04 -
32 || 1.636E-06 4.646 | 2.135E-06 4.631 | 7.824E-06 4.469

ps 64 || 7.628E-08 4.423 | 9.976E-08 4.419 | 3.998E-07 4.291
128 || 4.329E-09 4.139 | 5.413E-09 4.204 | 2.168E-08  4.205
256 || 2.607E-10 4.053 | 3.226E-10 4.069 | 1.276E-09 4.086
512 || 1.611E-11 4.016 | 1.989E-11 4.019 | 7.759E-11  4.040

The second one is Lax’s problem [18]. The initial conditions are
(pr,ur,pr) = (0.445,0.698,3.528), (pr,ur,pr) = (0.5,0,0.571).

For the two problems, we take the same computational domain Q = (=5,5) and the
final time is T = 1.3.

In Figures 3.2 and 3.3, we plot the density profiles for the shock tube problems in
Example 2. In both figures, we can see some small oscillations near the shock for full
polynomials, while for cell averages, the spurious oscillations are effectively reduced.
This is similar to the effect of TVB limiters in obtaining the total variation bounded
in the means (TVBM) DG schemes in [10].

EXAMPLE 3. Consider the Shu-Osher’s problem [27]. This is a shock entropy
wave interaction problem describing the interaction between a right-moving Mach = 3
shock and sine waves in density. This problem is very suitable for high order numerical
schemes because both shocks and complicated smooth flow feature co-exist. The initial
conditions are given as

p(z,0) = 3.857143, u(,0) = 2.629369, p(z,0) = 10.33333, v < —4,
p(x,0) =1+ 0.2sin(5z), u(z,0)=0, p(z,0)=1, x> —4.

The computational domain is 2 = (=5,5) and the final time is T = 1.8.

In Figure 3.4, we show the density profiles when five waves have passed through
the shock in Example 3. The reference solution is computed by the fifth order finite
difference WENO method with N = 4096.  With fixed degrees of freedom, the
numerical solutions of k = 2,3 behaves better than k = 1, indicating that the higher
order numerical schemes can resolve the waves better.

EXAMPLE 4. We consider here the interaction of two blast waves [29]. This
problem involves multiple reflections of shocks and rarefactions off the walls. The
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Fic. 3.2.  Density profile, Sod’s problem in Example 2, T = 1.3.
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inatial conditions are given as

103, 0<z<0.1,
p(x,0) =1, wu(z,0)=1, p(x,0)=<10"2 0.1<z<0.9,
102, 09<z<1.

The computational domain is @ = (0,1) and the reflective boundary conditions are
imposed on both left and right boundaries. The final time is T = 0.038.

In Figure 3.5, we show the density profiles of the interaction of two blast waves at
T = 0.038 in Example 4. The reference solution is computed by the fifth order finite
difference WENO method with N = 4096. We can see no spurious oscillations near
the discontinuities. In Figure 3.6, we also make a comparison between the damping
coefficient (2.7) and the following one.

2@+ n ! 2 ! 2
e R (CAGAIS R CAUATY Y

1
2

(3.1)

The Damping 1 stands for 55» in (3.1) and Damping 2 stands for aé- in (2.7). The

difference between these two damping coeflicients is that Ug» depends on a characteristic
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Fic. 3.3.  Density profile, Lax’s problem in Example 2, T = 1.3.
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(c) Cell averages. (d) Zoomed-in in (c).

decomposition, while &é- depends on the physical variables U}, directly. From Figure
3.6, we can see &é- introduces too much damping comparing to aé- in (2.7).

EXAMPLE 5. We consider the one-dimensional Sedov point blast problem [32]
which models the expanding wave by an intense explosion in the perfect gas. This
problem is a typical low density problem involving shocks, and in [32] the authors
successfully computed this problem by using both the positivity preserving limiter and
TVB limiter. The formula of the exzact solution can be found in [21]. Initially, we take
the density p(z,0) = 1, the velocity u(x,0) = 0 and total energy is E(x,0) = 102
everywhere except in the center cell that E(x,0) = Ey/ho, Eg = 3,200,000 and hg is
the length of the center cell. The computational domain is ) = (—2,2) and the final
time is T = 1073,

In Figure 3.7, we show the profile of density for the 1D Sedov point blast problem
in Example 5 with fixed degrees of freedom. Comparing to the exact solution, the
proposed algorithm gives satisfactory numerical results. This indicates our method is
robust and can reduce the spurious oscillations effectively.

3.2. Two-dimensional problems. In this subsection, we show the numerical
results of some benchmark problems in two dimensions, including the steady state
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Fia. 3.4.  Density profile, Shu-Osher’s problem in Example 3, T = 1.8.
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problems. Steady state problems are very important both in gas dynamics and in
other fields of applications. For some numerical schemes like ENO or TVD schemes,
the residual does not settle down to machine zero during the time evolution. We will
test some steady state problems to validate the effectiveness and good performance
of our method. To this end, we define the average residual [35] as

N

(3.2) Resy = ; Ix N, <N, )
where R1;, R2;, R3;, R4; are defined as
n+1 n n+1 n n+1 n n+1 n
ntl ntl . ntl , EntL _ g
R1, = L Pl o, = (pu); (pu)i R3, = (pv); (pv); R4, = F i
T T T T

N is the total number of partitioned cells. All figures plotted in this subsection are

the cell averages.
EXAMPLE 6. We test a smooth problem for two-dimensional Euler equations with
periodic boundary conditions. The initial conditions are given as

plx,y,t) =1+ 02sin(r(z +y)), v=0.7 v=03, p=1,
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Fic. 3.5.  Density profile, The two blast waves problem in Example 4, T = 0.038.
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so that the exact solutions are
plx,y,t) =1+ 02sin(r(x +y —1t)), u=0.7 v=03, p=1.

The computational domain is (0,2) x (0,2) and the final time is T = 2.

In Table 3.2, we report the errors and convergence orders of density in L', L?
and L* norms in Example 6. We can see the convergence order is slightly larger
than k4 1 especially in L? norm on the coarse meshes and this phenomenon has been
explained in [19].

EXAMPLE 7. We test a steady state smooth problem for two-dimensional Euler
equations. The initial conditions are given as

p(r,y,0) =14+ 02sin(z —y), u(z,y,0)=1, v(z,y,0)=1, p(r,y,0)=1.

The boundary conditions are prescribed by the initial conditions so that the exact so-
lutions stay the same as initial conditions as time evolves. The computational domain
is (0,2) x (0,2) and we take the final time T = 10.

In Table 3.3, we report the errors and convergence orders of density in L', L? and
L*° norms in Example 7 after a long time simulation. We can see clearly the (k+1)-th
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Fia. 3.6.  Density profile, Two blast waves problem in Example 4, k = 2, N = 640. Damping 1
stands for 55 in (3.1), and Damping 2 stands for O’;- mn (2.7).
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TABLE 3.2
Density’s errors and orders in Example 6, T = 2.
| | Nox N, [ L'error order | L? error order | L™ error order |
16 x 16 || 1.134E-02 - 1.306E-02 — 2.297E-02 -
32 x 32 || 1.456E-03 2.962 | 1.896E-03 2.785 | 4.171E-03 2.461
pl 64 x 64 || 2.201E-04 2.726 | 2.816E-04 2.751 | 6.527E-04 2.676
128 x 128 || 3.686E-05 2.578 | 4.671E-05 2.592 | 1.099E-04 2.570
256 x 256 || 7.375E-06 2.321 | 9.451E-06 2.305 | 3.343E-05 1.718
16 x 16 || 5.494E-04 - 6.267E-04 — 1.142E-03 -
32 x 32 || 4458E-05 3.623 | 5.307E-05 3.562 | 1.477E-04 2.951
P2 64 x 64 || 3.948E-06 3.497 | 4.988E-06 3.411 | 1.949E-05 2.922
128 x 128 || 3.891E-07 3.343 | 5.267E-07 3.244 | 2.426E-06 3.006
256 x 256 || 4.349E-08 3.162 | 6.150E-08 3.098 | 3.004E-07 3.013
16 x 16 || 2.063E-05 — 2.545E-05 - 7.129E-05 —
32 x 32 || 7.493E-07 4.783 | 9.249E-07 4.559 | 3.024E-06 4.559
p3 64 x 64 || 3.331E-08 4.492 | 4.102E-08 4.328 | 1.506E-07 4.328
128 x 128 || 1.766E-09 4.237 | 2.198E-09 4.173 | 8.345E-09 4.173
256 x 256 || 1.041E-10 4.085 | 1.307E-10 4.071 | 4.896E-10 4.091

order of convergence for the steady state solution. In Figure 3.8, we show the average
residual against time for k = 1,2,3. The results also verify the good performance of
the proposed algorithm.

EXAMPLE 8. Consider shock reflection problem in [35]. The initial conditions
are given as

plx,y,0) =1, wu(z,y,0)=2.9, v(z,y,0)=0, p(z,y,0)=1/1.4.

The computational domain is (0,4) x (0,1). We have inflow boundary conditions on
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Density profile, Sedov point blast problem in Exzample 5, k =2, N = 128.
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TABLE 3.3
Density’s errors and orders in Example 7.
| | Ny x Ny || LY error  order | L? error  order | L error order |
40 x 40 || 2.046E-05 — 3.369E-05 - 2.363E-04 —
60 x 60 || 9.043E-06 2.014 | 1.502E-05 1.992 | 1.058E-04 1.982
pl 80 x 80 || 5.071E-06 2.011 | 8.466E-06 1.994 | 5.971E-05 1.988
100 x 100 || 3.240E-06 2.008 | 5.425E-06 1.995 | 3.830E-05 1.990
40 x 40 || 4.552E-07 — 5.755E-07 - 3.030E-06 —
60 x 60 || 1.330E-07 3.034 | 1.685E-07 3.030 | 9.011E-07 2.990
p2 80 x 80 || 5.572E-08 3.025 | 7.062E-08 3.022 | 3.808E-07 2.994
100 x 100 || 2.841E-08 3.019 | 3.602E-08 3.017 | 1.953E-07 2.992
40 x 40 || 1.255E-09 — 1.921E-09 - 1.634E-08 —
60 x 60 || 2.469E-10 4.010 | 3.773E-10 4.014 | 3.222E-09 4.005
p3 80 x 80 || 7.799E-11 4.005 | 1.191E-10 4.010 | 1.018E-09 4.004
100 x 100 || 3.192E-11 4.003 | 4.869E-11 4.007 | 4.167E-10 4.003
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Fic. 3.8.  The average residual against time in Example 7.
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both left and upper boundaries:

( ) (1,2.9,0,1/1.4),  at the left boundary = =0,
7u7v7 -
P 0PI (169997, 2.61934, —0.50632, 1.52819),  at the upper boundary y = 1.

We have outflow boundary conditions at the right boundary r = 4 and reflection
boundary conditions at the bottom boundary y = 0. The final time is T = 20.

In Figure 3.9, we plot the density contour and the average residual against time
for shock reflection problem in Example 8 with k£ = 2, N, x N, = 200 x 50. The
average residual starts to remain unchanged at about t = 3.5.

Fic. 3.9. The shock reflection problem in Example 8, k = 2, Ny X Ny = 200 x 50. Left figure:
Density contour. Right figure: The average residual against time.
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ExaMpPLE 9. Consider a supersonic flow past two plates with an attack angle
of 15° [85]. The computational domain is (0,10) x (=5,5) and two plates are set at
€1(2,3), y= -2 and x € (2,3), y = 2. The initial conditions are given as

1
p9,0) =1, ulwy,0) =cos (53), w00 =sin(3), »= 3

where My, = 3 is the Mach number of free stream. We have inflow boundary con-
ditions at both left and bottom boundaries and outflow boundary conditions at both
right and upper boundaries, and no-penetration boundary conditions are imposed on
two plates. We take the final time T = 100.

In Figure 3.10, we plot the pressure contour and average residual against time of
the steady state solutions in Example 9, k = 2, N, x N, = 200 x 200. We can see
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F1a. 3.10. The pressure contour and average residual against time of a supersonic flow past
two plates with an attack angle 15° in Ezample 9, k =2, Ny X Ny = 200 x 200.

°
8
log10(ResA)

| | I TR R
0 20 40 60 80
t

(a) Pressure contour. (b) Average residual.

the residual remains unchanged at around ¢ = 15. This again indicates our method
works well in getting the residuals down to machine zeros.

EXAMPLE 10. In this example, we consider the vortex evolution problems in 2D.
An isentropic vortex perturbation centered at (x.,y.) is added to the velocity (u,v),
temperature (T' = p/p) and entropy (S = In(p/p7)) of the flow, given in the following:

2 - 1 2 2
(3.3)  (du,dv) = Tieaﬂ—f (g, —z), 6T = —%ew—f ), 68 =0,

where (%,7) = (x — e,y — Ye), 7 = (22 + 42)Y/? and 7 = r/r.. Here ¢ is the strength

of the vortex, o controls the decay rate of the vortex and r. is the critical radius that

vortex has the mazimum strength. We test following two cases:

(a) Consider the idealized problem similar to [23]: The mean flow is (p,u,v,p) =
(1,1,1,1) (diagonal flow). The parameters are taken as € = 5/2w, r. = 1,
a=1/2, (xc,yc) = (4.5,4.5). The exact solution is the passive convection of the
vortex along with the mean velocity. The computational domain is [0, 10] x [0, 10]
with the exact boundary conditions. The final time is T = 1.

(b) Consider the shock vortex interactions in 2D [4, 17]. The computational domain
is taken as [0,2] x [0,1]. A stationary Mach 1.1 shock is positioned at x = 0.5
and perpendicular to the x-axis. Its left state is (p,u,v,p) = (1,1.1,/4,0,1). We
take the same values of these parameters as in [17] that (x.,y.) = (0.25,0.5),
e =0.3, 7. = 0.05 and o = 0.204. The final time is T = 0.8. The left and right
boundary conditions are inflow and outflow respectively, and reflecting boundary
conditions are imposed on the upper and lower boundaries.

In Table 3.4, we show the error and orders of density for the case (a) in Example

10. The convergence order is slightly less than 3 for k = 2, while it is slightly larger

than k+1 for k = 1,3 at least in L' and L? norms. In Figure 3.11, we plot the vortex

interacted with the stationary shock wave at different time. We can see one branch of

the shock bifurcation has been reflected by the upper boundary in the figures t = 0.662

and ¢ = 0.8. The results are comparable to those in [17].

EXAMPLE 11. Now let us consider the two-dimensional Sedov point blast problem

[32].  As mentioned in Ezample 5, the formula of exact solution can be found in



20 Y. Liu, J. Lu and C.-W. Shu

TABLE 3.4
Density’s errors and orders of vortex evolution problem in Ezample 10, case (a), T = 1.

| | Nox N, || L' ertror  order | L? error  order | L™ error order |

16 x 16 || 5.965E-03 - 1.228E-02 - 7.847E-02 -
32 x 32 || 1.185E-03 2.332 | 2.414E-03 2.347 | 1.809E-02 2.117
pl 64 x 64 || 2.032E-04 2.544 | 4.202E-04 2.522 | 4.017E-03 2.171
128 x 128 || 3.984E-05 2.351 | 8.375E-05 2.327 | 1.098E-03 1.871
256 x 256 || 8.946E-06 2.155 | 1.929E-05 2.118 | 2.858E-04 1.942
16 x 16 || 8.704E-04 - 1.619E-03 - 1.830E-02 -
32 x 32 || 9.816E-05 3.148 | 1.769E-04 3.194 | 2.397E-03 2.933
p2 64 x 64 || 1.294E-05 2.924 | 2.351E-05 2911 | 3.504E-04 2.774
128 x 128 || 1.888E-06 2.776 | 3.651E-06 2.687 | 5.075E-05 2.787
256 x 256 || 2.762E-07 2.773 | 5.610E-07 2.702 | 7.650E-06 2.730
16 x 16 || 2.244E-04 - 4.513E-04 - 3.881E-03 -
32 x 32 || 9.87T4E-06 4.506 | 2.055E-05 4.457 | 2.486E-04 3.964
p3 64 x 64 || 4.199E-07 4.555 | 9.251E-07 4.473 | 1.522E-05 4.030
128 x 128 || 1.930E-08 4.443 | 4.382E-08 4.400 | 8.370E-07 4.185
256 x 256 || 9.510E-10 4.343 | 2.160E-09 4.342 | 4.589E-08 4.189

Fic. 3.11. The pressure contours of the 2D shock vortex interaction problem in Example 10,
case (b), k=2, Ny x Ny = 256 x 128. 30 contours: (a) t = 0.068; (b) t = 0.203; (c) t = 0.330. 90
contours from 1.19 to 1.37: (d) t =0.529; (e) t = 0.662; (f) t =0.8.

[21]. The computational domain is Q = (0,1.1) x (0,1.1). We take the initial density
p(z,y,0) = 1, the velocity u(x,y,0) = v(x,y,0) = 0 and total energy is E(x,y,0) =
10712 everywhere except in the lower left corner cell that E(x,0) = FEy/Sy where
Ey = 0.244816 and Sy is the area of the lower left corner cell. The numerical boundary
treatment is to extend the DG solutions of p,v,E as even functions and u as odd
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function with respect to the left boundary, and extend the DG solutions of p,u, E as
even functions and v as odd function with respect to the bottom boundary. The final
time is T = 1.

In Figure 3.12, we plot the density profiles of the 2D Sedov point blast problem
in Example 11. We take a slice of the numerical solution at y = 0 and we can see no
spurious oscillations occur near the discontinuity.

Fic. 3.12. The density profiles of the 2D Sedov point blast problem in Example 11, k = 2,
Nz X Ny = 256 x 256.
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(a) Density contour. (b) A slice at y =0 in (a).

EXAMPLE 12. Consider the double Mach reflection problem [29]. The compu-
tational domain is (0,4) x (0,1). The problem describes a Mach 10 shock initially
makes a 60° angle with the horizontal wall. The reflecting wall lies at the bottom of
the computational domain starting from x = 1/6. The initial conditions are given as
follows.

1
(8,8.25 cos (%) —8.25sin (%) 116.5), T< o+ %

(p,u,v,p) = 1y
(1.4,0,0,1), s Ly

We have inflow boundary conditions for the left boundary and outflow boundary con-
dition at the right boundary. For the bottom boundary, the exact post-shock condition
is imposed for the part from x = 0 to x = 1/6 and a reflective boundary condition is
used for the rest. For the upper boundary, the post-shock condition is imposed for the
part from x =0 to x = 1/6 4 (14 20t)/+/3 and the pre-shock condition is used for the
rest. The final time is taken to be 0.2.

In Figure 3.13, we show the density contours of double Mach reflection problem
in Example 12 with & = 2 on two kinds of grids. We use the exponential third
order Runge-Kutta (2.19) method as the time stepping method. We can see the
flow structures are better resolved with the refined mesh and the Kelvin-Helmholtz
instability can be seen in the Mach stem.

ExaMPLE 13. Consider the high Mach number astrophysical jets problem [1], 32].
Since the Mach number of the jet is extremely high, negative pressure and densily
could easily appear during numerical computation, leading to the crash of the program.
To overcome this difficulty, a positivity preserving limiter was developed in [31, 32],
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F1a. 3.13.  Density contours of double Mach reflection at t = 0.2 in Example 12, 30 contour
lines from 1.731 to 20.92, k = 2.

(a) he = hy = 1/240. (b) Mach stem in (a).

C) he = hy = 1/960 d) Mach stem in (c

which successfully preserved the positivity of the relevant physical quantities. Now
we compute the high Mach number astrophysical jets without the positivity preserving
limiter. We consider two cases: Mach = 80 and Mach = 2000 in the following. Note
that the heat capacity ratio v = 5/3 in this example.

For the Mach 80 problem, the computational domain is (0,2) x (—0.5,0.5) with the
ambient gas (p,u,v,p) = (0.5,0,0,0.4127) initially. The jet locates aty € (—0.05,0.05),
x =0, and the physical values are (p,u,v,p) = (5,30,0,0.4127). The boundary con-
ditions of the rest boundaries are outflow. The terminal time is 0.07.

For the Mach 2000 problem, the computational domain is (0,1) x (—0.25,0.25),
which is full of the ambient gas with (p,u,v,p) = (0.5,0,0,0.4127) initially. The
jet locates on y € (—0.05,0.05), x = 0. The physical values of jet are (p,u,v,p) =
(5,800,0,0.4127). The boundary conditions of the rest boundaries are outflow. The
terminal time is 0.001.

In Figures 3.14 and 3.15, we show the numerical results of Mach 80 and Mach 2000
astrophysical jets in Example 13, £ = 2, N, x N, = 320 x 160. We obtain satisfactory
results comparing to the results in [32] without any occurrence of instability.

Fic. 3.14.  High Mach astrophysical jets in Example 13, Mach = 80, k = 2, Ny X Ny =
320 x 160. Scales are logarithmic.
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(a) Density contour. (b) Pressure contour. (c) Temperature contour.
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Fic. 3.15. High Mach astrophysical jets in Example 18, Mach = 2000, k = 2, Ny x Ny =
320 x 160. Secales are logarithmic.

(a) Density contour. (b} Pressure contour. (c) Temperature contour.

EXAMPLE 14. This is another popular test problem for two-dimensional Euler
equations. In [11, 32|, the authors studied a Mach 5.09 shock diffracting at a 90°
degree. Here we study a Mach 10 shock diffracting at a 120° degree [33, 5]. The
computational domain and the triangular mesh with h = 1/4 are demonstrated in
Figure 3.16. The initial condition and boundary conditions are the same as in [33, 5].
This example is very difficult to simulate for the reason that the negative density and
pressure appear easily due to the numerical oscillations.

In the shock diffraction problem in Example 14, we use the third order modified
exponential Runge- Kutta method as the time discretization method. In Figure 3.16,
we give the unstructured mesh with A = 1/4 in Example 14 for illustration purpose.
In Figure 3.17, we show the density and pressure contours of shock diffraction problem
at t = 0.9 with k =2, h = 1/20,1/40. Our results are comparable to those in [33, 5|,
which implies the proposed method has good performance without using any limiters.

Fig. 3.16. Shock diffraction in Example 1], illus-
tration of the computational domain and the unstruec-
tured mesh with h = 1/4.

EXAMPLE 15. Our final example is an inviscid, compressible Mach 3 flow moving
towards a circular eylinder, which locates at the origin with radius 1 on the -y plane,
from the left. Our computational domain is {} = [—3, 3] x [—6, 6]. At the left boundary
x = —3, the inflow boundary condition is used and ouiflow boundary condition is
imposed at the boundaries T = 3, y = +6. We used the solid wall boundary condition
on the surface of the cylinder, (u,v)-mn = 0. The terminal time T = 40 makes the
numerical solution to reach the steady state in the subregion (—3,0) x (—6,6).

In Example 15, we also use the third order modified exponential Runge-Kutta
method as the time discretization method instead of the explicit Runge-Kutta method.
In Figure 3.18, we present the sketched triangular mesh of the computational domain
with h = 1/4 in Example 15. In Figure 3.19, we show the density and pressure
contours of steady state solutions for the problem of flow past a cylinder. We can
observe the bow shock is well-captured by our method with the meshes h = 1 /20 and
h=1/40.
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Fic. 3.17. Shock diffraction in Exzample 14, Mach = 10, k = 2.

(a) Density contour: 20 equally spaced contour (b) Pressure contour: 40 equally spaced con-
flood and lines from p = 0.07 to 8.1, h = 1/20. tour flood and lines from p = 0.8 to 115,
h =1/20.

(c) Density contour: 20 equally spaced contour (d) Pressure contour: 40 equally spaced con-
flood and lines from p = 0.07 to 8.1, h = 1/40. tour flood and lines from p = 0.8 to 118,
h = 1/40.

Fic. 3.18.  Flow past a cylinder in Example 15, illus-
tration of the computational domain and the unstructured
mesh with h = 1/4.

4. Concluding remarks. In this paper, we extend our previous work, the
oscillation-free discontinuous Galerkin (OFDG) method to solve hyperbolic systems.
To construct the damping terms in the numerical scheme, we need to perform char-
acteristic decomposition of the Jacobian of flux functions and the left eigenvector
matrix is being carefully chosen. Coupled with the exponential Runge-Kutta method,
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Fic. 3.19. Flow past a cylinder in Example 15, Mach = 3, k = 2.

(a) Density contour: 20 equally spaced contour (b) Pressure contour: 20 equally spaced con-
flood and lines from p = 0.5 to 5.5, h = 1/20. tour flood and lines from p = 2 to 12, h = 1/20.

(¢) Density contour: 20 equally spaced contour (d) Pressure contour: 20 equally spaced con-
flood and lines from p = 0.5 to 5.5, h = 1/40. tour flood and lines from p = 2 to 12, h = 1/40.

we show the CFL condition of the fully discrete scheme would not be polluted by
the damping terms. A variety of numerical experiments demonstrate the new DG
method can control spurious oscillations automatically without any additional post
processes, even for some tough problems with very low density and pressure. Though
the OFDG method does not guarantee the preservation of some physical structures
like positivity preserving, one can easily apply the positive preserving limiter in [32]
to obtain guaranteed positivity based on this framework. Currently, there is no the-
oretical result on the entropy stability of the OFDG method for hyperbolic systems,
thus to obtain an entropy stable OFDG scheme will be one of our future works.

Appendix A. Some implementation details and technical proofs. In
this appendix, we provide some implementation details and technical proofs of error
estimates of the numerical schemes .

A.1. Implementation details: Quadrature rules and numerical flux.
The DG formulation often involves some computation of volume integrals. The in-
tegrals are often complex thus the exact integration is impossible. The common
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approach is to use the numerical quadrature with sufficient accuracy. Throughout
this paper, we use the five point Gauss-Lobatto quadrature in 1D problems:

1 5
/1 f(z)dz ~ Zwif(ivi),
- i=1

= —l,ze = —\/3/T,23 = 0,24 = /3/T,25 = 1, w; =

(A.1)

where 7

49/90, w;

= 32/45,’(04 =

1/10,wy =

49/90,ws = 1/10. We use the tensor product of 1D

Gauss-Lobatto quadrature on the 2D Cartesian grid. For the triangular mesh, we
use the quadrature rule in Table A.5 on reference triangle element K = {(&,7n) : 0 <

&, E+n <1}
TABLE A.5
Sixz points quadrature rule with order 4.
£ n w
0.44594849091597 | 0.44594849091597 | 0.22338158967801
0.44594849091597 | 0.10810301816807 | 0.22338158967801
0.10810301816807 | 0.44594849091597 | 0.22338158967801

(A.2)

The numerical flux we use in this paper is the local Lax-Friedrichs flux.
illustration purpose, we only present the 1D numerical flux here.

0.09157621350977
0.09157621350977
0.81684757298046

0.09157621350977
0.81684757298046
0.09157621350977

0.10995174365532
0.10995174365532
0.10995174365532

6

1
[ stemdedn =3 S p(eam)

i=1

Friedrichs flux is defined as follows:

(A.3)

. 1
F.

with Qi1 = maXlgsSm{’(/\S)

m real eigenvalues of the Jacobian F'(U) at xﬁ I
2

il E ’()\s);r_’_% |}, where (\)

Jjt+5?

s=1,..

For

The local Lax-

ity T §(F((Uh);+ ) +F((Uh)j+%) B O‘J'Jr%((U")jJr% B (Uh);'i'%))’

.,m are the

A.2. Error estimates for one-dimensional symmetrizable systems. We

assume that the first-order conservation laws (2.1) is symmetrizable system, i.e. there
exists a mapping U(V): R™ — R™ such that (2.1) is transformed into the following
form:

ou OF
A4 —Vi+ =V, =0,
(A4) av 't + v
the matrix g—g is symmetric positive definite (SPD) and the matrix g—‘l’; = 2—5(‘3—3 is

also symmetric. We further assume that each component of g—g is Lipschitz continuous
with respect to the variable V. Following the standard analysis in finite element error
estimates, we define ¢ = II,U — Uj, and n = II,U — U, where II}, is the local L>-
projection. The error is decomposed by e = U — U;, = & — n. From (2.5) and
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consistent property of scheme, we obtain error equations as follows.

(A.5)

k l
a5(Un) -1
/Ijﬁt'vhdilf+§h7j/lj (P, ') -vndr

k l
(U,
= / e - vpde + K (U, Uy o) + Z y/ (HhU P,lflﬂhU) ~vp dx
1.7

for any vy, € [V}F]™ and 1 < j < N, and
Kij(U,Up;vn) = Hj(U,vi) — H;j(Un, vn),

(A-6) H;j(Un,vn) = /1 F(Un) - (vn)e dz — ﬁfrl

. ('Uh>j_+ + F<_% . (’Uh);;%.

Nl=

2

We take the test function vy, = g—g (U.)¢ in (A.5), where U. is the piecewise constant
vector-valued function that is equal to the vector U(z;,t) in each element I;. We
denote the weighted norm

(A7) ol = (22)* o],

for any vector-valued function p. By the L?-projection, the first term of right hand
side of (A.5) vanishes. Thus summing over j, we obtain

"0V - 73 (Un) LTV .
/aiTa £tdx+;l§ 0 /Ij (6~ P'e) G5 U (€~ P€) do
N N 1 U
:Z/Cj(U,Uh;g—Z(UC)E)—FZ Uﬂi " /gT‘W ) (LU — PIILU) do
J=1 j=11= i I

By lemma 4.2 in [30], we have the estimate of A;:
(A.9) A1 < (O + Culel3)h™ + (O + Cuh™ el 2 NIEIIS -
Next, we proceed to estimate As. Since we have
[(R0L(U, ~ U)).J2, + [RTOLU - U))I2,
SHAOL L + (O, + [l + [,
SANIEN T 1, urune TR T NU e 1, ory01,40) -
Then we have the estimation of damping coefficients in the following.
(A.10) lot] < I 1€llz2(r,_ ur,ur,00) + [ MO v+ (1, u1,01,50)-
We also have
WU — Py LU | 21,
< |MWU = Ullparyy + U = By Ul g2y + 171U = By U | 2y
< CRFPH U || s (1) + CR™ D2 U e 1, + CREFY[U | i 1,
< O+ R O53) U e g,
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Here we used the Sobolev inequality
(A11) [Ullwi=o) < CllU[|gr+1q), YVO<I<Ek
Therefore, combine (A.10) and (A.11) and apply Cauchy-Schwarz inequality, we have

(A.12) Az < C(ENNIEN + R HEN T 41 (0.
Plugging (A.9) and (A.12) into (A.8) we have

1d, .o 1 [° 0V s ,
577 <5 — ) (U.)&d C+C.h
(a13) 2alélv =3 / ¢ (55 ), Ugdz + (C + Ch~ el )l
+(C + CullelZ)n** + CIENEllv + R HIENIT | e -
Under the a priori assumption of error, for h small enough there holds
(A-14) IU ~ Unllo < Ch3.

This a priori assumption, which can be justified (see [19]), is unnecessary for linear flux
function, i.e F(U) = CU, where C is a constant matrix. And in the symmetrization
theory [22], the || - ||y norm is equivalent to the usual L?-norm || - ||. Therefore, by
(A.13) we obtain

d
(A.15) €l < C* +gl).

Finally, the Gronwall’s inequality, triangle inequality and approximation of projection
imply that

(A.16) |U = Uy| < ChF*+3.

REMARK A.1. Since we use the local Laz-Friedrichs flux, we only obtain the
sub-optimal error estimates here because of Ay, not Ay. For certain special numerical
flux functions, we can also upgrade the error estimates to be optimal, i.e., O(h*T1).
Thus, the added damping term does not reduce any accuracy of the original scheme
when the exact solution is sufficiently smooth.
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