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Abstract

The nonlocal electron heat transport model in laser heated plasmas plays a crucial role in
inertial confinement fusion (ICF), and it is important to solve it numerically in an accurate
and robust way. In this paper, we first develop an one-dimensional high-order entropy
stable discontinuous Galerkin method for the nonlocal electron heat transport model. We
further design our DG scheme to have the positivity-preserving property by using the scaling
positivity-preserving limiter, which is shown, by a computer-aided proof, to have no extra
time step constraint than that required by L? stability. Next, we extend our one-dimensional
scheme to two-dimensions on rectangular meshes and tensor product polynomial spaces.
Numerical examples are given to verify the high-order accuracy and positivity-preserving
properties of our scheme. By comparing the local and nonlocal electron heat transport
models, we also observe more physical phenomena such as the flux reduction and the preheat

effect from the nonlocal model.
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1 Introduction

In laser heated plasmas, the electron heat transport model which determines the energy
distribution in plasmas plays a crucial role in inertial confinement fusion (ICF). The classical
theory of thermal conductivity in plasma given by Spitzer and Harm [14, 25] is derived in the
limit of small temperature gradients. However, when a steep temperature gradient appears in
laser heated plasmas, the flux value obtained by the classical Spitzer-Harm model is several
times higher than what is measured in the experiments, which is later interpreted as the
nonlocal nature of the electron heat transport. The classical approach relates the heat flux
with the temperature gradient and the heat conductivity in frequently collisional plasma,
but it is not applicable in laser heated plasmas with weakly collisional plasma.

Although the nonlocal character of electron heat transport has been observed in many
experiments, there is less development of adequate theory in this field. Based on the solution
of the Fokker-Planck kinetic equation, Luciani et al. [22] proposed a nonlocal phenomenolog-
ical formula in one dimension which could describe the effect of preheating, and this model
has been adopted by many ICF simulation codes. Schurtz et al. [24] extended this formula
to multidimensional cases and proposed a simpler equivalent transport equation which is
easy to implement. The authors in [15] attempted to develop a nonlinear nonlocal trans-
port model based on the self-similar solutions to the Fokker-Planck kinetic equation, but
this model failed to describe the processes of nonlocal electron heat transport quantitatively

[3, 4],

In this paper, we focus on the nonlocal electron heat transport model proposed by Schurtz

et al. [24] which describes the diffusion term with desirable nonlocal damping properties,
du=-V-Q
Q=CQsy — V- (=AVQ) (1.1)

u(x,0) = up(x)
(x,t) € Q x [0,00)

where u is the electron temperature and Cj is the heat flux. We denote @SH as the Spitzer-



Harm heat flux, that is
Qsn = —ksuVu,

where rgy is the Spitzer heat conductivity [14, 25, 19],
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Here ¢q is the permittivity of the vacuum, Z is the average ionization of plasmas, e and m
are the electron charge and mass, and In A is the Coulomb logarithm, respectively. In this

paper, we consider the more general type of the Spitzer-Harm heat flux @5 H as
CjSH = —Vk(u)

where k(u) is an increasing function of u, namely &'(u) > 0. The first equation in the nonlocal
electron heat transport model (1.1) is a transport equation, with the global physical flux
determined by the second stationary equation which is independent of time. Mathematical
properties such as stability of similar equations are rarely mentioned in the literature.

There is also little discussion on how to numerically solve the model (1.1) accurately
and robustly in the literature. In [24, 19], the authors applied second-order finite difference
methods to find the approximation solutions for the nonlocal electron heat flux. This method
is difficult to handle the solution with discontinuity or large gradient, in the meantime, it
can not achieve high-order accuracy.

High-order discontinuous Galerkin methods coupled with the strong stability preserving
Runge-Kutta (SSP-RK) time discretization [10, 9, 8, 11, 12] using discontinuous piecewise
polynomial spaces are widely adopted for solving hyperbolic conservation laws accurately,
due to their flexibility for complicated geometries even with hanging nodes and high parallel
efficiency since cells only communicate with immediate neighbors. Besides the conservation
laws, these methods have been extended to the local DG method [13], the ultra-weak DG
method [7], etc., for dealing with diffusion terms and higher-order derivatives. Furthermore,
DG methods have been designed to solve differential-algebraic systems such as the Vlasov-

Poisson system in plasma physics of large ensembles of interaction [1, 2] and the drift-diffusion
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model in semiconductor device simulations [20, 21]. For the model (1.1) that we are interested
in, the first equation is a time-dependent transport equation and the second equation is a
time-independent elliptic equation. Because of the many advantages of the DG methods
mentioned above, we would like to design a high-order DG scheme for the nonlocal electron
heat transport model (1.1).

Although the entropy inequality plays a crucial role in the well-posedness of the conserva-
tion laws, the classical DG method could satisfy the discrete square entropy inequality only
for scalar equations and symmetric systems [18, 17]. Utilizing an entropy stable flux at the
cell interfaces and the entropy conservative flux within cells, Chen and Shu [5, 6] proposed
a framework of DG methods which could maintain high-order accuracy and conservation for
the hyperbolic conservation laws and they could satisfy the entropy inequality for an arbitrary
given convex entropy by using suitable numerical quadrature. Based on this framework, Sun
et al. designed relevant high-order entropy stable DG methods for the nonlinear parabolic
equations [20] and the cross-diffusion gradient flow system [27], which satisfy the discrete
entropy inequality. Combined with the positivity-preserving limiter and the SSP-RK time
discretization, their fully discretized scheme could keep positivity-preserving property and
high-order accuracy. However, there is little discussion in the literature about the entropy in-
equality for the system composed of the time-dependent equation and the time-independent
equation such as the electron heat transport model (1.1).

The temperature u in the nonlocal electron heat transport model (1.1) is physically non-
negative, and negative temperature u makes the equation no longer well-posed. For example,
in the Spitzer-Harm heat flux, we usually take k(u) = Cg wu? which requires u > 0. But we
may get negative numerical solution by a numerical scheme particularly for the high-order
scheme. Not only does negative numerical solution violates the physical properties, but it
can also make the numerical scheme unstable or even fail the simulation when it is coupled
with the fluid flow equations. Therefore, it is an important and challenging issue to design

a high-order positivity-preserving scheme. Coupled with the explicit time discretization, a



series of positivity-preserving methods which satisfy a strict maximum principle or other
bound-preserving properties have been developed for the conservation laws [31, 32, 33, 3],
convection-diffusion equations [35], compressible Navier-Stokes equations [30], and other
equations [29, 28], by using a positivity-preserving scaling limiter. Provable high-order accu-
racy and easiness for implementation make this positivity-preserving limiter widely adopted.
By this method, the authors in [26, 27] have designed a positivity-preserving and entropy
stable nodal DG scheme for the nonlinear parabolic equations and the cross-diffusion gra-
dient flow system. This method requires the cell averages in the next time step remain
non-negative if the solution at the previous time step is non-negative, only based on such
assumption can we close the positivity-preserving loop.

All the above-mentioned positivity-preserving schemes are proposed for the explicit schemes.
But the scheme we will design for the model (1.1) turns out to be an implicit type scheme
because the second equation is independent of time. It is much more difficult to prove the
cell averages are non-negative for an implicit high-order scheme if we know the numerical
solution is non-negative at the previous time step. In fact, there is few discussion about the
implicit high-order positivity-preserving scheme in the literature. Qin et al. [23] proposed
a high-order positivity-preserving DG method with the implicit time discretization for the
conservation laws.

In this paper, we would like to discuss some mathematical properties of the nonlocal
electron heat transport model (1.1) first. Based on this, we develop a high-order entropy
stable scheme with the DG space discretization and the SSP-RK time discretization in one
dimension. Then we extend the scheme to two-dimensional rectangular meshes with tensor
product polynomials. In order to preserve the positivity property of the temperature for our
high-order implicit DG scheme, we would like to find a time step condition, by a computer-
aided proof, that ensures the cell averages to be non-negative at the next time step if the
solution at the current step is known to be non-negative. Then we can apply the scaling

positivity-preserving limiter [31, 32, 33] to make sure the new solution is non-negative.



The outline of this paper is as follows. Section 2 and Section 3 describe the entropy sta-
ble high-order discontinuous Galerkin method for the one-dimensional and two-dimensional
nonlocal electron heat transport models, respectively. After that, we will prove the semi-
discrete scheme is conservative and satisfies discrete entropy inequality. Coupled with the
SSP-RK time discretization and the positivity-preserving limiter, the fully discretized scheme
is high-order accurate and preserves positivity of solutions under suitable time step restric-
tion. Section 4 shows a series of numerical tests to examine the performance of the DG
schemes for the one-dimensional and two-dimensional cases. Accuracy tests with or with-
out the positivity-preserving limiter as well as non-oscillatory tests and positivity-preserving
tests have been shown for the nonlocal model. Furthermore, we show several physical tests
and observe significant differences in the effects of the local and nonlocal models. Finally,

the conclusions and further comments are given in Section 5.

2 High-order entropy stable and positivity-preserving
DG scheme for the one-dimensional nonlocal elec-
tron heat transport model

2.1 The stability property for the one-dimensional nonlocal elec-
tron heat transport model

We first consider the one-dimensional nonlocal electron heat transport model (1.1),

8tu = —(%Q
Q = —0.k(u) + A0y Q (2.1)
reQCR, t>0

where we recall that &'(u) > 0. Define the convex function U(u) such that U'(u) = k(u),

then the entropy functional
E = / U(u)dx
Q
can be defined. For simplicity, we define {2 to be the connected compact domain with the

periodic or compactly supported boundary condition. Zero-flux boundary condition can also



be used in 2. After that we can show that the total entropy is non-increasing with respect

to time,
Cil—f = fQ utdx
= _fQ QI ( )z ]dx_fﬂ ()“Qz|2+Q2)diU
= _fg ()\‘Qz‘Q—l—Cf)deO.
To be more specific, for the Spitzer-Harm local electron heat flux we have QSH = —Cy HU%VU,
Csy > 0 [25, 14, 19], so the nonlinear term in our model (1.1) can be written as k(u) =

CSHU%, therefore we can find the convex function U = CSHU%. Since the original equation
satisfies such entropy inequality, and we would like to solve the nonlocal model robustly, so
we hope our numerical scheme can inherit such properties. When the scheme satisfies similar

discrete entropy inequality, it means that the scheme is entropy stable.

2.2 One-dimensional semi-discrete DG scheme for the nonlocal
electron heat transport model

To design the discontinuous Galerkin method, by introducing the new variable G, we rewrite

the original equations (2.1) as

=-0,0Q
Q = —\0,G — 9,k(u)
G=-0,Q (2.3)

u(,0) = ug(x)
x,t) € Q x [0,00)

—~

where A > 0,k'(u) > 0. We observe that there is no second order derivative terms in the
system (2.3).

Suppose a regular partition of the domain €2 := UiV:1 1;,

2

and the discrete discontinuous Galerkin space of polynomials of degree m

V™ = {w(z) : w(z)];, € P(L),1 <i< N}.

Here, P™(1;) is the space of polynomials of degree less than or equal to m on I;.
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Then we seek the numerical solution uy, @y, Gy, from V"™ such that for any test function
0, 1,02 € V™ and 1 <i < N, we have

Ji, Ounpdr = [} Qudppdr — (Que)ar + (Qnp™ )iy
fli Qnprdr = X fli GOy 01dx + fli k0, prdx

~MGrdT)irs + ANGd )iy — (kndr) et + (kndi)is
Ji, Gutod = [} Qudptod — (Qndy)yar + (Qndd),

where we denote k(uy) as ky, and @y, 1,G, 1,k ;1 are single-valued numerical fluxes at
’ 2 ’ 2 ’ 2

(2.4)

the cell interfaces of I; and I;;1, depending on the values of numerical solution from both

sides 7 ,,xF

1T ete. In this paper, we adopt the alternative numerical flux, i.e.
2 2

~

Qh,i+§ = Qh(x;r%)a Gh,i+l = Gh(x;;%), ]%h,iJr% = k(uh(x:r%)) (2.5)

2
For simplicity, we omit the subscript h of the numerical solution wuy, @, Gy in the following.

We apply the Gauss-Lobatto quadrature rule with m + 1 quadrature points {z;(§,)}",
on I;,

w(6) = e Lo b)), r=01m,
2 2 2 2

where —1 = &, < & <, -+, < &, = 1 and {w,}", are the quadrature weights on [—1,1].
Notice that its algebraic degree of accuracy is 2m — 1, so the Gauss-Lobatto quadrature,
denoted by ] ;, below, is not exact for | 1, Orupd, Il 1, kOodrd, but is exact for / 1, QO pd,
fli GO, P dx, fli QO podx.

Following the notations in [5], we define the Lagrangian nodal basis polynomials
TE-6
L; f = )
1#]

and the function u(z,t) on each cell I; can be represented as
u(e,t) [= 3wl (0L, (€(2), =€ L,
r=0

here we use u’(t) to represent u(x;(&,),t). The difference matrix D, the mass matrix M, the

boundary matrix B and the stiffness matrix S are defined as
Dy = Li(&),

M = diag{w, - ,wn}, (2.6)
B = diag{TO’... ’Tm} = diag{—l’o,"' 70,1}7 ‘
Sjl = ijjl.



In the meantime, we can prove the following summation-by-parts properties

Lemma 2.1. According to the definition of the matrices (2.6), we have the following summation-

by-parts properties which are the discrete analogues of the integration-by-parts properties,
1) S=MD, MD+D'M =S5+ ST =
2) Yo Dji=0,0<j<m,
3) DoiloSit=2ZewiDj =0, 0<j <m,

4) 2208 =15, 0<j <m.

The proof of Lemma 2.1 can be found in [5], so we omit it here. Then we use the

quadrature rule ] ;, to substitute / ;, in the weak form (2.4),

fatUSOd«T = f@azSOdiU - (QSO )z+1 + (Q‘P )

) 2.7
B _A(G¢1 )z+1 + )‘(G¢+) -1 T (k¢1 ) % (k¢+)
JGordz = [QOubndz — (Q07)iry + (Q6F)imy.

We denote the vectors @, Qf, G, ki to be the values of u, Q, G, k at the Gauss-Lobatto

quadrature points {z;(&,)}"™, within the cell I;,

’lzi' = [U(%(fo)),‘“,U(«Tz'(fm))]TTa sz = [Q(z:(%)), aQ(xi(fm))]TTa (2.8)
G' = [G(l’l(fo)),,G(l'l(gm))] , ko= [k(%(fo))a ’k(l‘z(gm))] )
and define the numerical fluxes,
Gis — [Qi_%,o, .,O,QH;]T,
Gir = [G‘i_%,o, -,o,éﬂér, (2.9)
E@',* — [l%i_%,(),...’(),lgﬂé} ,
then the equations in (2.7) can be written as
h: ) diit ) - -
5 () MG = (DF)MG - (#)" B,
hi T T ~i 7 ~i 7 Ti T % z*
5 () MG = (D)™ (MG +F) - (1) B(AG" +E),
hi AN ~i ZiNT A 1) %\ i, *
5 (6) MG = (D&)"™MG - (4) BG



Since the test functions ¢, @1, ¢o can be arbitrarily chosen from V™ and applying the

summation-by-parts properties given in Lemma 2.1, the above equations become

%% — _DJ' -~ M'B <@z* - le>
%@- =D (MG +F) ~m B (A (G - @) + (R - F)) (2.10)
h;

Eéz — _DJ -~ M'B <@z* _ le> '

Now, we get the one-dimensional semi-discrete DG scheme (2.10). We will prove this DG
scheme is conservative for the cell average @ and entropy stable in the next subsection, after
that, we will discuss how to design the DG scheme to have the positivity-preserving property

under the Fuler forward time discretization in Section 2.4.

2.3 Conservative and entropy stable properties of the one-dimensional
semi-discrete DG scheme

In this subsection, we will prove our one-dimensional semi-discrete DG scheme (2.10) is

conservative for the cell average i’ and satisfies the discrete entropy inequality.

Theorem 2.1. Suppose @, Q',Gi, k' are obtained from the one-dimensional semi-discrete
DG scheme (2.10). With the periodic or compactly supported boundary condition, the cell

average U’ in the semi-discrete DG scheme (2.10) is conservative.

Proof. For simplicity, we denote v’ := u(z;(&.)), = 0,1,--- ,m, and denote the value of

cell average to be @' where u' = %Z;’;O wyut. We prove the conservation of temperature @
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on {2,

r=0 r=0
= r QZ* - STQ
2 22,5 (2.11)
R (L > 7@
r=0
_ Z Qz*
r=0
= szé - QH%’

notice that we apply the periodic or compactly supported boundary condition, thus

N

d N dgaih, A )
d_;ﬂ ; Z(Qi—%_QH%):

=1

O

Generally speaking, the DG scheme for the conservation laws could not satisfy entropy
conditions naturally, but in [5, 6], the authors modified the discrete derivative term in the DG
scheme by the high-order, entropy conservative discrete flux to make them entropy stable.
However, for some special systems such as the linear symmetric system and the p-system, the
DG scheme itself could satisfy the entropy condition without the need of such modification.
Luckily, our equation is somewhat similar to the p-system, so we can prove our scheme (2.10)
is entropy stable without any modification on the original scheme.

Define the discrete entropy function

E::/U(u)d:c: ‘N /U(u dx

Q =1 S

Then the semi-discrete scheme (2.10) satisfies the following entropy inequality.

Theorem 2.2. Suppose @', Q',Gi, k' are obtained from the one-dimensional semi-discrete

DG scheme (2.10) and E is the associated discrete entropy function. Assume the boundary
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condition is periodic. Then, with the alternative numerical flux (2.5), we have
dE alEZ U (u
— d <0.
2N [

Proof. Following the notations in the proof of Theorem 2.1, from the first equation of (2.10)

we have JE h -
i .. U
k,z TM_
dt dt
— k?Z’TBQZ o kz,TBéi,* o EZ’TMD@Z (212)

_ Ez‘,TDTMQ'i N Ez‘,TBQ'i,*

where the summation-by-parts property B = M D + DT M is adopted. Then, left multiply
the second equation by @i’TM and left multiply the third equation by AGSTM in the DG
scheme (2.10),

By mim = = e O

_QZ,TMQZ :/\QZ,TDTMGZ . )\QZ’TBGZ’* + QZ’TDTM]{?Z . QZ,TBk,Z,*’
2
hien L (2.13)
)\EZG”’TMGZ =\G"TDTMQ" — \G"" BQ"™*.

Summing the above three equations, we have

dE'
dt
:Ei,TDTMQz o kl,TBQz,*

_QZTMQZ +)\h GZTMGZ

4 A@i,TDTMéi o A@i,TBéi,* + @i,TDTMEi o éi,TBEi,*
4 Aéi,TDTMQi o Aéi,TB@i,*
—)\ <Q’1TB(§Z _ Q’z’,TBéi % GZTBQZ *> I (kz,TBQ’i _ Ei,TBQ’i,* _ QZTBEZ*>
_ - - N O + + _ nt A
(@3 Giry ~ 0 Cur w) TA Q6 -6

+(Qaki — Qnkiy - Q Zl) (Q;ék;%—cz;,l%;;—@,

l\.’)\»—l

1
+3

(2.14)
where there are only boundary terms at the right hand side. If we take the alternative

numerical flux (2.5) on the common interface of the cells I; and I;;;, the boundary term
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QT BG — G''T BG* — GYT BQ™* becomes
— e - + + G
(QH%GH% _Q+2G+§ _QHIG ) (Qlﬂ iy T iy G _QHIG l>

= (9048~ QayBiy — QnGiy) — (U460, - Q0 Ghy - Ayoly) @)
=0,

2 ZJr2

and the boundary term Ei’TBQi — Ei’TBQi’* — Qi’TBEi’* becomes
<Q;+%kz_+% B Qz+1kl+ - QHlk— > - (Q;:lk:rl - QL%]%H% Qz+lk+ >
_ - - - - + .t + - 1+
- <Qz+2k N Qi+%ki+% N QH%kH ) (Qz+2k QH%]{H% N Qi+2k1+ ) (2.16)

=0.

1
2

After summing over the index ¢ and using the periodic property, we obtain

dE <~ dE
dt &~ dt
= N (2.17)
hy [ =~ - . .
== > 2 (MG +AGTME) <0
i=1
due to the non-negativity of . O

Remark 2.1. Besides the alternative numerical fluz (2.5), we can also choose the combi-

nation of the Laz-Friedrichs numerical flux for Q and the central numerical fluz for G, /Af,

i.€.
. Q(xztr;) +Q(z, 1) a
Quy = — 25— —a (Gl ~ Gl ) = 5 (kaly) — k).
where o >0, A #0, (2.18)
_— G(x;;%) + G(x;r%) . k(x;%) + k(:cH%)
it: = 9 ) ity 9
Then, the two boundary terms of (2.14) become
(Q;L;G;r; - Q;_;’_lGAi-i-% - Qi-{—% ) (Q:r, QJr G Qi+%G;:L1>
2 2 ) QOZ' ) 2 2 (219)
i+
= Ql [Gw%} DY [ki+§] [Gw%} ’
and
- - - 7 A - Okt + 7 - +
(@5 ki — Quyhiny = Q) = (QU Ky — Qfyhies — Qs 2,90
ol (2.20)



where we introduce the average form and the jump form
1
Gl =GT -G, {G}:= §(G_ + GT).

After summing over the index i and using the periodic property, we can obtain the discrete

entropy inequality

dE N dE'
Dy
N N, 2.21
_ Z% (Q“TMQZ +>\G”TMGZ> -y a’f (A[GH%] + [k%])z (221)
=1 =1
<0.

2.4 The positivity-preserving property for the one-dimensional
fully discretized DG scheme

We consider the Euler forward time discretization method for the one-dimensional semi-

discrete DG scheme (2.10) with A > 0,

perst - DG MOB@-G)
Q1 = —DOAG' +K) = MT'BONG™ = G') + (K — k) (2.22)
3G = —DQ' - MTB(Q" - @),

where n represents n-th time step and the superscript pre represents the solution obtained

from the Euler forward method before applying any limiter.

Lemma 2.2. Consider the linear function k(u) = u, the uniform mesh h := h;, ¥i and
the periodic boundary condition. The one-dimensional fully discretized DG scheme (2.22) is

stable under the time step condition
7 < max{A, ¢,,h*}, (2.23)

where ¢, is a constant which depends only on the polynomial degree m of the DG space,

Cm € (0.01,1) which is obtained by the Fourier analysis numerically.

We adopt the Fourier analysis [23] to prove this lemma and verify the stability of the

DG scheme with different 7 and A numerically. In Figure 2.1, we show the stability region
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P1LDG scheme P2 LDG scheme

Unstable 12 Unstable

T T T T T T
&> CFL condition &> CFL condition
| [snnns y=x | [snnns y=x

Stable Stable

lg(Mh?) lg(Mh?)

Figure 2.1: The stability region corresponding to the maximum time step 7 and the nonlocal
parameter A for the one-dimensional DG scheme. The DG scheme is stable when A\, 7 are
in the black region. Left: the one-dimensional DG scheme with m = 1; Right: the one-
dimensional DG scheme with m = 2.

corresponding to the maximum time step 7 and the nonlocal parameter A\ for the one-
dimensional DG scheme. One can see the DG scheme for m = 1,2 are stable as long as
7 < \. For m > 3, we have done the same analysis and have obtained the same results. This
stability condition is also valid for the higher order Runge-Kutta time discretizations.

This time step condition (2.23) implies that the explicit scheme for the model (2.1) is
“unconditionally” stable, in the sense that the time step needs only to be upper bounded by
a constant 7 < A, which is independent of the mesh size h. This appears to be surprising
for an explicit scheme, however this is reasonable as the solution operator is zeroth order (a
bounded operator) for A > 0 according to the analysis in Appendix A. When A is very small
and the mesh size h is relatively large, the maximum in (2.23) should take the value of the
time step restriction 7 < ¢,,h%. This will also be the time step restriction for the local case
with A = 0. Based on this, we will further develop an one-dimensional positivity-preserving
fully discretized DG scheme.

In the nonlocal electron heat transport model, the temperature u is physically non-
negative, thus the results of the DG scheme should keep this property. A general framework
to achieve bound-preserving property without affecting the original high order accuracy for

the DG methods has been proposed in [31, 32, 33], and we will design our scheme to have
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the positivity-preserving property by using this general framework.
The positivity-preserving procedure developed in [31, 32, 33] consists of the following two

steps:

1. Consider the Euler forward time discretization, we need to make sure the cell averages
of the solution produced by the DG scheme (2.22) are positive, provided the solution
is positive at the current time step, which means that the solution values at all the

quadrature points are positive.

2. Once the cell averages at the next time step are positive and high order accurate,
and the DG solution at the next time step is high order accurate but may not be
positive, then the scaling positivity-preserving limiter in [31, 32, 33] can be used to
enforce the positivity of the solution at all of the quadrature points, and it is proved
in [31, 32, 33] that this scaling positivity-preserving limiter maintains the original high

order accuracy.

The second step is independent of the equation being used and the numerical method be-
ing adopted, while the first step needs to be proved for different equations and schemes

individually. We will prove the first step for our method below.

We assume the provided solution #*", Vi = 1,---, N are positive at all quadrature
points and we would like to prove that the new cell averages @'P*®, Vi = 1,---,N are

positive. Since our scheme (2.22) are of an implicit type (global dependency) about the heat
flux Qi, which is different from the explicit scheme discussed in [31, 32, 33], the approach in
these references cannot be applied. Referring to [23] where the authors designed an implicit
high-order positivity-preserving DG scheme for the conservation laws, we also try to design a
positivity-preserving DG scheme for the nonlocal electron heat transport model (2.1) under

a suitable time step condition.

Theorem 2.3. Suppose k(u) is a function with continuous derivative, the mesh is uniform

h := h;, ¥Yi and the boundary condition is periodic. Suppose the mesh size h is small enough,
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that is h < ,/ﬁ, where d,,, is a constant which depends only on the polynomial degree m
of the DG space and d,, € [0.01,0.1] according to the Fourier analysis numerically. Assume
u™(z;(&)) > 0 at all quadrature points, then the solution of the one-dimensional fully dis-

cretized DG scheme (2.22) with the alternative numerical flux (2.5) satisfies u»P™ > 0 under

the time step condition

max K (u"(z;()))T < A, (2.24)

1<i<N,0<r<m

ture points z;(&,).

Proof. Since the mesh is uniform and the boundary condition is periodic with the alternative

numerical flux (2.5), the one-dimensional DG scheme (2.22) can be written as

%Mﬁivpri—ﬁi»" AUQ‘Z‘ + BuQ_'ifl
%MQZ — Ad(k‘z 4 /\Gi) + Bd(kHl + /\Gz’Jrl) (2_25)
LG = AG+B.Q
where
0 0 1
AUZDTM+ ) Bu: )
-1 0
1 0
Ay =DTM + , B, =
0 -1 0
In the meantime, if we define long vectors of length (m + 1)V
. (71 ... =N1T — 10l ... ONIT
u = [Yila 7u_‘]\][’1: Q . [Q_j’ 7QNJT7 (226)
G = |G- ,G"]", k = [k K],
then the DG scheme (2.25) can be written as
AME==vt = D,Q
%MQ = Dylk+ \G) (2.27)
where M, D,,, Dy are (m + 1)N x (m + 1) N matrices
M O --- 0 A, O - B, Ag By -+ O
Mo| O M D, = B, A, D, = O Ay
VN @) RN ) S Tl By
O ... O M O .. B, A, By - O Ay
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First we consider the linear function k(u) = u, then we have

2
upre —u -+ %M—lqu

4r 4 AN -1 - -1
—u i M, (z—ﬁM DM Du) M~ Dyu (2.28)

—1
7+ %Mlpu <I — %Mlpd/wlpo MlDd] u,

where Z is (m + 1)N x (m + 1)N identity matrix. Since the cell averages can be described

as
. 5T
u' = 5 Tzzowru(xz(gr» = %777 W= [Ldo, T 7wm]T7
by the equation (2.28), the cell-average vector aP™ := [alPr ... NPT of length N and

N x (m 4+ 1)N matrix Ave can be written as

pO|EL

Ave =

4 4 -1
T+ h—ZM’lDu (I _ h—ledelpu) Mlpd] ,

(S

so we have uP™ = Aveu. Then, we need to check every element in Ave is non-negative. As
it is difficult to demonstrate it analytically since its form is too complicated, we will check it

A I specific

numerically. In practice, since the matrices M, D,, Dg are known, if we give 73,75

values, we can calculate the matrix Ave and then check every element in Ave is non-negative.
In our numerical experiments, %, 7z are taken from (1074, 1012].

We show the numerical results for the DG scheme with m = 1,2 and k(u) = u, in Figure
2.2. For different values of h%, 73, if there is no negative value in the matrix Ave, that means
the cell averages can preserve non-negativity with non-negative input values u"(z;(&,)), we
mark it by the black color; otherwise, we mark it by the white color.

For m = 2, we can see that from the bottom left of the right subfigure of Figure 2.2,
when the mesh size h is small enough, more precisely when h < \/% , and when the time
step satisfies 7 < X since &’(u) = 1, the cell averages 4"P™ can preserve non-negativity. This
time step condition coincides with that for the stability property of our DG scheme which

is given in Lemma 2.2. For the one-dimensional DG scheme with m > 2, we have done the

same analysis and have obtained the same result as that for m = 2.
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P1LDG scheme P2 LDG scheme

Negative 12 Negative

T T T T T T
&> CFL condition &> CFL condition
| [snnns y=x | [snnns y=x

Positive Positive

lg(Mh?) lg(Mh?)

Figure 2.2: The positivity-preserving region corresponding to the maximum time step 7
and the nonlocal parameter A for the one-dimensional DG scheme with the linear function
k(u) = u. The cell averages uP™ can preserve positivity when A, 7 are in the black region.
Left: the one-dimensional DG scheme with m = 1; Right: the one-dimensional DG scheme
with m = 2.

For m = 1, from the left subfigure of Figure 2.2, we can see that for any A and A, if the
time step condition satisfies 7 < A then we can design a positivity-preserving DG scheme
for the model (2.1). In general, for m > 2 and A > 0, the mesh size restriction h < dim is
very mild. While for the local case A = 0 and m > 2, we can always find counterexamples
under certain initial condition where negative values of the cell average appear at the next
time step. Then we can not design a positivity-preserving DG scheme for the model (2.1).

We can generalize the above proof for the linear function k(u) = u to the more general

linear function k(u) = pu where g > 0 is a constant and wP™ can be written as

uPe =

4 4\ -
7+ uh—ZM—lpu (I — ﬁM‘lDdM‘lDu) M—lpd] u.
Then, the time step condition for uP*® > 0 is ur < A.

For the nonlinear case, we consider it as a quasilinear function k(u) = k'(u)u and then

uP'™ can be written as

uPe —

4 4N\ !
T+ k/(u)h—nglDu (I — ﬁMldelpu) MlDd] u.

Then, the time step condition for wP*® > 0 is

max K (u"(z;(&))T < A

1<i<N,0<r<m
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O

As a result, under the time step condition (2.24) and when the mesh size h is suitably
small, the cell averages obtained by the DG scheme (2.22) with the Euler forward time
discretization are non-negative, provided that the solution values at all quadrature points
are non-negative at the current time step. Based on the non-negative cell average values,
we adopt the following scaling positivity-preserving limiter proposed by Zhang and Shu
[31, 32, 33] to ensure the non-negativity of the values at all the quadrature points at the

next time step,

u (&) = @+ 6 (uP(xi(&) — atte), 0<r <m, (2.29)

Y ﬂi7pr‘37mi

where #; = min {1 &}, m; = Oginm{upre(xi(fr))} and usually we take ¢ = 107'°. Then
the values at the quadrature points 1;”;1(331(&)) are all non-negative and the loop is closed.
Beyond this, the scaling positivity-preserving limiter will not destroy the original accuracy
which has been proved in [31, 32, 33] and we will show several numerical tests in Section
4.1.2 and Section 4.2.2 to verify this property.

Next, we will prove that the positivity-preserving limiter does not destroy the entropy
stability if we assume the one-dimensional fully discretized original DG scheme with the

Euler forward time discretization (2.22) is entropy stable.

Theorem 2.4. If we change the solution of (2.22) u(x;(§)), 1 <i < N, 0 <r <m, to

u"(xi(&r)) as

(€)= @+ G (u(x () — ), 0< 6l <1

then for any convex entropy function U, the discrete entropy does not increase, that is,

m

B = 3w U (6)) < 5 3wl u(ai(6)) = E.

r=0 r=0
where %Z:,n:o w, = 1. That means the scaling positivity-preserving limiter (2.29) does not

increase the discrete entropy.
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Proof. First, it is easy to prove that the average @’ does not change after the positivity-

preserving limiter is used.

Then we have

and

r=0 r=0
=2 > i = : > [(1= )0+ Bru(ai)]
iZwreru(xl(fr)) = (Z wrefn> u'
r=0 r=0

since

so we have



) ZWTU(Unew(xi(gr») <5 Zwr ez u(zi(§r))) + (1 — 971,)[](,&@))

g—zw,« (B0 ulw(€)) + (- YU (u(z(&))  (230)

This means E™* < F.

We will show the decay of discrete entropy in the numerical example. O

Assume that we have already known the solution vector w at the n-th time step. Denote

F(u) as the spatial operator in the DG scheme (2.10), i.e

du

= F(u)

and denote PP(u""1P®) as the new solution modified by the positivity-preserving limiter.
Now we give the flow chart of our high-order entropy stable and positivity-preserving DG

scheme with the Euler forward time discretization,
1. Use the DG scheme (2.10) to obtain F(u"),
2. Calculate u"™Pr® = 4" + 7F(u") and the cell averages u™ P,
3. Utilize the positivity-preserving limiter to get u"™! = PP(u"T1Prre),

In order to obtain high-order accuracy both in space and time, we adopt the third-order
strong stability-preserving Runge-Kutta (SSP-RK) methods [16] for the time discretization.
To be specific, the following third-order SSP-RK scheme will be used,

ulre = " 4 7 F(u"),
uV = PP(u)rre),
w@pre  — %un + i (u(l) + TF(u(l))) :

u® = PP(u®wrre), (2.31)

unJrl,pre éun + % (u(Q) + 7_1;1(,“,(2))) ’
un+1 — PP(unJrl,pre).
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Remark 2.2. Since the SSP-RK time discretization methods can be regarded as a convex
combination of the Euler forward methods and the solution preserves positivity with the scal-
ing positivity-preserving limiter (2.29) under the time step condition (2.24), consequently,

we get a positivity-preserving higher order scheme for the model (2.1).

Remark 2.3. The DG scheme (2.25) can be written as

h upTE _ un
M — - = D 2.32
M - .Q, (2.32)

4\ 2
(z — ﬁMldelbu) Q = EM*de;. (2.33)

When we solve this DG scheme, we will first solve the heat flur Q by the linear system (2.33).
Then we will use the known Q to solve uP™ by the first equation (2.32). Although the size
of the matriz (I — BMDyM™'D,) is (m+1)N x (m+1)N, it is a diagonally dominant
matriz and independent of time, hence solving the linear system does not bring too much

difficulty.

3 High-order entropy stable and positivity-preserving
DG scheme for the two-dimensional nonlocal elec-
tron heat transport model

3.1 The stability property for the two-dimensional nonlocal elec-
tron heat transport model

In this section, we consider the nonlocal electron heat transport model (1.1) in the two-

dimensional case,

Ju _  _0G1 _ 9Qy

ot ox oy
52 52

Q1 = —k(u), + A (53 + 52 (3.1)
2 2

@ = kw2 (29 + 29

where C? = (8;) is the electron heat flux. Similar to the one-dimensional case, we take a

convex function U(u), such that U'(u) = k(u) and the entropy function is £ = [, Udzdy.

23



Then we can show that the total entropy is non-increasing with respect to time,

dE
o :/Qk:(u)utd:pdy

~ | Ftwudady + [ [h).Q1— @F +AQ1AQ] dady

Q

_'_/ [—k(u)y Q2 — Q3 + AQ2AQs | ddy
; (3.2)

- / 10, (k() Q1) + 8, (k(u)Qa)] dady — / (@2 + Q) dady
Q Q

0 0@ Q)2 Q)
B )\/Q ['8—90 oy ox dy
<0.

2 2 2

2
] dxdy

Here the periodic or compactly supported boundary condition is applied. The Fourier anal-
ysis for the one-dimensional case can be extended to multi-dimensional cases, so we do not
repeat it here. From the Fourier analysis we know that the solution w of the model (3.1) is

stable with k(u) = v and the periodic boundary condition.

3.2 Two-dimensional semi-discrete DG scheme for the nonlocal
electron heat transport model

By introducing the new variables G;, | = 1,2, 3,4, we rewrite the original equation (3.1) as

( atu = _a:v@l - ayQ22
Ql = —A(@zGl -+ (%Gg) — &vk(u)
Gl = _8$Q17 G2 = _ale .
G3 = _axQ2> G4 = _ayQ2

[ u(z,y,0) = u’(z,y)

where A > 0,k'(u) > 0 and there is no second order derivative terms in the system
(3.3). Suppose (2 is a rectangular domain and consider the following regular partition
Q= Ui Rijy Rigi= 1 x Jj,

i=1,j=

. — "o T —

N
Njw

<z
<

— Yy _
Jj = Yji-LYied s Y Ys <, 5 <Yn,+i> hj—yj+%—yj_;.

S
(I[N

The discrete discontinuous Galerkin space of tensor product polynomials of degree m is
V"= {W(:E,y) : W($,y) |Ri,j€ Q™ (Rivj) <1< N, 1<) < Ny} :
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Here, Q™(R; ;) = { > crapk(z)q(y) : pr, q are polynomials of degree < m} is the space of

tensor product polynomlals of degree m on R; ;.

Next we will design a two-dimensional DG scheme to solve the nonlocal electron heat

transport model (3.1). We seek the numerical solution u, Q1, Q2, G1, G2, G3, G4 from V™ such

that for any smooth test function ¢, 11, V2, ¢1, ¢2, 3,04 € V" and 1 <i < N, 1 < j < N,

i) g, Ocupddy

me. Qi1 dzdy

me Qo dxdy

me G1o1dxdy
fRi,j Gz(bzdl'dy
fRi,j Gg(bgdl’dy

fRi,j G4¢4dl‘dy

Jr,, (@10:0 + Q20,) dudy
I, |Gt e Ty Wl 1.yl
I, [ et ) — Qo
me [(k + AG1)0s¢01 + )\Gz 9yth] dxdy
_ij(l%x ‘1“)‘@1)( Liyl ,y)wl( 1,y)dy
+ [ (k" + MG (1, y) b (2] 1,y)dy
A i [@g(x,yj+%)w1(w,yj+%) G,y o (2 y
fR [AG30,12 + (k 4+ AG4)0,1s) dxdy
S, [ (e ) — Gy (et )] dy
— [, (b 4+ MG (@, Y41 n(x, f1)da (3.4)
+f1¢ ky +)\GZ)(3%3JJ;§)¢2( j%)dx
fR Q10 prdxdy )
1, [y 0o ) - Gy (e, )] dy
me Q1 y¢2dxdy _
= J [l g e s, ) - Qe y, )os(e,yt )| de
me 20, p3dxdy )
I, [ @5y osar, ) — Qe g w)on(al )| dy
fRM Q20ypsdxdy
— Iy, |4y, )oslw,y, ) = by, ) oul

NI

)- dz

where we denote k(u) as k, for simplicity. Qf , A‘; K @f, @§ are the numerical fluxes in the

z direction, QY, QY, k¥, GY, GY are the numerical fluxes in the y direction. In this paper, we
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adopt the alternative numerical flux for the two-dimensional DG scheme

@f(xz,%,yms)) = Qilr 3 u(), Q&) y 1) = Q&) y),
Gy y(00) = Qalr 1y(n), Q3@il&).y; 1) = Qa(wi(€).y; o),

B (rgyi0) = Kl y)), B@)y ) = keE)y),  (39)

Gz y.y(n0) = Gilal 1 u(n), GR(wil&).y; 1) = Ga(wi(&).y) ),

Gilee pmn) = Galely ). Clad€)yy ) = Calale).v) )

Here we apply the Gauss-Lobatto quadrature rule on the rectangular meshes with (m+1)?
quadrature points {(x(&,), y;(1s))},20 = On each cell R;,
zi(&r) = %(xif% + xiJr%) + %hfa
yi(ns) = 3(y;_1 +yi1) + 5hY,
where (&,,7;) is the quadrature point on the reference cell R := I x J = [-1,1] x [-1,1],
and the corresponding quadrature weight is w,w;,, where the definition of {w, },, {ws}™, is
the same as that in the one-dimensional case.

Following the notations in Section 2.1, we define the two-dimensional Lagrangian nodal

basis polynomials

Lol = Lo = T] &% [T 20

1=0,l5r L1205

To distinguish from the matrices defined in Section 2, we use bold letters to represent the

matrices in the two-dimensional case. Define the (m + 1)? x (m + 1) matrix
V = [L007"' 7L0maL107"' 7L1m7"' 7me]7
where

Ers = (£r8(§07 770)7 U 7£rs(§07 nm)a Ers(fl, 770)a e 7£r8(§17 77m>7 o 7£Ts(€m7 nm))T

are the values of basis polynomials £,(£, ) at each quadrature point. Here all the quadrature
points are arranged in a certain order. Notice that the different arrangement orders will lead
to different difference matrices, mass matrices, stiffness matrices, and so on. Define the

matrices

V= [awl_;007 T 7awl_:0ma aa:l_:lOa e 7awl_;1ma e aaa:me]v
VY= [ayEOOy Tt aayEOma ayl_/‘lOa Tt aayl_:lma Tt aayme]v
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then the two-dimensional discrete difference matrices D*, DY can be written as
D*V =Vv* DYV =VY,

The operators D*, DY transform point values to derivatives at the related points and they

can be calculated by Kronecker product

D'=D)I, D'=I1()D.

where [ is an identity matrix of the size (m+1) x (m+1). Then we have the two-dimensional
diagonal mass matrix M = diag{wowo, - * , WoWm, W1Wo, * * * s W1Wm, * ** » WimWn, +, stiffness ma-
trices 8* := M D", 8Y := M DY, and boundary matrices
B* = diag{T(:)EO? T 7T6Em77f07 e 7Tfm7 B mm} =S5"+ SxT
(3.6)
By = dlag{TgO7 oo 77-8’777,7 7'%’0, o .. 7Tigm7 o 0. 77—ng} e Sy + Sny’
where diag{Z} represents a diagonal matrix with the vector # as the diagonal elements.

We can also give the following two-dimensional summation-by-parts properties

Lemma 3.1. According to the definition of the above matrices, we have the following two-

dimensional summation-by-parts properties which are the discrete analogues of the integration-
by-parts properties. Denote diag(M) = {wr} m+ , diag(B*) = {7, "’”}(m+) , diag(BY) =

+1)?
{737 50 we have

1) 8*=MD* MD*+D>"M =8°+ ST =B
SY=MDY, MDY+ DV"M =S8Y+ S»T = BY

2) Z (m+1)2 D:fl~ _ Z;;n;rlﬁ DH~ =0,1<7< (m + 1)2’

3) S gE = S gD =0, 1 <7 < (m+ 1)

m+1 m+12~ ~
le Syzzl1)wagZ:()’lSrS(m‘Fl)Q,

J) S s = e ST GY — B 1 < F < (m 4 1)2
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The proof of Lemma 3.1 is straightforward based on the proof of Lemma 2.1. So we omit
it here to save space. Then we can use the quadrature rule to substitute the integral in the
DG scheme (3.4). For simplicity, we denote ﬂ”i’j,@il’j, Qg’j, E"’j,éil’j, C_j;’j, _)é’j, C_jfl’j to be the
values at the Gauss-Lobatto quadrature points arranged by the same order

7J

i ,J 1,J ]T

=] 6 oG
UL Uy Uy ,u(m+1)2

=[u(zi(&0), yi (1)), -+, ul(@i(€0), (M), wl(@i(€r), (M), - s w(i(&m), w3 ()]

and deﬁne the numerical ﬂUX QT@v]v*)QE’;{vZJv*’ ;3717.]7*7ngzv.]7*7k$,l,],*’k/,y,z,j,*’G:fvzv.]7*’Gg7Z7]7*’G§717J7*’Givzv.]7*

as . A
Qi@ 1,y;0m)) @u(#i(%). 9;-1)
0 Q1(wi(&1), ZJJ;%)
Qulrsyy.u5(m) Qu(Enmr) v, )
Ql(%f%ayj(??l)) Ql(l'i(gm)ayj—%)
0 0
Q=1 : QY = :
Qu(;y 1, y;(m)) 0
: Ql(xi(§0)ayj+%)
(i1, 95(0m)) Q1(i(&1), yj42)

0 :

: Ql(xi(fm—l)’yj—l—%)
Ql(%%ﬂj(ﬁm)) Ql(xi(gm)ayj-i-%)
Since @, 1,9, ¢1, P2, P3, 04 € V}' can be arbitrary chosen, we apply the two-dimensional

summation-by-parts properties for 1 < i < N, 1 < j < N, to get our two-dimensional

28



semi-discrete DG scheme,

hehY digid R . o he iy o
n J 7 :?] <M—1Dz,TMQZlJ o M—leQT,ZJ,*) + 7’5 <M—1Dy,TMQZ2,j . M—lBng,z,],*> 7
h*hY hY o o he L oo
. ] Q _)\7] <M71DI,TMG11,J _ M*lB:vGT,Z,],*) + )\71 <M71Dy,TMG;,J - Mleng,z,],*>
hY o o
+ ?] <M71D:v,TMk,z,] o Mlezk:z,z,],*) ’
hghyqu hY o o he o -
. J Q;J :/\?J (M—le,TMGg,J . M—leGg,w,*> + /\7@ <M_1Dy’TMGZ’] _ M_lByGZ’Z’j’*>
_I_ @ (M—lDy,TMEi,j o M_lByEyai7j7*>
2 )
he . . L L
7ZC;TJ _M—lDz,TMQZIJ o M—leQﬂf,ZJ,*,
hY .. o o
5 G5’ =M "'D¥"MQy — M~'BYQ{"”,
h% . . o
Y =MDYTMGY - MUUBRGE
hY .. o
S0 =M DYTMGY — MU BYGE

(3.7)

3.3 Conservative and entropy stable properties of the two-dimensional
semi-discrete DG scheme

Following the idea in Section 2.2, we can also prove the above two-dimensional semi-discrete

DG scheme (3.7) is conservative for the cell average 4’ and satisfies the entropy inequality.

The proof of the following two theorems are similar to that for the one-dimensional cases.

Hence we omit the proof here to save space.

Theorem 3.1. Suppose @, Q% Q5 fod, G GL G 74 are obtained from the two-dimensional
semi-discrete DG scheme (3.7). Under the periodic or compactly supported boundary condi-

tion, the cell average ™ in the semi-discrete scheme (3.7) is conservative.

Theorem 3.2. Suppose @1, Q% Q% ki GW Gy G G are obtained from the two-dimensional

semi-discrete DG scheme (3.7) and E is the associated discrete entropy function. Assume
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the boundary condition is periodic. Then, with the alternative numerical flux (3.5), we have

jZdE” Zz//dU )izdy <0

—1_]1

3.4 The positivity-preserving property for the two-dimensional
fully discretized DG scheme

If we assume the boundary condition is periodic and the alternative numerical flux is applied,

then the two-dimensional semi-discrete DG scheme (3.7) coupled with the Euler forward time

discretization can be written as

z =g re _ —*z n v =i 7 * =i.7 =07 .%
hzh] ME 3P = ok — % (Dx,TMQZ,J o 9“] ) + 7, <Dy’TMQ2’j . ByQé/: »J5 ) ’
xhY Y — . . — . s
MG = A’;f (D=7 MG~ B‘”G”f’”’*) + N (DrT MGy - BrGy)
7,7 (Da},TMkz,j _ Ba:];a:,z‘,j,*)
h*hY 4

PMGY = N3 (DTMGY - BrGy) + 0 (DT MG - BYGyY)
e (D%TMIZZ‘J - Byléyvivﬂ%*> ,

EMG_)?] — Dm,TM@iJ _ B$ _’T/L'J'v*
%

Y

“MGY = DYTM@GY - BYGYT
hi _)17] — ac,T _’Zv.] T _’171'7]'7*
TMGy = DM@y — B Gy,

hY . . . . - ..
TMGY = DYTMQY - BYGY*.

2

(3.8)

Lemma 3.2. Consider the linear function k(u) = u, the uniform mesh h = hi = h¥, Vi, j
and the periodic boundary condition. The two-dimensional fully discretized DG scheme (3.8)

1s stable under the time step condition
7 < max{\, ¢,h’}, (3.9)

where ¢, is a constant which depends only on the polynomial degree m of the DG space, and

its value is ¢, € (0.001,0.1) determined by the Fourier analysis numerically.

We make the Fourier analysis on the DG scheme (3.8) numerically to verify the stability

property with different 7 and A in Figure 3.1 which shows that our DG scheme is stable under
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P1LDG scheme P2 LDG scheme

Unstable 12

Unstable

T T T T T T
&> CFL condition &> CFL condition
| [snnns y=x | [snnns y=x

Stable Stable

lg(Mh?) lg(Mh?)

Figure 3.1: The stability region corresponding to the maximum time step 7 and the nonlocal
parameter \ for the two-dimensional fully discretized DG scheme. The scheme is stable when
A, 7 are in the black region. Left: the two-dimensional DG scheme with m = 1; Right: the
two-dimensional DG scheme with m = 2.

such time step condition (3.9). For the local electron heat transport model with A = 0, we
usually take the stability time step condition as 7 = ¢, h>%.

We follow the recipe in Section 2.3 and prove the cell averages of the solution obtained
from the fully discretized scheme (3.8) are non-negative under the time step condition 7 < A

and non-negative values at each quadrature point.

Theorem 3.3. Suppose k(u) is a function with continuous derivative, the mesh is uniform
h = hi = h?, Vi, 7 and the boundary condition is periodic. Suppose the mesh size h is
small enough h < \/%, where d,, is a constant which depends only on the polynomial
degree m of the DG space and its value is dy € [0.01,0.1] determined numerically. Assume
u™(x;(&),y;(ns)) > 0 at all the quadrature points, then the solution of the fully discretized

two-dimensional DG scheme (3.8) satisfies u*7P™ > 0 under the time step condition

max K (u™(i(&0), 55 ()7 < A, (3.10)

1<i<Ng, 1< <Ny, 0<E,n<m

where max;<i<n, 1<j<n,0<¢n<m k' (W (2;(&.),y;(ns))) means the mavimum value of k'(u) at

all of the quadrature points (z;(&.), y;(ns))-

The proof of Theorem 3.3 is similar to the one-dimensional case, so we skip it here. We

also take the values of h% 7z from [107%,10"] to show the positivity-preserving region in
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Figure 3.2: The positivity-preserving region corresponding to the maximum time step 7
and the nonlocal parameter A\ for the two-dimensional DG scheme with the linear function
k(u) = u. The cell averages uP™ can preserve positivity when A, 7 are in the black region.
Left: the two-dimensional DG scheme with m = 1; Right: the two-dimensional DG scheme
with m = 2.

Figure 3.2.  From Figure 3.2, we know that when 7 < A\, h < \/%, the values of the cell
average are positive for the linear function k(u) = u on the uniform mesh, and this time
the step condition coincides with that for the stability property of our DG scheme which is
given in Lemma 3.2. While for A = 0, we can always find counterexamples under certain
initial condition where negative values of the cell averages appear at the next time step for
the model (3.1) with m > 2.

Similar to the one-dimensional case, we can generalize the above proof to the more general
linear case k(u) = pu, p > 0 and the nonlinear case k(u) = k'(u)u. Then the time step
condition for wP™ > 0 is

ur < A

and

max K (u™(i(&), 4 ()T < A,

1<i<N, 1< <Ny, 0<E,n<m

respectively.

Based on Theorem 3.3, we can use the positivity-preserving limiter on the two-dimensional

DG scheme

uH @i (&) yi (05)) = @IV O (wP (&), y5(ns)) — @), 0 <rys <
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where 0, ; = mm{l,%}, m;; = O<I£if<lm{upre(l'i(€r),yj(ns))} and usually we take
e = 10716 as a small positive number. o

We adopt the SSP-RK time discretization method to achieve high-order accuracy in time,
thus we obtain the high order entropy stable and positivity-preserving DG scheme (3.8) .

The flow chart of our two-dimensional DG scheme is similar to that for the one-dimensional

case, so it is omitted for simplicity.

4 Numerical tests

4.1 One-dimensional numerical tests

4.1.1 Accuracy test: Linear local electron heat transport model

Take the linear local electron heat flux k(u) = u, A = 0, then the electron heat transport
model (2.1) can be written as

Ou = Opu, z€[0,27], (A1)

z,0) = C +sin(z),
where C' is a constant. This is a classical linear heat conduction model. With the periodic

boundary condition, the problem has an exact solution
u(z,t) = C +e 'sinw.

We compute to T' = 0.1 with the time step 7 = 0.01~%, h = min h; and the numerical results
are listed in Table 4.1. We observe the optimal accuracy for the linear local electron heat

transport model for the P?, P2, P* DG schemes.

4.1.2 Accuracy test: Linear nonlocal electron heat transport model with or
without the positivity-preserving limiter

Take the linear nonlocal electron heat flux k(u) = u, A = 0.1, we consider the initial value

problem with a source term s(z,t),

uw = —Qi x€][0,27]

Q = —Ug+ )‘Q:m + s
u(z,0) = C +sin(z) (4.2)
s(x,t) = C+Hcos(x+1t)— (A4 1)sin(z + 1),
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Table 4.1: Accuracy test: error and order of the one-dimensional linear local electron heat
transport model with the alternative flux (2.5).

‘ N ‘ L4 error order ‘ Loy error order ‘ Lo error  order

10 | 7.7391E-03 4.6334E-03 7.6740E-03

20 | 9.9488E-04 2.96 | 6.1385E-04 2.92 | 1.0409E-03 2.88
P2 | 40 | 1.2148E-04 3.03 | 7.6064E-05 3.01 | 1.2947E-04  3.01
80 | 1.5063E-05 3.01 | 9.4857E-06 3.00 | 1.6161E-05  3.00
120 | 4.4547E-06  3.00 | 2.8094E-06 3.00 | 4.7873E-06 3.00

‘ N ‘ Ly error order Lo error order | L, error  order

10 | 2.7205E-04 1.6616E-04 3.0671E-04

20 | 1.6935E-05 4.01 | 1.0441E-05 3.99 | 1.8992E-05 4.01
P3| 40 | 1.0468E-06 4.02 | 6.4940E-07 4.01 | 1.1869E-06  4.00
80 | 6.5235E-08 4.00 | 4.0538E-08 4.00 | 7.4179E-08  4.00
120 | 1.2879E-08  4.00 | 8.0057E-09 4.00 | 1.4653E-08  4.00

‘ N ‘ L4 error order ‘ Loy error order ‘ Lo error  order

10 | 8.3502E-06 4.9154E-06 8.2568E-06

20 | 2.6061E-07 5.00 | 1.5241E-07 5.01 | 2.6257TE-07 4.97
P4 | 40 | 8.0977E-09 5.01 | 4.7522E-09 5.00 | 8.2399E-09  4.99
80 | 2.5274E-10 5.00 | 1.4843E-10 5.00 | 2.5848E-10 4.99
120 | 3.4506E-11 4.91 | 1.9914E-11 4.95 | 3.5562E-11 4.89

where C' is a constant. With the periodic boundary condition, the problem has an exact

solution
u(z,t) = C+sin(x+1), (4.3)
Qz,t) = C —sin(z+1), '
where we take C' = 1. In this problem, the exact solution has a region close to 0 and

the numerical solution may become negative. We compute to 7' = 1.0 with the time step
7 = 0.1h for the P? DG scheme, 7 = 0.02h for the P? DG scheme and 7 = 0.01h for
the P* DG scheme, where h = miin h;. Since we use the third-order SSP-RK method for
the DG scheme, we adopt the small time step in the accuracy tests to achieve the optimal
accuracy. The numerical results are listed in Table 4.2 for the numerical solution without
the positivity-preserving limiter and Table 4.3 for the numerical solution with the positivity-
preserving limiter.

The last column N¢(%) in Table 4.3 is the proportion of quadrature points modified by

the positivity-preserving limiter. As one can see, with or without the positivity-preserving
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Table 4.2: Accuracy test: error and order of the one-dimensional linear nonlocal electron
heat transport model with the alternative numerical flux (2.5) and without the positivity-

preserving limiter.

‘ N ‘ L4 error order ‘ Lo error order ‘ Lo error  order
10 | 9.4332E-03 4.8321E-03 6.8979E-03
20 | 1.1351E-03 3.05 | 5.7952E-04 3.06 | 8.3442E-04 3.05
P2 | 40 | 1.3880E-04 3.03 | 7.0916E-05 3.03 | 1.0240E-04 3.03
80 | 1.7166E-05 3.02 | 8.7717E-06 3.02 | 1.2603E-05 3.02
120 | 5.0694E-06 3.01 | 2.5900E-06 3.01 | 3.7166E-06 3.01
‘ N ‘ L4 error order Loy error order ‘ Lo error  order
10 | 3.0729E-04 1.5952E-04 2.5184E-04
20 | 1.8724E-05 4.04 | 9.6241E-06 4.05 | 1.4946E-05 4.07
P3| 40 | 1.1540E-06 4.02 | 5.9124E-07 4.02 | 9.2207E-07  4.02
80 | 7.1699E-08 4.01 | 3.6645E-08 4.01 | 5.6972E-08 4.02
120 | 1.4135E-08 4.00 | 7.2190E-09 4.01 | 1.1207E-08 4.01
‘ N ‘ L4 error order Loy error order | Ly, error  order
10 | 8.8605E-06 4.5581E-06 6.5309E-06
20 | 2.7379E-07  5.02 | 1.3872E-07 5.04 | 2.0540E-07 4.99
P41 40 | 8.4672E-09 5.02 | 4.2812E-09 5.02 | 6.2935E-09  5.03
80 | 2.6806E-10 4.98 | 1.3456E-10 4.99 | 1.8677E-10 5.07
120 | 3.7189E-11 4.87 | 1.8558E-11 4.89 | 2.2885E-11  5.18
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Table 4.3: Accuracy test: error and order of the one-dimensional linear nonlocal electron
heat transport model with the alternative numerical flux (2.5) and the positivity-preserving
limiter. Nc¢ is the percentage of quadrature points modified by the positivity-preserving
limiter

‘ N ‘ Ly error order‘ Ly error order‘ Lo error order‘ Nc(%)

10 | 9.7937E-03 5.0670E-03 7.8493E-03 1.77E-00
20 | 1.1510E-03 3.09 | 5.9169E-04 3.10 | 8.7310E-04 3.17 | 6.45E-01
P2 | 40 | 1.4185E-04 3.02 | 7.2699E-05 3.02 | 1.1037E-04 2.98 | 2.51E-01
80 | 2.5484E-05 2.48 | 1.2134E-05 2.58 | 3.2487E-05 1.76 | 1.21E-01
120 | 5.3833E-06 3.83 | 2.8303E-06 3.59 | 8.5473E-06 3.29 | 8.63E-02

‘ N ‘ Ly error  order | Ls error  order | Ly error order‘ Nc(%)

10 | 3.0739E-04 1.5944E-04 2.5319E-04 6.33E-02
20 | 1.8769E-05 4.03 | 9.6216E-06 4.05 | 1.4972E-05 4.08 | 3.14E-02
P3| 40 | 1.1573E-06  4.02 | 5.9166E-07 4.02 | 9.2243E-07 4.02 | 1.77E-02
80 | 7.1707E-08 4.01 | 3.6645E-08 4.01 | 5.6988E-08 4.02 | 3.44E-03
120 | 1.4137E-08 4.00 | 7.2191E-09 4.01 | 1.1210E-08 4.01 | 3.06E-03

| N Lo error  order | Nc(%)

10 | 8.8533E-06 4.5608E-06 6.5648E-06 3.03E-02
20 | 2.7415E-07 5.01 | 1.3875E-07 5.04 | 2.0469E-07 5.00 | 5.04E-03
P4 | 40 | 8.4692E-09 5.02 | 4.2813E-09 5.02 | 6.2936E-09 5.02 | 1.26E-03
80 | 2.6824E-10 4.98 | 1.3457E-10 4.99 | 1.8677E-10 5.07 | 6.29E-04
120 | 3.7199E-11 4.87 | 1.8578E-11 4.88 | 2.2885E-11 5.18 | 4.89E-04

L4 error order ‘ Loy error order
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limiter, the convergence rate is optimal for the P3,P* DG schemes.

4.1.3 Accuracy test: Nonlinear nonlocal electron heat transport model

Take the nonlinear nonlocal electron heat flux k(u) = ”72, A = 0.1, we consider the initial

value problem with a source term s(z,t),

u = —Q. x€]l0,2n]
Q = —Uuuy + )\sz + s
u(z,0) = C + cos(x)
s(x,t) = CH+elsinax(A+1—C —e'cosx),

(4.4)

where C' is a constant. With the periodic boundary condition, the problem has an exact

solution
u(z,t) = C+etcosu,
Qxz,t) = CH+etsinz.

We compute to T = 1.0 with the time step 7 = 0.1h for the P? DG scheme, 7 = 0.02h for

(4.5)

the P2 DG scheme and 7 = 0.01h for the P* DG scheme, where h = miin h;. The numerical
results are listed in Table 4.4.

Above all, our high-order entropy stable and positivity-preserving DG scheme achieves
the optimal accuracy in the linear and nonlinear cases for both the local and nonlocal models
even with the positivity-preserving limiter. Furthermore, we can also extend this scheme to
higher order accuracy with the higher-order Gauss-Lobatto quadrature rules and the higher-

order SSP-RK time discretization.
4.1.4 The non-oscillatory test

Let us now consider the initial condition as the step function to verify our DG scheme is
non-oscillatory for the discontinuous problem or the large-gradient problem,

2 <05
u(z,0) = {3 s>05 T€ [0, 1]. (4.6)

We test the nonlocal electron heat transport model with A = 0, 0.01 for the linear function
k(u) = uw and the nonlinear function k(u) = %, respectively. In Figure 4.1, it is obvious that
our DG scheme is non-oscillatory for both the local and nonlocal models. We can also see

that with the time marching, u gradually changes from the step function to a linear function.
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Table 4.4: Accuracy test: error and order of the one-dimensional nonlinear nonlocal electron
heat transport model with the alternative numerical flux (2.5).

‘ N ‘ L4 error order ‘ Loy error order ‘ Lo error  order

10 | 2.2088E-03 1.3818E-03 2.5562E-03

20 | 2.6182E-04 3.08 | 1.6874E-04 3.03 | 3.1737E-04 3.01
P2 | 40 | 3.2292E-05 3.02 | 2.0978E-05 3.01 | 3.8944E-05 3.03
80 | 4.0249E-06 3.00 | 2.6191E-06 3.00 | 4.8063E-06  3.02
120 | 1.1923E-06  3.00 | 7.7590E-07  3.00 | 1.4200E-06 3.01

‘ N ‘ Ly error order Lo error order | L, error  order

10 | 9.2444E-05 5.3833E-05 1.0058E-04

20 | 5.7250E-06  4.01 | 3.3232E-06 4.02 | 6.7294E-06  3.90
P3| 40 | 3.5640E-07 4.01 | 2.0709E-07 4.00 | 4.2852E-07  3.97
80 | 2.2324E-08 4.00 | 1.2937E-08 4.00 | 2.7033E-08  3.99
120 | 4.4214E-09  3.99 | 2.5566E-09 4.00 | 5.3726E-09  3.98

‘ N ‘ L4 error order ‘ Loy error order ‘ Lo error  order

10 | 3.8069E-06 2.0788E-06 4.3521E-06

20 | 1.1486E-07 5.05 | 6.4611E-08 5.01 | 1.2933E-07 5.07
P4 40 | 3.5779E-09  5.00 | 2.0169E-09 5.00 | 4.0259E-09 5.01
80 | 1.1288E-10 4.99 | 6.3280E-11 4.99 | 1.2448E-10 5.02
120 | 1.5611E-11  4.88 | 8.5527E-12 494 | 1.7051E-11  4.90

Figure 4.2 shows the results at the first 5 time steps for the local and nonlocal models,
for simplicity, we only show the region near the discontinuity = € [0.5,0.6]. There are
significant differences between the performance of these two models. It can be seen that for
the local model when the initial value function has large temperature gradient, the change of
temperature distribution u starts from the large gradient nearby and diffuses to both sides.
Specifically, at x = 0.5, the temperature at the right side decreases and only a small range
of points are affected at each time step which can be seen in the top subfigures of Figure
4.2. We observe an obvious effect on the points near the large gradient at the first five time
steps. Meanwhile, we can observe the nonlocal effect of the nonlocal model from the bottom
subfigures of Figure 4.2. Individually, the temperature u of a large range of points near the
large gradient region changes slightly, but the change is not so big which differs from the

local model.
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Figure 4.1: The non-oscillatory test on the step function (4.6) with the local and nonlocal
electron heat transport models at T = 0.1. We take the time step condition as 7 = 0.01h?
for)\:OandT:ﬁ for A = 0.01.

max Kk’ (u9 (z; (&
4.1.5 The positivity-preserving test

Here, we adopt a new step function

z € [0,1], (4.7)

1 0245 <z <0.745
u(z,0) = 0 else

as the initial function for our linear nonlocal electron heat transport model with k(u) =
u, A = 0.0001. Notice that we use 100 cells in the numerical test and the P* DG numerical
scheme. Therefore, we show the numerical result with and without the positivity-preserving
limiter near the discontinuity = € [0.24,0.25] in Figure 4.3 and Figure 4.4 at the 1st, 5th
and 10th time steps respectively.

From the right subfigure of Figure 4.3 and Figure 4.4, we can observe that without the
positivity-preserving limiter there are negative values at certain quadrature points near the

discontinuity.
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Figure 4.2: The first five time steps for the local and nonlocal electron heat transport models
with k(u) = u and k(u) = % We take the time step condition as 7 = 0.01h? for A = 0, 0.01.
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Figure 4.3: The positivity-preserving test on the step function (4.7) with k(u) = u, A =
0.0001,7 = 0.02\. The blue symbol and line are the numerical solution without the
positivity-preserving limiter and the red symbol and line are the numerical solution with
the positivity-preserving limiter. Left: the numerical solution at the first time step; Right:
zoomed-in figure.
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Figure 4.4: The positivity-preserving test on the step function (4.7) with k(u) = u, A =
0.0001,7 = 0.02\. The blue symbol and line are the numerical solution without the
positivity-preserving limiter and the red symbol and line are the numerical solution with the
positivity-preserving limiter. Left: zoomed-in figure at the 5th time step; Right: zoomed-in
figure at the 10th time step.

Besides that, we take the sine function as the initial function
u(z,0) = sin*(87z), =z €[0,1], (4.8)

for our linear nonlocal electron heat transport model with k(u) = u, A = 1 x 1075. We com-
pare the numerical results of the P* DG numerical schemes with and without the positivity-
preserving limiter at the 1st, 5th and 10th time step.

From the right subfigure of Figure 4.5 and Figure 4.6, we can also observe that without the
positivity-preserving limiter there are negative values of quadrature points and our positivity-
preserving limiter can handle this problem. Since the negative values of the quadrature points
are very close to zero, so there are no significant difference between the numerical results at

the first time step in the left subfigure of Figure 4.5.
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Figure 4.5: The positivity-preserving test on the sine function (4.8) with k(u) = u, A =
1 x 107°,7 = 0.005\. The blue symbol and line are the numerical solution without the
positivity-preserving limiter and the red symbol and line are the numerical solution with
the positivity-preserving limiter. Left: the numerical solution at the first time step; Right:
zoomed-in figure.
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Figure 4.6: The positivity-preserving test on the sine function (4.8) with k(u) = u, A =
1 x 107°,7 = 0.005\. The blue symbol and line are the numerical solution without the
positivity-preserving limiter and the red symbol and line are the numerical solution with the
positivity-preserving limiter. Left: zoomed-in figure at the 5th time step; Right: zoomed-in
figure at the 10th time step.
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4.1.6 Comparison between the local and nonlocal electron heat transport mod-
els

In this subsection, we will compare the different effect between the local and nonlocal models.

First, we consider the initial condition as

C r <0.25
C+sin(drz+7) 0.25<x<0.5
C +0.1sin(4rz) 0.5<x<0.75

C x> 0.75

u(z,0) = x€10,1], C=0.5 (4.9)
for the nonlinear local and nonlocal electron heat transport models with k(u) = %, A =0.02.
Figure 4.7 shows the results for the two electron heat transport models at 7" = 0.005. In-
tuitively, the temperature at x = 0.625 should be reduced first because it is a local maxi-
mum, after that, the temperature rises again because there is a very high temperature near
x = 0.375. Here we only consider a very short time, because the temperature distributions in
the two models are very different during this period. As the time marches, the temperature
distributions of the two models tend to be the same. For this reason, we can see the numer-
ical solution u of the local model decreases near x = 0.625 before T' = 0.005 from the left
subfigure of Figure 4.7. To the opposite, the numerical solution of the nonlocal model with
A = 0.02 increases near z = 0.625 before 7' = 0.005 from the other subfigure of Figure 4.7,
which seems to contradict with the common sense. These numerical results can explain the
difference between the local and nonlocal electron heat transport model. By this nonlocal
model, we can describe the flux reduction and preheat effect due to the nonlocal nature of
electron heat transport.

In Figure 4.8, we show the decay of discrete entropy for the function (4.9) with the
different models which verifies the stability of discrete entropy in our DG scheme.

The authors in [30] found that the flux limiting effect exists near the high temperature
region, while the nonlocal transport of high energy electrons results in a higher energy flux

compared to the theoretical prediction by the Spitzer-Harm theory near the low temperature
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Figure 4.7: The local and nonlocal electron heat transport models at 7" = 0.005. Left: the
local model; Right: the nonlocal model.
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Figure 4.8: The decay of discrete entropy for the function (4.9) of the local and nonlocal
models.
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Figure 4.9: Initial temperature condition and the heat flux with the local and nonlocal
electron heat transport models, where we take A\ = 0.02.

region. In order to simulate this phenomenon, we design an initial condition of temperature

C—i‘ﬁ .TZO

C+ % <0
u(z,0) = { Tte 0 r€[-1,1], C=0.5, (4.10)
and plot the heat flux () with the local and nonlocal electron heat transport models at the
first time step in Figure 4.9. From this result, we can see our nonlocal electron heat transport
model obtains the same qualitative conclusion with the simulation results in [36], where the

nonlocal electron heat flux has larger range of influence but lower heat flow than the local

electron heat flux.

4.2 Two-dimensional numerical tests

4.2.1 Accuracy test: Linear local electron heat transport model

Take the linear local electron heat flux k(u) = u, A\ = 0, the electron heat transport model

(3.1) can be written as

{ Ou = Oppu+ dyyu, (z,y) € [0,2n] x [0, 2], (4.11)

z,y,0) = C +sin(x) + sin(y),
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where C' is a constant. With the periodic boundary condition, the problem has an exact
solution

u(z,y,t) = C + e " (sin(z) + sin(y)) .

We compute to T'= 0.1 with the time step 7 = 0.001h%, h = min{h?, h%} and the numerical
irj
results are listed in Table 4.5 and the optimal accuracy of the P2, P3,P* DG schemes can

be observed.

Table 4.5: Accuracy test: error and order of the two-dimensional linear local electron heat
transport model with the alternative numerical flux (3.5).

‘ Ny, Ny ‘ L4 error order ‘ Loy error order ‘ Lo error  order

10 7.5495E-03 5.2283E-03 1.5348E-02

20 9.8295E-04 2.94 | 6.9266E-04 2.92 | 2.0818E-03 2.88
P2 40 1.2126E-04  3.02 | 8.5829E-05 3.01 | 2.5894E-04 3.01
60 3.5829E-05  3.01 | 2.5387E-05 3.00 | 7.6644E-05 3.00
80 1.5100E-05 3.00 | 1.0703E-05 3.00 | 3.2322E-05 3.00

‘ Nz, Ny L error order Lo error order | L, error  order

10 2.6236E-04 1.8749E-04 6.1341E-04

20 1.6520E-05 3.99 | 1.1782E-05 3.99 | 3.7983E-05 4.01
P3 40 1.0256E-06  4.01 | 7.3277E-07 4.01 | 2.3738E-06 4.00
60 2.0233E-07 4.00 | 1.4461E-07 4.00 | 4.6889E-07 4.00
80 6.3991E-08 4.00 | 4.5742E-08 4.00 | 1.4836E-07 4.00

‘ Ny, Ny ‘ L4 error order ‘ Loy error order ‘ Lo error  order

10 8.0304E-06 5.5464E-06 1.6514E-05

20 2.4904E-07  5.01 | 1.7198E-07 5.01 | 5.2515E-07 4.97
P4 40 7.7614E-09  5.00 | 5.3623E-09 5.00 | 1.6480E-08 4.99
60 1.0215E-09  5.00 | 7.0586E-10 5.00 | 2.1738E-09  5.00

46



4.2.2 Accuracy test: Linear nonlocal electron heat transport model with or
without the positivity-preserving limiter

Take the linear nonlocal electron heat flux k(u) = u, A = 0.05, we consider the initial value

problem with two source terms si(x,y,t), s2(x,y,t),
u 0 o]
( % = T %n (wy)e02m]x (02
Q1 = %4‘)\(83?21—%8@1)%—
u 0 0?2
Q = S+ ANGE+ QQ) +s (4.12)

u(z,y,0) = C+sin(z) + Sln(y)
s1(x,y,t) C + cos(z + at) — a(A + 1) sin(z + «at)
[ s2(z,y,t) = C+cos(y+at)—a(X+1)sin(y + at)

where C, a are constants and we take C' = 2, « = 4 in our tests. With the periodic boundary

condition, the problem has an exact solution

u(z,y,t) = C+sin(x+ at) +sin(y + at),
Q1(z,y,t) = C —asin(z + at), (4.13)
Qo(z,y,t) = C —asin(y + at).

We compute to T" = 0.5 with the time step 7 = 0.1h,7 = 0.02h,7 = 0.01h for the
P2, P3,P* DG schemes, respectively, where h = mm{hf ,h4}. The numerical solution with-
out the positivity-preserving limiter is listed in Table 4.6 and the numerical solution with
the positivity-preserving limiter is listed in Table 4.7. The last column N¢(%) in Table
4.7 is the proportion of the quadrature points modified by the positivity-preserving limiter.
Although a few quadrature points have been modified by the limiter, the introduction of

the positivity-preserving limiter still does not affect the original accuracy of our high-order

entropy stable DG scheme.

4.2.3 Accuracy test: Nonlinear nonlocal electron heat transport model

2

Take the nonlinear nonlocal electron heat flux k(u) = %, X = 0.05, we consider the initial

value problem with two source terms s1(x,y,t), sso(x,y,t)
(%= B () o,20] x 0,21]
Q= —ult+ A9+ 28 1
Q: = —ufs + MG + 2 QQ) + 52 (4.14)
u(z,y,0) = C+sin(z) + sm( )
si(z,y,1) = C—(A+1)e " cos(w) + e cos(x) (C' + e (sin(x) + sin(y)))
( s2(,y,8) = C'—(A+1)e " cos(y) +e " cos(y) (C' + e ' (sin(z) + sin(y)))
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Table 4.6: Accuracy test: error and order of the two-dimensional linear nonlocal electron
heat transport model with the alternative numerical flux (3.5) and without the positivity-
preserving limiter.

‘ Nz, Ny ‘ L error order ‘ Lo error order ‘ Lo error  order
10 2.7036E-02 1.7579E-02 4.2379E-02
20 3.4217E-03 2.98 | 2.2286E-03 2.98 | 5.5419E-03 2.93
P? 40 4.2657TE-04  3.00 | 2.7805E-04 3.00 | 6.9044E-04 3.00
60 1.2618E-04 3.00 | 8.2270E-05 3.00 | 2.0460E-04 3.00
80 5.3182E-05 3.00 | 3.4679E-05 3.00 | 8.6272E-05 3.00
‘ Ny, Ny ‘ L4 error order ‘ Loy error order | Ly error  order
10 8.8328E-04 5.7913E-04 1.6119E-03
20 5.5060E-05 4.00 | 3.6086E-05 4.00 | 1.0061E-04 4.00
P3 40 3.4414E-06  4.00 | 2.2571E-06 4.00 | 6.3213E-06  3.99
60 6.8312E-07  3.99 | 4.4837E-07 3.99 | 1.2588E-06  3.98
80 2.1756E-07 3.98 | 1.4290E-07 3.97 | 4.0232E-07 3.97
‘ Nz, Ny L error order Lo error order | L, error  order
10 2.4025E-05 1.6249E-05 4.3370E-05
i 20 7.4950E-07 5.00 | 5.0483E-07 5.01 | 1.3553E-06  5.00
40 2.4174E-08 4.95 | 1.6033E-08 4.98 | 4.0112E-08 5.08
60 3.5409E-09 4.74 | 2.2860E-09 4.80 | 4.8003E-09 5.24

where C' is a constant. With the periodic boundary condition, the problem has an exact

solution

u(z,y,t)
Ql (:L‘7 Y, t)
QQ (.’L’, Y, t)

C + e t(sin(z) + sin(y)),

C — e tcos(x),
C — e teos(y).

(4.15)

We compute to 7' = 0.5 with the time step 7 = 0.1k, 7 = 0.02h, 7 = 0.01h for the P2, P3, P*

DG schemes, respectively, where h = min{h?, h?} The numerical results are listed in Table
0.

4.8.

Similar to the one-dimensional case, the two-dimensional high-order entropy stable and

positivity-preserving DG scheme can also achieve optimal accuracy for all the models and it

can also be extended to higher order with more quadrature points and higher-order SSP-RK

time discretization method.
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Table 4.7: Accuracy test: error and order of the two-dimensional linear nonlocal electron
heat transport model with the alternative numerical flux (3.5) and the positivity-preserving
limiter. Nc is the percentage of quadrature points modified by the positivity-preserving
limiter.

‘ Ny, N, ‘ Lq error  order ‘ Lo error  order ‘ Lo, error  order ‘ Nc(%)

10 2.6859E-02 1.7520E-02 4.3998E-02 1.33E-01
20 3.4268E-03  2.97 | 2.2351E-03 297 | 5.9392E-03 2.89 | 2.81E-02
P? 40 4.2713E-04  3.00 | 2.7862E-04 3.00 | 1.0488E-03 2.50 | 5.90E-03
60 1.2645E-04  3.00 | 8.2562E-05 3.00 | 4.3331E-04 2.18 | 2.41E-03
80 5.3254E-05  3.01 | 3.4758E-05 3.01 | 1.9226E-04 2.82 | 1.35E-03

‘ Nz,Ny | Lyerror order | Lgerror order | Lo error  order ‘ Nc(%)

10 8.8857E-04 5.8090E-04 1.6125E-03 1.88E-02
20 9.5096E-05 4.01 | 3.6093E-05 4.01 | 1.0062E-04 4.00 | 1.56E-03
P3 40 3.4420E-06  4.00 | 2.2573E-06 4.00 | 6.3237E-06 3.99 | 4.88E-04
60 6.8311E-07  3.99 | 4.4838E-07 3.99 | 1.2594E-06 3.98 | 1.88E-04
80 2.1755E-07  3.98 | 1.4291E-07 3.97 | 4.0248E-07 3.97 | 1.10E-04

‘ Ny, N, ‘ Lq error  order ‘ Lo error  order ‘ Lo, error  order ‘ Nc(%)

10 2.4034E-05 1.6251E-05 4.3368E-05 5.00E-04
20 7.4950E-07  5.00 | 5.0483E-07 5.01 | 1.3553E-06 5.00 | 6.25E-05
P4 40 2.4174E-08  4.95 | 1.6033E-08 4.98 | 4.0115E-08 5.08 | 1.26E-05
60 3.5406E-09 4.74 | 2.2858E-09 4.80 | 4.8034E-09 5.23 | 2.32E-06
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Table 4.8: Accuracy test: error and order of the two-dimensional nonlinear nonlocal electron
heat transport model with the alternative numerical flux (3.5).

‘ Ny, Ny ‘ L4 error order ‘ Loy error order ‘ Lo error  order

10 3.8994E-03 2.6740E-03 6.5606E-03

20 4.7009E-04 3.05 | 3.2260E-04 3.05 | 7.3493E-04 3.16
P2 40 5.8196E-05  3.01 | 3.9988E-05 3.01 | 8.7598E-05 3.07
60 1.7286E-05  2.99 | 1.1849E-05 3.00 | 2.5511E-05 3.04
80 7.3254E-06  2.98 | 5.0083E-06 2.99 | 1.0676E-05 3.03

‘ Nz, Ny L error order Lo error order | L, error  order

10 2.1230E-04 1.4721E-04 6.2032E-04

20 1.2943E-05 4.04 | 8.9046E-06 4.05 | 3.4220E-05 4.18
P3 40 8.0490E-07  4.01 | 5.5200E-07 4.01 | 1.9532E-06 4.13
60 1.5924E-07 4.00 | 1.0912E-07 4.00 | 3.7239E-07 4.09
80 5.0559E-08  3.99 | 3.4628E-08 3.99 | 1.1623E-07 4.05

‘ Ny, Ny ‘ L4 error order ‘ Loy error order ‘ Lo error  order

10 8.4578E-06 6.0710E-06 3.0277E-05

20 2.6838E-07 4.98 | 1.8614E-07 5.03 | 7.8894E-07 5.26
40 8.5576E-09  4.97 | 5.8719E-09 4.99 | 2.3311E-08 5.08
60 1.2187E-09 4.81 | 8.1762E-10 4.86 | 3.0180E-09 5.04

7)4

4.2.4 The positivity-preserving test

We construct a circular discontinuous function noted as the cylinder function in [0, 1] x [0, 1]

and take C(0.5,0.5) as the center of the circle

u(z,y,0) = {(1) Zg:g% § : , d(zyy) = \/(x —0.5)2+ (y —0.5)2 (4.16)

where we take r = i in the numerical test. Take the cylinder function (4.16) as the initial
function for our two-dimensional linear nonlocal electron heat transport model with k(u) =
u, A =2.5x 1074

Figure 4.10 is the projection of the three-dimensional image on the z — y plane which
shows the numerical solutions with the positivity-preserving limiter for the nonlocal model.
In this problem, negative values of the quadrature points emerge at the first several time

steps and they need to be modified by the positivity-preserving limiter which has been shown

by the white symbols in the right subfigure of Figure 4.10.
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Figure 4.10: The numerical results for the two-dimensional DG scheme with k(u) = u, A =
2.5 x 107* 7 = X for the test function (4.16) with the positivity-preserving limiter. Left:
the initial cylinder function; Right: the numerical results at the first time step with the
positivity-preserving limiter. The white symbols in the right profile represent the cells which
have been modified by the positivity-preserving limiter.

4.2.5 Comparison between the local and nonlocal electron heat transport mod-
els

Take the following function

C r+y<05
w(@,y,0) = C+sin2r(z+y)+7m) 05<zx+y<l
o C+0.1sin2r(zr+y)) 1<z+y<15

C r+y=>15

(z,y) €[0,1] x [0,1], C = 0.5,

(4.17)
as the initial function for the two-dimensional nonlinear local and nonlocal electron heat
transport models with k(u) = “72,)\ = 0.01. Similar to Section 4.1.5, we compare the
temperature of the two models near the extrema =z + y = 1.25. In Figure 4.11, we use
different color surfaces to represent numerical solutions at the different time. We show the
values at the quadrature points along x = y in Figure 4.12 and these results are similar to

the one-dimensional results in Figure 4.7 which can also explain the difference between these

two models.
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Figure 4.11: The two-dimensional local and nonlocal electron heat transport models at
t = 0.005. Left: the local model; Right: the nonlocal model. Red surfaces, green surfaces
and blue surfaces represent ¢t = 0, t = 0.0025 and ¢ = 0.005, respectively.
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Figure 4.12: The two-dimensional local and nonlocal electron heat transport models at
t = 0.005 with the values at the quadrature points along x = y. Left: the local model;
Right: the nonlocal model.
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5 Concluding remarks

In this paper, aiming at the nonlocal electron heat transport model, we develop a high-order
entropy stable and positivity-preserving DG scheme in one and two dimensions with the
SSP-RK time discretization and the scheme can achieve high-order accuracy both in space
and time. By the scaling positivity-preserving limiter, our DG scheme can preserve posi-
tivity for temperature without destroying the original accuracy and the restrictions on the
time step can almost be ignored which have been analyzed numerically. In the numerical
experiments, we have verified the properties of high-order accuracy, entropy stability, and
positivity-preserving of our scheme. Furthermore, we demonstrate several numerical tests
to show the differences between the local and nonlocal electron heat transport models and
observe similar qualitative conclusions as those given in the literature. Near large tempera-
ture gradients, compared with the classical local electron heat transport model, the nonlocal
electron heat transport model has a wider range of influence but lower change on the tem-
perature. Especially in Subsection 4.1.5 and Subsection 4.2.5, we observe counter-intuitive
decay of temperature at the local extrema in the nonlocal model which exactly explains the
flux reduction phenomenon in the electron heat transport model.

The high-order DG scheme for the nonlocal electron heat transport model, together with
entropy stability and positivity-preserving property, can be extended to two-dimensional
unstructured meshes and to three dimensions, which constitutes our future work. Besides
that, we will attempt to apply our high-order, positivity-preserving, and entropy stable DG

scheme in the simulation of laser-driven ICF by coupling with the other physical processes.
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A Appendix: Stability property for the one-dimensional
nonlocal electron heat transport model

Consider the one-dimensional nonlocal electron heat transport model (2.1) with A > 0 in the
linear case k(u) = u,

Ou = —0,0Q)
u(z,0) =up(x), x€][0,2n], t>0,

where the initial condition wug(z) is a 27-periodic function. We take the Fourier transform
with respect to the spatial variable x and the above model with a single mode initial condition

becomes an ordinary differential equation,

Ayii(w, t) = —iwQ(w, 1)
Qw,t) = —iwi(w,t) — M?Q(w, 1) (A.2)
(w,0) = tg(w)

where u(w, t), Q(w, t) are the Fourier transform of u(x,t), Q(z, ), respectively, then we have

1HﬂW”)jm%w:%@yﬁﬁ? (A3)

Thus, for the general L? initial condition ug(x) = =37 ¢iwe

V2n Law=—00 to(w), we have

(ZE t \/% Z e 1+)\w Taw2! waﬂo(w).

Since 0 < % for all w, so we know the solution u is stable from Parseval’s relation,

1+/\ T+dw? =
0l = 3 1 ) < )P
w=—00
Furthermore, this conclusion can also be extended to the multi-dimensional cases. For the
truly global model with A > 0, the Fourier analysis for the linear case explains the fact that
our numerical scheme is stable as long as the time step is upper-bounded by a constant,

independent of the spatial mesh sizes, see Section 2.4 and Section 3.4 for more details.
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