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Abstract— Many systems can be modeled as an intricate
network of interacting components. Often the level of detail
in the model exceeds the richness of the available data, makes
the model difficult to learn, or makes it difficult to interpret.
Such models can be improved by reducing their complexity.
If a model of a network is very large, it may be desirable to
split it into pieces and reduce them separately, recombining
them after reduction. Such a distributed procedure would also
have other advantages in terms of speed and data privacy.
We discuss piecemeal reduction of a model in the context
of the Manifold Boundary Approximation Method (MBAM),
including its advantages over other reduction methods. MBAM
changes the model reduction problem into one of selecting
an appropriate element from a partially ordered set (poset)
of reduced models. We argue that the prime factorization of
this poset provides a natural decomposition of the network for
piecemeal model reduction via MBAM. We demonstrate on an
example network and show that MBAM finds a reduced model
that introduces less bias than similar models with randomly
selected reductions.

I. INTRODUCTION

Complex systems often involve large, interconnected net-
works. Many times the complexity of the network makes it
difficult to reason about the relevant mechanisms leading to
the macro-scale behavior of the system. This complexity is
typically reflected in the mathematical models used to predict
and control these systems. In such cases, it is useful to have
model reduction methods that preserve the interpretability of
the model as a network of interconnected components.

Structure-preserving modifications of traditional model
reduction methods, such as balanced truncation or Krylov
subspace projection, have been explored in [1], [2], [3], [4],
[5], [6]. Other approachs have included clustering ([7] and
references therein) and static and dynamic equivalents ([8],
[9], [10], [11], [12], [13], [14]).

Each of these methods has limitations. Some are only ap-
plicable to linear or linearized systems ([1], [3], [4], [5], [6],
[7], [8], [12]). Others can only be used with first- or second-
order components ([1], [7], [8], [9], [10]), or with compo-
nents that are homogeneous ([7], [11]). For some methods
it is not clear how to choose appropriate parameter values
for the reduced subsystem models, so a separate parameter
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identification step is needed ([12], [13]). A few methods are
intended for networks that have a specific sparsity structure
([8], [9], [10], [12]). Some can only be applied to whole
systems, because reducing individual subsystems or compo-
nents in open loop and then reconnecting them can make
the system unstable [4]. Stability in physics-based models is
often guaranteed by conservation laws, such as conservation
of energy, mass, or charge, which provide natural Lyapunov
functions for the system. Most existing structure-preserving
reduction methods focus on the computational graph of a
model but do not consider other desirable properties, such
as internal conservation laws. In one recent approach [15],
it has been shown that applying iterative Kron reduction and
other reduction patterns to carefully selected graph structures
in a power network preserves certain structural and physical
properties of the system, such as graph sparsity and power-
flow equivalence. But because each reduction pattern is
paired with a specific type of graph structure, extending this
approach to other types of structures is not straightforward.

Recent developments in information geometry have led
to an alternative approach to model reduction known as the
Manifold Boundary Approximation Method (MBAM) [16].
MBAM has previously been applied to models from systems
biology and biophysics [16], [17], [18], [19], power systems
[20], [21], [22], [23], [24], [25], and nuclear structure physics
[26], and has been shown to be equivalent to balanced trunca-
tion and singular perturbation theory methods for linear time-
invariant (LTI) systems in an appropriate parametrization
[27]. Unlike other methods, MBAM maintains the physical
interpretability of the model and can be used for arbitrary
nonlinear systems. Rather than focusing on state variables
(as do methods like balanced truncation), MBAM finds and
applies parameter limits to the model which simplify its
mathematical structure (which encodes both the topological
structure of the network and the physics of the model’s
dynamics) without significantly impacting model accuracy.
This means that all reductions correspond to physically-
meaningful limiting behaviors of the model, and both the
underlying conservation laws of the system and the physical
interpretability of the model are maintained. In contrast to
the approach in [15], MBAM reductions of network structure
involve only two simple operations—cutting branches (edge
removal) and merging nodes (edge contraction)—which can
be applied anywhere in a network [24], [25]. Therefore,
MBAM can be used to reduce networks with any topology. In
addition, MBAM is a data-driven method, so reductions are
applied based on their impact on observations. This means
detail in the model is automatically kept where it is needed
and discarded where it is not.
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Despite these advantages, MBAM is impractical for very
large systems. Finding appropriate parameter limits requires
computationally intensive calculations that reveal only one
parameter limit at a time. This is very tedious for models with
thousands of parameters. In such cases it is helpful to split
the model up into pieces to which MBAM can be applied. In
other cases one may wish to reduce only part of the model
and retain the remainder as-is. These scenarios illustrate the
need for a piecemeal reduction strategy for MBAM.

In this paper, we reframe the problem of structure-
preserving model reduction for networked systems in the
context of MBAM. We first show that, when cast in terms
of manifold boundaries, the model reduction problem is
equivalent to selecting an optimal element from a partially
ordered set (poset). We then leverage the mathematical prop-
erties of posets to identify appropriate model components
for reduction. Posets can be written as the product of prime
factors, similar to integers. We argue that these prime factors
are the natural submodels for structure-preserving model
reduction. The outline of the paper is as follows. Background
material on information geometry and posets is given in
Sec. II. We discuss models of networks and the properties
of their model reduction posets in Sec. III. This is followed
by a demonstration of structure-preserving model reduction
on an example network. We then discuss our results, and we
give concluding remarks in Sec. IV.

II. BACKGROUND

A. Information geometry and model reduction

Consider the following 2nd-order continuous-time linear
state space model:[

ẋ1(t)
ẋ2(t)

]
=

[
−λ1 0
0 −λ2

] [
x1(t)
x2(t)

]
+

[
1
1

]
u(t) (1)

y(t) =
[
1 1

]
x(t). (2)

This system can be solved exactly for y(t), yielding (for the
case of zero input, u(t) = 0)

y(t) = e−λ1t + e−λ2t, (3)

where we have assumed, for simplicity, that x1(0) =
x2(0) = 1 (see Fig. 1, left). Fixing a set of time
points {t1, t2, t3} yields a vector of predictions y =
[y(t1), y(t2), y(t3)]

⊺. As parameters λ1 and λ2 are varied,
y sweeps out a two-dimensional manifold in R3, called the
model manifold [28], [29] (see Fig. 1, center).

In general, a model with N parameters which makes M
predictions leads to an N -dimensional manifold embedded in
RM . Faces, edges, corners, etc. of this manifold correspond
to limiting approximations of the model, such as singular
perturbations. These approximations form a partially ordered
set (poset; see Sec. II-B) of reduced models with decreasing
levels of both computational and statistical complexity [30]
(see Fig. 1, right). We call this poset the manifold boundary
reduction poset. The Manifold Boundary Approximation
Method (MBAM) selects the reduced model from this poset
that introduces the least error for a given level of complexity,

or conversely the smallest complexity for a chosen error
bound.

B. Partially ordered sets

A partially ordered set (poset) is a set P paired with an
ordering relation ≤P . A discrete poset is a poset whose
elements are countable. Discrete posets may be visualized
with a Hasse diagram (see Fig. 1, right). The Cartesian
product of two posets P and Q is defined as

P ×Q ≡ {(F,G)|F ∈ P , G ∈ Q}, (4)

where the ordering is given by

(F,G) ≤P×Q (F ′, G′) iff F ≤P F ′ and G ≤Q G′. (5)

A poset P is factorable if there exist nontrivial Q1 and
Q2 such that P = Q1 × Q2; otherwise, P is prime. All
posets have a unique prime factorization [31]. In this work
we consider the poset of manifold boundary reduced models
and its prime factorization. The prime factorization leads to a
natural decomposition of the model for performing structure
preserving model reduction.

III. NETWORKS AND MODEL REDUCTION POSETS

A. Power systems network model

Consider a network of current-carrying conductors con-
nected at various junctions/nodes (Fig. 2). Each network edge
has an associated resistance Rik, taken as a model param-
eter.2 Assume each network node has both a constant input
current I in

i and resistive load Rout
i connected to ground, and

that voltages Vi and outgoing currents Iout
i can be measured

at nodes. Such a network is an idealization of typical power
systems networks, where edges represent transmission lines
and nodes represent buses to which generators (sources) and
loads (sinks) are attached.

Current conservation at each node gives

I in
i − Iout

i =

Nnode∑
k=1

Iik, (6)

where Iik is the current flowing from node i to node k (so
Iki = −Iik). The voltage difference across each branch is
given by

Vi − Vk = IikRik. (7)

Finally, the outgoing current Iout
i from each node can be

found using
Vi = Iout

i Rout
i . (8)

Given the input currents I in
i and resistive loads Rout

i , these
three sets of equations can be solved for the node voltages
Vi, branch currents Iik (not observed), and outgoing currents
Iout
i as a function of the branch resistances Rik.

There are two relevant parameter limits for Rik that
arise from model reduction with MBAM, both of which

2We consider the DC case for simplicity. Analogous results hold for AC
networks, where the magnitude of the admittance |Yik|, considered as a
model parameter, plays the inverse role of the resistance Rik (see [24],
[25]).
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Fig. 1. Left: Time series predictions for the exponential model in Eq. (3) for three choices of λ1 and λ2. Center: Model manifold for the exponential model.
Axes correspond to the three time “slices” (dotted lines) in the time series plot, and the three unlabeled points in the middle of the manifold correspond to the
three time series curves whose colors they match. Right: Hasse diagram illustrating the poset of reduced models for the exponential model, corresponding
to the boundary structure of the model manifold. Each level of the diagram has models with both fewer parameters and less computational complexity.
The model is invariant to switching λ1 and λ2, so we have assumed λ1 > λ2 without loss of generality.

Fig. 2. Diagram for a network of current-carrying conductors. Each edge
has an associated resistance. All nodes have both a current source and a
resistive load (detail at right). Voltage and outgoing currents are measured
at nodes.

are physically interpretable. Applying Rik → 0 in Eq. (7)
simply gives Vi = Vk, i.e., the edge between nodes i and
k contracts and the two nodes merge. On the other hand,
Rik → ∞ gives Iik = 0, i.e., the edge between nodes i
and k is removed, disconnecting the nodes. Usually this is
acceptable, with one exception. Letting Iik = 0 for all k
Eq. (6) leads to Iout

i = I in
i , so if these are not equal then

the last branch connecting node i to another node cannot
be disconnected or its voltage will not remain finite. In the
examples in this paper, we assume that all nodes have both a
current source and a resistive load so that letting Rik → ∞
is always a valid limit. This means that both of the limits for
Rik result in reductions that respect conservation of current
(charge) and power (energy), which guarantees the stability
of the reduced models.

B. Network reduction posets

In the following, we denote an acyclic network with n
edges as An and a network with n edges connected in a
single simple cycle as Cn.

In the previous section, we showed that, when reducing
a weighted network with MBAM, each edge can either be

kept or be reduced in one of two ways. Accordingly, there are
three model reduction “states” possible for each edge of the
network: unreduced, removed, or contracted. We will denote
these three states as u, r, and c, respectively. We denote
the model reduction state X of a weighted network with n
edges as the collection X = (x1, x2, . . . , xn) of the states
xi ∈ {u, r, c} of its edges. If we express the ordering on
these edge states as r ≤ u and c ≤ u, then this ordering can
be extended to a state X of a network as follows: X ≤ X ′

iff xi ≤ x′
i ∀i.

A one-edge network A1 has three possible reduction
states, which are the three possible states of its edge: u,
r, or c (Fig. 3a). The manifold boundary reduction poset of
A1 consists of these three states, with the aforementioned
orderings (Fig. 3b). We denote this poset P(A1).

Fig. 3. (a) Reductions states of a one-edge network A1: unreduced u,
removed r, or contracted c. (b) Hasse diagram of the poset P(A1) of
reduction states of A1, illustrating the orderings r ≤ u and c ≤ u. A dashed
line indicates edge removal and a solid line indicates edge contraction. (c) A
two-edge network A2. (d) Hasse diagram of the poset P(A2) of reduction
states of A2, illustrating the factorization P(A2) = P(A1)×P(A1). The
repeated appearance of these poset factors throughout the Hasse diagram is
characteristic of a factorable poset.
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Adding another node and branch changes A1 into A2

(Fig. 3c). In this case, reduction (contraction or removal)
of one edge has no effect on the reduction of the other
edge, so every state x1 of the original edge may be paired
with any state x2 of the new edge and identified with a
unique reduction state of A2, i.e., element of P(A2). That
is, P(A2) = {X = (x1, x2) |x1 ∈ P(A1), x2 ∈ P(A1)}.
The ordering in P(A2) is such that X ≤P(A2) X ′ iff
x1 ≤P(A1) x′

1 and x2 ≤P(A1) x′
2. Thus, P(A2) conforms

to the definition [Eqs. (4) and (5)] of the Cartesian product
of two copies of P(A1):

P(A2) = P(A1)× P(A1) ≡ P(A1)
2 (9)

(see Fig. 3d).
This generalizes to An; in fact, we have the following

theorem:

Theorem 1. The poset P(An) of manifold boundary reduced
models of a weighted acyclic network An with n edges is
the Cartesian product of n copies of the poset P(A1) for a
weighted one-edge network A1:

P(An) = P(A1)
n. (10)

Proof. We give a proof by induction. The case n = 1 is
trivial. Next, assume Eq. (10) is true for some n ≥ 1.
As long as no cycles are created, adding an edge (and an
appropriate node) to an n-edge acyclic network An creates
an (n + 1)-edge acyclic network An+1. Reduction of the
original network An has no effect on reduction of the
newly added edge, so every state X of An may be paired
with any state xn+1 of the new edge and identified with a
unique reduction state of An+1, i.e., element of P(AN+1).
Thus, we can write P(AN+1) = {Y = (X,xn+1) |X ∈
P(An), xn+1 ∈ P(A1)}. Y ≤P(AN+1) Y

′ implies that xi ≤
x′
i for each individual edge, which implies both X ≤P(An)

X ′ and xn+1 ≤P(A1) x′
n+1. Likewise, X ≤P(An) X ′ and

xn+1 ≤P(A1) x′
n+1 together imply that xi ≤ x′

i for each
edge, and hence that Y ≤P(AN+1) Y

′. Thus, by Eqs. (4) and
(5),

P(An+1) = P(An)× P(A1). (11)

Finally, since we have assumed Eq. (10) is true for n, we
can write

P(An+1) = P(A1)
n × P(A1) = P(A1)

n+1. (12)

Thus, if Eq. (10) is true for n, it is also true for n+ 1.

This means that an acyclic network can be divided into
arbitrary pieces and each reduced by MBAM individually,
because every reduction state of each edge is compatible
with every other.

The proof of Theorem 1 relied on the acyclic property of
the network. We now show that the network reduction poset
for a cycle is always prime. First a lemma:

Lemma 1. The poset P(C3) of manifold boundary reduced
models of a weighted 3-cycle network C3 is prime.

Proof. We give a proof by contradiction. First, assume
P(C3) is factorable. Then it can be written as a product
P(C3) = Q1 × Q2. The only nontrivial candidates for
the factors Qi are the posets P(A1) and P(A2) for the
acyclic networks A1 and A2. Factorability of P(C3) then
dictates that there exist an element of P(C3) (state of C3)
corresponding to every pair of elements from P(A1) and
P(A2) (states of A1 and A2). Consider the states c of A1

and (u, u) of A2. There is no state of C3 that is compatible
with both of these states because contracting an edge results
in a network where only one edge is identifiable, equivalent
to both the (r, u) and (u, r) states of A2 but not to (u, u)
(see Fig. 4). There are no other candidates with which to
factorize P(C3), so it is prime.

Fig. 4. (a) The cyclic network C3. (b) Contracting the edge between nodes
2 and 3 leads to a one-edge network, because the blue and red edges are
no longer individually identifiable from observations made at the nodes.
(c) Hasse diagram for the model reduction poset of the 3-cycle network in
(a). Some edges are multicolored because it is ambiguous which network
edge remains at that point in the reduction. The networks in (a) and (b) are
marked by the colored square and triangle, respectively.

We now show that the reduction posets of n-cycle net-
works are also prime for arbitrary n.

Theorem 2. The poset P(Cn) of manifold boundary reduced
models of a weighted n-cycle network Cn is prime.

Proof. As in Lemma 1, we only need to find a single pair of
incompatible states for each candidate pair of poset factors
to show that P(Cn) is prime. The candidates are the posets
P(Ak) and P(An−k), where 1 ≤ k ≤ n/2. By contracting
enough edges, it is always possible to reduce Cn to C3, Ak to
A1, and An−k to A2. This reproduces the situation in Lemma
1, that is to say, the state (c, . . . , c) of Ak is incompatible
with the state (c, . . . , c, u, u) of An−k (and other similar
states with two u edges and the rest c). Therefore P(Cn)
is prime.

C. Acyclic network example

In Sec. III-B, we showed that an acyclic network can be
divided arbitrarily and reduced piece by piece using MBAM.
Here we demonstrate this using the acyclic network shown
in Fig. 5a. As discussed in Sec. III-A, we simulated the flow
of current through the network by assigning a random value
for each branch resistance and calculating node voltages and
outgoing currents for a variety of choices of input currents.
We then divided the network into the five subnetworks shown
and reduced them individually using MBAM. The resulting
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reduced network, shown in Fig. 5b, represents a simplified
effective network whose behavior closely approximates that
of the original. In some cases, branch resistances are large
enough that almost no current flows, which is approximately
equivalent to having no branch in those places. In others,
branch resistances are small enough that the voltages on the
adjoining nodes are nearly equal, and can be approximated
as if they are equal.

Fig. 5. (a) An example acyclic network. Each shaded box is a subnetwork to
be reduced separately. (b) The final reduced network, with some branches
removed and some nodes merged, representing the effective interactions
between nodes.

As the reduction with MBAM proceeds, error is introduced
into the model in the form of bias. An acceptable level of
bias will depend on the application—for example, informed
by the noise in the available measurements. For this study,
we arbitrarily ended the reduction when 2/3 of the parameters
had been eliminated, but in principle, the method allows the
user to achieve any desired level of tradeoff between bias
and complexity.

Recall that MBAM selects a reduced model from a poset
of possible reduced models. To evaluate how well the
MBAM-selected model approximates the unreduced model,
we calculated the model bias,

bias2 =
∑
i

(yi − ỹi)
2, (13)

which compares the predictions yi of the original model
and ỹi of the reduced model. We compared this with the
model bias for 1000 other reduced models that could have
been selected in Fig. 6. In each of these other reduced
models, we randomly selected 2/3 of the parameters (branch
resistances) and set them either to 0 or ∞ so that they
have the same complexity as the MBAM-selected model.
The MBAM-selected model introduces less bias than any of
the others.

Fig. 6. Histogram of model biases for 1000 possible reduced models with
2/3 of the parameters randomly set either to 0 or ∞.

D. Discussion

Determining the prime factors in the network reduction
poset is important because of its implications for dividing
a network into subnetworks for doing piecemeal model
reduction. Theorem 1 shows that network edges that are not
part of cycles can be split up or grouped arbitrarily. The
same is not true for edges that are part of cycles because it
is possible for the reduced states of the subnetworks to be
incompatible with each other. Consider the partial network
shown in Fig. 7. Contracting any of the edges along the
boundary could lead to the situation in Fig. 4b where two
edges become individually unidentifiable. A similar situation
can occur for a larger cycle split by a subnetwork boundary,
because contracting enough edges of a cycle eventually leads
to a 3-cycle.

Fig. 7. Part of a network showing a subnetwork boundary (dashed line)
that intersects a 3-cycle. Separately reducing the left and right subnetworks
could lead to the situation in Fig. 4b where two edges become individually
unidentifiable. On the left, this would occur if either of edges AB or AC
were contracted. On the right, it would happen if edge BC was contracted.

This seems to indicate that parts of a network containing
cycles can never be broken up and reduced piecewise,
which is problematic considering that many power systems
networks involve interconnected cycles. However, when a
network is large enough, the upper levels of the associated
Hasse diagram are identical to the Hasse diagram of a
factorable poset (see Fig. 8) and can be treated as if they
were factorable. Specifically, it is only along subnetwork
boundaries (Fig. 7) that situations like the one in Fig. 4b
may arise. To avoid these situations, no edge connected to a
node on a subnetwork boundary should be contracted.
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Fig. 8. (a) The 6-cycle network C6 and (b) part of the Hasse diagram for
its reduction poset. Edges and nodes descending from gray and white nodes
in the Hasse diagram have been omitted for clarity, with the exception of the
subsets shown below. At gray nodes, each remaining edge in the network
may still be either removed or contracted. At white nodes, the network has
been reduced to a 3-cycle, so only the option to remove an edge is available.
Although the repeating structure of the diagram does not carry through to
the lower levels (notice the differences in the subsets at the bottom), the
first few levels have the same structure as that of the factorable poset in
Fig. 3b.

IV. CONCLUSIONS

In this paper, we have shown how to split a network
into subnetworks that can reduced individually using the
Manifold Boundary Approximation Method (MBAM). This
decomposition of the network is based on the prime fac-
torization of a partially ordered set of reduced models of
the undivided network. We have demonstrated structure-
preserving model reduction on an acyclic network. The
resulting network topology reflects the salient features of the
network while eliminating unnecessary detail.

This work has established the foundation for piecemeal
model reduction of networks via MBAM. Real networks
often have both acyclic subnetworks as well as cycles. The
method presented here can be applied to the acyclic subnet-
works of any network. Future work will address networks
with cycles.
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