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Abstract—The article explores the analysis of transient phenom-
ena in large-scale power systems subjected to major disturbances
from the aspect of interleaving, coordinating, and refining physics-
and data-driven models. Major disturbances can lead to cascading
failures and ultimately to the partial power system blackout. Our
primary interest is in a framework that would enable coordinated
and seamlessly integrated use of the two types of models in engi-
neered systems. Parts of this framework include: 1) optimized com-
pressed sensing, 2) customized finite-dimensional approximations
of the Koopman operator, and 3) gray-box integration of physics-
driven (equation-based) and data-driven (deep neural network-
based) models. The proposed three-stage procedure is applied to
the transient stability analysis on the multimachine benchmark
example of a 441-bus real-world test system, where the results are
shown for a synchronous generator with local measurements in the
connection point.

Index Terms—Compressed sensing, deep learning, dynamic
model, Koopman modes, neural network, nonlinear dynamics,
power system, system identification.

NOMENCLATURE
The main symbols used throughout the article are following:

Parameters

r Rank of the reduced model (selected truncation).
N Number of points.

tend Total time for transient analysis.

At Time-step.
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Abbreviations

DAE
DNN
eDMD
EMS
MBAM
PoC

Best-fit linear matrix operator for prediction
xk — xhtl

Vector of parameters.

Sparse signal in compressed sensing algorithm.
Time scalar variable.

Vector of Koopman modes.

Vector of state, measured, and algebraic vari-
ables, respectively.

Training tensors of state, measured, and alge-
braic variables, respectively.

Extended vector of state variables, algebraic
variables, and calculated measurements.
Transform basis and measurement matrix in
compressed sensing algorithm, respectively.
Vector-valued Hilbert space of measurement
functionon z, y = g(x).

Transition function of states for incremental
time-step in state-space.

Koopman operator of states with time ¢ flow
map.

Eigenvalue.

Imaginary part of eigenvalue.

Koopman eigenfunction.

Sets of measurements and initial conditions,
repectively.

Compressed signal (upper index).

Expanded model (lower index).

Time instant (upper index).

Measurement (lower index).

Number of linear signals in compressed sensing
algorithm (upper index).

Practical model (lower index).

Time coordinate (lower index).

State and algebraic variables (lower index).
Initial condition in training set (lower index).
Initial condition (lower and upper indices).

Differential and algebraic equations.

Deep neural networks.

Extended dynamic mode decomposition.
Energy management system.

Manifold boundary approximation method.
Point of connection.
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SG Synchronous generator.
TSA Transient stability analysis.

I. INTRODUCTION

N MANY engineered systems, including electricity grids,

there is a strong, traditional preference for physics-based
models. The human-interpretable state spaces and parameter
spaces of these models convey physical insights into system
behavior, model transferability, and controller design. With the
advent of high-performance computing, models have grown in
size and complexity. However, large unwieldy models, notwith-
standing their apparent detail, are unable to replicate many actual
large-scale events, such as blackouts. Sources of difficulties in-
clude component variations (e.g., loads and renewable sources);
models that exist only in the form of tabulated data or computer
code; undocumented alterations of components (e.g., generator
exciters), and controller settings. To counterbalance these issues,
there is a growing interest in developing mathematical tech-
niques that operate directly on observations or measurements
(i.e., data-driven methods) [1]-[3].

These methods have the potential to eliminate some of the fi-
delity issues with existing physics-based (equation-based) mod-
els for different static and dynamic studies in power systems. In
the available literature, both data-based and hybrid (physics- and
data-based) approaches have been applied to the problems of
state estimation [4], power flow [5], optimal power flow [6], an-
gle stability [7], and frequency stability assessment and control
[8]. In these references, different machine learning approaches
have been used for the data-driven part of models.

Transient stability analysis (TSA), however, is much more
complex, since existing approaches for static problems cannot
be directly applied. Thus, gray-box methods integrating physics-
and data-driven power system models have not been studied as
much. Some papers, such as [9], [10], deal with hybrid methods,
but only use the analytical part in the sample reduction process,
before becoming fully data-driven in the application phase. In
contrast, we retain equations even in the online phase, maxi-
mizing their contribution. Another advantage of our approach is
that the equations we use convey a physical meaning of the sys-
tem states, instead of compacting them into behavior-summary
functions, for instance, Lyapunov function, as in [11].

TSA (and other dynamic analyses, such as dynamic voltage
stability, angle stability, etc.) must be performed in real-time
(specified as the Analysis Tool 7 in [12]) by the transmission
system operators. It is performed by the energy management
system (EMS) for the normal operating condition and a list
of critical contingency cases, to provide adequate situational
awareness and to detect the transient stability criteria violations.
Additionally, these results are used to prepare the appropriate
remedial action schemes to prevent dynamic instability [13].
The absence of such actions can result in cascading failures
and for critical cases in partial blackout(s) [14]. Traditionally,
the TSA is a part of EMS, performed using the physics-based
models with a user-defined level of details. In our context, such
a model is named a practical model.

However, the discrepancy between the practical model and
measured data always exists (irrespective of the complexity of
the practical model). An additional problem is that many state
variables are not electric (for example, for turbines), and obtain-
ing them is expensive for real-time application. Furthermore,
some typically measured electric quantities are indirectly related
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to the state and algebraic variables (such as active/reactive power
flow and injection and current measurements). Based on these
conclusions, our objective is to formulate a hybrid (gray-box)
expanded model, by extending the practical model with a data-
driven part (DNN-based) to fit the discrepancy between the two
models. This implies that the practical model can be of lower
order (reduced), to cover only the dominant system dynamics.
Another motivation for model reduction comes from the fact that
much of that data is locally correlated and there are reasons to
believe that a considerable portion of the data lies on a manifold
of much lower dimension [1]. The effectiveness of low-order,
often physics-derived models (“dynamic equivalents™) is a tes-
tament to this potential reduction.

We envision an integrated workflow and data flow for TSA as
a three-stage process:

1) an existing (physics-based) model is tested for practical
identifiability using tools from computational information
geometry;

2) their states and relationships with measurements are ex-
tracted;

3) adata-driven model is derived for the same collections of
states using tools from machine learning and Koopman
operator theory.

In this article, we describe a coordinated framework for inter-
leaving physics- and data-driven models that allow for iterative
improvements in both classes. We review relevant concepts (in-
formation geometry, machine learning, compressed sensing, and
Koopman operator approximations) within the overall workflow.
Out of the rich literature on each of these subjects and their
power system applications, we comment only on references
that are of immediate relevance for our development. Previous
work has demonstrated that information geometry is a suit-
able framework for addressing above steps 1 and 2 [3]. The
manifold boundary approximation method (MBAM) reliably
extracts a physics-based (practical) model that is identifiable
from a given measurement structure (human-interpretable part
in the gray-box model). The proposed workflow and data flow
retain the traditional focus on physical states, which is justified
by measuring quantities (such as voltages, currents, and power
flows) for which there are a priori known physical relationships.
In this work, we ask if there exists an even better (expanded)
model to be built on top of the earlier iterations of MBAM.
Our main tools in searching for more predictive models with
a given set of states are deep neural networks (DNN) [15],
which have a proven record in capturing many different types
of dynamics. Note, however, that this is not the only option and
other regression models could also be of interest.

One key tool in deriving dynamical models from data is the
approximation by the Koopman modes. It has been successfully
used in several power system applications ranging from TSA to
oscillations [19]-[23].

The main contributions of the proposed method are following.

1) The proposed workflow and data flow for TSA in power
systems integrating physics- (practical model) and data-
driven dynamic models (representing the difference in
transient responses between the measurements and cal-
culations from the practical model).

2) The proposed DNN-based architecture for integrated
gray-box and two-class model, with four different types
of neural networks used to support the data-driven part.

3) The proposed neural network for mapping the differences
between measurements from the expanded model and
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calculated values from the practical model to a reduced
number of Koopman linear operators. This is an alternative
to the neural network-based encoder—decoder structure
explored in [24] and [25].

4) The calculation of Koopman modes from the expanded
vector, containing direct measurements of state variables,
algebraic variables, and indirect measurements.

5) The proposed optimization-based pattern reduction for a
series of points in two axes (one representing initial condi-
tions and other time samples), used for data compression
and dynamic mode decomposition (DMD) [26].

The outline of the article is as follows: Section II introduces
the problem formulation; in Section III, the TSA workflow
with gray-box integration of the physics-driven (DAE-based)
and data-driven (DNN-based) model is proposed; Section IV
describes the reduction of a dynamic model by computational
differential geometry, while Section V describes the compressed
sensing, followed by the data-driven Koopman operator in Sec-
tion VI; the proposed DNN-based architecture for the gray-box
integration is given in Section VII; the proposed methodology
is applied to a synchronous generator (SG) example in Sec-
tion VIII; Section IX presents conclusions. The SG’s input data
are provided in the Appendix.

II. PROBLEM FORMULATION

The equation-driven framework for power system dynamics
is based on nonlinear DAE [3]

&= f(x,z pt) (D

Ozg(w,z,p,t) (2)
where @ and z are vectors of state and algebraic variables, p is
a set of parameters, and ¢ is the (scalar) time variable.

The measurement vector is assumed to be of the form

y=h(z zpt). (3)

In practice, x, z are assumed to be known, while parameters
p that fit the measurement vector y are unknown. If f, g in (1),
(2) are known, different methods are used for the calculation of
p (typically optimization-based—see [16]-[18] and references
therein).

We consider the setup in which system outputs (y)
are measured (or generated by an inaccessible model) or
predicted by a higher-order DNN-based model operating on
physics-derived state (o) and algebraic variables (z); these
will be compared with values calculated by the practical
(DAE-based) model, described by

:i:p = fp (mp7zp7pp7t) (4)

0 :gp (wp7zp7pp>t) (5)

and the calculated (from practical model) measurement vector
Yp = hp (wp7zp7pp7t) (6)

with a known set of parameters (p,,).

In this article, we develop a hybrid approach that retains
physical state (x,) and algebraic variables (z,,) from the DAE-
based practical model. This portion is certified via information-
geometric tools to be a robustly identifiable set of parameters
(p,) from a given measurement structure (y). However, some
differences between actual measurements y and values calcu-
lated by (6) always exist, due to possible time variation in
Dy unmodeled dynamics, different initial conditions, etc. In
gray-box modeling, the refinements of y,, are driven by the

< Available measurements >

!

Compressed sensing of available
measurements, state, and algebraic
variables in DNNs trainig patterns

Measurement differences bet-
ween recorded and calculated j+—]
values for practical model

!

DNNs- and Koopman modes- v
based prediction for data- DAEs-based prediction
driven part (measurement for practical model

differences) l

y

Gray-box prediction for
expanded model

Fig. 1. Block diagram of the proposed gray-box integration of the physics-
driven (DAE-based) and data-driven (DNN-based) models.

Identification of practical
model by MBAM

difference between the two, as shown in (7). For an illustration
of the proposed gray-box model, see the block diagram in Fig. 1

Ay =y -y, @)

Historical database of the recorded transient in point of
connection (PoC) of any local dynamic element can be vast.
However, the similarity among these transients for small vari-
ations of initial condition is quite high. Hence, we first apply
compressed sensing on training sets to improve the computation
speed. Then, because physics-based (DAE-based) models can
never fully replicate the recorded transients in PoC, irrespective
of their complexity, we decide to form only a reasonable-sized
practical DAE model, obtained using MBAM (right branch of
Fig. 1). Theideais then to model the difference between recorded
measurements in PoC and transients obtained by the practical
model using the fully data-driven part. For this task, we use linear
Koopman modes and DNN (left branch of block-diagram). Com-
bining these two models (physics-based + data-driven) gives a
gray-box expanded model. It should be noted that full transient
responses of state, algebraic, and other boundary variables in
PoC are calculated using only the initial conditions of recorded
measurements in PoC of the local dynamic model.

Based on the above analysis of our gray-box (hybrid) ap-
proach, we introduce the following definitions:

Definition 1: The practical model described by DAE (4)—(6)
is physics-driven, and the (calculated) “measured” variables are
Y, in (6), with a user-defined level of detail (with respect to the
model complexity and the required set of parameters p,,).

Definition 2: The expanded model is a union of the practical
model with the data driven-part, trying to match a DAE (1)-(3),
more specifically a set of “measured” data y in (3).

Note here that all measurements in the PoC of the analyzed
local model may be divided into the following three groups (for
more information, see Section VIII).

1) Direct measurements of state variables, y,, € x (for ex-

ample, measurement of rotor speed).

2) Direct measurements of algebraic variables, y, € z

(for example, measurement of bus voltage magnitude).
All algebraic variables related to the bus of interest are
measured.

3) Indirect measurements of mixed nonlinear functions of the

state (x) and algebraic variables (z), y,, (for example,
measurement of real power generation).
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Step 1. Parameter identification of the practical model
(SECTION IV)

Step la. Identification of retained equations [x, and z,, in
(4), (5)] and parameters (p,) for a practical model, by
MBAM

Step 1b. Re-calculation of measured values (y,) for the
practical model, by (6)

Step lc. Difference between two sets of measurements
(real-time and re-calculated), Ay = y — y,

!

Step 2. Data compression by the compressed sensing
(SECTION V)

Step 2a-c. Compressed patterns in measurement, state,
and algebraic variable sets for an expanded model

!

Step 3. Calculation of data-driven Koopman operator
(SECTION VI)

!

Step 4. NN1, NN2, NN3, and NN4m training
(SECTION VII)

(@

Fig. 2. Algorithms of training and verification phases of gray-box DAEs- and
DNN-based TSA. (a) Training phase. (b) Verification phase (dynamic prediction
model-based TSA)—for data flow, see Fig. 3.

III. WORKFLOW WITH INTEGRATED GRAY-BOX
PHYSICS-DRIVEN (DAE-BASED) AND DATA-DRIVEN
(DNN-BASED) MODELS FOR TSA

The workflow of the proposed gray-box environment
with three main components (MBAM-based dynamic model
and parameter reduction—Section IV, compressed sensing
—Section V, and the Koopman theory-based dynamics
prediction—Section VI) is shown in Fig. 2, while the data flow
for the verification phase is shown in Fig. 3. Note that in Fig. 3
(and later in Fig. 4) & denotes the union of the data vectors, and
® denotes the extension/reduction of the data vectors.

For the workflow in Fig. 2(b), it is interesting to note that for
the prediction of state (¢ *') and algebraic variables (z5 ) in
the practical model (in Step 8), the local DAE-based integration
cannot be applied, because the power system balance equations
in the PoC are unknown for the (k + 1)st time instance without
integrating the DAE for the whole power system.

IV. PARAMETER IDENTIFICATION OF THE PRACTICAL MODEL

Physics-based models complement purely data-driven ap-
proaches by incorporating a priori information that extends
predictive performance beyond the training set. However, typical
models suffer from the proliferation of unknown parameters if
trained directly on raw data sets. These data sets are large, but
also compressible, so the actual information content is often
much smaller. This makes raw data sets unsuitable for learning
physical parameters directly. We first perform the parameter
identifiability and reduction step to produce a practical gray-box
model that retains the relevant causal relationships. The states of
this practical model are then retained in data-driven DNN model.

Our approach is based on information geometry and gives a
global identifiability analysis, described in [3] and [23]. Briefly, a
multiparameter model is interpreted as a Riemannian manifold
on which parameter identifiability induces a distance metric.
In this metric, the manifold is bounded, and the unidentifiable
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Step 1. Initial condition
k=1

Step 2. Set of direct measurements for state variables
(¥%), algebraic variables (¥¥), and indirect measurements,
0%, Y =k y§ yEI"

Step 3. Estimation of state (x*) and algebraic variables
(z¥) for the expanded model, by NNI, x¥, 2 = fyn1(¥%)

!

Step 4. Extended vector of state variables, algebraic
variables, and calculated measurements for the expanded
model, W¥, selected entries from the full extended vector

for the expanded model, W% = ykUykUyk,

{

Step 5. Estimation of state (x;‘;) and algebraic variables
(z§) for the practical model, by NN2, x5, z§ = fyn2(¥%)

!

Step 6. Calculation of indirect measurements for the
practical model by (6), %, = h,(x§, z5, p,)

Step 7. Extended vector of state variables, algebraic
variables, and measurements for the practical model,

W} = yi,UyipUyizp
Step 8. Prediction of state (x§**) and algebraic variables
(z§*1) for the practical model, by NN3,

XL 25 = funs(g)
Step 9. Prediction of indirect measurements (y%; ;) for the]
practical model by (6), y5;5 = h, (x§*, 25, p,)

Step 10. Difference between expanded and practical
models, AW§ = W& — W (Step 4-Step 7)

!

Step 11. Koopman modes based prediction of differences
between expanded and practical models,
A= {2,909} ]=1 = funam(AWE); m = 1,2, )N™

]

Step 12. Predicted vector of calculated measurements for

the practical model, y§** =y UysitUyiz;

!

Step 13. Predicted vector of measurement differences for
extended and practical models (Ay§**), by Koopman
modes A

!

Step 14. Vector of measurement predictions
k+1 _ k+1 k+1
Y=yt Ay

(®)

Next time instant
k=k +1

Fig. 2. (Continued.)

parameters correspond to narrow widths. The reduction is ac-
complished through the MBAM which approximates the com-
plete model manifold by its boundary. Boundaries correspond
to physically interpretable approximations, such as singular
perturbation, but are identified in a data-driven way by calculat-
ing geodesics (i.e., distance-minimizing curves) on the model
manifold. The reduced models are similarly expressed as a set
of DAE and retain their physical interpretation as combinations
of both state variables and parameters. MBAM is performed
iteratively so that the number of parameters in the reduced model
is commensurate with the information content of the data.
Note that the MBAM algorithm is not a contribution of this
article. However, it is an essential step in our overall algorithm.
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algebraic variables for
practical model

prediction of differences
between expanded and

practical models

x*, 7 Xy, 2, *—
§ Calculation of indirect measu-
rements by (4) for practical
Wk model (in our case Py, Ogp)
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e W, é
|
AW! e
k
Koopman theory based D 2

Prediction of state and
algebraic variables for practical

model

k+1 _k+1
xp ’zp *

Prediction of indirect measure-
ments for practical model, by (4)
(in our case Pgp, Qgp)

k+1
yxzvl’ k+l kel

yx,payz,p

k+1

Yy

Fig. 3.
tion model for TSA.

NN2

Data flow of the proposed gray-box and DNN-based dynamic predic-

NN3

Calculation of indirect
" measurements for

Ve A practical model, by (6)
yIRs -
Wi wh i J X
e TP
_,@ — D - 4 ® ® p °%p
AW!

NN4m; m=1,2,--- N

5 _ ’
568d0 K= s s Vo Vi

Calculation of indirect
Imeasurements for prac-{
tical model, by (6)

‘_ Reconstruction of Ay:*l

measurements
differences, by (28)

Fig. 4.

DNN-based architecture for TSA in integrated gray-box physics-driven

(DAE-based) and data-driven (DNN-based) dynamic models.

It selects a minimal physics-based model with a reasonable
number of equations and parameters to cover the dominant
dynamics. (For example, in the case of the analyzed SG, the
dominant state variables are rotor angle and speed, as well as
rotor voltage in d-axis.) Errors generated by using this simplified
(practical) model in the proposed algorithm (7) are compensated
by the data-driven part. This means that the proposed algorithm
is not an equivalencing method because the practical model is
only the internal step in the overall gray-box algorithm (see
Figs. 1-3).

V. COMPRESSED SENSING

The data sets in power systems can be quite heterogeneous,
as they come with a wide range of time stamps (from several
seconds for SCADA measurements to 50-100 ms for quanti-
ties calculated by TSA software, to submilliseconds for raw
PMU measurements). For the TSA task, higher granularity is
needed compared to some other power system problems. Con-
sequently, for different initial conditions followed by the daily
load/generation variations, the number of measurement points
can be huge. However, the similarity (correlation) of the data
in two axes (time and initial condition) is high. This suggests
that data compression is possible (see results in Section VIII),
reducing the necessary storage capacity and, more importantly
regarding the computation speed, the training set for neural
networks. In this section, a well-known compressed sensing
methodology [27] is applied for data compression of power
system dynamics data with respect to time and initial condition
axes.

The idea behind data compression is that there exists a new
set of coordinates (transformed basis) to which a given initial
set of data can be mapped and the new (transformed) data will
be sparse. This means that a compressible signal y € RNt may
be written as a sparse vector s € RNt on a transform basis ¥ €
RN 2] [27], [28], ory = Ws.

Thus, after compression, only the vector corresponding to
the sparse signal (s) will need to be stored, rather than the
entire measurement vectory. If, for example, the N¢-dimensional
signal y is K-sparse in W, then only compressed signal y“°™ &
RP with K < p <« Ny needs to be stored as (similar compression
can be applied for state variables vector x)

Yy = Py = PPs (8)

where the measurement matrix & € RP*N¢ represents a set of p
linear measurements on the signal vector (y).

The sparsest solution of (8) (8) satisfies the following opti-
mization problem:

Ny
5= argminz £ )
S k=1
subject to
Yy = dWs. (10)

Based on the assumptions about the low dimensionality of
the (unknown) manifold underlying the system behavior, our
expectation is that accurate, detailed transient responses can be
recovered from relatively few discrete time points and initial
conditions. In [23], it is shown that there are two ways for
compression of recorded measurements.

1) Reduction of sampling points in both the time and initial

condition axes (for suitably slowly varying signals).
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2) Reduction in the number of elements in a transform basis
(vector s), or a reduction in the number of needed fast
Fourier transformation coefficients.

Note that the optimization in (9), representing compressed
sensing in the strict sense, corresponds to the latter. However,
this approach is not suitable for the proposed algorithm because
it produces missing inputs/outputs for DNN training (see Sec-
tion VII). Therefore, we implement a modification (the former
approach) in the following way.

All inputs (measurements) may be arranged into a 3D data
tensoras Y (m, w, t) [the state tensor X (m, w, t) can be reduced
similarly]. Formally, let M denote an ensemble of N, sets of
measurements (N, is the number of measurements) and W
denote an ensemble of Ny, sets of initial conditions (N, is the
number of initial conditions). For each set of measurements,
m € M, and set of initial conditions, w € WV, we observe
a trajectory y(m,w,t) of length N, of the system variables,
where t = 1, 2, ..., N; denotes the time samples. The input
(measurement) data tensor has dimensions (N, x Ny x Ny).
For the mth measurement type, we get

[ —Ym (wl) -
—Ym (wQ) -
Ym = .
L 7ym (wNw) -
o | |
Ym,11 Ym,12 Ym,1,N,
Ym,21 Ym,22 " Ym,2,N,
= . . . . (11)
LYm, Ny,1 Ym,N,,2 " Ym,Ny,N;
where ym,w,t; m = 17 2a L) Nrn; w = 17 2a i) NW’

t=1,2 , N is an element of y,,, (w) or y,,, ().

For the reduction of sampling points, two metrics for ini-
tial conditions (w = 1, 2, Ny) and time points (t =
1, 2, , N¢) based on ¢5-distances are proposed, respectively

Num Ny
D [ywj (M, 1), Yo, (M, } ZZ Ymyw, t ym,w]»,t)2

m t=1

Nys;wj = w; +1,w; +2,.

:| Z Z Ym,w,t; ym,w,tj)2

m w=1

w; =1,2,..., LN, (12a)

D {yt, (m, w)7yt

ti=172,...,Nt;t]‘:ti+1,ti+27...,Nt. (12b)

These two metrics are used for the reduction of sampling
series of measurements (Y') and state variables (X)) for the
practical model, as

D (Yu,Yu ) D (Xw, Xuw;) + D (Ypuwi, Ypu,)
D (X pw, Xpuw,) < €uw (13)
D (Y. Y ) (Xt X, )+D(Y,,,1,Yp, )
+D(Xpu, Xpy,) <& (14)

where ¢, and ¢, are tuneable hyperparameters, representing
thresholds for the reduction of the initial condition and time

IEEE SYSTEMS JOURNAL

TABLE I
REDUCTION OF TRAINING PATTERNS FOR DNN

Reduced initial | Reduced Storage capacity [MB]

conditions timepoints | y | x |z=12,| x,
Unreduced Ny = 1440 N, = 400 |26.8|21.8| 155 |10.9

gy =0.02;¢, = 0.02| NG™ = 1140 |Nf°™ =400[19.4|15.8| 112 | 79
gy =0.1; & =01 | NP™=783 |Nf°™=393|15.1{12.2| 8.7 6.1
£y, =05 & =05 | NP™=554 |Nf°™=378|104| 8.4 6.0 4.2
£y, =05 & =10 | N™ =554 |[Nfo™=1262|72|59| 42 2.9

patterns, respectively, with terms in (13) and (14) defined as in
(12).

As a consequence of this optimization, the number of initial
conditions is reduced to N and the number of time points to
Nge™ (to simplify the notation, superscript ™ is omitted in the
rest of the text, except in Table I, where it is needed for clarity).

Detection of bad data in transient responses (due to measure-
ment errors) of training patterns Y is performed by a manifold
learning-based data clustering [1]. Input for the verification
phase (real-time TSA) of the proposed algorithm is only the
initial condition of state/algebraic variables (see Section VIII). In
this case, the bad data is identified by the static state estimation.

VI. DATA-DRIVEN KOOPMAN OPERATOR

The Koopman operator provides a global linear infinite-
dimensional representation of a nonlinear dynamical system [2],
[29], [30]. For the real-valued, multiple observation (input or
measurement) functions M — R (M denotes the state space,
and R denotes the scalar measurement space), which are ele-
ments of an infinite-dimensional Hilbert space, the input (mea-
surement) model (1)—(3), formally replacing vector of algebraic
variables (2) into (1), (3), can be rewritten in compact form for
N}, measurements as [note that in our case this approach is used
for identification of data-driven differences between real-world
measurements of the model (3) and values calculated by the
practical model (6)] (see also Section VII)

91 ()
92 ()
y=g(@)=| . (15)
9N, ()
The linear Koopman operator (K;) is an infinite-dimensional
operator, acting on a vector-valued Hilbert space of measure-
ment functions, g(x), as [2, eq, (7.51)], [29], [30]

Kig(z) £ g (x)o F, (16a)

where F'; is a transition function of states (x) in state-space
(M), determined by a set of DAE (1)—(3), or (4)—(6) and o is the
composition operator.

The linear characteristics of the Koopman operator (/C;) allow
us to perform eigendecomposition of K; as

Kipj(x) =2rjpj(x);j=1,2,...,00 (16b)
where eigenvalues and eigenfunctions of K are A; and ¢; (x),
respectively. The eigenfunctions () are the inner product
of the state vector (x) with the left eigenvector of the linear
Koopman operator [2].

For the discrete system with sufficiently small time step (At)
for kth time step we can write, akin to (16a)

Kaig (a") =g (z") o Far =g (") (7
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where x% = x(t), 2" = x(tp41), tper =t + AL

This means that the Koopman operator defines an infinite-
dimensional linear mapping as the function of inputs (measure-
ments) to the next time step [see [2], Fig. 7.10].

Individual mth input (measurement) may be expanded in
terms of eigenfunctions ¢, (), similar to eigendecomposition
in (16b), providing the basis for a Hilbert space

o
Ym = 9Im (wk) = Z Pmyj (wk) VUmj
j=1

where v,,,; is the jth Koopman mode associated with eigenfunc-
tion ¢y, (z*) of the mth input (measurement).

Based on the transition in (17), it is possible to represent the
dynamics of the mth input (measurement) [g,,(x)] as [2, eq.
(7.69)]

ﬁlﬂ = gm (warl) _ ’Cﬁmt!]m (wO)

(18)

o0
= ,Cant Z Pmj (mO) Umj
j=1
00 00
= > Khaipms (@) vy =Y b om (2°) v
Jj=1 j=1

19)

where 2° = x (tg) = x(t = 0) denotes the initial condition.

The sequence of triples, {Ay,j, ©mj; Vm; }3‘7: nom =
1,2, ... Ny, is the Koopman mode decomposition for set of Ny,
inputs (measurements) [2], [29], [30].

DMD approximates the Koopman operator with a best-fit
(finite) linear model from time-dependent measurements. There
are several algorithms for identifying Koopman embeddings and
eigenfunctions from data, such as extended mode decomposition
[31], or QR decomposition of the input snapshot matrix [32].
For the method proposed in this article, the basic DMD and
extended DMD (eDMD) algorithms are of primary interest, and
these algorithms are described in more detail below.

A. Basic DMD Algorithm
The DMD is a data-driven algorithm, and the initial step is to

collect a few pairs of state variable snapshots {x*, ack“}’,f;lo

arranged into two data matrices [33]

| | |
X = lx(fo) 33(|tl) x(tv‘nfl) ] (20)
| | |
X' = lx(fl) x(|tz) w(|tm) ] 21
where
"t = Axk. (22)

A best-fit linear operator (A) that maps X to X’ is obtained
as

A = argmin | X’ — AX| = X' — X' (23)
A
where X is the Moore—Penrose pseudoinverse of X. It essen-
tially tries to model transition ¥ — x**1. A good description
of the algorithm is in [2, p. 240].
The DMD modes are eigenvectors of full matrix A corre-
sponding to the eigenvalues in A, A® = P A (for derivation,

see [30]). One of the most important aspects of the DMD is
the ability to predict the system state in terms of a data-driven
spectral decomposition

x(t) = Zvj (z°) e*i'b; = oeh

Jj=1

(24)

where 7 is the rank of the reduced model (depending on the
selected truncation), ¢; (element of @) is DMD mode (eigen-
vector of the A matrix), the initial snapshot is ° = x (t) =
xz(t = 0), w; (element of §2) is the imaginary part of DMD
eigenvalue (A;), and b; (element of b) is the initial amplitude of
each mode, calculated as

b=®x°. (25)

B. eDMD Algorithm

The basic DMD algorithm uses the system’s linear inputs
(measurements) (as a function of state variables), which cannot
fully characterize nonlinear phenomena. In [34], measurement
vector (composed only of measurements of the states) is ex-
panded to include indirect nonlinear measurements (eDMD),
enriching the basis used to represent the Koopman operator.

In our eDMD case, the extended vector of state variables (x),
algebraic variables (z), and measurements (y) for the practical
model from (15) is constructed as

x
W, = M (26a)
Yy
where
=[x 22... me]T (26b)
z=[z1 2 ... 2n, ]T (26¢)
y=|[g1(x,2) g2(z,2) ... 9gx,, (x, z)]T (26d)

and N, N. , and N, are the total numbers of state variables,
algebraic variables, and indirect measurements, respectively.

Note here that all inputs in the extended vector of practical
model (W) are selected from sets of available direct mea-
surements of state and algebraic variables, as well as indirect
measurements (see Section II). In the case of redundant vari-
ables [for example, the rotor speed in the state (x) and input
(measurement) (y) vectors], the union of nonredundant vectors
W, =ax Uz Uy is applied.

Two data matrices (AW, and AW —see the workflow in
Figs. 2 and 3) are constructed as in the basic DMD algorithm
(23). A best-fit linear operator (A Aw,, ) that maps AWP—AW;,
[similar to (23)] is constructed as

Aaw, = argmin HAW'p — AAWPAWPHZ

Arw,

= AW/ ,AW]. 27)
VII. PROPOSED DNN-BASED ARCHITECTURE FOR THE
GRAY-BOX INTEGRATION OF PHYSICS-DRIVEN (DAE-BASED)
AND DATA-DRIVEN MODELS

Workflow for the training and verification phases of TSA (see
Fig. 2) and data flow (see Fig. 3) fully determine the proposed
DNN-based architecture of gray-box integration of physics-
driven (DAE-based) and data-driven (DNN-based) models.
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DAE-based calculations are performed in cases where physics-
driven descriptions are available. In cases where such descrip-
tions are not available, only the data-driven (DNN-based) ap-
proach is applied.

Based on Fig. 4, the neural networks perform four types of

calculations.

1) NNI1: Mapping of measurements to calculated state vari-
ables for the expanded model, with N,,, inputs [dimension
of vector of measurements (y’“), in (3)] and N, outputs
[dimension of vector of state variables (*), in (1)—(3)].

2) NN2: Mapping of measurements to calculated state vari-
ables for the practical model, with N, inputs [dimension
of vector of measurements (y*), in (3)] and Nz, + Nz,
outputs [dimensions of vector of calculated state and al-
gebraic variables, 2 and 2 in (4)—(6), respectively].

3) NN3: Prediction of state and algebraic variables for the
practical model, with Ny + N+ N inputs [dimen-
sions of the vector of states (:c’; ), algebraic variables (z’;),

and mixed equality constraints (y’afcz’p), in (4)—(6)] and
Ng, + N, outputs.

4) NN4m; m = 1,2,...,Ny,,: Mapping of measure-
ment differences to Koopman linear operator, K =
{Amjs @mj,v; }; _ 1, with Ny inputs [dimension of com-
pressed vector of measurement differences for the prac-
tical model, AW ] and N outputs [number of output
elements in the Koopman operator (24)].

Note that in DNN training phase, all vectors in Fig. 4 are

replaced with tensors (x — X and y — Y, see Section V).

The reconstruction of the future measurement differences

(predictions of state and algebraic variable differences are not
necessary for the rest of the algorithm) in the practical model
(for example, for the mth measurement, Ay’;;;l) may be con-
structed for all future time instants using the Koopman linear
operator (see Fig. 4). For example, by first rewriting as w,,,; =
In(A,,;) /At, predictions of the measurement differences from
(22) are given by [34]

Ay,’fj;;l = Z U (2°) eomats i, om =1,2,... Ny,
j=1
(28)
where
r - rank of the reduced model in (24), depending on the

selected truncation;
vm;(2%) - eigenvector of jth mode;
- initial amplitude of jth mode (25);
- frequency of jth mode.

b
o.)mj

The optimal truncation (optimized hard threshold) for eDMD
(see Section VIII-B) can be performed by following [35].

VIII. APPLICATION

The proposed integration of data- and physics-driven power
system dynamic model was tested on a real-world test system
with 441 buses, 655 branches (lines and transformers), 67 SGs
(37 with fourth-order dynamic models and 30 with sixth-order
dynamic models), equipped with automatic voltage regulators
and turbine-governor dynamic models. The dynamic model
has 797 and 1284 differential (state) and algebraic variables,
respectively—all system data are available in [36].

IEEE SYSTEMS JOURNAL

A. Input Data

Input (measurement) set [y (¢) in (3) and Y (m, w, t) in (11)]
is obtained by TSA of the sixth-order state and fourth-order
algebraic SG’s dynamic models in Matlab-based PSAT software
[37], with input data for analyzed SG provided in Appendix.

The rest of the proposed algorithm (the compressed sensing,
the Koopman linear operators, and the gray-box integration of
DAE- and DNN-based models, shown in Fig. 4) is implemented
in the Matlab environment, while the information geometry-
based dynamic model reduction is in Julia.

Transient responses are generated by applying the three-phase
short circuit on the connection bus, cleared after 250 ms. Tran-
sients after fault clearing were recorded for 20 s, with the time
step of 0.05 s. The total of 1440 (every 60 s, or 60 x 24) initial
conditions for forecasted daily generation curves in the whole
test system (for thermal and hydro units) in conjunction with
11 forecasted daily load curves (for residential, commercial,
different industry load types, etc.) are simulated by full (used
as a source of measured values) and reduced models.

We have recorded the following measurements [y in (3)]:

1) state variable (from vector x) for rotor speed, w(t);

2) algebraic variables (from vector z) for nodal voltage mag-

nitude, V' (¢) and angle, 0(t);

3) algebraic variable (from vector z) for exciter’s output
voltage, vs(t) (representing the exciter’s dynamics);

4) algebraic variable (from vector z) for turbine governor’s
output mechanical power, P, (t) (representing the turbine
governor’s dynamics); and

5) mixed nonlinear functions [from g in (2)] of state (x)
and algebraic variables (z) for active, P,(t) and reactive,
Q4 (t) power generations, or

w= (0w e, éy ey |
z=[V Ovf Py ]";

9= {FPy;Qq};

y=[wV Ov; Pn P,Qy "

T
Yo =wiyz= [V 0 v P iyaz =[Py Q]
W=xUzUuy

=[6we,e;e e, VOv PyQ ]T.

where measurements V' (t), §(t), P, (t), and Q4(t) represent the
interaction of dynamics of local SG with the rest of the power
system in the connection point.

To simulate the real-world measurements, random noise of
42 % is added to the calculated values in measurement vector
y (used to prepare the training patterns Y and X for neural
networks), with the following variances:

1) 1072 for the SG’s speed (w), voltage magnitude (1), ex-
citer’s output voltage (vy), and turbine governor’s output
mechanical power (P,,);

2) 1072 for voltage angle (/) measurements; and

3) 10! for indirect active ( P,) and reactive power genera-
tion ((),) measurements.

For training of NNI and NN2, the unmeasured state vari-

ables [state vector x , or tensor X ] in a sixth-order model are
following:
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1) state variable for rotor angle, 6(¢), calculated as in [38];
note that transient response of this state variable is also
used for the vector of state variables in the practical model
(xp);

2) state variables for transient rotor voltages in g-, e; (t), and
d-axis, ¢}, (t), calculated by the methodology from [39];
and

3) state variables for subtransient rotor voltages in g-, e;’ (1),
and d-axis, €/j(t), calculated by the methodology from
[39].

B. Practical Model

The DAE-based SG’s dynamic model is reduced by the
MBAM algorithm to (as explained in Section IV and [3]):
1) three differential equations [ fp in (4)] for 8, w, and e;i;
2) one differential equation transformed to the algebraic
equation for e; (TC’l0 — 00);
3) two retained algebraic equations lg, in (5)] for Py and

Qg or

T, = [5w e:i]T

zp=2z=[V Gvam]T
9p =9 ={Py;Qy}

T T
ymvp:w;yz,pZ[VGUme} Yz = [ Py Q]
Wp:a:pUszyp

=[0we;, VO vfPn PyQ,

Note that the algebraic variable efz is dependent and may be

calculated directly from x,, and z,, as [37]
T4

/ )
e, = —vp + —~
Tz ! Zq
Also the extended vector for the expanded system, W in
Figs. 3 and 4 is with the same elements as in W, (selected from
W =xUzUuy).

]T

Vcos (6 —0). (29)

C. Reduction of Training Tensors

Initial conditions vary slowly with daily generation/load pro-
files, so the transients generate a family of similar curves.
Transient responses for training patterns of state, algebraic, and
measurement variables for expanded model (W, in Figs. 3 and
4) are shown in Fig. 5 (due to limited space, we show only some
representative traces for w, e;, V., Py, Py, and Q).

The reduction of training patterns is performed using tensor’s
deviations (13) and (14) for initial conditions and time samples,
respectively. The obtained results are presented in Table I. From
these results, we note that the storage capacity is reduced by
>60 %. However, note that there are still some redundant sets
(for example, w in « and y, V in z and vy, etc.), with additional
opportunity for savings of the storage capacity.

Transient responses of reduced training patterns of state, alge-
braic, and measurement variables for the practical model (W,
in Figs. 3 and 4) are shown in Fig. 6 (matching the traces from
Fig. 5). These results are obtained with the reduced Koopman
model rank » = 0.2 (28). This low truncation rank suffices
to capture the data-driven dynamics, which is confirmed in our
power system simulations [1], and in references from different

engineering areas, such as [2], [21], [22]; for a derivation of the
optimal hard threshold see [35].

Four-layer neural networks (input layer, two hidden layers,
and output layer) in DNN-based architecture shown in Fig. 4,
used to identify the Koopman mode decomposition and dy-
namic predictions in gray-box hybrid modeled power system,
are trained with reduced training patterns from the last row in
Table I. Please note that these data are related only to the local
dynamic model (one SG in our case) and measurements in PoC to
the main part of the power system. Basic inputs for the training of
neural networks in Fig. 4 are presented in Table II. The numbers
of neurons for input and output layers are determined by the
number of measurements, the dimension of the practical model,
and the selected truncation rate for NN4m. Only the number of
neurons in hidden layers is chosen, taking into account the size
of the training pattern (because of limited space, the sensitivity
of the results to neural networks architecture is omitted from the
article).

For the verification phase of DNN-based architecture in
Fig. 4, the initial condition (for ¢ = 0) of measurement set
(y) (different from training patterns) is shown in (30), while the
remaining elements in the initial state vector (") are obtained
from y(t = 0) using the differential equations of the practical
model (Section VIII-B)

y(t=0)= [wo Vo 0o vjo Pro Pyo Qgo ]T
= [1.0046 0.8473 0.5544 4.6184 0.1459

13.2740 —1.4515]" . (30)

For this initial condition, predicted transient responses are
shown in Fig. 7. The obtained mean squared errors (MSEs)
for trained neural networks (-10~%) approximately are: NNI
(231), NN2 (13200), NN3 (128), and NN4m (247, 8760, 14000,
580, 1440, 2220, and 2020, respectively). Calculation time for
obtaining these 20 s time responses is approximately 2.4 s,
which is lower than ~17 s for full DAE-based transient analysis
(recorded on the personal computer with the following per-
formances: Intel(R) Core(TM) i7-6860HQCPU @ 2.70 GHz,
64-bit Operating System, 32 GB RAM) and comparable with
other state of the art transient algorithms [40, Table II].

From Fig. 7 we can conclude that the differences in transient
responses between expanded and practical models for some
quantities may be increased [for example, for Q,(t)]. For these
cases, the MSEs of trained neural networks determine the pre-
dicted responses due to the superposition of accumulated errors
at the outputs of all neural networks along the time axis. Neural
networks NN2, NN3, and NN4m have a dominant influence on
these errors.

From the results presented in Fig. 7 we can conclude that: 1)
practical (reduced) model alone may produce large differences
in transient responses of some variables (particularly for voltage
magnitude, voltage angle, and SG’s reactive power), and 2) the
data-driven and DNN-based correction (in the proposed overall
gray-box hybrid environment) is very useful in fitting real-world
measurements for the expanded model.

To further improve the similarity of transient responses in
Fig. 7, we may use weighting factors for quantities of interest
(normalized in a standard way for power system applications).

Also, the agreement of transient responses in Fig. 7 may be
improved with additional training of neural networks (especially
for NN2, NN3, and NN4m—see above reported MSEs of neural
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TABLE II

BASIC INPUTS FOR TRAINING OF NEURAL NETWORKS IN FIG. 4

Neural network Neurons in the input layer Neurons in hidden layers | Neurons in the output layer Size of the training pattern
NN1 Size{y} =7 10, 10 Size{x.} =6 N@™ X NE°™ = 554 x 262
NN2 Size{y} =7 20,20 Size{x,} + Size{z,} = 7 NEO™ x NEOM = 554 x 262
NN3 Size{x,} + Size{z,} + Size{yyzp} = 9 20,20 Size{x,} + Size{z,} = 7 | N{™ x (NE°™ — 1) = 554 x 261
NN4m;m = 1,2, ,Ny," NEo™ = 262 10, 10 312" NG™ = 554
*“Note that for NN4m there arem = 1,2,..., N, = 7 independent NN4m with a possibility for parallelized training
“Forr = 0.2is Size{A} + Size{¢p} + Size {b} = 3 x 2 x 52 = 312 (for complex variables A, ¢, and b)
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Predicted transient responses of measurements (Verification phase), obtained by DNN-based gray-box (for verification initial condition). (a) Rotor speed.

(b) Mechanical power. (c) Bus voltage magnitude. (d) Bus voltage angle. (e) Active power. (f) Reactive power.

networks training) or by increasing the number of inputs (for
instance, by adding the time coordinate in data set for NN3).
Another possibility is modifying the number of Koopman modes
retained (rank 7).

Also, note that the differences in transient response are not the
critical issue, because the conclusions about transient stability
typically are: 1) critical fault clearing time, 2) maximum fault
recovery voltage, and 3) fault ride through. In all cases given
above, these metrics are correctly identified.

IX. CONCLUSION

Our focus in this article has been to explore the dynamic
analyses (on the TSA example) in power systems from the
standpoint of interleaving physics- and data-driven models. We
combined compressed sensing, information geometry, Koop-
man operator, and gray-box hybrid integration, and show
that our three-stage procedure holds promise in a realistic,

multimachine benchmark example. Furthermore, with some
straightforward modifications, our procedure may be applied
to modeling and TSA of other dynamic components, such as,
dynamic loads.

Presented results show that the reduced (equivalent) models
sometimes have large errors in comparison with real-world
measurements, meaning that the existing tools for power system
dynamics are not satisfactory in all cases. To compensate for
such errors, the integration with an additional data-driven
model is necessary, both for real-time dynamics analysis or in
long-term planning, such as TSA, dynamic voltage stability,
angle stability, etc.

Input data to the designed DNN-based environment in the
verification phase (real-time application) are only the initial
conditions of local state and algebraic variables in PoC for the
analyzed dynamic element, obtained from static state estima-
tion. Local measurement-based TSA is beneficial in deregulated
energy market environment, where data exchange is limited
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among different transmission owners and operators. The pro-
posed model is, thus, applicable to both centralized and de-
centralized wide-area monitoring systems. We hope that this
approach is relevant for other systems as well, and believe that
broadening of the analyst’s toolset is both timely and useful,
given the rapid surge of data availability and size in modern
engineered systems.

APPENDIX
SG INPUT DATA

S, =2x727.5 MVA:V, =21 kV; f=50 Hz Q=
2 wf =100 7; wg =1 pu; 2H = 26.12 MWs/MVA; D =
7.275 pu; T, = 6.5 s; T,;O =0.31 s; T, = 0.02 s; (;/0 =
0.042 s; 20 =0.02pu; r, =0 pu; zq=0.352 pu; z, =
0.345 pu; oy = 0.052 pu; zj, = 0.078 pu; xy = 0.033 pu;
zy = 0.033 pu.
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