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Self-referential discs and the light bulb lemma

David Gabai*

Abstract. We show how self-referential discs in 4-manifolds lead to the construction of pairs
of discs with a common geometrically dual sphere which are homotopic rel d, concordant and
coincide near their boundaries, yet are not properly isotopic. This occurs in manifolds without
2-torsion in their fundamental group, e.g. the boundary connect sum of S2 x D2 and S x B3,
thereby exhibiting phenomena not seen with spheres. On the other hand we show that two such
discs are isotopic rel 9 if the manifold is simply connected. We constructin $% x D251 x B3 a
properly embedded 3-ball properly homotopic to a zg x B3 but not properly isotopic to zg x B3.

Mathematics Subject Classification (2020). 57N13, 57N35, 57R40, 57R52.

Keywords. Disc, 4-manifold, light bulb.

0. Introduction

In its simplest form the light bulb lemma [5] asserts that if a surface R in the
4-manifold M has a geometrically dual sphere G, then one can perform the crossing
change of Figure 1 ([5, Figure 2.1]) via an isotopy of R, provided thereisapatho C R
from y to z = R N G that is disjoint from the tube B. Recall that a geometrically
dual sphere is an embedded sphere G with trivial normal bundle that intersects R
once and transversely. This paper investigates what happens when such path o must
cross B, i.e., is self-referential. It leads to the discovery of homotopic, concordant
but non isotopic discs with common geometrically dual spheres, thereby exhibiting
new phenomena not seen for spheres in a large class of manifolds. It also leads to the
discovery of knotted 3-balls in certain 4-manifolds.
Perhaps the simplest example is shown in Figure 2. Here,

V =82xD?*S' x B®:=W x[-1,1],

where W is a solid torus with an open 3-ball removed. Let G denote the 2-sphere
component of dWy, where Wy = W x 0. Let Dy be a vertical disc in the S? x D?
factor and P a round 2-sphere centered in W, that projects to a disc in Wy disjoint
from Dy. See Figure 2 (a). Note that DoN W, (resp., P NWp) is an arc (resp., a circle).
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R intersects a 4-ball in these two components
C C

Isotopy

(b)

This arc extends into
the past and the future

Figure 1. The light bulb lemma isotopy.

Let D; be obtained by tubing the disc Dy to the 2-sphere P, such that the projection
of Dj to W, is as in Figure 2 (b). Here, D; N W} is an arc and the shading indicates
projections from the past and future to Wy. Note that Dy and D; have the common
geometrically dual sphere G. If we could apply the light bulb lemma to D; near
where the tube links the sphere, then D is isotopic to Dgrel 0.

Here is the idea for showing that Dy and D, are non isotopic rel d. Let /¢ denote
the arc Dy N W, oriented to point into G and Emb(/, V'; Iy) the space of proper
arc embeddings based at [y that coincide with /o near d/y. Then Dg, D; naturally
correspond to loops &g, @1 in Emb(/, V; Iy) where oy is the constant loop. Using
methods from Dax [3] we will show that &7 is not homotopic to o in Emb(/, V; 1)
and hence D is not isotopic to Dy rel d.

Remarks 0.1. (i) Let M be a 4-manifold such that 7r; (M) has no 2-torsion. Theo-
rem 1.2 of [5] shows that if two homotopic 2-spheres Ay, A7 C M have a common
geometrically dual sphere G and coincide near G, then they are ambiently isotopic
fixing a neighborhood of G pointwise. Since the isotopy is supported in a disc
in the domain, I initially thought that Theorem 1.2 proved that properly homotopic
discs with geometrically dual spheres are properly isotopic. However, the proof of

Theorem 1.2 uses that Ay is a sphere as opposed to a disc in one crucial spot; see
Remark 2.7.

(ii) On the other hand, there is nothing new when G C 2 x S! C dM, for filling
this component with a S? x D? reduces to the study of isotopy classes of spheres
with geometrically dual spheres. That was solved for spheres in 4-manifolds M such
that 71 (M) has no 2-torsion in [5] and in general 4-manifolds by Schneiderman and
Teichner [10].

(iii) Hannah Schwartz [11] showed that there exist manifolds with 2-torsion in their
fundamental groups supporting homotopic spheres with a common geometric dual
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Figure 2. A self-referential disc.

that are not isotopic, in fact not even concordant. Rob Schneiderman and Peter
Teichner [10] identified the Freedman—Quinn (FQ) concordance invariant [4] as the
exact obstruction and showed that concordance implies isotopy.

(iv) Note that D; is concordant to Dy, thus their difference is not detected by the
FQ invariant. A secondary obstruction to isotoping one sphere to another is the km
invariant of Stong [14] which is only defined when FQ = 0; see [6] for a modern
exposition. The Stong invariant does not detect that D is not isotopic to Dy. First,
one can attempt to transform the isotopy problem for discs to one for spheres by
attaching a O-framed 2-handle to V' along dDg and extending Dy and D to spheres,
but then these spheres become isotopic by [5]. Secondly, km = 0 when the spheres
have a common geometrically dual sphere.

We now define our obstruction generally and introduce the work of Dax before
stating our main results.
Construction 0.2 (An obstruction to isotopy). Let Dy be a properly embedded disc
in the 4-manifold M. View Dg as I x I with Iy denoting I x 1/2 and %y this product
foliation. If D is another properly embedded disc that coincides with Dy near Dy,
then D gives rise to a canonical element

[#Dy(D)] € 1 (Emb(I, M Iy)),

where Emb(/, M ; I) is the space of smooth embeddings of / based at /y. To see
this, view D = I x I where this foliation ¥ coincides with %y near dDy. Use Dy
to inform how to modify ¥ to a loop ¢p,(D) in Emb(/, M; Iy) based at Io; see
Definition 4.6 for more details. Since

[¢D() (DO)] = [110]7

where 1j, is the constant map to Io and Diff(D?fix d) is connected [13], the
class [¢p,(D)] € w1 (Emb(I, M; Iy)) is well defined and gives an obstruction to
isotoping D to Dgrel dDy.

Let fo: N® — M™ be an embedding where N and M are closed manifolds. In
1972 Jean-Pierre Dax showed [3] that

mx(Maps(N, M), Emb(N, M), fo)
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is isomorphic to a certain bordism group when 2 < k < 2m — 3n — 3. While stated
very abstractly, the case N = I and M a 4-manifold can be restated with a strikingly
elegant formulation. This paper gives that reformulation a self contained exposition;
see Section 3. Let 72 (Emb(1, M; Iy)) denote the subgroup of 71 (Emb(7, M; Iy))
represented by loops that are inessential in Maps(/, M : Iy). The following result is
a slightly stronger version of the restated Theorem A in [3, p. 345] for N = [ and M
a 4-manifold.

Theorem 0.3 (Dax isomorphism theorem). Let [y be an oriented properly embedded
closed interval in the oriented 4-manifold M. Then

(1) There is a homomorphism
ds:3(M, xo) — Z[m1 (M) \ 1]

with image D(ly), called the Dax kernel.

(ii) nlD (Emb(1, M; Iy)) is canonically isomorphic to Z[my(M) \ 1]/ D(ly) and
generated by {to|g # 1,g € mi(M)}.

Remark 0.4. The 7, ’s arise from a spinning construction; see Definition 3.2.

Thus, Construction 0.2 together with the Dax isomorphism theorem gives a
concrete obstruction to isotoping one embedded disc to another rel 0.

Corollary 0.5. Let Dy be a properly embedded disc in the oriented 4-manifold
and D be the isotopy classes of embedded discs homotopic rel d to Dy, then there is
a canonical function

¢y D — Z[m1 (M) \ 1]/ D(1p)
such that if D is a embedded disc homotopic rel d to Dy, then ¢p,([D]) # 0
implies D is not isotopic to Dgrel 0.

Note that ¢ p,, is a function of Dy.

In the setting of properly embedded discs with a common dual sphere, the methods
of [5] show that ¢ p,, is ahomomorphism whose image contains a particular subgroup
and also proves the converse when 71 (M) = 1.

Theorem 0.6. Let M be a compact 4-manifold and Dy a properly embedded 2-disc

with a geometrically dual sphere G C 0M . Let D be the isotopy classes of embedded

discs homotopic rel d to Dy.

(1) If my(M) = 1, then D = [Dy), i.e., if Do and D1 are homotopic rel 0, then they
are isotopic rel 0.

(ii) In general, D is an abelian group with zero element [Dgy]. There is a hom-
omorphism

¢py: D — Z[m1 (M) \ 1]/ D(Ip) = = (Emb(I, M; Iy)).

It maps onto the subgroup generated by elements of the form g + g ' and X,
where A? = 1.
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Figure 3. A knotted 3-ball.

Remarks 0.7. (i) We shall see in Section 4 that for M = S? x D?1S! x B? the
Dax kernel is trivial and the disc D of Figure 2 maps to ¢t + ¢!, thus Do and D,
are not isotopic rel 0.

(i) The set O is a torsor when there is a dual sphere. Fixing the element [Dy] turns
it into a group with identity [Do]. The group Z[m1(M) \ 1] acts on D by adding
self-referential tubes and Z[T3] acts on D by adding double tubes, where 75 is the
set of nontrivial 2-torsion elements; see Section 4.

As an application we show the existence of knotted 3-balls in 4-manifolds.

Theorem 0.8. If V = S2? x D?1S' x B3 and By = x¢ x B3, then there exists
a properly embedded 3-ball By C V such that By is properly homotopic but not
properly isotopic to By; see Figure 3.

Here is the idea of the proof. An extension of Hannah Schwartz’ Lemma 2.3
in [11] to discs implies that there is a diffeomorphism ¢: V' — V fixing a neighbor-
hood of dV pointwise and homotopic to id rel d such that ¢ (Dg) = D;. Let By
denote the 3-ball xo x B> in the S! x B3 factor of V and B; := ¢(By). If B;
is isotopic to By, then since Bj is disjoint from D;, D; can be isotoped into the
S2 x D? factor of V. Theorem 10.4 in [5] implies that D is isotopic to Dy rel 9,
a contradiction. Here B; is obtained from By by embedded surgery as described in
more detail in Section 5; see Figure 3.

This paper is organized as follows. Basic definitions will be given in Section 1.
Section 2 will describe to what extent the methods of [5] extend to discs. In particular,
we will show that if Dy and D; are homotopic and have a common dual sphere,
then D; can be put into a self-referential form with respect to Dy. This is the
analogue of the normal form of [5] except that in addition to double tubes, D, can
have finitely many self-referential discs. Theorem 0.6 i) will also be proved. The Dax
isomorphism theorem [3] will be stated and proved in Section 3. A slightly sharper
version of Theorem 0.6 (ii) will be proved in Section 4. Applications to knotted
3-balls in 4-manifolds and further questions will be given in Section 5.
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Budney for his comments and for teaching me about the modern theory of embedding
spaces. We thank the referee for his or her constructive comments and suggestions.
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1. Basic definitions

We say that G is a dual sphere for the properly embedded disc D C M if G C IM
and D intersects G exactly once and transversely. It would be more proper to call such
a G a geometrically dual boundary sphere to distinguish it from geometrically dual
spheres intersecting D at an interior point. A geometric dual sphere is one with trivial
normal bundle that intersects a given surface exactly once and transversely. Trivial
normal bundle is automatic here since G is an embedded homologically nontrivial
sphere in an orientable 3-manifold. Unless said otherwise all dual spheres for discs
lie in the boundary of the 4-manifold.

If Sy and S are oriented surfaces, then we say that they are tubed coherently if the
tubing creates an oriented surface whose orientation agrees with that of S¢ and Sj.

This paper works in the smooth category. All manifolds are orientable.

2. Self-referential form

Let Dy be a properly embedded disc with dual sphere G C dM. In this section we
show that if D; is an embedded disc with dDy = dD; and D; is homotopic rel d
to Dy, then D; can be isotoped to a self-referential form, i.e., D1 looks like Dy except
for finitely many double tubes representing distinct nontrivial 2-torsion elements
of 7r1(M) and self-referential discs.

Definition 2.1. Let Sy be a properly embedded oriented surface in the 4-manifold M,
B C int(M) an oriented embedded 3-ball with B N Sg = @ and dB = P. Let
7:[0,1] = M be an embedded path from int(Sg) to P such that 7(0) = t N So,
7(1) = N P and int(7) intersects B exactly once and transversely. Let S; be
obtained from Sg by tubing Sy to P along . We say that S is obtained from Sy by
attaching a self-referential disc; see Figure 4.

Remarks 2.2. (i) The disc D; in Figure 2 is obtained by attaching a self-referential
disc to the disc Dy.

(i) A priori to define the tubing, t should be a framed embedded path as in [5,
Definition 5.4]. Up to isotopy supported in N(t) there are four isotopy classes,
exactly two of which are coherent with the orientations of Sy and P. These two,
as do the non coherent ones, differ by the nontrivial element of 71(SO(3)) on
the B3 normal fibers of N(t) as one traverses 7. Since T attaches to a sphere, the two
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Figure 4. A self-referential disc.

choices give isotopic S;’s. Thus, S; depends only on t and coherence/noncoherence.
Equivalently, we can fix the orientation of the sphere one way or the other and then
insist that the attachment be coherent.

Definition 2.3. Now assume that Dy C M is a properly embedded oriented disc with
dual sphere G. Let B C int(M) an oriented 3-ball with dB = P and B N Dy = @.
Let 7o be an embedded arc from int(Dy) to int(B) intersecting B U Dy only at its
endpoints. Think of it as being very short and view Do U 79 U B as the base point
for w1 (M). Associated to g € m1(M) and 0 € =+ construct Dy by attaching a
self-referential disc as follows. Let 71 be a path from B to int(Dg) \ 7o such that

11(0) = 70(1), T N(DoU1oU B) =01y

and t; represents the class g. Use 7 = t¢ * 71 to construct D where o determines
whether or not the attachment is coherent; see Figure 4.

Given 0181, ...,0,8n construct a disc D; by attaching n self-referential discs
to Dy by starting with n adjacent copies of 7o U B and then attaching n self-referential
discs as above.

Remark 2.4. Since Dy has a dual sphere the inclusion M \ (Do U 19 U B) > M
induces a mj-isomorphism. Thus once B and 7y are chosen, if D; is obtained by
attaching one self-referential disc, then D is determined up to isotopy by o and g.
In a similar manner, if D, is obtained by attaching n self-referential discs, then
once the n adjacent copies of 79 U B are chosen it is determined up to isotopy

byoigi,.--,0n8n-
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The statement of self-referential form given in Definition 2.13 below is quite
technical, so for now we give the following informal one. Starting with Dq construct
the normal form analogue of Definition 5.23 and Figure 5.10 in [5] and then attach
self-referential discs to obtain D;. The actual definition includes some constraints
and keeps track of certain orientations. The following is the main result of this
section.

Theorem 2.5. Let Dy, Dy be properly embedded discs in the 4-manifold M that
coincide near their boundaries and have a geometrically dual sphere G C 0M.
If Do and D are homotopic rel 9, then D1 can be isotoped rel 0 to self-referential
form with respect to D.

Before embarking on the proof we recall the following result which is a rewording
of Theorems 1.2 and 1.3 in [5].

Theorem 2.6. Let M be a 4-manifold such that the embedded spheres Ry and R,
have a common geometrically dual sphere G and coincide near G. If Ry and Ry are
homotopic and w1 (M) has no 2-torsion, then they are ambiently isotopic fixing N(G)
pointwise. In general Ry can be ambiently isotoped fixing N(G) pointwise to be in
normal form with respect to Ry.

Remarks 2.7. (i) As mentioned in the introduction, since the isotopy fixes N(G)
pointwise, I originally thought that this theorem is a result about properly homotopic
discs with dual spheres, which seems to contradict the main result of this paper.

(i) The key point is this: In the proof of Theorem 2.6 the dual sphere is repeatedly
used to enable various geometric operations. When R; is a sphere,

IN(G) = §? x St

Therefore, if z = R; N G, then through each point of IN(z) N R; there is a distinct
dual sphere. On the other hand, when D is a disc we assume that G C dM and so

N@G)=G x 1.

Here there may only be an interval [a, b] C dD; with the property that for 9 € [a, b],
D has a distinct dual sphere through 6. For example, consider the disc D; of
Figure 2. For most of the proof of Theorem 2.6 an interval suffices, but near the end,
at one crucial spot, we require the whole circle; see the second paragraph preceding
Lemma 8.1 in [5], where it is stated “We can further assume that ¢; € dDy.” Note
that when G C §2 x S! C dM, each point of 3Dy sees its own dual sphere, so the
proofs of [5] and [10] apply to discs without modification.

(iii) There is a temptation to push G to G’ C int(M) and use G’ as a dual sphere;
however, an argument along the lines of [5] requires that D; be G’-inessential, a
condition automatic for spheres but not for discs.
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Figure 5. A tubed surface.

Definition 2.8. Parametrize dDy = dD; by [0,27]/~ and N(G) N M as G x
[w/2,37/2] so that 0Dy N (G x ) = 6. Call [7/2,37/2] C 0Dy the approach
interval.

The proof of Theorem 2.6 extends essentially directly to the proof of Theorem 2.5
until the third paragraph of Section 8. We now elaborate on this extension and then
state a result that summarizes what survives for discs.

Section 2. The extension is direct. In particular, the light bulb lemma goes through
unchanged.

Section 3. Not relevant.

Section 4. Smale’s theorem [12] implies that embedded discs that are homotopic
rel d are properly regularly homotopic rel 9.

Section 5. (1) Definition of tubed surface. Recall that a tubed surface 4 is the
data for constructing an embedded surface in M. At the end of the proof of our
Theorem 2.5 above the associated surface A, will be our D and the realization that A
will be our D;. While stated for closed surfaces, the definition of a tubed surface
applies to compact surfaces with boundary. For us, Ag is a disc with 04 parametrized
by [0,27]/~, where [n/2,37/2] is the approach interval, zg = m € 0Ag and
f(z0) = z = A1 N G. In the closed surface setting we can assume that the o, «, 8, y
tube guide curves approach zo € Ay radially. In the disc setting these curves approach
[7/2,3m/2] C 0Ap transversely and intersect N(dAy) in distinct arcs; see Figure 5,
which shows 04 together with the tube guide curves in a small neighborhood of the
approach interval shown in green.
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(2) Construction of the realization A. The construction is essentially the same.
Here a tube guide curve x connecting to 8 € dA( corresponds to a tube paralleling
f(k) C A; that connects to a parallel copy of G x 6 pushed slightly into int(M).

(3) Tube sliding moves. With one exception all the moves yield isotopic realizations
as before. In the disc setting, the reordering move between tube guide curves k j, ki
requires that the relevant component between their endpoints lies in the approach
interval.

(4) Finger and tube locus free Whitney moves. Same as before.

(5) Theorem 5.21. The proof is the same as before, in particular reordering is not
used.

(6) Lemma 5.25. The proof holds since one can permute pairs (8;, y;), (8. y;) that
are adjacent in the approach interval.

Summary. Except for arestricted reordering move, all the results of Section 5 directly
hold.

Section 6. Direct analogues of all the results of this section hold for discs. Here are
some additional remarks.

(1) Lemma 6.1 holds tautologically since Dy and D; are homotopic rel 9.

Notation 2.9. Sign convention. We continue to adopt the orientation convention
on B;,A; and y; as in that section. As in [5, Definition 6.3] the tube guide curve o
corresponds to a sphere P (o) obtained by connecting oppositely oriented copies of G
by a tube that parallels f(«). Orient « so that the copy giving —[G] (resp., [G]) is at
the negative (resp., positive) end of f(«).

) Ifm: M — M isthe universal covering map, then the components of 77! (D; U G)
are in natural 1-to-1 correspondence with elements of 771 (M, z) and the components
of 771(G) freely generate a Z[m;(M)] submodule of H,(M), thus the algebra of
Section 6 extends to the disc case.

(3) In our context the associated surface A; in the statement of Proposition 6.9 is a
disc. The proof is a direct translation.

Section 7. The statement and proof of the crossing change lemma hold as before.

Section 8. The proof holds as before, until the penultimate sentence of the third
paragraph, “We can further assume that ¢; € dD”, which requires that the approach
interval is the whole circle.

Putting this all together we have the following result.

Proposition 2.10 (Sector Form). Let Dg, D1 be properly embedded discs in the
4-manifold M such that Dy and D coincide near their boundaries and have the
dual sphere G C OM . Then there exists a tubed surface A with underlying surface Ao
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Figure 6. Sector form.

parametrized as the unit disc in R?, with f(Ag) = Do and with realization A isotopic
reld to Dy. A has data:

(1. (p1.q1). 1)+ - (. (Pr.gr). Tr) . (Bo. 0. 20). (B1. V1. A1) - .. (Bu. Vas An)-

Each of these data sets lie in distinct sectors of Ay. This means that there exists
linearly ordered

ag = 7r/2,a1,...,a,+,,+1 = 37T/2C 040

such that (o;, (pi, qi)) lies in the sector defined by (a;—1,a;.0) and (B;,y;) lies in
the sector defined by (a4, ar+j+1,0) with B; Ny; = @; see Figure 6.

Lemma 2.11. The data of the various sectors can be permuted without changing the
isotopy class of the realization.

Proof. Using the tube sliding operations any two adjacent pairs (¢, (pi,qi), Ti),
(Bj.yj.Aj), ie., two of one type or one of each type, in the approach interval can
be permuted, but we cannot permute data within a given sector, i.e., the 8; and y;
curves. O

Definition 2.12. A tubed surface 4 with data as in Proposition 2.10 is said to be in
sector form. Let A be a tubed surface in sector form. Let A be a framed embedded
path in M with disjoint embedded tube guide curves 8 and y C Ay, all oriented with
the above sign convention. We denote the pair (8,v) as +(8,y) (resp., —(8,7))
if B appears before (resp., after) y in the approach interval. Call an embedded o
curve + (resp., —) if the negative (resp., positive) end of « appears before the positive
(resp., negative) end in the approach interval.
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Definition 2.13. We say that the tubed surface 4 is in self-referential form with data
(Al,kz, Ce ,An,O'lgl, ce ,O'kgk) if

(a) the immersion f: Ay — M is a proper embedding with f(A4¢) = A; a 2-disc
with dual sphere G C M ;

(b) the paths 81, 1,...,Bn, Yn,0101,...,00 are embedded and linearly arrayed
along the approach interval, where 0; € + and +«; (resp., —«;) denotes that its
negative (resp., positive) end is closer to 7z/2 than its positive end. The point g;
associated to «; lies in the half disc bounded by «; and the approach interval;

(¢) the framed embedded paths A1, A2, ..., A, represent distinct nontrivial 2-torsion
elements of 1 (M);

(d) each g; represents a nontrivial element of 771 (M, zo) and no i, j satisfies
0igi = —0;§;-
We say that the disc D is in self-referential form with data

(A'l?A'Zs---7A'n70-1g17---10—kgk)

with respect to the disc Dy if D; is the realization of the tubed surface 4 with this
data where A1 = Dy.

We now show the key connection between the formal definition and the earlier
one for self-referential form.

Lemma 2.14. If D is in self-referential form with respect to Do with data

(A'17A’25"-7A'nao—lg17-"’0kgk)

and Dy is in self-referential form with respect to Do with data (A1, A2, ..., Ay),
then Dy is isotopic to the surface obtained from Dy, by attaching the self-referential
discs associated to the data (01g1, ..., 0,k gk)-

Proof. Since q; lies to the approach interval side of «; sliding the sphere P (o) off
of Dy entangles the tube connecting D¢ to P (o) to create a self-referential disc of
the type claimed; see Figures 12 to 14. The result follows by induction on the number
of « curves. O

Lemma 2.15. An embedded surface T with dual sphere G is isotopic to the surface T’
obtained from T by tubing self-referential discs of type g, —g.

Proof. Figure 7 (a) shows T with self-referential discs of type g, —g. The green dot
denotes intersection with a geometrically dual sphere, which is on 97, when T is a
disc. Two applications of the light bulb lemma enable the isotopy to Figure 7 (b).
Figure 7 (c) is after sliding one of the tubes. Since the spheres now cancel, that
surface is isotopic to 7 itself. O
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Definition 2.16. We say that the embedded surface T is obtained from the embedded
surface S by tubing a sphere P along 7, if P bounds a 3-ball disjoint from S and T
is obtained by tubing S and P along a framed embedded path 7.

Lemma 2.17. Let S be an embedded surface with dual sphere G. If the surface T
is obtained from S by tubing a sphere P along t, then T is isotopic to a surface
obtained from S by attaching finitely many self-referential discs.

Proof. If P = 0B and |B N 1| = k, then squeeze B into two balls By, B, so that
[tNByl=1, |tNBy=k—1 and (dtN B) C B, \ B;.

If P; = 0B;, then we can further assume that P; is connected to P, by a tube 7;
disjoint from t. Use 7 to slide 7; off of P, so that now 7, connects P; with S. Here
we abused notation by identifying the framed embedded path t with its corresponding
tube. By construction t; will link P; exactly once. Next, we use the light bulb lemma
to unlink 7, from P; and 7; from P,. The result follows by induction on k. ]

Lemma 2.18. Let A be a tubed surface in sector form containing a sector J with data
(i, (pi,qi), Ti). There exists another tubed surface A’ with isotopic realizations
whose data agrees with that of A except that the (a;, (pi,q;i), ti) data has been
deleted and the sector J has been subdivided into finitely many sectors each of which
contains data of the form (osas, (ps,qs), Ts)) where oy is embedded and q; lies in
the half-disc bounded by o and the approach interval.

Proof. By the crossing change Lemma 7.1 [5] we can assume that «; is monotonically
increasing. Sliding P(c;) off of A; as in the proof of Lemma 2.14 we obtain an
unknotted 2-sphere P;, which is entangled with ;. If S denotes the realization of the
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tubed surface + with the data («;, (p;, gi), T;) deleted, it follows that the realization A
of 4 is obtained by tubing S to the sphere P;. By Lemma 2.17, A is isotopic to
a surface obtained by adding self-referential discs to S. The proof of that lemma
further shows that they can be attached in subsectors of J without the self-referential
discs linking with other parts of A. Finally, reverse the proof of Lemma 2.14 to
obtain the desired A’ satisfying all but possibly the last conclusion. If a g5 lies
outside the half-disc bounded by o and the approach interval, then deleting the data
(osas, (ps, gs), Ts) does not change the isotopy class of the realization. O

The next result follows from Lemmas 2.15 and 2.18.

Corollary 2.19. Let A be a tubed surface in sector form. Given the data (as,(ps.qs),Ts)
there exists a tubed surface A’ in sector form with realization isotopic to that of A
such that the data of A’ consists of the data from the sectors of A plus another sector
with data (a5, (ps, qs), Ts) together with other sectors having data only involving o
curves. O

Proof of the Self-referential form theorem. By Proposition 2.10 we can assume that +4
is in sector form.

(0) By Lemma 2.11 the data of the various sectors can be permuted.

(1) Elimination of the (B9, Y0, Ao) data can be done as in [5, Remark 8.2]. This might
create additional data of the form (s, (ps, gs), Ts)-

(i) We can further assume that the A;’s represent distinct nontrivial 2-torsion
elements since the methods of [5, Section 6] enable the exchange of a pair of double
tubes representing the same 2-torsion element for a pair of single tubes. Again, this
might create data of the form (g, (ps, gs), Ts)-

(iii) The modification of the f;,y; curves to embedded tube guide curves can be
done as in the two paragraphs after [5, Remark 8.2]. This might require that 4
has particular sectors of the form («g, (ps, gs), Ts) in order to invert the operation
of [5, Section 6]. We can create such sectors by Lemma 2.19 at the cost of creating
other sectors with data of the form (o, (ps,q:), ;). Also, the modification may
create other sectors of this type.

(iv) To reverse the ordering of the tube guide curves in (y;, Bi,A;) where A;
represents 2-torsion, modify # to create two new sectors with data of the form
(Bi,vi.Ai), (Bi, vi, Ai) at the cost of adding sectors with (g, (ps,gs), Ts) type
data. Then cancel the (y;, Bi, Ai), (Bi, Vi, Ai) pairs at the possible cost of additional
type (s, (ps, gs), Ts) sectors.

(v) Apply Lemma 2.18 to each sector with (s, (ps, ¢s), Ts) data. O

If 71 (M) = 1, then the self-referential form data is trivial, thus, we have proved
the following, stated as Theorem 0.6 (i) in the introduction.
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Theorem 2.20. Let Dy, D1 be properly embedded discs in the 4-manifold that
coincide near their boundaries and have the common dual sphere G C OM. If M is
simply connected, then D1 is homotopic to Dgrel d if and only if it is isotopic rel 0.

3. The Dax isomorphism theorem

Let fo: N* — M™ be an embedding where N and M are closed manifolds. In 1972
J.P. Dax showed that 7tz (Maps(N, M), Emb(N, M), fo) is isomorphic to a certain
bordism group when 2 < k < 2m — 3n — 3; see [3, Theorem A and Theorem 1.1].
While both the statement and proof are expressed in the very abstract and general
style of the day, our case of interest is a strikingly clean and beautiful geometric result
with an elementary proof. Using different language and in part different methods we
exposit this result when N = [ := [0, 1] and fo: I — M* is a proper embedding
with image /. Again, unless stated otherwise, all maps and spaces are smooth and
in this section manifolds are oriented. Standard spaces are standardly oriented.

Definition 3.1. Define the Dax group 7T1D (Emb(I, M; Iy)) to be the subgroup of
m1(Emb(/, M; Ip)) consisting of classes represented by loops in Emb(Z, M; Iy)
that are homotopically trivial in 771 (Maps(/, M ; Iy)). Here Emb(/, M; Iy) (resp.,
Maps(I, M; Iy)) is the based space of proper embeddings (resp., proper continuous
maps) that coincide with [y near d/o. Here we abuse notation by identifying the
interval Iy with the embedding fo: I — .

The following definition is a special case of the spinning operation that other
authors call double point resolution; see Figure 8. This figure shows the projection
of a 4-ball B C M to a 3-ball B. Our path «;, which is constant near t = 0.5,
intersects B (resp., B)inarcs o and T (resp., o and a point). It is modified to one
where o spins about the point. What follows is a slightly more formal definition.
Definition 3.2. Let o;: L — M,t € [0, 1] be a path in Emb(L, M), where L is
an oriented 1-manifold and M an oriented 4-manifold. Assume that o, is constant
for ¢ € [0.45,0.55]. Let B C M be parametrized by

[—2,2] x [-2,2] x [-1,1] x [-1,1].
With respect to local coordinates assume that
BNL=0ocUrt,

where T = (0,0,0,—s), s € [-1,1], 0 = {-1,0,s,0}, s € [—1, 1] and both are
oriented fromthe s = —1tothe s = +1 end. We modify « to y so that o (s) = y;(s)
unless ¢ € [0.45,0.55] and g 5(s) € 0. Within ¢ € [0.45,0.55], keeping endpoints
fixed and staying within the 2-sphere

~

0 C[-2,2] x[-2,2] x[-1,1] x0 = B,
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Figure 8. Obtaining y by A-spinning «.

swing o around t by first going around the negative y-side and then back along the
positive y-side of Q. This can be done so that y; is a smooth loop; see Figure 8.
We say that y is obtained by spinning «. Note that Lk(z,Q)=+1, where (motion
of o, orientation of o) orients @, in this case the standard orientation. If in local
coordinates A denotes the straight path from (—1, 0,0, 0) to (0, 0, 0, 0), then we say
that y is obtained from « by A-spinning.

Remarks 3.3. (i) The inverse 7! of T corresponds to going around Q the other
way, thereby reversing the orientation of Q and hence the linking number.

(i) Up to homotopy in Emb(L, M; Ly), A-spinning depends only on the path
homotopy class of A and the linking number.

Notation 3.4. Let /, be a properly embedded [0, 1] in the 4-manifold M and let 17,
denote the identity element in 72 (Emb(7, M; Iy)). Let p<q € Ipand g € 71 (M, 1),
where 1y is viewed as the base point, then denote by 7, € 72 (Emb(1, M; Iy)) the
loop obtained by spinning 17, using a path A from p to g representing g. Let 7_,

denote 7, 1

Remarks 3.5. (i) Spinning can be viewed as the arc pushing map that defines the
barbell map of [2]. Reversing the orientation of A changes a spin to its inverse up
to homotopy in Emb(L, M); see [2, Theorem 6.6]. Do not confuse 17—, = Ty 1
with 7,—1.

(i) Modifying the orientation preserving parametrization of B, e.g., by an element
of 71(S0(3)) as one moves along A, does not change the path homotopy class of y;
see [2, Remark 6.4 (1)].

(iii) The homotopy class of y is independent of the representative of A. In particular,
7o is well defined up to homotopy in Emb(/, M; Iy) and represents an element
of w2 (Emb(1, M; Iy)). If g = 1 € m1(M, Iy), then

tg = 11, € 7 (Bmb(/, M; I)).
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(a)

Figure 9. Assigning a generator to a double point.

Lemma 3.6. Spinning commutes up to homotopy in Emb(I, M ; I).
Proof. After an isotopy we can assume that the support of the spins are disjoint. [

Theorem 3.7 (Dax isomorphism theorem). Let [y be an oriented properly embedded
closed interval in the oriented 4-manifold M. Then

() there is a homomorphism d3: mw3(M, xo) — Z[mi (M) \ 1] with image D(ly)
called the Dax kernel;

(ii) nlD (Emb(1, M 1y)) is generated by {tg|g # 1,g € m1(M)} and canonically
isomorphic to Z[my (M) \ 1]/ D(1y).

Proof. Leta = oy, t € I represent an element of nlD(Emb(I, M Iy)). Being in the
Dax group, there exists a homotopy «;,, € Maps(I, M; Iy) such that «; ,, equals 17,
for u near 0 and o, equals o for u near 1.

Step 1. Define d(c; ) € Z[mi1 (M) \ 1]. As in [3], define
Fo:I xI?> - M xI* by Fo(s,t,u) = (s u(s),t,u).

As in [3, Chapter III] we can assume that Fy is parfait, in particular is an immersion,
has finitely many double points and no triple points. Furthermore, Fy is self transverse
at the double points which we can assume occur at distinct values of the last factor.
The results in Chapter I1I are stated for closed manifolds but apply to manifolds with
boundary since the support of the modification occurs away from the boundary; see
also [3, Chapter VI] which mentions the bounded case.

Assign a generator 0, gx € Z[m1(M)] to each double point x as follows. Suppose

X = Uty (p) = Oy (CI)’

where p < q. Let gx € m1(M, Ip) be represented by oy ,,|[0, p] * o u|[gq, 1]; see
Figure 9. Note that /o functions as the base point. Let o, be the self intersection
number obtained by comparing the orientation of DFo(Tp ¢ (1%))® DFo(Ty ¢ (13))
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with that of Tx(M x I?). If xy,..., x, are the double points with g, # 1, then
define

d(oy) = Zaxl. 8x;-

i=1

The next two steps show that modulo D(/y), different choices of «;, give the
same d value.

Step 2. Ifagu is properly homotopic to oztl,u, then d(a?,u) = d(atl’u).

Proof. By properly homotopic we mean that there exists «;,,, v € I such that each
af, € Maps(I, M, Ip), &, v € I is ahomotopy in Emb(/, M, Io) from agl to oztl,l
and o/, equals 1y, foru nearO and v € /.

Suppose that we have two homotopies Fy, F; as in Step 1, that are homotopic
rel d. Then we can interpolate by maps F,, and combine them to a map

F:(IxIxI)xI —->MxIxI)xI,

such that F (s, 7,u,v) = (a7,,(s),7,u,v). Again, we can assume that F' is parfait and
hence away from finitely many singularities F is a self transverse immersion without
triple points. The double points form a 1-manifold whose endpoints in the interior
of M x I3 occur at singularities. The local form of a singularity ([3, p. 332]) implies
that a double point x sufficiently close to a singular point has g, = 1. Indeed, since
each a;,, is path homotopic to /o, if x = a;,(r) = &/, (s), then gx = 1 when the
loop &, |[r, 5] is homotopically trivial. Here, that loop is homotopically trivial since
its diameter converges to 0 as x approaches the singular point. Finally, use the other
double curves to equate the d values coming from Fy and Fj. O

If m3(M) # 0, then there will be non homotopic null homotopies of «; in
Maps(1I, M ; Iy) which may lead to different values of d (o ). The Dax kernel keeps
track of this indeterminacy. Call an o, , a kernel map if for all u close to either 0
or 1, &, = 17,. In a natural way, up to homotopy supported away from 97> there
is a natural isomorphism between kernel maps and 73(M, x¢), where xo = Io(1/2)
and the addition of kernel maps is given by concatenation.

Definition 3.8. Define d3: n3(M, x9) — Z[m (M) \ 1] as follows. Represent a €
3(M, x¢) as a kernel map o;,,. Now define d(a) = d(o;y) € Z[mi(M) \ 1] as
in Step 1. Define D(ly) = dz(7w3(M, x¢)). When [y is clear from context, we will
write D([y) as D.

Step 3. dz:m3(M) — Z[my(M)\1] is a homomorphismasisd.: JTID(Emb(I, M; Iy))
— Z[mi (M) \ 1]/ D, where d(a;) := d(ay ) for some oy y.

Proof. The proof of Step 2 shows that d3: 73(M) — Z[my (M) \ 1] is well defined.
Its additivity with respect to concatenation shows that it is a homomorphism. If a?j w

atl’u are two null homotopies of ; in Maps(/, M ; 1), then after concatenating with
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a kernel map we obtain a new null homotopy whose d value differs by an element
of D. It follows that

d: P (Emb(I, M; Iy)) — Z[m (M) \ 1]/ D

is well defined.
To show that d is a homomorphism first observe that d(1;,) = 0. By concaten-
ating Fy’s for @ and B we see that d(a * 8) = d(a) + d(B). O

Step 4. If [a] € 7y D(Emb(I, M; 1y)) and without cancellation
d(at,u) =0x18x; + -+ 0x,8x,,
then o is homotopic to the compositions of spin maps s, (gxy e Loy

Proof. Let Fo: I xI xI — M x I? asin Step 1. We prove Step 3 by induction on the
number of double points. Assume for the moment Step 3 is true if Fy has < k double
points where k > 1. If Fy has k 4+ 1 double points, then by changing coordinates we
can assume that one occurs at

F(ll) F(ll)
X = 5 9’
o733 433

where p < ¢, and the others occur at Fy(s, ¢, u), whereu > 3/4. Thus, Fo|I xI x5/8
is homotopic to a spin map t and there is a homotopy G from 1, to ™! * o with k
double points of the same group ring types as Fo|/ x I x [5/8, 1], and hence the
result follows by induction.

We now consider the case that there is a single double point. By modifying the
homotopy rel d we can assume that with respect to local coordinates on M x [ x [
and local variables —e < s’, ¢, u’ < ¢;

(+ 4 ’+1) (000 4 ’+1)
s, ~u ,U,0,—§, —,u b )
4 2 2 2
1 ! 1 i / / / 1 A 1 3
F(p—l—s t' +§,u + ) (u,t,s,O,t —I—E,u +§) if oy = +1,

1 / l / / / ! 1 / 1 :
F(p—l—s t+—,u+ ) <u,—t,s,0,t+§,u +§) ifo, = —1.

Thus, the passage from a1, to U lye changes 1y, to t5,¢,, where gy is the loop
o * ¢1 and where ¢g (resp., ¢1) is the arc

1 1 1 1
F(,—, )7 O< ~ "F(?_il_ )1 - = <1’
0p2w 2 resp 0q2 w 2_w_
which is homotopic to the loop g. L
Step 5. d is canonical; i.e., if o is a composition of s, g, » - - - . Top gy, Withall g; # 1,

then there exists sy, with d(cts ) = 0181 + -+ + Ongn-
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Proof. The local functions defined in Step 4 show how to construct a homotopy Fy
from 1y, to o whose double points evaluate to 0181, ...,0ngn- ]

Step 6. d: 7T1D(Emb(1, M; 1y)) — Z[m1 (M) \ 1]/ D is an isomorphism.

Proof. Steps 3 and 5 show that d is a surjective homomorphism. We now prove
injectivity. If a € 7T1D (Emb(1, M; 1)) and d(ey,,¢) € O then by concatenating with
a kernel map we can assume that d(oy, ;) = 0. It follows from Step 4 that « is

homotopic to a composite of spin maps 7g, g, -, Toy,gx,» Whose sum is equal
to 0in Z [ (M) \ 1]. Since spin maps commute it follows that & is homotopic to 1y,,.
This completes the proof of the Dax isomorphism theorem. O

Theorem 3.9. Let M be a 4-manifold suchthat w3(M') = 0, then JTID (Emb(I, M; Iy))
is freely generated by {t4|g # 1.g € mi(M)} and canonically isomorphic to
Zlm (M) \ 1]. O
Theorem 3.10. If M = S' x B31S? x D2, then 7P (Emb(1, M; Iy)) is isomorphic
to Z|Z \ 1] and is freely generated by {ts|g # 1,8 € mi(M)}. (Here, m (M) is
expressed multiplicatively.)

Proof. m3(M) asa Z[m;] module is generated by the Hopf map of S3 to a 2-sphere Q
and Whitehead products of conjugates of 7,(Q). Once given Iy, Q can be chosen
disjoint from 7y and hence any element of 773(M ) has support in a simply connected
subcomplex. O

Theorem 3.11. I[f M = S x B3#S2 x D2, then n P (Emb(I, M; Iy)) is isomorphic
to Z[N] and is freely generated by {tq|g > 1}.

Proof. Here the Dax kernel is not equal to 0. The various 71 (M) conjugates in
73(M) of the separating S3 give, up to sign, the relations g* =g~ in Z[m; (M) \ 1].
O

Remarks 3.12. (i) Theorem 0.3 is stronger than the one given in [3] in that we
identified generators of JTID (Emb(I, M; Iy)). Working with these commuting
elements enables us to avoid a parametrized double point elimination argument
and the need to modify Fy to eliminate double points x with g, = 1. Also, we have a
natural isomorphism of 72 (Emb(/, M ; 1)) with a computable quotient of the group
ring as opposed to one arising from an abstract bundle cobordism construction.

(i) The ordering of I enables us to unambiguously define oy and gy.

(iii) We note that the Dax group 72 (Emb(S!, M; S})), has an extra relation from
being able to cancel double points of Fy by going around the S!. Dax computed the
case M = S x §3 (see [3, p. 369]); see also [1] and [2] for the case M = S! x §3.
Question 3.13. What is the relation between the Dax kernel and the six dimensional
self intersection invariant?

Remark 3.14. Schneiderman and Teichner [10] show that for an oriented six
dimensional manifold P the self intersection invariant

p3:wi(P) — Zlm(P)l/ (g + g ', 1)
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specializes to a map
p3:m3(N) = F2Tn,

when P = N x I and where Ty is the vector space with basis the nontrivial torsion
elements of 71 (N) and %, is the field with two elements. Our setting is both similar
and different in that we are looking at an ordered self intersection of mapped 3-balls
with fixed boundary into M x I x I. As indicated in Theorem 3.11 the Dax kernel
can be nontrivial, e.g., in manifolds with 7y (M) = Z.

Remarks 3.15. (i) Syunji Moriya [9] shows that for certain simply connected
4-manifolds M, 7 (Emb(S', M)) = Hy(M, Z).

(i) See Danica Kosanovic’s thesis [7] and paper [8] for results on Emb(/, M) for
general manifolds M. O

4. From discs to paths

Definition 4.1. Let D be a properly embedded disc in M with dual sphere G. Let O
be the set of isotopy classes rel d of discs homotopic rel d to Dy. If Dy, D, € D,
then define D1 + D, = D3 so that D3 is the realization of a tubed surface whose
sector form data is the concatenation of that of Dy and D,. This means that if D
(resp., D) has n; (resp., ny) sectors with data then D3 has ny + n, sectors with the
corresponding data.

Proposition 4.2. D is an abelian group with unit [ Dy] under the operation +.

Proof. We need to show that D3 is independent of the choice of representatives of D
and D,, the other conditions being immediate. In particular, by Lemma 2.11 D3
is independent of the concatenation order, and hence D is abelian. We can assume
that D; coincides with D¢ near their boundaries, so an isotopy of D; to D} can be
chosen to be supported away from some neighborhood of dDg. Since the data of D5,
except for its framed embedded paths, can be isotoped within their sectors to be very
close to 0Dy, we see that the isotopy of D; can be chosen to avoid it. While the
framed embedded paths associated to D, may get moved during the ambient isotopy
of D; to D, the light bulb lemma enables them to isotope back to their original
positions without introducing intersections with D]. O

Remark 4.3. Let D be a torsor, where Z[m; (M) \ 1] and Z[T3] act on D. Here, 75 is
the set of nontrivial 2-torsion elements. The former acts by attaching the appropriate
self-referential discs and the latter by attaching the appropriate double tubes.

Notation 4.4. If A is a framed embedded path with endpoints in Dy representing a
nontrivial 2-torsion element of 7r1(M), then let A denote this element and let D
denote the realization of the self-referential form tubed surface whose data consists
exactly of (). If 1 # g € m{(M), then let Dy (resp., D_,) denote the realization
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of the self-referential form tubed surface whose data only consists exactly of (+g)
(resp., (=g))-

Remark 4.5. Since an element of D can be put into self-referential form it follows
that the Dg’s and D, ’s are generators of D.

Definition 4.6. Let Dy be a properly embedded disc in the 4-manifold M, not
necessarily with a dual sphere. View Dy as I x [ with [y denoting I x 1/2
and Fy this product foliation. If D is another properly embedded disc that agrees
with Dg along 0Dy, then D gives rise to an element [¢pp,(D)] € w1 (Emb(/, M ; Iy)),
where Emb(/, M; Iy) is the space of smooth embeddings of / based at /. To
construct ¢p, (D), first isotope D to coincide with D¢ near dDy.

Next view D = [ x I, where this foliation & coincides with ¥y near 0Dy.
Use Dy to inform how to modify F to a loop ¢p,(D) in Emb(I, M; I) based
at Iy. To do this first define B € Emb(/, M) as follows. For ¢ € [0, 1/4], B; traces
I x (1/2 —2t) using Fy; for t € [1/4,3/4], B; traces I x (2t — 0.5) using F; and
for t € [3/4,1], B; traces I x (1.5 — 2t) using Fy. Naturally modify the ends of
each B; to coincide with /o near B;(0) and B;(1) to obtain ¢p, (D) with [¢pp,(D)]
denoting the corresponding class in 71 (Emb(/, M ; Iy)).

Remark 4.7. For the sake of exposition, Dy was parametrized as a disc with corners.
The definition is readily modified to the smooth setting.

Since Diff(D? fix d) is connected [13] it follows that ¢ p,, is well defined and
depends only on Dy and Iy. If D is the set of isotopy classes of discs homotopic
to Dy rel 9, then together with the Dax isomorphism theorem we obtain the following
result.

Theorem 4.8. Let Dy be a properly embedded disc in the oriented 4-manifold, I
an oriented properly embedded arc in Dy and D be the isotopy classes of embedded
discs homotopic rel d to Dy, then there is a canonical function

¢D(): :D - Z[7-[1(M) \ 1]/D(IO)
such that if D is a embedded disc homotopic rel 0 to Dy, then ¢p,([D]) # 0

implies D is not isotopic to Dgrel 0.

We have more algebraic structure when Dy has a dual sphere. The following is a
sharper form of Theorem 0.6 (ii) of the introduction.

Theorem 4.9. Let Dy C M be a properly embedded disc with the dual sphere G
and D the isotopy classes of discs homotopic to Dgrel dDg. Then D is an abelian
group with zero element [ Dg] and there exists a natural homomorphism

$po: D — Z[m1 (M) \ 1]/ D(lo) = 7y’ (Emb(I, M o)),
where D(1y) is the Dax kernel, such that the generators of D are mapped as follows:
() ¢py((D2]) = 4;
(ii) ¢py([Del) =g+ "
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Figure 10. The disc D¢ with the dual sphere G.

Proof. We first set the local picture. View N (Do U G) as the manifold with corners
J x[-1,1], where J = H \ int(B), and where B is an open 3-ball and H is a half
3-ball with

0H =0.H U0d;H,

the external and internal boundaries. Also,
MNJx[-1,1]=0.HUOIB) x[-1,1]UJ x{—1,1}.

Here, G; := dB xt and N(G) N M = G x [—1,1]. Let Dy be a vertical disc
inJ x [—1, 1] with I; := Do N J xt, where I is an arc from do H x 0 to G := Gy;
see Figure 10 (a). Figure 10 (b) shows a one dimension lower version. In this figure,
G is acircle and Dy is a disc. dM is the union of G x [—1, 1] and the shaded face
which is the analogue of d,(H) x [—1, 1] and the top and bottom faces.

We now define ¢p,, from this point of view. If D is a properly embedded disc
that coincides with Do near 0D, then the I; fibering of Dg induces ¢p,(D) €
nlD (Emb(1, M; Iy)) as follows. It first induces a map

$py: [—1.1] = (Maps: [-1, 1] — Emb(/, M)).

The projection of I; to Iy then informs how to close up to a loop and modify the ends
to coincide with 7y to obtain a well defined element of 72 (Emb(1, M; Iy)). Itis a
homomorphism since by construction

¢, ([Do]) = [11,]-

Since addition is given by concatenation of sector forms it follows that

¢D0([Dl] + [DZ]) = ¢D0([Dl]) + ¢Do([D2])'
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Figure 11. Orientations on Dg and G.

J x—0.5

Y.

Figure 12. Orientation on P («).

We show (ii). Given Dge D, werepresent ¢ (D) by o, a loop in Emb(/, M;1).
As in Section 3 we construct a homotopy «; ,, in Maps(/, M; Iy) from o, to 17, and
then compute d(c;,). To compute the required intersection numbers we need to
establish and keep track of orientations. First, J X [—1, 1] has the standard orientation
(e1, &2, €3, £4) induced from R x R. Figure 11 shows our orientations on Dy and G
as seen from J x 0. Here, T,(Dy) is oriented by (&2, &4) and T,(G) is oriented
by (e3,€1). Note that (D, G), = 1. Recall that D, is obtained by coherently
tubing Do with the oriented sphere P(«) along a path t representing g. To find
the orientation on D, it remains to find the orientation of P (o), which is shown
in Figure 12. The numbers next to the vectors indicate which goes first. Recall
that P(«) is obtained by tubing two copies of G, say G_g.5 and G5, where the
orientation of G x —0.5 (resp., G x +0.5) disagrees (resp., agrees) with that of G.

Figure 13 (a) shows the projection of P(x) U Doy U 7 to J X 0; the solid line
indicating intersection with the present and shading indicates projection from either
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Figure 13. Isotoping to a self-referential disc I.

Figure 14. Isotoping to a self-referential disc II.

the past or future. Here, J; witht < 0, ¢ = 0, or ¢ > 0 refers to the past, present
or future. The orientation shown is that of the projection of the disc from the future.
Figure 13 (b) is another projection after an isotopy of P(«) U 7. To obtain the full
picture of this Dg we coherently connect Dy to this isotoped P(«) by the tube 7%
that follows the isotoped 7; see Figure 14.

We now describe o ;. The passage from the original D, to the above one induces
a homotopy of a; 9 to a;,1/4. Here is a description of the loop & 1/4,¢ € [—1,1].
Starting at a—j,1/4 = Io, keeping neighborhood of 9/ fixed, oy 1/4 sweeps out
along T staying slightly in the past, then remaining slightly in the past continues
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J x0 J x0

‘e

(b)

Figure 15. Computing the intersection numbers.

across P(a) to reach a/,1/4, the dark line in Figure 14 which is totally in the
present. It then sweeps back across P (o) staying slightly in the future and then back
across T; before returning to /o = o 1/4. Our homotopy o, will have the feature
that for all u,

A1/2,u nJx [—1, 1] c J x0.

If Dg(u) denotes the image of «;,, ¢ € [—1,1], then Figure 14 shows the
projection of Dg(1/4) to J x 0. We now homotope D (1/4) to Dg(3/8), as shown
in Figure 15 (a). Here, we abuse notation by conflating the domain with the image.
While the embedded part of D (1) now becomes immersed, the homotopy induces
a homotopy of &, 1/4 to a; 3/8 as loops in Emb(/, M ; Ip).

Figure 15 (b), (resp., Figure 15(c)) shows the result of a further homotopy
t0 @,9/16 (resp., oy 3/4) this time as loops in Maps(/, M ; Iy). Note that o, ,, fails
to be a loop in Emb(/, M ; Iy) when u = 1/2 and 5/8. This can be done so that
at u = 1/2 (resp., u = 5/8) there is a single self-intersection when t = 1/2,
and s = ag and s = by (resp., t = 1/2, and s = a; and s = b;.) Note that
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/2 /2 /2
o] o
4k
4
B A o
4
3n/2 (a) 3n/2 (b) 3n/2 (c)

Figure 16. Two double tubes equals one single tube.

the loop o, 3/4 is homotopic in loops Emb(/, M ; Ip) to 1;,. Use this homotopy to
complete the construction of o .

We now compute the self-intersection values. Recall that / is oriented to point
into G. Following the rules of Section 3, since by < ag the group element to this
self-intersection is g~'. With notation as in Section 3 we now compute the sign of
the self-intersection by comparing

DF0b0.1/2,1/2 (Tbo,1/2,1/2(13)) ® DFOaO,l/Z.l/Z (Tao,1/2,1/2(13))

with that of
Tei1/2.1/2(M x I?),

where x; = «a(1/2,1/2)(ag) = «(1/2,1/2)(bg). Parametrized as in Section 3 we
have

DFo,, 1/2.15(9/35.8/31.8/9u) = (e1. 5. €6)
and DFoqy 1/2.1,5(8/95.0/01.0/0u) = (e3. €4 + £5, 82 + £6).

which as a 6-vector is equivalent to (&1, €5, &6, €3, £4, £€2) Which is equivalent to the
standard basis, hence the self-intersection number is +1. Since a; < by, a similar
calculation shows that at the second self-intersection the group element is g and
the 6-tuple of vectors is (3, &4 + €5,82 + €6, —€1, €5, &6), Which is equivalent to
(e3,&4,82,—€1, &5, €¢), Which also gives the standard basis. Therefore,

¢(Dg) =d(u) =g +g "
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We now show (i) by proving that
2¢y(D1) = ¢, (2D;) = 21.

Figure 16 (a) shows a tubed surface with self-referential form data (A, A). Figure 16 (b)
shows the result of applying the operation in Section 6 of [5] to this tubed surface.
Tube sliding moves allow for the g point to o, to be placed to either side of «; and
vice versa. Note that the orientations on the o curves are determined by the sign
convention. As in Section 2, deleting the data corresponding to the ¢, curve does not
change the realization since it’s g point lies on the far side of the approach interval.
What’s left is a tubed surface of Figure 16 (c) with self-referential form data (—I—X)
whose realization is D3. By part (i), ¢p,(D3) = 2. O

Corollary 4.10. Let M = S?x B21S' x B3, Dy be the standard 2-disc as in Figure 2
and g be a generator of w1(M). Then the discs D i, i € N are pairwise not properly
isotopic. On the other hand each D 4i is concordant to D.

Proof. By Theorem 3.11, the Dax kernel D(ly) = 0. It follows that if i # j,
then D, is notisotopic to D, since g' + ¢~ # g’/ + g~/ . Since each D, differs
from Dy by aribbon 3-disc, they are concordant. See Figure 2 in the introduction. [

5. Applications and questions

As an application we give examples of knotted 3-balls in 4-manifolds with boundary;
see [2] and [15] for codimension-1 knotting constructions in closed manifolds. As a
prototype we state a result for M = S? x D21S! x B3 and indicate a generalization
to other manifolds.

Theorem 5.1. If M = S? x D?11S' x B3 and Ay = x¢ x B3 inthe S' x B3 factor,
then there exist infinitely many 3-balls properly homotopic to Ay, but not pairwise
properly isotopic.

Remark 5.2. The following result is a straight forward extension of Hannah
Schwartz’ Lemma 2.3 in [11] for spheres with dual spheres to discs with dual spheres,
with a somewhat different proof.

Lemma 5.3. Let Dy C N be a properly embedded 2-disc with dual sphere G. If D4
is a properly embedded 2-disc that coincides with Dy near 0Dy and D is homotopic
rel d to Dy, then there exists a diffeomorphism

Y: (N, Do) — (N, Dy).

If D1 is homotopic rel d to Dy, then  can be chosen to fix a neighborhood of ON
pointwise. If Dg is concordant to D1, then ¥ can also be chosen to be homotopic
to idrel d.
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Proof. Let G x [—¢, ] be a product neighborhood of G C dN and let
N1 =N UG x[—e,e] B3 x [—e. ]

Then N is obtained from N; by removing a neighborhood of the arc k = 0 x [—¢, €].
Any loop y € Emb(/, Ny;k) whose time-1 map preserves the framing of T (x)
induces

V1: (N1, k) = (N1, &),

fixing N7 U N (k) pointwise. Hence, a map
Yy:N = N

fixes AN pointwise, otherwise it induces a diffeomorphism that twists the boundary.
Such a diffeomorphism is called an arc pushing map.

Since Dy, D1 coincide near N(dDy), we can extend slightly to discs E1, Ey
in N1, which coincide in N1 \ N with 0Eg C k UdN;. Let y be the arc pushing map,
the first deformation of which retracts Ey to a small neighborhood of dE( and then
expands along E;. If D; is homotopic to D¢ such an isotopy can be constructed to
preserve the normal framing of k and hence induce a diffeomorphism

Yy (N, Do) — (N, D),

which fixes N(dN) pointwise.

If 1//},,: N1 x I — Np x I is the map induced from suspending the ambient isotopy
induced from vy, then k tracks out a properly embedded disc. If D; is concordant
to Dy, then this disc is isotopic reld to x x I, in which case ¥, is homotopic
to idrel 0. O

Remark 5.4. It suffices that D and Dg induce the same framing on their boundaries
to enable i to fix dN pointwise.

Proof of Theorem 5.1. Let g be a generator of 771 (M) and let D; be the disc D i of
Corollary 4.10. By that result all these D;’s are homotopic, in fact concordant, yet
pairwise not isotopic rel . Apply the lemma to obtain

YicM - M
a diffeomorphism, properly homotopic to id and fixing N(0M) pointwise, such

that ¥; (Do) = D;.
Let A; = ¥;(Ag). Since Ag N Dy = @ it follows that for all 7,

A;ND; =0.

If A; is properly isotopic to A (i # j), then the corresponding ambient isotopy
takes D; to D} with D/NA; = @. Now M \int(N(Ay)) is diffeomorphic to % x D2,
and hence so is M \ int(N(A)). Since A} is properly homotopic to A in M, D/ is
homotopic rel d to D in this S2 x D?. By Theorem 10.4 of [5], Dj is isotopic rel 0
to D, which is a contradiction. O
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Remark 5.5. In a somewhat similar manner we obtain knotted 3-balls in some
manifolds of the form
W = MpS! x B3,
where Dy C M has a dual sphere G C M. Here,
7T1(W) = JTI(M) * Z

Let ¢ denote a generator of Z. We require that the subgroup of Z[m; (W )\ 1] generated
by t" +¢7",n € N is not contained in the subgroup generated by Z[s; (M)]+ D(ly).
For example, manifolds W, where M is of the form S? x D2{jY and m3(Y) = 0.

Define Ag = x¢ x B3 and let D; be obtained by attaching self-referential discs
to Dy so that

¢po(D1) ¢ Z[m1(M)] + D(lo).

Now modify Ag to A; by embedded surgery so that Ay N D; = @ and A; is
homotopic rel d to Ag. If A; can be isotoped to Ag, then D; can be isotoped into M .
Since D; is homotopic to Dy in W, a homotopy can be constructed to be supported
in M. This can be seen by recalling that

(W) = Hy (W)

and that a 2-sphere in 14 homologically trivial in W is homologically trivial in
WA\7~1(Ay), where 7 is the covering projection. It follows that

¢po(D1) € Z[m(M)] + D(ly),

which is a contradiction.

Note that the analogous construction does not work for V = §2 x D2#S! x B3
for the standard Do which lies in the S? x D? factor, since for this Do homotopy
implies isotopy. That is because the separating 3-sphere can be used to disentangle
a single self-referential disc. Also multiple self-referential discs can be disentangled
using the separating 3-sphere and the light bulb lemma.

We conclude with a problem and two questions.

Problem 5.6. Complete the isotopy classification of properly embedded discs in
4-manifolds with dual spheres.

The following question specializes this problem to 4-manifolds without 2-torsion
in their fundamental groups?

Questions 5.7. Let Dy C M be a properly embedded disc with dual sphere G
such that w1 (M) has no 2-torsion. Let D be the isotopy classes of embedded discs
homotopic to D rel 0. Let

¢py: D — Z[m(M,z) \ 1]/D = Emb(I, M; Iy)
be the canonical homomorphism. What is ker ¢p,, ? In particular, if
M = S? x D?1S! x B3,

is Dg isotopicrel d to Dg—17?
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