

Self-referential discs and the light bulb lemma

David Gabai*

Abstract. We show how self-referential discs in 4-manifolds lead to the construction of pairs of discs with a common geometrically dual sphere which are homotopic rel ∂ , concordant and coincide near their boundaries, yet are not properly isotopic. This occurs in manifolds without 2-torsion in their fundamental group, e.g. the boundary connect sum of $S^2 \times D^2$ and $S^1 \times B^3$, thereby exhibiting phenomena not seen with spheres. On the other hand we show that two such discs are isotopic rel ∂ if the manifold is simply connected. We construct in $S^2 \times D^2 \natural S^1 \times B^3$ a properly embedded 3-ball properly homotopic to $z_0 \times B^3$ but not properly isotopic to $z_0 \times B^3$.

Mathematics Subject Classification (2020). 57N13, 57N35, 57R40, 57R52.

Keywords. Disc, 4-manifold, light bulb.

0. Introduction

In its simplest form the *light bulb lemma* [5] asserts that if a surface R in the 4-manifold M has a geometrically dual sphere G , then one can perform the *crossing change* of Figure 1 ([5, Figure 2.1]) via an isotopy of R , provided there is a path $\alpha \subset R$ from y to $z = R \cap G$ that is disjoint from the tube B . Recall that a *geometrically dual sphere* is an embedded sphere G with trivial normal bundle that intersects R once and transversely. This paper investigates what happens when such path α must cross B , i.e., is *self-referential*. It leads to the discovery of homotopic, concordant but non isotopic discs with common geometrically dual spheres, thereby exhibiting new phenomena not seen for spheres in a large class of manifolds. It also leads to the discovery of knotted 3-balls in certain 4-manifolds.

Perhaps the simplest example is shown in Figure 2. Here,

$$V = S^2 \times D^2 \natural S^1 \times B^3 := W \times [-1, 1],$$

where W is a solid torus with an open 3-ball removed. Let G denote the 2-sphere component of ∂W_0 , where $W_0 = W \times 0$. Let D_0 be a vertical disc in the $S^2 \times D^2$ factor and P a round 2-sphere centered in W_0 that projects to a disc in W_0 disjoint from D_0 . See Figure 2 (a). Note that $D_0 \cap W_0$ (resp., $P \cap W_0$) is an arc (resp., a circle).

*Partially supported by NSF grants DMS-1607374 and DMS-2003892.

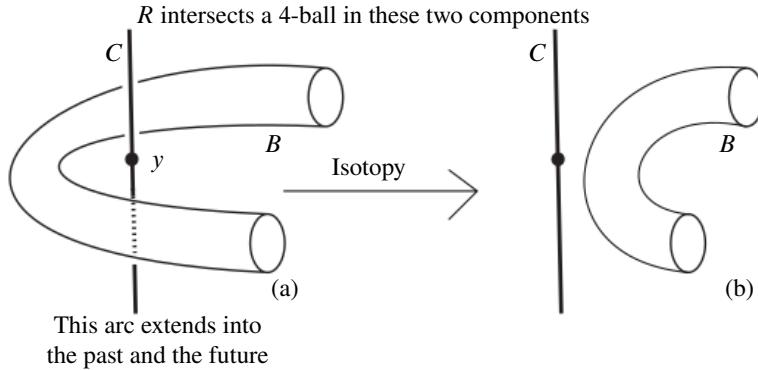


Figure 1. The light bulb lemma isotopy.

Let D_1 be obtained by tubing the disc D_0 to the 2-sphere P , such that the projection of D_1 to W_0 is as in Figure 2 (b). Here, $D_1 \cap W_0$ is an arc and the shading indicates projections from the past and future to W_0 . Note that D_0 and D_1 have the common geometrically dual sphere G . If we could apply the light bulb lemma to D_1 near where the tube links the sphere, then D_1 is isotopic to D_0 rel ∂ .

Here is the idea for showing that D_0 and D_1 are non isotopic rel ∂ . Let I_0 denote the arc $D_0 \cap W_0$ oriented to point into G and $\text{Emb}(I, V; I_0)$ the space of proper arc embeddings based at I_0 that coincide with I_0 near ∂I_0 . Then D_0, D_1 naturally correspond to loops α_0, α_1 in $\text{Emb}(I, V; I_0)$ where α_0 is the constant loop. Using methods from Dax [3] we will show that α_1 is not homotopic to α_0 in $\text{Emb}(I, V; I_0)$ and hence D_1 is not isotopic to D_0 rel ∂ .

Remarks 0.1. (i) Let M be a 4-manifold such that $\pi_1(M)$ has no 2-torsion. Theorem 1.2 of [5] shows that if two homotopic 2-spheres $A_0, A_1 \subset M$ have a common geometrically dual sphere G and coincide near G , then they are ambiently isotopic fixing a neighborhood of G pointwise. Since the isotopy is supported in a disc in the domain, I initially thought that Theorem 1.2 proved that properly homotopic discs with geometrically dual spheres are properly isotopic. However, the proof of Theorem 1.2 uses that A_0 is a sphere as opposed to a disc in one crucial spot; see Remark 2.7.

(ii) On the other hand, there is nothing new when $G \subset S^2 \times S^1 \subset \partial M$, for filling this component with a $S^2 \times D^2$ reduces to the study of isotopy classes of spheres with geometrically dual spheres. That was solved for spheres in 4-manifolds M such that $\pi_1(M)$ has no 2-torsion in [5] and in general 4-manifolds by Schneiderman and Teichner [10].

(iii) Hannah Schwartz [11] showed that there exist manifolds with 2-torsion in their fundamental groups supporting homotopic spheres with a common geometric dual

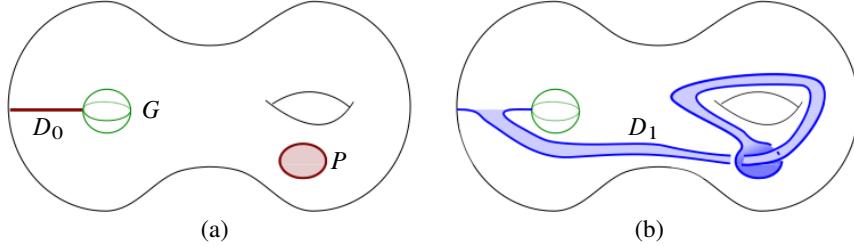


Figure 2. A self-referential disc.

that are not isotopic, in fact not even concordant. Rob Schneiderman and Peter Teichner [10] identified the Freedman–Quinn (FQ) concordance invariant [4] as the exact obstruction and showed that concordance implies isotopy.

(iv) Note that \$D_1\$ is concordant to \$D_0\$, thus their difference is not detected by the FQ invariant. A secondary obstruction to isotoping one sphere to another is the \$km\$ invariant of Stong [14] which is only defined when FQ = 0; see [6] for a modern exposition. The Stong invariant does not detect that \$D_1\$ is not isotopic to \$D_0\$. First, one can attempt to transform the isotopy problem for discs to one for spheres by attaching a 0-framed 2-handle to \$V\$ along \$\partial D_0\$ and extending \$D_0\$ and \$D_1\$ to spheres, but then these spheres become isotopic by [5]. Secondly, \$km = 0\$ when the spheres have a common geometrically dual sphere.

We now define our obstruction generally and introduce the work of Dax before stating our main results.

Construction 0.2 (An obstruction to isotopy). Let \$D_0\$ be a properly embedded disc in the 4-manifold \$M\$. View \$D_0\$ as \$I \times I\$ with \$I_0\$ denoting \$I \times 1/2\$ and \$\mathcal{F}_0\$ this product foliation. If \$D\$ is another properly embedded disc that coincides with \$D_0\$ near \$\partial D_0\$, then \$D\$ gives rise to a canonical element

$$[\phi_{D_0}(D)] \in \pi_1(\text{Emb}(I, M; I_0)),$$

where \$\text{Emb}(I, M; I_0)\$ is the space of smooth embeddings of \$I\$ based at \$I_0\$. To see this, view \$D = I \times I\$ where this foliation \$\mathcal{F}\$ coincides with \$\mathcal{F}_0\$ near \$\partial D_0\$. Use \$D_0\$ to inform how to modify \$\mathcal{F}\$ to a loop \$\phi_{D_0}(D)\$ in \$\text{Emb}(I, M; I_0)\$ based at \$I_0\$; see Definition 4.6 for more details. Since

$$[\phi_{D_0}(D_0)] = [1_{I_0}],$$

where \$1_{I_0}\$ is the constant map to \$I_0\$ and \$\text{Diff}(D^2 \text{ fix } \partial)\$ is connected [13], the class \$[\phi_{D_0}(D)] \in \pi_1(\text{Emb}(I, M; I_0))\$ is well defined and gives an obstruction to isotoping \$D\$ to \$D_0\$ rel \$\partial D_0\$.

Let \$f_0: N^n \rightarrow M^m\$ be an embedding where \$N\$ and \$M\$ are closed manifolds. In 1972 Jean-Pierre Dax showed [3] that

$$\pi_k(\text{Maps}(N, M), \text{Emb}(N, M), f_0)$$

is isomorphic to a certain bordism group when $2 \leq k \leq 2m - 3n - 3$. While stated very abstractly, the case $N = I$ and M a 4-manifold can be restated with a strikingly elegant formulation. This paper gives that reformulation a self contained exposition; see Section 3. Let $\pi_1^D(\text{Emb}(I, M; I_0))$ denote the subgroup of $\pi_1(\text{Emb}(I, M; I_0))$ represented by loops that are inessential in $\text{Maps}(I, M : I_0)$. The following result is a slightly stronger version of the restated Theorem A in [3, p. 345] for $N = I$ and M a 4-manifold.

Theorem 0.3 (Dax isomorphism theorem). *Let I_0 be an oriented properly embedded closed interval in the oriented 4-manifold M . Then*

- (i) *There is a homomorphism*

$$d_3: \pi_3(M, x_0) \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]$$

with image $D(I_0)$, called the Dax kernel.

- (ii) *$\pi_1^D(\text{Emb}(I, M; I_0))$ is canonically isomorphic to $\mathbb{Z}[\pi_1(M) \setminus 1]/D(I_0)$ and generated by $\{\tau_g \mid g \neq 1, g \in \pi_1(M)\}$.*

Remark 0.4. The τ_g 's arise from a spinning construction; see Definition 3.2.

Thus, Construction 0.2 together with the Dax isomorphism theorem gives a concrete obstruction to isotoping one embedded disc to another rel ∂ .

Corollary 0.5. *Let D_0 be a properly embedded disc in the oriented 4-manifold and \mathcal{D} be the isotopy classes of embedded discs homotopic rel ∂ to D_0 , then there is a canonical function*

$$\phi_{D_0}: \mathcal{D} \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]/D(I_0)$$

such that if D is a embedded disc homotopic rel ∂ to D_0 , then $\phi_{D_0}([D]) \neq 0$ implies D is not isotopic to D_0 rel ∂ .

Note that ϕ_{D_0} is a function of D_0 .

In the setting of properly embedded discs with a common dual sphere, the methods of [5] show that ϕ_{D_0} is a homomorphism whose image contains a particular subgroup and also proves the converse when $\pi_1(M) = 1$.

Theorem 0.6. *Let M be a compact 4-manifold and D_0 a properly embedded 2-disc with a geometrically dual sphere $G \subset \partial M$. Let \mathcal{D} be the isotopy classes of embedded discs homotopic rel ∂ to D_0 .*

- (i) *If $\pi_1(M) = 1$, then $\mathcal{D} = [D_0]$, i.e., if D_0 and D_1 are homotopic rel ∂ , then they are isotopic rel ∂ .*
- (ii) *In general, \mathcal{D} is an abelian group with zero element $[D_0]$. There is a homomorphism*

$$\phi_{D_0}: \mathcal{D} \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]/D(I_0) \cong \pi_1^D(\text{Emb}(I, M; I_0)).$$

It maps onto the subgroup generated by elements of the form $g + g^{-1}$ and $\hat{\lambda}$, where $\hat{\lambda}^2 = 1$.

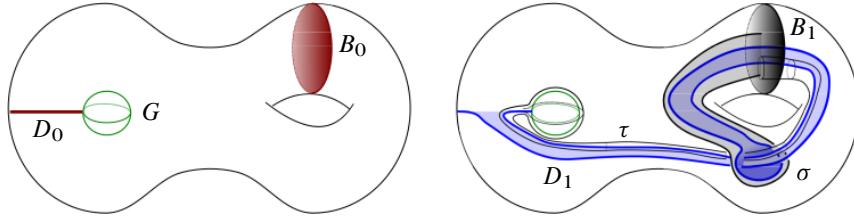


Figure 3. A knotted 3-ball.

Remarks 0.7. (i) We shall see in Section 4 that for $M = S^2 \times D^2 \natural S^1 \times B^3$ the Dax kernel is trivial and the disc D_1 of Figure 2 maps to $t + t^{-1}$, thus D_0 and D_1 are not isotopic rel ∂ .

(ii) The set \mathcal{D} is a torsor when there is a dual sphere. Fixing the element $[D_0]$ turns it into a group with identity $[D_0]$. The group $\mathbb{Z}[\pi_1(M) \setminus 1]$ acts on \mathcal{D} by adding self-referential tubes and $\mathbb{Z}[T_2]$ acts on \mathcal{D} by adding double tubes, where T_2 is the set of nontrivial 2-torsion elements; see Section 4.

As an application we show the existence of knotted 3-balls in 4-manifolds.

Theorem 0.8. *If $V = S^2 \times D^2 \natural S^1 \times B^3$ and $B_0 = x_0 \times B^3$, then there exists a properly embedded 3-ball $B_1 \subset V$ such that B_1 is properly homotopic but not properly isotopic to B_0 ; see Figure 3.*

Here is the idea of the proof. An extension of Hannah Schwartz' Lemma 2.3 in [11] to discs implies that there is a diffeomorphism $\phi: V \rightarrow V$ fixing a neighborhood of ∂V pointwise and homotopic to $\text{id rel } \partial$ such that $\phi(D_0) = D_1$. Let B_0 denote the 3-ball $x_0 \times B^3$ in the $S^1 \times B^3$ factor of V and $B_1 := \phi(B_0)$. If B_1 is isotopic to B_0 , then since B_1 is disjoint from D_1 , D_1 can be isotoped into the $S^2 \times D^2$ factor of V . Theorem 10.4 in [5] implies that D_1 is isotopic to D_0 rel ∂ , a contradiction. Here B_1 is obtained from B_0 by embedded surgery as described in more detail in Section 5; see Figure 3.

This paper is organized as follows. Basic definitions will be given in Section 1. Section 2 will describe to what extent the methods of [5] extend to discs. In particular, we will show that if D_0 and D_1 are homotopic and have a common dual sphere, then D_1 can be put into a *self-referential form* with respect to D_0 . This is the analogue of the normal form of [5] except that in addition to double tubes, D_1 can have finitely many self-referential discs. Theorem 0.6 i) will also be proved. The Dax isomorphism theorem [3] will be stated and proved in Section 3. A slightly sharper version of Theorem 0.6(ii) will be proved in Section 4. Applications to knotted 3-balls in 4-manifolds and further questions will be given in Section 5.

Acknowledgements. We thank Hannah Schwartz for helpful conversations and Ryan Budney for his comments and for teaching me about the modern theory of embedding spaces. We thank the referee for his or her constructive comments and suggestions.

We thank the Max Planck Institute in Bonn and the Banff International Research Station for the opportunity to present the main results at workshops respectively in September and November 2019. Much of this paper was written while a member of the Institute for Advanced Study.

1. Basic definitions

We say that G is a *dual sphere* for the properly embedded disc $D \subset M$ if $G \subset \partial M$ and D intersects G exactly once and transversely. It would be more proper to call such a G a *geometrically dual boundary* sphere to distinguish it from geometrically dual spheres intersecting D at an interior point. A *geometric dual sphere* is one with trivial normal bundle that intersects a given surface exactly once and transversely. Trivial normal bundle is automatic here since G is an embedded homologically nontrivial sphere in an orientable 3-manifold. Unless said otherwise all dual spheres for discs lie in the boundary of the 4-manifold.

If S_0 and S_1 are oriented surfaces, then we say that they are tubed *coherently* if the tubing creates an oriented surface whose orientation agrees with that of S_0 and S_1 .

This paper works in the smooth category. All manifolds are orientable.

2. Self-referential form

Let D_0 be a properly embedded disc with dual sphere $G \subset \partial M$. In this section we show that if D_1 is an embedded disc with $\partial D_0 = \partial D_1$ and D_1 is homotopic rel ∂ to D_0 , then D_1 can be isotoped to a *self-referential form*, i.e., D_1 looks like D_0 except for finitely many double tubes representing distinct nontrivial 2-torsion elements of $\pi_1(M)$ and self-referential discs.

Definition 2.1. Let S_0 be a properly embedded oriented surface in the 4-manifold M , $B \subset \text{int}(M)$ an oriented embedded 3-ball with $B \cap S_0 = \emptyset$ and $\partial B = P$. Let $\tau: [0, 1] \rightarrow M$ be an embedded path from $\text{int}(S_0)$ to P such that $\tau(0) = \tau \cap S_0$, $\tau(1) = \tau \cap P$ and $\text{int}(\tau)$ intersects B exactly once and transversely. Let S_1 be obtained from S_0 by tubing S_0 to P along τ . We say that S_1 is obtained from S_0 by attaching a *self-referential disc*; see Figure 4.

Remarks 2.2. (i) The disc D_1 in Figure 2 is obtained by attaching a self-referential disc to the disc D_0 .

(ii) A priori to define the tubing, τ should be a framed embedded path as in [5, Definition 5.4]. Up to isotopy supported in $N(\tau)$ there are four isotopy classes, exactly two of which are coherent with the orientations of S_0 and P . These two, as do the non coherent ones, differ by the nontrivial element of $\pi_1(SO(3))$ on the B^3 normal fibers of $N(\tau)$ as one traverses τ . Since τ attaches to a sphere, the two

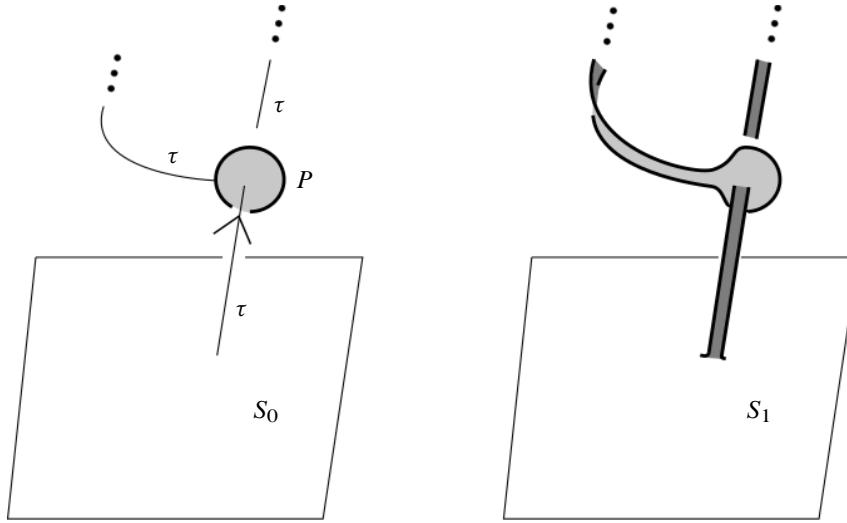


Figure 4. A self-referential disc.

choices give isotopic S_1 's. Thus, S_1 depends only on τ and coherence/noncoherence. Equivalently, we can fix the orientation of the sphere one way or the other and then insist that the attachment be coherent.

Definition 2.3. Now assume that $D_0 \subset M$ is a properly embedded oriented disc with dual sphere G . Let $B \subset \text{int}(M)$ an oriented 3-ball with $\partial B = P$ and $B \cap D_0 = \emptyset$. Let τ_0 be an embedded arc from $\text{int}(D_0)$ to $\text{int}(B)$ intersecting $B \cup D_0$ only at its endpoints. Think of it as being very short and view $D_0 \cup \tau_0 \cup B$ as the base point for $\pi_1(M)$. Associated to $g \in \pi_1(M)$ and $\sigma \in \pm$ construct D_1 by attaching a self-referential disc as follows. Let τ_1 be a path from B to $\text{int}(D_0) \setminus \tau_0$ such that

$$\tau_1(0) = \tau_0(1), \quad \tau_1 \cap (D_0 \cup \tau_0 \cup B) = \partial \tau_1$$

and τ_1 represents the class g . Use $\tau = \tau_0 * \tau_1$ to construct D_1 where σ determines whether or not the attachment is coherent; see Figure 4.

Given $\sigma_1 g_1, \dots, \sigma_n g_n$ construct a disc D_1 by attaching n self-referential discs to D_0 by starting with n adjacent copies of $\tau_0 \cup B$ and then attaching n self-referential discs as above.

Remark 2.4. Since D_0 has a dual sphere the inclusion $M \setminus (D_0 \cup \tau_0 \cup B) \rightarrow M$ induces a π_1 -isomorphism. Thus once B and τ_0 are chosen, if D_1 is obtained by attaching one self-referential disc, then D_1 is determined up to isotopy by σ and g . In a similar manner, if D_1 is obtained by attaching n self-referential discs, then once the n adjacent copies of $\tau_0 \cup B$ are chosen it is determined up to isotopy by $\sigma_1 g_1, \dots, \sigma_n g_n$.

The statement of *self-referential form* given in Definition 2.13 below is quite technical, so for now we give the following informal one. Starting with D_0 construct the normal form analogue of Definition 5.23 and Figure 5.10 in [5] and then attach self-referential discs to obtain D_1 . The actual definition includes some constraints and keeps track of certain orientations. The following is the main result of this section.

Theorem 2.5. *Let D_0, D_1 be properly embedded discs in the 4-manifold M that coincide near their boundaries and have a geometrically dual sphere $G \subset \partial M$. If D_0 and D_1 are homotopic rel ∂ , then D_1 can be isotoped rel ∂ to self-referential form with respect to D_0 .*

Before embarking on the proof we recall the following result which is a rewording of Theorems 1.2 and 1.3 in [5].

Theorem 2.6. *Let M be a 4-manifold such that the embedded spheres R_0 and R_1 have a common geometrically dual sphere G and coincide near G . If R_1 and R_0 are homotopic and $\pi_1(M)$ has no 2-torsion, then they are ambiently isotopic fixing $N(G)$ pointwise. In general R_1 can be ambiently isotoped fixing $N(G)$ pointwise to be in normal form with respect to R_0 .*

Remarks 2.7. (i) As mentioned in the introduction, since the isotopy fixes $N(G)$ pointwise, I originally thought that this theorem is a result about properly homotopic discs with dual spheres, which seems to contradict the main result of this paper.

(ii) The key point is this: In the proof of Theorem 2.6 the dual sphere is repeatedly used to enable various geometric operations. When R_1 is a sphere,

$$\partial N(G) = S^2 \times S^1.$$

Therefore, if $z = R_1 \cap G$, then through each point of $\partial N(z) \cap R_1$ there is a distinct dual sphere. On the other hand, when D_1 is a disc we assume that $G \subset \partial M$ and so

$$N(G) = G \times I.$$

Here there may only be an interval $[a, b] \subset \partial D_1$ with the property that for $\theta \in [a, b]$, D_1 has a distinct dual sphere through θ . For example, consider the disc D_1 of Figure 2. For most of the proof of Theorem 2.6 an interval suffices, but near the end, at one crucial spot, we require the whole circle; see the second paragraph preceding Lemma 8.1 in [5], where it is stated “We can further assume that $q_1 \in \partial D_0$.” Note that when $G \subset S^2 \times S^1 \subset \partial M$, each point of ∂D_0 sees its own dual sphere, so the proofs of [5] and [10] apply to discs without modification.

(iii) There is a temptation to push G to $G' \subset \text{int}(M)$ and use G' as a dual sphere; however, an argument along the lines of [5] requires that D_1 be G' -inessential, a condition automatic for spheres but not for discs.

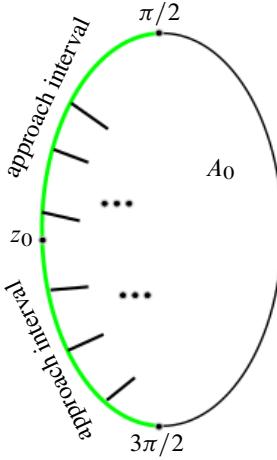


Figure 5. A tubed surface.

Definition 2.8. Parametrize $\partial D_0 = \partial D_1$ by $[0, 2\pi]/\sim$ and $N(G) \cap \partial M$ as $G \times [\pi/2, 3\pi/2]$ so that $\partial D_0 \cap (G \times \theta) = \theta$. Call $[\pi/2, 3\pi/2] \subset \partial D_0$ the *approach interval*.

The proof of Theorem 2.6 extends essentially directly to the proof of Theorem 2.5 until the third paragraph of Section 8. We now elaborate on this extension and then state a result that summarizes what survives for discs.

Section 2. The extension is direct. In particular, the light bulb lemma goes through unchanged.

Section 3. Not relevant.

Section 4. Smale's theorem [12] implies that embedded discs that are homotopic rel ∂ are properly regularly homotopic rel ∂ .

Section 5. (1) *Definition of tubed surface.* Recall that a tubed surface \mathcal{A} is the data for constructing an embedded surface in M . At the end of the proof of our Theorem 2.5 above the associated surface A_1 will be our D_0 and the realization that A will be our D_1 . While stated for closed surfaces, the definition of a tubed surface applies to compact surfaces with boundary. For us, A_0 is a disc with ∂A_0 parametrized by $[0, 2\pi]/\sim$, where $[\pi/2, 3\pi/2]$ is the approach interval, $z_0 = \pi \in \partial A_0$ and $f(z_0) = z = A_1 \cap G$. In the closed surface setting we can assume that the $\sigma, \alpha, \beta, \gamma$ tube guide curves approach $z_0 \in A_0$ radially. In the disc setting these curves approach $[\pi/2, 3\pi/2] \subset \partial A_0$ transversely and intersect $N(\partial A_0)$ in distinct arcs; see Figure 5, which shows ∂A_0 together with the tube guide curves in a small neighborhood of the approach interval shown in green.

(2) *Construction of the realization A.* The construction is essentially the same. Here a tube guide curve κ connecting to $\theta \in \partial A_0$ corresponds to a tube paralleling $f(\kappa) \subset A_1$ that connects to a parallel copy of $G \times \theta$ pushed slightly into $\text{int}(M)$.

(3) *Tube sliding moves.* With one exception all the moves yield isotopic realizations as before. In the disc setting, the *reordering move* between tube guide curves κ_j, κ_k requires that the relevant component between their endpoints lies in the approach interval.

(4) *Finger and tube locus free Whitney moves.* Same as before.

(5) *Theorem 5.21.* The proof is the same as before, in particular reordering is not used.

(6) *Lemma 5.25.* The proof holds since one can permute pairs $(\beta_i, \gamma_i), (\beta_j, \gamma_j)$ that are adjacent in the approach interval.

Summary. Except for a restricted reordering move, all the results of Section 5 directly hold.

Section 6. Direct analogues of all the results of this section hold for discs. Here are some additional remarks.

(1) Lemma 6.1 holds tautologically since D_0 and D_1 are homotopic rel ∂ .

Notation 2.9. *Sign convention.* We continue to adopt the orientation convention on β_i, λ_i and γ_i as in that section. As in [5, Definition 6.3] the tube guide curve α corresponds to a sphere $P(\alpha)$ obtained by connecting oppositely oriented copies of G by a tube that parallels $f(\alpha)$. Orient α so that the copy giving $-[G]$ (resp., $[G]$) is at the negative (resp., positive) end of $f(\alpha)$.

(2) If $\pi: \tilde{M} \rightarrow M$ is the universal covering map, then the components of $\pi^{-1}(D_1 \cup G)$ are in natural 1-to-1 correspondence with elements of $\pi_1(M, z)$ and the components of $\pi^{-1}(G)$ freely generate a $\mathbb{Z}[\pi_1(M)]$ submodule of $H_2(\tilde{M})$, thus the algebra of Section 6 extends to the disc case.

(3) In our context the associated surface A_1 in the statement of Proposition 6.9 is a disc. The proof is a direct translation.

Section 7. The statement and proof of the crossing change lemma hold as before.

Section 8. The proof holds as before, until the penultimate sentence of the third paragraph, “We can further assume that $q_1 \in \partial D_0$ ”, which requires that the approach interval is the whole circle.

Putting this all together we have the following result.

Proposition 2.10 (Sector Form). *Let D_0, D_1 be properly embedded discs in the 4-manifold M such that D_0 and D_1 coincide near their boundaries and have the dual sphere $G \subset \partial M$. Then there exists a tubed surface \mathcal{A} with underlying surface A_0*

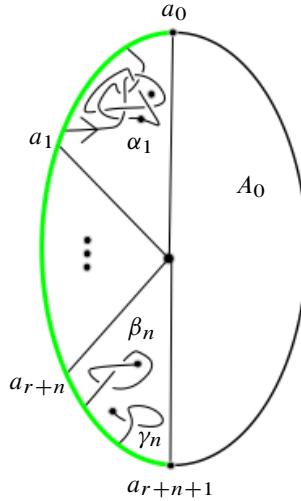


Figure 6. Sector form.

parametrized as the unit disc in \mathbb{R}^2 , with $f(A_0) = D_0$ and with realization A isotopic rel ∂ to D_1 . \mathcal{A} has data:

$$(\alpha_1, (p_1, q_1), \tau_1), \dots, (\alpha_r, (p_r, q_r), \tau_r), (\beta_0, \gamma_0, \lambda_0), (\beta_1, \gamma_1, \lambda_1), \dots, (\beta_n, \gamma_n, \lambda_n).$$

Each of these data sets lie in distinct sectors of A_0 . This means that there exists linearly ordered

$$a_0 = \pi/2, a_1, \dots, a_{r+n+1} = 3\pi/2 \subset \partial A_0$$

such that $(\alpha_i, (p_i, q_i))$ lies in the sector defined by $(a_{i-1}, a_i, 0)$ and (β_j, γ_j) lies in the sector defined by $(a_{r+j}, a_{r+j+1}, 0)$ with $\beta_j \cap \gamma_j = \emptyset$; see Figure 6.

Lemma 2.11. *The data of the various sectors can be permuted without changing the isotopy class of the realization.*

Proof. Using the tube sliding operations any two adjacent pairs $(\alpha_i, (p_i, q_i), \tau_i)$, $(\beta_j, \gamma_j, \lambda_j)$, i.e., two of one type or one of each type, in the approach interval can be permuted, but we cannot permute data within a given sector, i.e., the β_i and γ_i curves. \square

Definition 2.12. A tubed surface \mathcal{A} with data as in Proposition 2.10 is said to be in *sector form*. Let \mathcal{A} be a tubed surface in sector form. Let λ be a framed embedded path in M with disjoint embedded tube guide curves β and $\gamma \subset A_0$, all oriented with the above sign convention. We denote the pair (β, γ) as $+(\beta, \gamma)$ (resp., $-(\beta, \gamma)$) if β appears before (resp., after) γ in the approach interval. Call an embedded α curve $+$ (resp., $-$) if the negative (resp., positive) end of α appears before the positive (resp., negative) end in the approach interval.

Definition 2.13. We say that the tubed surface \mathcal{A} is in *self-referential form* with data $(\lambda_1, \lambda_2, \dots, \lambda_n, \sigma_1 g_1, \dots, \sigma_k g_k)$ if

- (a) the immersion $f: A_0 \rightarrow M$ is a proper embedding with $f(A_0) = A_1$ a 2-disc with dual sphere $G \subset \partial M$;
- (b) the paths $\beta_1, \gamma_1, \dots, \beta_n, \gamma_n, \sigma_1 \alpha_1, \dots, \sigma_k \alpha_k$ are embedded and linearly arrayed along the approach interval, where $\sigma_i \in \pm$ and $+\alpha_i$ (resp., $-\alpha_i$) denotes that its negative (resp., positive) end is closer to $\pi/2$ than its positive end. The point q_i associated to α_i lies in the half disc bounded by α_i and the approach interval;
- (c) the framed embedded paths $\lambda_1, \lambda_2, \dots, \lambda_n$ represent distinct nontrivial 2-torsion elements of $\pi_1(M)$;
- (d) each g_i represents a nontrivial element of $\pi_1(M, z_0)$ and no i, j satisfies

$$\sigma_i g_i = -\sigma_j g_j.$$

We say that the disc D_1 is in *self-referential form* with data

$$(\lambda_1, \lambda_2, \dots, \lambda_n, \sigma_1 g_1, \dots, \sigma_k g_k)$$

with respect to the disc D_0 if D_1 is the realization of the tubed surface \mathcal{A} with this data where $A_1 = D_1$.

We now show the key connection between the formal definition and the earlier one for self-referential form.

Lemma 2.14. *If D_1 is in self-referential form with respect to D_0 with data*

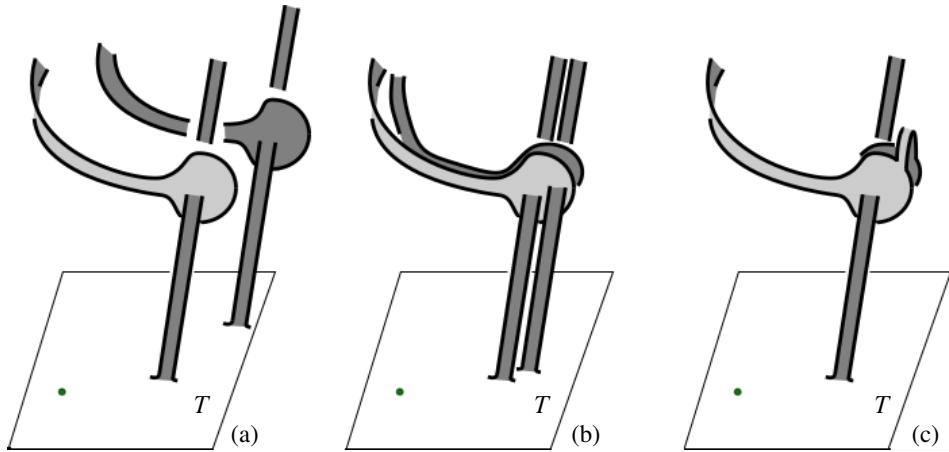
$$(\lambda_1, \lambda_2, \dots, \lambda_n, \sigma_1 g_1, \dots, \sigma_k g_k)$$

and D'_0 is in self-referential form with respect to D_0 with data $(\lambda_1, \lambda_2, \dots, \lambda_n)$, then D_1 is isotopic to the surface obtained from D'_0 by attaching the self-referential discs associated to the data $(\sigma_1 g_1, \dots, \sigma_k g_k)$.

Proof. Since q_1 lies to the approach interval side of α_1 sliding the sphere $P(\alpha_1)$ off of D_0 entangles the tube connecting D_0 to $P(\alpha_1)$ to create a self-referential disc of the type claimed; see Figures 12 to 14. The result follows by induction on the number of α curves. \square

Lemma 2.15. *An embedded surface T with dual sphere G is isotopic to the surface T' obtained from T by tubing self-referential discs of type $g, -g$.*

Proof. Figure 7(a) shows T with self-referential discs of type $g, -g$. The green dot denotes intersection with a geometrically dual sphere, which is on ∂T , when T is a disc. Two applications of the light bulb lemma enable the isotopy to Figure 7(b). Figure 7(c) is after sliding one of the tubes. Since the spheres now cancel, that surface is isotopic to T itself. \square

Figure 7. $D_g + D_{-g} = D_0$.

Definition 2.16. We say that the embedded surface T is obtained from the embedded surface S by *tubing a sphere P along τ* , if P bounds a 3-ball disjoint from S and T is obtained by tubing S and P along a framed embedded path τ .

Lemma 2.17. *Let S be an embedded surface with dual sphere G . If the surface T is obtained from S by tubing a sphere P along τ , then T is isotopic to a surface obtained from S by attaching finitely many self-referential discs.*

Proof. If $P = \partial B$ and $|\tau \cap \partial B| = k$, then squeeze B into two balls B_1, B_2 so that

$$|\tau \cap B_1| = 1, \quad |\tau \cap B_2| = k-1 \quad \text{and} \quad (\partial \tau \cap B) \subset B_2 \setminus B_1.$$

If $P_i = \partial B_i$, then we can further assume that P_1 is connected to P_2 by a tube τ_1 disjoint from τ . Use τ to slide τ_1 off of P_2 so that now τ_1 connects P_1 with S . Here we abuse notation by identifying the framed embedded path τ with its corresponding tube. By construction τ_1 will link P_1 exactly once. Next, we use the light bulb lemma to unlink τ_2 from P_1 and τ_1 from P_2 . The result follows by induction on k . \square

Lemma 2.18. *Let \mathcal{A} be a tubed surface in sector form containing a sector J with data $(\alpha_i, (p_i, q_i), \tau_i)$. There exists another tubed surface \mathcal{A}' with isotopic realizations whose data agrees with that of \mathcal{A} except that the $(\alpha_i, (p_i, q_i), \tau_i)$ data has been deleted and the sector J has been subdivided into finitely many sectors each of which contains data of the form $(\sigma_s \alpha_s, (p_s, q_s), \tau_s)$ where α_s is embedded and q_s lies in the half-disc bounded by α_s and the approach interval.*

Proof. By the crossing change Lemma 7.1 [5] we can assume that α_i is monotonically increasing. Sliding $P(\alpha_i)$ off of A_1 as in the proof of Lemma 2.14 we obtain an unknotted 2-sphere P_i , which is entangled with τ_i . If S denotes the realization of the

tubed surface \mathcal{A} with the data $(\alpha_i, (p_i, q_i), \tau_i)$ deleted, it follows that the realization A of \mathcal{A} is obtained by tubing S to the sphere P_i . By Lemma 2.17, A is isotopic to a surface obtained by adding self-referential discs to S . The proof of that lemma further shows that they can be attached in subsectors of J without the self-referential discs linking with other parts of A . Finally, reverse the proof of Lemma 2.14 to obtain the desired \mathcal{A}' satisfying all but possibly the last conclusion. If a q_s lies outside the half-disc bounded by α_s and the approach interval, then deleting the data $(\sigma_s \alpha_s, (p_s, q_s), \tau_s)$ does not change the isotopy class of the realization. \square

The next result follows from Lemmas 2.15 and 2.18.

Corollary 2.19. *Let \mathcal{A} be a tubed surface in sector form. Given the data $(\alpha_s, (p_s, q_s), \tau_s)$ there exists a tubed surface \mathcal{A}' in sector form with realization isotopic to that of \mathcal{A} such that the data of \mathcal{A}' consists of the data from the sectors of \mathcal{A} plus another sector with data $(\alpha_s, (p_s, q_s), \tau_s)$ together with other sectors having data only involving α curves.* \square

Proof of the Self-referential form theorem. By Proposition 2.10 we can assume that \mathcal{A} is in sector form.

- (0) By Lemma 2.11 the data of the various sectors can be permuted.
- (i) Elimination of the $(\beta_0, \gamma_0, \lambda_0)$ data can be done as in [5, Remark 8.2]. This might create additional data of the form $(\alpha_s, (p_s, q_s), \tau_s)$.
- (ii) We can further assume that the λ_i 's represent distinct nontrivial 2-torsion elements since the methods of [5, Section 6] enable the exchange of a pair of double tubes representing the same 2-torsion element for a pair of single tubes. Again, this might create data of the form $(\alpha_s, (p_s, q_s), \tau_s)$.
- (iii) The modification of the β_i, γ_i curves to embedded tube guide curves can be done as in the two paragraphs after [5, Remark 8.2]. This might require that \mathcal{A} has particular sectors of the form $(\alpha_s, (p_s, q_s), \tau_s)$ in order to invert the operation of [5, Section 6]. We can create such sectors by Lemma 2.19 at the cost of creating other sectors with data of the form $(\alpha_t, (p_t, q_t), \tau_t)$. Also, the modification may create other sectors of this type.
- (iv) To reverse the ordering of the tube guide curves in $(\gamma_i, \beta_i, \lambda_i)$ where λ_i represents 2-torsion, modify \mathcal{A} to create two new sectors with data of the form $(\beta_i, \gamma_i, \lambda_i), (\beta_i, \gamma_i, \lambda_i)$ at the cost of adding sectors with $(\alpha_s, (p_s, q_s), \tau_s)$ type data. Then cancel the $(\gamma_i, \beta_i, \lambda_i), (\beta_i, \gamma_i, \lambda_i)$ pairs at the possible cost of additional type $(\alpha_s, (p_s, q_s), \tau_s)$ sectors.
- (v) Apply Lemma 2.18 to each sector with $(\alpha_s, (p_s, q_s), \tau_s)$ data. \square

If $\pi_1(M) = 1$, then the self-referential form data is trivial, thus, we have proved the following, stated as Theorem 0.6(i) in the introduction.

Theorem 2.20. *Let D_0, D_1 be properly embedded discs in the 4-manifold that coincide near their boundaries and have the common dual sphere $G \subset \partial M$. If M is simply connected, then D_1 is homotopic to D_0 rel ∂ if and only if it is isotopic rel ∂ .*

3. The Dax isomorphism theorem

Let $f_0: N^n \rightarrow M^m$ be an embedding where N and M are closed manifolds. In 1972 J. P. Dax showed that $\pi_k(\text{Maps}(N, M), \text{Emb}(N, M), f_0)$ is isomorphic to a certain bordism group when $2 \leq k \leq 2m - 3n - 3$; see [3, Theorem A and Theorem 1.1]. While both the statement and proof are expressed in the very abstract and general style of the day, our case of interest is a strikingly clean and beautiful geometric result with an elementary proof. Using different language and in part different methods we exposit this result when $N = I := [0, 1]$ and $f_0: I \rightarrow M^4$ is a proper embedding with image I_0 . Again, unless stated otherwise, all maps and spaces are smooth and in this section manifolds are oriented. Standard spaces are standardly oriented.

Definition 3.1. Define the *Dax group* $\pi_1^D(\text{Emb}(I, M; I_0))$ to be the subgroup of $\pi_1(\text{Emb}(I, M; I_0))$ consisting of classes represented by loops in $\text{Emb}(I, M; I_0)$ that are homotopically trivial in $\pi_1(\text{Maps}(I, M; I_0))$. Here $\text{Emb}(I, M; I_0)$ (resp., $\text{Maps}(I, M; I_0)$) is the based space of proper embeddings (resp., proper continuous maps) that coincide with I_0 near ∂I_0 . Here we abuse notation by identifying the interval I_0 with the embedding $f_0: I \rightarrow I_0$.

The following definition is a special case of the *spinning* operation that other authors call *double point resolution*; see Figure 8. This figure shows the projection of a 4-ball $B \subset M$ to a 3-ball \hat{B} . Our path α_t , which is constant near $t = 0.5$, intersects B (resp., \hat{B}) in arcs σ and τ (resp., σ and a point). It is modified to one where σ spins about the point. What follows is a slightly more formal definition.

Definition 3.2. Let $\alpha_t: L \rightarrow M, t \in [0, 1]$ be a path in $\text{Emb}(L, M)$, where L is an oriented 1-manifold and M an oriented 4-manifold. Assume that α_t is constant for $t \in [0.45, 0.55]$. Let $B \subset M$ be parametrized by

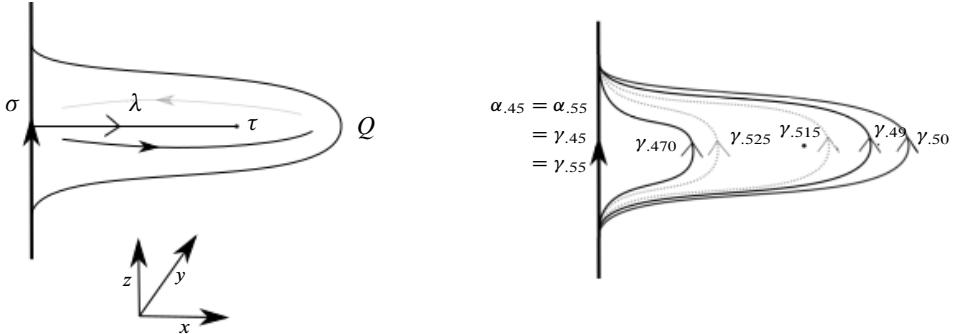
$$[-2, 2] \times [-2, 2] \times [-1, 1] \times [-1, 1].$$

With respect to local coordinates assume that

$$B \cap L = \sigma \cup \tau,$$

where $\tau = (0, 0, 0, -s)$, $s \in [-1, 1]$, $\sigma = \{-1, 0, s, 0\}$, $s \in [-1, 1]$ and both are oriented from the $s = -1$ to the $s = +1$ end. We modify α to γ so that $\alpha_t(s) = \gamma_t(s)$ unless $t \in [0.45, 0.55]$ and $\alpha_{0.5}(s) \in \sigma$. Within $t \in [0.45, 0.55]$, keeping endpoints fixed and staying within the 2-sphere

$$Q \subset [-2, 2] \times [-2, 2] \times [-1, 1] \times 0 = \hat{B},$$

Figure 8. Obtaining γ by λ -spinning α .

swing σ around τ by first going around the negative y -side and then back along the positive y -side of Q . This can be done so that γ_t is a smooth loop; see Figure 8. We say that γ is obtained by *spinning* α . Note that $\text{Lk}(\tau, Q) = +1$, where (motion of σ , orientation of σ) orients Q , in this case the standard orientation. If in local coordinates λ denotes the straight path from $(-1, 0, 0, 0)$ to $(0, 0, 0, 0)$, then we say that γ is obtained from α by λ -spinning.

Remarks 3.3. (i) The inverse τ^{-1} of τ corresponds to going around Q the other way, thereby reversing the orientation of Q and hence the linking number.

(ii) Up to homotopy in $\text{Emb}(L, M; I_0)$, λ -spinning depends only on the path homotopy class of λ and the linking number.

Notation 3.4. Let I_0 be a properly embedded $[0, 1]$ in the 4-manifold M and let 1_{I_0} denote the identity element in $\pi_1^D(\text{Emb}(I, M; I_0))$. Let $p < q \in I_0$ and $g \in \pi_1(M, I_0)$, where I_0 is viewed as the base point, then denote by $\tau_g \in \pi_1^D(\text{Emb}(I, M; I_0))$ the loop obtained by spinning 1_{I_0} using a path λ from p to q representing g . Let τ_{-g} denote τ_g^{-1} .

Remarks 3.5. (i) Spinning can be viewed as the arc pushing map that defines the barbell map of [2]. Reversing the orientation of λ changes a spin to its inverse up to homotopy in $\text{Emb}(L, M)$; see [2, Theorem 6.6]. Do not confuse $\tau_{-g} = \tau_g^{-1}$ with $\tau_{g^{-1}}$.

(ii) Modifying the orientation preserving parametrization of B , e.g., by an element of $\pi_1(SO(3))$ as one moves along λ , does not change the path homotopy class of γ ; see [2, Remark 6.4 (i)].

(iii) The homotopy class of γ is independent of the representative of λ . In particular, τ_g is well defined up to homotopy in $\text{Emb}(I, M; I_0)$ and represents an element of $\pi_1^D(\text{Emb}(I, M; I_0))$. If $g = 1 \in \pi_1(M, I_0)$, then

$$\tau_g = 1_{I_0} \in \pi_1^D(\text{Emb}(I, M; I_0)).$$

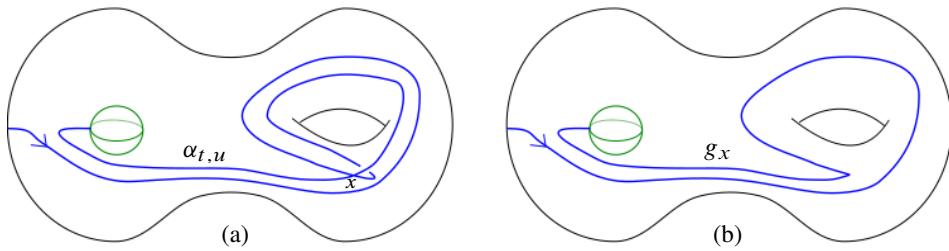


Figure 9. Assigning a generator to a double point.

Lemma 3.6. *Spinning commutes up to homotopy in $\text{Emb}(I, M; I_0)$.*

Proof. After an isotopy we can assume that the support of the spins are disjoint. \square

Theorem 3.7 (Dax isomorphism theorem). *Let I_0 be an oriented properly embedded closed interval in the oriented 4-manifold M . Then*

- (i) *there is a homomorphism $d_3: \pi_3(M, x_0) \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]$ with image $D(I_0)$ called the Dax kernel;*
- (ii) *$\pi_1^D(\text{Emb}(I, M; I_0))$ is generated by $\{\tau_g | g \neq 1, g \in \pi_1(M)\}$ and canonically isomorphic to $\mathbb{Z}[\pi_1(M) \setminus 1]/D(I_0)$.*

Proof. Let $\alpha = \alpha_t, t \in I$ represent an element of $\pi_1^D(\text{Emb}(I, M; I_0))$. Being in the Dax group, there exists a homotopy $\alpha_{t,u} \in \text{Maps}(I, M; I_0)$ such that $\alpha_{t,u}$ equals 1_{I_0} for u near 0 and $\alpha_{t,u}$ equals α_t for u near 1.

Step 1. Define $d(\alpha_{t,u}) \in \mathbb{Z}[\pi_1(M) \setminus 1]$. As in [3], define

$$F_0: I \times I^2 \rightarrow M \times I^2 \quad \text{by } F_0(s, t, u) = (\alpha_{t,u}(s), t, u).$$

As in [3, Chapter III] we can assume that F_0 is *parfait*, in particular is an immersion, has finitely many double points and no triple points. Furthermore, F_0 is self transverse at the double points which we can assume occur at distinct values of the last factor. The results in Chapter III are stated for closed manifolds but apply to manifolds with boundary since the support of the modification occurs away from the boundary; see also [3, Chapter VI] which mentions the bounded case.

Assign a generator $\sigma_x g_x \in \mathbb{Z}[\pi_1(M)]$ to each double point x as follows. Suppose

$$x = \alpha_{t,u}(p) = \alpha_{t,u}(q),$$

where $p < q$. Let $g_x \in \pi_1(M, I_0)$ be represented by $\alpha_{t,u}|[0, p] * \alpha_{t,u}|[q, 1]$; see Figure 9. Note that I_0 functions as the base point. Let σ_x be the self intersection number obtained by comparing the orientation of $DF_0(T_{p,t,u}(I^3)) \oplus DF_0(T_{q,t,u}(I^3))$

with that of $T_x(M \times I^2)$. If x_1, \dots, x_n are the double points with $g_{x_i} \neq 1$, then define

$$d(\alpha_{t,u}) = \sum_{i=1}^n \sigma_{x_i} g_{x_i}.$$

The next two steps show that modulo $D(I_0)$, different choices of $\alpha_{t,u}$ give the same d value.

Step 2. If $\alpha_{t,u}^0$ is properly homotopic to $\alpha_{t,u}^1$, then $d(\alpha_{t,u}^0) = d(\alpha_{t,u}^1)$.

Proof. By properly homotopic we mean that there exists $\alpha_{t,u}^v$, $v \in I$ such that each $\alpha_{t,u}^v \in \text{Maps}(I, M, I_0)$, $\alpha_{t,1}^v$, $v \in I$ is a homotopy in $\text{Emb}(I, M, I_0)$ from $\alpha_{t,1}^0$ to $\alpha_{t,1}^1$ and $\alpha_{t,u}^v$ equals 1_{I_0} for u near 0 and $v \in I$.

Suppose that we have two homotopies F_0, F_1 as in Step 1, that are homotopic rel ∂ . Then we can interpolate by maps F_v and combine them to a map

$$F: (I \times I \times I) \times I \rightarrow (M \times I \times I) \times I,$$

such that $F(s, t, u, v) = (\alpha_{t,u}^v(s), t, u, v)$. Again, we can assume that F is parfaite and hence away from finitely many singularities F is a self transverse immersion without triple points. The double points form a 1-manifold whose endpoints in the interior of $M \times I^3$ occur at singularities. The local form of a singularity ([3, p. 332]) implies that a double point x sufficiently close to a singular point has $g_x = 1$. Indeed, since each $\alpha_{t,u}^v$ is path homotopic to I_0 , if $x = \alpha_{t,u}^v(r) = \alpha_{t,u}^v(s)$, then $g_x = 1$ when the loop $\alpha_{t,u}^v|[r, s]$ is homotopically trivial. Here, that loop is homotopically trivial since its diameter converges to 0 as x approaches the singular point. Finally, use the other double curves to equate the d values coming from F_0 and F_1 . \square

If $\pi_3(M) \neq 0$, then there will be non homotopic null homotopies of α_t in $\text{Maps}(I, M; I_0)$ which may lead to different values of $d(\alpha_{t,u})$. The Dax kernel keeps track of this indeterminacy. Call an $\alpha_{t,u}$ a *kernel map* if for all u close to either 0 or 1, $\alpha_{t,u} = 1_{I_0}$. In a natural way, up to homotopy supported away from ∂I^3 there is a natural isomorphism between kernel maps and $\pi_3(M, x_0)$, where $x_0 = I_0(1/2)$ and the addition of kernel maps is given by concatenation.

Definition 3.8. Define $d_3: \pi_3(M, x_0) \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]$ as follows. Represent $a \in \pi_3(M, x_0)$ as a kernel map $\alpha_{t,u}$. Now define $d(a) = d(\alpha_{t,u}) \in \mathbb{Z}[\pi_1(M) \setminus 1]$ as in Step 1. Define $D(I_0) = d_3(\pi_3(M, x_0))$. When I_0 is clear from context, we will write $D(I_0)$ as D .

Step 3. $d_3: \pi_3(M) \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]$ is a homomorphism as is $d: \pi_1^D(\text{Emb}(I, M; I_0)) \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]/D$, where $d(\alpha_t) := d(\alpha_{t,u})$ for some $\alpha_{t,u}$.

Proof. The proof of Step 2 shows that $d_3: \pi_3(M) \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]$ is well defined. Its additivity with respect to concatenation shows that it is a homomorphism. If $\alpha_{t,u}^0, \alpha_{t,u}^1$ are two null homotopies of α_t in $\text{Maps}(I, M; I_0)$, then after concatenating with

a kernel map we obtain a new null homotopy whose d value differs by an element of D . It follows that

$$d: \pi_1^D(\text{Emb}(I, M; I_0)) \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]/D$$

is well defined.

To show that d is a homomorphism first observe that $d(1_{I_0}) = 0$. By concatenating F_0 's for α and β we see that $d(\alpha * \beta) = d(\alpha) + d(\beta)$. \square

Step 4. If $[\alpha] \in \pi_1^D(\text{Emb}(I, M; I_0))$ and without cancellation

$$d(\alpha_{t,u}) = \sigma_{x_1} g_{x_1} + \cdots + \sigma_{x_n} g_{x_n},$$

then α is homotopic to the compositions of spin maps $\tau_{\sigma_{x_1} g_{x_1}}, \dots, \tau_{\sigma_{x_n} g_{x_n}}$.

Proof. Let $F_0: I \times I \times I \rightarrow M \times I^2$ as in Step 1. We prove Step 3 by induction on the number of double points. Assume for the moment Step 3 is true if F_0 has $\leq k$ double points where $k \geq 1$. If F_0 has $k + 1$ double points, then by changing coordinates we can assume that one occurs at

$$x = F_0\left(p, \frac{1}{2}, \frac{1}{2}\right) = F_0\left(q, \frac{1}{2}, \frac{1}{2}\right),$$

where $p < q$, and the others occur at $F_0(s, t, u)$, where $u > 3/4$. Thus, $F_0|I \times I \times [5/8, 1]$ is homotopic to a spin map τ and there is a homotopy G_0 from 1_{I_0} to $\tau^{-1} * \alpha$ with k double points of the same group ring types as $F_0|I \times I \times [5/8, 1]$, and hence the result follows by induction.

We now consider the case that there is a single double point. By modifying the homotopy rel ∂ we can assume that with respect to local coordinates on $M \times I \times I$ and local variables $-\varepsilon \leq s', t', u' \leq \varepsilon$;

$$\begin{aligned} F\left(q + s', t' + \frac{1}{2}, u' + \frac{1}{2}\right) &= \left(0, 0, 0, -s', t' + \frac{1}{2}, u' + \frac{1}{2}\right), \\ F\left(p + s', t' + \frac{1}{2}, u' + \frac{1}{2}\right) &= \left(u', t', s', 0, t' + \frac{1}{2}, u' + \frac{1}{2}\right) \quad \text{if } \sigma_x = +1, \\ F\left(p + s', t' + \frac{1}{2}, u' + \frac{1}{2}\right) &= \left(u', -t', s', 0, t' + \frac{1}{2}, u' + \frac{1}{2}\right) \quad \text{if } \sigma_x = -1. \end{aligned}$$

Thus, the passage from $\alpha_{t, \frac{1}{2} - \varepsilon}$ to $\alpha_{t, \frac{1}{2} + \varepsilon}$ changes 1_{I_0} to $\tau_{\sigma_x g_x}$, where g_x is the loop $\phi_0 * \phi_1$ and where ϕ_0 (resp., ϕ_1) is the arc

$$F_0\left(p, \frac{1}{2}, w\right), \quad 0 \leq w \leq \frac{1}{2}, \quad \text{resp., } F_0\left(q, \frac{1}{2}, 1 - w\right), \quad \frac{1}{2} \leq w \leq 1,$$

which is homotopic to the loop g_x . \square

Step 5. d is canonical; i.e., if α is a composition of $\tau_{\sigma_1 g_1}, \dots, \tau_{\sigma_n g_n}$, with all $g_i \neq 1$, then there exists $\alpha_{t,u}$ with $d(\alpha_{t,u}) = \sigma_1 g_1 + \cdots + \sigma_n g_n$.

Proof. The local functions defined in Step 4 show how to construct a homotopy F_0 from 1_{I_0} to α whose double points evaluate to $\sigma_1 g_1, \dots, \sigma_n g_n$. \square

Step 6. $d: \pi_1^D(\text{Emb}(I, M; I_0)) \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]/D$ is an isomorphism.

Proof. Steps 3 and 5 show that d is a surjective homomorphism. We now prove injectivity. If $\alpha \in \pi_1^D(\text{Emb}(I, M; I_0))$ and $d(\alpha_{u,t}) \in \mathcal{D}$ then by concatenating with a kernel map we can assume that $d(\alpha_{u,t}) = 0$. It follows from Step 4 that α is homotopic to a composite of spin maps $\tau_{\sigma_{x_1} g_{x_1}}, \dots, \tau_{\sigma_{x_n} g_{x_n}}$, whose sum is equal to 0 in $\mathbb{Z}[\pi_1(M) \setminus 1]$. Since spin maps commute it follows that α is homotopic to 1_{I_0} . This completes the proof of the Dax isomorphism theorem. \square

Theorem 3.9. *Let M be a 4-manifold such that $\pi_3(M) = 0$, then $\pi_1^D(\text{Emb}(I, M; I_0))$ is freely generated by $\{\tau_g \mid g \neq 1, g \in \pi_1(M)\}$ and canonically isomorphic to $\mathbb{Z}[\pi_1(M) \setminus 1]$.* \square

Theorem 3.10. *If $M = S^1 \times B^3 \# S^2 \times D^2$, then $\pi_1^D(\text{Emb}(I, M; I_0))$ is isomorphic to $\mathbb{Z}[\mathbb{Z} \setminus 1]$ and is freely generated by $\{\tau_g \mid g \neq 1, g \in \pi_1(M)\}$. (Here, $\pi_1(M)$ is expressed multiplicatively.)*

Proof. $\pi_3(M)$ as a $\mathbb{Z}[\pi_1]$ module is generated by the Hopf map of S^3 to a 2-sphere Q and Whitehead products of conjugates of $\pi_2(Q)$. Once given I_0 , Q can be chosen disjoint from I_0 and hence any element of $\pi_3(M)$ has support in a simply connected subcomplex. \square

Theorem 3.11. *If $M = S^1 \times B^3 \# S^2 \times D^2$, then $\pi_1^D(\text{Emb}(I, M; I_0))$ is isomorphic to $\mathbb{Z}[\mathbb{N}]$ and is freely generated by $\{\tau_g \mid g \geq 1\}$.*

Proof. Here the Dax kernel is not equal to 0. The various $\pi_1(M)$ conjugates in $\pi_3(M)$ of the separating S^3 give, up to sign, the relations $g^i = g^{-i}$ in $\mathbb{Z}[\pi_1(M) \setminus 1]$. \square

Remarks 3.12. (i) Theorem 0.3 is stronger than the one given in [3] in that we identified generators of $\pi_1^D(\text{Emb}(I, M; I_0))$. Working with these commuting elements enables us to avoid a parametrized double point elimination argument and the need to modify F_0 to eliminate double points x with $g_x = 1$. Also, we have a natural isomorphism of $\pi_1^D(\text{Emb}(I, M; I_0))$ with a computable quotient of the group ring as opposed to one arising from an abstract bundle cobordism construction.

- (ii) The ordering of I_0 enables us to unambiguously define σ_x and g_x .
- (iii) We note that the Dax group $\pi_1^D(\text{Emb}(S^1, M; S_0^1))$, has an extra relation from being able to cancel double points of F_0 by going around the S^1 . Dax computed the case $M = S^1 \times S^3$ (see [3, p. 369]); see also [1] and [2] for the case $M = S^1 \times S^3$.

Question 3.13. *What is the relation between the Dax kernel and the six dimensional self intersection invariant?*

Remark 3.14. Schneiderman and Teichner [10] show that for an oriented six dimensional manifold P the self intersection invariant

$$\mu_3: \pi_1(P) \rightarrow \mathbb{Z}[\pi_1(P)]/\langle g + g^{-1}, 1 \rangle$$

specializes to a map

$$\mu_3: \pi_3(N) \rightarrow \mathcal{F}_2 T_N,$$

when $P = N \times I$ and where T_N is the vector space with basis the nontrivial torsion elements of $\pi_1(N)$ and \mathcal{F}_2 is the field with two elements. Our setting is both similar and different in that we are looking at an *ordered* self intersection of mapped 3-balls with fixed boundary into $M \times I \times I$. As indicated in Theorem 3.11 the Dax kernel can be nontrivial, e.g., in manifolds with $\pi_1(M) = \mathbb{Z}$.

Remarks 3.15. (i) Syunji Moriya [9] shows that for certain simply connected 4-manifolds M , $\pi_1(\text{Emb}(S^1, M)) \cong H_2(M, \mathbb{Z})$.
(ii) See Danica Kosanovic's thesis [7] and paper [8] for results on $\text{Emb}(I, M)$ for general manifolds M . \square

4. From discs to paths

Definition 4.1. Let D_0 be a properly embedded disc in M with dual sphere G . Let \mathcal{D} be the set of isotopy classes rel ∂ of discs homotopic rel ∂ to D_0 . If $D_1, D_2 \in \mathcal{D}$, then define $D_1 + D_2 = D_3$ so that D_3 is the realization of a tubed surface whose sector form data is the concatenation of that of D_1 and D_2 . This means that if D_1 (resp., D_2) has n_1 (resp., n_2) sectors with data then D_3 has $n_1 + n_2$ sectors with the corresponding data.

Proposition 4.2. \mathcal{D} is an abelian group with unit $[D_0]$ under the operation $+$.

Proof. We need to show that D_3 is independent of the choice of representatives of D_1 and D_2 , the other conditions being immediate. In particular, by Lemma 2.11 D_3 is independent of the concatenation order, and hence \mathcal{D} is abelian. We can assume that D_1 coincides with D_0 near their boundaries, so an isotopy of D_1 to D'_1 can be chosen to be supported away from some neighborhood of ∂D_0 . Since the data of D_2 , except for its framed embedded paths, can be isotoped within their sectors to be very close to ∂D_0 , we see that the isotopy of D_1 can be chosen to avoid it. While the framed embedded paths associated to D_2 may get moved during the ambient isotopy of D_1 to D'_1 , the light bulb lemma enables them to isotope back to their original positions without introducing intersections with D'_1 . \square

Remark 4.3. Let \mathcal{D} be a torsor, where $\mathbb{Z}[\pi_1(M) \setminus 1]$ and $\mathbb{Z}[T_2]$ act on \mathcal{D} . Here, T_2 is the set of nontrivial 2-torsion elements. The former acts by attaching the appropriate self-referential discs and the latter by attaching the appropriate double tubes.

Notation 4.4. If λ is a framed embedded path with endpoints in D_0 representing a nontrivial 2-torsion element of $\pi_1(M)$, then let $\hat{\lambda}$ denote this element and let D_λ denote the realization of the self-referential form tubed surface whose data consists exactly of (λ) . If $1 \neq g \in \pi_1(M)$, then let D_g (resp., D_{-g}) denote the realization

of the self-referential form tubed surface whose data only consists exactly of $(+g)$ (resp., $(-g)$).

Remark 4.5. Since an element of \mathcal{D} can be put into self-referential form it follows that the D_g 's and D_λ 's are generators of \mathcal{D} .

Definition 4.6. Let D_0 be a properly embedded disc in the 4-manifold M , not necessarily with a dual sphere. View D_0 as $I \times I$ with I_0 denoting $I \times 1/2$ and \mathcal{F}_0 this product foliation. If D is another properly embedded disc that agrees with D_0 along ∂D_0 , then D gives rise to an element $[\phi_{D_0}(D)] \in \pi_1(\text{Emb}(I, M; I_0))$, where $\text{Emb}(I, M; I_0)$ is the space of smooth embeddings of I based at I_0 . To construct $\phi_{D_0}(D)$, first isotope D to coincide with D_0 near ∂D_0 .

Next view $D = I \times I$, where this foliation \mathcal{F} coincides with \mathcal{F}_0 near ∂D_0 . Use D_0 to inform how to modify \mathcal{F} to a loop $\phi_{D_0}(D)$ in $\text{Emb}(I, M; I_0)$ based at I_0 . To do this first define $\beta \in \text{Emb}(I, M)$ as follows. For $t \in [0, 1/4]$, β_t traces $I \times (1/2 - 2t)$ using \mathcal{F}_0 ; for $t \in [1/4, 3/4]$, β_t traces $I \times (2t - 0.5)$ using \mathcal{F} ; and for $t \in [3/4, 1]$, β_t traces $I \times (1.5 - 2t)$ using \mathcal{F}_0 . Naturally modify the ends of each β_t to coincide with I_0 near $\beta_t(0)$ and $\beta_t(1)$ to obtain $\phi_{D_0}(D)$ with $[\phi_{D_0}(D)]$ denoting the corresponding class in $\pi_1(\text{Emb}(I, M; I_0))$.

Remark 4.7. For the sake of exposition, D_0 was parametrized as a disc with corners. The definition is readily modified to the smooth setting.

Since $\text{Diff}(D^2 \text{ fix } \partial)$ is connected [13] it follows that ϕ_{D_0} is well defined and depends only on D_0 and I_0 . If \mathcal{D} is the set of isotopy classes of discs homotopic to D_0 rel ∂ , then together with the Dax isomorphism theorem we obtain the following result.

Theorem 4.8. *Let D_0 be a properly embedded disc in the oriented 4-manifold, I_0 an oriented properly embedded arc in D_0 and \mathcal{D} be the isotopy classes of embedded discs homotopic rel ∂ to D_0 , then there is a canonical function*

$$\phi_{D_0}: \mathcal{D} \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]/D(I_0)$$

such that if D is a embedded disc homotopic rel ∂ to D_0 , then $\phi_{D_0}([D]) \neq 0$ implies D is not isotopic to D_0 rel ∂ .

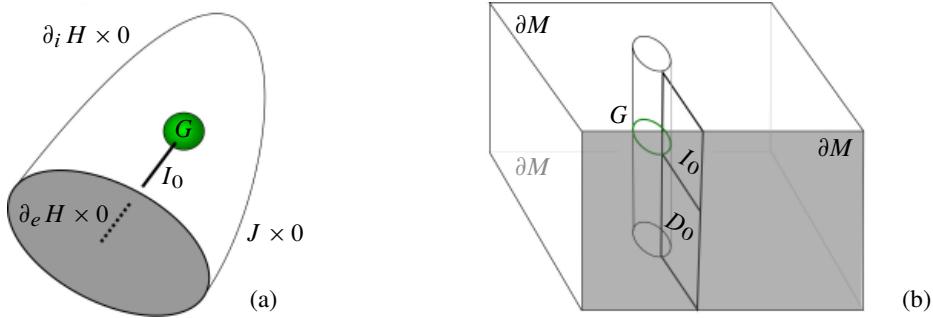
We have more algebraic structure when D_0 has a dual sphere. The following is a sharper form of Theorem 0.6 (ii) of the introduction.

Theorem 4.9. *Let $D_0 \subset M$ be a properly embedded disc with the dual sphere G and \mathcal{D} the isotopy classes of discs homotopic to D_0 rel ∂D_0 . Then \mathcal{D} is an abelian group with zero element $[D_0]$ and there exists a natural homomorphism*

$$\phi_{D_0}: \mathcal{D} \rightarrow \mathbb{Z}[\pi_1(M) \setminus 1]/D(I_0) \cong \pi_1^D(\text{Emb}(I, M; I_0)),$$

where $D(I_0)$ is the Dax kernel, such that the generators of \mathcal{D} are mapped as follows:

- (i) $\phi_{D_0}([D_\lambda]) = \hat{\lambda}$;
- (ii) $\phi_{D_0}([D_g]) = g + g^{-1}$.

Figure 10. The disc D_0 with the dual sphere G .

Proof. We first set the local picture. View $N(D_0 \cup G)$ as the manifold with corners $J \times [-1, 1]$, where $J = H \setminus \text{int}(B)$, and where B is an open 3-ball and H is a half 3-ball with

$$\partial H = \partial_e H \cup \partial_i H,$$

the *external* and *internal boundaries*. Also,

$$\partial M \cap J \times [-1, 1] = (\partial_e H \cup \partial B) \times [-1, 1] \cup J \times \{-1, 1\}.$$

Here, $G_t := \partial B \times t$ and $N(G) \cap \partial M = G \times [-1, 1]$. Let D_0 be a vertical disc in $J \times [-1, 1]$ with $I_t := D_0 \cap J \times t$, where I_0 is an arc from $\partial_e H \times 0$ to $G := G_0$; see Figure 10 (a). Figure 10 (b) shows a one dimension lower version. In this figure, G is a circle and D_0 is a disc. ∂M is the union of $G \times [-1, 1]$ and the shaded face which is the analogue of $\partial_e(H) \times [-1, 1]$ and the top and bottom faces.

We now define ϕ_{D_0} from this point of view. If D is a properly embedded disc that coincides with D_0 near ∂D , then the I_t fibering of D_0 induces $\phi_{D_0}(D) \in \pi_1^D(\text{Emb}(I, M; I_0))$ as follows. It first induces a map

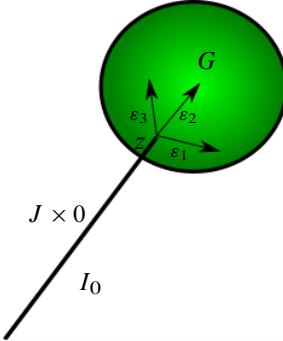
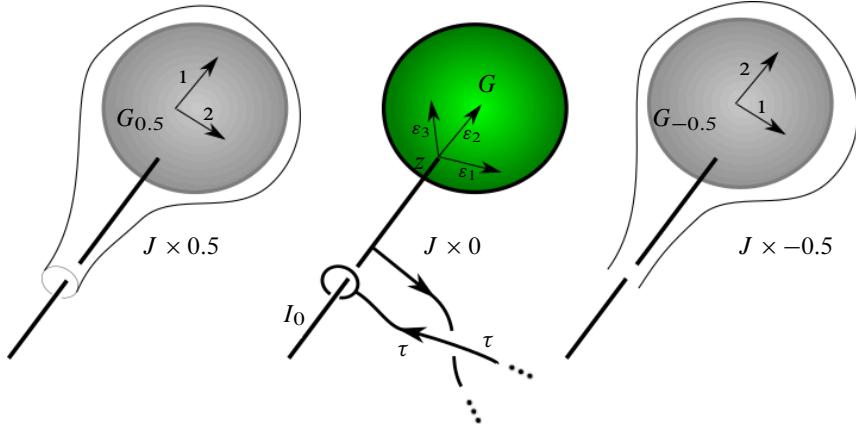
$$\phi'_{D_0} : [-1, 1] \rightarrow (\text{Maps} : [-1, 1] \rightarrow \text{Emb}(I, M)).$$

The projection of I_t to I_0 then informs how to close up to a loop and modify the ends to coincide with I_0 to obtain a well defined element of $\pi_1^D(\text{Emb}(I, M; I_0))$. It is a homomorphism since by construction

$$\phi_{D_0}([D_0]) = [1_{I_0}].$$

Since addition is given by concatenation of sector forms it follows that

$$\phi_{D_0}([D_1] + [D_2]) = \phi_{D_0}([D_1]) + \phi_{D_0}([D_2]).$$

Figure 11. Orientations on D_0 and G .Figure 12. Orientation on $P(\alpha)$.

We show (ii). Given $D_g \in \mathcal{D}$, we represent $\phi_{D_0}(D_g)$ by α_t , a loop in $\text{Emb}(I, M; I_0)$. As in Section 3 we construct a homotopy $\alpha_{t,u}$ in $\text{Maps}(I, M; I_0)$ from α_t to 1_{I_0} and then compute $d(\alpha_{t,u})$. To compute the required intersection numbers we need to establish and keep track of orientations. First, $J \times [-1, 1]$ has the standard orientation $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ induced from $\mathbb{R}^3 \times \mathbb{R}$. Figure 11 shows our orientations on D_0 and G as seen from $J \times 0$. Here, $T_z(D_0)$ is oriented by $(\varepsilon_2, \varepsilon_4)$ and $T_z(G)$ is oriented by $(\varepsilon_3, \varepsilon_1)$. Note that $\langle D_0, G \rangle_z = 1$. Recall that D_g is obtained by coherently tubing D_0 with the oriented sphere $P(\alpha)$ along a path τ representing g . To find the orientation on D_g it remains to find the orientation of $P(\alpha)$, which is shown in Figure 12. The numbers next to the vectors indicate which goes first. Recall that $P(\alpha)$ is obtained by tubing two copies of G , say $G_{-0.5}$ and $G_{0.5}$, where the orientation of $G \times -0.5$ (resp., $G \times +0.5$) disagrees (resp., agrees) with that of G .

Figure 13(a) shows the projection of $P(\alpha) \cup D_0 \cup \tau$ to $J \times 0$; the solid line indicating intersection with the present and shading indicates projection from either

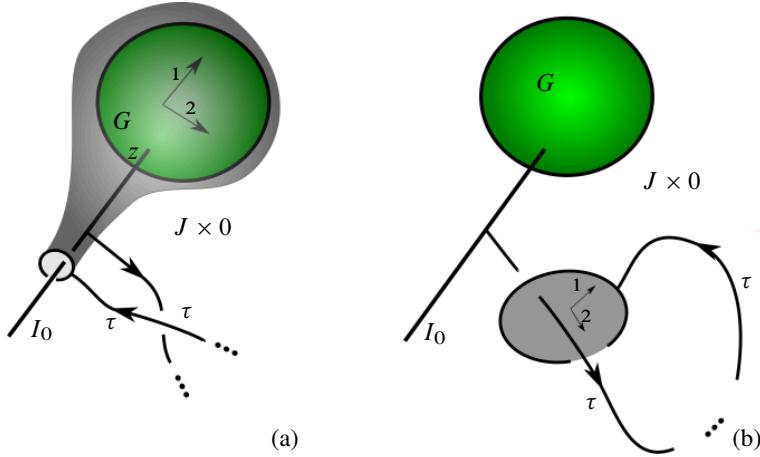


Figure 13. Isotoping to a self-referential disc I.

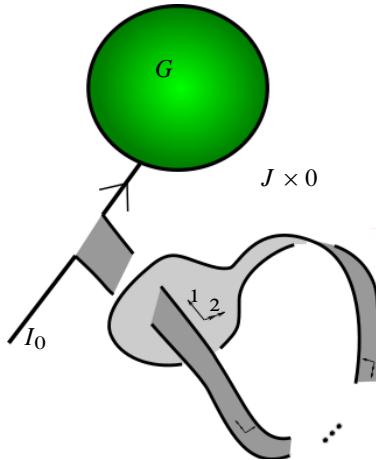


Figure 14. Isotoping to a self-referential disc II.

the past or future. Here, J_t with $t < 0$, $t = 0$, or $t > 0$ refers to the past, present or future. The orientation shown is that of the projection of the disc from the future. Figure 13 (b) is another projection after an isotopy of $P(\alpha) \cup \tau$. To obtain the full picture of this D_g we coherently connect D_0 to this isotoped $P(\alpha)$ by the tube T_τ that follows the isotoped τ ; see Figure 14.

We now describe $\alpha_{t,u}$. The passage from the original D_g to the above one induces a homotopy of $\alpha_{t,0}$ to $\alpha_{t,1/4}$. Here is a description of the loop $\alpha_{t,1/4}$, $t \in [-1, 1]$. Starting at $\alpha_{-1,1/4} = I_0$, keeping neighborhood of ∂I_0 fixed, $\alpha_{t,1/4}$ sweeps out along T_τ staying slightly in the past, then remaining slightly in the past continues

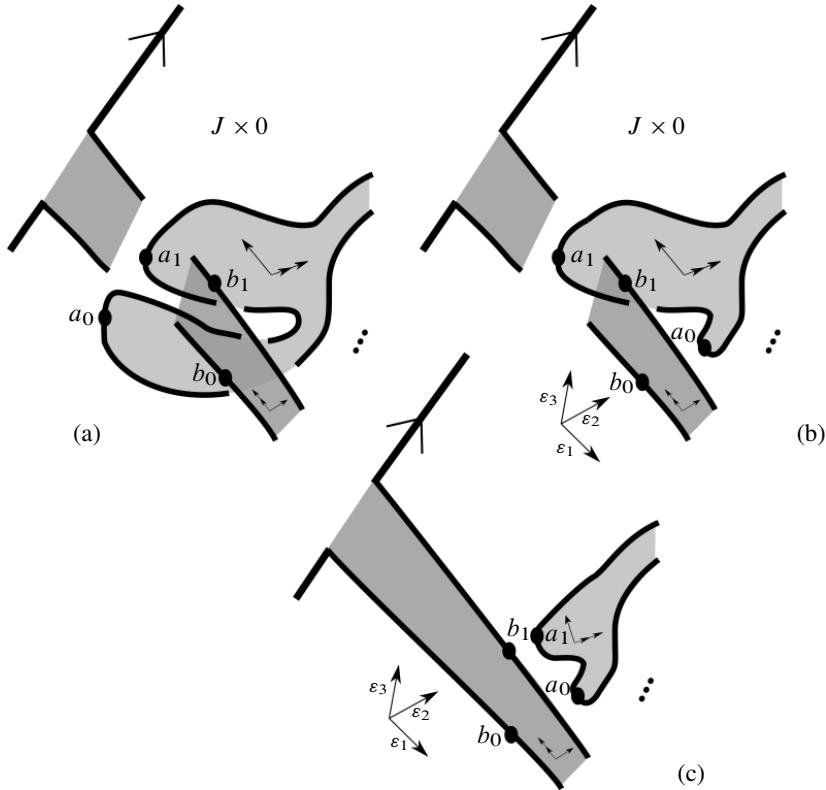


Figure 15. Computing the intersection numbers.

across $P(\alpha)$ to reach $\alpha_{1/2,1/4}$, the dark line in Figure 14 which is totally in the present. It then sweeps back across $P(\alpha)$ staying slightly in the future and then back across T_τ before returning to $I_0 = \alpha_{1,1/4}$. Our homotopy $\alpha_{t,u}$ will have the feature that for all u ,

$$\alpha_{1/2,u} \cap J \times [-1, 1] \subset J \times 0.$$

If $D_g(u)$ denotes the image of $\alpha_{t,u}$, $t \in [-1, 1]$, then Figure 14 shows the projection of $D_g(1/4)$ to $J \times 0$. We now homotope $D_g(1/4)$ to $D_g(3/8)$, as shown in Figure 15(a). Here, we abuse notation by conflating the domain with the image. While the embedded part of $D_g(u)$ now becomes immersed, the homotopy induces a homotopy of $\alpha_{t,1/4}$ to $\alpha_{t,3/8}$ as loops in $\text{Emb}(I, M; I_0)$.

Figure 15(b), (resp., Figure 15(c)) shows the result of a further homotopy to $\alpha_{t,9/16}$ (resp., $\alpha_{t,3/4}$) this time as loops in $\text{Maps}(I, M; I_0)$. Note that $\alpha_{t,u}$ fails to be a loop in $\text{Emb}(I, M; I_0)$ when $u = 1/2$ and $5/8$. This can be done so that at $u = 1/2$ (resp., $u = 5/8$) there is a single self-intersection when $t = 1/2$, and $s = a_0$ and $s = b_0$ (resp., $t = 1/2$, and $s = a_1$ and $s = b_1$.) Note that

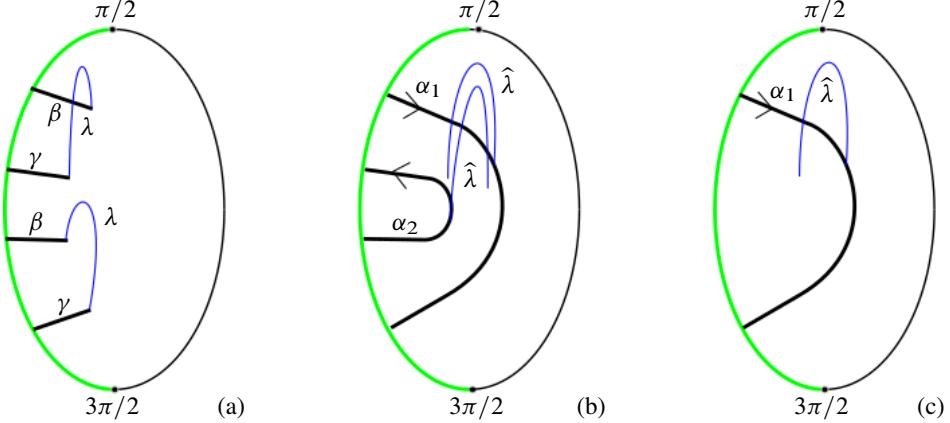


Figure 16. Two double tubes equals one single tube.

the loop $\alpha_{t,3/4}$ is homotopic in loops $\text{Emb}(I, M; I_0)$ to 1_{I_0} . Use this homotopy to complete the construction of $\alpha_{t,u}$.

We now compute the self-intersection values. Recall that I_0 is oriented to point into G . Following the rules of Section 3, since $b_0 < a_0$ the group element to this self-intersection is g^{-1} . With notation as in Section 3 we now compute the sign of the self-intersection by comparing

$$DF_{0_{b_0,1/2,1/2}}(T_{b_0,1/2,1/2}(I^3)) \oplus DF_{0_{a_0,1/2,1/2}}(T_{a_0,1/2,1/2}(I^3))$$

with that of

$$T_{x_1,1/2,1/2}(M \times I^2),$$

where $x_1 = \alpha(1/2, 1/2)(a_0) = \alpha(1/2, 1/2)(b_0)$. Parametrized as in Section 3 we have

$$DF_{0_{b_0,1/2,1/2}}(\partial/\partial s, \partial/\partial t, \partial/\partial u) = (\varepsilon_1, \varepsilon_5, \varepsilon_6)$$

$$\text{and } DF_{0_{a_0,1/2,1/2}}(\partial/\partial s, \partial/\partial t, \partial/\partial u) = (\varepsilon_3, \varepsilon_4 + \varepsilon_5, \varepsilon_2 + \varepsilon_6),$$

which as a 6-vector is equivalent to $(\varepsilon_1, \varepsilon_5, \varepsilon_6, \varepsilon_3, \varepsilon_4, \varepsilon_2)$ which is equivalent to the standard basis, hence the self-intersection number is $+1$. Since $a_1 < b_1$, a similar calculation shows that at the second self-intersection the group element is g and the 6-tuple of vectors is $(\varepsilon_3, \varepsilon_4 + \varepsilon_5, \varepsilon_2 + \varepsilon_6, -\varepsilon_1, \varepsilon_5, \varepsilon_6)$, which is equivalent to $(\varepsilon_3, \varepsilon_4, \varepsilon_2, -\varepsilon_1, \varepsilon_5, \varepsilon_6)$, which also gives the standard basis. Therefore,

$$\phi(D_g) = d(\alpha_{t,u}) = g + g^{-1}.$$

We now show (i) by proving that

$$2\phi_{D_0}(D_\lambda) = \phi_{D_0}(2D_\lambda) = 2\hat{\lambda}.$$

Figure 16 (a) shows a tubed surface with self-referential form data (λ, λ) . Figure 16 (b) shows the result of applying the operation in Section 6 of [5] to this tubed surface. Tube sliding moves allow for the q point to α_2 to be placed to either side of α_1 and vice versa. Note that the orientations on the α curves are determined by the sign convention. As in Section 2, deleting the data corresponding to the α_2 curve does not change the realization since it's q point lies on the far side of the approach interval. What's left is a tubed surface of Figure 16 (c) with self-referential form data $(+\hat{\lambda})$ whose realization is $D_{\hat{\lambda}}$. By part (ii), $\phi_{D_0}(D_{\hat{\lambda}}) = 2\hat{\lambda}$. \square

Corollary 4.10. *Let $M = S^2 \times B^2 \# S^1 \times B^3$, D_0 be the standard 2-disc as in Figure 2 and g be a generator of $\pi_1(M)$. Then the discs D_{g^i} , $i \in \mathbb{N}$ are pairwise not properly isotopic. On the other hand each D_{g^i} is concordant to D_0 .*

Proof. By Theorem 3.11, the Dax kernel $D(I_0) = 0$. It follows that if $i \neq j$, then D_{g^i} is not isotopic to D_{g^j} since $g^i + g^{-i} \neq g^j + g^{-j}$. Since each D_{g^i} differs from D_0 by a ribbon 3-disc, they are concordant. See Figure 2 in the introduction. \square

5. Applications and questions

As an application we give examples of knotted 3-balls in 4-manifolds with boundary; see [2] and [15] for codimension-1 knotting constructions in closed manifolds. As a prototype we state a result for $M = S^2 \times D^2 \# S^1 \times B^3$ and indicate a generalization to other manifolds.

Theorem 5.1. *If $M = S^2 \times D^2 \# S^1 \times B^3$ and $\Delta_0 = x_0 \times B^3$ in the $S^1 \times B^3$ factor, then there exist infinitely many 3-balls properly homotopic to Δ_0 , but not pairwise properly isotopic.*

Remark 5.2. The following result is a straight forward extension of Hannah Schwartz' Lemma 2.3 in [11] for spheres with dual spheres to discs with dual spheres, with a somewhat different proof.

Lemma 5.3. *Let $D_0 \subset N$ be a properly embedded 2-disc with dual sphere G . If D_1 is a properly embedded 2-disc that coincides with D_0 near ∂D_0 and D_1 is homotopic rel ∂ to D_0 , then there exists a diffeomorphism*

$$\psi: (N, D_0) \rightarrow (N, D_1).$$

If D_1 is homotopic rel ∂ to D_0 , then ψ can be chosen to fix a neighborhood of ∂N pointwise. If D_0 is concordant to D_1 , then ψ can also be chosen to be homotopic to $\text{id rel } \partial$.

Proof. Let $G \times [-\varepsilon, \varepsilon]$ be a product neighborhood of $G \subset \partial N$ and let

$$N_1 = N \cup_{G \times [-\varepsilon, \varepsilon]} B^3 \times [-\varepsilon, \varepsilon].$$

Then N is obtained from N_1 by removing a neighborhood of the arc $\kappa = 0 \times [-\varepsilon, \varepsilon]$. Any loop $\gamma \in \text{Emb}(I, N_1; \kappa)$ whose time-1 map preserves the framing of $T(\kappa)$ induces

$$\psi_1: (N_1, \kappa) \rightarrow (N_1, \kappa),$$

fixing $\partial N_1 \cup N(\kappa)$ pointwise. Hence, a map

$$\psi_\gamma: N \rightarrow N$$

fixes ∂N pointwise, otherwise it induces a diffeomorphism that twists the boundary. Such a diffeomorphism is called an *arc pushing map*.

Since D_0, D_1 coincide near $N(\partial D_0)$, we can extend slightly to discs E_1, E_0 in N_1 , which coincide in $N_1 \setminus N$ with $\partial E_0 \subset \kappa \cup \partial N_1$. Let γ be the arc pushing map, the first deformation of which retracts E_0 to a small neighborhood of ∂E_0 and then expands along E_1 . If D_1 is homotopic to D_0 such an isotopy can be constructed to preserve the normal framing of κ and hence induce a diffeomorphism

$$\psi_\gamma: (N, D_0) \rightarrow (N, D_1),$$

which fixes $N(\partial N)$ pointwise.

If $\hat{\psi}_\gamma: N_1 \times I \rightarrow N_1 \times I$ is the map induced from suspending the ambient isotopy induced from γ , then κ tracks out a properly embedded disc. If D_1 is concordant to D_0 , then this disc is isotopic rel ∂ to $\kappa \times I$, in which case ψ_γ is homotopic to $\text{id} \text{ rel } \partial$. \square

Remark 5.4. It suffices that D_1 and D_0 induce the same framing on their boundaries to enable ψ to fix ∂N pointwise.

Proof of Theorem 5.1. Let g be a generator of $\pi_1(M)$ and let D_i be the disc D_{g^i} of Corollary 4.10. By that result all these D_i 's are homotopic, in fact concordant, yet pairwise not isotopic rel ∂ . Apply the lemma to obtain

$$\psi_i: M \rightarrow M$$

a diffeomorphism, properly homotopic to id and fixing $N(\partial M)$ pointwise, such that $\psi_i(D_0) = D_i$.

Let $\Delta_i = \psi_i(\Delta_0)$. Since $\Delta_0 \cap D_0 = \emptyset$ it follows that for all i ,

$$\Delta_i \cap D_i = \emptyset.$$

If Δ_i is properly isotopic to Δ_j ($i \neq j$), then the corresponding ambient isotopy takes D_i to D'_i with $D'_i \cap \Delta_j = \emptyset$. Now $M \setminus \text{int}(N(\Delta_0))$ is diffeomorphic to $S^2 \times D^2$, and hence so is $M \setminus \text{int}(N(\Delta_j))$. Since Δ'_i is properly homotopic to Δ_j in M , D'_i is homotopic rel ∂ to D_j in this $S^2 \times D^2$. By Theorem 10.4 of [5], D'_i is isotopic rel ∂ to D_j , which is a contradiction. \square

Remark 5.5. In a somewhat similar manner we obtain knotted 3-balls in some manifolds of the form

$$W = M \# S^1 \times B^3,$$

where $D_0 \subset M$ has a dual sphere $G \subset M$. Here,

$$\pi_1(W) = \pi_1(M) * \mathbb{Z}.$$

Let t denote a generator of \mathbb{Z} . We require that the subgroup of $\mathbb{Z}[\pi_1(W) \setminus 1]$ generated by $t^n + t^{-n}$, $n \in \mathbb{N}$ is not contained in the subgroup generated by $\mathbb{Z}[\pi_1(M)] + D(I_0)$. For example, manifolds W , where M is of the form $S^2 \times D^2 \# Y$ and $\pi_3(Y) = 0$.

Define $\Delta_0 = x_0 \times B^3$ and let D_1 be obtained by attaching self-referential discs to D_0 so that

$$\phi_{D_0}(D_1) \notin \mathbb{Z}[\pi_1(M)] + D(I_0).$$

Now modify Δ_0 to Δ_1 by embedded surgery so that $\Delta_1 \cap D_1 = \emptyset$ and Δ_1 is homotopic rel ∂ to Δ_0 . If Δ_1 can be isotoped to Δ_0 , then D_1 can be isotoped into M . Since D_1 is homotopic to D_0 in W , a homotopy can be constructed to be supported in M . This can be seen by recalling that

$$\pi_2(W) = H_2(\tilde{W})$$

and that a 2-sphere in \tilde{W} homologically trivial in \tilde{W} is homologically trivial in $\tilde{W} \setminus \pi^{-1}(\Delta_0)$, where π is the covering projection. It follows that

$$\phi_{D_0}(D_1) \in \mathbb{Z}[\pi_1(M)] + D(I_0),$$

which is a contradiction.

Note that the analogous construction does not work for $V = S^2 \times D^2 \# S^1 \times B^3$ for the standard D_0 which lies in the $S^2 \times D^2$ factor, since for this D_0 homotopy implies isotopy. That is because the separating 3-sphere can be used to disentangle a single self-referential disc. Also multiple self-referential discs can be disentangled using the separating 3-sphere and the light bulb lemma.

We conclude with a problem and two questions.

Problem 5.6. Complete the isotopy classification of properly embedded discs in 4-manifolds with dual spheres.

The following question specializes this problem to 4-manifolds without 2-torsion in their fundamental groups?

Questions 5.7. Let $D_0 \subset M$ be a properly embedded disc with dual sphere G such that $\pi_1(M)$ has no 2-torsion. Let \mathcal{D} be the isotopy classes of embedded discs homotopic to D rel ∂ . Let

$$\phi_{D_0}: \mathcal{D} \rightarrow \mathbb{Z}[\pi_1(M, z) \setminus 1]/D \cong \text{Emb}(I, M; I_0)$$

be the canonical homomorphism. What is $\ker \phi_{D_0}$? In particular, if

$$M = S^2 \times D^2 \# S^1 \times B^3,$$

is D_g isotopic rel ∂ to $D_{g^{-1}}$?

References

- [1] G. Arone and M. Szymik, Spaces of knotted circles and exotic smooth structure, 2020 [arXiv:1909.00978](https://arxiv.org/abs/1909.00978)
- [2] R. Budney and D. Gabai, Knotted 3-balls in S^4 , 2021 [arXiv:1912.09029](https://arxiv.org/abs/1912.09029)
- [3] J.-P. Dax, Étude homotopique des espaces de plongements. *Ann. Sci. École Norm. Sup. (4)* **5** (1972), 303–377 [Zbl 0251.58003](https://zbmath.org/?q=an:0251.58003) [MR 321110](https://mathscinet.ams.org/mathscinet-getitem?mr=321110)
- [4] M. H. Freedman and F. Quinn, *Topology of 4-manifolds*. Princeton Math. Ser. 39, Princeton Univ. Press, Princeton, NJ, 1990 [Zbl 0705.57001](https://zbmath.org/?q=an:0705.57001) [MR 1201584](https://mathscinet.ams.org/mathscinet-getitem?mr=1201584)
- [5] D. Gabai, The 4-dimensional light bulb theorem. *J. Amer. Math. Soc.* **33** (2020), no. 3, 609–652 [Zbl 07225787](https://zbmath.org/?q=an:07225787) [MR 4127900](https://mathscinet.ams.org/mathscinet-getitem?mr=4127900)
- [6] M. R. Klug and M. Miller, Concordance of surfaces in 4-manifolds and the Freedman–Quinn invariant. *J. Topol.* **14** (2021), no. 2, 560–586 [Zbl 07381859](https://zbmath.org/?q=an:07381859) [MR 4286049](https://mathscinet.ams.org/mathscinet-getitem?mr=4286049)
- [7] D. Kosanovic, A geometric approach to the embedding calculus knot invariants, Thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, 2020
- [8] D. Kosanovic, Embedding calculus and grope cobordism of knots, 2020 [arXiv:2010.05120](https://arxiv.org/abs/2010.05120)
- [9] S. Moriya, Models for knot spaces and Atiyah duality, 2021 [arXiv:2003.03815](https://arxiv.org/abs/2003.03815)
- [10] R. Schneiderman and P. Teichner, Homotopy versus Isotopy: Spheres with duals in 4-manifolds, 2019 [arXiv:1904.12350](https://arxiv.org/abs/1904.12350)
- [11] H. R. Schwartz, Equivalent non-isotopic spheres in 4-manifolds. *J. Topol.* **12** (2019), no. 4, 1396–1412 [Zbl 1437.57031](https://zbmath.org/?q=an:1437.57031) [MR 4138734](https://mathscinet.ams.org/mathscinet-getitem?mr=4138734)
- [12] S. Smale, A classification of immersions of the two-sphere. *Trans. Amer. Math. Soc.* **90** (1958), 281–290 [Zbl 0089.18102](https://zbmath.org/?q=an:0089.18102) [MR 104227](https://mathscinet.ams.org/mathscinet-getitem?mr=104227)
- [13] S. Smale, Diffeomorphisms of the 2-sphere. *Proc. Amer. Math. Soc.* **10** (1959), 621–626 [Zbl 0118.39103](https://zbmath.org/?q=an:0118.39103) [MR 112149](https://mathscinet.ams.org/mathscinet-getitem?mr=112149)
- [14] R. Stong, Uniqueness of π_1 -negligible embeddings in 4-manifolds: a correction to Theorem 10.5 of “Topology of 4-manifolds” [MR 1201584] by M. H. Freedman and F. Quinn. *Topology* **32** (1993), no. 4, 677–699 [Zbl 0811.57021](https://zbmath.org/?q=an:0811.57021) [MR 1241868](https://mathscinet.ams.org/mathscinet-getitem?mr=1241868)
- [15] T. Watanabe, Theta-graph and diffeomorphisms of some 4-manifolds, 2020 [arXiv:2005.09545](https://arxiv.org/abs/2005.09545)

Received August 03, 2020

D. Gabai, Department of Mathematics, Princeton University,
Princeton, NJ 08544, USA

E-mail: gabai@math.princeton.edu