

AI-based Risk Assessment for Construction Site Disaster Preparedness through Deep Learning-based Digital Twinning

Mirsalar Kamari¹ and Youngjib Ham, Ph.D.²

¹ PhD Candidate, Department of Construction Science, Texas A&M University, 3137 TAMU, College Station, TX 77843; PH (979) 446-9385; email: kamari@tamu.edu

² Associate Professor, Department of Construction Science, Texas A&M University, Francis Hall 329B, 3137 TAMU, College Station, TX 77843; PH (979) 458-0184; email: yham@tamu.edu

11 Abstract

12 Hurricanes are among the most devastating natural disasters in the United States, causing billions
13 of dollars of property damage and insured losses. During extreme wind events, unsecured objects
14 in jobsites can easily become airborne debris, which results in substantial loss to construction
15 projects and neighboring communities. Toward a systematic disaster preparedness in construction
16 jobsites, this paper presents a novel vision-based digital twinning and threat assessment
17 framework. We encode the context of disaster risk into deep-learning architectures to identify and
18 analyze the characteristics and impacts of potential wind-borne debris in construction site digital
19 twin models. Case studies on nine piles of construction materials are presented to demonstrate and
20 discuss the fidelity of the proposed computational modules. The proposed methods are expected
21 to help provide heads up for practitioners to quickly recognize, localize, and assess potential wind-
22 borne derbies in construction jobsites, and thereby implementing hurricane preparedness in an
23 effective and timely manner.

24

25 **1. Introduction**

26 Dynamic and complex construction sites including incomplete structures and unsecured resources,
27 are among the most vulnerable environments to extreme wind events [1]. Severe wind-induced
28 damages significantly attenuate the efficiency of construction projects by causing considerable
29 schedule delays and further negatively impact neighboring infrastructures in operations (e.g.,
30 roads, power grids), and thus trigger notable disruptions and financial losses in communities [1,2].
31 For instance, along with around 50 billion dollars in damage and more than 250 fatalities,
32 Hurricane Sandy has caused over 185 million dollars' worth of damage to the construction project
33 of the World Trade Center [3,4]. Severe wind-induced disruptions could be classified in three
34 folds: (1) structural or mechanical failures such as tower crane collapses due to excessive wind
35 loads [5-7]; (2) functional failure such as the inability to make progress due to construction
36 suspension and supply chain disruption before and after extreme weather events [8]; and (3)
37 (cascading) damages due to the devastating impact of potential wind-borne debris that is imposed
38 to construction sites (as well as neighboring communities including critical infrastructure systems)
39 [9,10]. The wind-borne debris in construction sites pose a substantial risk as unsecured resources
40 could easily become projectiles during extreme wind events, and cause mass casualty incidents or
41 induce damages to critical infrastructure systems in operation [1,11,12]. For example, eyewitness
42 accounts indicate a total loss of 7.5 million dollars in damage to the four-story hotel construction
43 site in Batavia, IL due to the aftermath of an extreme wind event [13]. Additionally, the charlotte
44 county in Miami, FL has warned that unsecured construction materials such as plywoods and
45 portable toilets in jobsites are among the most common projectiles in the case of extreme wind
46 events [14]. Local contractors in the charlotte harbor area pointed out that they need to effectively

47 remove loose materials and tie them down as the impact of such debris to the neighboring
48 communities would be substantial [15]. Meanwhile, according to a report from the United States
49 Department of Homeland Security, an estimated cost for hauling and removal of 200,000 cubic
50 yards of debris for Hurricane Irma was estimated at around 1.4 billion dollars [15,16]. The majority
51 of the debris was classified as construction-related materials or vegetation that became airborne
52 during hurricanes, and it is noted that the associated hauling process took several months to
53 complete by the local government [15].

54 While concurrent building codes and ordinances support designing wind-resilient
55 structures with respect to severe weather conditions, construction companies are responsible for
56 regulating and implementing hurricane preparedness plans to better protect their projects during
57 construction phase [2]. Preparedness plans involve a list of activities that are geared towards
58 mitigating wind-induced damage in projects [17], and such emergency operating procedures are
59 typically based on the experiences and expertise of practitioners in companies. Also, in order to
60 implement the preparedness plans before hurricanes, practitioners need to perform visual
61 inspections to identify potential risks based on checklists. However, their manual inspection to
62 recognize threats in jobsites could be error-prone and labor-intensive [18], and thus it is expected
63 that the quality of practitioner's efforts to mitigate the impact of wind-induced damages to be likely
64 degraded in a limited timeline for preparedness of large-scale jobsites.

65 Meanwhile, over the years, emerging technologies in visual sensing and analytics have
66 demonstrated a great potential to streamline the management task of practitioners in construction
67 projects [19-26]. For example, the convenience of commercial-level unmanned aerial vehicles
68 (UAVs) encourages practitioners to collect large-scale visual data to keep the as-is record of
69 construction sites [20,21,27]. In addition to images from the ground level, aerial imagery collected

70 from UAVs can provide an overhead view of resources in jobsites, which can assist with surveying
71 and mapping [28], progress monitoring [29-32], and safety management [33-35]. In the context of
72 hurricane preparedness in construction sites, UAVs have demonstrated the potential to capture an
73 invaluable record of potential wind-borne debris from aerial vantage points [1]. Exploring through
74 imagery would provide critical information regarding the type and location of potential threats,
75 allowing practitioners such as safety directors and superintendents to better prepare and implement
76 emergency operating procedures to secure jobsites prior to extreme weather events.

77 In this paper, we propose a novel vision-based framework for construction site hurricane
78 preparedness. By leveraging visual data from jobsites, we reconstruct a digital twin model of the
79 at-risk construction environment that recognizes the type and the location of threats at the 3D level.
80 In this regard, we first perform an image-based scene reconstruction, and then carry out the
81 semantic segmentation on images to identify potential wind-borne debris at the 2D level. Building
82 on the outcome of the 2D semantic segmentation, we project the semantic values onto the point
83 cloud model to obtain the semantic information of potential wind-borne debris at the 3D level.
84 Finally, for each instance of potential wind-borne debris, we estimate the associated quantity and
85 assess the inherent threats based on the kinetic energy. A site-specific heat map is generated to
86 delineate the risk associated with potential wind-borne debris with respect to the severity of given
87 wind events. We evaluated the performance of the proposed methods on residential construction
88 sites in College Station, TX, especially those associated with wooden dwellings where
89 unstructured resources such as pine boards and plywoods are found. The proposed framework will
90 help practitioners to effectively locate potential wind-borne debris in construction sites and
91 understand the associated risk. Thus, it can support risk-informed decision-making by providing

92 heads-up to practitioners in a timely fashion, which fosters awareness of the ways in which
93 hurricanes cloud be destructive in construction sites.

94

95 **2. Research Background**

96 **2.1. Disaster preparedness and potential wind-borne debris**

97 Prior works on post-disaster management are geared towards activities based on the severity of
98 damage after disaster strikes in given regions [36,37]. In contrast, pre-disaster management focuses
99 primarily on the adaptation of mitigation and preparedness plans through a proactive risk
100 assessment [38]. In this regard, Gregg et al. [39] carried out preemptive risk assessment building
101 on the geographic location of given regions and the distance to hazard-prone areas, past
102 experiences, and the probability of potential future incidences. According to [40], for every 2.5
103 dollars investment in pre-emptive efforts and practices in disaster management, a one-hundred-
104 dollar bill can be saved by reducing the cost of disaster-related losses. Although the related
105 contexts would differ, such study infers the significance of proactive practices and studies to
106 identify threats and mitigate the potential impact of disasters in construction jobsites.

107 In order to implement preparedness practices, practitioners such as safety directors or
108 superintendents should first recognize potential threats in jobsites [41]. If not properly recognized,
109 preemptive efforts are likely subjected to failures [41,42]. Interestingly, demographic variables
110 such as education and training of practitioners may impact the extent to which proactive efforts
111 are adapted [43,44]. In this regard, technology-driven studies (e.g., eye-tracking) have been
112 conducted for the cognition of hazards among practitioners in construction sites [18,45-47]. The
113 general concept of these studies is to assess the quality of practitioners' visual search to recognize
114 deficiencies, which can help better educate practitioners to flag and perceive potential threats in

115 jobsites [48,49]. Although such works demonstrate the great potential in identifying the location
116 of hazards in construction sites, when it comes to visual inspection on potential wind-borne debris,
117 there is an additional need to consider the geometrical characteristics (e.g., shape, volume) that
118 needs to be further assessed to better understand the associated risk. To this end, such studies on
119 hazard detection would not be expected to directly translate into desirable outcomes in assessing
120 the extent of threats in the context of potential wind-borne debris.

121 Meanwhile, studies have been carried out to characterize the behavior of general wind-
122 borne debris. [10] evaluated potential damage of wind-borne debris to building envelopes with
123 respect to the severity of wind events. Later, [50] classified the shape of wind-borne debris into
124 three categories (compact, plate, and rod) as each shape demonstrates different behaviors in severe
125 wind events. Building on the geometrical characteristics, [51,52] studied possible trajectories of
126 rod and sheet type of debris in severe wind events. As such, a systematic foundation to quantify
127 the extent of damage with regards to types and shapes of potential wind-borne debris has been
128 established. Building on these, we propose a vision-based framework to automatically identify and
129 assess threats of potential wind-borne debris in construction sites. The proposed framework for
130 scene understanding is essential to support the localization of potential threats in construction sites
131 and prioritization for preparedness planning. As a point of departure, in the following section, we
132 review the research on scene understanding focusing on point cloud segmentation.

133

134 **2.2. Digital twining and point cloud segmentation**

135 3D scene understanding such as point cloud segmentation is a rising field of study that has a wide
136 range of applications such as robotics [53], augmented reality [54], autonomous driving [55], and
137 medical imaging [56]. The objective of scene understanding is to cluster points belonging to a

138 specific object in point cloud models. In order to better process 3D data, prior works represent the
139 point cloud models in the context of multi-view images [57], voxels [58], and meshes [59]. Such
140 methods help the classification of points belonging to a target class, but not the instance
141 segmentation for objects in a particular class. Moreover, the conversion of point cloud models to
142 voxels and mesh representations is likely subjected to data loss, which may lead to poor
143 performance in classification [60]. In this regard, [60] adopted a deep learning framework, referred
144 to as PointNet, which directly uses point cloud data as the preliminary input. PointNet framework
145 was the first to address point permutations, and the extracted deep-learning descriptors are robust
146 to order invariances in the 3D point cloud. Despite the benefits of PointNet, one of the challenges
147 is that a relatively small number of points (e.g., 1024, 2048, 4096) can be processed by its
148 workflow due to the fixed size of the input layer of the deep neural networks. To this end, the
149 process of semantic segmentation and scene parsing of point cloud models containing millions of
150 points (e.g., reconstructed scenes of large-scale jobsites) has been identified as a challenge for
151 PointNet architecture.

152 In the construction domain, prior works on point cloud segmentation could be divided into
153 model-driven and data-driven frameworks [61]. Model-driven segmentation of point clouds
154 enables the classification of points based on a set of hand-engineered cost functions such as in
155 shape-fitting algorithms or region-growing workflows. In this regard, [62] proposed a method to
156 address the segmentation of 3D point clouds of bricks in masonry walls, and [63] performed the
157 segmentation of infrastructures based on region-growing algorithms. Later, [64] carried out the
158 automatic detection of safety regulation compliances (e.g., toe-boards) on point cloud data. Despite
159 the benefits of such models (e.g., computational simplicity), insufficient robustness to geometrical
160 variances and poor performance on noisy and incomplete point cloud models have been identified

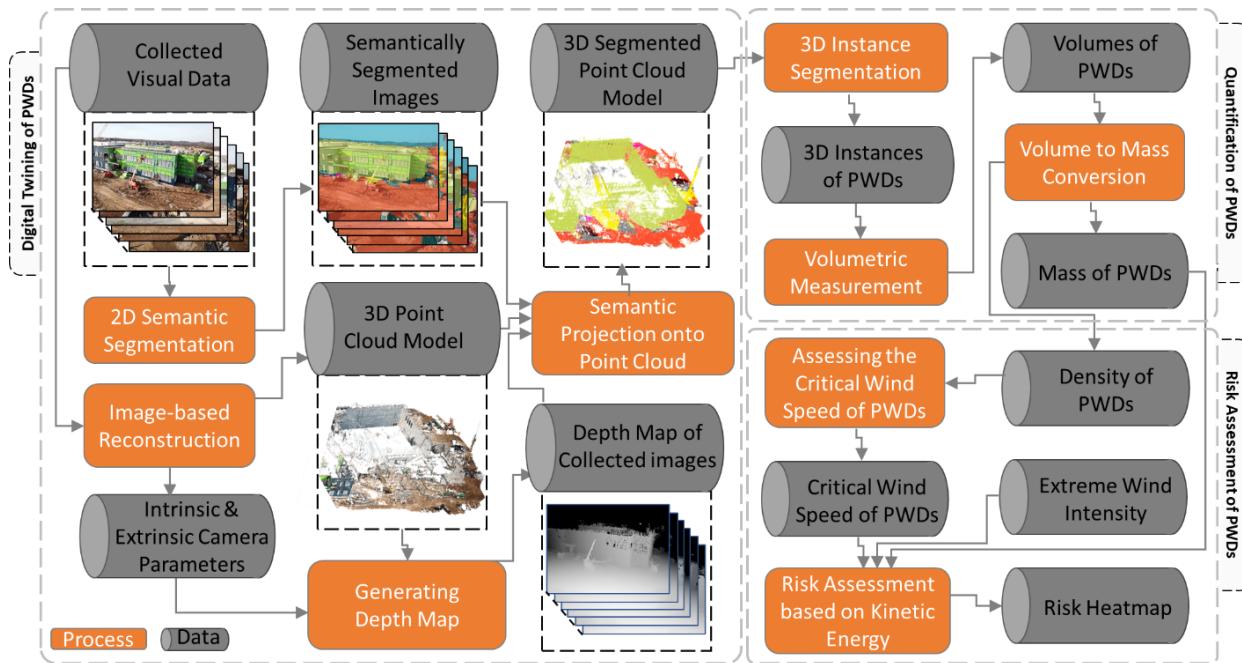
161 as the limitation of model-driven point cloud segmentation frameworks [61]. On the other hand,
162 data-driven models rely on diverse training datasets to categorize points in point cloud models. In
163 this regard, studies such as [65] have addressed point cloud segmentation through the supervised
164 learning. For instance, [66] addressed the detection of scaffolding in point clouds through the
165 Random Forest framework. Studies were performed for the categorization of planner patches [67]
166 (e.g., columns, beams, slabs) and rebars [68] in laser scanning data using conventional
167 classification approaches such as support vector machine (SVM). Later, [69] addressed the
168 segmentation and classification of construction machinery in 3D laser scanning models, building
169 on a descriptor using a synthetic training dataset. Despite the potentials, there is still a challenge
170 in the application of synthetic data due to the limited capacity in representing textural and
171 geometrical variances of real-world point cloud models [70], which needs further studies. Other
172 studies have carried out 3D level segmentation building upon the projection of 2D semantic values
173 onto the point cloud model for material piles [71] and construction equipment [38]. However, a
174 limited 3D segmentation accuracy has been reported once 2D semantic information is projected
175 onto point cloud models. In this regard, [71] implemented an elevation-based criterion to improve
176 the performance of 3D semantic segmentation. Despite the performance enhancement, the
177 elevation-based criterion is typically valid on flat surfaces, and thus its application to jobsites that
178 often involve uneven surfaces would be challenging. To address the challenges, we propose a
179 novel 3D semantic segmentation building on depth information, in order to robustly recognize
180 potential wind-borne derbies from point cloud models.

181

182 **3. Proposed Methods for Vision-based Construction Site Hurricane Preparedness**

183 In this paper, the risk assessment on potential wind-borne debris (PWDs) using visual data is
 184 composed of three modules: 1) digital twinning of PWDs in jobsites based on collected visual data,
 185 2) estimating the quantity of PWDs through the volumetric measurement, and 3) assessing the
 186 associated threats of PWDs with respect to the intensity of wind events. Case studies on nine piles
 187 of PWDs were conducted in residential construction sites to assess the fidelity of the proposed
 188 methods.

189



190

191 Figure 1. Overview of the proposed method for construction site hurricane preparedness using
 192 visual data

193

194 **3.1. Digital twinning of construction sites including potential wind-borne debris**

195 Digital twinning is a crucial step in representing the geometrical characteristics such as the shape
 196 and location of physical assets in a corresponding virtual environment [72]. In order to build a

197 digital twin model, a 3D dense point cloud is first reconstructed using collected images. Building
198 on Structure-from-Motion (SfM) [73] and Multi-View Stereo [74], a dense point cloud model
199 represents a replica of construction sites including PWDs. The SfM framework could briefly be
200 described as: 1) extracting a local feature descriptor such as Scale-Invariant Feature Transform
201 (SIFT) [75] from entire images, 2) performing pairwise matching among feature descriptors of
202 images to compute the fundamental matrix and obtain camera viewpoints (e.g., position and
203 orientation) from where the data collection is performed, and 3) using triangulation to estimate the
204 location of successful pairwise matches in a 3D coordinate system to obtain a sparse point cloud
205 model. Subsequently, in order to populate the sparse point cloud, the Multi-View Stereo workflow
206 is employed among collected images, which initially divides images into patches and enforces an
207 iterative match, expand and filter procedures to refine the point cloud resolution [74]. Upon
208 reconstruction of point cloud models of jobsites, the detection of PWDs and the associated analysis
209 is performed.

210

211 *3.1.1. Detection of PWDs*

212 Most residential buildings in the United States, including those located in hurricane-prone regions,
213 are wooden dwellings [76]. This implies that not only these wooden structures are susceptible to
214 hurricanes, but also residential construction sites for such dwellings accommodate a large number
215 of loose and easy-to-airborne PWDs (e.g., plywoods, pine boards) that are vulnerable to extreme
216 wind events [77]. Depending on behaviors in severe wind situations, PWDs are classified into
217 three types (rod, plate, and compact). The rod-type debris or linear debris is one-dimensional debris
218 as one dimension is extensively larger than two others. Examples of the rod-type debris are wooden
219 framing members or piping. The plate-type debris is known as planer debris, where one dimension

220 is notably smaller than the other two dimensions. Pine boards or roof sheathing are examples of
221 this type. Finally, the compact-type debris is referred to as three-dimensional debris, where its size
222 in three dimensions is approximately similar, such as bricks. Table 1 summarizes common PWDs
223 in residential construction sites.

224

225 Table 1. Examples of potential wind-borne debris (PWD) in construction sites

PWDs	Debris Type [50]
Bricks [77]	Compact-type
Roof surfacing [77]	Plate-type
Framing members [2,77]	Rod-type
Sheetrock [2,77]	Plate-type
Pine board [2,77]	Plate-type
Trash [77]	Compact-type
Piping [77]	Rod-type
Scaffolding Systems [2]	Rod-type
Roof Sheathing [77]	Plate-type
Roof trusses [77]	Rod-type
Shingles [2,77]	Plate-type

226

227 In order to detect PWDs in visual data, we leverage convolutional neural networks to
228 perform semantic segmentation over images from construction sites. The semantic segmentation
229 enables the categorization of pixels into semantic classes and specifies the boundaries of the
230 objects of interest, paving the way to carry out the scene understanding [38,78]. We benchmarked
231 the detection of PWDs based on different convolutional neural network architectures and presented
232 the outcomes in the case study and evaluation section. Upon detecting PWDs in images, their
233 geometrical characteristics such as dimension and type of debris and the unit weight are encoded
234 for each class of PWD. The geometrical characteristics of PWDs are the critical information to
235 specify their vulnerability with respect to the intensity of given wind events.

236

237 3.1.2. *Point cloud segmentation to analyze PWDs in 3D*

238 Building on 2D semantic segmentation, we perform point cloud segmentation to analyze PWDs in
239 3D (e.g., volume). For the point cloud segmentation, we establish a correspondence between the
240 pixels of semantically segmented images and points in point cloud model. Such correspondence
241 indicates what semantic pixel is associated with which point in point cloud models. Using camera
242 viewpoints and extrinsic parameters obtained from the SfM, 2D pixel to 3D point correspondence
243 between images and point cloud models is expressed as follows [71]:

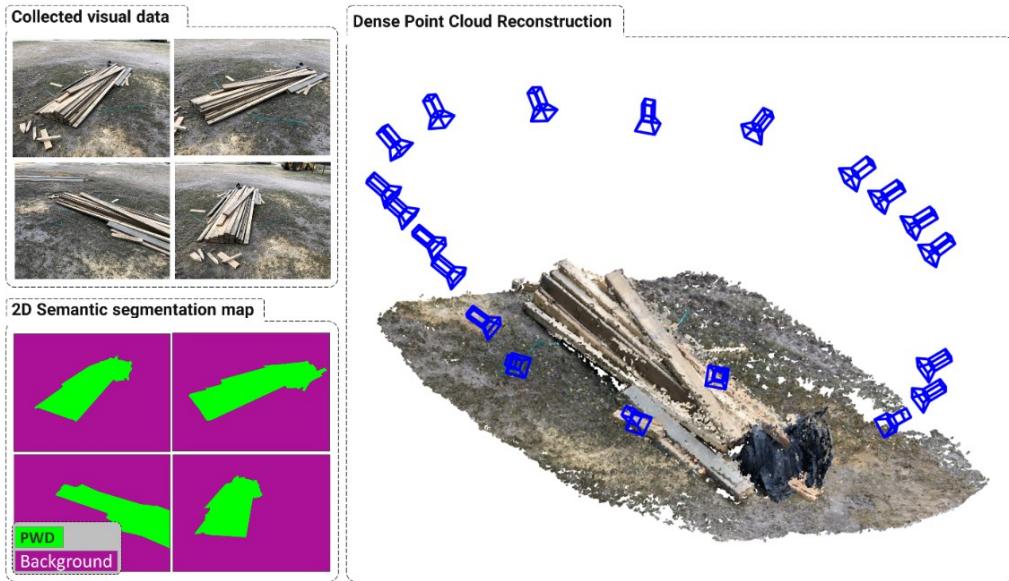
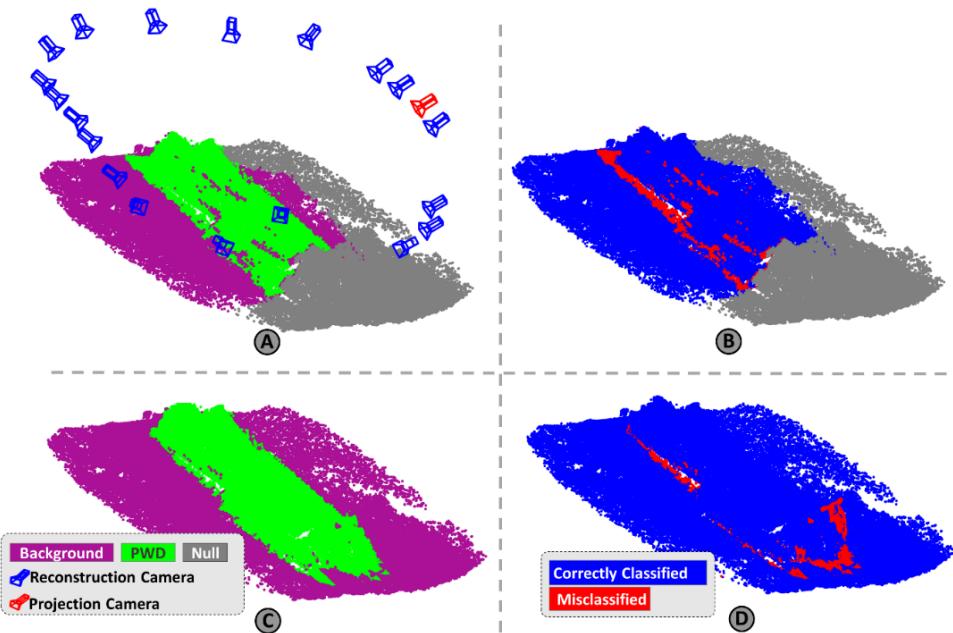
244

$$C_i = K_{3 \times 3} [R_{3 \times 3} | T_{3 \times 1}] C_w \quad (1)$$

245

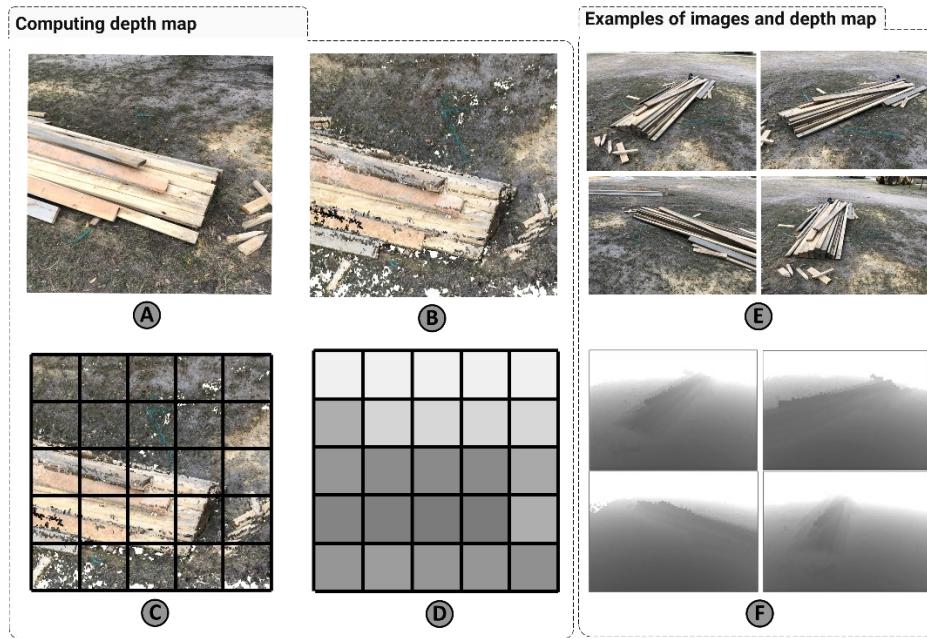
246 where C_i represents the pixel location in the segmented image, such as in $[x_i, y_i, 1]^T$, and
247 C_w is its corresponding location in the 3D point cloud, such as in $[x_w, y_w, z_w, 1]^T$, K encapsulates
248 the intrinsic camera parameter (e.g., focal length, distortion). R and T are the extrinsic camera
249 parameter denoting the orientation and location of cameras with respect to the coordinate system
250 of the point cloud. Figure 2 demonstrates a point cloud model obtained via collected images and
251 examples of semantic segmentation outcomes. Building on Equation (1), single-camera
252 projections are shown in Figure 3a. Equation (1) holds for all camera positions and viewpoints,
253 and, when multiple cameras are projected onto the point cloud model, the most common semantic
254 class among projection cameras is assigned to points in the point cloud model. Such collective
255 decision-making on the semantic class of a point is required as the class of their corresponding
256 pixels among projection cameras is not typically consistent among points [71]. Figure 3c
257 represents the outcome of the semantic projection from all cameras.

258



267 As observed in Figure 3b and 3d, 3D semantic segmentation through the camera projection
268 is likely defective as parts of the background could be misclassified as PWDs. In particular,
269 occluded objects could be misclassified since projection shadows are not taken into account in
270 Equation (1), which leads to erroneous 3D segmentation outcomes. In order to improve the 3D
271 segmentation by addressing the challenges, we propose the depth-aware projection framework.
272 Building on the dense point cloud model, we compute a depth map at each camera location and
273 use the depth information to take into account a range of projection. In this regard, given camera
274 location and orientation, we render the viewpoint from the point cloud model where the camera is
275 positioned and associated image is collected from (Figure 4a and 4b). We then divide the
276 viewpoints into a grid of pixels (Figure 4c), and retrieve points in the point cloud model that are
277 visible at each grid through the 2D pixel to 3D point correspondence between the image and the
278 point cloud model. The distance of the closest point to the camera is retrieved at each grid location,
279 and the depth map is generated accordingly (Figure 4f).

280



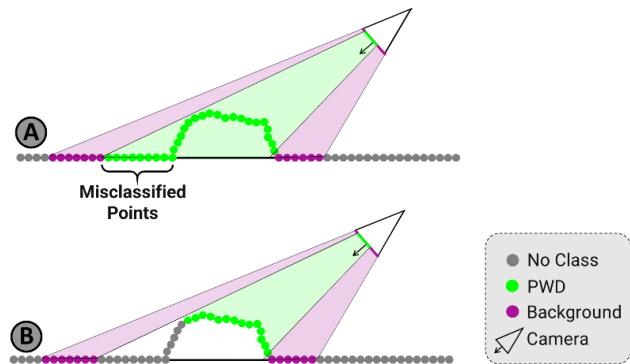
281

282 Figure 4. Overview of the proposed framework to compute depth maps from point cloud models

283

284 The distance demonstrated in the depth map accounts for the validity of Equation (1) during
285 the semantic projection. In other words, at each grid location of the depth map, the semantic
286 projection from image to point cloud may not be valid when points are located beyond the distance
287 inscribed by the depth information. Figure 5 illustrates the performance enhancement through the
288 proposed depth-aware projection framework. Figure 5a represents the projection without taking
289 account of the depth information, which solely relies on Equation (1), and Figure 5b illustrates the
290 depth-aware projection in which the background object is excluded from the semantic projection.

291



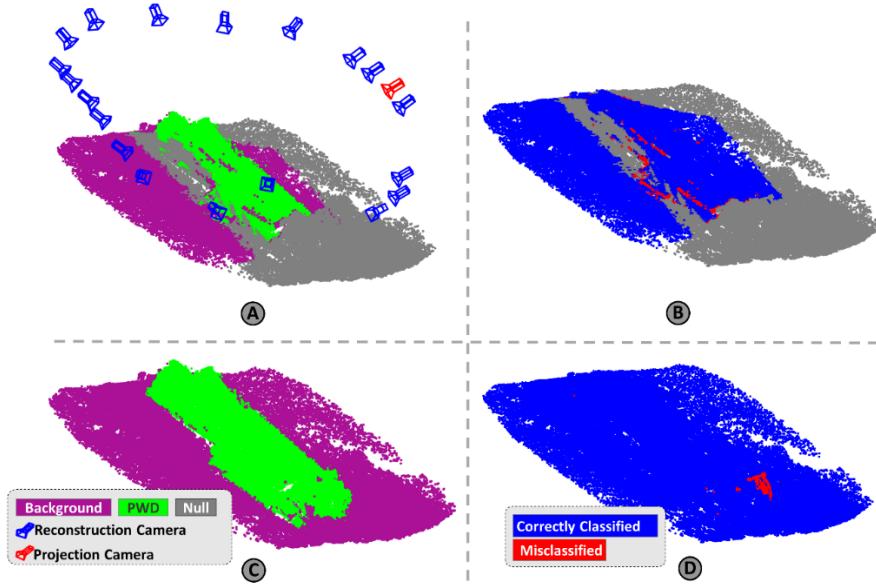
292

293 Figure 5. Illustration of the proposed depth-aware projection of semantic information onto point
294 cloud models

295

296 The depth-aware semantic projection is the backbone of the proposed reality capturing of
297 PWDs using visual data. Using the outcome of the 3D semantic segmentation, we further explore
298 the characteristics of PWDs in the context of threats caused by extreme wind events.

299



300

301 Figure 6. Depth-aware projection for enhanced 3D semantic segmentation

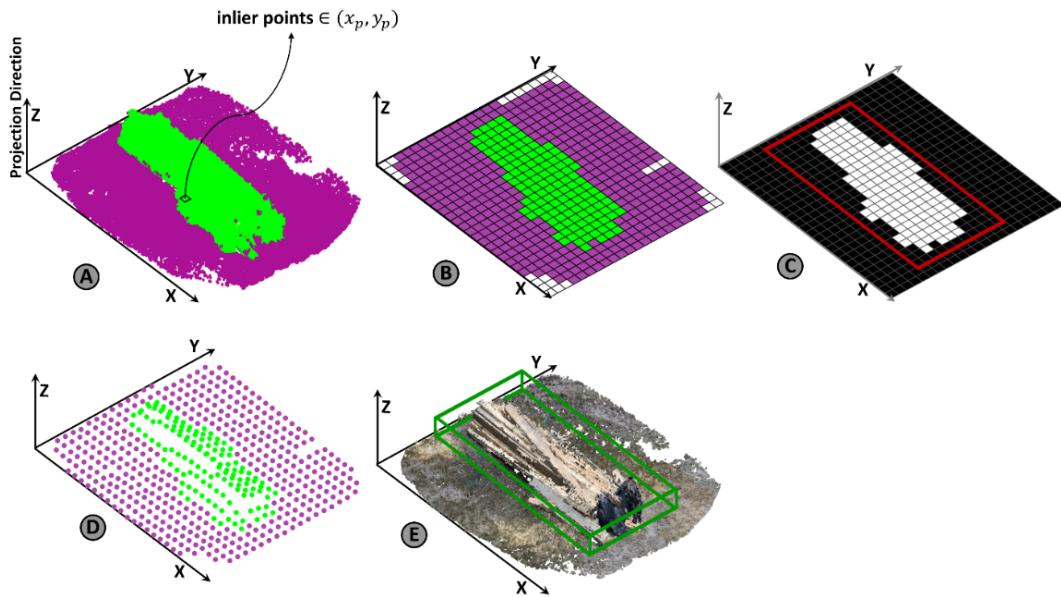
302

303 **3.2. Estimating the quantity of potential wind-borne debris**

304 The potential damage from PWDs is relevant to their weight, once they become projectile and
 305 collide into surrounding environments [50,77,79]. The associated collision damage is also referred
 306 to as the missile impact, which could be lethal to people who are in the immediate vicinity of
 307 PWDs during extreme wind events [79]. Generally, the higher the weight of PWDs, the greater the
 308 devastating impact is expected to take place during extreme wind events [50]. Using the outcomes
 309 of the point cloud semantic segmentation, we perform the volumetric measurement on PWDs, and
 310 then by using the unit weight values, we estimate the weight of PWDs. The volumetric
 311 measurement in the segmented point cloud model is composed of three modules as registration,
 312 projection, and resampling. Given segmented point cloud models, the Random Sample Consensus
 313 (RANSAC) algorithm [80] is employed for the ground registration through plane fitting [71]. Next,
 314 the point cloud model is demonstrated in the cartesian system in which its XoY plane lays over
 315 the registered ground, and its Z axis is parallel to the projection direction (Figure 7a). A grid of

316 pixels over the registered ground is formed, and at each pixel location, a set of points enclosed
317 within each grid is discretized. At each pixel location, the most common semantic class observed
318 among points are inherited by the associated pixel as shown in Figure 7b. The outcome of such 3D
319 to 2D projection is referred to as projection matte in this research.

320



321

322 Figure 7. (a) segmented point cloud, (b) 2D projected matte, (c) instance segmentation, (d)
323 resampled point cloud, (e) 3D bounding box

324

325 Upon the existence of multiple PWDs within a point cloud model, the instance
326 segmentation of each PWD is required to separately assess their characteristics. In order to
327 differentiate the instance of PWDs, a 2D bounding box is retrieved building on the projection
328 matte, and the set of points enclosed within the bounding box is considered as a single instance
329 (Figure 7c). At each pixel location of the projection matte, points representing the pixel are
330 discretized, and the average Z height of points enclosed in each pixel is computed to obtain the
331 resampled point cloud model (Figure 7d). To model the 3D bounding box containing the PWD,

332 we build on the coordinates of the 2D bounding box and compute the maximum and minimum Z
333 height values of the instance (Figure 7e). Finally, the volume of the PWD is computed as the
334 summation of Z height values of the resampled point cloud model multiplied by the square size of
335 pixels in the projected matte, which can be demonstrated as follows:

336

$$V_{pwd} = GS^2 \times \sum_{i=1}^n \sum_{j=1}^m Z_{pwd}((X_i, Y_j)) \quad (2)$$

337

338 where, V_{pwd} indicates the volume of PWD, Z_{pwd} is the height of points belonging to the
339 PWD at the pixel location (X_i, Y_j) , and the parameter GS denotes the grid size. The number of
340 pixels of the projected matte in OX and OY directions are denoted as n and m . Building on the
341 weight per unit volume of PWDs (which also referred to as the unit weight or special weight), the
342 weight of PWDs is obtained as follows:

343

$$M_{pwd} = V_{pwd} \times \rho_{pwd} \quad (3)$$

344

345 where M_{pwd} is the weight, and ρ_{pwd} is the unit weight of PWDs, respectively. Information
346 regarding the unit weight of materials including PWDs, is generally available among practitioners,
347 which enables them to plan for material transportation based on the weight or volume restrictions
348 of transporting vehicles. Contractors also estimate the unit weight when purchasing materials or
349 transporting materials and debris from one location to another.

350

351 **3.3. Threat assessment of potential wind-borne debris**

352 The possible damage imposed by PWDs is associated with its kinetic energy once it is picked up
353 by wind and becomes airborne. Thus, to assess the threat in the context of PWDs, we calculate the
354 kinetic energy associated with PWDs once they become projectiles. Basically, the kinetic energy
355 of an airborne PWD is proportional to its mass and the square of its velocity, which is expressed
356 as follows:

357

$$KE = \frac{1}{2} m_{pwd} U^2 \quad (4)$$

358

359 where KE indicates the kinetic energy of PWD (joules), m_{pwd} denotes the mass of PWD
360 (kg) which is quantified in the section 3.2. The parameter U is associated with the intensity of the
361 wind events and denotes the sustained wind speed (m/s). Not all PWDs become projectiles in wind
362 events; some become projectiles at lower wind speeds, and some at a higher. Thus, the existence
363 of projectiles is based on the critical wind speed. Such critical wind speed accounts for the
364 minimum wind speed that is required to lift a PWD from the ground and make it a projectile [50].
365 Building on [50], the critical wind speed for different types of objects are expressed through
366 Equation (5) and (6) as follows:

367

$$U_c^2 = 2 \left(\frac{\rho_m}{\rho_a} \right) \left(\frac{I}{C_F} \right) lg \quad (5)$$

368

$$U_c^2 = \frac{\pi}{2} \left(\frac{\rho_m}{\rho_a} \right) \left(\frac{I}{C_F} \right) dg \quad (6)$$

369

370 where U_c denotes the critical wind speed of PWD, ρ_m denotes the weight to the volume of
371 PWD, and ρ_a is the density of the air (kg/m^3). For the plate-type of PWD, l denotes its thickness,
372 and similarly, d denotes the external diameter for the rod-type of PWD. The gravitational
373 acceleration is denoted by g (m/s^2). The parameters I and C_F represent the bound and drag
374 coefficient of PWD, which are assumed as unity in this research. By leveraging the mass and the
375 critical wind speed, a heap map is generated to demonstrate threats associated with PWDs at a
376 given wind speed. The heatmaps could be described as weighted pixels [81]. Here, at each pixel
377 location, a weight is computed such that it satisfies Equation (4), provided that the given wind
378 speed is greater than the critical wind speed of given PWDs.

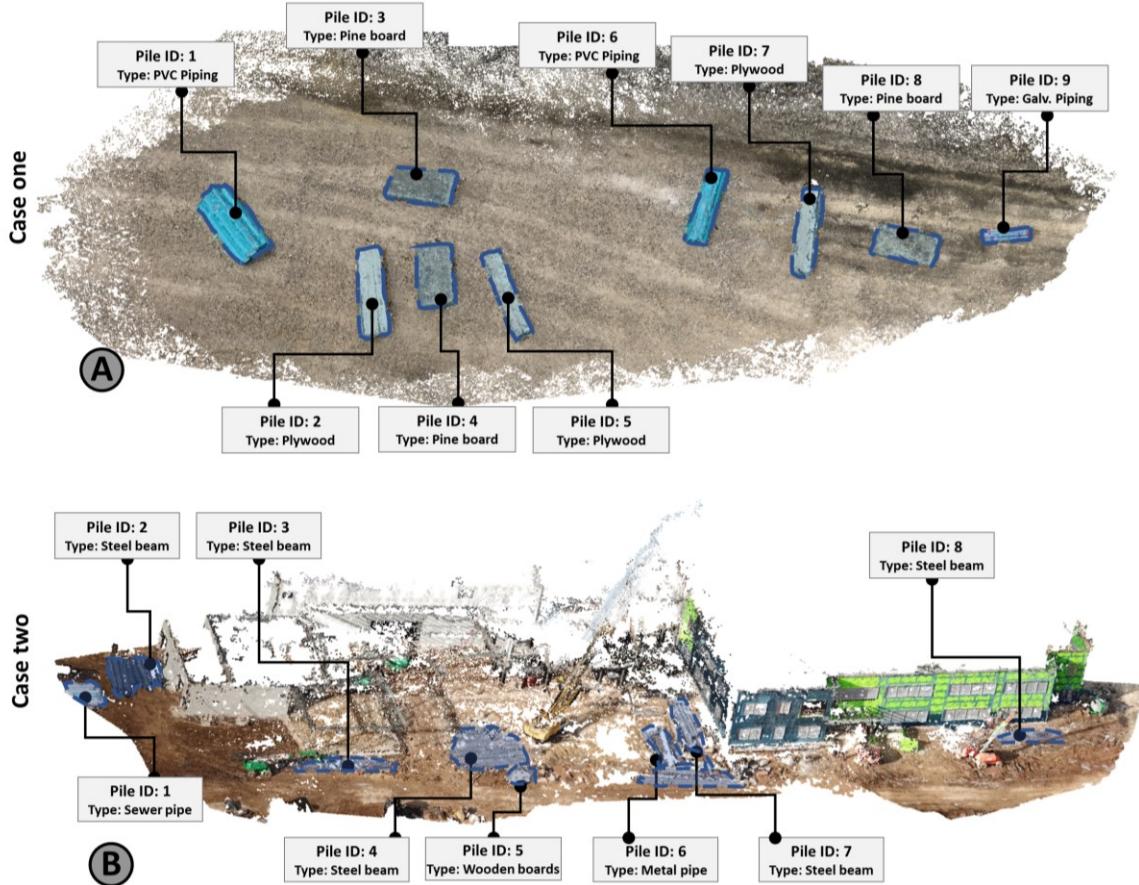
379

380 **4. Case Study and Evaluation**

381 **4.1. Data collection and experimental setup**

382 In this research, two case studies were performed to evaluate the performance of the proposed
383 method. Case #1 represents the laydown yard of a wooden residential construction site, while case
384 #2 demonstrates a more complex jobsite of a commercial facility. There are nine piles of PWDs at
385 different locations of the site (Figure 8a). There are three piles of pine board and plywood, two
386 piles of PVC pipe, and a single pile of galvanized pipe. Case #2 consists of eight piles, including
387 a single pile of sewer pipe, a single pile of metal pipe, a single pile of wooden boards, and five
388 piles of steel beams at different locations (Figure 8b)

389



390

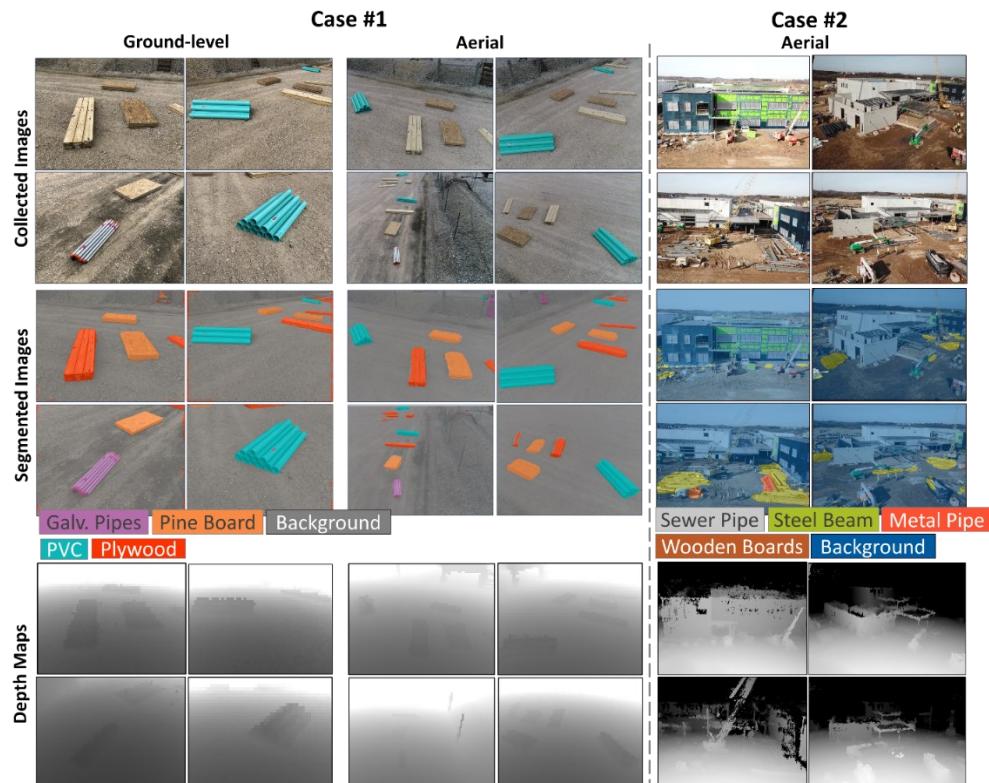
391

392

393 The training dataset in case #1 consists of 360 images (180 from aerial perspectives and 180 from
 394 ground-level). In addition to the aerial visual data collection, due to the proliferation of hand-held
 395 camera-equipped platforms such as smartphones and tablets, ground-level visual data collections
 396 are also considered as the convenient way by practitioners to keep the record of the as-is status of
 397 the jobsite (e.g., prior to extreme weather events such as hurricanes for the purpose of insurance
 398 claim afterward). In order to demonstrate the robustness of the algorithm to both aerial and ground-
 399 level image, the semantic segmentation network was trained and tested on images from these two
 400 domains. In this regard, to evaluate the performance of the network, a total of 60 images, consisting
 401 of 30 aerial and 30 ground-level images, were randomly selected as the testing dataset. In case #1,

402 aerial images were collected from a mid-end commercial UAV which is equipped with a 12-
 403 megapixel camera with a 35 mm lens and ISO range of 100-1600. Flight altitude was around 10
 404 meters with respect to the ground, and the total flight time was around 3 minutes. Ground-level
 405 images were collected from a smartphone with a 12-megapixel camera at around 1.5 meters above
 406 the ground. In case #2, 32 aerial images were used for scene reconstruction in the form of point
 407 clouds and to assess the performance of the semantic segmentation. A total number of 127 images
 408 were used to train the semantic segmentation framework. The aforementioned UAV has been used
 409 for aerial visual data collection. The flight time was around two minutes, and the flight altitude
 410 was approximately 30 meters. Figure 9 shows the collected data in case studies and their
 411 corresponding segmented images and depth maps.

412



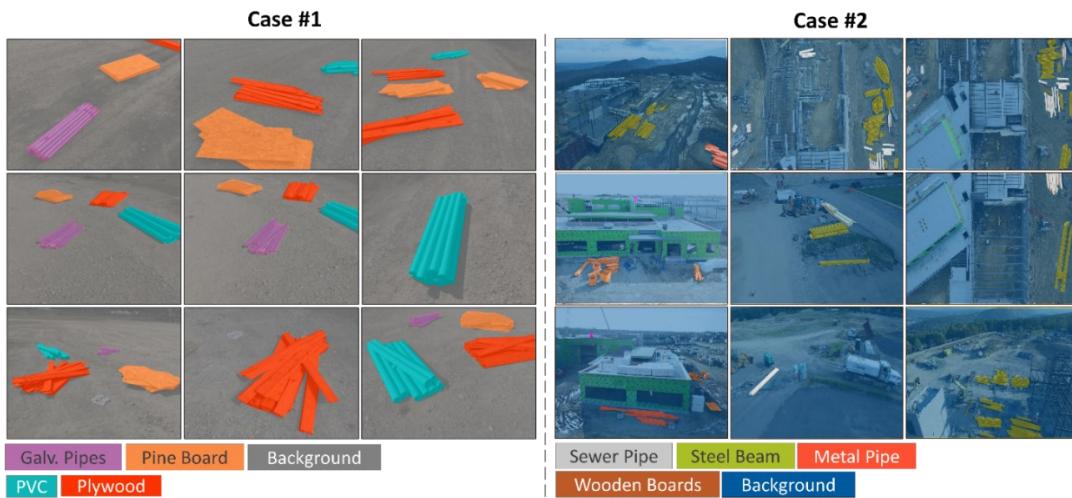
413

414 Figure 9. Examples of collected images, segmented images, and their associated depth maps in
415 case studies

416 **4.2. Performance metrics and outcomes**

417 *4.2.1. Semantic segmentation*

418 The boundaries of PWDs are manually labeled to train the semantic segmentation model, as shown
419 in Figure 10. In order to carry out the semantic segmentation at the 2D level, we built upon different
420 architectures of convolutional deep neural networks, including Alexnet [82], Vgg19 [83],
421 Resnet18 [84], and Resnet50 [84], and evaluated their performance.



422
423 Figure 10. Examples of manually annotated images in case studies

424 Alexnet has two parallel convolutional neural networks connected via cross-connections
425 [82]. To increase accuracy in deep learning models, the Vgg networks are leveraged, which contain
426 large numbers of parameters. Although the Vgg networks are computationally expensive to be
427 optimized due to a higher number of parameters, they are generally used as a baseline for feature
428 extraction [85]. Finally, to enhance the efficiency of the parameter optimization and reduce the
429 search space, residual networks such as Resnet18 and Resnet50 are leveraged, which has
430 demonstrated high performance in terms of computation and accuracy [84]. Unlike conventional

431 networks, the Resnet architectures are robust for optimization, and the performance of the network
 432 is enhanced upon increasing layers of the network [84]. The attributes, as well as the averaged
 433 accuracy of the semantic segmentation of each deep neural network in the case study of a
 434 residential construction site are summarized in Table 2.

435

436 Table 2. Performance of convolutional deep neural networks

Networks	Depth (layers)	Parameters (millions)	Averaged accuracy (%)
Alexnet	8	61.0	89.1
Vgg19	19	144.0	92.3
Resnet18	50	11.4	98.1
Resnet 50	101	25.6	98.2

437

438 As a proof of concept, in our case studies, we built upon the Resnet50 model to carry out
 439 the semantic segmentation. Figure 11 demonstrates the confusion matrix obtained to measure the
 440 2D semantic segmentation accuracy in case studies.

Case one						Case two					
	PVC pipe	Pre-cut plywood	Pine board	Galv. Pipe	Background		Sewer pipe	Wooden board	Steel beams	Metal pipe	Background
PVC pipe	97.63	0.06	1.28	0.0	1.01		66.90	0.00	0.25	14.05	18.79
Pre-cut plywood	0.00	99.79	0.00	0.00	0.20		0.00	86.99	0.00	0.29	12.71
Pine board	0.72	0.31	97.55	0.00	1.40		0.00	0.00	77.46	12.18	10.35
Galv. Pipe	0.00	0.00	0.02	99.65	0.31		0.00	0.00	0.11	95.25	4.63
Background	0.43	0.42	0.49	0.37	98.26		0.00	0.10	0.07	1.65	98.17

PVC pipe
Pre-cut plywood
Pine board
Galv. Pipe
Background

Sewer pipe
Wooden board
Steel beams
Metal pipe
Background

441

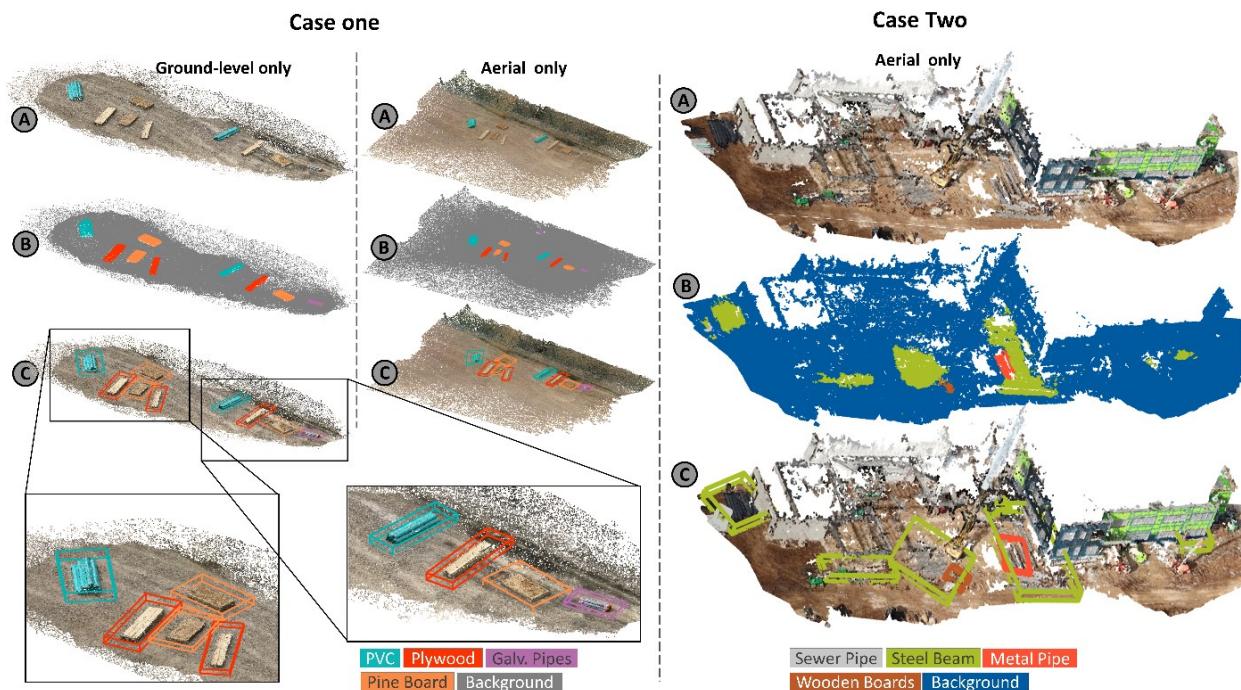
442 Figure 11. Confusion matrix over testing dataset for segmentation

443

444 *4.2.2. Instance segmentation of PWDs*

445 By leveraging the images presented in our case studies, a dense point cloud is reconstructed, and
446 the associated depth map for each image is obtained. The depth-aware projection of the semantic
447 information onto the point cloud model is then conducted, and the point cloud is semantically
448 segmented. The oriented bounding boxes are enforced to demonstrate PWDs in the resulting digital
449 twin model in the form of point clouds. Points enclosed in each bounding box are trimmed from
450 the rest of the point clouds, and the associated PWD is further explored through the volumetric
451 measurement and the threat assessment. Examples of point cloud models and their segmentation
452 as well as the outcome of the instance segmentation, are presented in Figure 12.

453



454

455 Figure 12. (a) original point cloud, (b) segmented point cloud, and (c) the instance segmentation
456 of PWDs in case studies

457

458 *4.2.3. Volumetric measurement*

459 The outcomes of the volumetric measurements on nine instances of PWDs are compared against
 460 the ground truth, and the error is obtained per instance. The grid size of discretization was
 461 experimentally set to 3 centimeters as a proof of concept, in the light of required computational
 462 cost as the computing time could be in inverse proportion to the grid sizing as shown in [71]. Table
 463 3 shows the error of the volumetric measurement based on segmented point cloud models of a
 464 residential construction site in the case study.

465 Table 3. Volumetric measurement on PWDs based on segmented point cloud models

Pile ID#	PWDs	Measured Volume (cm ³)	Ground Truth (cm ³)	Error (%)
1	PVC pipe	168,302	164,329	2.4
2	Plywood	112,773	105,768	6.6
3	Pine board	109,720	102,564	6.9
4	Pine board	70,916	68,376	3.7
5	Plywood	38,521	35,256	9.2
6	PVC pipe	80,803	74,695	8.1
7	Plywood	72,709	70,512	3.1
8	Pine board	53,410	51,270	4.1
9	Galv. Pipe	20,065	18,902	6.1

466

467 *4.2.4. Heatmaps based on the threats associated with PWDs*

468 The unit mass per volume (ρ_{pwd}) is built upon to obtain the mass of each pile based on the volume.

469 The plywood, pine board, and wooden board are considered plate-type debris, while PVC and

470 sewer pipe, steel beam, and galvanized pipe are classified as rod-type debris. The critical wind

471 speed of PWDs is calculated through Equations (5) and (6). Material properties such as mass per

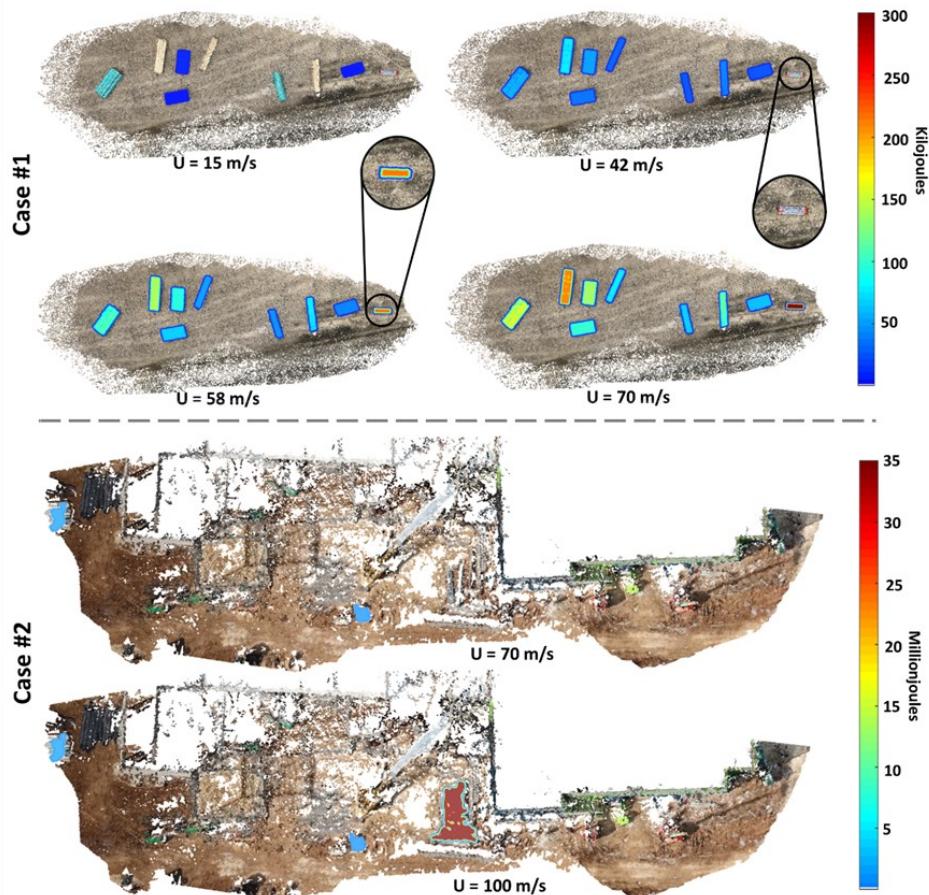
472 unit volume of materials were built upon [86,87]. Threats associated with PWDs are then assessed

473 based on the mass of debris, wind speed, and the critical wind speed of debris, in terms of the

474 kinetic energy. Figure 13 illustrates examples of heatmaps with different wind speeds. The wind

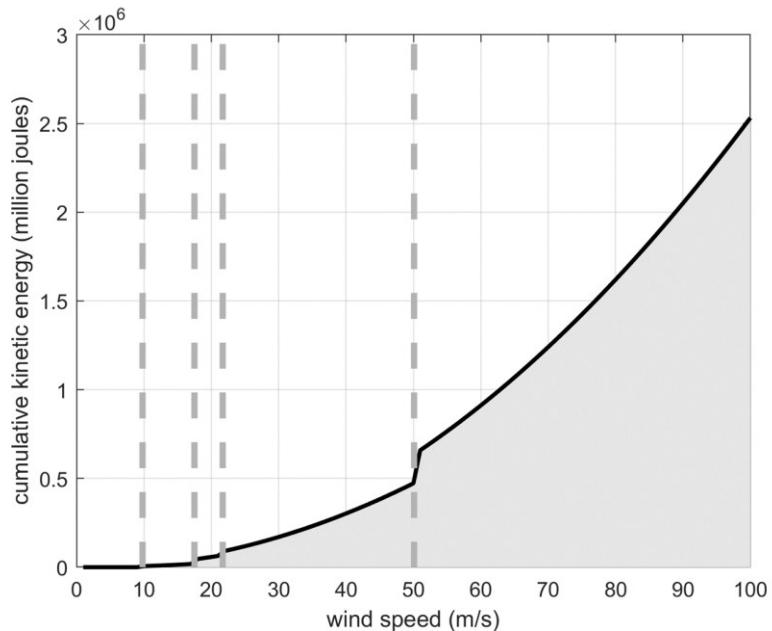
475 speeds of 42, 58, 70, and 100m/s correspond to hurricane categories one, three, four, and five,

476 based on the Saffir-Simpson scale [88].



477

478 Figure 13. Examples of kinetic energy-based threat assessment of PWDs at the different intensity
479 of winds



480

481 Figure 14. Cumulative kinetic energy associated with PWDs with respect to different intensity of
482 winds

483

484 Figure 14 demonstrates the cumulative kinetic energy with respect to PWDs that are
485 present in the case study of a residential construction site. In our case study, the critical wind
486 speeds of 9.8, 17.5, 21.7, and 50.1 m/s are noted for pine board, plywood, PVC pipe, and
487 galvanized pipe, respectively. As observed, the cumulative kinetic energy demonstrates a gradual
488 increase at lower wind speeds but sharply escalates at higher intensity of winds. In addition, an
489 increase in released energy level is observed at the proximity of critical wind speeds, as PWDs
490 become airborne. In the case studies, around 35 percent of an increase was observed at 50.1 m/s
491 as galvanized pipe becomes airborne. Such a significant change in kinetic energy is relevant to the
492 higher density (i.e., high threats) of galvanized pipe compared to the rest of PWDs presented in
493 the case studies.

494

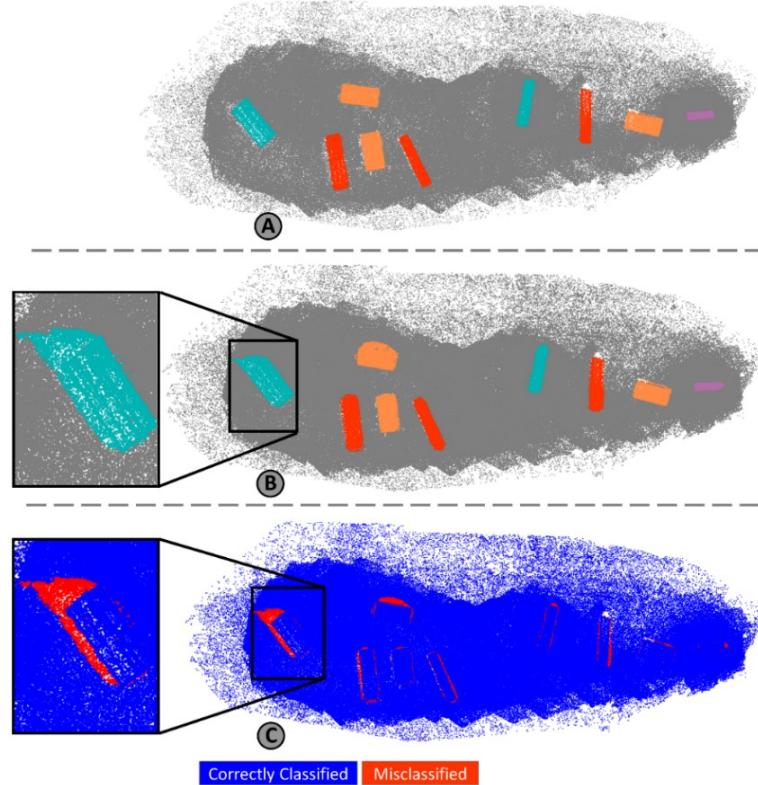
495 **5. Discussions**

496 Figure 13 illustrates the threats associated with PWDs over the at-risk construction environment
497 with respect to the wind intensity. The advantages of generating a heatmap to delineate the threat
498 could be perceived on two fronts: 1) depending on the critical wind speed, some PWDs do not
499 pose any threat at lower wind speeds. For example, in case #1, at 15m/s of winds, it was observed
500 that only pine boards in our case studies are identified as a potential threat among the rest of PWDs.
501 This implies that for lower wind intensities, the hurricane preparedness checklist could be
502 streamlined, which requires securing/relocating the corresponding PWDs from jobsites, and at the
503 same time, relaxing preparedness ordinances for the rest of PWDs that are present in the scene.

504 Such an abstract and yet focused preparedness plan could be effective, given that there is a limited
505 resource (i.e., time, manpower) for hurricane preparedness. 2) Given a particular wind speed, the
506 level of threats among PWDs may vary, which can help the prioritization for preparedness. For
507 instance, at 70m/s of wind speed, galvanized pipe is flagged as the most hazardous PWD in our
508 case studies, while pine boards present a less threat in the jobsite. In our case studies, the volume
509 of galvanized pipes accounts for around three percent of the entire volume of PWDs presented.
510 However, as demonstrated in Figure 14, such a small portion of PWDs could have a significant
511 threat once they become airborne. In this regard, at a given wind speed, exploring the level of
512 potential threat among the PWDs can provide useful information for planning preparedness.
513 Visualization of threat through heatmaps helps provide a prioritized plan to secure PWDs and sorts
514 the most hazardous PWDs to the least. Identifying and prioritizing preemptive measures with
515 respect to the risk level of PWDs is expected to support risk-informed decision-makings for
516 implementing construction site emergency operating protocols to prepare for extreme wind events
517 in an effective manner.

518 In this paper, the depth-aware projection framework could enhance the performance of the
519 point cloud segmentation, which is the critical step to assess the threat associated with PWDs.
520 Depth information indicates the distance in which semantic projection from image to point cloud
521 is valid, in order to account for occlusions during projections. Here, we demonstrate the
522 performance enhancement gained through the depth-aware projection versus the baseline
523 projection through Equation (1). The outcome of the depth-aware projection is shown in Figure
524 15a, and the baseline projection is shown in Figure 15b. Correctly classified and misclassified
525 points are shown in Figure 15c. The average accuracy of the baseline projection was 97.85 percent,

526 while the proposed depth-aware projection demonstrates the accuracy of 99.8 percent in 3D
527 semantic segmentation in our case studies.

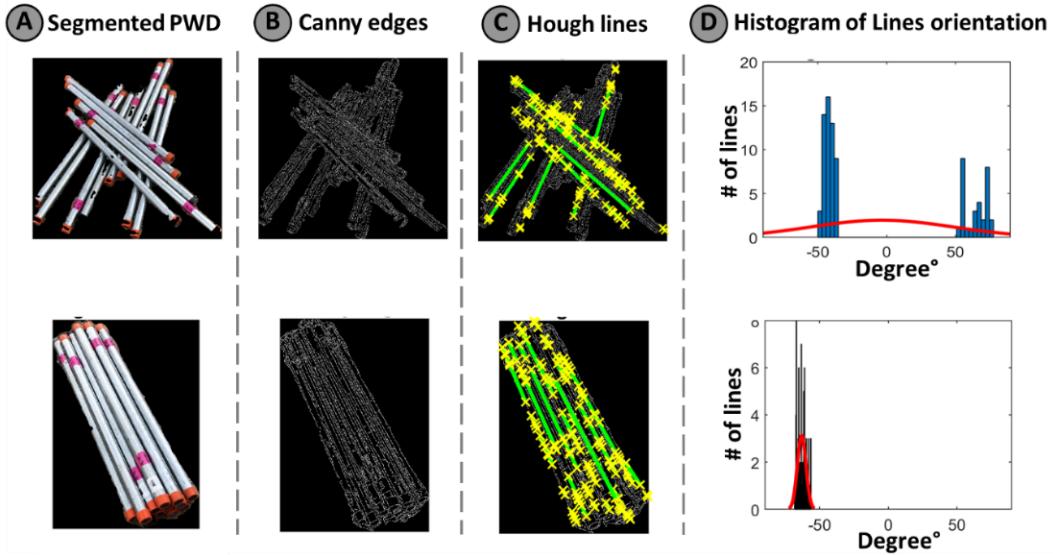


528
529 Figure 15. (a) the proposed depth-aware projection, (b) the baseline projection, and (c) the
530 classification confusion of (b)

531
532 Although OSHA recommends pile and pallet items to be neatly stacked up to ensure
533 stability and enable self-supporting [89], there often exist unstacked piles in jobsites. The proposed
534 volumetric measurement performed well, but a lower accuracy was observed among relatively
535 unstacked piles due to higher levels of disorganization. The overestimation on volumetric
536 measurements often happened due to large amounts of empty spaces within unstacked piles. In
537 this regard, we acknowledge that the volumetric measurement on unstacked piles could be an
538 underlying challenge in vision-based approach as a RGB camera cannot see the unseen inside

539 material piles. In order to estimate the volume taking account of empty spaces, a level of
540 disorganization could be analyzed to consider a lower density of unstacked piles. However, it is
541 expected that unstacked piles demonstrate a wide range of disorganization as the level of
542 disarrangement in stacking varies among piles. Building on [90], the level of disarrangement in
543 stacks could be investigated. First, a target object could be isolated through the semantic
544 segmentation (Figure 16a). Edges are detected to keep dominant edges in the image through
545 thresholding over gradients (Figure 16b) [91]. Then dominant straight lines are extracted through
546 the Hough transformation (Figure 16c) [92]. Finally, the orientations of straight lines are
547 investigated, and a histogram of line orientation can be generated. As observed in Figure 16d, for
548 stacked PWDs, the standard deviation of line orientation is lower compared to that of relatively
549 unstacked PWDs. The standard deviation of line orientation could represent the level of
550 disorganization in stacking. Such level of disorganization among relatively unstacked piles would
551 be further studied to calibrate the volumetric measurement. But in case of relatively unstacked
552 piles, it is noted that they should be considered with the top priority for hurricane preparedness,
553 and thus the detection of such objects based on the level of disorganization and their localization
554 through the digital twinning module could be sufficient to trigger the prioritized actions (i.e., quick
555 relocations) before extreme wind events.

556



557

558 Figure 16. Level of disarrangement among relatively unstacked piles (top)
 559 (bottom)

560

561 6. Conclusions

562 Potential wind-borne debris (PWDs) are among the most destructive elements in extreme wind
 563 events. In particular, construction sites containing unsecured resources are identified among the
 564 most exposed and undefended environments to extreme wind events. Thus far, preemptive efforts
 565 have been put in by construction firms to develop and implement protocols to identify PWDs and
 566 mitigation plans to better prepare against wind events. However, the assessment is not systematic,
 567 and heuristic approaches in jobsites are likely to be error-prone and labor-intensive. The
 568 advancement of machine vision and the convenience of UAVs have offered opportunities to collect
 569 large-scale imagery and generate digital photologs to keep the record of errands in construction
 570 projects. In this paper, we propose a rapid and in-situ risk assessment of PWDs by encoding their
 571 risk into machine vision algorithms to automatically flag the degree of vulnerability in jobsites.
 572 The proposed method is built upon three modules: 1) digital twining and rapid 2D/3D semantic

573 segmentation, 2) volumetric measurement and the mass evaluation, and 3) risk assessment on
574 PWDs. The proposed method generates site-specific heatmaps regarding threats that is respective
575 to the intensity of wind events. PWDs presented in our case studies are commonly found in
576 residential construction sites, including plywoods, pine boards, or PVC/galvanized pipes. The
577 proposed method supports risk-informed decision-making by providing a heads-up to practitioners
578 and fosters awareness of the ways in which hurricanes could be destructive in construction sites.
579 Moreover, the proposed method has the potential in rapid scene understanding to be integrated into
580 site monitoring systems. While this research enables an automated risk assessment in the context
581 of hurricane preparedness, there are open research challenges associated with the proposed
582 method. For instance, it is expected that 3D and 2D semantic segmentation modules may
583 demonstrate poor performance in suboptimal weather conditions such as rainy [93] and foggy [94]
584 situations or dim light conditions [95]. Moreover, the presence of occlusions and moving objects
585 in jobsites is another challenge in reality-capture and digital twining frameworks. In this regard,
586 building a robust machine vision-based system that can account for such challenges is the direction
587 of our ongoing research.

588

589 **Acknowledgment**

590 This material is based upon work supported by the National Science Foundation under Grant No.
591 1832187. Any opinions, findings, and conclusions or recommendations expressed in this material
592 are those of the author(s) and do not necessarily reflect the views of the National Science
593 Foundation.

594

595 **References**

- 596 [1] Y. Ham, S.J. Lee, A.G. Chowdhury, Imaging-to-simulation framework for improving disaster
 597 preparedness of construction projects and neighboring communities, Computing in Civil
 598 Engineering 2017, 2017, pp. 230-237 DOI: <https://doi.org/10.1061/9780784480830.029>.
- 599 [2] M.S. CHAVEZ, Hurricane Preparedness in a Construction Site: a Framework to Assess the
 600 Construction Companies' Current Practices, (2016) DOI: <https://10.25148/etd.FIDC001187>
- 601 [3] A. Gupta, H. Lamba, P. Kumaraguru, A. Joshi, Faking sandy: characterizing and identifying fake
 602 images on twitter during hurricane sandy, Proceedings of the 22nd international conference on
 603 World Wide Web, 2013, pp. 729-736 DOI: <https://doi.org/10.1145/2487788.2488033>.
- 604 [4] Fermino, Sandy caused \$185M in damage to WTC site, (2013).
- 605 [5] P. McCarthy, E. Soderberg, A. Dix, Wind damage to dockside cranes: Recent failures and
 606 recommendations, TCLEE 2009: Lifeline Earthquake Engineering in a Multihazard
 607 Environment, 2009, pp. 1-12 DOI: [https://doi.org/10.1061/41050\(357\)50](https://doi.org/10.1061/41050(357)50).
- 608 [6] Y. Li, B.R. Ellingwood, Hurricane damage to residential construction in the US: Importance of
 609 uncertainty modeling in risk assessment, Engineering structures 28 (2006) 1009-1018 DOI:
 610 <https://doi.org/10.1016/j.engstruct.2005.11.005>.
- 611 [7] D.L. Bass, G. Overcash, FEMA's Wind Retrofit Guide, Advances in Hurricane Engineering:
 612 Learning from Our Past, 2013, pp. 229-237 DOI: <https://doi.org/10.1061/9780784412626.021>.
- 613 [8] J. Zhu, A. Mostafavi, An Integrated Framework for the Assessment of the Impacts of Uncertainty
 614 in Construction Projects Using Dynamic Network Simulation, Computing in Civil Engineering
 615 2015, 2015, pp. 355-362 DOI: <https://doi.org/10.1061/9780784479247.044>.
- 616 [9] B. Lee, Engineering design for extreme winds in Hong Kong, Hong Kong Engineer 16 (4) (1988)
 617 15-23 DOI: <https://ci.nii.ac.jp/naid/10007252645/>.
- 618 [10] J.E. Minor, Windborne debris and the building envelope, Journal of Wind Engineering and
 619 Industrial Aerodynamics 53 (1-2) (1994) 207-227 DOI: [https://doi.org/10.1016/0167-6105\(94\)90027-2](https://doi.org/10.1016/0167-6105(94)90027-2).
- 620 [11] A. Kareem, Performance of cladding in Hurricane Alicia, Journal of Structural Engineering 112
 621 (12) (1986) 2679-2693 DOI: [https://doi.org/10.1061/\(ASCE\)0733-9445\(1986\)112:12\(2679\)](https://doi.org/10.1061/(ASCE)0733-9445(1986)112:12(2679)).
- 622 [12] F. Kadri, B. Birregah, E. Châtele, The impact of natural disasters on critical infrastructures: A
 623 domino effect-based study, Journal of Homeland Security and Emergency Management 11 (2)
 624 (2014) 217-241 DOI: <https://doi.org/10.1515/jhsem-2012-0077>.
- 625 [13] WKWB News, Wind Damage to Construction Site, <https://www.youtube.com/watch?v=v-3c4CFLtvY>, Access Date: 10/13/21.
- 626 [14] NBC2 News, Construction sites bracing for Hurricane Dorian's impact,
 627 <https://www.youtube.com/watch?v=uM5yGAKMUjQ>, Access Date: 10/13/21.
- 628 [15] SunSentinel, Hurricane Irma debris piles could be around for months, <https://www.sun-sentinel.com/news/weather/hurricane/fl-reg-hurricane-irma-debris-disposal-delays-20170919-story.html>, Access date: 10/13/21.
- 629 [16] United States Department of Homeland Security, Homeland SPre-Disaster Debris Removal
 630 Contracts in Florida, <https://www.oig.dhs.gov/sites/default/files/assets/2020-08/OIG-20-44-Jul20.pdf>, Access Date: 10/13/21.
- 631 [17] S.A. Cauffman, Performance of physical structures in Hurricane Katrina & Hurricane Rita: A
 632 reconnaissance report, DIANE Publishing, 2006 DOI: <https://doi.org/10.6028/nist.tn.1476>.
- 633 [18] I. Jeelani, K. Asadi, H. Ramshankar, K. Han, A. Albert, Real-world Mapping of Gaze Fixations
 634 Using Instance Segmentation for Road Construction Safety Applications, (2019) DOI:
 635 <https://arxiv.org/abs/1901.11078>.
- 636 [19] M. Kamari, O. Gunes, Segmentation and Analysis of a Sketched Truss Frame Using
 637 Morphological Image Processing Techniques, (2016) DOI:
 638 <https://arxiv.org/ftp/arxiv/papers/2009/2009.13144.pdf>.
- 639 [20] Y. Ham, M. Kamari, Automated content-based filtering for enhanced vision-based documentation
 640 in construction toward exploiting big visual data from drones, AutoCon (2019) DOI:
 641 <https://doi.org/10.1016/j.autcon.2019.102831>.

- 647 [21] M. Kamari, Y. Ham, Automated Filtering Big Visual Data from Drones for Enhanced Visual
 648 Analytics in Construction, ASCE Construction Research Congress 2018, 2018 DOI:
 649 <https://doi.org/10.1061/9780784481264.039>.
- 650 [22] Z. Ghorbani, A.H. Behzadan, Identification and Instance Segmentation of Oil Spills Using Deep
 651 Neural Networks, CSEE 2020 (2020).
- 652 [23] M. Razavi, H. Alikhani, V. Janfaza, B. Sadeghi, E. Alikhani, An automatic system to monitor the
 653 physical distance and face mask wearing of construction workers in covid-19 pandemic, (2021)
 654 DOI: <https://arxiv.org/ftp/arxiv/papers/2101/2101.01373.pdf>.
- 655 [24] M. Kamari, Y. Ham, Semantic Detection of Potential Wind-borne Debris in Construction
 656 Jobsites: Digital Twining for Hurricane Preparedness and Jobsite Safety International
 657 Conference on Computing in Civil Engineering (i3CE), ASCE, Orlando, Florida, 2021 DOI:
 658 <https://doi.org/10.1061/9780784482865.097>.
- 659 [25] M. Noghhabaei, A. Heydarian, V. Balali, K.J.D. Han, Trend analysis on adoption of virtual and
 660 augmented reality in the architecture, engineering, and construction industry, 5 (1) (2020) 26
 661 DOI: <https://doi.org/10.3390/data5010026>.
- 662 [26] M. Noghhabaei, K. Asadi, K. Han, Virtual manipulation in an immersive virtual environment:
 663 Simulation of virtual assembly, Computing in Civil Engineering 2019: Visualization,
 664 Information Modeling, and Simulation, American Society of Civil Engineers Reston, VA, 2019,
 665 pp. 95-102 DOI: <https://doi.org/10.1061/9780784482421.013>.
- 666 [27] B. Sherafat, C.R. Ahn, R. Akhavian, Automated Methods for Activity Recognition of
 667 Construction Workers and Equipment: State-of-the-Art Review, (2020) DOI:
 668 [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001843](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001843).
- 669 [28] S. Siebert, J. Teizer, Mobile 3D mapping for surveying earthwork projects using an Unmanned
 670 Aerial Vehicle (UAV) system, Automation in Construction 41 (2014) DOI:
 671 <https://doi.org/10.1016/j.autcon.2014.01.004>.
- 672 [29] Y. Ham, K.K. Han, J.J. Lin, M. Golparvar-Fard, Visual monitoring of civil infrastructure systems
 673 via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works,
 674 Visualization in Engineering 4 (2016) 1 DOI: <https://doi.org/10.1186/s40327-015-0029-z>.
- 675 [30] M. Golparvar-Fard, F. Peña-Mora, S. Savarese, Automated Progress Monitoring Using
 676 Unordered Daily Construction Photographs and IFC-Based Building Information Models, Journal
 677 of Computing in Civil Engineering 29 (2015) 04014025 DOI: [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000205](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000205).
- 679 [31] K.K. Han, M. Golparvar-Fard, Automated Monitoring of Operation-level Construction Progress
 680 Using 4D BIM and Daily Site Photologs, Construction Research Congress 2014, American
 681 Society of Civil Engineers, Reston, VA, 2014, pp. 1033-1042 DOI:
 682 <https://doi.org/10.1061/9780784413517.106>.
- 683 [32] M. Golparvar-Fard, F. Peña-Mora, S. Savarese, D4AR—a 4-dimensional augmented reality model
 684 for automating construction progress monitoring data collection, processing and communication,
 685 Journal of information technology in construction 14 (13) (2009) 129-153.
- 686 [33] M. Gheisari, B. Esmaeili, Unmanned aerial systems (UAS) for construction safety applications,
 687 Construction Research Congress 2016, 2016, pp. 2642-2650 DOI:
 688 <https://doi.org/10.1061/9780784479827.263>.
- 689 [34] M. Gheisari, J. Irizarry, B.N. Walker, UAS4SAFETY: The potential of unmanned aerial systems
 690 for construction safety applications, Construction Research Congress 2014: Construction in a
 691 Global Network, 2014, pp. 1801-1810 DOI: <https://doi.org/10.1061/9780784413517.184>.
- 692 [35] J. Irizarry, M. Gheisari, B. Walker, Usability Assessment of Drone Technology as Safety
 693 Inspection Tools, Journal of information technology in construction 17 (2012) DOI:
 694 <http://www.itcon.org/2012/12>.
- 695 [36] B. Alizadeh, A.H.J.C. Behzadan, Environment, U. Systems, Flood depth mapping in street photos
 696 with image processing and deep neural networks, 88 (2021) 101628 DOI:
 697 <https://doi.org/10.1016/j.compenvurbsys.2021.101628>.

- 698 [37] B. Alizadeh, D. Li, Z. Zhang, A.H.J.a.p.a. Behzadan, Feasibility study of urban flood mapping
699 using traffic signs for route optimization, (2021) DOI: <https://arxiv.org/abs/2109.11712>.
- 700 [38] M. Kamari, Y. Ham, Analyzing Potential Risk of Wind-induced Damage in Construction Sites
701 and Neighboring Communities using Large-scale Visual Data from Drones, CRC 2020, Tempe,
702 Arizona, 2020 DOI: <https://doi.org/10.1061/9780784482865.097>.
- 703 [39] C.E. Gregg, B.F. Houghton, D.M. Johnston, D. Paton, D. Swanson, The perception of volcanic
704 risk in Kona communities from Mauna Loa and Hualālai volcanoes, Hawai, (2004) DOI:
705 [https://doi.org/10.1016/S0377-0273\(03\)00288-9](https://doi.org/10.1016/S0377-0273(03)00288-9).
- 706 [40] L.S. Pheng, B. Raphael, W.K.J.S.s. Kit, Tsunamis: some pre-emptive disaster planning and
707 management issues for consideration by the construction industry, 24 (5) (2006) 378-396 DOI:
708 <https://doi.org/10.1108/02630800610711979>.
- 709 [41] G. Carter, S.D.J.J.o.c.e. Smith, management, Safety hazard identification on construction
710 projects, 132 (2) (2006) 197-205 DOI: [https://doi.org/10.1061/\(ASCE\)0733-9364\(2006\)132:2\(197\)](https://doi.org/10.1061/(ASCE)0733-9364(2006)132:2(197)).
- 712 [42] A. Albert, M.R. Hallowell, B.M.J.C.M. Kleiner, Economics, Experimental field testing of a real-
713 time construction hazard identification and transmission technique, 32 (10) (2014) 1000-1016
714 DOI: <https://doi.org/10.1080/01446193.2014.929721>.
- 715 [43] D. Paton, D.J.D.P. Johnston, M.A.I. Journal, Disasters and communities: vulnerability, resilience
716 and preparedness, (2001) DOI: <https://doi.org/10.1108/EUM0000000005930>.
- 717 [44] B. Adame, C.H.J.D.P. Miller, Management, Vested interest: developing scales for assessing
718 flooding preparedness, (2016) DOI: <https://doi.org/10.1108/DPM-08-2015-0196>.
- 719 [45] S. Asadi, E. Karan, A.J.I.J.o.S. Mohammadpour, Advancing safety by in-depth assessment of
720 workers attention and perception, 1 (03) (2017) 46-60 DOI: 10.24900/ijss/01034660.2017.1201.
- 721 [46] R.-J. Dzeng, C.-T. Lin, Y.-C.J.S.s. Fang, Using eye-tracker to compare search patterns between
722 experienced and novice workers for site hazard identification, 82 (2016) 56-67 DOI:
723 <https://doi.org/10.1016/j.ssci.2015.08.008>.
- 724 [47] S. Hasanzadeh, B. Esmaeili, M.D.J.J.o.c.e. Dodd, management, Impact of construction workers'
725 hazard identification skills on their visual attention, 143 (10) (2017) 04017070 DOI:
726 [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001373](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001373).
- 727 [48] I. Jeelani, K. Han, A.J.A.i.C. Albert, Automating and scaling personalized safety training using
728 eye-tracking data, 93 (2018) 63-77 DOI: <https://doi.org/10.1016/j.autcon.2018.05.006>.
- 729 [49] I. Jeelani, A. Albert, K. Han, R.J.J.o.c.e. Azevedo, management, Are visual search patterns
730 predictive of hazard recognition performance? Empirical investigation using eye-tracking
731 technology, 145 (1) (2019) 04018115 DOI: [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0001589](https://doi.org/10.1061/(ASCE)CO.1943-7862.0001589).
- 733 [50] J. Wills, B. Lee, T. Wyatt, A model of wind-borne debris damage, Journal of Wind Engineering
734 and Industrial Aerodynamics 90 (4-5) (2002) 555-565.
- 735 [51] J. Holmes, C.W. Letchford, N. Lin, Investigations of plate-type windborne debris—Part II:
736 Computed trajectories, Journal of Wind Engineering and Industrial Aerodynamics 94 (1) (2006)
737 21-39 DOI: <https://doi.org/10.1016/j.jweia.2005.10.002>.
- 738 [52] J. Holmes, Trajectories of spheres in strong winds with application to wind-borne debris, Journal
739 of Wind Engineering and Industrial Aerodynamics 92 (1) (2004) 9-22 DOI:
740 <https://doi.org/10.1016/j.jweia.2003.09.031>.
- 741 [53] M.J.I.t.o.c. Liu, Robotic online path planning on point cloud, 46 (5) (2015) 1217-1228 DOI:
742 <https://doi.org/10.1109/TCYB.2015.2430526>.
- 743 [54] L. Han, T. Zheng, Y. Zhu, L. Xu, L.J.I.T.o.V. Fang, C. Graphics, Live Semantic 3D Perception
744 for Immersive Augmented Reality, 26 (5) (2020) 2012-2022 DOI:
745 <https://doi.org/10.1109/TVCG.2020.2973477>.
- 746 [55] M. Abdou, M. Elkhateeb, I. Sobh, A.J.a.p.a. Elsallab, End-to-end 3d-pointcloud semantic
747 segmentation for autonomous driving, (2019) DOI: <https://arxiv.org/abs/1906.10964>.

- 748 [56] T. Ni, L. Xie, H. Zheng, E.K. Fishman, A. Yuille, Elastic boundary projection for 3d medical
 749 imaging segmentation, (2018) DOI: <https://arxiv.org/abs/1812.00518>.
- 750 [57] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for
 751 3d shape recognition, Proceedings of the IEEE international conference on computer vision,
 752 2015, pp. 945-953 DOI: <https://arxiv.org/abs/1505.00880>.
- 753 [58] D. Maturana, S. Scherer, Voxnet: A 3d convolutional neural network for real-time object
 754 recognition, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
 755 IEEE, 2015, pp. 922-928 DOI: <https://10.1109/IROS.2015.7353481>.
- 756 [59] M. Bassier, M. Vergauwen, F.J.R.S. Poux, Point Cloud vs. Mesh Features for Building Interior
 757 Classification, 12 (14) (2020) 2224 DOI: <https://doi.org/10.3390/rs12142224>.
- 758 [60] C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3d classification and
 759 segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern
 760 Recognition, 2017, pp. 652-660 DOI: <https://arxiv.org/abs/1612.00593>.
- 761 [61] J.W. Ma, T. Czerniawski, F. Leite, Semantic segmentation of point clouds of building interiors
 762 with deep learning: Augmenting training datasets with synthetic BIM-based point clouds,
 763 Automation in Construction 113 (2020) 103144 DOI:
<https://doi.org/10.1016/j.autcon.2020.103144>.
- 764 [62] E. Valero, F. Bosché, A.J.A.i.C. Forster, Automatic segmentation of 3D point clouds of rubble
 765 masonry walls, and its application to building surveying, repair and maintenance, 96 (2018) 29-
 766 39 DOI: <https://doi.org/10.1016/j.autcon.2018.08.018>.
- 767 [63] A. Khaloo, D.J.A.E.I. Lattanzi, Robust normal estimation and region growing segmentation of
 768 infrastructure 3D point cloud models, 34 (2017) 1-16 DOI:
<https://doi.org/10.1016/j.aei.2017.07.002>.
- 769 [64] Q. Wang, Automatic checks from 3D point cloud data for safety regulation compliance for
 770 scaffold work platforms, Automation in Construction 104 (2019) 38-51 DOI:
<https://doi.org/10.1016/j.autcon.2019.04.008>.
- 771 [65] Q. Wang, M.-K.J.A.E.I. Kim, Applications of 3D point cloud data in the construction industry: A
 772 fifteen-year review from 2004 to 2018, 39 (2019) 306-319 DOI:
<https://doi.org/10.1016/j.aei.2019.02.007>.
- 772 [66] Y. Xu, S. Tuttas, L. Hoegner, U.J.A.i.C. Stilla, Reconstruction of scaffolds from a
 773 photogrammetric point cloud of construction sites using a novel 3D local feature descriptor, 85
 774 (2018) 76-95 DOI: <https://doi.org/10.1016/j.autcon.2017.09.014>.
- 775 [67] C. Kim, H. Son, C.J.A.i.C. Kim, Automated construction progress measurement using a 4D
 776 building information model and 3D data, 31 (2013) 75-82 DOI:
<https://doi.org/10.1016/j.autcon.2012.11.041>.
- 777 [68] Q. Wang, J.C. Cheng, H.J.C.A.C. Sohn, I. Engineering, Automated estimation of reinforced
 778 precast concrete rebar positions using colored laser scan data, 32 (9) (2017) 787-802 DOI:
<https://doi.org/10.1111/mice.12293>.
- 779 [69] J. Chen, Y. Fang, Y.K. Cho, C.J.J.o.C.i.C.E. Kim, Principal axes descriptor for automated
 780 construction-equipment classification from point clouds, 31 (2) (2017) 04016058 DOI:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000628](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000628).
- 781 [70] S.I. Nikolenko, Synthetic data for deep learning, Springer, 2019.
- 782 [71] M. Kamari, Y. Ham, Vision-based volumetric measurements via deep learning-based point cloud
 783 segmentation for material management in jobsites, Automation in Construction (2020) DOI:
<https://doi.org/10.1016/j.autcon.2018.08.018>.
- 784 [72] R. Lu, I. Brilakis, Digital twinning of existing reinforced concrete bridges from labelled point
 785 clusters, Automation in Construction 105 (2019) 102837 DOI:
<https://doi.org/10.1016/j.autcon.2019.102837>.
- 786 [73] C. Wu, Towards linear-time incremental structure from motion, 2013 International Conference
 787 on 3D Vision-3DV 2013, 2013, pp. 127-134 DOI: <https://doi.org/10.1109/3DV.2013.25>.

- 798 [74] Y. Furukawa, J. Ponce, Accurate, Dense, and Robust Multiview Stereopsis, IEEE transactions on
 799 pattern analysis and machine intelligence 32 (2010) 1362-1376 DOI:
 800 <https://10.0.4.85/TPAMI.2009.161>.
- 801 [75] D.G. Lowe, others, Object recognition from local scale-invariant features., iccv, Vol. 99, 1999,
 802 pp. 1150-1157 DOI: <https://10.1109/ICCV.1999.790410>.
- 803 [76] R.J.A.f.H. Taher, General Recommendations for Improved Building Practices in Earthquake and
 804 Hurricane Prone Areas, (2010).
- 805 [77] S.o.W.-B. Debris, Wind-Borne Debris Hazards, American Society of Civil Engineers, 2018 DOI:
 806 <https://doi.org/10.1061/9780784414965>.
- 807 [78] V. Balali, M. Golparvar-Fard, Segmentation and recognition of roadway assets from car-mounted
 808 camera video streams using a scalable non-parametric image parsing method, Automation in
 809 Construction 49 (2015) 27-39 DOI: <https://10.1016/j.autcon.2014.09.007>.
- 810 [79] W. Chen, H.J.M. Hao, Design, Experimental and numerical study of composite lightweight
 811 structural insulated panel with expanded polystyrene core against windborne debris impacts, 60
 812 (2014) 409-423 DOI: <https://doi.org/10.1016/j.matdes.2014.04.038>.
- 813 [80] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with
 814 applications to image analysis and automated cartography, Communications of the ACM 24 (6)
 815 (1981) 381-395 DOI: <https://doi.org/10.1145/358669.358692>.
- 816 [81] A.T. Duchowski, M.M. Price, M. Meyer, P. Orero, Aggregate gaze visualization with real-time
 817 heatmaps, Proceedings of the symposium on eye tracking research and applications, 2012, pp.
 818 13-20 DOI: <https://doi.org/10.1145/2168556.2168558>.
- 819 [82] A. Krizhevsky, I. Sutskever, G.E.J.C.o.t.A. Hinton, Imagenet classification with deep
 820 convolutional neural networks, 60 (6) (2017) 84-90 DOI: <https://doi.org/10.1145/3065386>.
- 821 [83] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
 822 Khosla, M.J.I.j.o.c.v. Bernstein, Imagenet large scale visual recognition challenge, 115 (3)
 823 (2015) 211-252 DOI: <https://doi.org/10.1007/s11263-015-0816-y>.
- 824 [84] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of
 825 the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778 DOI:
 826 <https://10.1109/CVPR.2016.90>.
- 827 [85] X. Lu, X. Duan, X. Mao, Y. Li, X.J.M.P.i.E. Zhang, Feature extraction and fusion using deep
 828 convolutional neural networks for face detection, 2017 (2017) DOI:
 829 <https://doi.org/10.1155/2017/1376726>.
- 830 [86] Density of Some Common Building Materials,
 831 <https://www.rfcafe.com/references/general/density-building-materials.htm>, Access Date:
 832 10/23/21.
- 833 [87] PVC Datasheet, <https://www.piping-designer.com/index.php/datasheets/piping-datasheets/1663-pipe-pvc-ansi-sch-120-in>, Access Date: 10/23/21.
- 834 [88] H.T. Taylor, B. Ward, M. Willis, W. Zaleski, The Saffir-Simpson hurricane wind scale,
 835 Atmospheric Administration: Washington (2010) DOI: <https://doi.org/10.7560/319727-010>.
- 836 [89] OSHA, DOI: <https://www.osha.gov/sites/default/files/publications/osha2236.pdf>.
- 837 [90] J. Kim, M. Kamari, S. Lee, Y. Ham, Large Scale Visual Data-Driven Probabilistic Risk
 838 Assessment of Utility Poles regarding the Vulnerability of Power Distribution Infrastructure
 839 System, Journal of Construction Engineering and Management (2021) DOI:
 840 [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0002153](https://doi.org/10.1061/(ASCE)CO.1943-7862.0002153).
- 841 [91] J.J.I.T.o.p.a. Canny, m. intelligence, A computational approach to edge detection, (6) (1986)
 842 679-698 DOI: <https://10.1109/TPAMI.1986.4767851>.
- 843 [92] D. Montero, C. Rueda, Detection of palm oil bud rot employing artificial vision, IOP Conference
 844 Series: Materials Science and Engineering, Vol. 437, IOP Publishing, 2018, p. 012004 DOI:
 845 <https://10.1088/1757-899X/437/1/012004>.

- 847 [93] H. Porav, T. Bruls, P. Newman, I can see clearly now: Image restoration via de-raining, 2019
848 International Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 7087-7093 DOI:
849 <https://10.1109/ICRA.2019.8793486>.
- 850 [94] M. Hahner, D. Dai, C. Sakaridis, J.-N. Zaech, L. Van Gool, Semantic understanding of foggy
851 scenes with purely synthetic data, 2019 IEEE Intelligent Transportation Systems Conference
852 (ITSC), IEEE, 2019, pp. 3675-3681 DOI: <https://arxiv.org/pdf/1910.03997.pdf>.
- 853 [95] M. Limmer, J. Forster, D. Baudach, F. Schüle, R. Schweiger, H.P. Lensch, Robust deep-learning-
854 based road-prediction for augmented reality navigation systems at night, 2016 IEEE 19th
855 International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2016, pp. 1888-
856 1895 DOI: <https://10.1109/ITSC.2016.7795862>.
- 857