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Abstract 11 

Hurricanes are among the most devastating natural disasters in the United States, causing billions 12 

of dollars of property damage and insured losses. During extreme wind events, unsecured objects 13 

in jobsites can easily become airborne debris, which results in substantial loss to construction 14 

projects and neighboring communities. Toward a systematic disaster preparedness in construction 15 

jobsites, this paper presents a novel vision-based digital twinning and threat assessment 16 

framework. We encode the context of disaster risk into deep-learning architectures to identify and 17 

analyze the characteristics and impacts of potential wind-borne debris in construction site digital 18 

twin models. Case studies on nine piles of construction materials are presented to demonstrate and 19 

discuss the fidelity of the proposed computational modules. The proposed methods are expected 20 

to help provide heads up for practitioners to quickly recognize, localize, and assess potential wind-21 

borne derbies in construction jobsites, and thereby implementing hurricane preparedness in an 22 

effective and timely manner. 23 
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 24 

1. Introduction 25 

Dynamic and complex construction sites including incomplete structures and unsecured resources, 26 

are among the most vulnerable environments to extreme wind events [1]. Severe wind-induced 27 

damages significantly attenuate the efficiency of construction projects by causing considerable 28 

schedule delays and further negatively impact neighboring infrastructures in operations (e.g., 29 

roads, power grids), and thus trigger notable disruptions and financial losses in communities [1,2]. 30 

For instance, along with around 50 billion dollars in damage and more than 250 fatalities, 31 

Hurricane Sandy has caused over 185 million dollars’ worth of damage to the construction project 32 

of the World Trade Center [3,4]. Severe wind-induced disruptions could be classified in three 33 

folds: (1) structural or mechanical failures such as tower crane collapses due to excessive wind 34 

loads [5-7]; (2) functional failure such as the inability to make progress due to construction 35 

suspension and supply chain disruption before and after extreme weather events [8]; and (3) 36 

(cascading) damages due to the devastating impact of potential wind-borne debris that is imposed 37 

to construction sites (as well as neighboring communities including critical infrastructure systems) 38 

[9,10]. The wind-borne debris in construction sites pose a substantial risk as unsecured resources 39 

could easily become projectiles during extreme wind events, and cause mass casualty incidents or 40 

induce damages to critical infrastructure systems in operation [1,11,12]. For example, eyewitness 41 

accounts indicate a total loss of 7.5 million dollars in damage to the four-story hotel construction 42 

site in Batavia, IL due to the aftermath of an extreme wind event [13]. Additionally, the charlotte 43 

county in Miami, FL has warned that unsecured construction materials such as plywoods and 44 

portable toilets in jobsites are among the most common projectiles in the case of extreme wind 45 

events [14]. Local contractors in the charlotte harbor area pointed out that they need to effectively 46 
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remove loose materials and tie them down as the impact of such debris to the neighboring 47 

communities would be substantial [15]. Meanwhile, according to a report from the United States 48 

Department of Homeland Security, an estimated cost for hauling and removal of 200,000 cubic 49 

yards of debris for Hurricane Irma was estimated at around 1.4 billion dollars [15,16]. The majority 50 

of the debris was classified as construction-related materials or vegetation that became airborne 51 

during hurricanes, and it is noted that the associated hauling process took several months to 52 

complete by the local government [15]. 53 

 While concurrent building codes and ordinances support designing wind-resilient 54 

structures with respect to severe weather conditions, construction companies are responsible for 55 

regulating and implementing hurricane preparedness plans to better protect their projects during 56 

construction phase [2]. Preparedness plans involve a list of activities that are geared towards 57 

mitigating wind-induced damage in projects [17], and such emergency operating procedures are 58 

typically based on the experiences and expertise of practitioners in companies. Also, in order to 59 

implement the preparedness plans before hurricanes, practitioners need to perform visual 60 

inspections to identify potential risks based on checklists. However, their manual inspection to 61 

recognize threats in jobsites could be error-prone and labor-intensive [18], and thus it is expected 62 

that the quality of practitioner’s efforts to mitigate the impact of wind-induced damages to be likely 63 

degraded in a limited timeline for preparedness of large-scale jobsites.  64 

 Meanwhile, over the years, emerging technologies in visual sensing and analytics have 65 

demonstrated a great potential to streamline the management task of practitioners in construction 66 

projects [19-26]. For example, the convenience of commercial-level unmanned aerial vehicles 67 

(UAVs) encourages practitioners to collect large-scale visual data to keep the as-is record of 68 

construction sites [20,21,27]. In addition to images from the ground level, aerial imagery collected 69 
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from UAVs can provide an overhead view of resources in jobsites, which can assist with surveying 70 

and mapping [28], progress monitoring [29-32], and safety management [33-35]. In the context of 71 

hurricane preparedness in construction sites, UAVs have demonstrated the potential to capture an 72 

invaluable record of potential wind-borne debris from aerial vantage points [1]. Exploring through 73 

imagery would provide critical information regarding the type and location of potential threats, 74 

allowing practitioners such as safety directors and superintendents to better prepare and implement 75 

emergency operating procedures to secure jobsites prior to extreme weather events.  76 

 In this paper, we propose a novel vision-based framework for construction site hurricane 77 

preparedness. By leveraging visual data from jobsites, we reconstruct a digital twin model of the 78 

at-risk construction environment that recognizes the type and the location of threats at the 3D level. 79 

In this regard, we first perform an image-based scene reconstruction, and then carry out the 80 

semantic segmentation on images to identify potential wind-borne debris at the 2D level. Building 81 

on the outcome of the 2D sematic segmentation, we project the semantic values onto the point 82 

cloud model to obtain the semantic information of potential wind-borne debris at the 3D level. 83 

Finally, for each instance of potential wind-borne debris, we estimate the associated quantity and 84 

assess the inherent threats based on the kinetic energy. A site-specific heat map is generated to 85 

delineate the risk associated with potential wind-borne debris with respect to the severity of given 86 

wind events. We evaluated the performance of the proposed methods on residential construction 87 

sites in College Station, TX, especially those associated with wooden dwellings where 88 

unstructured resources such as pine boards and plywoods are found. The proposed framework will 89 

help practitioners to effectively locate potential wind-borne debris in construction sites and 90 

understand the associated risk. Thus, it can support risk-informed decision-making by providing 91 
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heads-up to practitioners in a timely fashion, which fosters awareness of the ways in which 92 

hurricanes cloud be destructive in construction sites. 93 

 94 

2. Research Background  95 

2.1. Disaster preparedness and potential wind-borne debris  96 

Prior works on post-disaster management are geared towards activities based on the severity of 97 

damage after disaster strikes in given regions [36,37]. In contrast, pre-disaster management focuses 98 

primarily on the adaptation of mitigation and preparedness plans through a proactive risk 99 

assessment [38]. In this regard, Gregg et al. [39] carried out preemptive risk assessment building 100 

on the geographic location of given regions and the distance to hazard-prone areas, past 101 

experiences, and the probability of potential future incidences. According to [40], for every 2.5 102 

dollars investment in pre-emptive efforts and practices in disaster management, a one-hundred-103 

dollar bill can be saved by reducing the cost of disaster-related losses. Although the related 104 

contexts would differ, such study infers the significance of proactive practices and studies to 105 

identify threats and mitigate the potential impact of disasters in construction jobsites.  106 

 In order to implement preparedness practices, practitioners such as safety directors or 107 

superintendents should first recognize potential threats in jobsites [41]. If not properly recognized, 108 

preemptive efforts are likely subjected to failures [41,42]. Interestingly, demographic variables 109 

such as education and training of practitioners may impact the extent to which proactive efforts 110 

are adapted [43,44]. In this regard, technology-driven studies (e.g., eye-tracking) have been 111 

conducted for the cognition of hazards among practitioners in construction sites [18,45-47]. The 112 

general concept of these studies is to assess the quality of practitioners’ visual search to recognize 113 

deficiencies, which can help better educate practitioners to flag and perceive potential threats in 114 
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jobsites [48,49]. Although such works demonstrate the great potential in identifying the location 115 

of hazards in construction sites, when it comes to visual inspection on potential wind-borne debris, 116 

there is an additional need to consider the geometrical characteristics (e.g., shape, volume) that 117 

needs to be further assessed to better understand the associated risk. To this end, such studies on 118 

hazard detection would not be expected to directly translate into desirable outcomes in assessing 119 

the extent of threats in the context of potential wind-borne debris.  120 

 Meanwhile, studies have been carried out to characterize the behavior of general wind-121 

borne debris. [10] evaluated potential damage of wind-borne debris to building envelopes with 122 

respect to the severity of wind events. Later, [50] classified the shape of wind-borne debris into 123 

three categories (compact, plate, and rod) as each shape demonstrates different behaviors in severe 124 

wind events. Building on the geometrical characteristics, [51,52] studied possible trajectories of 125 

rod and sheet type of debris in severe wind events. As such, a systematic foundation to quantify 126 

the extent of damage with regards to types and shapes of potential wind-borne debris has been 127 

established. Building on these, we propose a vision-based framework to automatically identify and 128 

assess threats of potential wind-borne debris in construction sites. The proposed framework for 129 

scene understanding is essential to support the localization of potential threats in construction sites 130 

and prioritization for preparedness planning. As a point of departure, in the following section, we 131 

review the research on scene understanding focusing on point cloud segmentation.   132 

 133 

2.2. Digital twining and point cloud segmentation  134 

3D scene understanding such as point cloud segmentation is a rising field of study that has a wide 135 

range of applications such as robotics [53], augmented reality [54], autonomous driving [55], and 136 

medical imaging [56]. The objective of scene understanding is to cluster points belonging to a 137 
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specific object in point cloud models. In order to better process 3D data, prior works represent the 138 

point cloud models in the context of multi-view images [57], voxels [58], and meshes [59]. Such 139 

methods help the classification of points belonging to a target class, but not the instance 140 

segmentation for objects in a particular class. Moreover, the conversion of point cloud models to 141 

voxels and mesh representations is likely subjected to data loss, which may lead to poor 142 

performance in classification [60]. In this regard, [60] adopted a deep learning framework, referred 143 

to as PointNet, which directly uses point cloud data as the preliminary input. PointNet framework 144 

was the first to address point permutations, and the extracted deep-learning descriptors are robust 145 

to order invariances in the 3D point cloud. Despite the benefits of PointNet, one of the challenges 146 

is that a relatively small number of points (e.g., 1024, 2048, 4096) can be processed by its 147 

workflow due to the fixed size of the input layer of the deep neural networks. To this end, the 148 

process of semantic segmentation and scene parsing of point cloud models containing millions of 149 

points (e.g., reconstructed scenes of large-scale jobsites) has been identified as a challenge for 150 

PointNet architecture.  151 

 In the construction domain, prior works on point cloud segmentation could be divided into 152 

model-driven and data-driven frameworks [61]. Model-driven segmentation of point clouds 153 

enables the classification of points based on a set of hand-engineered cost functions such as in 154 

shape-fitting algorithms or region-growing workflows. In this regard, [62] proposed a method to 155 

address the segmentation of 3D point clouds of bricks in masonry walls, and [63] performed the 156 

segmentation of infrastructures based on region-growing algorithms. Later, [64] carried out the 157 

automatic detection of safety regulation compliances (e.g., toe-boards) on point cloud data. Despite 158 

the benefits of such models (e.g., computational simplicity), insufficient robustness to geometrical 159 

variances and poor performance on noisy and incomplete point cloud models have been identified 160 
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as the limitation of model-driven point cloud segmentation frameworks [61]. On the other hand, 161 

data-driven models rely on diverse training datasets to categorize points in point cloud models. In 162 

this regard, studies such as [65] have addressed point cloud segmentation through the supervised 163 

learning. For instance, [66] addressed the detection of scaffolding in point clouds through the 164 

Random Forest framework. Studies were performed for the categorization of planner patches [67] 165 

(e.g., columns, beams, slabs) and rebars [68] in laser scanning data using conventional 166 

classification approaches such as support vector machine (SVM). Later, [69] addressed the 167 

segmentation and classification of construction machinery in 3D laser scanning models, building 168 

on a descriptor using a synthetic training dataset. Despite the potentials, there is still a challenge 169 

in the application of synthetic data due to the limited capacity in representing textural and 170 

geometrical variances of real-world point cloud models [70], which needs further studies. Other 171 

studies have carried out 3D level segmentation building upon the projection of 2D semantic values 172 

onto the point cloud model for material piles [71] and construction equipment [38]. However, a 173 

limited 3D segmentation accuracy has been reported once 2D semantic information is projected 174 

onto point cloud models. In this regard, [71] implemented an elevation-based criterion to improve 175 

the performance of 3D semantic segmentation. Despite the performance enhancement, the 176 

elevation-based criterion is typically valid on flat surfaces, and thus its application to jobsites that 177 

often involve uneven surfaces would be challenging. To address the challenges, we propose a 178 

novel 3D semantic segmentation building on depth information, in order to robustly recognize 179 

potential wind-borne derbies from point cloud models. 180 

 181 

3. Proposed Methods for Vision-based Construction Site Hurricane Preparedness 182 
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In this paper, the risk assessment on potential wind-borne debris (PWDs) using visual data is 183 

composed of three modules: 1) digital twinning of PWDs in jobsites based on collected visual data, 184 

2) estimating the quantity of PWDs through the volumetric measurement, and 3) assessing the 185 

associated threats of PWDs with respect to the intensity of wind events. Case studies on nine piles 186 

of PWDs were conducted in residential construction sites to assess the fidelity of the proposed 187 

methods.  188 

 189 

 190 

Figure 1. Overview of the proposed method for construction site hurricane preparedness using 191 

visual data 192 

 193 

3.1. Digital twinning of construction sites including potential wind-borne debris 194 

Digital twinning is a crucial step in representing the geometrical characteristics such as the shape 195 

and location of physical assets in a corresponding virtual environment [72]. In order to build a 196 
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digital twin model, a 3D dense point cloud is first reconstructed using collected images. Building 197 

on Structure-from-Motion (SfM) [73] and Multi-View Stereo [74], a dense point cloud model 198 

represents a replica of construction sites including PWDs. The SfM framework could briefly be 199 

described as: 1) extracting a local feature descriptor such as Scale-Invariant Feature Transform 200 

(SIFT) [75] from entire images, 2) performing pairwise matching among feature descriptors of 201 

images to compute the fundamental matrix and obtain camera viewpoints (e.g., position and 202 

orientation) from where the data collection is performed, and 3) using triangulation to estimate the 203 

location of successful pairwise matches in a 3D coordinate system to obtain a sparse point cloud 204 

model. Subsequently, in order to populate the sparse point cloud, the Multi-View Stereo workflow 205 

is employed among collected images, which initially divides images into patches and enforces an 206 

iterative match, expand and filter procedures to refine the point cloud resolution [74]. Upon 207 

reconstruction of point cloud models of jobsites, the detection of PWDs and the associated analysis 208 

is performed. 209 

 210 

3.1.1. Detection of PWDs  211 

Most residential buildings in the United States, including those located in hurricane-prone regions, 212 

are wooden dwellings [76]. This implies that not only these wooden structures are susceptible to 213 

hurricanes, but also residential construction sites for such dwellings accommodate a large number 214 

of loose and easy-to-airborne PWDs (e.g., plywoods, pine boards) that are vulnerable to extreme 215 

wind events [77]. Depending on behaviors in severe wind situations, PWDs are classified into 216 

three types (rod, plate, and compact). The rod-type debris or linear debris is one-dimensional debris 217 

as one dimension is extensively larger than two others. Examples of the rod-type debris are wooden 218 

framing members or piping. The plate-type debris is known as planer debris, where one dimension 219 
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is notably smaller than the other two dimensions. Pine boards or roof sheathing are examples of 220 

this type. Finally, the compact-type debris is referred to as three-dimensional debris, where its size 221 

in three dimensions is approximately similar, such as bricks. Table 1 summarizes common PWDs 222 

in residential construction sites.   223 

 224 

Table 1. Examples of potential wind-borne debris (PWD) in construction sites 225 

PWDs Debris Type [50] 

Bricks [77] Compact-type 

Roof surfacing [77] Plate-type 

Framing members [2,77] Rod-type 

Sheetrock [2,77] Plate-type 

Pine board [2,77] Plate-type 

Trash [77] Compact-type 

Piping [77] Rod-type 

Scaffolding Systems [2] Rod-type 

Roof Sheathing [77] Plate-type 

Roof trusses [77] Rod-type 

Shingles [2,77] Plate-type 

 226 

 In order to detect PWDs in visual data, we leverage convolutional neural networks to 227 

perform semantic segmentation over images from construction sites. The semantic segmentation 228 

enables the categorization of pixels into semantic classes and specifies the boundaries of the 229 

objects of interest, paving the way to carry out the scene understanding [38,78]. We benchmarked 230 

the detection of PWDs based on different convolutional neural network architectures and presented 231 

the outcomes in the case study and evaluation section. Upon detecting PWDs in images, their 232 

geometrical characteristics such as dimension and type of debris and the unit weight are encoded 233 

for each class of PWD. The geometrical characteristics of PWDs are the critical information to 234 

specify their vulnerability with respect to the intensity of given wind events. 235 

 236 
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3.1.2. Point cloud segmentation to analyze PWDs in 3D 237 

Building on 2D semantic segmentation, we perform point cloud segmentation to analyze PWDs in 238 

3D (e.g., volume). For the point cloud segmentation, we establish a correspondence between the 239 

pixels of semantically segmented images and points in point cloud model. Such correspondence 240 

indicates what semantic pixel is associated with which point in point cloud models. Using camera 241 

viewpoints and extrinsic parameters obtained from the SfM, 2D pixel to 3D point correspondence 242 

between images and point cloud models is expressed as follows [71]:  243 

 244 

𝐶𝑖 =  𝐾3×3[𝑅3×3|𝑇3×1]𝐶𝑤 (1) 

  245 

 where 𝐶𝑖 represents the pixel location in the segmented image, such as in [𝑥𝑖 , 𝑦𝑖 , 1]𝑇, and 246 

𝐶𝑤 is its corresponding location in the 3D point cloud, such as in [𝑥𝑤, 𝑦𝑤 , 𝑧𝑤,1]𝑇, 𝐾 encapsulates 247 

the intrinsic camera parameter (e.g., focal length, distortion). 𝑅 and 𝑇 are the extrinsic camera 248 

parameter denoting the orientation and location of cameras with respect to the coordinate system 249 

of the point cloud. Figure 2 demonstrates a point cloud model obtained via collected images and 250 

examples of semantic segmentation outcomes. Building on Equation (1), single-camera 251 

projections are shown in Figure 3a. Equation (1) holds for all camera positions and viewpoints, 252 

and, when multiple cameras are projected onto the point cloud model, the most common semantic 253 

class among projection cameras is assigned to points in the point cloud model. Such collective 254 

decision-making on the semantic class of a point is required as the class of their corresponding 255 

pixels among projection cameras is not typically consistent among points [71]. Figure 3c 256 

represents the outcome of the semantic projection from all cameras.  257 

 258 
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 259 

Figure 2. Examples of collected visual data, semantic segmentation, and camera viewpoints with 260 

respect to point cloud models 261 

 262 

 263 

Figure 3.  Semantic projection of single and multiple camera projections (A and C, respectively) 264 

and the classification confusion (B and D) 265 

 266 
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 As observed in Figure 3b and 3d, 3D semantic segmentation through the camera projection 267 

is likely defective as parts of the background could be misclassified as PWDs. In particular, 268 

occluded objects could be misclassified since projection shadows are not taken into account in 269 

Equation (1), which leads to erroneous 3D segmentation outcomes. In order to improve the 3D 270 

segmentation by addressing the challenges, we propose the depth-aware projection framework. 271 

Building on the dense point cloud model, we compute a depth map at each camera location and 272 

use the depth information to take into account a range of projection. In this regard, given camera 273 

location and orientation, we render the viewpoint from the point cloud model where the camera is 274 

positioned and associated image is collected from (Figure 4a and 4b). We then divide the 275 

viewpoints into a grid of pixels (Figure 4c), and retrieve points in the point cloud model that are 276 

visible at each grid through the 2D pixel to 3D point correspondence between the image and the 277 

point cloud model. The distance of the closest point to the camera is retrieved at each grid location, 278 

and the depth map is generated accordingly (Figure 4f).  279 

 280 

 281 
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Figure 4. Overview of the proposed framework to compute depth maps from point cloud models 282 

 283 

 The distance demonstrated in the depth map accounts for the validity of Equation (1) during 284 

the semantic projection. In other words, at each grid location of the depth map, the semantic 285 

projection from image to point cloud may not be valid when points are located beyond the distance 286 

inscribed by the depth information. Figure 5 illustrates the performance enhancement through the 287 

proposed depth-aware projection framework. Figure 5a represents the projection without taking 288 

account of the depth information, which solely relies on Equation (1), and Figure 5b illustrates the 289 

depth-aware projection in which the background object is excluded from the semantic projection. 290 

 291 

 292 

Figure 5. Illustration of the proposed depth-aware projection of semantic information onto point 293 

cloud models 294 

 295 

 The depth-aware semantic projection is the backbone of the proposed reality capturing of 296 

PWDs using visual data. Using the outcome of the 3D semantic segmentation, we further explore 297 

the characteristics of PWDs in the context of threats caused by extreme wind events.  298 

 299 
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 300 

Figure 6. Depth-aware projection for enhanced 3D semantic segmentation  301 

 302 

3.2. Estimating the quantity of potential wind-borne debris 303 

The potential damage from PWDs is relevant to their weight, once they become projectile and 304 

collide into surrounding environments [50,77,79]. The associated collision damage is also referred 305 

to as the missile impact, which could be lethal to people who are in the immediate vicinity of 306 

PWDs during extreme wind events [79]. Generally, the higher the weight of PWDs, the greater the 307 

devastating impact is expected to take place during extreme wind events [50].  Using the outcomes 308 

of the point cloud semantic segmentation, we perform the volumetric measurement on PWDs, and 309 

then by using the unit weight values, we estimate the weight of PWDs. The volumetric 310 

measurement in the segmented point cloud model is composed of three modules as registration, 311 

projection, and resampling. Given segmented point cloud models, the Random Sample Consensus 312 

(RANSAC) algorithm [80] is employed for the ground registration through plane fitting [71]. Next, 313 

the point cloud model is demonstrated in the cartesian system in which its XoY plane lays over 314 

the registered ground, and its Z axis is parallel to the projection direction (Figure 7a). A grid of 315 
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pixels over the registered ground is formed, and at each pixel location, a set of points enclosed 316 

within each grid is discretized. At each pixel location, the most common semantic class observed 317 

among points are inherited by the associated pixel as shown in Figure 7b. The outcome of such 3D 318 

to 2D projection is referred to as projection matte in this research.  319 

 320 

 321 

Figure 7. (a) segmented point cloud, (b) 2D projected matte, (c) instance segmentation, (d) 322 

resampled point cloud, (e) 3D bounding box  323 

 324 

 Upon the existence of multiple PWDs within a point cloud model, the instance 325 

segmentation of each PWD is required to separately assess their characteristics. In order to 326 

differentiate the instance of PWDs, a 2D bounding box is retrieved building on the projection 327 

matte, and the set of points enclosed within the bounding box is considered as a single instance 328 

(Figure 7c). At each pixel location of the projection matte, points representing the pixel are 329 

discretized, and the average Z height of points enclosed in each pixel is computed to obtain the 330 

resampled point cloud model (Figure 7d). To model the 3D bounding box containing the PWD, 331 
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we build on the coordinates of the 2D bounding box and compute the maximum and minimum Z 332 

height values of the instance (Figure 7e). Finally, the volume of the PWD is computed as the 333 

summation of Z height values of the resampled point cloud model multiplied by the square size of 334 

pixels in the projected matte, which can be demonstrated as follows:  335 

 336 

𝑉𝑝𝑤𝑑 =  𝐺𝑆2 × ∑ ∑ 𝑍𝑝𝑤𝑑((𝑋𝑖 , 𝑌𝑗))

𝑚

𝑗=1

𝑛

𝑖=1

 

 

(2) 

  337 

 where, 𝑉𝑝𝑤𝑑 indicates the volume of PWD, 𝑍𝑝𝑤𝑑 is the height of points belonging to the 338 

PWD at the pixel location (𝑋𝑖 , 𝑌𝑗), and the parameter 𝐺𝑆 denotes the grid size. The number of 339 

pixels of the projected matte in OX and OY directions are denoted as 𝑛 and 𝑚. Building on the 340 

weight per unit volume of PWDs (which also referred to as the unit weight or special weight), the 341 

weight of PWDs is obtained as follows:  342 

 343 

𝑀𝑝𝑤𝑑 =  𝑉𝑝𝑤𝑑 × 𝝆𝑝𝑤𝑑 
 

(3) 

  344 

 where 𝑀𝑝𝑤𝑑 is the weight, and 𝝆𝑝𝑤𝑑 is the unit weight of PWDs, respectively. Information 345 

regarding the unit weight of materials including PWDs, is generally available among practitioners, 346 

which enables them to plan for material transportation based on the weight or volume restrictions 347 

of transporting vehicles. Contractors also estimate the unit weight when purchasing materials or 348 

transporting materials and debris from one location to another. 349 

 350 

3.3. Threat assessment of potential wind-borne debris   351 
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The possible damage imposed by PWDs is associated with its kinetic energy once it is picked up 352 

by wind and becomes airborne. Thus, to assess the threat in the context of PWDs, we calculate the 353 

kinetic energy associated with PWDs once they become projectiles. Basically, the kinetic energy 354 

of an airborne PWD is proportional to its mass and the square of its velocity, which is expressed 355 

as follows:  356 

 357 

𝐾𝐸 =  
1

2
  𝑚𝑝𝑤𝑑  𝑈2 

 

(4) 

 358 

 where 𝐾𝐸 indicates the kinetic energy of PWD (joules),  𝑚𝑝𝑤𝑑 denotes the mass of PWD 359 

(kg) which is quantified in the section 3.2. The parameter 𝑈 is associated with the intensity of the 360 

wind events and denotes the sustained wind speed (m/s). Not all PWDs become projectiles in wind 361 

events; some become projectiles at lower wind speeds, and some at a higher. Thus, the existence 362 

of projectiles is based on the critical wind speed. Such critical wind speed accounts for the 363 

minimum wind speed that is required to lift a PWD from the ground and make it a projectile [50]. 364 

Building on [50], the critical wind speed for different types of objects are expressed through 365 

Equation (5) and (6) as follows:  366 

 367 

𝑈𝑐2 = 2 (
ρ𝑚

ρ𝑎
) (

𝐼

C𝐹
) 𝑙𝑔 

 

(5) 

 368 

𝑈𝑐2 =
𝜋

2
(

ρ𝑚

ρ𝑎
) (

𝐼

C𝐹
) 𝑑𝑔 

 

(6) 

 369 
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 where 𝑈𝑐 denotes the critical wind speed of PWD, ρ𝑚denotes the weight to the volume of 370 

PWD, and ρ𝑎 is the density of the air (kg/m3). For the plate-type of PWD, 𝑙 denotes its thickness, 371 

and similarly, 𝑑 denotes the external diameter for the rod-type of PWD. The gravitational 372 

acceleration is denoted by 𝑔 (m/s2). The parameters 𝐼 and C𝐹 represent the bound and drag 373 

coefficient of PWD, which are assumed as unity in this research. By leveraging the mass and the 374 

critical wind speed, a heap map is generated to demonstrate threats associated with PWDs at a 375 

given wind speed. The heatmaps could be described as weighted pixels [81]. Here, at each pixel 376 

location, a weight is computed such that it satisfies Equation (4), provided that the given wind 377 

speed is greater than the critical wind speed of given PWDs.  378 

 379 

4. Case Study and Evaluation  380 

4.1. Data collection and experimental setup 381 

In this research, two case studies were performed to evaluate the performance of the proposed 382 

method. Case #1 represents the laydown yard of a wooden residential construction site, while case 383 

#2 demonstrates a more complex jobsite of a commercial facility. There are nine piles of PWDs at 384 

different locations of the site (Figure 8a). There are three piles of pine board and plywood, two 385 

piles of PVC pipe, and a single pile of galvanized pipe. Case #2 consists of eight piles, including 386 

a single pile of sewer pipe, a single pile of metal pipe, a single pile of wooden boards, and five 387 

piles of steel beams at different locations (Figure 8b) 388 

 389 
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 390 

Figure 8. Types and locations of PWDs in case studies 391 

 392 

The training dataset in case #1 consists of 360 images (180 from aerial perspectives and 180 from 393 

ground-level). In addition to the aerial visual data collection, due to the proliferation of hand-held 394 

camera-equipped platforms such as smartphones and tablets, ground-level visual data collections 395 

are also considered as the convenient way by practitioners to keep the record of the as-is status of 396 

the jobsite (e.g., prior to extreme weather events such as hurricanes for the purpose of insurance 397 

claim afterward). In order to demonstrate the robustness of the algorithm to both aerial and ground-398 

level image, the semantic segmentation network was trained and tested on images from these two 399 

domains. In this regard, to evaluate the performance of the network, a total of 60 images, consisting 400 

of 30 aerial and 30 ground-level images, were randomly selected as the testing dataset. In case #1, 401 
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aerial images were collected from a mid-end commercial UAV which is equipped with a 12-402 

megapixel camera with a 35 mm lens and ISO range of 100-1600. Flight altitude was around 10 403 

meters with respect to the ground, and the total flight time was around 3 minutes. Ground-level 404 

images were collected from a smartphone with a 12-megapixel camera at around 1.5 meters above 405 

the ground. In case #2, 32 aerial images were used for scene reconstruction in the form of point 406 

clouds and to assess the performance of the semantic segmentation. A total number of 127 images 407 

were used to train the semantic segmentation framework. The aforementioned UAV has been used 408 

for aerial visual data collection. The flight time was around two minutes, and the flight altitude 409 

was approximately 30 meters. Figure 9 shows the collected data in case studies and their 410 

corresponding segmented images and depth maps.  411 

 412 

 413 
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Figure 9. Examples of collected images, segmented images, and their associated depth maps in 414 

case studies 415 

4.2. Performance metrics and outcomes  416 

4.2.1. Semantic segmentation 417 

The boundaries of PWDs are manually labeled to train the semantic segmentation model, as shown 418 

in Figure 10. In order to carry out the semantic segmentation at the 2D level, we built upon different 419 

architectures of convolutional deep neural networks, including Alexnet [82], Vgg19 [83], 420 

Resnet18 [84], and Resnet50 [84], and evaluated their performance.  421 

 422 

Figure 10. Examples of manually annotated images in case studies  423 

 Alexnet has two parallel convolutional neural networks connected via cross-connections 424 

[82]. To increase accuracy in deep learning models, the Vgg networks are leveraged, which contain 425 

large numbers of parameters. Although the Vgg networks are computationally expensive to be 426 

optimized due to a higher number of parameters, they are generally used as a baseline for feature 427 

extraction [85]. Finally, to enhance the efficiency of the parameter optimization and reduce the 428 

search space, residual networks such as Resnet18 and Resnet50 are leveraged, which has 429 

demonstrated high performance in terms of computation and accuracy [84]. Unlike conventional 430 
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networks, the Resnet architectures are robust for optimization, and the performance of the network 431 

is enhanced upon increasing layers of the network [84]. The attributes, as well as the averaged 432 

accuracy of the semantic segmentation of each deep neural network in the case study of a 433 

residential construction site are summarized in Table 2. 434 

 435 

Table 2. Performance of convolutional deep neural networks  436 

Networks  
Depth 

(layers)  

Parameters 

(millions)  

Averaged 

accuracy (%) 

Alexnet 8 61.0 89.1 

Vgg19 19 144.0 92.3  

Resnet18 50 11.4 98.1  

Resnet 50 101 25.6 98.2  

 437 

 As a proof of concept, in our case studies, we built upon the Resnet50 model to carry out 438 

the semantic segmentation. Figure 11 demonstrates the confusion matrix obtained to measure the 439 

2D semantic segmentation accuracy in case studies. 440 

 441 

Figure 11. Confusion matrix over testing dataset for segmentation  442 

 443 

4.2.2. Instance segmentation of PWDs 444 
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By leveraging the images presented in our case studies, a dense point cloud is reconstructed, and 445 

the associated depth map for each image is obtained. The depth-aware projection of the semantic 446 

information onto the point cloud model is then conducted, and the point cloud is semantically 447 

segmented. The oriented bounding boxes are enforced to demonstrate PWDs in the resulting digital 448 

twin model in the form of point clouds. Points enclosed in each bounding box are trimmed from 449 

the rest of the point clouds, and the associated PWD is further explored through the volumetric 450 

measurement and the threat assessment. Examples of point cloud models and their segmentation 451 

as well as the outcome of the instance segmentation, are presented in Figure 12. 452 

 453 

 454 

Figure 12. (a) original point cloud, (b) segmented point cloud, and (c) the instance segmentation 455 

of PWDs in case studies  456 

 457 

4.2.3. Volumetric measurement 458 
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The outcomes of the volumetric measurements on nine instances of PWDs are compared against 459 

the ground truth, and the error is obtained per instance. The grid size of discretization was 460 

experimentally set to 3 centimeters as a proof of concept, in the light of required computational 461 

cost as the computing time could be in inverse proportion to the grid sizing as shown in [71]. Table 462 

3 shows the error of the volumetric measurement based on segmented point cloud models of a 463 

residential construction site in the case study.  464 

Table 3. Volumetric measurement on PWDs based on segmented point cloud models 465 

Pile ID# PWDs 
Measured 

Volume (𝐜𝐦𝟑) 

Ground Truth 

(𝐜𝐦𝟑) 
Error (%) 

1 PVC pipe 168,302  164,329 2.4 

2 Plywood 112,773 105,768 6.6 

3 Pine board 109,720 102,564 6.9 

4 Pine board 70,916 68,376 3.7 

5 Plywood 38,521 35,256 9.2 

6 PVC pipe 80,803  74,695 8.1 

7 Plywood 72,709 70,512 3.1 

8 Pine board 53,410 51,270 4.1 

9 Galv. Pipe 20,065  18,902 6.1 

 466 

4.2.4. Heatmaps based on the threats associated with PWDs  467 

The unit mass per volume (𝝆𝑝𝑤𝑑) is built upon to obtain the mass of each pile based on the volume. 468 

The plywood, pine board, and wooden board are considered plate-type debris, while PVC and 469 

sewer pipe, steel beam, and galvanized pipe are classified as rod-type debris. The critical wind 470 

speed of PWDs is calculated through Equations (5) and (6). Material properties such as mass per 471 

unit volume of materials were built upon [86,87]. Threats associated with PWDs are then assessed 472 

based on the mass of debris, wind speed, and the critical wind speed of debris, in terms of the 473 

kinetic energy. Figure 13 illustrates examples of heatmaps with different wind speeds. The wind 474 

speeds of 42, 58, 70, and 100m/s correspond to hurricane categories one, three, four, and five, 475 

based on the Saffir-Simpson scale [88]. 476 
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    477 

Figure 13. Examples of kinetic energy-based threat assessment of PWDs at the different intensity 478 

of winds  479 

 480 
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Figure 14. Cumulative kinetic energy associated with PWDs with respect to different intensity of 481 

winds 482 

 483 

 Figure 14 demonstrates the cumulative kinetic energy with respect to PWDs that are 484 

present in the case study of a residential construction site. In our case study, the critical wind 485 

speeds of 9.8, 17.5, 21.7, and 50.1 m/s are noted for pine board, plywood, PVC pipe, and 486 

galvanized pipe, respectively. As observed, the cumulative kinetic energy demonstrates a gradual 487 

increase at lower wind speeds but sharply escalates at higher intensity of winds. In addition, an 488 

increase in released energy level is observed at the proximity of critical wind speeds, as PWDs 489 

become airborne. In the case studies, around 35 percent of an increase was observed at 50.1 m/s 490 

as galvanized pipe becomes airborne. Such a significant change in kinetic energy is relevant to the 491 

higher density (i.e., high threats) of galvanized pipe compared to the rest of PWDs presented in 492 

the case studies.   493 

 494 

5. Discussions 495 

Figure 13 illustrates the threats associated with PWDs over the at-risk construction environment 496 

with respect to the wind intensity. The advantages of generating a heatmap to delineate the threat 497 

could be perceived on two fronts: 1) depending on the critical wind speed, some PWDs do not 498 

pose any threat at lower wind speeds. For example, in case #1, at 15m/s of winds, it was observed 499 

that only pine boards in our case studies are identified as a potential threat among the rest of PWDs. 500 

This implies that for lower wind intensities, the hurricane preparedness checklist could be 501 

streamlined, which requires securing/relocating the corresponding PWDs from jobsites, and at the 502 

same time, relaxing preparedness ordinances for the rest of PWDs that are present in the scene. 503 
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Such an abstract and yet focused preparedness plan could be effective, given that there is a limited 504 

resource (i.e., time, manpower) for hurricane preparedness. 2) Given a particular wind speed, the 505 

level of threats among PWDs may vary, which can help the prioritization for preparedness. For 506 

instance, at 70m/s of wind speed, galvanized pipe is flagged as the most hazardous PWD in our 507 

case studies, while pine boards present a less threat in the jobsite. In our case studies, the volume 508 

of galvanized pipes accounts for around three percent of the entire volume of PWDs presented. 509 

However, as demonstrated in Figure 14, such a small portion of PWDs could have a significant 510 

threat once they become airborne. In this regard, at a given wind speed, exploring the level of 511 

potential threat among the PWDs can provide useful information for planning preparedness. 512 

Visualization of threat through heatmaps helps provide a prioritized plan to secure PWDs and sorts 513 

the most hazardous PWDs to the least. Identifying and prioritizing preemptive measures with 514 

respect to the risk level of PWDs is expected to support risk-informed decision-makings for 515 

implementing construction site emergency operating protocols to prepare for extreme wind events 516 

in an effective manner. 517 

 In this paper, the depth-aware projection framework could enhance the performance of the 518 

point cloud segmentation, which is the critical step to assess the threat associated with PWDs. 519 

Depth information indicates the distance in which semantic projection from image to point cloud 520 

is valid, in order to account for occlusions during projections. Here, we demonstrate the 521 

performance enhancement gained through the depth-aware projection versus the baseline 522 

projection through Equation (1). The outcome of the depth-aware projection is shown in Figure 523 

15a, and the baseline projection is shown in Figure 15b. Correctly classified and misclassified 524 

points are shown in Figure 15c. The average accuracy of the baseline projection was 97.85 percent, 525 
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while the proposed depth-aware projection demonstrates the accuracy of 99.8 percent in 3D 526 

semantic segmentation in our case studies.   527 

 528 

Figure 15. (a) the proposed depth-aware projection, (b) the baseline projection, and (c) the 529 

classification confusion of (b)  530 

 531 

 Although OSHA recommends pile and pallet items to be neatly stacked up to ensure 532 

stability and enable self-supporting [89], there often exist unstacked piles in jobsites. The proposed 533 

volumetric measurement performed well, but a lower accuracy was observed among relatively 534 

unstacked piles due to higher levels of disorganization. The overestimation on volumetric 535 

measurements often happened due to large amounts of empty spaces within unstacked piles. In 536 

this regard, we acknowledge that the volumetric measurement on unstacked piles could be an 537 

underlying challenge in vision-based approach as a RGB camera cannot see the unseen inside 538 
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material piles. In order to estimate the volume taking account of empty spaces, a level of 539 

disorganization could be analyzed to consider a lower density of unstacked piles. However, it is 540 

expected that unstacked piles demonstrate a wide range of disorganization as the level of 541 

disarrangement in stacking varies among piles. Building on [90], the level of disarrangement in 542 

stacks could be investigated. First, a target object could be isolated through the semantic 543 

segmentation (Figure 16a). Edges are detected to keep dominant edges in the image through 544 

thresholding over gradients (Figure 16b) [91]. Then dominant straight lines are extracted through 545 

the Hough transformation (Figure 16c) [92]. Finally, the orientations of straight lines are 546 

investigated, and a histogram of line orientation can be generated. As observed in Figure 16d, for 547 

stacked PWDs, the standard deviation of line orientation is lower compared to that of relatively 548 

unstacked PWDs. The standard deviation of line orientation could represent the level of 549 

disorganization in stacking. Such level of disorganization among relatively unstacked piles would 550 

be further studied to calibrate the volumetric measurement. But in case of relatively unstacked 551 

piles, it is noted that they should be considered with the top priority for hurricane preparedness, 552 

and thus the detection of such objects based on the level of disorganization and their localization 553 

through the digital twinning module could be sufficient to trigger the prioritized actions (i.e., quick 554 

relocations) before extreme wind events.  555 

 556 
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 557 

Figure 16. Level of disarrangement among relatively unstacked piles (top) and stacked piles 558 

(bottom) 559 

 560 

6. Conclusions 561 

Potential wind-borne debris (PWDs) are among the most destructive elements in extreme wind 562 

events. In particular, construction sites containing unsecured resources are identified among the 563 

most exposed and undefended environments to extreme wind events. Thus far, preemptive efforts 564 

have been put in by construction firms to develop and implement protocols to identify PWDs and 565 

mitigation plans to better prepare against wind events. However, the assessment is not systematic, 566 

and heuristic approaches in jobsites are likely to be error-prone and labor-intensive. The 567 

advancement of machine vision and the convenience of UAVs have offered opportunities to collect 568 

large-scale imagery and generate digital photologs to keep the record of errands in construction 569 

projects. In this paper, we propose a rapid and in-situ risk assessment of PWDs by encoding their 570 

risk into machine vision algorithms to automatically flag the degree of vulnerability in jobsites. 571 

The proposed method is built upon three modules: 1) digital twining and rapid 2D/3D semantic 572 
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segmentation, 2) volumetric measurement and the mass evaluation, and 3) risk assessment on 573 

PWDs. The proposed method generates site-specific heatmaps regarding threats that is respective 574 

to the intensity of wind events. PWDs presented in our case studies are commonly found in 575 

residential construction sites, including plywoods, pine boards, or PVC/galvanized pipes. The 576 

proposed method supports risk-informed decision-making by providing a heads-up to practitioners 577 

and fosters awareness of the ways in which hurricanes could be destructive in construction sites. 578 

Moreover, the proposed method has the potential in rapid scene understanding to be integrated into 579 

site monitoring systems. While this research enables an automated risk assessment in the context 580 

of hurricane preparedness, there are open research challenges associated with the proposed 581 

method. For instance, it is expected that 3D and 2D semantic segmentation modules may 582 

demonstrate poor performance in suboptimal weather conditions such as rainy [93] and foggy [94] 583 

situations or dim light conditions [95]. Moreover, the presence of occlusions and moving objects 584 

in jobsites is another challenge in reality-capture and digital twining frameworks. In this regard, 585 

building a robust machine vision-based system that can account for such challenges is the direction 586 

of our ongoing research.  587 
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