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Abstract

Hurricanes are among the most devastating natural disasters in the United States, causing billions
of dollars of property damage and insured losses. During extreme wind events, unsecured objects
in jobsites can easily become airborne debris, which results in substantial loss to construction
projects and neighboring communities. Toward a systematic disaster preparedness in construction
jobsites, this paper presents a novel vision-based digital twinning and threat assessment
framework. We encode the context of disaster risk into deep-learning architectures to identify and
analyze the characteristics and impacts of potential wind-borne debris in construction site digital
twin models. Case studies on nine piles of construction materials are presented to demonstrate and
discuss the fidelity of the proposed computational modules. The proposed methods are expected
to help provide heads up for practitioners to quickly recognize, localize, and assess potential wind-
borne derbies in construction jobsites, and thereby implementing hurricane preparedness in an

effective and timely manner.
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1. Introduction

Dynamic and complex construction sites including incomplete structures and unsecured resources,
are among the most vulnerable environments to extreme wind events [1]. Severe wind-induced
damages significantly attenuate the efficiency of construction projects by causing considerable
schedule delays and further negatively impact neighboring infrastructures in operations (e.g.,
roads, power grids), and thus trigger notable disruptions and financial losses in communities [1,2].
For instance, along with around 50 billion dollars in damage and more than 250 fatalities,
Hurricane Sandy has caused over 185 million dollars’ worth of damage to the construction project
of the World Trade Center [3,4]. Severe wind-induced disruptions could be classified in three
folds: (1) structural or mechanical failures such as tower crane collapses due to excessive wind
loads [5-7]; (2) functional failure such as the inability to make progress due to construction
suspension and supply chain disruption before and after extreme weather events [8]; and (3)
(cascading) damages due to the devastating impact of potential wind-borne debris that is imposed
to construction sites (as well as neighboring communities including critical infrastructure systems)
[9,10]. The wind-borne debris in construction sites pose a substantial risk as unsecured resources
could easily become projectiles during extreme wind events, and cause mass casualty incidents or
induce damages to critical infrastructure systems in operation [1,11,12]. For example, eyewitness
accounts indicate a total loss of 7.5 million dollars in damage to the four-story hotel construction
site in Batavia, IL due to the aftermath of an extreme wind event [13]. Additionally, the charlotte
county in Miami, FL has warned that unsecured construction materials such as plywoods and
portable toilets in jobsites are among the most common projectiles in the case of extreme wind

events [14]. Local contractors in the charlotte harbor area pointed out that they need to effectively
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remove loose materials and tie them down as the impact of such debris to the neighboring
communities would be substantial [15]. Meanwhile, according to a report from the United States
Department of Homeland Security, an estimated cost for hauling and removal of 200,000 cubic
yards of debris for Hurricane Irma was estimated at around 1.4 billion dollars [15,16]. The majority
of the debris was classified as construction-related materials or vegetation that became airborne
during hurricanes, and it is noted that the associated hauling process took several months to
complete by the local government [15].

While concurrent building codes and ordinances support designing wind-resilient
structures with respect to severe weather conditions, construction companies are responsible for
regulating and implementing hurricane preparedness plans to better protect their projects during
construction phase [2]. Preparedness plans involve a list of activities that are geared towards
mitigating wind-induced damage in projects [17], and such emergency operating procedures are
typically based on the experiences and expertise of practitioners in companies. Also, in order to
implement the preparedness plans before hurricanes, practitioners need to perform visual
inspections to identify potential risks based on checklists. However, their manual inspection to
recognize threats in jobsites could be error-prone and labor-intensive [18], and thus it is expected
that the quality of practitioner’s efforts to mitigate the impact of wind-induced damages to be likely
degraded in a limited timeline for preparedness of large-scale jobsites.

Meanwhile, over the years, emerging technologies in visual sensing and analytics have
demonstrated a great potential to streamline the management task of practitioners in construction
projects [19-26]. For example, the convenience of commercial-level unmanned aerial vehicles
(UAVs) encourages practitioners to collect large-scale visual data to keep the as-is record of

construction sites [20,21,27]. In addition to images from the ground level, aerial imagery collected
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from UAVs can provide an overhead view of resources in jobsites, which can assist with surveying
and mapping [28], progress monitoring [29-32], and safety management [33-35]. In the context of
hurricane preparedness in construction sites, UAVs have demonstrated the potential to capture an
invaluable record of potential wind-borne debris from aerial vantage points [1]. Exploring through
imagery would provide critical information regarding the type and location of potential threats,
allowing practitioners such as safety directors and superintendents to better prepare and implement
emergency operating procedures to secure jobsites prior to extreme weather events.

In this paper, we propose a novel vision-based framework for construction site hurricane
preparedness. By leveraging visual data from jobsites, we reconstruct a digital twin model of the
at-risk construction environment that recognizes the type and the location of threats at the 3D level.
In this regard, we first perform an image-based scene reconstruction, and then carry out the
semantic segmentation on images to identify potential wind-borne debris at the 2D level. Building
on the outcome of the 2D sematic segmentation, we project the semantic values onto the point
cloud model to obtain the semantic information of potential wind-borne debris at the 3D level.
Finally, for each instance of potential wind-borne debris, we estimate the associated quantity and
assess the inherent threats based on the kinetic energy. A site-specific heat map is generated to
delineate the risk associated with potential wind-borne debris with respect to the severity of given
wind events. We evaluated the performance of the proposed methods on residential construction
sites in College Station, TX, especially those associated with wooden dwellings where
unstructured resources such as pine boards and plywoods are found. The proposed framework will
help practitioners to effectively locate potential wind-borne debris in construction sites and

understand the associated risk. Thus, it can support risk-informed decision-making by providing
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heads-up to practitioners in a timely fashion, which fosters awareness of the ways in which

hurricanes cloud be destructive in construction sites.

2. Research Background

2.1. Disaster preparedness and potential wind-borne debris

Prior works on post-disaster management are geared towards activities based on the severity of
damage after disaster strikes in given regions [36,37]. In contrast, pre-disaster management focuses
primarily on the adaptation of mitigation and preparedness plans through a proactive risk
assessment [38]. In this regard, Gregg et al. [39] carried out preemptive risk assessment building
on the geographic location of given regions and the distance to hazard-prone areas, past
experiences, and the probability of potential future incidences. According to [40], for every 2.5
dollars investment in pre-emptive efforts and practices in disaster management, a one-hundred-
dollar bill can be saved by reducing the cost of disaster-related losses. Although the related
contexts would differ, such study infers the significance of proactive practices and studies to
identify threats and mitigate the potential impact of disasters in construction jobsites.

In order to implement preparedness practices, practitioners such as safety directors or
superintendents should first recognize potential threats in jobsites [41]. If not properly recognized,
preemptive efforts are likely subjected to failures [41,42]. Interestingly, demographic variables
such as education and training of practitioners may impact the extent to which proactive efforts
are adapted [43.,44]. In this regard, technology-driven studies (e.g., eye-tracking) have been
conducted for the cognition of hazards among practitioners in construction sites [18,45-47]. The
general concept of these studies is to assess the quality of practitioners’ visual search to recognize

deficiencies, which can help better educate practitioners to flag and perceive potential threats in
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jobsites [48,49]. Although such works demonstrate the great potential in identifying the location
of hazards in construction sites, when it comes to visual inspection on potential wind-borne debris,
there is an additional need to consider the geometrical characteristics (e.g., shape, volume) that
needs to be further assessed to better understand the associated risk. To this end, such studies on
hazard detection would not be expected to directly translate into desirable outcomes in assessing
the extent of threats in the context of potential wind-borne debris.

Meanwhile, studies have been carried out to characterize the behavior of general wind-
borne debris. [10] evaluated potential damage of wind-borne debris to building envelopes with
respect to the severity of wind events. Later, [50] classified the shape of wind-borne debris into
three categories (compact, plate, and rod) as each shape demonstrates different behaviors in severe
wind events. Building on the geometrical characteristics, [51,52] studied possible trajectories of
rod and sheet type of debris in severe wind events. As such, a systematic foundation to quantify
the extent of damage with regards to types and shapes of potential wind-borne debris has been
established. Building on these, we propose a vision-based framework to automatically identify and
assess threats of potential wind-borne debris in construction sites. The proposed framework for
scene understanding is essential to support the localization of potential threats in construction sites
and prioritization for preparedness planning. As a point of departure, in the following section, we

review the research on scene understanding focusing on point cloud segmentation.

2.2. Digital twining and point cloud segmentation
3D scene understanding such as point cloud segmentation is a rising field of study that has a wide
range of applications such as robotics [53], augmented reality [54], autonomous driving [55], and

medical imaging [56]. The objective of scene understanding is to cluster points belonging to a
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specific object in point cloud models. In order to better process 3D data, prior works represent the
point cloud models in the context of multi-view images [57], voxels [58], and meshes [59]. Such
methods help the classification of points belonging to a target class, but not the instance
segmentation for objects in a particular class. Moreover, the conversion of point cloud models to
voxels and mesh representations is likely subjected to data loss, which may lead to poor
performance in classification [60]. In this regard, [60] adopted a deep learning framework, referred
to as PointNet, which directly uses point cloud data as the preliminary input. PointNet framework
was the first to address point permutations, and the extracted deep-learning descriptors are robust
to order invariances in the 3D point cloud. Despite the benefits of PointNet, one of the challenges
is that a relatively small number of points (e.g., 1024, 2048, 4096) can be processed by its
workflow due to the fixed size of the input layer of the deep neural networks. To this end, the
process of semantic segmentation and scene parsing of point cloud models containing millions of
points (e.g., reconstructed scenes of large-scale jobsites) has been identified as a challenge for
PointNet architecture.

In the construction domain, prior works on point cloud segmentation could be divided into
model-driven and data-driven frameworks [61]. Model-driven segmentation of point clouds
enables the classification of points based on a set of hand-engineered cost functions such as in
shape-fitting algorithms or region-growing workflows. In this regard, [62] proposed a method to
address the segmentation of 3D point clouds of bricks in masonry walls, and [63] performed the
segmentation of infrastructures based on region-growing algorithms. Later, [64] carried out the
automatic detection of safety regulation compliances (e.g., toe-boards) on point cloud data. Despite
the benefits of such models (e.g., computational simplicity), insufficient robustness to geometrical

variances and poor performance on noisy and incomplete point cloud models have been identified
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as the limitation of model-driven point cloud segmentation frameworks [61]. On the other hand,
data-driven models rely on diverse training datasets to categorize points in point cloud models. In
this regard, studies such as [65] have addressed point cloud segmentation through the supervised
learning. For instance, [66] addressed the detection of scaffolding in point clouds through the
Random Forest framework. Studies were performed for the categorization of planner patches [67]
(e.g., columns, beams, slabs) and rebars [68] in laser scanning data using conventional
classification approaches such as support vector machine (SVM). Later, [69] addressed the
segmentation and classification of construction machinery in 3D laser scanning models, building
on a descriptor using a synthetic training dataset. Despite the potentials, there is still a challenge
in the application of synthetic data due to the limited capacity in representing textural and
geometrical variances of real-world point cloud models [70], which needs further studies. Other
studies have carried out 3D level segmentation building upon the projection of 2D semantic values
onto the point cloud model for material piles [71] and construction equipment [38]. However, a
limited 3D segmentation accuracy has been reported once 2D semantic information is projected
onto point cloud models. In this regard, [71] implemented an elevation-based criterion to improve
the performance of 3D semantic segmentation. Despite the performance enhancement, the
elevation-based criterion is typically valid on flat surfaces, and thus its application to jobsites that
often involve uneven surfaces would be challenging. To address the challenges, we propose a
novel 3D semantic segmentation building on depth information, in order to robustly recognize

potential wind-borne derbies from point cloud models.

3. Proposed Methods for Vision-based Construction Site Hurricane Preparedness



183  In this paper, the risk assessment on potential wind-borne debris (PWDs) using visual data is
184  composed of three modules: 1) digital twinning of PWDs in jobsites based on collected visual data,
185  2) estimating the quantity of PWDs through the volumetric measurement, and 3) assessing the
186  associated threats of PWDs with respect to the intensity of wind events. Case studies on nine piles
187  of PWDs were conducted in residential construction sites to assess the fidelity of the proposed

188  methods.
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194  3.1. Digital twinning of construction sites including potential wind-borne debris
195  Digital twinning is a crucial step in representing the geometrical characteristics such as the shape

196  and location of physical assets in a corresponding virtual environment [72]. In order to build a
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digital twin model, a 3D dense point cloud is first reconstructed using collected images. Building
on Structure-from-Motion (SfM) [73] and Multi-View Stereo [74], a dense point cloud model
represents a replica of construction sites including PWDs. The SfM framework could briefly be
described as: 1) extracting a local feature descriptor such as Scale-Invariant Feature Transform
(SIFT) [75] from entire images, 2) performing pairwise matching among feature descriptors of
images to compute the fundamental matrix and obtain camera viewpoints (e.g., position and
orientation) from where the data collection is performed, and 3) using triangulation to estimate the
location of successful pairwise matches in a 3D coordinate system to obtain a sparse point cloud
model. Subsequently, in order to populate the sparse point cloud, the Multi-View Stereo workflow
is employed among collected images, which initially divides images into patches and enforces an
iterative match, expand and filter procedures to refine the point cloud resolution [74]. Upon
reconstruction of point cloud models of jobsites, the detection of PWDs and the associated analysis

is performed.

3.1.1. Detection of PWDs

Most residential buildings in the United States, including those located in hurricane-prone regions,
are wooden dwellings [76]. This implies that not only these wooden structures are susceptible to
hurricanes, but also residential construction sites for such dwellings accommodate a large number
of loose and easy-to-airborne PWDs (e.g., plywoods, pine boards) that are vulnerable to extreme
wind events [77]. Depending on behaviors in severe wind situations, PWDs are classified into
three types (rod, plate, and compact). The rod-type debris or linear debris is one-dimensional debris
as one dimension is extensively larger than two others. Examples of the rod-type debris are wooden

framing members or piping. The plate-type debris is known as planer debris, where one dimension

10
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is notably smaller than the other two dimensions. Pine boards or roof sheathing are examples of
this type. Finally, the compact-type debris is referred to as three-dimensional debris, where its size
in three dimensions is approximately similar, such as bricks. Table 1 summarizes common PWDs

in residential construction sites.

Table 1. Examples of potential wind-borne debris (PWD) in construction sites

PWDs Debris Type [50]

Bricks [77] Compact-type
Roof surfacing [77] Plate-type
Framing members [2,77] Rod-type
Sheetrock [2,77] Plate-type
Pine board [2,77] Plate-type

Trash [77] Compact-type
Piping [77] Rod-type
Scaffolding Systems [2] Rod-type
Roof Sheathing [77] Plate-type
Roof trusses [77] Rod-type
Shingles [2,77] Plate-type

In order to detect PWDs in visual data, we leverage convolutional neural networks to
perform semantic segmentation over images from construction sites. The semantic segmentation
enables the categorization of pixels into semantic classes and specifies the boundaries of the
objects of interest, paving the way to carry out the scene understanding [38,78]. We benchmarked
the detection of PWDs based on different convolutional neural network architectures and presented
the outcomes in the case study and evaluation section. Upon detecting PWDs in images, their
geometrical characteristics such as dimension and type of debris and the unit weight are encoded
for each class of PWD. The geometrical characteristics of PWDs are the critical information to

specify their vulnerability with respect to the intensity of given wind events.
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3.1.2. Point cloud segmentation to analyze PWDs in 3D

Building on 2D semantic segmentation, we perform point cloud segmentation to analyze PWDs in
3D (e.g., volume). For the point cloud segmentation, we establish a correspondence between the
pixels of semantically segmented images and points in point cloud model. Such correspondence
indicates what semantic pixel is associated with which point in point cloud models. Using camera
viewpoints and extrinsic parameters obtained from the SfM, 2D pixel to 3D point correspondence

between images and point cloud models is expressed as follows [71]:

C; = K3><3[R3><3|T3><1]Cw (1)

where C; represents the pixel location in the segmented image, such as in [x;, y;, 1]7, and
C,, is its corresponding location in the 3D point cloud, such as in [x,,, ¥y, Z,y 1]7, K encapsulates
the intrinsic camera parameter (e.g., focal length, distortion). R and T are the extrinsic camera
parameter denoting the orientation and location of cameras with respect to the coordinate system
of the point cloud. Figure 2 demonstrates a point cloud model obtained via collected images and
examples of semantic segmentation outcomes. Building on Equation (1), single-camera
projections are shown in Figure 3a. Equation (1) holds for all camera positions and viewpoints,
and, when multiple cameras are projected onto the point cloud model, the most common semantic
class among projection cameras is assigned to points in the point cloud model. Such collective
decision-making on the semantic class of a point is required as the class of their corresponding
pixels among projection cameras is not typically consistent among points [71]. Figure 3c

represents the outcome of the semantic projection from all cameras.

12
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As observed in Figure 3b and 3d, 3D semantic segmentation through the camera projection
is likely defective as parts of the background could be misclassified as PWDs. In particular,
occluded objects could be misclassified since projection shadows are not taken into account in
Equation (1), which leads to erroneous 3D segmentation outcomes. In order to improve the 3D
segmentation by addressing the challenges, we propose the depth-aware projection framework.
Building on the dense point cloud model, we compute a depth map at each camera location and
use the depth information to take into account a range of projection. In this regard, given camera
location and orientation, we render the viewpoint from the point cloud model where the camera is
positioned and associated image is collected from (Figure 4a and 4b). We then divide the
viewpoints into a grid of pixels (Figure 4c¢), and retrieve points in the point cloud model that are
visible at each grid through the 2D pixel to 3D point correspondence between the image and the
point cloud model. The distance of the closest point to the camera is retrieved at each grid location,

and the depth map is generated accordingly (Figure 4f).

EVCompuling depth map
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Figure 4. Overview of the proposed framework to compute depth maps from point cloud models

The distance demonstrated in the depth map accounts for the validity of Equation (1) during
the semantic projection. In other words, at each grid location of the depth map, the semantic
projection from image to point cloud may not be valid when points are located beyond the distance
inscribed by the depth information. Figure 5 illustrates the performance enhancement through the
proposed depth-aware projection framework. Figure 5a represents the projection without taking
account of the depth information, which solely relies on Equation (1), and Figure 5b illustrates the

depth-aware projection in which the background object is excluded from the semantic projection.

Misclassified

Points /7
e

e 7 ® No Class
= /4 CePwp
| @ Background |

P //?/ ~ / i‘g(:amera

Figure 5. Illustration of the proposed depth-aware projection of semantic information onto point

cloud models

The depth-aware semantic projection is the backbone of the proposed reality capturing of

PWDs using visual data. Using the outcome of the 3D semantic segmentation, we further explore

the characteristics of PWDs in the context of threats caused by extreme wind events.
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Figure 6. Depth-aware projection for enhanced 3D semantic segmentation

3.2. Estimating the quantity of potential wind-borne debris

The potential damage from PWDs is relevant to their weight, once they become projectile and
collide into surrounding environments [50,77,79]. The associated collision damage is also referred
to as the missile impact, which could be lethal to people who are in the immediate vicinity of
PWDs during extreme wind events [79]. Generally, the higher the weight of PWDs, the greater the
devastating impact is expected to take place during extreme wind events [50]. Using the outcomes
of the point cloud semantic segmentation, we perform the volumetric measurement on PWDs, and
then by using the unit weight values, we estimate the weight of PWDs. The volumetric
measurement in the segmented point cloud model is composed of three modules as registration,
projection, and resampling. Given segmented point cloud models, the Random Sample Consensus
(RANSAC) algorithm [80] is employed for the ground registration through plane fitting [71]. Next,
the point cloud model is demonstrated in the cartesian system in which its XoY plane lays over

the registered ground, and its Z axis is parallel to the projection direction (Figure 7a). A grid of
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pixels over the registered ground is formed, and at each pixel location, a set of points enclosed
within each grid is discretized. At each pixel location, the most common semantic class observed
among points are inherited by the associated pixel as shown in Figure 7b. The outcome of such 3D

to 2D projection is referred to as projection matte in this research.
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Figure 7. (a) segmented point cloud, (b) 2D projected matte, (c) instance segmentation, (d)

resampled point cloud, (e) 3D bounding box

Upon the existence of multiple PWDs within a point cloud model, the instance
segmentation of each PWD is required to separately assess their characteristics. In order to
differentiate the instance of PWDs, a 2D bounding box is retrieved building on the projection
matte, and the set of points enclosed within the bounding box is considered as a single instance
(Figure 7c). At each pixel location of the projection matte, points representing the pixel are
discretized, and the average Z height of points enclosed in each pixel is computed to obtain the

resampled point cloud model (Figure 7d). To model the 3D bounding box containing the PWD,
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we build on the coordinates of the 2D bounding box and compute the maximum and minimum Z
height values of the instance (Figure 7e). Finally, the volume of the PWD is computed as the
summation of Z height values of the resampled point cloud model multiplied by the square size of

pixels in the projected matte, which can be demonstrated as follows:

prd = GS* x Z z prd (X, Y})) (2)

i=1 j=1

where, V,,,q indicates the volume of PWD, Z,,,4 is the height of points belonging to the
PWD at the pixel location (X;,Y;), and the parameter GS denotes the grid size. The number of

pixels of the projected matte in OX and OY directions are denoted as n and m. Building on the
weight per unit volume of PWDs (which also referred to as the unit weight or special weight), the

weight of PWDs is obtained as follows:

Mpwd = prd X Ppwd 3)
where My, q is the weight, and p,,,,4 is the unit weight of PWDs, respectively. Information

regarding the unit weight of materials including PWDs, is generally available among practitioners,
which enables them to plan for material transportation based on the weight or volume restrictions
of transporting vehicles. Contractors also estimate the unit weight when purchasing materials or

transporting materials and debris from one location to another.

3.3. Threat assessment of potential wind-borne debris
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The possible damage imposed by PWDs is associated with its kinetic energy once it is picked up
by wind and becomes airborne. Thus, to assess the threat in the context of PWDs, we calculate the
kinetic energy associated with PWDs once they become projectiles. Basically, the kinetic energy
of an airborne PWD is proportional to its mass and the square of its velocity, which is expressed

as follows:

1
KE = - Myyq U?

“)

where KE indicates the kinetic energy of PWD (joules), my,,,q denotes the mass of PWD

(kg) which is quantified in the section 3.2. The parameter U is associated with the intensity of the
wind events and denotes the sustained wind speed (m/s). Not all PWDs become projectiles in wind
events; some become projectiles at lower wind speeds, and some at a higher. Thus, the existence
of projectiles is based on the critical wind speed. Such critical wind speed accounts for the
minimum wind speed that is required to lift a PWD from the ground and make it a projectile [50].
Building on [50], the critical wind speed for different types of objects are expressed through

Equation (5) and (6) as follows:

Uc?2 =2 (’;—TZ) (C%) lg (5)
vet =332 () s ©
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where Uc denotes the critical wind speed of PWD, p_ denotes the weight to the volume of

PWD, and p,, is the density of the air (kg/m?). For the plate-type of PWD, [ denotes its thickness,
and similarly, d denotes the external diameter for the rod-type of PWD. The gravitational
acceleration is denoted by g (m/s?). The parameters I and Cy represent the bound and drag
coefficient of PWD, which are assumed as unity in this research. By leveraging the mass and the
critical wind speed, a heap map is generated to demonstrate threats associated with PWDs at a
given wind speed. The heatmaps could be described as weighted pixels [81]. Here, at each pixel
location, a weight is computed such that it satisfies Equation (4), provided that the given wind

speed is greater than the critical wind speed of given PWDs.

4. Case Study and Evaluation

4.1. Data collection and experimental setup

In this research, two case studies were performed to evaluate the performance of the proposed
method. Case #1 represents the laydown yard of a wooden residential construction site, while case
#2 demonstrates a more complex jobsite of a commercial facility. There are nine piles of PWDs at
different locations of the site (Figure 8a). There are three piles of pine board and plywood, two
piles of PVC pipe, and a single pile of galvanized pipe. Case #2 consists of eight piles, including
a single pile of sewer pipe, a single pile of metal pipe, a single pile of wooden boards, and five

piles of steel beams at different locations (Figure 8b)
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Figure 8. Types and locations of PWDs in case studies

Pile ID: 4
Type: Steel beam

The training dataset in case #1 consists of 360 images (180 from aerial perspectives and 180 from
ground-level). In addition to the aerial visual data collection, due to the proliferation of hand-held
camera-equipped platforms such as smartphones and tablets, ground-level visual data collections
are also considered as the convenient way by practitioners to keep the record of the as-is status of
the jobsite (e.g., prior to extreme weather events such as hurricanes for the purpose of insurance
claim afterward). In order to demonstrate the robustness of the algorithm to both aerial and ground-
level image, the semantic segmentation network was trained and tested on images from these two
domains. In this regard, to evaluate the performance of the network, a total of 60 images, consisting

of 30 aerial and 30 ground-level images, were randomly selected as the testing dataset. In case #1,
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aerial images were collected from a mid-end commercial UAV which is equipped with a 12-
megapixel camera with a 35 mm lens and ISO range of 100-1600. Flight altitude was around 10
meters with respect to the ground, and the total flight time was around 3 minutes. Ground-level
images were collected from a smartphone with a 12-megapixel camera at around 1.5 meters above
the ground. In case #2, 32 aerial images were used for scene reconstruction in the form of point
clouds and to assess the performance of the semantic segmentation. A total number of 127 images
were used to train the semantic segmentation framework. The aforementioned UAV has been used
for aerial visual data collection. The flight time was around two minutes, and the flight altitude
was approximately 30 meters. Figure 9 shows the collected data in case studies and their

corresponding segmented images and depth maps.
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Figure 9. Examples of collected images, segmented images, and their associated depth maps in
case studies

4.2. Performance metrics and outcomes
4.2.1. Semantic segmentation
The boundaries of PWDs are manually labeled to train the semantic segmentation model, as shown
in Figure 10. In order to carry out the semantic segmentation at the 2D level, we built upon different
architectures of convolutional deep neural networks, including Alexnet [82], Vggl9 [83],
Resnet18 [84], and Resnet50 [84], and evaluated their performance.

Case #1

| Sewer Pipe |_ Metal Pipe
Wooden Boards Background

Figure 10. Examples of manually annotated images in case studies
Alexnet has two parallel convolutional neural networks connected via cross-connections
[82]. To increase accuracy in deep learning models, the Vgg networks are leveraged, which contain
large numbers of parameters. Although the Vgg networks are computationally expensive to be
optimized due to a higher number of parameters, they are generally used as a baseline for feature
extraction [85]. Finally, to enhance the efficiency of the parameter optimization and reduce the
search space, residual networks such as Resnetl8 and Resnet50 are leveraged, which has

demonstrated high performance in terms of computation and accuracy [84]. Unlike conventional

23



431

432

433

434

435

436

437

438

439

440

441

442

443

444

networks, the Resnet architectures are robust for optimization, and the performance of the network
is enhanced upon increasing layers of the network [84]. The attributes, as well as the averaged
accuracy of the semantic segmentation of each deep neural network in the case study of a

residential construction site are summarized in Table 2.

Table 2. Performance of convolutional deep neural networks

Depth Parameters Averaged
Networks (layle):rs) (millions) accurac;g (%)
Alexnet 8 61.0 89.1
Vggl9 19 144.0 92.3
Resnetl8 50 11.4 98.1
Resnet 50 101 25.6 98.2

As a proof of concept, in our case studies, we built upon the Resnet50 model to carry out

the semantic segmentation. Figure 11 demonstrates the confusion matrix obtained to measure the

2D semantic segmentation accuracy in case studies.

Case one Case two
PVCpipe [97.63| 0.06 | 1.28 | 0.0 1.01 Sewer pipe [ 66.90| 0.00 | 0.25 | 14.05| 18.79
Pre-cut plywood | 0.00 [99.79 0.00 | 0.00 | 0.20 Wooden board | 0.00 | 86.99| 0.00 | 0.29 | 12.71
Pineboard | 0,72 | 0.31 | 97.55| 0.00 | 1.40 Steelbeams | 0.00 | 0.00 | 77.46 12.18| 10.35
Galv. Pipe | 0.00 [ 0.00 | 0.02 | 99.65] 0.31 Metal pipe | 0.00 | 0.00 [ 0.11 [95.25( 4.63
Background | 0.43 | 0.42 | 0.49 | 0.37 [ 98.26 Background | 0.00 | 0.10 | 0.07 | 1.65 | 98.17
> o @ > Q> 9 >
& & & &S & § 5 &8
o S 2 ¥ o & I NJ 2 &
QA ) & (.’.‘lrb o § ¥ & ¢ +
I A Q 5 .s\é) & < @
(4]

Figure 11. Confusion matrix over testing dataset for segmentation

4.2.2. Instance segmentation of PWDs
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By leveraging the images presented in our case studies, a dense point cloud is reconstructed, and
the associated depth map for each image is obtained. The depth-aware projection of the semantic
information onto the point cloud model is then conducted, and the point cloud is semantically
segmented. The oriented bounding boxes are enforced to demonstrate PWDs in the resulting digital
twin model in the form of point clouds. Points enclosed in each bounding box are trimmed from
the rest of the point clouds, and the associated PWD is further explored through the volumetric
measurement and the threat assessment. Examples of point cloud models and their segmentation

as well as the outcome of the instance segmentation, are presented in Figure 12.

Case one Case Two

ound-level only
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Figure 12. (a) original point cloud, (b) segmented point cloud, and (c) the instance segmentation

of PWDs in case studies

4.2.3. Volumetric measurement
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The outcomes of the volumetric measurements on nine instances of PWDs are compared against
the ground truth, and the error is obtained per instance. The grid size of discretization was
experimentally set to 3 centimeters as a proof of concept, in the light of required computational
cost as the computing time could be in inverse proportion to the grid sizing as shown in [71]. Table
3 shows the error of the volumetric measurement based on segmented point cloud models of a
residential construction site in the case study.

Table 3. Volumetric measurement on PWDs based on segmented point cloud models

Pile ID# PWDs Voﬁii?ci?ﬁ) Gro?::l;l;ruth Error (%)
1 PVC pipe 168,302 164,329 24
2 Plywood 112,773 105,768 6.6
3 Pine board 109,720 102,564 6.9
4 Pine board 70,916 68,376 3.7
5 Plywood 38,521 35,256 9.2
6 PVC pipe 80,803 74,695 8.1
7 Plywood 72,709 70,512 3.1
8 Pine board 53,410 51,270 4.1
9 Galv. Pipe 20,065 18,902 6.1

4.2.4. Heatmaps based on the threats associated with PWDs

The unit mass per volume (p,,,4) 1s built upon to obtain the mass of each pile based on the volume.
The plywood, pine board, and wooden board are considered plate-type debris, while PVC and
sewer pipe, steel beam, and galvanized pipe are classified as rod-type debris. The critical wind
speed of PWDs is calculated through Equations (5) and (6). Material properties such as mass per
unit volume of materials were built upon [86,87]. Threats associated with PWDs are then assessed
based on the mass of debris, wind speed, and the critical wind speed of debris, in terms of the
kinetic energy. Figure 13 illustrates examples of heatmaps with different wind speeds. The wind
speeds of 42, 58, 70, and 100m/s correspond to hurricane categories one, three, four, and five,

based on the Saffir-Simpson scale [88].
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Figure 14. Cumulative kinetic energy associated with PWDs with respect to different intensity of

winds

Figure 14 demonstrates the cumulative kinetic energy with respect to PWDs that are
present in the case study of a residential construction site. In our case study, the critical wind
speeds of 9.8, 17.5, 21.7, and 50.1 m/s are noted for pine board, plywood, PVC pipe, and
galvanized pipe, respectively. As observed, the cumulative kinetic energy demonstrates a gradual
increase at lower wind speeds but sharply escalates at higher intensity of winds. In addition, an
increase in released energy level is observed at the proximity of critical wind speeds, as PWDs
become airborne. In the case studies, around 35 percent of an increase was observed at 50.1 m/s
as galvanized pipe becomes airborne. Such a significant change in kinetic energy is relevant to the
higher density (i.e., high threats) of galvanized pipe compared to the rest of PWDs presented in

the case studies.

5. Discussions

Figure 13 illustrates the threats associated with PWDs over the at-risk construction environment
with respect to the wind intensity. The advantages of generating a heatmap to delineate the threat
could be perceived on two fronts: 1) depending on the critical wind speed, some PWDs do not
pose any threat at lower wind speeds. For example, in case #1, at 15m/s of winds, it was observed
that only pine boards in our case studies are identified as a potential threat among the rest of PWDs.
This implies that for lower wind intensities, the hurricane preparedness checklist could be
streamlined, which requires securing/relocating the corresponding PWDs from jobsites, and at the

same time, relaxing preparedness ordinances for the rest of PWDs that are present in the scene.
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Such an abstract and yet focused preparedness plan could be effective, given that there is a limited
resource (i.e., time, manpower) for hurricane preparedness. 2) Given a particular wind speed, the
level of threats among PWDs may vary, which can help the prioritization for preparedness. For
instance, at 70m/s of wind speed, galvanized pipe is flagged as the most hazardous PWD in our
case studies, while pine boards present a less threat in the jobsite. In our case studies, the volume
of galvanized pipes accounts for around three percent of the entire volume of PWDs presented.
However, as demonstrated in Figure 14, such a small portion of PWDs could have a significant
threat once they become airborne. In this regard, at a given wind speed, exploring the level of
potential threat among the PWDs can provide useful information for planning preparedness.
Visualization of threat through heatmaps helps provide a prioritized plan to secure PWDs and sorts
the most hazardous PWDs to the least. Identifying and prioritizing preemptive measures with
respect to the risk level of PWDs is expected to support risk-informed decision-makings for
implementing construction site emergency operating protocols to prepare for extreme wind events
in an effective manner.

In this paper, the depth-aware projection framework could enhance the performance of the
point cloud segmentation, which is the critical step to assess the threat associated with PWDs.
Depth information indicates the distance in which semantic projection from image to point cloud
is valid, in order to account for occlusions during projections. Here, we demonstrate the
performance enhancement gained through the depth-aware projection versus the baseline
projection through Equation (1). The outcome of the depth-aware projection is shown in Figure
15a, and the baseline projection is shown in Figure 15b. Correctly classified and misclassified

points are shown in Figure 15c. The average accuracy of the baseline projection was 97.85 percent,
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while the proposed depth-aware projection demonstrates the accuracy of 99.8 percent in 3D

semantic segmentation in our case studies.

Correctly Classified | Misclassified

Figure 15. (a) the proposed depth-aware projection, (b) the baseline projection, and (c) the

classification confusion of (b)

Although OSHA recommends pile and pallet items to be neatly stacked up to ensure
stability and enable self-supporting [89], there often exist unstacked piles in jobsites. The proposed
volumetric measurement performed well, but a lower accuracy was observed among relatively
unstacked piles due to higher levels of disorganization. The overestimation on volumetric
measurements often happened due to large amounts of empty spaces within unstacked piles. In
this regard, we acknowledge that the volumetric measurement on unstacked piles could be an

underlying challenge in vision-based approach as a RGB camera cannot see the unseen inside
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material piles. In order to estimate the volume taking account of empty spaces, a level of
disorganization could be analyzed to consider a lower density of unstacked piles. However, it is
expected that unstacked piles demonstrate a wide range of disorganization as the level of
disarrangement in stacking varies among piles. Building on [90], the level of disarrangement in
stacks could be investigated. First, a target object could be isolated through the semantic
segmentation (Figure 16a). Edges are detected to keep dominant edges in the image through
thresholding over gradients (Figure 16b) [91]. Then dominant straight lines are extracted through
the Hough transformation (Figure 16¢) [92]. Finally, the orientations of straight lines are
investigated, and a histogram of line orientation can be generated. As observed in Figure 16d, for
stacked PWDs, the standard deviation of line orientation is lower compared to that of relatively
unstacked PWDs. The standard deviation of line orientation could represent the level of
disorganization in stacking. Such level of disorganization among relatively unstacked piles would
be further studied to calibrate the volumetric measurement. But in case of relatively unstacked
piles, it is noted that they should be considered with the top priority for hurricane preparedness,
and thus the detection of such objects based on the level of disorganization and their localization
through the digital twinning module could be sufficient to trigger the prioritized actions (i.e., quick

relocations) before extreme wind events.
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Figure 16. Level of disarrangement among relatively unstacked piles (top) and stacked piles

(bottom)

6. Conclusions

Potential wind-borne debris (PWDs) are among the most destructive elements in extreme wind
events. In particular, construction sites containing unsecured resources are identified among the
most exposed and undefended environments to extreme wind events. Thus far, preemptive efforts
have been put in by construction firms to develop and implement protocols to identify PWDs and
mitigation plans to better prepare against wind events. However, the assessment is not systematic,
and heuristic approaches in jobsites are likely to be error-prone and labor-intensive. The
advancement of machine vision and the convenience of UA Vs have offered opportunities to collect
large-scale imagery and generate digital photologs to keep the record of errands in construction
projects. In this paper, we propose a rapid and in-situ risk assessment of PWDs by encoding their
risk into machine vision algorithms to automatically flag the degree of vulnerability in jobsites.

The proposed method is built upon three modules: 1) digital twining and rapid 2D/3D semantic
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segmentation, 2) volumetric measurement and the mass evaluation, and 3) risk assessment on
PWDs. The proposed method generates site-specific heatmaps regarding threats that is respective
to the intensity of wind events. PWDs presented in our case studies are commonly found in
residential construction sites, including plywoods, pine boards, or PVC/galvanized pipes. The
proposed method supports risk-informed decision-making by providing a heads-up to practitioners
and fosters awareness of the ways in which hurricanes could be destructive in construction sites.
Moreover, the proposed method has the potential in rapid scene understanding to be integrated into
site monitoring systems. While this research enables an automated risk assessment in the context
of hurricane preparedness, there are open research challenges associated with the proposed
method. For instance, it is expected that 3D and 2D semantic segmentation modules may
demonstrate poor performance in suboptimal weather conditions such as rainy [93] and foggy [94]
situations or dim light conditions [95]. Moreover, the presence of occlusions and moving objects
in jobsites is another challenge in reality-capture and digital twining frameworks. In this regard,
building a robust machine vision-based system that can account for such challenges is the direction

of our ongoing research.
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