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Abstract

We propose SinGAN-GIF, an extension of the image-
based SinGAN [27] to GIFs or short video snippets. Our
method learns the distribution of both the image patches
in the GIF as well as their motion patterns. We do so by
using a pyramid of 3D and 2D convolutional networks to
model temporal information while reducing model param-
eters and training time, along with an image and a video
discriminator. SinGAN-GIF can generate similar looking
video samples for natural scenes at different spatial res-
olutions or temporal frame rates, and can be extended to
other video applications like video editing, super resolution,
and motion transfer. The project page, with supplemen-
tary video results, is: https://rajat95.github.
io/singan—-gif/

1. Introduction

Generative Adversarial Networks (GANs) have come a
long way since they were first proposed in 2014 [9]. GANs
can now generate high fidelity images, particularly when
constrained to a specific class like cars, faces, etc. [2, 17].
They have been used for various image processing appli-
cations including super resolution, image editing, and style
transfer [5, 19, 41].

Recent work showed that GANs can be trained using
only a single image [27, 28]. By learning the distribution
of patches in the single training image, these methods can
generate diverse high quality samples that contain seman-
tically similar visual content but in different configurations
and structures. Since structures are more repetitive in tex-
tured images [42], these methods typically perform better
on natural scenes.

In this work, we propose SinGAN-GIF, an extension of
SinGAN [27] to GIFs (or short video clips). Our approach
takes a single GIF as input, and learns the spatio-temporal
patch distributions. Once trained, it can generate new GIFs
that contain the same semantic content of the input train-
ing GIF but with different spatio-temporal structures and
configurations (e.g., different spatial aspect ratios, different
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Figure 1. Given a single GIF (short video clip) as input, our model
SinGAN-GIF, learns a generator to generate random samples that
capture variations of the same visual content. SinGAN-GIF can
generate samples at any aspect ratio, perform super-resolution,
change the temporal frame rate, and be used for video editing ap-
plications.

temporal speeds). See Figure 1.

There are some key challenges that make the exten-
sion of SinGAN to the video domain non-trivial. De-
spite tremendous progress in image generation, generating
videos is still a largely open problem. The main difficulties
are increased data complexity with the addition of the tem-
poral dimension, and typically huge computation and mem-
ory requirements that hinder direct extensions of image gen-
eration techniques to the video domain. Despite these chal-
lenges, a GIF or short video snippet is much simpler than
regular videos in complexity and demands far less compu-
tational resources. Furthermore, GIFs often contain sim-
ple, repetitive patterns, especially if they pertain to natural
scenes. Therefore, by focusing on GIFs, we can circumvent
many of the usual difficulties of video generation.

Our network architecture builds upon SinGAN [27] as a
baseline and extends it to videos. SinGAN’s network con-
sists of a pyramid of fully convolutional GANSs, each re-
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sponsible for capturing the patch distribution at different
resolutions. We replace the 2D spatial convolutions with
3D spatio-temporal convolutions, use two sets of discrimi-
nators — one spatial (2D) and one spatio-temporal (3D), and
to improve color fidelity, we apply a color statistic match-
ing loss. To alleviate large computation cost and training
time, we perform channel-wise separable 3D convolutions
and perform only 2D spatial convolutions at larger resolu-
tions in the pyramid, once the coarse spatio-temporal struc-
ture is modeled at lower resolutions. We show that our
model can generate diverse variations of a single GIF with
different aspect ratios and resolutions especially on natural
scenes (similar to single image generation models), which
contain repetitive and smooth spatio-temporal patterns. We
also demonstrate video specific applications including slo-
mo, extrapolation, and motion transfer.

2. Related Work

We summarize related work in generative video models
and single image generation models.

2.1. Generative Video Models

Although videos are essentially only a sequence of
frames, extending image generation techniques to videos
continues to be a challenging problem. Works that gener-
ate motion can broadly grouped into two types: (1) uncon-
ditional in which a video is generated from a noise vector,
and (2) conditional in which the a video is generated condi-
tioned on a specific, often user supplied, input.

Unconditional methods usually use GANs [9] to learn
a mapping between a noise vector and a data sample in
the true distribution. Existing video generation work split
the noise vector to model background and foreground sepa-
rately and then stitch them together [34], split the generator
into temporal and image parts and use a temporal generator
to predict a sequence of noise vectors for the image gener-
ation submodule [26], use RNNs to recursively obtain mo-
tion codes while using per-frame and video-level discrimi-
nators [33], use multiple streams to model motion and ap-
pearance [35], or propose the sliced Wasserstein loss for
video generation [38]. Recent work uses a BigGAN [2] like
architecture along with temporal and spatial downsampling
for the discriminators to achieve state of the art generation
results on the Kinetics-600 dataset [6].

An overwhelming majority of works in video genera-
tion are conditional in nature in the sense that their out-
put is conditioned on previous frames (video prediction
[1, 3, 20, 30, 36, 37]; video in-betweening [21]) rather
than predicting new videos from a single noise vector. For
video prediction, existing work use VAEs to estimate a pos-
terior on the input frames to stochastically predict future
frames [1, 20], add a residual to the noise vector to sequen-
tially predict future frames [8], propose video pixel net-

works to directly model the joint distribution of raw RGB
pixels [16], or propose latent video transformers that model
dynamics in latent space and thereby reduce computational
complexity [25]. Other lines of work instead deal with fixed
domains like cityscapes, clouds, and time-lapses [7, 23, 24].
However, these methods are either limited to low spatial
resolution or model simpler optical flow instead of predict-
ing in a more complex RGB space. Moreover, many of
the above models operate at the frame-level and fuse the
frame-level information to form a representation for videos,
whereas we focus on directly modeling videos as a whole.

2.2. Single Image Generation Models

Single Image generative models work on the principle
that patches repeat internally across the image at various
scales and can be used to create new images that largely
maintain a global structure while retaining finer textures.
[29, 40] successfully trained such models for specific tasks
like super-resolution, texture expansion, etc. InGAN [28]
used a generative model to learn the internal distribution
of image patches using a multi-scale hierarchical discrim-
inator, but focused mainly on changing aspect ratio. Sin-
GAN [27] successfully trained a multi-purpose generative
model that generates realistic random samples from a sin-
gle image and demonstrated numerous applications includ-
ing harmonization, super-resolution, image editing, etc.

While we are still a long way from generic realistic video
generation, our work focuses on generating a single GIF
(i.e., a short video clip). This problem is much simpler
in complexity compared to modeling a large video dataset.
Furthermore, since existing work have shown to be able to
model the internal distribution of image patches well, we
demonstrate that they can be extended to generate realistic
video samples for video editing applications, especially for
natural scenes.

3. Approach

We first briefly describe SinGAN [27] which was pro-
posed for images, and then describe in detail the modifica-
tions that we made to extend it to video data.

3.1. Background: SinGAN [27]

SinGAN consists of a series of generators
(G1,Gs,...,G,) operating on an image pyramid
(z1,2,...,x,) where each successive training sample
x;’s spatial dimensions are upsampled by a factor of r
(r > 1) over its coarser counterpart ;_;. Each generator
G, focuses on modeling the distribution of patches at the
scale corresponding to x; via adversarial training [9]. At
the coarsest scale, generator G; take a Gaussian noise map
21 as input and produces image sample 27:

1 = Gi(z1). (D
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Figure 2. Training pipeline for SinGAN-GIF’s 3D convolutional network. Given a video snippet at scale n with spatial dimensions H and
W, channel dimension C, and temporal dimension 7', we first upsample it by a factor of r. This upsampled video is added to a randomly
sampled Gaussian noise map and passed through a 3D CNN to estimate a residual value to refine the upsampled video output. It is trained
with adversarial losses from two discriminators working on the entire snippet and individual frames, respectively. This refined output is

used as input for the next scale where the process repeats.

The remaining generators focus on refining and adding
missed details to the output of the generators preceding
them. This is done by up-sampling the output of the preced-
ing generator and adding a Gaussian noise map to predict a
residual image, which when added to the input upsampled
image results in a more detailed image. Residuals are esti-
mated at each stage instead of directly generating the image,
so that the generators do not disregard the output from the
coarser generators. This process can be written as:

-'z‘n :T -/Enfl + Gn(znyT -%nfl)~ (2)

Along with random samples, SinGAN also preserves a
series of noise maps z,,; = (2*,0,0, ...,0), which are used
to reconstruct the original image back via a reconstruction
loss. z* is a noise map that is drawn once and kept fixed dur-
ing training. Having a pre-decided z,,; enables the model
to generate the original image back, which is necessary for
image manipulation applications that directly edit the origi-
nal image.

3.2. SinGAN-GIF

A simple approach to extend SinGAN to videos is to
use dual discriminators, with one of them distinguishing
generated samples from real ones at the image-level while
the other focuses on the temporal information at the video-
level, similar to prior video generation work [6, 33, 35]. In
accordance with SinGAN, we maintain a pyramid of gen-
erators each of which operates on a successively upscaled
version of the input video; i.e., given a pyramid of n gen-
erators from 1 to n, each generator operates on a version of
the original input scaled by a factor r*. The output from the
it" generator is upsampled and added to a noise map before

being fed to the next generator, as shown in Fig. 2. This en-
sures that successive generators consider both the noise as
well as the previous generation for the new output.

Each generator is associated with two discriminators:
one of which operates on each of the output frames indi-
vidually, while the other works on the entire video snippet
as a whole. Ideally, only a single video discriminator should
be able to check for both spatial and temporal inconsisten-
cies but empirically we found high frequency noise artifacts
to be frequent when using only the video discriminator.

Another difference in training procedure when working
with longer GIF sequences of e.g., T' = 32 frames, is that all
frames may not fit in GPU memory within a single forward
pass especially for higher resolutions. This means that we
need to have different z,,;’s (needed for the reconstruction
loss) for different chunks of the same video clip since we
can only pass e.g., t = 8 frames at a time. We solve this
by simply pre-setting a 7' X h x w noise map for the entire
snippet but clip a £ X h x w portion out of it, corresponding
to the frames currently being processed through the network
(where h and w are height and width at a specific scale).
We notice this simple approach gives reasonably accurate
reconstructions.

While this simple approach achieves qualitatively good
results, it is quite slow to train even at a low spatial reso-
lution of about 160x160 and a low temporal resolution of
8 frames on a NVIDIA 1080ti GPU. The reason is in large
part due to naive 3D convolutions having many more pa-
rameters than an analogous 2D convolutional network.
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Figure 3. Training pipeline for SinGAN-GIF’s 2D convolutional network. At a given scale n, frames are first extracted from a video snippet
obtained from the last scale n — 1. The frames are then upsampled and appended to their temporal neighbors along the channel dimension
and noise is added. They are then passed through a 2D CNN which predicts residuals to refine each input frame. The refined frames are
individually passed through an image discriminator and also converted back to a video and passed through a video discriminator.

3.3. Towards a More Lightweight Architecture

We make the following adjustments to speed up training
at higher resolutions.

3.3.1 Channel-wise separable 3D Convolution

Channelwise 3D convolutions split a £ x h X w convolution
intoa 1 x h X w spatial convolution and a k£ x 1 x 1 tem-
poral convolution [13, 12]. This not only reduces the num-
ber of learnable parameters but also makes training faster
and more stable without any major impact on the quality
of results. We use separable 3D convolutions for the 3D
generator. We attempted to use separable convolutions for
the discriminator as well but we found that it leads to highly
unstable training so we use regular 3D convolutions instead.

3.3.2 3D-2D Hybrid Pyramid Scheme

We notice that beyond a certain spatial resolution, the tem-
poral context from all frames is not necessary and the con-
text from the immediate temporal neighboring frames is
more important. Therefore, to further improve training
speed, we start with 3D convolutions for the initial few
scales but later switch to 2D convolutions. These 2D convo-
lutions take an upsampled frame from the previous scale as
well as its preceding and proceeding neighboring frames ap-
pended along the channel dimension. Just like the 3D gener-
ator, the output is passed through both image and video dis-
criminators. Furthermore, to ensure each individual frame
forms part of the same video sequence, we set the sampled
additive noise z to be the same for all individual frames. A
detailed description of this step is shown in Fig. 3.

With this change, combined with separable convolutions,

we notice a decrease in training time of approximately
~20% at 256x256 resolution.

3.4. Training Procedure

Each generator is trained sequentially moving from
coarser scales to finer scales, and we only estimate resid-
uals when moving towards finer scales. Once a generator
is trained, it is kept fixed while the next generator is opti-
mized. Each generator is trained using adversarial losses
from both video and image discriminators, a reconstruction
loss, and a color statistics matching loss:

LGn = Igin max Ladv,img(GnaDn,img)‘F

n Dnimg

(&% Igln max Ladv,vid(Gna Dn,vid)"_

n n-vid

B . Lrec(Gn) + v Lstat(Gn)a (3)

where G, Dy, vid» Dn_img denote the generator, video dis-
criminator, and image discriminator at the n’th scale of gen-
eration, respectively. Lqqy pid and Lggy_img are the adver-
sarial losses for video and image discriminators, respec-
tively, while L,.. and L4, are reconstruction and color
statistics matching losses, respectively. We explain each
loss in detail next.

3.4.1 Adversarial Losses

Each pair of generator and corresponding discriminators are
trained using the WGAN-GP [10] loss as it is shown to in-
crease stability:

L = Esnp,[D(#)] - Evep, [D(@)] +

CriticLoss

A Einp, (IVD@)ll2 = 1)) @)

Gradient Penalty

We train the discriminators by averaging over image
patches and video volumes for images and videos, respec-
tively, similar to patchGAN [14].



Figure 4. Effect of adding color statistics loss. First Row: Original 4 consecutive frames of a given video. Second Row: Random
consecutive frames generated without Color Statistics Loss. Third Row: Random consecutive frames generated with Color Statistics Loss.
It is clear that images in second row seem to not have the same color scheme of the original video. But after adding the statistics loss the
color matches the input frames faithfully while also being sufficiently distinct from the input video in terms of layout.

3.4.2 Reconstruction Loss

In order to make it possible to edit the original frames, we
need to be able to generate training frames back from gen-
erators in a controllable way. To ensure this, we choose a
set of 2’s prior to training (as explained earlier) which must
map back to the original frames. Thus at a scale n, the re-
construction loss can be stated as:

Lyec :H(Gn(z(?;;tla T2 +23,5) — x|l 5)
where z,, is the original snippet at the n’th scale while z7,°¢;
is the generated sample and z;lpftl is the pre-determined
noise map at the preceding n — 1 scale.

Similar to SinGAN [27], we use the reconstruction loss
to determine o for the Gaussian noise map of the next finer
scale. However, since we are using a set of frames of a
video instead of a single image, we use the average RMSE
between all frames of the reconstructed video and the input
video to determine o,, for scale n + 1. Using reconstruction
error to estimate o helps the network estimate the extent
of details to be added since a higher RMSE would mean
more significant changes are required for improvement as
compared to a lower RMSE.

3.4.3 Color Statistics Loss

While SinGAN [27] uses only the adversarial and recon-
struction losses, for videos we see that with just these losses
the generated samples do not match the color distribution of
the training video frames; see Fig 4. We hypothesize that
small errors in estimating residual images leads to small di-
vergences from the original distribution which over multi-
ple scales leads to a very noticeable difference. This issue
was also reported in [39] and was resolved by matching the
mean and covariance of color channels of generated images
at successive spatial resolutions. Since we are training our
model on a single video, we simply match the mean and
variance of each color channel of each frame of the gener-

ated video to the input video:

Lstat = ]EiNPngPr,iN{r,g,b}[”:U(i:i) - :U’(‘TZ)”2+
||C0v(:?i) - Cov(mi)Hg] (6)

where p is mean, cov is covariance, P, is real distribution,
P, is generated distribution, x is the set of training frames,
and = denotes generated frames.

3.5. Implementation Details

Training all pairs of generators and discriminators using
Adam [18] with a learning rate of Se-4 for roughly 8000 it-
erations produces decent results for all GIFs, although the
optimal hyperparameters can vary for individual GIFs. We
start with a batch size of 16 (or total number of frames if less
than 16) and gradually reduce to 8. We find that 3D convo-
lution for the coarsest 4 scales followed by 2D convolutions
for the rest of the finer scales give the best results. The val-
ues for o, 8, in Eq. 3 are determined empirically to be 5,
50, and 2 respectively. The smallest spatial dimension at the
coarsest scale is set at 25 pixels while r = 4/3 is the scaling
factor. The gradient penalty term for both discriminators is
setto 0.1.

4. Results

With SinGAN-GIF, we can train GIFs with a spatial res-
olution of 256x256 using a single Titan XP GPU. We ex-
periment with a variety of GIFs to show the flexibility and
generality of our approach. The training videos belong to
diverse natural scenes like cloudy sky, waterfall, desert,
mountains, sunset, seashore, nightime-timelapse, river, and
flock of birds. Each GIF consists of 8-32 frames.

In all the results (see Fig. 5 and supplementary videos
in the project page), we see that our method not only cap-
tures the textures and relative positions of the objects in the
videos, but also their associated motion. Furthermore, de-
spite training with just 8 frames during a single forward
pass, our generation need not be limited to just an 8 frame
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Figure 5. Row1: Original training frames. Row2-4: Frames from videos generated with different aspect ratios. Link to generated GIFs in

supplementary.

video as the network is able to utilize the context to generate
meaningful videos of up to 32 frames.

In order to quantitatively evaluate the quality of our gen-
erated GIFs, we calculate the Single-GIF FID (SGFID)
score, which is a direct extension of the Single-Image FID
score [27]. Specifically, for each frame of the generated
GIF, we take the conv layer features right before the sec-
ond pooling layer of the Inception Network [31] (i.e., one
feature vector per spatial location in the corresponding fea-
ture map per frame). The SGFID is the FID [11] between
the statistics of those features in the real video (across all
frames) and those features in the generated sample.

We compare our scores against a simple modification of
SinGAN where instead of training with just a single image
we train it on all frames of a video together by passing a
randomly selected frame through the discriminator during
each forward pass. As can be seen from Table 1, our out-
put has significantly lower SGFID scores indicating that our
method models the patches in the original frames better than
trivially training SinGAN with all the frames of a given GIF.

Finally, we also perform qualitative user studies using
Amazon Mechanical Turk. Workers have access to each
video for 5 seconds and can play it twice before making a
decision. We asked mechanical turkers to identify whether a
video was real or fake. We generated 10 samples each for 9
videos (a total of 90 generated samples), and for each sam-

Model SGFID score
SinGAN-GIF 0.37
SinGAN (All Frames) 0.89

Table 1. SGFID scores averaged over 90 GIFs (9 training GIFs,
each with 10 generations). Each generated video has the same
number of frames as the training GIF.

ple had 3 turkers evaluate. We took the majority vote from
the 3 evaluaters to filter out noise. 44 out of 90 generated
samples were identified as real, and the remaining 46 were
identified as fake. This shows that our generated samples,
while not perfect, are reasonably real looking.

5. Applications

We next demonstrate a number of video editing applica-
tions using SinGAN-GIF. Our goal here is to demonstrate
the feasibility of our single architecture in performing a va-
riety of diverse tasks, but we note that there are task spe-
cific methods like [15] for video slo-mo and [32] for super-
resolution, which outperform our approach.

5.1. Changing Aspect Ratios

Figure 5 shows how our model is able to produce frames
that are variations of the original video in different spatial
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resolutions. Importantly, the temporal relationship between
consecutive frames also makes sense. This application can
have real world use cases where one may need similar look-
ing videos to fit to different screen-sizes or for data aug-
mentation to get a variety of videos from a single data point.
Since our model is fully convolutional, different spatial res-
olutions can be easily achieved by changing the shape of the
input Gaussian noise maps.

5.2. Video Slo-Mo

We can also modify SinGAN-GIF slightly to obtain
slower versions of an input GIF. For this, we model input
frames as a path in latent space i.e., we assume the first and
last frames come from two different Gaussian distributions
centered at -1 and +1, respectively. The rest of the frames
can then be sampled using the formula (n/N) % 21+ ((N —
n)/N) * 22, where n is the current frame while N is the to-
tal number of frames we want to generate. Sampling frames
like this can be thought of as a timer which can help the net-
work distinguish between the frame rate of the output video.
This though poses a problem since we get patches from the
input GIF only at a fixed rate.

To work around this problem, while the generator is
trained to generate frames at a variable frame rate, we
subsample the generated video back to the frame rate of
the original training GIF before passing it to the discrim-
inators. For example, in order to generate videos at half
speed, during each forward pass we will generate twice as
many frames as the original video, and select every alter-
nate frame and pass it to the discriminator so that it can
be compared against the original clip. All the frames are
still individually passed to the image discriminator to make
sure each frame looks realistic as well. The results of this
method can be seen in the supplementary.

5.3. Video Lengthening

Since our model learns the inherent pattern of motion
and the correct spatial locations of objects in relation to the

Figure 7. Top: Result for 3x upsampling using the finest scale of
SinGAN-GIF. Bottom: Result for 3x upsampling using bilinear
interpolation. One can see sharper details in the top figure. Link
to the complete super-resolution video result can be found in the
supplementary.

overall scene, we can train our model on a small clip of just
8 frames but generate realistic videos which are longer up to
32 frames. This is because motions are often repetitive es-
pecially in natural scenes, and neighboring frames provide
enough context to the model to reliably extend the motion
using the patterns it has learned from just the § input frames
of the GIF. The results can be found in the supplementary.

5.4. Video Seamless Composition

SinGAN-GIF can be used to create translated or locally
edited versions of input videos that are free of obvious
seams. Our method is able to achieve this by passing down-
sampled locally edited frames to a coarse generator (say n,
typically 3) and running it through the rest of the finer gen-
erators from {n + 1,...,N}. That is, we skip the first n
generators, and instead input the locally edited frames di-
rectly to the n 4 1’th generator. Also, unlike SinGAN, we
notice a single pass through the set of generators may not
fix all the artifacts. Thus, the output from one pass through
the generators is downsampled again and the process is re-
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Figure 8. Row 1: A random image of a waterfall semantically sim-
ilar to the training input. Row 2: Training input GIF of a waterfall.
Row 3: Animated input image. Link to complete result video can
be found in the supplementary.

peated. A small sequence of frames edited like this is shown
in Figure 6.

5.5. Video Super-Resolution

It has been shown that patches in a given image tend to
recur repeatedly over multiple scales [42]. This fact cou-
pled with the intrinsic design of our model enables us to
perform video super resolution by iteratively refining the
input frames through the finest generator, which adds the
most high frequency details. This is done in a manner sim-
ilar to what was proposed in SinGAN. To upsample frames
by a factor of k, we set the pyramid scale factor to V/k,
where k£ € N and the reconstruction error is given a higher
weight of 125. A result is shown in Figure 7.

5.6. Motion Transfer

We also explore animating a single image which looks
semantically similar to a training GIF. We replicate the im-
age 8 times along the temporal dimension and pass it to
the second coarsest generator. (Since the coarsest genera-
tor only takes a noise map as input, we cannot start at the
coarsest level.) While this is not perfect since a random im-
age will not exactly match the patches’ patterns in the train-
ing video snippet, our method is still able to transfer motion
reasonably well to correct regions and produce a reasonable
output despite this being a very hard task. See Fig. 8.

6. Limitations

Since 3D convolutions are the building blocks for our
architecture, memory is a bottleneck that limits us to train
with smaller frame lengths and spatial resolutions despite
the modifications in Section 3.3. Mixed precision train-
ing [22] or gradient checkpointing [4] are possible ways to
overcome this limitation.

Figure 9. Top: Single frame of the training GIF. Bottom: Sin-
gle frame from a random generated sample. Although the ran-
dom sample follows the distribution of patches in the training
frame, due to the absence of any high-level knowledge of the ob-
ject present, the output does not make semantic sense.

Another limitation arises from the fact that a single video
does not provide enough semantic information required to
model rich real world dynamics. Thus, it can produce un-
natural frames in the presence of a salient object as shown
in Fig. 9. But an interesting thing to note here is that de-
spite the unnatural appearance of frames, each part of the
frame does move in a predictable way indicating our model
successfully links motion to their corresponding ‘entity’.

7. Conclusion

In this paper, we presented an approach to train deep gen-
erative networks on a single GIF (or short video clip). We
showed that our model, SinGAN-GIF, can generate similar
looking samples at different resolutions or frame rates. We
also showed how SinGAN-GIF can be extended to other ap-
plications like video editing, super resolution, and motion
transfer. We achieved this by extending the image-based
SinGAN model, and using a combination of 3D and 2D
convolutions to model temporal information while reducing
model parameters.

Drawbacks include long training times and limited spa-
tial resolutions due to memory. While generating random
diverse videos is still a very open and challenging problem,
by limiting the training data to a single GIF, we can gener-
ate realistic video samples for natural scenes and can model
both the patch distribution and their associated motion suc-
cessfully. We believe our work is an encouraging step in
unconditional video generation research.
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