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Figure 1: Given a model trained on a large source dataset (Gs), we propose to adapt it to arbitrary image domains, so that the

resulting model (Gs→t) captures these target distributions using extremely few training samples. In the process, our method

discovers a one-to-one relation between the distributions, where noise vectors map to corresponding images in the source and

target. Consequently, one can imagine how a natural face would look if Amedeo Modigliani had painted it, or how the face

would look in its baby form.

Abstract

Training generative models, such as GANs, on a tar-

get domain containing limited examples (e.g., 10) can eas-

ily result in overfitting. In this work, we seek to utilize a

large source domain for pretraining and transfer the di-

versity information from source to target. We propose to

preserve the relative similarities and differences between

instances in the source via a novel cross-domain distance

consistency loss. To further reduce overfitting, we present

an anchor-based strategy to encourage different levels of

realism over different regions in the latent space. With ex-

tensive results in both photorealistic and non-photorealistic

domains, we demonstrate qualitatively and quantitatively

that our few-shot model automatically discovers correspon-

dences between source and target domains and generates

more diverse and realistic images than previous methods.

1. Introduction

Consider 10 portrait paintings by the incomparable

Amedeo Modigliani [34], shown in Fig. 1 (middle). Given

only these 10 paintings, would it be possible to train a model

which can generate infinitely many paintings in the style of

Modigliani? Unfortunately, contemporary generative mod-

els [11, 12, 13, 27, 3] require thousands of images to train

properly, not 10. This problem is of practical importance,

since many such domains of interest have a very limited col-

lection of images (e.g., there are just 10 examples per artist

in the Artistic-Faces dataset [34]).

Transfer learning serves as an alternative to training from

scratch and has been explored in the context of generative



adversarial networks (GANs) to address the limited data

regime. The key idea is to start with a source model, pre-

trained on a large dataset, and adapt it to a target domain

with limited data by either making only small changes to

the network parameters to preserve as much information as

possible [32, 21, 30, 19, 15], or by synthetically increas-

ing the training data via data augmentation [37, 11]. Most

of these methods, however, are designed for scenarios with

more than 100 training images. When the number of avail-

able images is lowered to just a few [15], results often over-

fit to the training samples or are of poor quality.

In this work, we explore transferring a different kind of

information from the source domain, namely how images

relate to each other, to address the limited data setting. Intu-

itively, if the model can preserve the relative similarities and

differences between instances in the source domain, then

it has the chance to inherit the diversity in the source do-

main while adapting to the target domain. To capture this

notion, we introduce a novel cross-domain distance con-

sistency loss, which enforces similarity in the distribution

of pairwise distances of generated samples before and af-

ter adaptation. Unlike domain adaptation approaches like

image-to-image translation, here we are adapting models,

not images.

Interesting properties emerge when enforcing this

structure-level alignment between the two domains. Specif-

ically, when the source and target domains are related (e.g.,

faces and caricatures), our approach automatically discov-

ers a one-to-one correspondence between them and is able

to more faithfully model the true target distribution in terms

of both diversity and image realism, as shown in Fig. 1.

When the two domains are unrelated (e.g., cars and cari-

catures), our approach is unable to model the target distri-

bution but still discovers interesting part-level correspon-

dences to generate diverse samples.

Since the few training samples only form a small sub-

set of the target distribution we seek to approximate, we

find it necessary to enforce realism in two different ways,

to not inordinately penalize the diversity among the gener-

ated images. We apply an image-level adversarial loss on

the synthesized images which should map to one of the real

samples. For all other synthesized images, we only enforce

a patch-level adversarial loss. In this way, only a small sub-

set of our generated samples need to look like one of the

few-shot training images, while the rest are only forced to

capture their patch-level texture.

Contributions. Our main contribution is a novel GAN

adaptation framework, which enforces cross-domain cor-

respondence for few-shot image generation. Through ex-

tensive qualitative and quantitative results, we demonstrate

that our model automatically discovers correspondences be-

tween related source and target domains to generate diverse

and realistic images.

2. Related work

Few-shot learning. Representative few-shot classifica-

tion approaches include learning a feature similarity func-

tion between the query and support examples [28, 24] and

learning to learn how to adapt a base-learner to a new

task [6, 20].

Few-shot image generation aims instead to hallucinate

new and diverse examples while preventing overfitting to

the few training images. Existing work mainly follows an

adaptation pipeline, in which a base model is pretrained on

a large source domain and then adapted to a smaller target

domain. They either embed a small number of new param-

eters into the source model [21, 30] or directly update the

source model parameters, using different forms of regular-

ization [19, 15]. Others employ data augmentation to re-

duce overfitting [37, 11] but are less effective under the ex-

treme few-shot setting (e.g., 10 images). In contrast to prior

work, we regularize the adaptation of the source model by

transferring how images relate to each other in the source

domain to the target domain, leading to plausible genera-

tion results, even with very few examples.

Domain translation. Translating images from the source

domain is an alternative approach for generating more tar-

get domain data. However, such methods [9, 38, 39] re-

quire a large amount of training data for both source and

target domains and are not suitable for the few-shot sce-

nario. Recent work [16, 31, 23] has begun to address this

issue via learning to separate the content and style factor,

but requires large amount of labeled data (class or style la-

bels). In our case, we assume access to a large amount of

unlabeled data in the source domain and focus on adapting

the source model to the target domain for unconditional im-

age generation.

Distance preservation. To alleviate mode collapse in

GANs, DistanceGAN [2] proposes to preserve the distances

between input pairs in the corresponding generated output

pairs. A similar scheme has been employed for both uncon-

ditional [25, 17] and conditional [18, 33] generation tasks to

increase diversity in the generations. In our work, we aim

to inherit the learned diversity from the source model to the

target model and achieve this via our novel cross-domain

distance consistency loss.

3. Approach

We are given a source generator Gs, trained on a large

source dataset Ds, which maps noise vectors z ∼ pz(z) ⊂
Z , drawn from a simple distribution in a low-dimensional

space, into images x. We aim to learn an adapted generator

Gs�t by initializing the weights to the source generator and

fitting it to a small target dataset Dt.

A naive translation can be obtained simply by using a
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Figure 2: Adapting a source model (FFHQ) to 10 paintings

using only the adversarial loss [32] results in overfitting,

which leads to a loss in correspondence between source and

target images. Our adaptation method preserves this prop-

erty in a much better way, where the same noise maps to

corresponding images in source/target.

GAN training procedure, with a learned discriminator D.

With the non-saturating GAN objective, this corresponds to

solving:

Ladv(G,D) = D(G(z))−D(x)

G∗
s�t =Ez∼pz(z),x∼Dt

argmin
G

max
D

Ladv(G,D).
(1)

Previous work [32] shows that this works well when the

target dataset size exceeds 1000 training samples. However,

in the extreme few-shot setting, this method overfits, as the

discriminator can memorize the few examples and force the

generator to reproduce them. This is shown in Fig. 2, where

we see collapse after tuning the source model (top row) to

the few-shot target dataset (middle row).

To prevent overfitting to generate diverse and realistic

images (Fig. 2, bottom row), we propose a new cross-

domain consistency loss (Sec. 3.1), which actively uses the

original source generator to regularize the tuning process,

and a “relaxed” discriminator (Sec. 3.2), which encourages

different levels of realism over different regions in the latent

space. Our approach is shown in Fig. 3.

3.1. Cross­domain distance consistency

A consequence of overfitting during adaptation is that

relative distances in the source domain are not preserved.

As seen in Fig. 2, the visual appearance between z1 and

z2 collapses, disproportionately relative to z1 and z3, which

remain perceptually distinct. We hypothesize that enforcing

preservation of relative pairwise distances, before and after

adaptation, will help prevent collapse.

To this end, we sample a batch of N + 1 noise vectors

{zn}
N
0 , and use their pairwise similarities in feature space

to construct N -way probability distributions for each im-

age. This is illustrated in Fig. 3 from the viewpoint of z0.
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Figure 3: Our approach contains two key elements. (1)

Cross-domain consistency loss Ldist aims to preserve the

relative pairwise distances between source and target gener-

ations. In this case, the relative similarities between synthe-

sized images from z0 and other latent codes are encouraged

to be similar. (2) Relaxed realism is implemented by using

two discriminators, Dimg for noise sampled from the anchor

region (zanch) and Dpatch otherwise.

The probability distribution for the ith noise vector, for the

source and adapted generators is given by,

y
s,l
i = Softmax

(

{sim(Gl
s(zi),G

l
s(zj))}∀i6=j

)

y
s�t,l
i = Softmax

(

{sim(Gl
s�t(zi), G

l
s�t(zj))}∀i6=j

)

,
(2)

where sim denotes the cosine similarity between gener-

ator activations at the lth layer. We are inspired by re-

cent methods in contrastive learning [22, 4, 7], which con-

verts similarities into probability distributions for unsuper-

vised representation learning, as well as perceptual feature

losses [10, 5, 26], which show that activations on multiple

layers on discriminative networks help preserve similarity.

We encourage the adapted model to have similar distribu-

tions to the source, across layers and image instances by

using KL-divergence:

Ldist(Gs�t, Gs) = E{zi∼pz(z)}

∑

l,i

DKL

(

y
s�t,l
i ||ys,li

)

.

(3)
While correspondence helps prevent collapse, we also mod-

ify the adversarial loss to further prevent overfitting.

3.2. Relaxed realism with few examples

With a very small target data size, the definition of what

constitutes a “realistic” sample becomes increasingly over-

constrained, as the discriminator can simply memorize the

few-shot target training set. We note that the few training



images only form a small subset of the desired distribution

and extend this notion to the latent space. We define “an-

chor” regions, Zanch ⊂ Z , which form a subset of the entire

latent space. When sampled from these regions, we use a

full image discriminator Dimg. Outside of them, we enforce

adversarial loss using a patch-level discriminator Dpatch,

L′
adv(G,Dimg, Dpatch) = Ex∼Dt

[

Ez∼Zanch
Ladv(G,Dimg)

+Ez∼pz(z)Ladv(G,Dpatch)
]

.

(4)

To define the anchor space, we select k random points,

corresponding to the number of training images, and save

them. We sample from these fixed points, with a small

added Gaussian noise (σ = .05). We use shared weights be-

tween the two discriminators by defining Dpatch as a subset

of the larger Dimg network [9, 38]; using internal activations

correspond to patches on the input. The size depends on the

network architecture and layer. We read off a set of layers,

with effective patch size ranging from 22× 22 to 61× 61.

3.3. Final Objective

Our final objective consists of just these two terms: L′
adv

for the appearance of the target and Ldist, which directly

leverages the source model to preserve structural diversity:

G∗
s�t = argmin

G
max

Dimg,Dpatch

L′
adv(G,Dimg, Dpatch)

+λLdist(G,Gs).
(5)

The patch discriminator gives the generator some addi-

tional freedom on the structure of the image. The adapted

generator is directly incentivized to borrow the domain

structure from the source generator, due to the cross-domain

consistency loss. As shown in the top and bottom rows in

Fig. 2, the model indeed discovers cross-domain correspon-

dences between source and target domains.

We use the StyleGANv2 architecture1 [13], pre-trained

on a large dataset (e.g. FFHQ [12]) as our source model.

We use a batch size of 4. Empirically, we find that a high λ,

from 103 to 104, to work well. Additional training details

can be found in the supplementary.

4. Experiments

We explore different source → target adaptation

settings to analyze the effectiveness of our approach in pre-

serving part-level correspondences between images gener-

ated from Gs and Gs→t. We also investigate what kinds

of correspondences emerge when the source and target do-

mains are unrelated.

Baselines: We compare to baselines, which similar to ours,

adapt a pre-trained source model to a target domain with

1https://github.com/rosinality/stylegan2-pytorch

limited data. (i) Transferring GANs (TGAN) [32]: fine-

tunes a pre-trained source model to a target domain with

the same objective used to train the source model; (ii) Batch

Statistics Adaptation (BSA) [21]: only adapts the scale and

shift parameters of the model’s intermediate layers; (iii)

MineGAN [30]: for a given pre-trained source (e.g. MNIST

0-8) and target (e.g. 9) domain, it transforms the original la-

tent space of source to a space more relevant for the target

(e.g. mapping all 0-8 regions to 4, being more similar to 9);

(iv) Freeze-D [19]: freezes the high resolution discrimina-

tor layers during adaptation; (v) Non-leaking data augmen-

tations [11, 37]: uses adaptive data augmentations (TGAN

+ ADA) in a way that does not leak into the generated re-

sults; (vi) EWC [15]: extends the idea of Elastic Weight

Consolidation [14] for adapting a source model to a target

domain, by penalizing large changes to important weights

(estimated via Fisher information) in the source model.

Datasets: We use source models trained on five differ-

ent datasets: (i) Flickr-Faces-HQ (FFHQ) [12], (ii) LSUN

Church, (iii) LSUN Cars, and (iv) LSUN Horses [35]. We

explore adaptation to the following target domains: (i) face

caricatures, (ii) face sketches [29], (iii) face paintings by

Amedeo Modigliani [34], (iv) FFHQ-babies, (v) FFHQ-

sunglasses, (vi) landscape drawings, (vii) haunted houses,

(viii) Van Gogh’s house paintings, (ix) wrecked/abandoned

cars. We operate on 256 × 256 resolution images for both

the source and target domains. Adaptation is done on 10

images from the target domain, unless stated otherwise.

4.1. Quality and Diversity Evaluation

Qualitative comparison Fig. 4 shows results on two target

domains using different methods, all of which start from the

same source model pre-trained on FFHQ (Source). We ob-

serve that TGAN strongly overfits to the available training

data, as was the case for Amedeo paintings (Fig. 2). Using

adaptive data augmentations (TGAN + ADA) has little to no

effect on sketches, and further degrades the quality for car-

icatures, where augmentations (e.g. 90◦ rotations) leak into

the generated images. FreezeD, MineGAN and EWC per-

form better than TGAN by generating slightly more diverse

images. However, the diversity is only introduced through

minor modifications among the few captured modes. For

example, (i) the caricature results for EWC show multiple

generations capturing the same person with different ex-

pression/hairlines; (ii) the results on sketches using Mine-

GAN depict a person with similar attributes in multiple gen-

erations. Our method better captures the distribution of car-

icatures and sketches, and generates diverse and realistic

images containing objects which do not appear in the train-

ing images (e.g. hats, in sketches). This is because our

method is flexible enough to not penalize the generated im-

ages which do not adhere to the 10 training samples.



Real 

caricatures

Real 

sketches

TGAN

TGAN 

+ ADA

FreezeD

MineGAN

EWC

Ours

Source

TGAN

TGAN 

+ ADA

FreezeD

MineGAN

EWC

Ours

Source

Figure 4: 10-shot image synthesis results for different methods, which start from the same source model (bottom). Keeping

the noise vectors same (across columns), we observe that the baselines either overfit, or only capture a few modes in the

target domain. Our method generates higher quality and more diverse results which better correspond to the source domain

images generated from the same noise.

Quantitative comparison The original Sketches, FFHQ-

babies, and FFHQ-sunglasses datasets roughly contain 300,

2500, and 2700 images, respectively. To simulate a few-

shot setting, we randomly sampled 10 images from each
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Figure 5: Effect of different components of our method. Absence of Ldist makes some properties of the images (e.g. hairline)

look very similar. Application of only one of Dimg and Dpatch degrades the image quality by distorting the face structure.
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Figure 6: Visualizing the emerging correspondence in different adaptation settings. The generations from the domain of

Van Gogh houses resemble the building structure from the source Church images. The generated wrecked/abandoned cars

preserve the source car’s body and pose. Generations from FFHQ → Sunglasses learn to add sunglasses to people’s faces.

dataset to train our model. For evaluation purposes, how-

ever, we can use the entire dataset to measure how well our

generated images model the true distribution.

Table 1 shows the FID [8] scores. Our method signifi-

cantly outperforms all baselines for Babies and Sunglasses.

For domains with limited data, however, the FID score

would not reflect the overfitting problem.

Ideally, we wish to assess the number of visually distinct

images an algorithm can generate. In the worst case, the

algorithm will simply overfit to the original k training im-

ages. To capture this, we first generate 1000 images and

assign them to one of the k training images, by using lowest

LPIPS distance [36]. We then compute the average pair-

wise LPIPS distance within members of the same cluster

and then average over the k clusters. A method that re-

produces the original images exactly will have a score of

zero by this metric. Table 2 summarizes the distances for

different baselines over three target domains. We see that

Babies Sunglasses Sketches

TGAN [32] 104.79 ± 0.03 55.61 ± 0.04 53.41 ± 0.02

TGAN+ADA [11] 102.58 ± 0.12 53.64 ± 0.08 66.99 ± 0.01

BSA [21] 140.34 ± 0.01 76.12 ± 0.01 69.32 ± 0.02

FreezeD [19] 110.92 ± 0.02 51.29 ± 0.05 46.54 ± 0.01

MineGAN [30] 98.23 ± 0.03 68.91 ± 0.03 64.34 ± 0.02

EWC [15] 87.41 ± 0.02 59.73 ± 0.04 71.25 ± 0.01

Ours 74.39 ± 0.03 42.13 ± 0.04 45.67 ± 0.02

Table 1: FID scores (↓) for domains with abundant data.

Standard deviations are computed across 5 runs.

our method consistently achieves higher average LPIPS dis-

tances, indicating more distinct images being generated. We

also visualize the cluster centers and their members, to see

if they are semantically meaningful. See supp. for details.

What role do different components of our method play?

We use caricature as the target domain, and first study the

effect of our framework with and without Ldist; see Fig. 5.
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Figure 7: Visualizing the effect of unrelated source domains. In most cases, accurate modeling of a target distribution is not

feasible when starting from an unrelated source domain. However, our method still discovers a correspondence on a part-level

between the two domains, where different parts of the source (car’s tires) correspond to parts of the target (caricature’s eyes).

Caricatures Amedeo’s paintings Sketches

TGAN [32] 0.39 ± 0.06 0.41 ± 0.03 0.39 ± 0.03

TGAN+ADA[11] 0.50 ± 0.05 0.51 ± 0.04 0.41 ± 0.05

BSA [21] 0.35 ± 0.01 0.39 ± 0.04 0.35 ± 0.01

FreezeD [19] 0.37 ± 0.01 0.40 ± 0.03 0.39 ± 0.03

MineGAN [30] 0.39 ± 0.07 0.42 ± 0.03 0.40 ± 0.05

EWC [15] 0.47 ± 0.03 0.52 ± 0.03 0.42 ± 0.03

Ours 0.53 ± 0.01 0.60 ± 0.01 0.45 ± 0.02

Table 2: Intra-cluster pairwise LPIPS distance (↑). Stan-

dard deviation is computed across the k clusters (k = no. of

training samples).

We see that leaving out Ldist reduces diversity among the

generations, all of which have very similar head structure

and hair style. We next study the different ways we enforce

realism. What happens if we keep Ldist, but use image-level

adversarial loss through Dimg on all generations? ‘Ours

w/ only Dimg’ results reveal the problem of mode collapse

at the part level (same blue hat appears in multiple gener-

ations) and the phenomenon where some results are only

slight modifications of the same mode (same girl with and

without the blue hat). Could we then only use Dpatch to en-

force patch-level realism on all generations? ‘Ours w/ only

Dpatch’ shows the results, where we observe more diversity,

but poorer quality compared to ‘Ours w/ only Dimg’. This is

because the discriminator never gets to see a complete cari-

cature image, and consequently does not learn the part-level

relations which makes a caricature look realistic. ‘Ours’

combines all the ideas, resulting in generations which are

diverse and realistic at both the part and image level.

4.2. Analyzing source ↔ target correspondence

As mentioned before, our method captures, to a large

extent, the correspondence between the images from source

and target domains, and preserves it during the adaptation

process. In this section, we study this property in detail in

different source to target adaptation settings.

Input FFHQ Church Cars Horses

Figure 8: Embedding an unseen caricature image (left), and

visualizing its reconstruction from models adapted from

different source to the caricature domain.

Related source/target domains Our method builds around

the idea of discovering correspondence between a source

and a target domain. But how well does that property

actually hold? We first consider the FFHQ → Carica-

tures/sketches setting in Fig. 4,and analyze the baselines’

results. As seen previously in Sec. 4.1, the generated images

mostly overfit to the training samples and are unable to bor-

row anything other than rough pose from the corresponding

source. Using our method, on the other hand, we observe

that the content of the natural source faces, as well as any of

the accessories (e.g. hats/sunglasses), are preserved in both

the sketch and caricature domain, depicting a much cleaner

correspondence. We further study this for other source→
target settings: (i) Church → Van Gogh houses, (ii) Cars

→ Abandoned cars, (iii) FFHQ → Sunglasses, as shown in

Fig 6. When the source and target domains have similar se-

mantics, the results generated from the same noise vectors

in respective domains have clear correspondence.

Unrelated source/target domains We adapt four source

models (FFHQ, Church, Cars, and Horses) to two target

domains (Caricatures and Haunted houses) and present the

results in Fig. 7. For FFHQ → Caricatures and Church

→ Haunted, the generated results from the adapted model

mimic the target domain appearance and reflect correspon-

dences with the source. For all the remaining scenarios,

the adaptations do not capture the target distribution ac-

curately. However, some part-level correspondences still
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Figure 9: Effect of training data size: Even with just a single image, our method can capture it in different modes through

the generations. Increasing the number of training samples results in more diversity in the generated sketches and landscapes.

emerge in these settings. E.g., (i) Church → Caricatures:

windows/doors of the Church roughly map to eyes of the

caricature; (ii) Cars → Caricatures: wheels/bumpers of the

cars adapt to represent eyes/mouth of caricatures respec-

tively; (iii) Cars → Haunted: moon in the haunted houses

(see supp. for the 10 images used) maps to the headlights,

lighting them up; (iv) Horses → Haunted: bottom of the

horse legs adapt to doors of haunted houses.

Quantitative analysis of source/target relevance We

translate four source models to four target domains: carica-

tures, haunted houses, landscape drawings, and abandoned

cars. We then test how well a translated model can embed

an unseen image from the respective target domain, E.g.,

after translating the four source models to the caricature do-

main, we use a new caricature and embed it into the four

models using Image2StyleGAN [1]. The results are shown

in Fig. 8. In Table 3, for each domain, we report the aver-

age similarity scores between five unseen inputs and their

reconstructions. We see that FFHQ, Church, and Cars best

reconstruct images from caricatures, haunted houses, and

abandoned cars respectively which aligns with our intuition.

4.3. Effect of target dataset size

So far, all results are generated with 10 training images

per target domain. We now explore how the dataset size af-

fects the quality and diversity of the generated images. We

consider two adaptation setups, Church → Landscape draw-

ings and FFHQ → Sketches, and present results in 1-shot,

5-shot and 10-shot settings; see Fig. 9. The real images used

in these settings can be found in the supplementary.

In 1-shot, our method introduces small variations to the

single target image, for example the lady appears in differ-

ent poses in the generated sketches, and the mountains and

waterfall have different structures. The diversity of the re-

Caricature Haunted house Wrecked car

FFHQ 0.158 ± 0.045 0.645 ± 0.024 0.643 ± 0.012

Church 0.294 ± 0.077 0.599 ± 0.028 0.621 ± 0.032

Cars 0.233 ± 0.106 0.635 ± 0.031 0.606 ± 0.057

Horses 0.299 ± 0.083 0.631 ± 0.028 0.619 ± 0.038

Table 3: Relevance of source and target domains, measured

via LPIPS (↓) between an unseen image and its reconstruc-

tion. Better the reconstruction → more similar domains.

sults increases with 5 training images. The sketches now

reflect distinct identities. Further increasing the number of

training samples (10-shot) introduces more details for the

sketch domain, and generates more diverse landscapes.

5. Conclusion and Limitations

We proposed to adapt a pretrained GAN learned on a

large source domain to a small target domain by discover-

ing cross-domain correspondences. While our method gen-

erates compelling results, it is not without limitations. Cars

→ Abandoned cars in Fig. 6 depicts an example, where the

color of the red car changes to orange in its abandoned form,

likely because of the existence of an orange car (and no red

one) in the 10 training images. FFHQ → Sunglasses depicts

another example, where a blonde hair turns dark with sun-

glasses. These show that there is a need for discovering bet-

ter correspondence between the source and target domains,

which will lead to more diverse generations. Nevertheless,

we believe this work takes an important step towards cre-

ating more data-efficient generative models, demonstrating

that existing source models can be leveraged in an effective

way to model new distributions with less data.
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