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Abstract

We present an isoparametric unfitted finite element approach of the CutFEM or Nitsche-
XFEM family for the simulation of two-phase Stokes problems with slip between phases.
For the unfitted generalized Taylor—Hood finite element pair Py — P, k > 1, we show an
inf-sup stability property with a stability constant that is independent of the viscosity ratio,
slip coefficient, position of the interface with respect to the background mesh and, of course,
mesh size. In addition, we prove stability and optimal error estimates that follow from this
inf-sup property. We provide numerical results in two and three dimensions to corroborate
the theoretical findings and demonstrate the robustness of our approach with respect to the
contrast in viscosity, slip coefficient value, and position of the interface relative to the fixed
computational mesh.

Keywords XFEM - CutFEM - Two-phase flow - Stokes problem - Finite elements

1 Introduction

The finite element approximation of two-phase problems involving immiscible fluids features
several challenging aspects. The first challenge is the presence of a sharp interface between
the two phases, that might move and undergo topological changes. A second critical aspect is
the presence of surface tension forces that create a jump in the pressure field at the interface.
In addition, if one accounts for slip between phases [24], a jump in the velocity field at the
interface needs to be captured as well. Finally, lack of robustness may arise when there is a
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high contrast in fluid densities and viscosities. Tackling all of these challenges has motivated
a large body of literature.

One possible way to categorize numerical methods proposed in the literature is to distin-
guish between diffusive interface and sharp interface approaches. Phase field methods (e.g.,
[2,27]) belong to the first category, while level set methods (e.g., [44]), and conservative
level set methods (e.g., [40]) belong to the second. Diffusive interface methods introduce a
smoothing region around the interface between the two phases to vary smoothly, instead of
sharply, from one phase to the other and usually apply the surface tension forces over the
entire smoothing region. The major limitation of diffusive interface methods lies in the need
to resolve the smoothing region with an adequate number of elements, which results in high
computational costs. Sharp interface methods require less elements to resolve the interface
between phases. Thus, we will restrict our attention to sharp interface approaches, which can
be further divided into geometrically fitted and unfitted methods.

In fitted methods, the discretization mesh is fitted to the computational interface. Perhaps,
Arbitrary Lagrangian Eulerian (ALE) methods [15] are the best known fitted methods. In
case of a moving interface, ALE methods deform the mesh to track the interface. While ALE
methods are known to be very robust for small interface displacement, complex re-meshing
procedures are needed for large deformations and topological changes. Certain variations of
the method, like the extended ALE [3,4], successfully deal with large interface displacement
while keeping the same mesh connectivity. The price to pay for such improvement is a
higher computational cost. Unfitted methods allow the sharp interface to cut through the
elements of a fixed background grid. Their main advantage is the relative ease of handling
time-dependent domains, implicitly defined interfaces, and problems with strong geometric
deformations [6]. The immersed finite element method (e.g., [1]) and front-tracking methods
(e.g., [45]) are examples of unfitted approaches. Applied in the finite element framework,
these methods require an enrichment of the elements intersected by the interface in order
to capture jumps and kinks in the solution. One complex aspect of these methods is the
need for tailored stabilization. Popular unfitted methods that embed discontinuities in finite
element solvers are XFEM [36] and CutFEM [9]. XFEM enriches the finite element shape
functions by the Partition-of-Unity method. To learn more about XFEM applied to two-phase
flow problems, we refer the reader to [13,18,20,29,42]. CutFEM is a variation of XFEM, also
called Nitsche-XFEM [22]. CutFEM uses overlapping fictitious domains in combination with
ghost penalty stabilization [8] to enrich and stabilize the solution. See [14,17,23,26,35,47]
for the application of CutFEM or Nitsche-XFEM to approximate two-phase flows. Finally,
recently proposed unfitted methods are a hybrid high-order method [10] and an enriched
finite element/level-set method [25].

In this paper, we study an isoparametric unfitted finite element approach of the CutFEM
or Nitsche-XFEM family for the simulation of two-phase Stokes problems with slip between
phases. All the numerical works cited above consider the homogeneous model of two-phase
flow, i.e. no slip is assumed between the phases. This assumption is appropriate in three
cases: one of the phases has a relatively small volume, one phase forms drops of minute
size, or one phase (representing the continuous medium in which droplets are immersed) has
high speed [24]. In all other cases, slip between the phases has to be accounted for. In fact,
experimentally it is observed that the velocity of the two phases can be significantly different,
also depending on the flow pattern (e.g., plug flow, annular flow, bubble flow, stratified flow,
slug flow, churn flow) [28]. A variation of our unfitted approach has been analyzed for the
homogeneous two-phase Stokes problem in [12], where robust estimates were proved for
individual terms of the Cauchy stress tensor. In the present paper, the analysis is done in
the energy norm, allowing a possible slip between phases. In particular, we show an inf-sup
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Fig. 1 Illustration of a domain £2
in RZ. On part of the boundary
(dashed line) a Neumann
boundary condition is imposed,
while on the remaining part of the
boundary (solid line with three ¥ E
bars) a Dirichlet boundary
condition is enforced
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stability property of the unfitted generalized Taylor-Hood finite element pair Py — Pk,
k > 1, with a stability constant that is independent of the viscosity ratio, slip coefficient,
position of the interface with respect to the background mesh, and of course mesh size. This
inf-sup property implies stability and optimal error estimates for the unfitted finite element
method under consideration, which are also shown. For more details on the isoparametric
unfitted finite element, we refer to [30,31,33].

Two-phase flow problems with high contrast for the viscosity are known to be especially
challenging. While some authors test different viscosity ratios but do not comment on the
effects of high contrast on the numerics [14,25,48], others show or prove that their method is
robust for all viscosity ratios [10,26,29,39,47]. In other cases, numerical parameters, like the
penalty parameters, are adjusted to take into account large differences in the viscosity [17].
Through analysis and a series of numerical tests in two and three dimensions, we demonstrate
that our approach is robust not only with respect to the contrast in viscosity, but also with
respect to the slip coefficient value and the position of the interface relative to the fixed
computational mesh.

For all the simulations in this paper, we have used NGsolve [19,37], a high performance
multiphysics finite element software with a Python interface, and add-on library ngsxfem
[38], which enables the use of unfitted finite element technologies.

The remainder of the paper is organizes as follows. In Sect. 2, we introduce the strong and
weak formulations of the two-phase Stokes problem with slip between phases, together with
the finite element discretization. We present a stability result in Sect. 3, while in Sect. 4 we
prove optimal order convergence for the proposed unfitted finite element approach. Numerical
results in 2 and 3 dimensions are shown in Sect. 5. Concluding remarks are provided in Sect. 6.

2 Problem Definition

We consider a fixed domain £2 C R4, with d = 2, 3, filled with two immiscible, viscous,
and incompressible fluids separated by an interface I". In this study, we assume /" does not
evolve with time although our approach is designed to handle interface evolution. Interface
I separates £2 into two subdomains (phases) 2% and 2~ = 2 \F. We assume that I is
sufficiently smooth and £2% are Lipschitz. If I" is closed and so I' N 32 = f, then we agree
that £2~ is the internal subdomain. See Fig. 1. Let n* be the outward unit normal for 2%
and n the outward pointing unit normal on I". It holds thatn™ =nandn®™ = —nat I'.

Letu® : 2% — R? and p* : 2% — R denote the fluid velocity and pressure, respec-
tively. We assume that the motion of the fluids occupying subdomains £2% can be modeled
by the Stokes equations

—V.oT =¢* in 2%, 2.1)
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V.out=0 in 2%, (2.2)
endowed with boundary conditions

ut =g, on d82p, (2.3)
otnt = eN on df2y. 2.4
Here, 32p U 32y = 952 and 32p N 32y = ¥. See Fig. 1. In (2.1), f* are external the

body forces and o* are the Cauchy stress tensors. For Newtonian fluids, the Cauchy stress
tensor has the following expression:

1
ot = —pTI+2u:D@?), D) = 5(Vui + (vuH)T) in 2%,

where constants p4+ represent the fluid dynamic viscosities. Finally, g and gy in (2.3) and
(2.4) are given.

Subproblems (2.1)—(2.2) are coupled at the interface I". The conservation of mass requires
the balance of normal fluxes on I":

ut-n=u"-n onrl. (2.5)

This is the first coupling condition. We are interested in modelling slip with friction between
the two phases. Thus, we consider the following additional coupling conditions:

Po'n= f(Pu" —Pu~) onl, (2.6)
Ps n=—fPu —Pu") onr, 2.7

where f is a constant that can be seen as a slip coefficient and P = P(x) = I — n(x)n(x)”
forx e I is the orthogonal projection onto the tangent plane. Finally, the jump of the normal
stress across I is given by:

[nTorn]_T_ = 0K onl, (2.8)

where o is the surface tension coefficient and « is the double mean curvature of the interface.

Since the boundary conditions on 92 do not affect the subsequent discussion, from now
on we will consider that a Dirichlet condition (2.3) is imposed on the entire boundary. This
will simplify the presentation of the fully discrete problem.

2.1 Variational formulation

The purpose of this section is to derive the variational formulation of coupled problem
(2.1)—(2.8). Let us introduce some standard notation. The space of functions whose square
is integrable in a domain w is denoted by L?(w). With L%(a)), we denote the space of
functions in L2 (w) with zero mean value over w. The space of functions whose distributional
derivatives of order up to m > 0 (integer) belong to L?(w) is denoted by H" (w). The space
of vector-valued functions with components in L?(w) is denoted with L2(w)?. H!(div, w)
is the space of functions in L?*(w) with divergence in L?(w). Moreover, we introduce the
following functional spaces:

vo=H'@), vi=tveH' (@Y V|, =g
Vi =1{ve H'(Q*)d,v|mD =0},

Vi={V=(V_,V+)€V_ x VT, v .n=v"-nonl},
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Vi={v=(".vH eV x VS v .n=v'-nonr}

0% =g =1 .¢") e LX) x L*(Q").
The space V* can be also characterized as (V™ x V1) N H!(div, £2). We use (-, -),, and
(, ) to denote the L2 product and the duality pairing, respectively.

The integral formulation of the problem (2.1)—(2.8) reads: find (u, p) € VE X L2(2) /R
such that

—(p . V¥ ) —(pt.V-vhHor +2(u_D@"),D(v ) o-

+ 2(u D), DV ) o+ + (f(Pu” —Pu™), Pv7)

+ (fPut —Pu ), Py =", v)o + 1, vDor + (oK, v -m)p  (29)
(V-u,qg )o-+(V-ut,gHor=0 (2.10)

for all (v, q) € VOi x Q*. The interface terms in (2.9) have been obtained using coupling
conditions (2.6)—(2.8) as follows:

—(e v )r+ (@ v)r=—Po n,Pv)r + (Pon, Pv')p
— (n"onl;, v -n)p
= (f(Pu” —Put),Pv )r + (f(Put —Pu"),Pvh)
— (oK, V" -m)f.
Problem (2.9) and (2.10) can be rewritten as: Find (u, p) € VF x Lz(Q)/R such that

{a(u, V) +b(v, p) = r(v)

b ) — 0 .11

forall (v, q) € V():|E x Q% where
a(m,v) =2(u-D@™), DV ) o~ + 2(usD@™), D))o+
+ (f(Pu~ —Put),Pv" —Pv")[,
b(v,p)=—(p",V-v)g- —(p*,V-vNgs,
r(v)=F", v )g +ET, v ot + (oK, v o).

2.2 Finite element discretization

We consider a family of shape regular triangulations {7}, }5,~0 of £2. We adopt the convention
that the elements 7" and edges e are open sets and use the over-line symbol to refer to their
closure. Let i1 denote the diameter of element 7 € 7, and &, the diameter of edge e. The
set of elements intersecting £2% and the set of elements having a nonzero intersection with
I' are

TE={TeT:TNRE#0), TF ={TeT,:TNTI #4), (2.12)

respectively. We assume {’];,F } to be quasi-uniform. However, in practice adaptive mesh
refinement is possible. The domain formed by all tetrahedra in ThF is denoted by .Q[ =
int(Uy eT’ T). We define the h-dependent domains:

QF = int (uTGThﬁ) 2.13)
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and the set of faces of %F restricted to the interior of .th:
& ={e=int@T1 NOTy) : T\, T e T and Ty NI #Bor LN T #0).  (2.14)

For the space discretization of the bulk fluid problems, we restrict our attention to inf-sup
stable finite element pair Py — Pk, k > 1, i.e. Taylor-Hood elements. Specifically, we
consider the spaces of continuous finite element pressures given by:

0, =g €C(2;) 1 qlr € P(T)VT € T, }. (2.15)

Space Q;{ is defined analogously. Our pressure space is given by:

O =ta=Gqh ey x 0 s [ wla+ [ wilat=o)
2- o+
Let
Vo =1{ve C@2,)! vy e P (T) VT € 7,7 ). (2.16)
with the analogous definition for Vh+. Our velocity spaces are given by:
VE={v=r",vH eV, xVhH

and Vojfh ,asubspace of VhjE with vector functions v vanishing on 9 £2. All above constructions
and spaces readily carry over to tessellations of £2 into squares or cubes and using Q41 — Qk
elements.

Functions in Q?’E and VhjE and their derivatives are multivalued in .Q[ , the overlap of £2,
and .Q,’f . The jump of a multivalued function over the interface is defined as the difference of
components coming from §2, and .Q; ,ie. [v] = v~ — v' on I'. Note that this is the jump
that we have previously denoted with [-];. We are now using [-] to simplify the notation.
Moreover, we define the following averages:

(vl =avt + v, (2.17)
V)= Bvt +av, (2.18)

where « and B are weights to be chosen such thato + = 1,0 < &, 8 < 1. For example,
in [14] the setting @ = pu_/(uy + pu—_) and B = /(s + ) is suggested. In [12], the
authors choose = 0,8 =1if u_ < uy ando = 1, B = 0 otherwise. Below, in (2.22) and
(2.25) we will use relationship:

lab] = [b){a} + (b) [a]. (2.19)

A discrete variational analogue of problem (2.11) reads: Find {uy,, ps} € VhjE X fo such
that

ap Wy, Vi) + by Vi, pr) = rp(Vi)

(2.20)
br(up, qn) —bp(pn, qn) =0

for all (vy, qn) € Voih X Q}jf. We define all the bilinear forms in (2.20) for all u;, € Vhi,
V), € Voih, pn € th. Let us start with form ay, (-, -):

ap(y, Vi) = a;(ay, vp) + ap(ay, vip) +ap (g, Vi), (2.21)

@ Springer



Journal of Scientific Computing (2021) 89:41 Page70f23 41

where we group together the terms that arise from the integration by parts of the divergence
of the stress tensors:

a; (up, ) = 2(u-D(u;), D(vV; o~ + 2(u D)), D(v;)) o+
+ (f[Puy], [Pvs])r — 2{{un” D(w,)n}, [v4 - nl)r, (2.22)

and the terms that enforce condition (2.5) weakly using Nitsche’s method

anwevi) = 32 L) nl. vy o = 200" D). Ly . 223)
TeT;l

We recall that /17 is the diameter of element T € 7,. To define the penalty terms a, (uy, vj,)
we need w,, the facet patch for e € 5{ o+ consisting of all T € 7, sharing e. Then, we set

apuy, vi) = n_J; (@p, vi) + e 3 (g, vi),

1
i v =y 3 oz | @i —ug) - (v —vidx, (2.24)
eES[’i e e

where u{ is the componentwise canonical extension of a polynomial vector function u;f from
T; to R¥, while u$ is the canonical extension of u}jf from 75 to R4 (and similarly for vy, vp). We
recall that £, is the diameter of facete € £ hr £ This version of the ghost penalty stabilization
has been proposed in [41]. In [32], it was shown to be essentially equivalent to other popular
ghost penalty stabilizations such as local projection stabilization [8] and normal derivative
jump stabilization [9]. In the context of the Stokes problem, this stabilization was recently
used in [46]. For the analysis in Sects. 3 and 4, we also define J ;I—L (u, v) for arbitrary smooth
functions u, v in .th In this case, we setu; = (HTlulTl)e, u = (HTzusz)e, where I17; is
the L2 (T};)-orthogonal projection into the space of degree k + 1 polynomial vector functions
on T;.

The remaining terms coming from the integration by parts of the divergence of the stress
tensors are contained in

b (i, pn) == (P s V- Vi) o= = (p s V- Vi) @+ + (pa), [va - ml) (2.25)

and the penalty terms are grouped together in

by(ph.qn) = k=" 3y (s an) + 13 I (phs ).

FEna=vi ¥ [ ot -t - aspa. (226)
eef{'i @e

where p{, p5, q{, g5 are canonical polynomial extensions as defined above.
Finally,

i) =&, v )a- + & v o+ + (oK, (v 1)) .

We recall that some of the interface terms in a; (-, -) and by, (-, -) have been obtained using
relationship (2.19) and interface conditions.

Parameters yui, ypjE and y are all assumed to be independent of 14, &, and the position of
I' against the underlying mesh. Parameter y in (2.23) needs to be large enough to provide
the bilinear form ay (-, -) with coercivity. Parameters yui, ypi can be tuned to improve the
numerical performance of the method [11,12,14].

@ Springer



41 Page8of23 Journal of Scientific Computing (2021) 89:41

The role of the J ,jf and J hi terms is to stabilize the finite element formulation with respect
to possible “small” or “thin” cuts of elements from 7, by I'. The stabilization effect is
two-fold as the J, f term is critical for proving that the constant C in the inf-sup result (the
one appearing in Lemma 1) is independent of the position of I" in the background mesh.
This result, which is important for FE stability bounds and error estimates, implies that the
pressure Schur complement matrix is well-conditioned. The constant C is also independent
of the viscosity ratio and slip coefficient. Hence, a suitably preconditioned Schur complement
has condition number bounded independently of those values as well. The J,f term ensures
that the condition number of the velocity matrix is reasonably bounded and insensitive to
irregular cuts of the mesh. This acquired algebraic stability of unfitted elements is well-known
in the literature [9]. Robust preconditioning of the velocity matrix with respect to viscosity
ratio is a less studied topic in the case of unfitted elements. Recently, a multigrid method
was introduced in [34] for a scalar elliptic interface problem discretized using unfitted FE
with a ghost penalty term similar to Jf. For P; elements, the method was shown to yield
a preconditioner robust with respect to the position of the interface in the mesh and the
contrast in diffusion parameters. The multigrid requires non-standard prolongation operators
and smoothings (see [34] for more details).

For numerical experiments in this paper, we use direct solves to handle algebraic systems.

2.2.1 Numerical integration

It is not feasible to compute integrals entering the definition of the bilinear forms over
cut elements and over I” for an arbitrary smooth I". We face the same problem if I" is
given implicitly as a zero level of a piecewise polynomial function for polynomial degree
greater than one. Piecewise linear approximation of I" on the given mesh and polygonal
approximation of subdomains lead to second order geometric consistency error, which is
suboptimal for Taylor—Hood elements. To ensure a geometric error of the same order or
higher than the finite element (FE) approximation error, we define numerical quadrature
rules on the given mesh using the isoparametric approach proposed in [30].

In the isoparametric approach, one considers a smooth function ¢ such that £¢ > 0
in 2% and |V¢| > 0 in a sufficiently wide strip around I". Next, one defines polygonal
auxiliary domains .Q]i given by £2; £, ={xe: +I 2 (@) > 0}, where I} , 1s the continuous
piecewise linear 1nterpolat10n of ¢) on 7j. Interface I} between SZ and 2 is then I :=
(x e R? : I (¢>) = 0}.On .Q and Iy standard quadrature rules can be apphed elementwise.
Since using .Ql , Il alone 11m1ts the accuracy to second order, one further constructs a
transformation of the mesh in Tlr with the help of an explicit mapping ¥, parameterized
by a finite element function. The mapping ¥}, is such that F1 is mapped approximately onto
I'; see [30] for how ¥, is constructed. Then, QF = (82, ) I = Y, (1) are high order
accurate approximations to the phases and interface which have an explicit representation so
that the integration over 2% and I can be done exactly. The finite element spaces have to
be adapted correspondingly, using the explicit pullback mapping: v, o ¥;~

3 Stability
For the analysis in this and the next section, we assume that the integrals over cut elements

in 2% are computed exactly. In addition, we restrict our attention to the choice @ = 0 and
B =1 for the averages in (2.17)—(2.18), assuming p— < p.
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The key for the stability analysis of the two-phase Stokes problem is an inf-sup stability
property of the unfitted generalized Taylor-Hood finite element pair, which extends the
classical LBB stability result for the standard P4 — P Stokes element from [5]. There is
no similar stability result in the literature for Qi+ — Qy unfitted elements. However, we
expect that the extension, and so the analysis below, can be carried over to these elements as
well.

One is interested in the inf-sup inequality with a stability constant that is independent of
the viscosity ratio, position of I" with respect to the background mesh and, of course, mesh
size h. The result is given in the following lemma.

Lemma 1 Denote by V), the space of continuous Py finite element vector functions on 2
vanishing on 32, Vy = {u € C(£2)? :u|r € P11 (T) VT € Ty, ulp = 0}. There exists
ho > 0 such that for all h < hg and any qj, € Q;ﬁ: there exists vj, € Vy, such that it holds

nZMgy G+ 3 g G < (@ Ve vie- + (@ YV Vi +¢bp(an, an)
1
12 Vvl = € (1= llgy Iy + 15 19 1 ) - (3.1

with hy and two positive constants ¢ and C independent of qy,, |1+, the position of I' in the
background mesh and mesh size h.

Proof Consider subdomains §2 f ; C 2% built of all strictly internal simplexes in each phase:
2, =T :TeT Tca*).

The following two results are central for the proof. First, we have the uniform inf-sup inequal-
ities in £2, ; and .Q;“ ; [21]: there exist constants C+ independent of the position of I” and &
such that
(q,V-v) o,

0<Cy < inf sup L (3.2)

geofnid@ty  vev,  IWlamer)llalor

B j: N 1,1

supp(v) C ‘Qh.i

The above result can be equivalently formulated as follows: For any ¢ € Q,jf N L(Z)(.Q;fi)
there exist vf € Vj, such that supp(v) C .Q;fi and

I = (@5 V- Vi)ge s IV¥ille = CElla™lgy - (3.3)

The second important results is the simple observation that the L2 norm of gy, in .Qi can be
controlled by the L? norm in .Qh plus the stabilization term in (2.26) (see, [32, 41])

lanlig < C lanlige + Ji(an, ), (3.4)

with some constant C independent of the position of I" and /. We note that (3.4) holds also
for discontinuous finite elements.
Consider now

_ e ey
et e o

Note that g, satisfies the orthogonallty condition imposed for elements from oF 5 »and hence
span{q, } is a subspace in Q i - Using a trick from [39], we decompose arbitrary g, € Q h
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into a component collinear with g;, and the orthogonal complement in each phase:
an = q1 +qo. withqy € span{gu}, and (g5, Dg- = (g7, Do+ =0.

Thus, g1 and g are orthogonal with respect to L> product in the inner domains .thl Next, we
_1 1 1

letg® = pu > q(;—L in (3.3) and for Vf € V), given by (3.3) consider v2 =pu’vy, —HLiv;f e V.

Then after applying (3.4) and summing up, the relations in (3.3) become

=gy G- + 13 g5 15 = € (@9 V- Vide- + (@ V - Vide+ +b,(0,490))
1
1 _ _ _ 2
112 V9§l = Co (k=" lag 1% + 13t lad 1) (3.5)

with C from (3.4) and Cy = max{C - C;l}, both of which are independent of py and
how I" overlaps the background mesh. In (3.5), we also used the fact that supports of v~ and
vT do not overlap. Since supp(v,f) c 2% and qli are constant in £27%, integration by parts
shows that

@ V- Vg = 0. (3.6)

Next, we need the following result from Lemma 5.1 in [29]: For all & < h( there exists
V}l € V}, such that

nZMar g+ ui gl G = (@1 V- vide- + @1 V- vier,
1
1 _ _ _ 2
12 9vilie = 1 (=l 1 + 13t lal 1) (3.7)

with g > 0 and C; > 0 independent of j14+ and how I" overlaps the background mesh. The
above result follows from the classical inf-sup stability condition for P, — P; Taylor—-Hood
elements and a simple scaling and interpolation argument. See [29] for details.

As the next step, set v, = ‘L'V2 + v}, with some 7 > 0 and proceed with calculations using
(3.6), (3.5), (3.7), and the Cauchy-Schwartz inequality:

@5 . V-V + (@ V- Vi) g+
=(q; .V Vo +@ . V-vDor +1(q; . V- VDo~ +1(i. V- VDo+
+ (g0 V- vi)a- + (43, V- Vi)o+
= 1y Wy + i e+ w0 (= g - + e 1)
1
o _ 7,101
— tbp(qo. 90) — <M—1||q0 ”?zf +“+1”q‘;r”§?h+) it Vil
2 17 W+ 05 0 Wy 7€ (0l Wy 055 e W) = a0 a0
1

2

1
= (879 1 + 13 ad 1) Cra (n=" gy 12 + 17 g 12 )
1
2
v Cid 1y =2 —1y 412
+ (C - 2) (n"gg 1 + 5" ad 1+ )

@ Springer

=

1y, =2 —1y,+2 )—rb
(B a7 1, + 1597 121 ) = by (0. 90)



Journal of Scientific Computing (2021) 89:41 Page 110f23 41

2
We set T such that % — %d = % and note that b,(qo, q0) = b, (qn, qr). Using this and the
orthogonality condition for go, we get
(qn: V- Vi)o-+ (qn, V - Vi) o+
Ly ., _ _ L/, ., _ _
= 5 (0707 1 + 15 N 0 ) + 5 (17 g - + 17 a1 )
—1bp(qn, qn)
1L/ . _ _ L/ 4 _ _
>~ (e 15 +uiM et 15 )+ 5 (2 g 15— + mylag 13,
2 h,i h.i 2 h h.i
- pr(CJh, qn)
1 1 - -
=2 (M_lllq,, G + u+‘||q;||gh+v) — by (qn. qn)

> (2 a1+ e ) — (4 5 ) boan. an. (8)
—2c \"T TR e T T Ry 2) 7"

. + + + + + L+
Using (95, 47 ) gz, = 0, 12,7\ ;1 < ch and so |lgyllgz\ o = ch2llgyllgx, we
estimate

= g 4 g + 15 g gD g

1 1

1 _ — _ 2 — — — 2

< ch? (g 15+ g W ) (="l 1% + 15 10 15:) " 39)
From (3.5), (3.7), and (3.9), we also get the following upper bound for v,
1 1 1
22 Vvally < 20r2TVvplls + IR2VV,E)
= 20°C5 (=" gy 1 + 13l 1 )

+2C2( Mg 13- + w3 )
il gy IIQh uy llg; IIQ;

2max{t?C3,C?} / | _ B
< —5+ (M_‘ gy 12, + u7! IIq,Tlliﬁ) . (3.10)
1—ch2 h h
The assertion of the lemma follows from (3.8) and (3.10) after simple calculations. O

The next lemma shows the uniform coercivity of the symmetric form a;, (uy,, v;) in (2.21)
+ +
on V.= x V=

Lemma2 Ify = O(1) in (2.23) is sufficiently large, then it holds

ap(uy, up)
> C (- ID@;) G + ey D@L + 57w, - nllI7 + f 1P
(3.11)

Vu, € Vhi, with C > 0 independent of w4, h, f, and the position of I" with respect to the
background mesh.

Proof For the proof, we need the local trace inequality in 7 € ’Z;lr (see, e.g. [21,22]):

_1 1
llizar < Chz vz +h3IVolr), Vve HY(T), (3.12)
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with a constant C independent of v, T, how I" intersects T, and ht < hg for some arbitrary
but fixed #g. We also need the following estimate
D)2 o) = CUAPVIG2 ey + I5 (V5 Vi), (3.13)

which follows from (3.4) by applying it componentwise and further using FE inverse inequal-
ity [note 42 scaling in the definition of J* in (2.24)]. Applying (3.12), finite element inverse
inequalities and (3.13), we can bound the interface term

({un"D(vp)n},[u, -0l = (u_n" D, )n, [, - nl)

hrs 1 _ 1 1

S e 7 T Y et 7 LR Y [[F-5
2 2h7é

Te’];]r

s 1 1
2.7 - 2 2
=< EHM_H D(v, )n||9h— + m{ﬂ}”uh -n]|f,

Vé >0, u,,v, € Vhi. This estimate with v, = uj; and with § > O sufficiently small,
together with the definition of the bilinear form ay, (u;, uy,), allows to show its coercivity.
O

We further need the continuity result for the velocity stabilization form contained in the
next lemma.

Lemma3 It holds
=112 +5112 +
apv) = € (o IDOIL +peIDODIG:) Y v e Vi,
with C > 0 independent of i+, h, and the position of I' in the background mesh.

Proof Foranyv =v, € V,”,facete € & hF ' and the corresponding patch w, formed by two
tetrahedra 7 and 7>, it holds

2 2 2 2
Vi = vally, = Ivi = V37, + Vi = val, < (A +o)llvi = V37,

where the constant ¢ depends only on shape regularity of the tetrahedra, since v{ — v3 on T»
is the canonical polynomial extension of vi — v§ from T77.
Now, we need the following local Korn’s inequality:

IVvlz < CIDW)|l7, Vve H'(T)!, st.v=0onanyfaceof T € T, (3.14)

where C depends only on shape regularity of 7. The result in (3.14) follows from Eq. 3.3
in [7] and the observation that vector fields vanishing on any face T support only zero rigid
motions. A simple scaling argument also proves the local Poincare inequality:

Ivllr < ChA|Vvlr, ¥Yve H'(T)!, st.v=0onanyfaceof T € T;, (3.15)

where C depends only on shape regularity of 7. Applying (3.14), (3.15) and triangle inequal-
ities on 77 for vi — v§ which vanishes on e (a face of T7), we obtain:

Vi = V8IIF, < Cph*ID(vi — V9)IIF, < 2C,h*(IDv1[|7, + IDV17)
< 2C,H*(IDvi 17, + ¢ [Dval|7,). (3.16)
where for the last inequality we again use shape regularity and the fact that Dv§ = (Dv2)°.

Thus, we see that || v] —v5 || 3)3 < ch?|Dv ||620y , with some ¢ depending only on shape regularity.
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Summing up over all e € 6’[’_ leads to the required upper bound for J; (v, v): J, (v, v) <
C ||D(v)||2 . Repeating the same argument for the edges in 5[ "+ and summing up the two

bounds scaled by viscosity coefficients proves the lemma. O

The finite element problem (2.20) can be equivalently formulated as follows: Find
{wp, pr} € V;¥ x OF such that

Ay, pis Vi, qn) = V), Y Vi, qn) € ViE x OF 3.17)
with
A, pps Vi, gn) = ap(n, Vi) + b (i, pn) — bn(n, gn) + bp(pas qn).

Lemmas 1-3 enable us to show the inf-sup stability of the bilinear form .A. The stability
result is formulated using the following composite norm:

IV, g1 = pIDOOIG + pa IDEOIG .+ A7 (Y - mllT
+ FIPYIE + 1= llg ™I+ 13 g TG
forve VE, g € OF.

Theorem 1 There exists hg > 0 such that for all h < hg it holds

Ay, prs Vi, qn)
sup _—

+ ot
= Cllup, ppll. V{wp, pa} € Vi x Q)
(Vhan)eViEx 0 VA, gnl

with hg > 0 and C > 0 independent of ., h, f, and the position of I" in the background
mesh.

Proof For a given pj, € Qf, Lemma 1 implies the existence of such w;, € Vj, that

baOWh. pi) + (i o) = ¢ (= 19y 1 + 5 1P 1) (3.18)
and
1 _ _ _
a2Vl = € (=t oy 1 + w5 175 1) (3.19)

with some positive ¢, C independent of ;« and how I overlaps the background mesh. Next
we extend the finite element functlon W), € V}, to the element of the product space W, € Vh

by setting wh = Wh|_th € V . We let vj, = uy, + twWy, for some t > 0 and g, = pj,. Using
the definition of the form A and (3.18), we calculate

Ay, prs Vi, qn) = ap (g, wy) + tap(wy, Wi) + toy (Wi, pp) + by (ph, pr)
1 T 1y -2 1y 2
ap(ay, up) 2ah(Wh Wp) +minfz, e (1Z lp, o+ rs Pyl )
(3.20)

[\

where we used the Cauchy-Schwartz inequality:

2
~ [ | T .
tap(ay, W) < tlap (g, wp)|2 lap (W, W) |2 < —ap(uy, up,) + 5 ap(Wp, Wp).

[\
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Note that it holds [Wy, - n] = 0 and [PW;,] = 0 on I". Since all Nitsche and ‘friction’ terms in
an (W, W) vanish, the results of the Lemma 3 and estimate (3.19) imply the upper bound

W W) < C %VA2<C . T =1y +2
an(Wp, W) < Cllu2Vwyllg < C (uZ ||p,,I|Q;+/«L+ llph||9h+-

Using it in (3.20) and choosing 7 > 0 small enough, but independent of all problem param-
eters, leads us to the lower bound

1 1y - -
At pri Vi qn) = san (i) +c (= 1y 1% + 03 1P I ) = ¢ lun. pal.

(3.21)
with some ¢ > 0 independent of j+, &, and the position of I" in the background mesh. For
the last inequality, we used (3.11).

Finally, by the construction of v, and thanks to (3.19) it is straightforward to see the upper
bound:

Vi, gnll = ¢ llup, prll.

This combined with (3.21) proves the theorem. O

The stability of the finite element solution in the composite norm immediately follows
from (3.17) and Theorem 1:

rp(Vp
ol <€ sup AL
(ViqnieVEx oF 1V gnll

where on the right-hand side we see the dual norm of the functional r; and constant C, which
is independent of the mesh size &, the ratio of the viscosity coefficients p 4, and the position
of I" in the background mesh.

4 Error analysis

The stability result shown in Sect. 3 and interpolation properties of finite elements enable us
to prove optimal order convergence with uniformly bounded constants.

We assume in this section that the solution to problem (2.1)—(2.8) is piecewise smooth in
the following sense: ut € H*2(2%)? and pi € H**1(£2%). For the sake of notation, we
define the following semi-norm

s plle = ([0 Fpia gy + M+ 0 B o)
—1y, -2 -1 2 1
+ n_ |P |Hk+1(_Q—)+/~'L+ |p+|Hk+l(_Q+))2~ (41)

Since we assume I to be at least Lipschitz, there exist extensions Eutandé pﬂE of the solution
from each phase to R such that Eu® € H¥2(RY)3, & prteH k+1(R4), The corresponding
norms are bounded as follows

IEuE || grazmay < Cl0E || grszigey,  NEPT i1 may < ClPpT I grri sy (4.2)

See [43]. Denote by I ut the Scott—Zhang interpolants of & ut onto Vh:IE and Ipu :=
{Iyu~, Iyut}. Same notation I; p* will be used for the Scott—Zhang interpolants of & p*
onto Q,jf. For the pressure interpolants, we can always satisfy the orthogonality condition of
fo by choosing a suitable additive constant in the definition of p.
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Applying trace inequality (3.12), standard approximation properties of [, and bounds
(4.2), one obtains the approximation property in the product norm:

la = Iy, p = Iipll < €, pll.. (4.3)
The following continuity result is the immediate consequence of the Cauchy-Schwatz
inequality:
AW — lyu, p = Iyp; Vi, gn) < Clla—=Iyu, p— Iy plllIva, gl
+1{{un" Dvp)n}, [(w— Lw) - nl)r + ({un" D@ — Luwn, [v, -nl) ], (44)

forall {vy, g} € Vh:IE X Q}T. The last term on the right-hand side in (4.4) needs a special treat-
ment. Applying the Cauchy—Schwatz, inequalities (3.12) and (3.13), FE inverse inequalities
and approximation properties of the interpolants, we get

({(un"D(vi)n}, [(@ = L) - n])p| < C A, O]l [[vy, O],

{0 D(u = Tywn}, [vy -0l r| < €A, O v, Ol 4.5)

The consistency of the stabilization term is formalized in the estimates that follow from
Lehrenfeld and Olshanskii [32, lemma 5.5]: For p~ € H*1(27),u™ € H*2(27)4, it
holds

Ty (P~ p7) < CH P i gy T @7 07) < CR* P [Fuin g (46)
The above estimates and the stability of the interpolants also imply
. - , _2
Ty (p™ = Iup™. p” = Inp”) < CHFPpT [ ooy,
I, @ = Lo um = hut) < CA¥ P o). 4.7)

Similar estimates to (4.6), (4.7) hold for J;% and J} with p* e H*tl(@T), ut €
H*t2(£27)4, which can be combined with suitable weights to yield

by(p — Inp, p — Inp) + ap — L, u — Iyu) < Ch%*F2|u, p|2. (4.8)

Denote the error functions by e, = £u —u;, and e, = £p — pj,. Galerkin orthogonality
holds up to the consistency terms

Aley, eps Vi, qn) = bp(p — Inp, qn) +ap(a — Ipu, vp), (4.9)

forall v, € VhjE and g, € Qf.
The result of Lemma 2, (4.8) and the trivial bound b, (g5, gn) < C||0, gx ||2 imply the
following estimate for the consistency term on the right-hand side of (4.9):

[bp(p — Inp, qn) +ap(a — Ipu, vy)|

1 1 1 1
<|bp(p —Inp, p — Inp)I121bp(qn, qn)|? + |lap(@ — Ipu, u — Iyu)|2|a, (v, vp)|2
< CH N, pllliva, gl (4.10)

The optimal order error estimate in the energy norm is given in the next theorem.

Theorem 2 For sufficiently regularu, p solving problem (2.1)—(2.8) anduy,, pj, solving prob-
lem (2.20), the following error estimate holds:

la—ws, p— pill < CH ', plla, @.11)
with a constant C independent of h, the values of viscosities 1, slip coefficient f > 0, and

the position of I' with respect to the triangulation Ty,.
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Proof This result follows by standard arguments (see, for example, Sect. 2.3 in [16]) from
the inf-sup stability results of Theorem 1, continuity estimates (4.4) and (4.5), Galerkin
orthogonality and consistency (4.9)—(4.10), and approximation properties (4.3). O

Remark 1 If we consider using isoparametric elements to handle numerical integration over
cut cells (see Sect. 2.2.1), then the Sobolev seminorms in the definition of ||u, p||. on the
right-hand side in (4.11) should be replaced by the full Sobolev norms of the same order; see
the error analysis of the isoparametric unfitted FEM in [33].

5 Numerical results

The aim of the numerical results collected in this section is twofold: (i) support the theoretical
results presented in Sect. 4 and (ii) provide evidence of the robustness of the proposed finite
element approach with respect to the contrast in viscosity, slip coefficient value, and position
of the interface relative to the fixed computational mesh.

For the averagesin (2.17)—(2.18), we seta = O and 8 = 1 for all the numerical experiments
since we have ;_ < p. Recall that this is the choice for the analysis carried out in Sects. 3
and 4. In addition, we set ylfﬁ = 0.05, ypi = 0.05, and y = 40. The value of all other
parameters will depend on the specific test.

For all the results presented below, we will report the L2 error and a weighted H! error
for the velocity defined as

(u-lID@ =)o) + 204 ID@ = 0D g0) (5.1)

and a weighted L error for the pressure defined as

— — — 2
(k=" 1p = P ooy + 85 0P = P Baggey) (5.2)

5.1 2D tests

First, we perform a series of tests in 2D. For all the tests, the domain §2 is square [—1, 1] x
[—1, 1] and interface I" is a circle of radius 2/3 centered at ¢ = (c1, ¢2). Let (x,y) =
(X —c1,y — ), (x,y) € £2. The exact solution we consider is given by:

1
P = —c)’, p+=<x—c1>3—§, (5.3)
=g (x,y) [‘y} . ut=gtx,y) [‘y} , (5.4)
X X
where

3 _ 3 U — 1L 1

gty = —@2+)Y), gy =—0 )+

A Ap— 3Spqpu—  f

The forcing terms £~ and £ are found by plugging the above solution in (2.1). The surface
tension coefficient o is set to -0.5. The value of the other physical parameters will be specified
for each test.

We impose a Dirichlet condition (2.3) on the entire boundary, where function g is found
from ut in (5.4).
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Pressure Magnitude
79601 06 04 02 0 29e01

Fig.2 Approximation of exact solution (5.3) and (5.4) fore =0, u— = 1, p+ = 10, and f = 10, computed
with mesh 72 = 1/128: velocity vectors colored with the velocity magnitude (left) and pressure (right)

Spatial convergence. First, we check the spatial accuracy of the finite element method
described in Sect. 2.2. The aim is to validate our implementation of the method and support
the theoretical findings in Sect. 4. For this purpose, we consider exact solution (5.3)—(5.4)
with ¢ = 0 (i.e., interface I is a circle centered at the origin of the axes), viscosities u_ = 1
and puy = 10, and f = 10.

We consider structured meshes of quads with six levels of refinement. The initial trian-
gulation has a mesh size 7 = 1/4 and all the other meshes are obtained by halving 4 till
h = 1/128. We choose to use finite element pairs Q2 — Q. Figure 2 shows the velocity vec-
tors colored with the velocity magnitude and the pressure computed with mesh 7 = 1/128.
Figure 3 (left) shows the L? error and weighted H' error (5.1) for the velocity and weighted
L? error (5.2) for the pressure against the mesh size A. For the range of mesh sizes under
consideration, we observe close to cubic convergence in the L? norm for the velocity and
quadratic convergence in the weighted L2 norm for the pressure and in the weighted H' norm
for the velocity. Similarly, we observe close to optimal convergence rates when switching to
Q3 — Q> elements. See Fig. 3 (right). In this case, we considered mesh sizes ranging from
h=1/4toh =1/64.

Robustness with respect to the viscosity contrast. As mentioned in Sect. 1, the case of
high contrast for the viscosities in a two-phase problem is especially challenging from the
numerical point of view. To test the robustness of our approach, we consider exact solution
(5.3) and (5.4) and fix u— = 1, while we let ;4 vary from 1 to 108. We set ¢ = 0 and
f=10.

We consider one of the meshes adopted for the previous sets of simulations (withh = 1/64)
and use again Q> — Qg finite elements. Figure 4 (left) shows the L? error and weighted H 1
error (5.1) for the velocity and weighted L2 error (5.2) for the pressure against the value of
+. We observe that all the errors quickly reach a plateau as the p4 /p— ratio increases, after
initially decreasing. These results show that our approach is substantially robust with respect
to the viscosity contrast /.

Robustness with respect to the slip coefficient. For the next set of simulations, we consider
exact solution (5.3) and (5.4) and let the slip coefficient f in (2.6) and (2.7) vary from 1/256
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i Al u- uh”L?{!l ) ——lu- uh”Lz(!! )

i i 20
T N [P -+ I 2pp )l 2

10'10

10877 —o—lI@)"D(u- ul 2, ——ll2)"*D(u- ull 2, |
........ slope 2 | 10121 —-—-slope 3
e Slope 3 AAAAAAAA slcpe 4
102 10" 0.016 0.1
h h

Fig.3 2D test withe = 0, u— = 1, u4 = 10, and f = 10: L2 error and weighted H! error (5.1) for the
velocity and weighted L2 error (5.2) for the pressure against the mesh size & for Q2 — Q1 elements (left) and
Q3 — Q> elements (right)

-3 107"
10 ——llu-ullzg /I ullsg
-2 "
10 ——[li2192D(u- u)l| 2, Al
1074~ 108 - 0Pl 2 /I ullsg

~

padt 31
+ -+ - -+ — + -+ 104‘_‘_‘+‘_‘_’_\‘_‘_‘_‘_.

10
|l u- uh"Lz(‘.! )
-+ I Epll 2
100 ——ll@)"2D{u- w2
\
-7 E
10 2 0 E
10° 102 + 10* 106 107 10 L 19

H f

Fig. 4 2D test withe =0and u— = 1: L? error and weighted H! error (5.1) for the velocity and weighted
L~ error (5.2) for the pressure against the value of 4 (left) and against the value of the slip coefficient f
(right)

to 256. For the larger f becomes the two-phase problem gets closer to the homogeneous
model. The other parameters are set as follows: ¢ =0, u_ = 1, and uy = 10.

We consider again the structured mesh with mesh size 7 = 1/64 and Q> — Q; finite
elements. Figure 4 (right) shows the L error and weighted H' error (5.1) for the velocity
scaled by the H> norm of u and weighted L? error (5.2) for the pressure against the value of f.
We observe that the scaled weighted H ! error for the velocity does not vary substantially as f
varies, while the other two errors increase as f decreases. When f goes to zero, the external
phase loses its control over tangential motions in the internal fluid on I", thus allowing for
purely rigid rotations in the perfectly circular 27 ; see the definition of u™ in (5.4). While
the seminorm |lu, p||« appearing on the right-hand side in (4.11) remains the same, the
full Sobolev norm |lu™[|x42 grows as O(f~!). Since we use isoparametric unfitted FE, we
indeed see the uniform error bound with respect to f — 0 if we normalize the error by the
full Sobolev norm of the solution. See Remark 1. Summarizing, the approach proves to be
robust in the energy norm as the physical parameter f varies.

Robustness with respect to the position of the interface. We conclude the series of the 2D
tests with a set of simulations aimed at checking that our approach is not sensitive to the
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Fig.5 2D test withc =0, T
pu—=1,puy =10,and f = 10: i
L2 error and weighted H ! error

(5..1) for the2velocity and 1078 A |

weighted L~ error (5.2) for the f i

pressure against the value of k in Trorh ot bt e b ok b b e b A ch A b ""f
5.5 .

©-3) 10 ——lu-ulz,

- I eep 2

10 —e— "Dz, |

3%

uhA- Magnitude hA

1 156 2 25 3.4e+00 -1.0e+00 -0.60.40.2 0 020.40.6 1.0e+00
— | ci— — ‘

Fig. 6 Approximation of exact solution (5.6) and (5.7) computed with the mesh with 7 = 0.125: velocity
vectors colored with the velocity magnitude on the xz-section of £2* and in £27 (left) and pressure in £2~
and half 27 (right)

position of the interface with respect to the background mesh. For this purpose, we vary the
center of the circle that represents I":

h h . k
c¢=(c1,¢2), ¢ = —kcos (—n) , = Ek sin (1—0n> , k=1,2,..,20,
(5.9
where £ is the mesh size. We set u— = 1, uy = 10 and f = 10.
Just like the two previous sets of simulations, we consider the mesh with mesh size
h = 1/64 and the Q> — Q| pair. Figure 5 shows the L? error and weighted H ! error (5.1) for
the velocity and weighted L? error (5.2) for the pressure against the value of k in (5.5). We

see that all the errors are fairly insensitive to the position of I" with respect to the background
mesh, indicating robustness.

5.2 3D tests

For the 3D tests, the domain 2 is cube [—1.5, 1.5] x [—1.5, 1.5] x [—1.5, 1.5] and interface
I" is the unit sphere, centered at origin of the axes. We characterize I” as the zero level set of
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slope 3
=yl 2,

-+ 1Pl 2,

—e—[l2)"?D(u- u))l 2,

Fig. 7 3D test: L2 error and weighted H 1 error (5.1) for the velocity and weighted L2 error (5.2) for the
pressure against the mesh size h

function ¢ (x) = ||x| |% — 1, with x = (x, y, z). We consider the exact solution given by:
v _ 1 -
p ==X, p- =x, (5.6)
2
-y -y
=g (| x [, uwt=gtey| x|, (5.7)
0 0
where

1
g, y) = — (& + 2+ 29,

24
| —2pep —
g0 y) = —— (2 ) 4 B T
2p— 2pqp—

The forcing terms £~ and £ are found by plugging the above solutionin (2.1). We set f = 1,
u— =1, and u4 = 100. The surface tension coefficient is set to 0 = —0.5x.

Just like for the 2D tests, we impose a Dirichlet condition (2.3) on the entire boundary,
where function g is found from u™ in (5.7).

To verify our implementation of the finite element method in Sect. 2.2 in three dimensions
and to further corroborate the results in Sect. 4, we consider structured meshes of tetrahedra
with four levels of refinement. The initial triangulation has mesh size 4 = 1 and all the other
meshes are obtained by halving £ till ~ = 0.125. All the meshes feature a local one-level
refinement near the corners of £2. We choose to use finite element pair P, — Pj. Figure 6
shows a visualization of the solution computed with mesh 2 = 0.125. Figure 7 shows the
L? error and weighted H I error (5.1) for the velocity and weighted L? error (5.2) for the
pressure against the mesh size h. For the small range of mesh sizes that we consider, we
observe almost cubic convergence in the L norm for the velocity, quadratic convergence in
the weighted L2 norm for the pressure and in the weighted H' norm for the velocity.
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6 Conclusions

In this paper, we focused on the two-phase Stokes problem with slip between phases, which
has received much less attention than its homogeneous counterpart (i.e. no slip between the
phases). For the numerical approximation of this problem, we chose an isoparametric unfitted
finite element approach of the CutFEM or Nitsche-XFEM family. For the unfitted generalized
Taylor—Hood finite element pair Py — Pk, we prove stability and optimal error estimates,
which follow from an inf-sup stability property. We show that the inf-sup stability constant
is independent of the viscosity ratio, slip coefficient, position of the interface with respect to
the background mesh and, of course, mesh size.

The 2D and 3D numerical experiments we used to test our approach feature an exact
solution. They have been designed to support the theoretical findings and demonstrate the
robustness of our approach for a wide range of physical parameter values. Finally, we show
that our unfitted approach is insensitive to the position of the interface between the two phases
with respect to the fixed computational mesh.

Acknowledgements We are grateful to Dr. Christoph Lehrenfeld for providing us with the ngsxfem script for
two-phase Stokes with no slip.

Code Availability The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Adjerid, S., Chaabane, N., Lin, T.: An immersed discontinuous finite element method for Stokes interface
problems. Comput. Methods Appl. Mech. Eng. 293, 170-190 (2015). https://doi.org/10.1016/j.cma.2015.
04.006

2. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Ann.
Rev. Fluid Mech. 30(1), 139-165 (1998)

3. Basting, S., Quaini, A., Canic, S., Glowinski, R.: Extended ALE method for fluid-structure interaction
problems with large structural displacements. J. Comput. Phys. 331, 312-336 (2017). https://doi.org/10.
1016/j.jcp.2016.11.043

4. Basting, S., Weismann, M.: A hybrid level set/front tracking approach for finite element simulations of
two-phase flows. J. Comput. Appl. Math. 270, 471-483 (2014). https://doi.org/10.1016/j.cam.2013.12.
014

5. Bercovier, M., Pironneau, O.: Error estimates for finite element method solution of the Stokes problem
in the primitive variables. Numer. Math. 33(2), 211-224 (1979)

6. Bordas, S., Burman, E., Larson, M., Olshanskii, M.A.: Geometrically Unfitted Finite Element Methods
and Applications, Lecture Notes in Computational Science and Engineering, vol. 121. Springer, Berlin
(2018)

7. Brenner, S.C.: Korn’s inequalities for piecewise H1 vector fields. Math. Comput. 73(247), 1067-1087
(2004)

8. Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348(21-22), 1217-1220 (2010). https://doi.org/
10.1016/j.crma.2010.10.006

9. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: Cutfem: discretizing geometry and partial
differential equations. Int. J. Numer. Methods Eng. 104(7), 472-501 (2015)

10. Burman, E., Delay, G., Ern, A.: An unfitted hybrid high-order method for the Stokes interface problem.
hal-02519896v3 (2020)

@ Springer


https://doi.org/10.1016/j.cma.2015.04.006
https://doi.org/10.1016/j.cma.2015.04.006
https://doi.org/10.1016/j.jcp.2016.11.043
https://doi.org/10.1016/j.jcp.2016.11.043
https://doi.org/10.1016/j.cam.2013.12.014
https://doi.org/10.1016/j.cam.2013.12.014
https://doi.org/10.1016/j.crma.2010.10.006
https://doi.org/10.1016/j.crma.2010.10.006

41

Page 22 of 23 Journal of Scientific Computing (2021) 89:41

16.
17.

18.
19.

20.
21.
22.
23.
24.

25.

26.
217.

28.

29.
30.

31.

32.
33.
34.
35.
36.
37.
. ngsxfem. https://github.com/ngsxfem/ngsxfem/tree/49205a1ae637771a0ed56d4993ce99008f3a00e0
39.

40.

. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized

nitsche method. Appl. Numer. Math. 62(4), 328-341 (2012). https://doi.org/10.1016/j.apnum.2011.01.
008. Third Chilean Workshop on Numerical Analysis of Partial Differential Equations (WONAPDE 2010)
Céceres, E., Guzman, J., Olshanskii, M.: New stability estimates for an unfitted finite element method for
two-phase Stokes problem. SIAM J. Numer. Anal. 58(4), 2165-2192 (2020)

Chessa, J., Belytschko, T.: An extended finite element method for two-phase fluids. ASME J. Appl. Mech.
70, 10-17 (2003)

Claus, S., Kerfriden, P.: A CutFEM method for two-phase flow problems. Comput. Methods Appl. Mech.
Eng. 348, 185-206 (2019). https://doi.org/10.1016/j.cma.2019.01.009

Donea, J., Huerta, A., Ponthot, J.P., Rodriguez-Ferran, A.: Arbitrary Lagrangian—Eulerian Methods,
Chap. 14. Wiley (2004)

Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer, New York (2013)
Frachon, T., Zahedi, S.: A cut finite element method for incompressible two-phase Navier—Stokes flows.
J. Comput. Phys. 384, 77-98 (2019). https://doi.org/10.1016/j.jcp.2019.01.028

Fries, T.P.: The intrinsic XFEM for two-fluid flows. Int. J. Numer. Methods Fluids 60(4), 437-471 (2009)
Gangl, P, Sturm, K., Neunteufel, M., Schoberl, J.: Fully and semi-automated shape differentiation in
NGSolve (2020). arXiv:2004.06783

GroB, S., Reichelt, V., Reusken, A.: A finite element based level set method for two-phase incompressible
flows. Comput. Vis. Sci. 9, 239-257 (2006)

Guzman, J., Olshanskii, M.: Inf-sup stability of geometrically unfitted Stokes finite elements. Math.
Comput. 87(313), 2091-2112 (2018)

Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface
problems. Comput. Methods Appl. Mech. Eng. 191, 5537-5552 (2002)

Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl.
Numer. Math. 85, 90-114 (2014). https://doi.org/10.1016/j.apnum.2014.06.009

Hapanowicz, J.: Slip between the phases in two-phase water-oil flow in a horizontal pipe. Int. J. Multiph.
Flow 34(6), 559-566 (2008). https://doi.org/10.1016/j.ijmultiphaseflow.2007.12.002

Hashemi, M.R., Ryzhakov, P.B., Rossi, R.: An enriched finite element/level-set method for simulating
two-phase incompressible fluid flows with surface tension. Comput. Methods Appl. Mech. Eng. 370,
113277 (2020). https://doi.org/10.1016/j.cma.2020.113277

He, X., Song, F., Deng, W.: Stabilized nonconforming Nitsche’s extended finite element method for Stokes
interface problems (2019). arXiv:1905.04844

Jacqmin, D.: Calculation of two-phase Navier—Stokes flows using phase-field modeling. J. Comput. Phys.
155(1), 96-127 (1999). https://doi.org/10.1006/jcph.1999.6332

Kermani, M.J., Stockie, J.M.: The effect of slip velocity on saturation for multiphase condensing mixtures
ina PEM fuel cell. Int. J. Hydrog. Energy 36(20), 13235-13240(2011). https://doi.org/10.1016/j.ijhydene.
2010.11.005

Kirchhart, M., Gross, S., Reusken, A.: Analysis of an XFEM discretization for Stokes interface problems.
SIAM J. Sci. Comput. 38(2), A1019-A1043 (2016)

Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric
mappings. Comput. Methods Appl. Mech. Eng. 300, 716-733 (2016)

Lehrenfeld, C.: A higher order isoparametric fictitious domain method for level set domains. In: Bordas,
S.P.A., Burman, E., Larson, M.G., Olshanskii, M.A. (eds.) Geometrically unfitted finite element methods
and applications, pp. 65-92. Springer, Cham (2017)

Lehrenfeld, C., Olshanskii, M.: An Eulerian finite element method for PDEs in time-dependent domains.
ESAIM Math. Model. Numer. Anal. 53(2), 585-614 (2019)

Lehrenfeld, C., Reusken, A.: Analysis of a high-order unfitted finite element method for elliptic interface
problems. IMA J. Numer. Anal. 38(3), 1351-1387 (2018)

Ludescher, T., Gross, S., Reusken, A.: A multigrid method for unfitted finite element discretizations of
elliptic interface problems. SIAM J. Sci. Comput. 42(1), A318-A342 (2020)

Massing, A., Larson, M., Logg, A., Rognes, M.: A stabilized Nitsche overlapping mesh method for the
Stokes problem. Numer. Math. 128, 73-101 (2014)

Moks, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int.
J. Numer. Methods Eng. 46(1), 131-150 (1999)

Netgen/NGSolve. https://ngsolve.org/

Olshanskii, M.A., Reusken, A.: Analysis of a Stokes interface problem. Numer. Math. 103(1), 129-149
(2006)

Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1),
225-246 (2005). https://doi.org/10.1016/].jcp.2005.04.007

@ Springer


https://doi.org/10.1016/j.apnum.2011.01.008
https://doi.org/10.1016/j.apnum.2011.01.008
https://doi.org/10.1016/j.cma.2019.01.009
https://doi.org/10.1016/j.jcp.2019.01.028
http://arxiv.org/abs/2004.06783
https://doi.org/10.1016/j.apnum.2014.06.009
https://doi.org/10.1016/j.ijmultiphaseflow.2007.12.002
https://doi.org/10.1016/j.cma.2020.113277
http://arxiv.org/abs/1905.04844
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1016/j.ijhydene.2010.11.005
https://doi.org/10.1016/j.ijhydene.2010.11.005
https://ngsolve.org/
https://github.com/ngsxfem/ngsxfem/tree/49205a1ae637771a0ed56d4993ce99008f3a00e0
https://doi.org/10.1016/j.jcp.2005.04.007

Journal of Scientific Computing (2021) 89:41 Page230f23 41

41.

42.

43.

44.

45.

46.

47.

48.

PreuB, J.: Higher order unfitted isoparametric space-time FEM on moving domains. Master’s thesis,
NAM, University of Gottingen (2018). http://num.math.uni-goettingen.de/~lehrenfeld/sections/pubs_
src/Pre18_Ma.pdf

Sauerland, H., Fries, T.P.: The stable XFEM for two-phase flows. Comput. Fluids 87, 41-49 (2013).
https://doi.org/10.1016/j.compfluid.2012.10.017

Stein, E.M.: Singular integrals and differentiability properties of functions, vol. 30. Princeton University
Press (1970)

Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible
two-phase flow. J. Comput. Phys. 114(1), 146—159 (1994). https://doi.org/10.1006/jcph.1994.1155
Unverdi, S.0., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows.
J. Comput. Phys. (USA) 100, 25-37 (1992). https://doi.org/10.1016/0021-9991(92)90307-K

von Wahl, H., Richter, T., Lehrenfeld, C.: An unfitted Eulerian finite element method for the time-
dependent Stokes problem on moving domains. ArXiv preprint (2020). arXiv:2002.02352

Wang, N., Chen, J.: A nonconforming Nitsche’s extended finite element method for Stokes interface
problems. J. Sci. Comput. 81, 342-374 (2019)

Wang, Q., Chen, J.: A new unfitted stabilized Nitsche’s finite element method for Stokes interface prob-
lems. Comput. Math. Appl. 70(5), 820-834 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://num.math.uni-goettingen.de/~lehrenfeld/sections/pubs_src/Pre18_Ma.pdf
http://num.math.uni-goettingen.de/~lehrenfeld/sections/pubs_src/Pre18_Ma.pdf
https://doi.org/10.1016/j.compfluid.2012.10.017
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1016/0021-9991(92)90307-K
http://arxiv.org/abs/2002.02352

	An Unfitted Finite Element Method for Two-Phase Stokes Problems with Slip Between Phases
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Variational formulation
	2.2 Finite element discretization
	2.2.1 Numerical integration


	3 Stability
	4 Error analysis
	5 Numerical results
	5.1 2D tests
	5.2 3D tests

	6 Conclusions
	Acknowledgements
	References




