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Abstract
We present an isoparametric unfitted finite element approach of the CutFEM or Nitsche-
XFEM family for the simulation of two-phase Stokes problems with slip between phases.
For the unfitted generalized Taylor–Hood finite element pair Pk+1 − Pk , k ≥ 1, we show an
inf-sup stability property with a stability constant that is independent of the viscosity ratio,
slip coefficient, position of the interface with respect to the background mesh and, of course,
mesh size. In addition, we prove stability and optimal error estimates that follow from this
inf-sup property. We provide numerical results in two and three dimensions to corroborate
the theoretical findings and demonstrate the robustness of our approach with respect to the
contrast in viscosity, slip coefficient value, and position of the interface relative to the fixed
computational mesh.

Keywords XFEM · CutFEM · Two-phase flow · Stokes problem · Finite elements

1 Introduction

The finite element approximation of two-phase problems involving immiscible fluids features
several challenging aspects. The first challenge is the presence of a sharp interface between
the two phases, that might move and undergo topological changes. A second critical aspect is
the presence of surface tension forces that create a jump in the pressure field at the interface.
In addition, if one accounts for slip between phases [24], a jump in the velocity field at the
interface needs to be captured as well. Finally, lack of robustness may arise when there is a
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high contrast in fluid densities and viscosities. Tackling all of these challenges has motivated
a large body of literature.

One possible way to categorize numerical methods proposed in the literature is to distin-
guish between diffusive interface and sharp interface approaches. Phase field methods (e.g.,
[2,27]) belong to the first category, while level set methods (e.g., [44]), and conservative
level set methods (e.g., [40]) belong to the second. Diffusive interface methods introduce a
smoothing region around the interface between the two phases to vary smoothly, instead of
sharply, from one phase to the other and usually apply the surface tension forces over the
entire smoothing region. The major limitation of diffusive interface methods lies in the need
to resolve the smoothing region with an adequate number of elements, which results in high
computational costs. Sharp interface methods require less elements to resolve the interface
between phases. Thus, we will restrict our attention to sharp interface approaches, which can
be further divided into geometrically fitted and unfitted methods.

In fitted methods, the discretization mesh is fitted to the computational interface. Perhaps,
Arbitrary Lagrangian Eulerian (ALE) methods [15] are the best known fitted methods. In
case of a moving interface, ALEmethods deform the mesh to track the interface. While ALE
methods are known to be very robust for small interface displacement, complex re-meshing
procedures are needed for large deformations and topological changes. Certain variations of
the method, like the extended ALE [3,4], successfully deal with large interface displacement
while keeping the same mesh connectivity. The price to pay for such improvement is a
higher computational cost. Unfitted methods allow the sharp interface to cut through the
elements of a fixed background grid. Their main advantage is the relative ease of handling
time-dependent domains, implicitly defined interfaces, and problems with strong geometric
deformations [6]. The immersed finite element method (e.g., [1]) and front-tracking methods
(e.g., [45]) are examples of unfitted approaches. Applied in the finite element framework,
these methods require an enrichment of the elements intersected by the interface in order
to capture jumps and kinks in the solution. One complex aspect of these methods is the
need for tailored stabilization. Popular unfitted methods that embed discontinuities in finite
element solvers are XFEM [36] and CutFEM [9]. XFEM enriches the finite element shape
functions by the Partition-of-Unity method. To learn more about XFEM applied to two-phase
flow problems, we refer the reader to [13,18,20,29,42]. CutFEM is a variation of XFEM, also
calledNitsche-XFEM [22]. CutFEMuses overlapping fictitious domains in combinationwith
ghost penalty stabilization [8] to enrich and stabilize the solution. See [14,17,23,26,35,47]
for the application of CutFEM or Nitsche-XFEM to approximate two-phase flows. Finally,
recently proposed unfitted methods are a hybrid high-order method [10] and an enriched
finite element/level-set method [25].

In this paper, we study an isoparametric unfitted finite element approach of the CutFEM
or Nitsche-XFEM family for the simulation of two-phase Stokes problems with slip between
phases. All the numerical works cited above consider the homogeneous model of two-phase
flow, i.e. no slip is assumed between the phases. This assumption is appropriate in three
cases: one of the phases has a relatively small volume, one phase forms drops of minute
size, or one phase (representing the continuous medium in which droplets are immersed) has
high speed [24]. In all other cases, slip between the phases has to be accounted for. In fact,
experimentally it is observed that the velocity of the two phases can be significantly different,
also depending on the flow pattern (e.g., plug flow, annular flow, bubble flow, stratified flow,
slug flow, churn flow) [28]. A variation of our unfitted approach has been analyzed for the
homogeneous two-phase Stokes problem in [12], where robust estimates were proved for
individual terms of the Cauchy stress tensor. In the present paper, the analysis is done in
the energy norm, allowing a possible slip between phases. In particular, we show an inf-sup
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Fig. 1 Illustration of a domain Ω

in R2. On part of the boundary
(dashed line) a Neumann
boundary condition is imposed,
while on the remaining part of the
boundary (solid line with three
bars) a Dirichlet boundary
condition is enforced

stability property of the unfitted generalized Taylor–Hood finite element pair Pk+1 − Pk ,
k ≥ 1, with a stability constant that is independent of the viscosity ratio, slip coefficient,
position of the interface with respect to the background mesh, and of course mesh size. This
inf-sup property implies stability and optimal error estimates for the unfitted finite element
method under consideration, which are also shown. For more details on the isoparametric
unfitted finite element, we refer to [30,31,33].

Two-phase flow problems with high contrast for the viscosity are known to be especially
challenging. While some authors test different viscosity ratios but do not comment on the
effects of high contrast on the numerics [14,25,48], others show or prove that their method is
robust for all viscosity ratios [10,26,29,39,47]. In other cases, numerical parameters, like the
penalty parameters, are adjusted to take into account large differences in the viscosity [17].
Through analysis and a series of numerical tests in two and three dimensions, we demonstrate
that our approach is robust not only with respect to the contrast in viscosity, but also with
respect to the slip coefficient value and the position of the interface relative to the fixed
computational mesh.

For all the simulations in this paper, we have used NGsolve [19,37], a high performance
multiphysics finite element software with a Python interface, and add-on library ngsxfem
[38], which enables the use of unfitted finite element technologies.

The remainder of the paper is organizes as follows. In Sect. 2, we introduce the strong and
weak formulations of the two-phase Stokes problem with slip between phases, together with
the finite element discretization. We present a stability result in Sect. 3, while in Sect. 4 we
prove optimal order convergence for the proposed unfitted finite element approach.Numerical
results in 2 and 3 dimensions are shown in Sect. 5. Concluding remarks are provided in Sect. 6.

2 ProblemDefinition

We consider a fixed domain Ω ⊂ R
d , with d = 2, 3, filled with two immiscible, viscous,

and incompressible fluids separated by an interface Γ . In this study, we assume Γ does not
evolve with time although our approach is designed to handle interface evolution. Interface
Γ separates Ω into two subdomains (phases) Ω+ and Ω− = Ω \ Ω+. We assume that Γ is
sufficiently smooth and Ω± are Lipschitz. If Γ is closed and so Γ ∩ ∂Ω = ∅, then we agree
that Ω− is the internal subdomain. See Fig. 1. Let n± be the outward unit normal for Ω±
and n the outward pointing unit normal on Γ . It holds that n− = n and n+ = −n at Γ .

Let u± : Ω± → R
d and p± : Ω± → R denote the fluid velocity and pressure, respec-

tively. We assume that the motion of the fluids occupying subdomains Ω± can be modeled
by the Stokes equations

−∇ · σ± = f± in Ω±, (2.1)
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∇ · u± = 0 in Ω±, (2.2)

endowed with boundary conditions

u+ = g, on ∂ΩD, (2.3)

σ+n+ = gN on ∂ΩN . (2.4)

Here, ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. See Fig. 1. In (2.1), f± are external the
body forces and σ± are the Cauchy stress tensors. For Newtonian fluids, the Cauchy stress
tensor has the following expression:

σ± = −p±I + 2μ±D(u±), D(u±) = 1

2
(∇u± + (∇u±)T ) in Ω±,

where constants μ± represent the fluid dynamic viscosities. Finally, g and gN in (2.3) and
(2.4) are given.

Subproblems (2.1)–(2.2) are coupled at the interfaceΓ . The conservation of mass requires
the balance of normal fluxes on Γ :

u+ · n = u− · n on Γ . (2.5)

This is the first coupling condition. We are interested in modelling slip with friction between
the two phases. Thus, we consider the following additional coupling conditions:

Pσ+n = f (Pu+ − Pu−) on Γ , (2.6)

Pσ−n = − f (Pu− − Pu+) on Γ , (2.7)

where f is a constant that can be seen as a slip coefficient and P = P(x) = I − n(x)n(x)T

for x ∈ Γ is the orthogonal projection onto the tangent plane. Finally, the jump of the normal
stress across Γ is given by:

[nT σn]−+ = σκ on Γ , (2.8)

where σ is the surface tension coefficient and κ is the double mean curvature of the interface.
Since the boundary conditions on ∂Ω do not affect the subsequent discussion, from now

on we will consider that a Dirichlet condition (2.3) is imposed on the entire boundary. This
will simplify the presentation of the fully discrete problem.

2.1 Variational formulation

The purpose of this section is to derive the variational formulation of coupled problem
(2.1)–(2.8). Let us introduce some standard notation. The space of functions whose square
is integrable in a domain ω is denoted by L2(ω). With L2

0(ω), we denote the space of
functions in L2(ω)with zero mean value over ω. The space of functions whose distributional
derivatives of order up to m ≥ 0 (integer) belong to L2(ω) is denoted by Hm(ω). The space
of vector-valued functions with components in L2(ω) is denoted with L2(ω)d . H1(div , ω)

is the space of functions in L2(ω) with divergence in L2(ω). Moreover, we introduce the
following functional spaces:

V− = H1(Ω−)d , V+ = {v ∈ H1(Ω+)d , v
∣
∣
∂ΩD

= g},
V+
0 = {v ∈ H1(Ω+)d , v

∣
∣
∂ΩD

= 0},
V± = {v = (v−, v+) ∈ V− × V+, v− · n = v+ · n on Γ },
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V±
0 = {v = (v−, v+) ∈ V− × V+

0 , v− · n = v+ · n on Γ },
Q± = {q = (q−, q+) ∈ L2(Ω−) × L2(Ω+)}.

The space V± can be also characterized as (V− × V+) ∩ H1(div ,Ω). We use (·, ·)ω and
〈, 〉ω to denote the L2 product and the duality pairing, respectively.

The integral formulation of the problem (2.1)–(2.8) reads: find (u, p) ∈ V± × L2(Ω)/R

such that

− (p−,∇ · v−)Ω− − (p+,∇ · v+)Ω+ + 2(μ−D(u−),D(v−))Ω−

+ 2(μ+D(u+),D(v+))Ω+ + 〈 f (Pu− − Pu+),Pv−〉Γ
+ 〈 f (Pu+ − Pu−),Pv+〉Γ = (f−, v−)Ω− + (f+, v+)Ω+ + 〈σκ, v− · n〉Γ (2.9)

(∇ · u−, q−)Ω− + (∇ · u+, q+)Ω+ = 0 (2.10)

for all (v, q) ∈ V±
0 × Q±. The interface terms in (2.9) have been obtained using coupling

conditions (2.6)–(2.8) as follows:

−〈σ−n, v−〉Γ + 〈σ+n, v+〉Γ = −〈Pσ−n,Pv−〉Γ + 〈Pσ+n,Pv+〉Γ
− 〈[nT σn]−+, v− · n〉Γ

= 〈 f (Pu− − Pu+),Pv−〉Γ + 〈 f (Pu+ − Pu−),Pv+〉Γ
− 〈σκ, v− · n〉Γ .

Problem (2.9) and (2.10) can be rewritten as: Find (u, p) ∈ V± × L2(Ω)/R such that
{

a(u, v) + b(v, p) = r(v)

b(u, q) = 0
(2.11)

for all (v, q) ∈ V±
0 × Q±, where

a(u, v) = 2(μ−D(u−),D(v−))Ω− + 2(μ+D(u+),D(v+))Ω+

+ 〈 f (Pu− − Pu+),Pv− − Pv+〉Γ ,

b(v, p) = −(p−,∇ · v−)Ω− − (p+,∇ · v+)Ω+ ,

r(v) = (f−, v−)Ω− + (f+, v+)Ω+ + 〈σκ, v− · n〉Γ .

2.2 Finite element discretization

We consider a family of shape regular triangulations {Th}h>0 of Ω . We adopt the convention
that the elements T and edges e are open sets and use the over-line symbol to refer to their
closure. Let hT denote the diameter of element T ∈ Th and he the diameter of edge e. The
set of elements intersecting Ω± and the set of elements having a nonzero intersection with
Γ are

T ±
h = {T ∈ Th : T ∩ Ω± �= ∅}, T Γ

h = {T ∈ Th : T ∩ Γ �= ∅}, (2.12)

respectively. We assume {T Γ
h } to be quasi-uniform. However, in practice adaptive mesh

refinement is possible. The domain formed by all tetrahedra in T Γ
h is denoted by ΩΓ

h :=
int(∪T∈T Γ

h
T ). We define the h-dependent domains:

Ω±
h = int

(

∪T∈T ±
h
T

)

(2.13)
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and the set of faces of T Γ
h restricted to the interior of Ω±

h :

EΓ ,±
h = {e = int(∂T1 ∩ ∂T2) : T1, T2 ∈ T ±

h and T1 ∩ Γ �= ∅ or T2 ∩ Γ �= ∅}. (2.14)

For the space discretization of the bulk fluid problems, we restrict our attention to inf-sup
stable finite element pair Pk+1 − Pk , k ≥ 1, i.e. Taylor-Hood elements. Specifically, we
consider the spaces of continuous finite element pressures given by:

Q−
h = {q ∈ C(Ω−

h ) : q|T ∈ Pk(T ) ∀T ∈ T −
h }. (2.15)

Space Q+
h is defined analogously. Our pressure space is given by:

Q±
h = {q = (q−, q+) ∈ Q−

h × Q+
h :

∫

Ω−
μ−1− q− +

∫

Ω+
μ−1+ q+ = 0}.

Let

V−
h = {v ∈ C(Ω−

h )d : v|T ∈ Pk+1(T ) ∀T ∈ T −
h }. (2.16)

with the analogous definition for V+
h . Our velocity spaces are given by:

V±
h = {v = (v−, v+) ∈ V−

h × V+
h }

andV±
0,h , a subspaceofV

±
h with vector functionsv+ vanishingon ∂Ω .All above constructions

and spaces readily carry over to tessellations ofΩ into squares or cubes and usingQk+1−Qk

elements.
Functions in Q±

h and V±
h and their derivatives are multivalued in ΩΓ

h , the overlap of Ω−
h

and Ω+
h . The jump of a multivalued function over the interface is defined as the difference of

components coming from Ω−
h and Ω+

h , i.e. [v] = v− − v+ on Γ . Note that this is the jump
that we have previously denoted with [·]−+. We are now using [·] to simplify the notation.
Moreover, we define the following averages:

{v} = αv+ + βv−, (2.17)

〈v〉 = βv+ + αv−, (2.18)

where α and β are weights to be chosen such that α + β = 1, 0 ≤ α, β ≤ 1. For example,
in [14] the setting α = μ−/(μ+ + μ−) and β = μ+/(μ+ + μ−) is suggested. In [12], the
authors choose α = 0, β = 1 if μ− ≤ μ+ and α = 1, β = 0 otherwise. Below, in (2.22) and
(2.25) we will use relationship:

[ab] = [b]{a} + 〈b〉 [a]. (2.19)

A discrete variational analogue of problem (2.11) reads: Find {uh, ph} ∈ V±
h × Q±

h such
that

{

ah(uh, vh) + bh(vh, ph) = rh(vh)

bh(uh, qh) − bp(ph, qh) = 0
(2.20)

for all (vh, qh) ∈ V±
0,h × Q±

h . We define all the bilinear forms in (2.20) for all uh ∈ V±
h ,

vh ∈ V±
0,h , ph ∈ Q±

h . Let us start with form ah(·, ·):
ah(uh, vh) = ai (uh, vh) + an(uh, vh) + ap(uh, vh), (2.21)
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where we group together the terms that arise from the integration by parts of the divergence
of the stress tensors:

ai (uh, vh) = 2(μ−D(u−
h ),D(v−

h ))Ω− + 2(μ+D(u+
h ),D(v+

h ))Ω+

+ 〈 f [Puh], [Pvh]〉Γ − 2〈{μnTD(uh)n}, [vh · n]〉Γ , (2.22)

and the terms that enforce condition (2.5) weakly using Nitsche’s method

an(uh, vh) =
∑

T∈T Γ
h

γ

hT
{μ}〈[uh · n], [vh · n]〉Γ ∩T − 2〈{μnTD(vh)n}, [uh · n]〉Γ . (2.23)

We recall that hT is the diameter of element T ∈ Th . To define the penalty terms ap(uh, vh)
we need ωe, the facet patch for e ∈ EΓ ,±

h consisting of all T ∈ Th sharing e. Then, we set

ap(uh, vh) = μ−J−
h (uh, vh) + μ+J+

h (uh, vh),

J±
h (uh, vh) = γ ±

u

∑

e∈EΓ ,±
h

1

h2e

∫

ωe

(ue1 − ue2) · (ve1 − ve2)dx, (2.24)

where ue1 is the componentwise canonical extension of a polynomial vector function u±
h from

T1 toRd , whileue2 is the canonical extension ofu
±
h from T2 toRd (and similarly for v1, v2).We

recall that he is the diameter of facet e ∈ EΓ ,±
h . This version of the ghost penalty stabilization

has been proposed in [41]. In [32], it was shown to be essentially equivalent to other popular
ghost penalty stabilizations such as local projection stabilization [8] and normal derivative
jump stabilization [9]. In the context of the Stokes problem, this stabilization was recently
used in [46]. For the analysis in Sects. 3 and 4, we also define J±

h (u, v) for arbitrary smooth
functions u, v in Ω±

h . In this case, we set u1 = (

ΠT1u|T1
)e, u2 = (

ΠT2u|T2
)e, where ΠTi is

the L2(Ti )-orthogonal projection into the space of degree k + 1 polynomial vector functions
on Ti .

The remaining terms coming from the integration by parts of the divergence of the stress
tensors are contained in

bh(vh, ph) = − (p−
h ,∇ · v−

h )Ω− − (p+
h ,∇ · v+

h )Ω+ + 〈{ph}, [vh · n]〉Γ , (2.25)

and the penalty terms are grouped together in

bp(ph, qh) = μ−1− J−
h (ph, qh) + μ−1+ J+

h (ph, qh),

J±
h (ph, qh) = γ ±

p

∑

e∈EΓ ,±
h

∫

ωe

(pe1 − pe2)(q
e
1 − qe2)dx, (2.26)

where pe1, p
e
2, q

e
1, q

e
2 are canonical polynomial extensions as defined above.

Finally,

rh(vh) =(f−h , v−
h )Ω− + (f+h , v+

h )Ω+ + 〈σκ, 〈vh · n〉〉Γ .

We recall that some of the interface terms in ai (·, ·) and bh(·, ·) have been obtained using
relationship (2.19) and interface conditions.

Parameters γ ±
u , γ ±

p and γ are all assumed to be independent of μ±, h, and the position of
Γ against the underlying mesh. Parameter γ in (2.23) needs to be large enough to provide
the bilinear form ah(·, ·) with coercivity. Parameters γ ±

u , γ ±
p can be tuned to improve the

numerical performance of the method [11,12,14].
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The role of the J±
h and J±

h terms is to stabilize the finite element formulation with respect
to possible “small” or “thin” cuts of elements from Th by Γ . The stabilization effect is
two-fold as the J±

h term is critical for proving that the constant C in the inf-sup result (the
one appearing in Lemma 1) is independent of the position of Γ in the background mesh.
This result, which is important for FE stability bounds and error estimates, implies that the
pressure Schur complement matrix is well-conditioned. The constant C is also independent
of the viscosity ratio and slip coefficient. Hence, a suitably preconditioned Schur complement
has condition number bounded independently of those values as well. The J±

h term ensures
that the condition number of the velocity matrix is reasonably bounded and insensitive to
irregular cuts of themesh. This acquired algebraic stability of unfitted elements iswell-known
in the literature [9]. Robust preconditioning of the velocity matrix with respect to viscosity
ratio is a less studied topic in the case of unfitted elements. Recently, a multigrid method
was introduced in [34] for a scalar elliptic interface problem discretized using unfitted FE
with a ghost penalty term similar to J±

h . For P1 elements, the method was shown to yield
a preconditioner robust with respect to the position of the interface in the mesh and the
contrast in diffusion parameters. The multigrid requires non-standard prolongation operators
and smoothings (see [34] for more details).

For numerical experiments in this paper, we use direct solves to handle algebraic systems.

2.2.1 Numerical integration

It is not feasible to compute integrals entering the definition of the bilinear forms over
cut elements and over Γ for an arbitrary smooth Γ . We face the same problem if Γ is
given implicitly as a zero level of a piecewise polynomial function for polynomial degree
greater than one. Piecewise linear approximation of Γ on the given mesh and polygonal
approximation of subdomains lead to second order geometric consistency error, which is
suboptimal for Taylor–Hood elements. To ensure a geometric error of the same order or
higher than the finite element (FE) approximation error, we define numerical quadrature
rules on the given mesh using the isoparametric approach proposed in [30].

In the isoparametric approach, one considers a smooth function φ such that ±φ > 0
in Ω± and |∇φ| > 0 in a sufficiently wide strip around Γ . Next, one defines polygonal
auxiliary domains Ω±

1 given by Ω±
1 := {x ∈ Ω : ±I 1h (φ) > 0}, where I 1h is the continuous

piecewise linear interpolation of φ on Th . Interface Γ1 between Ω+
1 and Ω−

1 is then Γ1 :=
{x ∈ R

d : I 1h (φ) = 0}.OnΩ±
1 andΓ1 standard quadrature rules can be applied elementwise.

Since using Ω±
1 , Γ1 alone limits the accuracy to second order, one further constructs a

transformation of the mesh in T Γ
h with the help of an explicit mapping Ψh parameterized

by a finite element function. The mapping Ψh is such that Γ1 is mapped approximately onto
Γ ; see [30] for how Ψh is constructed. Then, Ω̃± = Ψh(Ω

±
1 ), Γ̃ = Ψh(Γ1) are high order

accurate approximations to the phases and interface which have an explicit representation so
that the integration over Ω̃± and Γ̃ can be done exactly. The finite element spaces have to
be adapted correspondingly, using the explicit pullback mapping: vh ◦ Ψ −1

h .

3 Stability

For the analysis in this and the next section, we assume that the integrals over cut elements
in Ω± are computed exactly. In addition, we restrict our attention to the choice α = 0 and
β = 1 for the averages in (2.17)–(2.18), assuming μ− ≤ μ+.

123



Journal of Scientific Computing (2021) 89 :41 Page 9 of 23 41

The key for the stability analysis of the two-phase Stokes problem is an inf-sup stability
property of the unfitted generalized Taylor–Hood finite element pair, which extends the
classical LBB stability result for the standard Pk+1 − Pk Stokes element from [5]. There is
no similar stability result in the literature for Qk+1 − Qk unfitted elements. However, we
expect that the extension, and so the analysis below, can be carried over to these elements as
well.

One is interested in the inf-sup inequality with a stability constant that is independent of
the viscosity ratio, position of Γ with respect to the background mesh and, of course, mesh
size h. The result is given in the following lemma.

Lemma 1 Denote by Vh the space of continuous Pk+1 finite element vector functions on Ω

vanishing on ∂Ω , Vh = {u ∈ C(Ω)d : u|T ∈ Pk+1(T ) ∀T ∈ Th, u|∂Ω = 0}. There exists
h0 > 0 such that for all h < h0 and any qh ∈ Q±

h there exists vh ∈ Vh such that it holds

μ−1− ‖q−
h ‖2

Ω−
h

+ μ−1+ ‖q+
h ‖2

Ω+
h

≤ (q−
h ,∇ · vh)Ω− + (q+

h ,∇ · vh)Ω+ + c bp(qh, qh)

‖μ 1
2 ∇vh‖2Ω ≤ C

(

μ−1− ‖q−
h ‖2

Ω−
h

+ μ−1+ ‖q+
h ‖2

Ω+
h

)

. (3.1)

with h0 and two positive constants c and C independent of qh, μ±, the position of Γ in the
background mesh and mesh size h.

Proof Consider subdomainsΩ±
h,i ⊂ Ω± built of all strictly internal simplexes in each phase:

Ω
±
h,i :=

⋃

{T : T ∈ Th, T ⊂ Ω±}.
The following two results are central for the proof. First, we have the uniform inf-sup inequal-
ities in Ω−

h,i and Ω+
h,i [21]: there exist constants C± independent of the position of Γ and h

such that

0 < C± ≤ inf
q∈Q±

h ∩L2
0(Ω

±
h,i )

sup
v ∈ Vh

supp(v) ⊂ Ω±
h,i

(q,∇ · v)Ω±
h,i

‖v‖H1(Ω±
h,i )

‖q‖Ω±
h,i

. (3.2)

The above result can be equivalently formulated as follows: For any q ∈ Q±
h ∩ L2

0(Ω
±
h,i )

there exist v±
h ∈ Vh such that supp(v) ⊂ Ω±

h,i and

‖q±‖2
Ω±

h,i
= (

q±,∇ · v±
h

)

Ω±
h

, ‖∇v±
h ‖Ω ≤ C−1± ‖q±‖Ω±

h,i
. (3.3)

The second important results is the simple observation that the L2 norm of qh in Ω±
h can be

controlled by the L2 norm in Ω±
h,i plus the stabilization term in (2.26) (see, [32,41]):

‖qh‖2Ω±
h

≤ C (‖qh‖2Ω±
h,i

+ J±
h (qh, qh)), (3.4)

with some constant C independent of the position of Γ and h. We note that (3.4) holds also
for discontinuous finite elements.

Consider now

qμ =
{

μ−|Ω−|−1 ∈ Q−
h−μ+|Ω+|−1 ∈ Q+
h .

Note that qμ satisfies the orthogonality condition imposed for elements from Q±
h , and hence

span{qμ} is a subspace in Q±
h . Using a trick from [39], we decompose arbitrary qh ∈ Q±

h
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into a component collinear with qμ and the orthogonal complement in each phase:

qh = q1 + q0, with q1 ∈ span{qμ}, and (q−
0 , 1)Ω−

h,i
= (q+

0 , 1)Ω+
h,i

= 0.

Thus, q1 and q0 are orthogonal with respect to L2 product in the inner domainsΩ±
h,i . Next, we

let q± = μ
− 1

2± q±
0 in (3.3) and for v±

h ∈ Vh given by (3.3) consider v0h = μ
1
2−v−

h +μ
1
2+v+

h ∈ Vh .
Then after applying (3.4) and summing up, the relations in (3.3) become

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

≤ C
(

(q−
0 ,∇ · v0h)Ω− + (q+

0 ,∇ · v0h)Ω+ + bp(q0, q0)
)

,

‖μ 1
2 ∇v0h‖Ω ≤ C0

(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

) 1
2
, (3.5)

with C from (3.4) and C0 = max{C−1− ,C−1+ }, both of which are independent of μ± and
how Γ overlaps the background mesh. In (3.5), we also used the fact that supports of v− and
v+ do not overlap. Since supp(v±

h ) ⊂ Ω± and q±
1 are constant in Ω±, integration by parts

shows that

(q±
1 ,∇ · v0h)Ω±

h
= 0. (3.6)

Next, we need the following result from Lemma 5.1 in [29]: For all h ≤ h0 there exists
v1h ∈ Vh such that

μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

= (q1,∇ · v1h)Ω− + (q1,∇ · v1h)Ω+ ,

‖μ 1
2 ∇v1h‖Ω ≤ C1

(

μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

) 1
2
, (3.7)

with h0 > 0 and C1 > 0 independent of μ± and how Γ overlaps the background mesh. The
above result follows from the classical inf-sup stability condition for P2 − P1 Taylor–Hood
elements and a simple scaling and interpolation argument. See [29] for details.

As the next step, set vh = τv0h + v1h with some τ > 0 and proceed with calculations using
(3.6), (3.5), (3.7), and the Cauchy-Schwartz inequality:

(q−
h ,∇ · vh)Ω− + (q+

h ,∇ · vh)Ω+

= (q−
1 ,∇ · v1h)Ω− + (q+

1 ,∇ · v1h)Ω+ + τ(q−
0 ,∇ · v0h)Ω− + τ(q+

0 ,∇ · v0h)Ω+

+ (q−
0 ,∇ · v1h)Ω− + (q+

0 ,∇ · v1h)Ω+

≥ μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

+ τC−1
(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

)

− τbp(q0, q0) −
(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

) 1
2
d

1
2 ‖μ 1

2 ∇v1h‖Ω

≥ μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

+ τC−1
(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

)

− τbp(q0, q0)

−
(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

) 1
2
C1d

1
2

(

μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

) 1
2

≥ 1

2

(

μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

)

− τbp(q0, q0)

+
(

τ

C
− C2

1d

2

)
(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

)

.
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We set τ such that τ
C − C2

1d
2 = 1

2 and note that bp(q0, q0) = bp(qh, qh). Using this and the
orthogonality condition for q0, we get

(qh,∇ · vh)Ω− + (qh,∇ · vh)Ω+

≥ 1

2

(

μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

)

+ 1

2

(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

)

− τbp(qh, qh)

≥ 1

2

(

μ−1− ‖q−
1 ‖2

Ω−
h,i

+ μ−1+ ‖q+
1 ‖2

Ω+
h,i

)

+ 1

2

(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h,i

)

− τbp(qh, qh)

= 1

2

(

μ−1− ‖q−
h ‖2

Ω−
h,i

+ μ−1+ ‖q+
h ‖2

Ω+
h,i

)

− τbp(qh, qh)

≥ 1

2C

(

μ−1− ‖q−
h ‖2

Ω−
h

+ μ−1+ ‖q+
h ‖2

Ω+
h

)

−
(

τ + 1

2

)

bp(qh, qh). (3.8)

Using (q±
0 , q±

1 )Ω±
h,i

= 0, |Ω±
h \ Ω±

h,i | ≤ c h and so ‖q±
1 ‖Ω±

h \Ω±
h,i

≤ ch
1
2 ‖q±

1 ‖Ω±
h
, we

estimate

|μ−1− (q−
0 , q−

1 )Ω−
h

+ μ−1+ (q+
0 , q+

1 )Ω+
h
|

≤ c h
1
2

(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

) 1
2
(

μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

) 1
2
. (3.9)

From (3.5), (3.7), and (3.9), we also get the following upper bound for vh ,

‖μ 1
2 ∇vh‖2Ω ≤ 2(‖μ 1

2 τ∇v0h‖2Ω + ‖μ 1
2 ∇v1h‖2Ω)

≤ 2τ 2C2
0

(

μ−1− ‖q−
0 ‖2

Ω−
h

+ μ−1+ ‖q+
0 ‖2

Ω+
h

)

+ 2C2
1

(

μ−1− ‖q−
1 ‖2

Ω−
h

+ μ−1+ ‖q+
1 ‖2

Ω+
h

)

≤ 2max{τ 2C2
0 ,C

2
1 }

1 − c h
1
2

(

μ−1− ‖q−
h ‖2

Ω−
h

+ μ−1+ ‖q+
h ‖2

Ω+
h

)

. (3.10)

The assertion of the lemma follows from (3.8) and (3.10) after simple calculations. ��
The next lemma shows the uniform coercivity of the symmetric form ah(uh, vh) in (2.21)

on V±
h × V±

h .

Lemma 2 If γ = O(1) in (2.23) is sufficiently large, then it holds

ah(uh,uh)

≥ C (μ−‖D(u−
h )‖2

Ω−
h

+ μ+‖D(u+
h )‖2

Ω+
h

+ h−1‖{μ}[uh · n]‖2Γ + f ‖[Puh]‖2Γ )

(3.11)

∀ uh ∈ V±
h , with C > 0 independent of μ±, h, f, and the position of Γ with respect to the

background mesh.

Proof For the proof, we need the local trace inequality in T ∈ T Γ
h (see, e.g. [21,22]):

‖v‖T∩Γ ≤ C(h
− 1

2
T ‖v‖T + h

1
2
T ‖∇v‖T ), ∀ v ∈ H1(T ), (3.12)
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with a constant C independent of v, T , how Γ intersects T , and hT < h0 for some arbitrary
but fixed h0. We also need the following estimate

‖D(v±
h )‖2

L2(Ω±
h )

≤ C(‖D(v±
h )‖2L2(Ω±)

+ J±(v±
h , v±

h ) ), (3.13)

which follows from (3.4) by applying it componentwise and further using FE inverse inequal-
ity [note h−2 scaling in the definition of J± in (2.24)]. Applying (3.12), finite element inverse
inequalities and (3.13), we can bound the interface term

〈{μnTD(vh)n},[uh · n]〉Γ = 〈μ−nTD(v−
h )n, [uh · n]〉Γ

≤
∑

T∈T Γ
h

[
hT δ

2
‖μ

1
2−nTD(v−

h )n‖2T∩Γ + 1

2hT δ
‖μ

1
2−[uh · n]‖2T∩Γ

]

≤ δ

2
‖μ

1
2−nTD(v−

h )n‖2
Ω−

h
+ 1

hT δ
{μ}|[uh · n]|2Γ ,

∀ δ > 0, uh, vh ∈ V±
h . This estimate with vh = uh and with δ > 0 sufficiently small,

together with the definition of the bilinear form ah(uh,uh), allows to show its coercivity.
��

We further need the continuity result for the velocity stabilization form contained in the
next lemma.

Lemma 3 It holds

ap(vh, vh) ≤ C
(

μ−‖D(v−
h )‖2

Ω−
h

+ μ+‖D(v+
h )‖2

Ω+
h

)

∀ vh ∈ V±
h ,

with C > 0 independent of μ±, h, and the position of Γ in the background mesh.

Proof For any v = v−
h ∈ V−

h , facet e ∈ EΓ ,−
h and the corresponding patch ωe formed by two

tetrahedra T1 and T2, it holds

‖ve1 − ve2‖2ωe
= ‖v1 − ve2‖2T1 + ‖ve1 − v2‖2T2 ≤ (1 + c)‖v1 − ve2‖2T1 ,

where the constant c depends only on shape regularity of the tetrahedra, since ve1 − v2 on T2
is the canonical polynomial extension of v1 − ve2 from T1.

Now, we need the following local Korn’s inequality:

‖∇v‖T ≤ C‖D(v)‖T , ∀ v ∈ H1(T )d , s.t. v = 0 on any face of T ∈ Th, (3.14)

where C depends only on shape regularity of T . The result in (3.14) follows from Eq. 3.3
in [7] and the observation that vector fields vanishing on any face T support only zero rigid
motions. A simple scaling argument also proves the local Poincare inequality:

‖v‖T ≤ Ch2T ‖∇v‖T , ∀ v ∈ H1(T )d , s.t. v = 0 on any face of T ∈ Th, (3.15)

whereC depends only on shape regularity of T . Applying (3.14), (3.15) and triangle inequal-
ities on T1 for v1 − ve2 which vanishes on e (a face of T1), we obtain:

‖v1 − ve2‖2T1 ≤ Cph
2‖D(v1 − ve2)‖2T1 ≤ 2Cph

2(‖Dv1‖2T1 + ‖Dve2‖2T1)
≤ 2Cph

2(‖Dv1‖2T1 + c ‖Dv2‖2T2), (3.16)

where for the last inequality we again use shape regularity and the fact that Dve2 = (Dv2)e.
Thus,we see that ‖ve1−ve2‖2ωe

≤ c h2‖Dv‖2ωe
, with some c depending only on shape regularity.
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Summing up over all e ∈ EΓ ,−
h leads to the required upper bound for J−

h (v, v): J−
h (v, v) ≤

C‖D(v)‖2
Ω−

h
. Repeating the same argument for the edges in EΓ ,+

h and summing up the two

bounds scaled by viscosity coefficients proves the lemma. ��
The finite element problem (2.20) can be equivalently formulated as follows: Find

{uh, ph} ∈ V±
h × Q±

h such that

A(uh, ph; vh, qh) = rh(vh), ∀ {vh, qh} ∈ V±
h × Q±

h (3.17)

with

A(uh, ph; vh, qh) = ah(uh, vh) + bh(vh, ph) − bh(uh, qh) + bp(ph, qh).

Lemmas 1–3 enable us to show the inf-sup stability of the bilinear form A. The stability
result is formulated using the following composite norm:

‖v, q‖2 := μ−‖D(v−)‖2
Ω−

h
+ μ+‖D(v+)‖2

Ω+
h

+ h−1‖{μ}[v · n]‖2Γ
+ f ‖[Pv]‖2Γ + μ−1− ‖q−‖2

Ω−
h

+ μ−1+ ‖q+‖2
Ω+

h

for v ∈ V±
h , q ∈ Q±

h .

Theorem 1 There exists h0 > 0 such that for all h < h0 it holds

sup
{vh ,qh}∈V±

h ×Q±
h

A(uh, ph; vh, qh)
‖vh, qh‖ ≥ C ‖uh, pp‖, ∀ {uh, ph} ∈ V±

h × Q±
h ,

with h0 > 0 and C > 0 independent of μ±, h, f, and the position of Γ in the background
mesh.

Proof For a given ph ∈ Q±
h , Lemma 1 implies the existence of such wh ∈ Vh that

bh(wh, ph) + bp(ph, ph) ≥ c
(

μ−1− ‖p−
h ‖2

Ω−
h

+ μ−1+ ‖p+
h ‖2

Ω+
h

)

(3.18)

and

‖μ 1
2 ∇wh‖2Ω ≤ C

(

μ−1− ‖p−
h ‖2

Ω−
h

+ μ−1+ ‖p+
h ‖2

Ω+
h

)

, (3.19)

with some positive c, C independent of μ and how Γ overlaps the background mesh. Next,
we extend the finite element function wh ∈ Vh to the element of the product space ŵh ∈ V±

h
by setting ŵ±

h = wh |Ω±
h

∈ V±
h . We let vh = uh + τ ŵh for some τ > 0 and qh = ph . Using

the definition of the form A and (3.18), we calculate

A(uh, ph; vh, qh) = ah(uh,uh) + τah(uh, ŵh) + τbh(ŵh, ph) + bp(ph, ph)

≥ 1

2
ah(uh,uh) − τ 2

2
ah(ŵh, ŵh) + min{τ, 1} c

(

μ−1− ‖p−
h ‖2

Ω−
h

+ μ−1+ ‖p+
h ‖2

Ω+
h

)

,

(3.20)

where we used the Cauchy-Schwartz inequality:

τah(uh, ŵh) ≤ τ |ah(uh,uh)| 12 |ah(ŵh, ŵh)| 12 ≤ 1

2
ah(uh,uh) + τ 2

2
ah(ŵh, ŵh).
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Note that it holds [ŵh ·n] = 0 and [Pŵh] = 0 on Γ . Since all Nitsche and ‘friction’ terms in
ah(ŵh, ŵh) vanish, the results of the Lemma 3 and estimate (3.19) imply the upper bound

ah(ŵh, ŵh) ≤ C ‖μ 1
2 ∇ŵh‖2Ω ≤ C

(

μ−1− ‖p−
h ‖2

Ω−
h

+ μ−1+ ‖p+
h ‖2

Ω+
h

)

.

Using it in (3.20) and choosing τ > 0 small enough, but independent of all problem param-
eters, leads us to the lower bound

A(uh, ph; vh, qh) ≥ 1

2
ah(uh,uh) + c

(

μ−1− ‖p−
h ‖2

Ω−
h

+ μ−1+ ‖p+
h ‖2

Ω+
h

)

≥ c ‖uh, ph‖2,
(3.21)

with some c > 0 independent of μ±, h, and the position of Γ in the background mesh. For
the last inequality, we used (3.11).

Finally, by the construction of vh and thanks to (3.19) it is straightforward to see the upper
bound:

‖vh, qh‖ ≤ c ‖uh, ph‖.
This combined with (3.21) proves the theorem. ��

The stability of the finite element solution in the composite norm immediately follows
from (3.17) and Theorem 1:

‖uh, ph‖ ≤ C sup
{vh ,qh}∈V±

h ×Q±
h

|rh(vh)|
‖vh, qh‖ ,

where on the right-hand side we see the dual norm of the functional rh and constantC , which
is independent of the mesh size h, the ratio of the viscosity coefficients μ±, and the position
of Γ in the background mesh.

4 Error analysis

The stability result shown in Sect. 3 and interpolation properties of finite elements enable us
to prove optimal order convergence with uniformly bounded constants.

We assume in this section that the solution to problem (2.1)–(2.8) is piecewise smooth in
the following sense: u± ∈ Hk+2(Ω±)d and p± ∈ Hk+1(Ω±). For the sake of notation, we
define the following semi-norm

‖u, p‖∗ = (μ−|u−|2Hk+2(Ω−)
+ μ+|u+|2Hk+2(Ω+)

+ μ−1− |p−|2Hk+1(Ω−)
+ μ−1+ |p+|2Hk+1(Ω+)

)
1
2 . (4.1)

Sincewe assumeΓ to be at least Lipschitz, there exist extensionsEu± and E p± of the solution
from each phase to Rd such that Eu± ∈ Hk+2(Rd)3, E p± ∈ Hk+1(Rd). The corresponding
norms are bounded as follows

‖Eu±‖Hk+2(Rd ) ≤ C ‖u±‖Hk+2(Ω±), ‖E p±‖Hk+1(Rd ) ≤ C ‖p±‖Hk+1(Ω±) (4.2)

See [43]. Denote by Ihu± the Scott–Zhang interpolants of Eu± onto V±
h and Ihu :=

{Ihu−, Ihu+}. Same notation Ih p± will be used for the Scott–Zhang interpolants of E p±
onto Q±

h . For the pressure interpolants, we can always satisfy the orthogonality condition of
Q±

h by choosing a suitable additive constant in the definition of p.

123



Journal of Scientific Computing (2021) 89 :41 Page 15 of 23 41

Applying trace inequality (3.12), standard approximation properties of Ih , and bounds
(4.2), one obtains the approximation property in the product norm:

‖u − Ihu, p − Ih p‖ ≤ C hk+1‖u, p‖∗. (4.3)

The following continuity result is the immediate consequence of the Cauchy–Schwatz
inequality:

A(u − Ihu, p − Ih p; vh, qh) ≤ C ‖u − Ihu, p − Ih p‖‖vh, qh‖
+ |〈{μnTD(vh)n}, [(u − Ihu) · n]〉Γ + 〈{μnTD(u − Ihu)n}, [vh · n]〉Γ |, (4.4)

for all {vh, qh} ∈ V±
h ×Q±

h . The last term on the right-hand side in (4.4) needs a special treat-
ment. Applying the Cauchy–Schwatz, inequalities (3.12) and (3.13), FE inverse inequalities
and approximation properties of the interpolants, we get

|〈{μnTD(vh)n}, [(u − Ihu) · n]〉Γ | ≤ C hk+1‖u, 0‖∗‖vh, 0‖,
|〈{μnTD(u − Ihu)n}, [vh · n]〉Γ | ≤ C hk+1‖u, 0‖∗‖vh, 0‖. (4.5)

The consistency of the stabilization term is formalized in the estimates that follow from
Lehrenfeld and Olshanskii [32, lemma 5.5]: For p− ∈ Hk+1(Ω−), u− ∈ Hk+2(Ω−)d , it
holds

J−
h (p−, p−) ≤ C h2k+2‖p−‖2Hk+1(Ω−)

, J−
h (u−,u−) ≤ C h2k+2‖u−‖2Hk+2(Ω−)

. (4.6)

The above estimates and the stability of the interpolants also imply

J−
h (p− − Ih p

−, p− − Ih p
−) ≤ C h2k+2|p−|2Hk+1(Ω−),

J−
h (u− − Ihu−,u− − Ihu−) ≤ C h2k+2|u−|2Hk+2(Ω−). (4.7)

Similar estimates to (4.6), (4.7) hold for J+
h and J+

h with p+ ∈ Hk+1(Ω+), u+ ∈
Hk+2(Ω+)d , which can be combined with suitable weights to yield

bp(p − Ih p, p − Ih p) + ap(u − Ihu,u − Ihu) ≤ C h2k+2‖u, p‖2∗. (4.8)

Denote the error functions by eu = Eu − uh and ep = E p − ph . Galerkin orthogonality
holds up to the consistency terms

A(eu, ep; vh, qh) = bp(p − Ih p, qh) + ap(u − Ihu, vh), (4.9)

for all vh ∈ V±
h and qh ∈ Q±

h .
The result of Lemma 2, (4.8) and the trivial bound bp(qh, qh) ≤ C‖0, qh‖2 imply the

following estimate for the consistency term on the right-hand side of (4.9):

|bp(p − Ih p, qh) + ap(u − Ihu, vh)|
≤ |bp(p − Ih p, p − Ih p)| 12 |bp(qh, qh)| 12 + |ap(u − Ihu,u − Ihu)| 12 |ap(vh, vh)| 12
≤ C hk+1‖u, p‖∗‖vh, qh‖, (4.10)

The optimal order error estimate in the energy norm is given in the next theorem.

Theorem 2 For sufficiently regular u, p solving problem (2.1)–(2.8) and uh, ph solving prob-
lem (2.20), the following error estimate holds:

‖u − uh, p − ph‖ ≤ Chk+1‖u, p‖∗, (4.11)

with a constant C independent of h, the values of viscosities μ±, slip coefficient f ≥ 0, and
the position of Γ with respect to the triangulation Th.
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Proof This result follows by standard arguments (see, for example, Sect. 2.3 in [16]) from
the inf-sup stability results of Theorem 1, continuity estimates (4.4) and (4.5), Galerkin
orthogonality and consistency (4.9)–(4.10), and approximation properties (4.3). ��
Remark 1 If we consider using isoparametric elements to handle numerical integration over
cut cells (see Sect. 2.2.1), then the Sobolev seminorms in the definition of ‖u, p‖∗ on the
right-hand side in (4.11) should be replaced by the full Sobolev norms of the same order; see
the error analysis of the isoparametric unfitted FEM in [33].

5 Numerical results

The aim of the numerical results collected in this section is twofold: (i) support the theoretical
results presented in Sect. 4 and (ii) provide evidence of the robustness of the proposed finite
element approach with respect to the contrast in viscosity, slip coefficient value, and position
of the interface relative to the fixed computational mesh.

For the averages in (2.17)–(2.18),we setα = 0 andβ = 1 for all the numerical experiments
since we have μ− ≤ μ+. Recall that this is the choice for the analysis carried out in Sects. 3
and 4. In addition, we set γ ±

u = 0.05, γ ±
p = 0.05, and γ = 40. The value of all other

parameters will depend on the specific test.
For all the results presented below, we will report the L2 error and a weighted H1 error

for the velocity defined as

(

2μ−‖D(u − u−
h )‖2L2(Ω−)

+ 2μ+‖D(u − u+
h )‖2L2(Ω+)

) 1
2
, (5.1)

and a weighted L2 error for the pressure defined as

(

μ−1− ‖p − p−
h ‖2L2(Ω−)

+ μ−1+ ‖p − p+
h ‖2L2(Ω+)

) 1
2
. (5.2)

5.1 2D tests

First, we perform a series of tests in 2D. For all the tests, the domain Ω is square [−1, 1] ×
[−1, 1] and interface Γ is a circle of radius 2/3 centered at c = (c1, c2). Let (x, y) =
(x̃ − c1, ỹ − c2), (x̃, ỹ) ∈ Ω . The exact solution we consider is given by:

p− = (x − c1)
3, p+ = (x − c1)

3 − 1

2
, (5.3)

u− = g−(x, y)

[−y
x

]

, u+ = g+(x, y)

[−y
x

]

, (5.4)

where

g+(x, y) = 3

4μ+
(x2 + y2), g−(x, y) = 3

4μ−
(x2 + y2) + μ− − μ+

3μ+μ−
+ 1

f
.

The forcing terms f− and f+ are found by plugging the above solution in (2.1). The surface
tension coefficient σ is set to -0.5. The value of the other physical parameters will be specified
for each test.

We impose a Dirichlet condition (2.3) on the entire boundary, where function g is found
from u+ in (5.4).
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Fig. 2 Approximation of exact solution (5.3) and (5.4) for c = 0, μ− = 1, μ+ = 10, and f = 10, computed
with mesh h = 1/128: velocity vectors colored with the velocity magnitude (left) and pressure (right)

Spatial convergence. First, we check the spatial accuracy of the finite element method
described in Sect. 2.2. The aim is to validate our implementation of the method and support
the theoretical findings in Sect. 4. For this purpose, we consider exact solution (5.3)–(5.4)
with c = 0 (i.e., interface Γ is a circle centered at the origin of the axes), viscosities μ− = 1
and μ+ = 10, and f = 10.

We consider structured meshes of quads with six levels of refinement. The initial trian-
gulation has a mesh size h = 1/4 and all the other meshes are obtained by halving h till
h = 1/128. We choose to use finite element pairsQ2 − Q1. Figure 2 shows the velocity vec-
tors colored with the velocity magnitude and the pressure computed with mesh h = 1/128.
Figure 3 (left) shows the L2 error and weighted H1 error (5.1) for the velocity and weighted
L2 error (5.2) for the pressure against the mesh size h. For the range of mesh sizes under
consideration, we observe close to cubic convergence in the L2 norm for the velocity and
quadratic convergence in the weighted L2 norm for the pressure and in the weighted H1 norm
for the velocity. Similarly, we observe close to optimal convergence rates when switching to
Q3 − Q2 elements. See Fig. 3 (right). In this case, we considered mesh sizes ranging from
h = 1/4 to h = 1/64.

Robustness with respect to the viscosity contrast. As mentioned in Sect. 1, the case of
high contrast for the viscosities in a two-phase problem is especially challenging from the
numerical point of view. To test the robustness of our approach, we consider exact solution
(5.3) and (5.4) and fix μ− = 1, while we let μ+ vary from 1 to 108. We set c = 0 and
f = 10.
Weconsider oneof themeshes adopted for the previous sets of simulations (withh = 1/64)

and use again Q2 − Q1 finite elements. Figure 4 (left) shows the L2 error and weighted H1

error (5.1) for the velocity and weighted L2 error (5.2) for the pressure against the value of
μ+. We observe that all the errors quickly reach a plateau as theμ+/μ− ratio increases, after
initially decreasing. These results show that our approach is substantially robust with respect
to the viscosity contrast μ+/μ−.

Robustness with respect to the slip coefficient. For the next set of simulations, we consider
exact solution (5.3) and (5.4) and let the slip coefficient f in (2.6) and (2.7) vary from 1/256
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Fig. 3 2D test with c = 0, μ− = 1, μ+ = 10, and f = 10: L2 error and weighted H1 error (5.1) for the
velocity and weighted L2 error (5.2) for the pressure against the mesh size h forQ2 − Q1 elements (left) and
Q3 − Q2 elements (right)

Fig. 4 2D test with c = 0 and μ− = 1: L2 error and weighted H1 error (5.1) for the velocity and weighted
L2 error (5.2) for the pressure against the value of μ+ (left) and against the value of the slip coefficient f
(right)

to 256. For the larger f becomes the two-phase problem gets closer to the homogeneous
model. The other parameters are set as follows: c = 0, μ− = 1, and μ+ = 10.

We consider again the structured mesh with mesh size h = 1/64 and Q2 − Q1 finite
elements. Figure 4 (right) shows the L2 error and weighted H1 error (5.1) for the velocity
scaled by the H3 norm of u andweighted L2 error (5.2) for the pressure against the value of f .
We observe that the scaled weighted H1 error for the velocity does not vary substantially as f
varies, while the other two errors increase as f decreases. When f goes to zero, the external
phase loses its control over tangential motions in the internal fluid on Γ , thus allowing for
purely rigid rotations in the perfectly circular Ω−; see the definition of u− in (5.4). While
the seminorm ‖u, p‖∗ appearing on the right-hand side in (4.11) remains the same, the
full Sobolev norm ‖u−‖k+2 grows as O( f −1). Since we use isoparametric unfitted FE, we
indeed see the uniform error bound with respect to f → 0 if we normalize the error by the
full Sobolev norm of the solution. See Remark 1. Summarizing, the approach proves to be
robust in the energy norm as the physical parameter f varies.

Robustness with respect to the position of the interface.We conclude the series of the 2D
tests with a set of simulations aimed at checking that our approach is not sensitive to the
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Fig. 5 2D test with c = 0,
μ− = 1, μ+ = 10, and f = 10:
L2 error and weighted H1 error
(5.1) for the velocity and
weighted L2 error (5.2) for the
pressure against the value of k in
(5.5)

Fig. 6 Approximation of exact solution (5.6) and (5.7) computed with the mesh with h = 0.125: velocity
vectors colored with the velocity magnitude on the xz-section of Ω+ and in Ω− (left) and pressure in Ω−
and half Ω+ (right)

position of the interface with respect to the background mesh. For this purpose, we vary the
center of the circle that represents Γ :

c = (c1, c2), c1 = h

20
k cos

(
k

10
π

)

, c2 = h

20
k sin

(
k

10
π

)

, k = 1, 2, ..., 20,

(5.5)

where h is the mesh size. We set μ− = 1, μ+ = 10 and f = 10.
Just like the two previous sets of simulations, we consider the mesh with mesh size

h = 1/64 and theQ2 − Q1 pair. Figure 5 shows the L2 error and weighted H1 error (5.1) for
the velocity and weighted L2 error (5.2) for the pressure against the value of k in (5.5). We
see that all the errors are fairly insensitive to the position of Γ with respect to the background
mesh, indicating robustness.

5.2 3D tests

For the 3D tests, the domain Ω is cube [−1.5, 1.5]× [−1.5, 1.5]× [−1.5, 1.5] and interface
Γ is the unit sphere, centered at origin of the axes. We characterize Γ as the zero level set of
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Fig. 7 3D test: L2 error and weighted H1 error (5.1) for the velocity and weighted L2 error (5.2) for the
pressure against the mesh size h

function φ(x) = ||x||22 − 1, with x = (x, y, z). We consider the exact solution given by:

p+ = 1

2
x, p− = x, (5.6)

u− = g−(x, y)

⎡

⎣

−y
x
0

⎤

⎦ , u+ = g+(x, y)

⎡

⎣

−y
x
0

⎤

⎦ , (5.7)

where

g+(x, y) = 1

2μ+
(x2 + y2 + z2),

g−(x, y) = 1

2μ−
(x2 + y2 + z2) + μ− − 2μ+μ− − μ+

2μ+μ−
.

The forcing terms f− and f+ are found by plugging the above solution in (2.1). We set f = 1,
μ− = 1, and μ+ = 100. The surface tension coefficient is set to σ = −0.5x .

Just like for the 2D tests, we impose a Dirichlet condition (2.3) on the entire boundary,
where function g is found from u+ in (5.7).

To verify our implementation of the finite element method in Sect. 2.2 in three dimensions
and to further corroborate the results in Sect. 4, we consider structured meshes of tetrahedra
with four levels of refinement. The initial triangulation has mesh size h = 1 and all the other
meshes are obtained by halving h till h = 0.125. All the meshes feature a local one-level
refinement near the corners of Ω . We choose to use finite element pair P2 − P1. Figure 6
shows a visualization of the solution computed with mesh h = 0.125. Figure 7 shows the
L2 error and weighted H1 error (5.1) for the velocity and weighted L2 error (5.2) for the
pressure against the mesh size h. For the small range of mesh sizes that we consider, we
observe almost cubic convergence in the L2 norm for the velocity, quadratic convergence in
the weighted L2 norm for the pressure and in the weighted H1 norm for the velocity.
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6 Conclusions

In this paper, we focused on the two-phase Stokes problem with slip between phases, which
has received much less attention than its homogeneous counterpart (i.e. no slip between the
phases). For the numerical approximation of this problem, we chose an isoparametric unfitted
finite element approach of the CutFEMorNitsche-XFEM family. For the unfitted generalized
Taylor–Hood finite element pair Pk+1 − Pk , we prove stability and optimal error estimates,
which follow from an inf-sup stability property. We show that the inf-sup stability constant
is independent of the viscosity ratio, slip coefficient, position of the interface with respect to
the background mesh and, of course, mesh size.

The 2D and 3D numerical experiments we used to test our approach feature an exact
solution. They have been designed to support the theoretical findings and demonstrate the
robustness of our approach for a wide range of physical parameter values. Finally, we show
that our unfitted approach is insensitive to the position of the interface between the two phases
with respect to the fixed computational mesh.
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