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Figure 1: Each block above follows [Appearance, Shape→ Output]. We propose a gener-
ative model that disentangles and combines shape and appearance factors across multiple domains,
to create hybrid images which do not exist in any single domain.

ABSTRACT

We consider the novel task of learning disentangled representations of object
shape and appearance across multiple domains (e.g., dogs and cars). The goal
is to learn a generative model that learns an intermediate distribution, which bor-
rows a subset of properties from each domain, enabling the generation of images
that did not exist in any domain exclusively. This challenging problem requires an
accurate disentanglement of object shape, appearance, and background from each
domain, so that the appearance and shape factors from the two domains can be in-
terchanged. We augment an existing approach that can disentangle factors within
a single domain but struggles to do so across domains. Our key technical contri-
bution is to represent object appearance with a differentiable histogram of visual
features, and to optimize the generator so that two images with the same latent
appearance factor but different latent shape factors produce similar histograms.
On multiple multi-domain datasets, we demonstrate our method leads to accurate
and consistent appearance and shape transfer across domains.

1 INTRODUCTION

Humans possess the incredible ability of being able to combine properties from multiple image
distributions to create entirely new visual concepts. For example, Lake et al. (2015) discussed
how humans can parse different object parts (e.g., wheels of a car, handle of a lawn mower) and
combine them to conceptualize novel object categories (a scooter). Fig. 2 illustrates another example
from a different angle; it is easy for us humans to imagine how the brown car would look if its
appearance were borrowed from the blue and red bird. To model a similar ability in machines, a
precise disentanglement of shape and appearance features, and the ability to combine them across
different domains are needed. In this work, we seek to develop a framework to do just that, where
we define domains to correspond to “basic-level categories” (Rosch, 1978).
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Figure 2: Each domain can be
represented with e.g., a set of
object shapes (XA/B) and ap-
pearances (YA/B). The ability
to generate images of the form
IAA/BB requires the system to
learn intra-domain disentangle-
ment (Singh et al., 2019) of la-
tent factors, whereas the abil-
ity to generate images of the
form IAB (appearance/shape
from domain A/B, respectively)
requires inter-domain disentan-
glement of factors, which is the
goal of this work.

Disentangling the factors of variation in visual data has received significant attention (Chen et al.,
2016; Higgins et al., 2017; Denton & Birodkar, 2017; Singh et al., 2019), in particular with advances
in generative models (Goodfellow et al., 2014; Radford et al., 2016; Zhang et al., 2018; Karras et al.,
2019; Brock et al., 2019). The premise behind learning disentangled representations is that an image
can be thought of as a function of, say two independent latent factors, such that each controls only
one human interpretable property (e.g., shape vs. appearance). The existence of such representations
enables combining latent factors from two different source images to create a new one, which has
properties of both. Prior generative modeling work (Hu et al., 2018; Singh et al., 2019; Li et al.,
2020) explore a part of this idea, where the space of latent factors being combined is limited to one
domain (e.g., combining a sparrow’s appearance with a duck’s shape within the domain of birds; IAA

in Fig. 2), a scenario which we refer to as intra-domain disentanglement of latent factors. This work,
focusing on shape and appearance as factors, generalizes this idea to inter-domain disentanglement:
combining latent factors from different domains (e.g., appearance from birds, shape from cars) to
create a new breed of images which does not exist in either domain (IAB in Fig. 2).

The key challenge to this problem is that there is no ground-truth distribution for the hybrid visual
concept that spans the two domains. Due to this, directly applying a single domain disentangled im-
age generation approach to the multi-domain setting does not work, as the hybrid concept would be
considered out of distribution (we provide more analysis in Sec. 3). Despite the lack of ground-truth,
as humans, we would deem certain combinations of factors to be better than others. For example, if
two domains share object parts (e.g., dog and leopard), we would prefer a transfer of appearance in
which local part appearances are preserved. For the ones that don’t share object parts (e.g., bird and
car), we may prefer a transfer of appearance in which the overall color/texture frequency is preserved
(e.g. Fig. 2, I2 and IAB), which has been found to be useful in object categorization at the coarse
level in a neuroimaging study (Rice et al., 2014). Our work formulates this idea as a training process,
where any two images having the same latent appearance are constrained to have similar frequency
of those low-level features. These features in turn are learned (as opposed to being hand-crafted),
using contrastive learning (Hadsell et al., 2006; Chen et al., 2020), to better capture the low-level
statistics of the dataset. The net effect is an accurate transfer of appearance, where important details
remain consistent across domains in spite of large shape changes. Importantly, we achieve this by
only requiring bounding box annotations to help disentangle object from background, without any
other labels, including which domain an image comes from.

To our knowledge, our work is the first to attempt combining factors from different data distribu-
tions to generate abstract visual concepts (e.g., car with dog’s texture). We perform experiments on
a variety of multi-modal datasets, and demonstrate our method’s effectiveness qualitatively, quan-
titatively, and through user studies. We believe our work can open up new avenues for art/design;
e.g., a customer could visualize how sofas would look with an animal print or a fashion/car designer
could create a new space of designs using the appearance from arbitrary objects. Finally, we believe
that the task introduced in this work offers better scrutiny of the quality of disentanglement learned
by a method: if it succeeds in doing so within a domain but not in the presence of multiple ones, that
in essence indicates some form of entanglement of factors with the domain’s properties.
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2 RELATED WORK

Learning disentangled representations for image generation has been studied in both the supervised
(relying on e.g., keypoints and object masks) (Peng et al., 2017; Balakrishnan et al., 2018; Ma et al.,
2018) and unsupervised settings (Li et al., 2018; Shu et al., 2018). Recent work disentangle object
shape, appearance, pose, and background with only bounding box annotations (Singh et al., 2019;
Li et al., 2020). All prior work, however, focus on disentangling and combining factors within a
single domain (e.g., birds), and cannot be directly extended to the multi-domain setting since hybrid
images would be considered out of distribution (i.e., fake). We present a framework that addresses
this limitation, and which works equally well in both single and multi-domain settings.

Another potential angle to tackle the task at hand is through style-content disentanglement (Gatys
et al., 2015; Johnson et al., 2016; Ulyanov et al., 2016). However, an object’s appearance and
shape in complex datasets do not necessarily align with those of style and content (e.g., color of
background dominating the style rather than object’s appearance). Unsupervised image-to-image
translation works (Zhu et al., 2017; Kim et al., 2017; Huang et al., 2018; Gonzalez-Garcia et al.,
2018; Choi et al., 2020) translate an image from domain A to domain B, such that the resulting
image preserves the property common to domains A and B (e.g., structure), and property exclusive
to B (e.g., appearance/style). However, if the domains don’t have anything in common (e.g., cars
↔ dogs: different structure and appearance), the translated images typically become degenerate,
and no longer preserve properties from different domains. In contrast, our method can combine
latent factors across arbitrary domains that have no part-level correspondences. Moreover, when
part-level correspondences do exist (e.g., dogs ↔ tiger), it combines appearance and shape in
a way which preserves them. Lee et al. (2018) extended the multimodal image-to-image translation
setting by conditioning the translation process on both a content image as well as a query attribute
image, so that the resulting output preserves the content and attributes of the respective images.
However, this application was explored in settings where both the content and attribute image share
similar content/structure (e.g., natural and sketch images of face domain as content/attribute images
respectively), which is different from our setting in which the factors to be combined come from
entirely different domains (e.g., cars vs birds).

3 APPROACH

Given a single dataset consisting of two image domains A and B (e.g., dogs and cars), our goal is
to learn a generative model of this distribution (with only bounding box annotations and without
domain/category/segmentation labels), so that one latent factor (shape) from A and another factor
(appearance) from B (or vice-versa) can be combined to generate a new out-of-distribution image
preserving the respective latent properties from the two domains. Since there is no ground truth for
the desired hybrid out-of-distribution images, our key idea is to preserve the frequency of low-level
appearance features when transferred from one domain’s shape to another domain’s shape. To this
end, we develop a learnable, differentiable histogram-based representation of object appearance,
and optimize the generator so that any two images that are assigned the same latent appearance
factor produce similar feature histograms. This leads to the model learning better disentanglement
of object shape and appearance, allowing it to create hybrid images that span multiple domains.

We first formalize the desired properties of our model, and then discuss a single domain disentangled
image generation base model (Singh et al., 2019) that we build upon. Finally, we explain how our
proposed framework can augment the base model to achieve the complete set of desired properties.

3.1 PROBLEM FORMULATION

Combining factors from multiple domains requires learning a disentangled latent representation for
appearance, shape, and background of an object. This enables each of the latent factor’s behavior to
remain consistent, irrespective of other factors. For example, we want the latent appearance vector
that represents red and blue object color to produce the same appearance (color/texture distribution)
regardless of whether it is combined with a bird’s shape or a car’s shape (IAA and IAB in Fig. 2).
Henceforth, we represent shape, appearance, and background of an object as x, y, b respectively,
and remaining continuous factors (e.g., object pose) using z.

As shown in Fig. 2, we can interpret domain A as having an associated set of shapes - XA
(e.g., possible bird shapes), and an associated set of appearances - YA (e.g., possible bird appear-

3



Published as a conference paper at ICLR 2021

ances). With an analogous interpretation for domain B (e.g., cars), we formalize the following
problems: (i) Intra-domain disentanglement: where a method can generate images of the form
I = G(x, y, z, b), where [x, y] ∈ (XA × YA) (× denotes Cartesian product). In other words, the
task is to combine all possible shapes with possible appearances within a domain (e.g., IAA/IBB

in Fig. 2). (ii) Inter-domain disentanglement: where everything remains the same as intra-
domain disentanglement, except that [x, y] ∈ (XAB × YAB), where XAB = (XA ∪ XB) and
YAB = (YA ∪ YB). This is a more general version of the task, where we wish to combine all
possible shapes with all possible appearances across multiple domains (e.g., IAB in Fig. 2).

3.2 BASE MODEL

We start with an intra-domain disentangled image generation approach, FineGAN (Singh et al.,
2019), as our base model. Fig. 3 (left) provides a high level overview of its architecture, which con-
sists of three image-generation stages: background, shape, and appearance. As a whole, FineGAN
takes in four latent variables as input: a continuous noise vector z ∼ N (0, 1), and one-hot vectors
x ∼ Cat(K = Nx, p = 1/Nx), y ∼ Cat(K = Ny, p = 1/Ny) and b ∼ Cat(K = Nb, p = 1/Nb),
where Nx, Ny , and Nb are hyperparameters that represent the number of distinct shapes, appear-
ances, and background to be discovered, respectively. Using these, it generates an image in a stage-
wise manner: (i) background stage generates a background image (Ib); (ii) shape stage creates a
shape image (Ix) by drawing the silhouette of the object over the background using a shape mask
(mx); (iii) the appearance stage generates the color/texture details, and stitches it to Ix using an
appearance mask (my) to create the final image (I).

To learn to disentangle object from background, FineGAN relies on bounding box supervision. To
learn the desired disentanglement between shape and appearance without any supervision, FineGAN
uses information theory to associate each factor to a latent code, and constrains the relationship
between the codes to be hierarchical. Specifically, it makes the assumption that Nx < Ny; i.e.,
variety in object shape is less than variety in object appearance, which is generally true for real-
world objects (e.g., different duck species have different colors/textures but share the same overall
shape). During training, this hierarchy constraint is imposed so that a set of latent appearance codes
y will always be paired with a particular latent shape code x. This ensures that, during training,
the shape code representing e.g., a duck’s shape does not get paired with the appearance code for
e.g., a sparrow’s texture to create an unnatural combination (which the discriminator could use to
easily classify the generated image as fake, and in turn prevent the model from learning the desired
disentanglement). Two types of loss functions are used. An adversarial loss Ladv (Goodfellow et al.,
2014) to enforce realism on the background Ib (on a patch-level) and final generated image I (on
an image-level), and a mutual information loss Linfo (Chen et al., 2016) between (i) x and masked
object shape (mx ∗ Ix), (ii) y and masked object appearance (my ∗ I), to help the latent codes gain
control over the respective factors:

Ladv = min
G

max
D

Er[log(D(r))] + Ec[log(1−D(G(c)))]

Linfo = max
D,G

Ec[logD(c|m ∗G(c))]

where c represents the input latent codes, r is the distribution of real patches/images, G/D are the
generator and discriminator, G(c) is the generated image, and m is the generated mask. For the
background stage, only Ladv is used on a patch-level, where r is the distribution of real patches
and c = {z, b}. For the shape stage, only Linfo is used, with c = x and m = mx. Finally, for
the appearance stage, both Ladv and Linfo are used, where r is the distribution of real images and
c = {z, b, x, y} for Ladv , and c = y and m = my for Linfo. We denote all the losses used by the
base model (FineGAN in this case) as Lbase. Fig. 3 (bottom) summarizes the properties learned by
the base model.

3.3 COMBINING FACTORS FROM MULTIPLE DOMAINS

Although the base model can combine shape and appearance within a single domain (Fig. 2 bottom
left), it has trouble doing so across different ones, as illustrated in Fig. 4 (b) top, where the same la-
tent appearance code behaves differently when combined with a car’s shape (I) versus a bird’s shape
(Ipos2 ). The main reason is because hybrid images, which combine e.g., a bird’s colors with a car’s
shape, are non-existent in the real data (i.e., out of distribution). Thus, the model is penalized from
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Figure 3: Left: A simplified model architecture of the base model FineGAN (Singh et al., 2019),
where images are generated in a stagewise manner, by generating the background, shape, and ap-
pearance of the object, in that respective order. Each of the latent codes controls certain properties
about the image (e.g. x code controlling the shape). Right: The intra-domain disentanglement ca-
pability of the base model. Each block demonstrates the effect of changing one latent code (shown
above each image), which controls a single factor in the generated image.

learning such a combination via the adversarial loss. For creating hybrid objects within a domain
(e.g., combining red sparrow color and seagull shape to create a non-existent red seagull), this is less
of a problem, since the base model implicitly learns part semantics as it has to consistently colorize
the correct part of an object regardless of its pose (i.e., it learns a pose-equivariant representation of
appearance; see Fig. 3 top-left). And since intra-domain objects share part semantics, during test
time (in which the adversarial loss no longer plays a role), transferring e.g., a sparrow’s appearance
to a seagull’s shape can still be achieved with some degree of success. However, when the two do-
mains do not share any part semantics (e.g., birds and cars), the model would not know where e.g.,
the color of a bird’s head should go on a car. In other words, when trained in a multi-domain setting,
the base model is unable to fully disentangle shape from appearance; i.e., there is still some form of
entanglement of shape and appearance tied to each domain.

So, how can we learn better disentanglement between appearance and shape in the multi-domain set-
ting, without any ground truth for hybrid images? Our idea is to preserve the frequency of low-level
visual concepts (color/texture) as a heuristic when transferring the appearance from one domain to
another, and not transfer any shape information in the process (e.g. transfer a car’s color and texture
distribution to a dog, while preventing transfer of its wheels). Specifically, any two generated images
with the same latent appearance code (but different shape codes) should have similar frequency in
low-level appearance. To use this idea as part of an optimization process, we need to: (i) define the
concepts whose frequency needs to be computed and make its computation differentiable, and (ii)
induce the generator to generate hybrid images that preserve the low-level appearance frequency.

Learning a differentiable histogram of low-level features. At a high-level we’d like texture and
color frequency to be our low-level feature concepts. However, since it is difficult to know a priori
which specific textures/colors would be useful (e.g., a feature representing leopard texture would be
useful for shape/appearance disentanglement in animals ↔ cars, but might not be for birds
↔ cars), we propose to learn them in a data driven way. Specifically, we represent the low-
level concepts using a set of learnable convolutional filters (Fig. 4(a)), each of which convolves
over a generated image to give regions of high correlation. To focus on the object region, we mask
out the background using the base model’s generated foreground mask, and compute the channel-
wise sum of the resulting response maps to get a k-dimensional histogram representation h. This
representation approximates the frequency of visual concepts represented by the set of filters (e.g.,
dog’s fur, tiger’s texture).

How do we ensure that the histogram h being approximated is of some relevant object feature?
The information captured by the filter bank should be such that (i) the same object in different
pose/viewpoints has a similar appearance representation, (ii) which in turn should be dissimilar than
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Figure 4: (a) The process of computing the frequency-based representation. All steps are differ-
entiable, making the representation learnable as part of the optimization process. (b) We construct
positive samples differently for Lfilter and Lhybrid, whereas negatives remain the same for both.

the representation of any other arbitrary object. We hence train the filter bank using contrastive
learning (Bachman et al., 2019; Chen et al., 2020). Specifically, we first construct a batch of N
generated images, where each image is of the form I = G(x1, y1, z1, b1). We then construct another
batch, where each image is of the form Ipos1 = G(x1, y1, z2, b1), by only altering the noise vector
z, which changes only the object’s pose (due to our base model; Fig. 3 top-left). We set each I
and corresponding Ipos1 pair as positive samples, and all other image pairs as negative samples
(Fig. 4(b)). Finally, we use NT -Xent (Normalized temperature-scaled cross entropy loss (Chen
et al., 2020)) for each image I in the batch to learn the filter bank:

`i = − log
exp (sim (hi, hj) /τ)∑2N

k=1 1[k 6=i] exp (sim (hi, hk) /τ)
(1)

where hi represents the feature histogram of ith image, j and k indexes the positive and negative
samples for i, respectively, sim denotes cosine similarity, and τ is the temperature hyperparameter
(set to 0.5). We refer to the whole loss as Lfilter =

∑N
i=1 `i, and optimize it by only updating the

weights of the filter bank.

Conditioning the generator to generate hybrid images. Now that we have a way to learn mean-
ingful low-level features in a data driven way, we can use them to condition the generator to generate
hybrid images. We use an objective similar to Lfilter, where we use the same I = G(x1, y1, z1, b1).
However, we construct the positive pairs differently: Ipos2 = G(x2, y1, z1, b1), in which the latent
shape code x is different than that of I (while all other codes are the same); see Fig. 4(b). We refer
to this loss as Lhybrid =

∑N
i=1 `i, and optimize only the generator G’s parameters. Intuitively,

Lhybrid pushes the generator to match the frequency of low-level appearance features (e.g., car’s
color) between the generated images of two arbitrary shaped objects (e.g., car and bird).

The overall loss function of our framework is:

L = Lbase + Lhybrid + Lfilter (2)

where Lbase induces the properties needed for intra-domain disentanglement, and the combination
of Lfilter and Lhybrid helps extend the abilities to learn inter-domain disentanglement of factors.
Note that we do not employ the adversarial loss (which is part of Lbase) on any hybrid images that
do not follow our base model’s hierarchical code constraints (as described in Sec. 3.2) since those
images would be outside the real data distribution.

4 RESULTS

We now compare the proposed framework against several baselines, and study how they fare in
terms of disentangling and combining shape/appearance from different domains.

We use three single domain datasets: CUB (Wah et al., 2011) collection of 200 birds categories. (ii)
Stanford Dogs (Khosla et al., 2011) collection of 120 dog categories. (iii) Stanford Cars (Krause
et al., 2013) collection of 196 car categories. Using these, we construct three multi-domain settings:
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Figure 5: Results using CycleGAN, MUNIT, and AdaIn. When the two domains don’t have struc-
tural correspondence, the image-to-image translation methods fail to disentangle shape from ap-
pearance. AdaIn suffers, as images don’t always have a homogeneous style to be extracted from,
resulting in misalignment in the definition of object appearance and style.

(i) birds ↔ cars, (ii) cars ↔ dogs, (iii) dogs ↔ birds, consisting of a total of 396, 316, and 320
object categories, respectively. We also use a multi-domain dataset of animal faces (Liu et al.,
2019), comprising 149 carnivorous categories, where each category can be interpreted as a different
domain. This forms our fourth multi-domain setting, (iv) animals↔ animals.

4.1 CAN IMAGE TRANSLATION OR STYLE TRANSFER METHODS SOLVE THIS TASK?

As mentioned in Sec 2, there are existing works which could potentially offer solutions for the
task at hand, even with their core objective being different. CycleGAN (Zhu et al., 2017) and
MUNIT (Huang et al., 2018) translate images from one domain to another, in a way where the
translated images preserve some properties from both the source and target. If the two domains
are, say cars↔dogs, can these methods translate a car into an image that combines the car’s shape
with a dog-like appearance? Fig. 5 shows some translation results: in general, we observe that
the translations become degenerate, and don’t preserve any interpretable property from the input,
i.e., the methods are no longer able to disentangle structure from domain-specific appearance. We
also explore AdaIn (Huang & Belongie, 2017), a method capable of transferring style between any
arbitrary pair of images; see Fig. 5. We notice that the definition of style transferred and what we
perceive as appearance don’t always align, and even then, the method is unable to solely focus on
the foreground object when extracting and transferring the style (e.g., bird’s blue color bleeds into
the background of the car in the first row). Overall, Fig. 5 shows that these methods are not suited
for settings involving arbitrary domains, which have no similarity in object shape/appearance.

4.2 COMPARISON TO MULTI-FACTOR DISENTANGLEMENT BASELINES

We next study baselines which disentangle object shape, appearance, pose, and background, and
generate images conditioned on the respective latent vectors: (i) FineGAN (Singh et al., 2019):
base model described in Sec. 3.2; (ii) Relaxed FineGAN: an extension of FineGAN, where we
relax the hierarchical constraint between shape and appearance codes (so that at least conceptually,
hybrid images can be generated during training). For those hybrids, we only optimizeLinfo whereas
for the remaining images (generated with code constraints), we optimize the full Lbase. (iii) Ours
w/o Lfilter: our approach using a fixed, randomly initialized filter bank to compute the frequency-
based representation; (iv) Ours: our final approach. Note that we don’t need domain labels to
train methods (i)-(iv); but once trained, we can visualize what the different learned shape (x) and
appearance (y) latent vectors represent (e.g., x1 and x2 might generate a specific bird and car shape,
respectively). Hence, for evaluation purposes, we manually create a split of the latent vectors, [XA,
YA] and [XB , YB], so that ∀x ∈ XA, x represents only one domain (e.g., birds’ shapes). This way,
we can combine latent factors from different domains to study shape/appearance disentanglement.

We first show qualitative comparisons to FineGAN over different multi-domain datasets in Fig. 6.
FineGAN has issues combining factors from different domains, evident through (i) inaccurate ap-
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Figure 6: FineGAN (top) vs. Ours (bottom). The only difference between the ‘Output’ and ‘Shape’
image is the latent appearance vector, which is borrowed from the ‘Appearance’ image. Our outputs
preserve the characteristic appearance details much better than FineGAN. More results in Sec. A.6.

birds↔ cars cars↔ dogs dogs↔ birds animals↔ animals
color texture color texture color texture color texture

FineGAN (Singh et al., 2019) 0.4295 0.4234 0.3856 0.4006 0.2862 0.3442 0.1914 0.2322
Relaxed FineGAN 0.3121 0.4005 0.3451 0.3912 0.2433 0.3287 0.1214 0.1834

AdaIn (Huang & Belongie, 2017) 0.5619 0.4476 0.5113 0.3956 0.6265 0.3512 0.2447 0.1801
Ours w/o Lfilter 0.2842 0.3341 0.2289 0.2754 0.2228 0.2744 0.0721 0.0815

Ours 0.2484 0.3057 0.2069 0.2535 0.2009 0.2573 0.0462 0.0695
Table 1: χ2-distance between color/texture histograms of source and target images (lower is better).
By enforcing similarity in the frequency of low-level features (via Lfilter + Lhybrid), our model bet-
ter retains the color/texture distribution across the source and target compared to alternate baselines.

pearance transfer (e.g., row 1: only car window color gets transferred to the bird), and (ii) the
inability to transfer details beyond rough color (e.g., row 4: the fur texture of the brown dog isn’t
transferred to the car; row 1: the characteristic leopard texture isn’t transferred to the dog). Our
method, on the other hand, results in a more holistic transfer of appearance to arbitrary shapes.
Upon transferring, it is able to better preserve the (i) color distribution (row 5/6: both the blue and
red components get transferred to the car/bird respectively), (ii) other low-level characteristic fea-
tures (row 8: brown fur gets transferred to the car’s body; row 5: leopard’s texture is transferred
to the dog’s face). Focusing on animals ↔ animals results for FineGAN, we see that the Shape
images have a tendency to resist appearance change (e.g., the leopard’s texture is still preserved in
the output image), which indicates there is some entanglement between shape and appearance. This
is mainly because unlike our approach, FineGAN does not have an explicit constraint to enforce the
same latent appearance code to produce the same low-level visual features regardless of shape. We
study this property in more detail in Sec. A.3.
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Shape disentanglement AMT results
FineGAN Ours Ours vs AdaIn Ours vs FineGAN

birds↔ cars 0.831± 0.04 0.861± 0.03 82.56± 3.28 75.04± 4.67
cars↔ dogs 0.835± 0.03 0.841± 0.03 85.45± 5.11 83.02± 4.55
dogs↔ birds 0.674± 0.10 0.748± 0.08 75.05± 6.89 63.25± 7.17

animals↔ animals 0.871± 0.06 0.907± 0.02 82.51± 1.85 76.21± 2.12

Table 2: (Left) Shape disentanglement results: higher IoU means better shape disentanglement from
appearance. (Right) AMT experiment results: how often our method is preferred over the baseline.

4.2.1 QUANTIFYING SHAPE/APPEARANCE DISENTANGLEMENT

Appearance transfer: In this experiment, we evaluate how well appearance is transferred from one
domain to another. For each latent appearance vector yi, we generate a source Is = G(xi, yi, bi, zi)
and target image It = G(xj , yi, bi, zi) (xi, xj represent shapes from different domains). We segment
the foreground pixels using DeepLabv3 (Chen et al., 2017), pre-trained on COCO (Lin et al., 2014).
We then evaluate the similarity between the source and target images’ foreground appearance by
computing the χ2-distance between their color and texture histograms (Leung & Malik, 2001) (more
details in Sec. A.4.1). Table 1 summarizes the results. As expected based on Figs. 5 and 6, the
baselines often have issues accurately transferring the color/texture distribution to an arbitrary shape,
resulting in the color/texture histogram for Is and It having low similarity. ‘Ours w/o Lfilter’ is a
decent baseline, which simply uses random filters to minimize Lhybrid. Our final approach, which
learns the filters, achieves the best overall performance in retaining the color and texture information.

Shape transfer: We next evaluate how well the object’s original shape is retained when appearance
from another domain is transferred to it. If shape is accurately disentangled from appearance, then
if we generate a stack of images {G(x, yi, z, b)} ∨yi ∈ S (arbitrary set of latent appearances), any
differences should only be in the foreground appearance (Fig. 3 top right). We therefore compute the
standard deviation across the stack, and convert it into a binary mask using an appropriate threshold.
If different sets of appearances (S) result in similar masks, that is an indication of shape being
controlled only by x. So, we randomly split the available latent vectors into two sets, S1 and S2,
compute their respective masks, and evaluate the IoU between them (Sec. A.4.2). This is repeated
for 10 different random splits of S1/S2, giving the score for a latent shape. The final score is averaged
over all possible latent shapes. Table 2 (left) summarizes the results: we see that both FineGAN and
our method achieve high IoU scores, demonstrating that changes introduced by different appearance
vectors are mostly confined within the same region, and hence don’t change the object shape.

Hybrid images through the eyes of image classifiers: If we look at the last row in Fig. 6, a regular
car becomes a car with brown fur. For an image classification network, does this furry-car have
more dog-like properties, and less of cars’? When compared to the hybrids created by FineGAN,
we find our hybrids do indeed exhibit this behavior; see Sec A.5 in Appendix for details.

Perceptual study: Finally, we conduct human studies. Each task shows the results of two methods,
one of which is ours and the other is either AdaIn or FineGAN. The result format is same as in Fig. 6,
i.e., [Appearance, Shape → Output] (Appearance/Shape images are used as Style/Content
input for AdaIn). Amazon Mechanical Turkers are asked to select the method which resulted in a
better shape/appearance transfer. We generate 250 tasks for each dataset, and gather responses from
5 unique turkers for each task, resulting in 1250 judgements. Table 2 (Right) summarizes the results.
Averaged across all datasets, our method gets chosen over AdaIn and FineGAN in 81.39 ± 3.85%
and 74.38 ± 7.11% of the cases, demonstrating consistent superiority in generating hybrid images.

5 DISCUSSION AND CONCLUSION

The proposed method takes a step towards learning inter-domain disentanglement through the abil-
ity to combine shape and appearance across domains. However, there are some limitations: our
method builds upon FineGAN, which in turn makes some assumptions about the data (existence of
a hierarchy between shape and appearance factors). Consequently, our method is suited for datasets
with similar properties. Furthermore, it becomes computationally expensive to train models on all
combinations with increasing domains (

(
n
2

)
, which grows quadratically). Nonetheless, we believe

that we address an important and unexplored problem having practical applications in art and design.
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Qiyang Hu, Attila Szabó, Tiziano Portenier, Paolo Favaro, and Matthias Zwicker. Disentangling
factors of variation by mixing them. In CVPR, 2018.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In ICCV, 2017.

Xun Huang, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image translation.
In ECCV, 2018.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016.

Tero Karras, Samuli Lanie, and Timo Aila. A style-based generator architecture for generative
adversarial networks. CVPR, 2019.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for fine-
grained image categorization. In First Workshop on Fine-Grained Visual Categorization, 2011.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. In ICML, 2017.

10



Published as a conference paper at ICLR 2021

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2014.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In IEEE Workshop on 3D Representation and Recognition (3dRR-13), 2013.

Brendon M. Lake, Ruslan Salakhutdinov, and Josh Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 2015.

Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Diverse
image-to-image translation via disentangled representations. In ECCV, 2018.

Thomas Leung and Jitendra Malik. Representing and recognizing the visual appearance of materials
using three-dimensional textons. In IJCV, 2001.

Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee. Mixnmatch: Multifactor disen-
tanglement and encoding for conditional image generation. In CVPR, 2020.

Zejian Li, Yongchuan Tang, and Yongxing He. Unsupervised disentangled representation learning
with analogical relations. In IJCAI, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Ming-Yu Liu, Xun Huamg, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and Jan Kautz.
Few-shot unsupervised image-to-image translation. In ICCV, 2019.

Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc Van Gool, Bernt Schiele, and Mario Fritz. Dis-
entangled person image generation. In CVPR, 2018.

Xi Peng, Xiang Yu, Kihyuk Sohn, Dimitris N Metaxas, and Manmohan Chandraker. Reconstruction-
based disentanglement for pose-invariant face recognition. In ICCV, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Grace E. Rice, David M. Watson, Tom Hartley, and Timothy J. Andrews. Low-level image proper-
ties of visual objects predict patterns of neural response across category-selective regions of the
ventral visual pathway. The Journal of Neuroscience, 2014.

Eleanor Rosch. Principles of categorization. Cognition and Categorization, 1978.
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A APPENDIX

A.1 TRAINING DETAILS

Since we use FineGAN as our base model, the generator and discriminator architecture, as well as
hyperparameters like learning rate, optimizer (Adam (Kingma & Welling, 2014)), β1/β2 are bor-
rowed from (Singh et al., 2019). We also use the same data preprocessing step, where we crop the
images to 1.5 × their available bounding box, so as to have a decent object to image size ratio. We
use a batch size of 24 to maximize the usage of two TITAN Xp GPUs per experiment. Apart from
the raw data, FineGAN uses two forms of information to disentangle object pose, shape, appear-
ance and background while modeling an image distribution - (i) bounding box information, so that
patches outside it can be used as real background patches to model background on a patch level; (ii)
No. of object categories in the dataset. The hierarchy to be discovered needs to be decided before-
hand, where the number of distinct appearance (Ny) are set to be the number of object categories,
and the number of shapes (Nx) is set empirically. We set Ny as 400 (∼200 + 196) for birds↔ cars,
320 (∼196 + 120) for cars↔ dogs and 320 (120 + 200) for dogs↔ birds. We approximate the 196
car categories as 200, since it helps enforce the hierarchy constraints more easily. Furthermore, Nx

= Ny/10 for all these three datasets. Note that this was the same configuration used by FineGAN
(Nx = Ny/10), which the authors found to be a good default relationship to disentangle shape and
appearance in multiple datasets. The original paper also studies the sensitivity of the generated im-
ages’ quality to the choice of Nx/Ny , and found that the results are largely agnostic to these choices
(except when those two values become very skewed: e.g. Nx = 5). For animals↔ animals, we set
Ny as 150 (∼149 categories), and Nx as Ny/5.

Upon training FineGAN, the four different latent vectors start to correspond to some properties in
the generated images: latent appearance vector, having a one-hot representation, starts capturing
the appearance (different indices start generating different appearance details) etc. This way, one
can combine the latent shape code which generated duck, latent appearance code which generated
yellow bird, to create a yellow duck. For birds↔ cars, cars↔ dogs, and dogs↔ birds, we first train
the base model until convergence (600 epochs). This model can disentangle disentangle the four
factors within a domain as shown in Fig. 3. Starting from this pre-trained model, we now use our
loss objectives Lfilter and Lhybrid, in addition to Lbase (FineGAN’s overall objective), and further
train the model to better perform inter-domain disentanglement of factors.

Specifically, in each iteration, we optimize the model using Lbase, then optimize the generator’s
weights using Lhybrid, and then optimize the filters’ weights using Lfilter. In our experiments, we
found that using Lhybrid at lesser frequency (1/4th of the time) compared to Lbase/Lfilter works
better. The second phase of training is performed for about (50k iterations). The two phase training
for these three datasets is important, because we observed that directly using the combination of
Lbase, Lhybrid and Lfilter while training from scratch leads to model having some issues with
learning intra-domain disentanglement. For the fourth dataset (animals ↔ animals), however, we
directly train from scratch using all three loss components, a setting which actually results in better
performance than the two phase one discussed above. This difference could be attributed to the
difference in the nature of multi-domain datasets, where birds ↔ cars has only two domains, the
animals↔ animals domain effectively has Np (= 30) domains.

A.2 ABLATION STUDY

We now study different design choices, and visualize their effects in mixing shape/appearance across
domains.

Receptive field size of filters: As explained before, we can use more than one layer of filter while
computing the frequency-based representation. As shown in Fig. 4 (left), one can have a second
layer of filters which take as input the filter bank responses (g), and repeats the same process again.
The final frequency based representation will be the concatenation of representation after first and
second stage. In our experiment, we always use filters of size 3x3 (unless stated otherwise), stride
= 1, padding = 0. The number of filters in the first, second and third layers are 64, 128 and 192
respectively. We experiment with 4 settings - (i) 1 layer of 1x1 filters; (ii) 1 layer of 3x3 filters;
(iii) 2 layers of 3x3 filters; and (iv) 3 layers of 3x3 filters. Between each layer is a combination of
ReLU non-linearity and maxpool operation (which further helps in increasing the effective receptive
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Figure 7: Results of our method with different settings of filters used to approximate frequency-
based representation. As the effective receptive field size increases from top-left to bottom right, we
notice that the method can better transfer characteristic appearance details.

field). The results are shown in Fig. 7. With setting (i), i.e. 1 layer of 1x1 filters, the only additional
constrain introduced by Lfilter and Lhybrid is to ensure consistency in 1x1 regions, i.e. RGB pixel
distribution. In other words, this setting could be thought of as enforcing color histogram similarity
between source and target images. We observe a similar behavior in the results as well, where it fails
to accurately transfer the tiger’s texture to other animals’ faces, but is able to faithfully transfer the
color distribution. Furthermore, the source dog in the second row has two characteristic property;
brown patches above the eyes, and a white region in the middle going all the way to the forehead.
Transferring this particular appearance doesn’t always preserve the properties; e.g. (i) the tiger
only has a white patch near the mouth, which doesn’t extend towards the forehead, (ii) the brown
patches over the eyes are no longer transferred to the tiger’s face. In general, we observe that these
properties (white patch, texture pattern), which extend beyond color distribution, are better captured
with increasing receptive field. Setting (iii) and (iv) result in similar performance, so we choose the
setting (iii) (a simpler version) as our final model.

Parameters optimized using Lhybrid: We explain in sec. 3.3 that Lhybrid is optimized by ad-
justing the generator weights. However, the base model that we use (FineGAN) generates the fore-
ground in two stages: the shape stage generating the outline, and the appearance stage filling in the
details. In animals↔ animals, the shape stage often captures some appearance details as well (e.g.
the leopard’s texture), and hence only optimizing the appearance stage doesn’t let the model trans-
fer those characteristic details, since they are not being generated at the appearance stage (Fig. 8).
Optimizing both the shape and appearance stage helps get rid of that issue, where the generation of
appearance details gets properly shifted to the appearance stage, resulting in more accurate appear-
ance transfer (Fig. 8 right).

Effect of τ : NT -Xent (Normalized temperature-scaled cross entropy loss), which is used in both
Lhybrid andLfilter, uses τ as the temperature hypermarameter. For all the experiments up until now,
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Figure 8: Analysis of the effect of training only the appearance stage vs both shape and appearance
stage.

Appearance AppearanceShape ShapeOutput OutputAppearance Shape Output

 = 0.1  = 0.5  = 0.9

Figure 9: Effect of the temperature parameter (τ ), used in Lhybrid and Lfilter

we choose τ = 0.5 as the default value. In this section, we study whether our method’s performance
is sensitive to the value used for τ . Results are presented in Fig. 9, where we consider the birds↔
cars setting, and run our algorithm for three values of τ , 0.1, 0.5 and 0.9. We observe that the ability
to accurately transfer the appearance from one object to another remains largely consistent across
the three cases. This indicates that our method is flexible, where one doesn’t need to tune the value
of τ for accurate inter-domain disentanglement.

A.3 RESISTIVITY ISSUE

In Fig. 10, we see that FineGAN shows a resistance towards changing the appearance of an animal;
e.g. in row 4, the leopard in the target image only borrows a blackish color tone, and most of the
signature leopard appearance remains as it is. In contrast, our method is able to comprehensively
change the appearance of an animal; e.g. in the same row, leopard can shed its appearance and
borrow everything from the tricolored dog, while also preserving any potential correspondence (the
resulting animal retains the brown patch above the eye). We study the resistivity property in more
detail: for each latent shape vector xi, we construct a list of images (L) by combining it with
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Figure 10: Analysis of the resistance of a model to alter the appearance. Generations using FineGAN
don’t fully relinquish the appearance, resulting in a low standard deviation for pixel changes across
the spatial locations compared to our approach.

all possible latent appearance vectors, keeping the latent noise (z capturing pose) and background
vectors the same, i.e. L = {G(xi, yj , zi, bi)} ∨yj ∈ animals↔ animals. We then stack the images
in L, compute standard deviation across channels separately, and then average to generate a heatmap
image. We repeat this process for all the latent shape vectors, and plot the histogram of standard
deviation values. Fig. 10 illustrates this process, and compares the heatmap images generated using
our approach vs FineGAN. This helps us visualize the resistance property, as the heatmap and
histogram through FineGAN indicates much lower standard deviation of pixel differences compared
to our approach, implying more diversity of visual appearance attainable using our method.

A.4 SHAPE/APPEARANCE DISENTANGLEMENT

A.4.1 COLOR/TEXTURE HISTOGRAM CONSTRUCTION DETAILS

We first define the process of obtaining the image and texture based cluster centers (codebook), and
then detail the process of constructing and comparing the respective histogram representations of
two images.

We sample 50,000 pixel (RGB) values randomly from the images belonging to a multi-domain
dataset (e.g. birds↔ cars), and perform k-means clustering with k = 50 to get the color centers.
To compute the texture centers, the images in the dataset are first convolved with a MR8 (Leung &
Malik, 2001) filter bank, consisting of 38 filters and 8 responses capturing edge, bar and rotationally
symmetric features. After this step, the process is similar to computing the color histograms: we
sample 50,000 points from the images, each point being 8-dimensional, and cluster them into 50
centers representing the texton codebook. We repeat this process of computing the color and texture
clusters for each multi-domain setting separately. For each latent appearance vector yi, we generate
a source image Is = G(xi, yi, bi, zi) and a target image It = G(xj , yi, bi, zi) such that xi, yi belong
to one domain and xj to another (e.g. xi/xj represents bird/car shape). We then use a semantic
segmentation network (DeepLabv3 (Chen et al., 2017)) pre-trained on MS COCO (Lin et al., 2014)
to extract foreground pixels, and compute and compare color/texture based histograms between
source and target images. Note that It is likely to represent some visual concepts which were
never seen by the segmentation network pre-trained on real data (e.g. car with dog’s fur in Fig. 6),
which could result in unreliable segmentations from the network. We circumvent that by generating
an intermediate image G(xj , yj , bj , zi) such that both the appearance/shape factors belong to the
same target domain. We then run the pre-trained segmentation network on this image, and use the
predicted foreground locations for It (which has the same shape factor, xj).

A.4.2 SHAPE DISENTANGLEMENT

As mentioned in Sec. 4.2.1, one can compute the standard deviation image across the stack, apply
an appropriate threshold (we use values between 0.1-0.3) to get a binary mask mostly focusing on
the foreground, as shown in Fig. 11
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Figure 11: Sample binary masks generated on the standard deviation image for different shapes, by
applying appropriate threshold

A.4.3 EVALUATING PART CORRESPONDENCES IN APPEARANCE TRANSFER

In Sec. 2, we discussed that when the two domains under consideration have part correspondences
(e.g. eyes/mouth of dogs and fox), transferring appearance from one to another happens in a way
where properties around common object parts remain similar. We illustrate examples of this in Fig. 6
animals↔ animals, where (i) the brown patches near the eye of the dog get transferred to the similar
region in husky (second last row), (ii) the brown patch near the cheeks of the dog get transferred to
the cheeks of the leopard.

In this section, we study this property empirically. Given an input image, we first extract six key-
points (nose, two eyes, forehead center, two ears) using an animal face keypoint detector. For each
such keypoint, we consider a small patch of 16 x 16 around it, and compute the color/texton his-
togram for this region. The process is similarly repeated for all the keypoints, resulting in six color
histograms. When this appearance is transferred to a new image, the process is repeated again, by
getting six histograms for the output. Finally, we compare the color histograms of corresponding
keypoints in input/output using χ2-distance. If the part-level correspondences are preserved during
the appearance transfer, then this distance should be low. The overall process of computing and
comparing the histograms is similar to one described in Sec. A.4.1. However, since the animals↔
animals setting consists of a large diversity of species, there are cases where the pre-trained keypoint
detector exhibits low confidence while making predictions. We choose to not consider these cases
during the evaluation, since it could negatively impact a method’s performance.

For color histogram similarity, FineGAN gets a score (χ2-distance) of 0.6197 ± 0.26, whereas our
method gets 0.5404 ± 0.27. The trend holds for texton based histograms as well, where FineGAN
gets a score of 0.7851±0.22, and our method gets 0.7178±0.24. So, in general, our method results
in a transfer where color/texture frequency around points of interest (e.g. eyes) remain more similar
than FineGAN.

A.5 UNDERSTANDING HYBRID IMAGES THROUGH IMAGE CLASSIFIERS

A high level goal of this work was to create hybrid, out-of-distribution images which do not exist in
any domain exclusively. We studied our method’s ability to do so in terms of its ability to accurately
transfer properties (shape/appearance) across different domains. Orthogonal to this, however, could
we use image classification as a proxy to understand hybridness? Let us look at one of the results
of FineGAN, from Fig. 6 row 4, dogs ↔ cars. The resulting car generated upon transferring the
appearance of dog onto a car still looks like a realistic car, i.e. could potentially belong to the real
dataset of cars.

We posit that our method better transfers the semantics of the dog to a car; consequently, we expect
the hybrid car and the dog to be more similar in some semantic feature space using our method,
compared to FineGAN. We test this as follows - given an in-domain image (x and y are tied) I =
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sim(I , Ia) sim(I , Is)
FineGAN Ours FineGAN Ours

birds↔ cars 0.2877± 0.035 0.3182± 0.040 0.6787± 0.095 0.5959± 0.084
cars↔ dogs 0.2976± 0.095 0.3624± 0.136 0.6067± 0.157 0.4473± 0.110
dogs↔ birds 0.3669± 0.081 0.4209± 0.077 0.5315± 0.089 0.5081± 0.095

animals↔ animals 0.4618± 0.090 0.6375± 0.136 0.6850± 0.0963 0.4981± 0.101

Table 3: Assessing hybrid image properties through image classification. A high dist(I , Ia) score
implies better transfer of semantic properties through appearance transfer. A low dist(I , Is) score
implies that appearance transfer on the same shape resulted in a shift away from the original distri-
bution.

G(x, y, b, z) (real brown dog), we combine its appearance (y) with factors from other domain to
create a hybrid image, Ia = G(x

′
, y, b

′
, z) (the hybrid car). We pass both these images through

an image classifier (we use VGG 16) pretrained on ImageNet Deng et al. (2009), and compute
cosine similarity between the feature representation of these two images. A high similarity implies
better transfer of semantics, i.e. a better hybrid image. We repeat this experiment for all the in-
domain images, and present the averaged results in Table 3 (left); we see that our method consistently
achieves higher similarity, especially for cars↔ dogs and animals↔ animals.

Analogously, if transferring the dog’s appearance did make the car more hybrid, its similarity with
the original car should decrease. That is, given the same in-domain image G(x, y, b, z) (original
car), we borrow appearance from the other domain y

′
to create the hybrid image Is = G(x, y

′
, b, z).

We repeat the previous experiment and get the cosine distance between their feature representation.
Lower similarity implies that the hybrid image shifted away from the original image. Averaged
results (over all in-domain images) are presented in Table 3 (Right). We again observe that our
method gets lower similarity score, implying more shift from a domain towards hybrid distribution.

A.6 QUALITATIVE RESULTS

Fig. 12 demonstrates some more results from our method on different multi-domain settings dis-
cussed so far.

A.7 COMPARISONS TO STARGANV2

Fig. 14 illustrates the results of StarGANv2 and our method. The key difference here is the prop-
erties that a method learns to disentangle: StarGANv2 can take the pose (the original paper uses
the term “style” for this) of an animal (source image), and transfer it to a different animal (refer-
ence). So, in the resulting generated image, both animal’s shape and appearance come from one
image (reference) and only pose comes from a different one. For example, the lion (last row) when
borrowing properties from different animals still remains a lion while changing poses: it’s shape
doesn’t become that of a cat (first column).

Our method goes a step further, where it can also disentangle shape from appearance. For example,
when transferring the appearance of a tiger to a dog (second column), the resulting image precisely
preserves the dog shape (e.g. its signature long ears, tongue), and gets the tiger’s appearance. So,
our method has more control over different factors of an image.

We further study StarGANv2’s disentanglement abilities, by using birds, cars and dogs as the three
domains in the image-to-image translation setup. The question we ask is the following: can the
model learn to combine a source bird and a reference car, so that the resulting generation has the
shape of the bird but appearance of the car? Fig. 13 illustrates many such {source, reference}
combinations which are used as input. We observe that the reference image dictates most of the
properties of the generated images, with the style image only (slightly) altering the object pose. The
results in this case again demonstrate that StarGANv2 has issues capturing shape from one domain
(e.g. style image) and appearance from another (e.g. reference image). In contrast, we present
our method specifically for this purpose, where the results shown in Fig. 12 and 6 demonstrates its
ability in learning inter-domain disentanglement of shape and appearance.
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Figure 12: Each cell block follows [Appearance, Shape→ Output]. Assorted results from
different multi-domain settings using our method.

18



Published as a conference paper at ICLR 2021

source

reference

Figure 13: StarGANv2 results on using birds, cars and dogs as multiple domains. The images in
the topmost rows and leftmost columns are real input images, while the rest are generated by the
algorithm.

Appearance

Shape

StarGANv2 Ours

Figure 14: Comparing the disentanglement learnt by StarGANv2 (Choi et al., 2020) and our method.
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