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Abstract: This paper studies a model of two-phase flow with an immersed material viscous interface and
a finite element method for the numerical solution of the resulting system of PDEs. The interaction between
the bulk and surface media is characterized by no-penetration and slip with friction interface conditions.
The system is shown to be dissipative, and a model stationary problem is proved to be well-posed. The finite
element method applied in this paper belongs to a family of unfitted discretizations. The performance of the
method when model and discretization parameters vary is assessed. Moreover, an iterative procedure based
on the splitting of the system into bulk and surface problems is introduced and studied numerically.
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1 Introduction

Motivated by applications in biomedical engineering [59] and cell biology [61], we are interested in the inter-
action between a rather viscous and dense interface material and a less viscous and dense bulk fluid, as is
the case of, e.g., a lipid vesicle or cell membrane with its content and surrounding fluid. For this purpose,
we consider two immiscible, viscous, and incompressible fluids separated by a viscous inextensible material
interface modeled as a Boussinesq—Scriven surface fluid. The following coupling conditions are prescribed
between the bulk two-phase flow and the surface fluid: (i) the immiscibility condition, i.e. the bulk fluid does
not penetrate through the interface, (ii) slip with friction between the bulk fluid and the viscous interface,
and (iii) the load exerted from the bulk fluid onto the surface fluid defined by the jump of the normal stress
across the interface. To the best of our knowledge, it is the first time that the slip with friction conditions are
imposed in this context. This extends the Navier boundary condition to the interface case and interpolates
between no-slip of the bulk phase and embedded material layer, as considered in [2, 8, 44, 51], and uncou-
pled lateral dynamics of fluidic surfaces as studied, for example, in [52, 54, 57]. We remark that the classical
Boussinesq—Scriven interface model as presented in, e.g., [8, 51] can be used to account for the viscous effects
in fluidic membranes. Its extension is needed to address complex physical phenomena known to be relevant
for lipid membranes, which include fluidity [18, 33], inextensibility [27, 41], inertia [29, 40], and slip with
respect to the surrounding fluid [1]. By accounting for all of the above phenomena, our model represents
another step towards a more realistic representation of lipid membranes interacting with bulk fluid.

We first state the problem in terms of incompressible two-phase Navier—Stokes flow in the bulk coupled
to surface fluid equations and show the energy balance for this system. This balance demonstrates that the
system with the proposed coupling conditions is thermodynamically consistent, i.e. in the absence of exter-
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nal forces and with no energy inflow through the boundary the system is dissipative. Then we introduce
a simplifying assumption: the coupled system has reached a steady state and inertia terms can be neglected.
Although the resulting surface-bulk Stokes problem is a strong simplification of the original problem, it still
retains interesting features for the purpose of numerical analysis.

For the simplified model, we show well-posedness following the abstract framework for generalized
saddle point problems proposed in, e.g., [3, 43]. Next, we present a sharp interface, geometrically unfit-
ted finite element (FE) method. Unfitted methods allow the sharp interface to cut through the elements of
a fixed background grid. Their main advantage is the relative ease in handling time-dependent domains,
implicitly defined interfaces, and problems with strong geometric deformations [7]. For the bulk two-phase
Stokes problem, we apply an isoparametric unfitted finite element approach [35] of the CutFEM (or Nitsche-
XFEM) family [12, 15, 25, 26, 38, 58]. For a (bulk only) interface Stokes problem with slip between phases,
the approach was studied in [46]. CutFEM uses overlapping fictitious domains in combination with ghost
penalty stabilization [9] to enrich and stabilize the solution. In this paper, we consider the unfitted general-
ized Taylor-Hood finite element pair Py,1 — Pk, k > 1. For more details on the isoparametric unfitted finite
element, we refer to [36, 37]. For the discretization of the surface Stokes problem, we apply the trace finite
element method [31, 48], which uses traces of the bulk finite element functions. In a set of numerical exper-
iments, we address the dependence of the discretization error of the method on variations in the friction
coefficient, ratio of bulk fluid viscosity, surface fluid viscosity, mesh size, and position of the interface relative
to the fixed computational mesh.

One option to solve the coupled bulk-surface problem is to adopt a monolithic approach. However, such
an approach would quickly lead to high computational costs as the mesh gets refined. Instead, we introduce
a partitioned scheme based on fixed-point iterations [50]. With this algorithm, the bulk and surface flow prob-
lems are solved separately and sequentially, and the coupling conditions are enforced in an iterative fashion.
We choose this algorithm for its simplicity of implementation and study its performance when model and dis-
cretization parameters vary. Our numerical experiments provide evidence of the robustness of the proposed
approach with respect to the contrast in viscosity in the bulk fluid, surface fluid viscosity, and position of the
interface relative to the background mesh. At the same time, convergence slowdown was observed for certain
values of the slip coefficients.

The outline of the paper is as follows. In Section 2, we introduce the strong formulation of the coupled
problem and the associated energy balance. Section 3 presents the strong and weak formulations of the
simplified problem, together with the finite element discretization. In Section 4, we propose a partitioned
algorithm for the numerical solution of the coupled problem. Numerical results in three dimensions are
reported in Section 5. For all the simulations in this paper, we have used NGsolve [17, 62], a high performance
multiphysics finite element software with a Python interface, and add-on library ngsxfem [63].

2 A Two-Phase Fluid with Material Viscous Interface

Consider a fixed volume Q ¢ RR> filled with two immiscible, viscous, and incompressible fluids separated by
an interface I'(¢) forall ¢ € [0, T]. We assume that I'(¢) stays closed and sufficiently smooth (at least C2) for all
t € [0, T]. Surface I'(t) separates Q into two phases (subdomains) Q. (t) and Q_(t) := Q \m. We assume
Q_(t) to be completely internal, i.e. 9Q_(t) N 0Q = @ for all times. See Figure 1. Denote by n* the outward
normals for Q. (t) and n the normal on T pointing from Q_(¢) to Q, (t); it holds thatn™ =nandn* = -natT.
For ease of notation, from now on, we will drop the dependence on ¢ for ', Q,, and Q_.

Consider the bulk fluid velocities u*(t): Q. — R3 and pressures p*(t): Q. — R to describe the fluid
motion. The motion of the fluids occupying subdomains Q. is governed by the incompressible Navier—Stokes
equations

ptout =dive® +f* inQ., (2.1)

divu* =0 in Q,, (2.2)
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Figure 1: Fluid domains and interface in R2.

forallt € (0, T).In(2.1), constants p* represent the fluid density, o; denotes the material derivative, f* are the
external body forces, and o* are the Cauchy stress tensors. For Newtonian fluids in both phases, the Cauchy
stress tensors have the following expression:

0* = —p*I1 + 2™ D(u*), D(u*)= %(Vui +(vu)T)in Q.,

where constants u* represent the fluid dynamic viscosity.

We assume interface I' to be a thin material layer with possibly different material properties from the bulk
fluid. Motivated by applications in cell biology, we consider a viscous inextensible interface modeled as an
“incompressible” surface fluid. The evolution of the material interface can be described in terms of the veloc-
ity of this surface fluid denoted by U. Later, we will need the decomposition of U into tangential and normal
components: U = Uy + Uyn, with U7 -n = 0, Uy = n - U. The surface Navier—Stokes equations governing the
motion of a fluidic deformable layer appear in several works [30, 39, 55, 60]. Here, we adopt the formulation
in terms of tangential differential operators from [30], where the equations have been derived from conser-
vation principles. To introduce these equations, we need some further definitions. Let P(x) := I - n(x)n(x)”
for x € ' be the orthogonal projection onto the tangent plane. For a scalar function 7: I' — R or a vector
function U: T — R3, we define 7¢: O(T') —» R, U¢: O(T) — R3, smooth extensions of 7 and U from T to its
neighborhood O(T'). The surface gradient and covariant derivatives on I are then defined as Vrm = PV7® and
VrU := PVU®P. The definitions of Vrr and VU are independent of the particular smooth extension of 7and U
off . On T, we consider the surface rate-of-strain tensor [22] given by

Dr(U) := %P(VU +(VO)TP = %(VFU +(vr)hy.

The surface divergence for a vector g: I' — R> and a tensor A: I' —» R>*3 are defined as: divr g := tr(Vrg),
divr A := (divr(eTA), divr(elA), divr(efA))7, where e; is the ith standard basis vector. With this notation,
the surface Navier—Stokes equations take the form

pro¢U = —Vrm + 2up dive Dr(U) + fr + b + mxn - onT, (2.3)
divfU=0 onT, (2.4)

where pr is the surface fluid density, ur is the surface fluid dynamic viscosity, k denotes pointwise doubled
mean curvature on I', and 7 is the surface fluid pressure. The material derivative in (2.3) is taken with respect
to surface fluid trajectories, i.e. 0;U = % + (U - V)U. Note that ,U is an intrinsic surface quantity, although
both terms % and (U - V)U depend on extension of U in the bulk. On the right-hand side of (2.3), fr denotes
the external area force acting on the surface as a result of the interaction with the bulk fluids (specified below),
while b® denotes other possible area force (such as elastic bending forces) and is not specified further in the
present paper.

Next, we turn to the coupling conditions between equations (2.1)—(2.2) posed in the bulk and equa-
tions (2.3)—(2.4) posed on I. First, the immiscibility condition means that the bulk fluid does not penetrate
through I', which implies that

u"-n=Uy=u -n onl. (2.5)
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Normal velocity Uy determines radial deformations of I'(t), and so it governs the geometric evolution of the
interface, which can be defined through the Lagrangian mapping ¥(t, - ) from I'(0) to I'(¢): for x € T'(0), ¥(t, X)

solves the ODE system
oY (¢, x)

ot
In fluid vesicles and cells, typically a viscous and dense lipid membrane, represented by T, is surrounded by
a less viscous and less dense liquid. We are interested in modeling slip with friction between the bulk fluid
and the viscous membrane. Thus, we consider Navier-type conditions

¥Y(0,x) =X, =Un(t,¥(t,x)), telO0,T]. (2.6)

Po'n=f*(Pu*-Ur) onT, 2.7)
Pon=-f"(Pu -Ur) onT, (2.8)

where f~ and f* are friction coefficients at ' on the Q_ and Q, side, respectively. Conditions (2.7)-(2.8)
model an incomplete adhesion of a bulk fluid to the material surface with 1/f* often referred to as a “slip
length” [42]; see, e.g., [4, 34] for the modern description of experimental and theoretical validations. In par-
ticular, the acceptance of nonzero slip length resolves the well-known “no-collision paradox” [13, 19, 28],
thus suggesting (2.7)-(2.8) to be an important modeling assumption in the simulation of a lipid vesicle — cell
membrane contact (and fusion). We finally note that the Navier conditions are not an uncommon choice in
numerical models if the flow in boundary region is under-resolved [32].
The area force in (2.3) coming from the bulk fluid is defined by the jump of the normal stress on T,

fr=[on]*=0'n-0on onT. (2.9)

We summarize the complete system of equations and coupling conditions below:

prou® — y*Aut + vp* = f* inQ.,
divu* =0 in Q,,
] pro:U - 2ur divy Dr(U) + Vi - ikn = [on]* + b® onT, 2.10)
divU=0 onT,
u'-n=u -n="Uy onT,
Po*n = +f*(Pu* -Ur) onT,

with the evolution of Q. and I' defined by the velocity solving the system through (2.6). On 0Q, the system is
endowed with boundary conditions either for the bulk velocity or for the bulk normal stress,

u'=g onoQp, (2.11)
on"=fy onoQy. (2.12)

Here 0Qp U 0Qy = 9Q and 0Qp N oQy = 0. See Figure 1. At t = 0, initial velocity is given by u* = ug in Q. (0)
and U = Uy on I'(0).
2.1 Energy Balance of the Continuous Coupled Problem

We look for the energy balance of the coupled system (2.10)—(2.12). We make use of the following identities
for time-dependent domains Q. (t), whose only moving part of the boundary is I'(¢):

1 ou* 1
S j P dv = j ut (;‘t av+ Jluilzui-nids, (2.13)
Q. () Q. () I'(t)
1
J (ui-V)ui-uidV:E J [u*|>u* -n* dS. (2.14)
Q. (t) 00 ()

Identity (2.13) is the Reynolds transport theorem, while identity (2.14) is obtained from integration by parts.
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Let us start from the kinetic energy of the fluid in Q_,

d . 1d 2 _ o ou~ 1 C—2.—
EE_ZdtjpluldV_qu ath+ij|u|u ndsS
Q. Q. r
= j u - (dive +f —p (u -V)u)dV + % Jp‘lu‘lzu‘-nds
Q. r
:J’V~(a*u*)dV—Ja’:Vu*dV+J.u’-f*dV
Q. Q. Q.

u - (07n)dS - J o : D) dV + Ju‘-f‘dV
Q- Q-
u (o n)dS-2u" J D)2 dV + J u -fav. (2.15)
Q- Q-

Il 1l
), ™ e,

Above, we have used (2.13), (2.1), (2.2), (2.14), and integration by parts.
We repeat similar steps for the kinetic energy of the fluid in Q., the main difference being that

0Q, =TudoQpuU Iy,

while 0Q_ = T. We obtain

%E* - —Ju* (a*n)dS - 2" j||1)(u+)||2 av + J ut £ dV + B, (2.16)
r o, Q,
where 1 1
B= j <g- (o*n) - 5p+|g|2g-n+) ds + J <u+ £ Sptut Put ~n+> ds. (2.17)
bQD aQN

Putting together (2.15) and (2.16), we obtain the total kinetic energy for the bulk flow,

% = %(P +E7)=-2u" J||D(u‘)||2 av - 2u* JllD(u*)llz dv - j UynTon]* dsS
Q- Q. r
- J fPu - (Pu" - Up)dS - J F*Pu* - (Pu’ — Up) dS
T T
+Ju‘-f‘dV+Ju+-f+dV+B, (2.18)
Q- Qt

where we have used (2.5), (2.7), and (2.8). For the kinetic energy of the surface flow, we will use the surface
analogue of the Reynolds transport theorem (see, e.g., [14, Lemma 2.1]),

% jfds _ I(étf+fdivr U) ds. (2.19)
T T

We also need the surface integration by part identity
J(gdivr f+f-vrg)dS = J xg(f-n)ds,
r r
which is valid for a smooth closed surface with smooth scalar field g and vector field f. A componentwise
application of this equality yields the identity
Jg~dierdS=—IG:VrgdS (2.20)
T r

for a vector field g € (C1(I'))? and a matrix function G € (C*(I'))**3 such that G = PGP.
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The energy balance on I' is given by

dEr 1d ) e Co1
=33 jpr|U| ds = J(prU- 0:U + Spr|Uf? divy U) ds
T r
= JU - (=Vrm + 2ur divy Dr(U) + fr + b®) dS
T

- —ZerDr(U) L VrU dS + JU~ [on]* dS + JUT-be as

r T r
= -2ur J||DF(U)||2 das + J Uy[nTon]* ds
r r
N J Ur- (F*(Pu’ - Up) + f-(Pu - Up)) dS + I U-be ds, (2.21)
r r

where we have applied (2.20) and used (2.19), (2.3)-(2.5), (2.7)-(2.9), and integration by parts.
Combining (2.18) and (2.21), we get the kinetic energy for the bulk and surface flows,

dE dE _ _
g =~ [IDO av -2 [ID@h av - 2ur [0 IR ds
Q. Q, r
bulk fluid viscous dissipation surface fluid viscous dissipation
- [P - uritds- [ 1pur - Urld
r r
frictional energy dissipation
+Ju‘-f‘dV+Ju+-f+dV+jU-bedS+B, (2.22)
r r T _——
work of external forces work of b.c.

where B, i.e. the work of the boundary conditions, is defined in (2.17).
From (2.22), we see that, in the absence of external forces and with no energy inflow through the bound-
ary, the system is dissipative, i.e. thermodynamically consistent.

3 ASimplified Steady Problem

In this section, we consider a (strongly) simplified version of the problem presented in Section 2. Our main
assumption is that the coupled bulk and surface fluid system has reached a steady state and inertia terms
can be neglected. Since the steady state implies I'(t) = T'(0), we have Uy = 0 and hence U = Ur. This simpli-
fied surface-bulk Stokes problem models a viscosity dominated two-phase flow with the viscous interface in
a dynamical equilibrium; see also Remark 1. It is an interesting model problem for the purpose of numerical
analysis. With these simplifications, equations (2.1)—(2.2) become

—u*Au* +Vp = f*  inQ., (3.1)

divu* =0 inQ,. (3.2)

We impose a non-homogeneous Dirichlet condition on the entire outer boundary of Q, i.e. problem (3.1)-(3.2)

is supplemented with boundary condition (2.11) with g € [HY2(0Qp)]? and 0Qp = 0Q. Under our assump-

tion, the momentum equation for the surface fluid simplifies to —2ur divy Dr(Ur) + Vrr — mkn = [on]f + b®.

The tangential part of the above momentum equation together with the inextensibility condition (2.4) leads
to the surface Stokes problem

—2urPdivr Dr(U7) + Vit = [Pon]* + Pb® onT, (3.3)

divUr =0 onT, (3.4)
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while the normal part simplifies to
[nTon]; =nx onT. (3.5)

The interface condition above is standard in many models of two-phase flows, where 7 has the meaning of
the surface tension coefficient.
Coupling condition (2.5) is replaced by

u -n=u-n onT, (3.6)
while conditions (2.7) and (2.8) still hold,
Po*n = +f*(Pu* -Ur) onT. (3.7)

Finally, we will see that the (weak formulation of the) problem is well-posed under two mean conditions for
the bulk pressure,

J prdx=0.

Qt
Remark 1. Since U - n = 0, condition (3.6) allows the flow through the steady interface I'. This is inconsistent
with (2.5), which assumes immiscibility of fluids. For a physically consistent formulation that describes the
true equilibrium, one has to set u* -n =u™ -n = 0 on T, but allow the shape of I' to be the unknown, i.e. to
be determined as a part of the problem. For such equilibrium to exist, external forces and boundary condi-
tions may have to satisfy additional constraints. Finding such constraints and solving the resulting nonlinear
problem is outside the scope of this paper. We rather follow a common convention in the analysis of models
for steady two-phase problems and allow (3.6) for the steady interface; see, e.g., [6, 16, 21, 47].

3.1 Variational Formulation

The purpose of this section is to derive the variational formulation of coupled problem (3.1)—(3.7). Let us
introduce some standard notation. The space of functions whose square is integrable in a domain w is
denoted by L%(w). The space of functions whose distributional derivatives of order up to m > 0 (integer)
belong to L?(w) is denoted by H™(w). The space of vector-valued functions with components in L?(w) is
denoted by L?(w)3, and H'(div, w) is the space of functions in L?(w) with divergence in L?(w). Moreover, we
introduce the following functional spaces:

V- =HYQ.)®’, V'={ueHYQ:)’, ulpg, =8}, V{={ueH(Q:) uloq, =0},
Vi={u=(u,u") eV xV',u -n=u"-nonTl},
Vg=fu=@u,u") eV xV{,u -n=u"-nonTl},

L ={p=0.p" e 2@ x 1@, : | p*dx=o0},

Ve={UeHTY:U.-n=0} o

The space V* can be also characterized as (V- x V+) n H(div, Q). We use (-, ), and (-, - ), to denote the
L? product and the duality pairing, respectively.

Multiplying (3.1) by v € V§ and (3.2) by ¢ € L2(Q) and integrating over each subdomain, we see that
smooth bulk velocity and pressure satisfy integral identity,

—(p~,divv)g —(p*,divvh)g,
+2(uD(u"), D(V))g_ + 2(u*D(u*), D(vF))q,
—(mx, v -n)r + (f (Pu” —U),Pv)r + (f*(Pu" - U),Pv")r = (f,v)q + (", v )q, (3.8)
(divu™, g7)g_ + (divu*,g*)q, =0 (3.9
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for all (v, q) € V§ x L(z)(Q). The interface terms in (3.8) have been obtained using coupling conditions (3.7)
and (3.5) as follows:
—(e™n,v)r + (6", v')r = —(Pe n, Pv )1 + (Po*n, Pv*)r — (nTon];, v -n)r
={f"(Pu -U),Pv)r + {(f*(Pu* - U),Pv*)r - (mmx, v" - n)r.

Likewise, we find that the surface velocity and pressure satisfy the following integral identities:

~(m, divr V)r + 2(urDr(U), Dr(V))r - (f (Pu” - U), V)r - (f*(Pu’ - U), V)r = (Pb®, V)r, (3.10)
(divr U, T)r =0 (3.11)
forall (V, 1) € Vr x L3(D).

The weak formulation of the coupled problem (3.1)-(3.7) follows by combining (3.8)-(3.9) and (3.10)-
(3.11). In order to write it, we introduce the following forms for all u € V*, ve V5, U,V e Vr, p € L2(Q),
e L2():

a(fu, U}, {v, V}) = 2(u"D(u"), D(v'))q_ +2(1"D(u*), D(v"))q,
+2(urDr(U), Dr(V))r + (f~(Pu” - U), Pv™ - V)r
+{f*(Pu* - U),Pv" - V),
b({v, V}, {p, m}) = =(p~,divv )q_ - (p*,divv*)q, - (m, divr V)r,
s(v, m) = —(ntk, v - )T,
r(v, V)= (f",v)q_ + (", v")q, + (Pb®, V).

Then the weak formulation reads: find (u, p) € V* x Li and (U, i) € Vi x L%(T') such that

{a({u’ U}’ {V, V}) + b({V, V}’ {p’ ﬂ}) + S(V’ 7T) = r(V, V) (3.12)

b({u, U}, {q, 1}) =0

for all (v, q) € Vg X L(Z)(Q) and (V,T) € Vr x L(z)(l“). Note that test and trial pressure spaces both involve two
(different) gauge conditions.

3.2 Well-Posedness

With the goal of proving the well-posedness of the stationary problem, we start by showing thata({-, -}, {-,-})
is coercive. Let ||u||§p(0i> = ||u+||§p(g+) + ||u‘||12,{1(97). Let ||p||f2(01) = ||p||f2+ +pll3, . We define the following
additional norms:

l{v, V}HI* = IIVIIf,l(Qi) + "V"%.]l(r)’ I{p, 7> = Ilplléi + 7.

The coercivity result is formulated in the form of a lemma.

Lemma 1. Foranyv € Vg andV € Vr, it holds

a({v, V}, {v, V}) = Clifv, V}||? (3.13)
with a positive constant C, which may depend on the viscosity values and Q...
Proof. One readily computes that

a({v, V}, {v, V}) = 2(uD(v"), D(v)))a_+ 2(u"D(v*),D(v"))q,
+2(urDr(V), De(V)r + [PV = V[ + fH[PV* - V| (3.14)
Since function v* satisfies homogeneous Dirichlet boundary condition on 0Q, \ T', we apply the following

Korn inequality in Q. :
IV*llg(a,) < CIDVH)lg, - (3.15)
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By the triangle and trace inequalities in T', we get
IVIr < IPv* = Viir + [PV* [ < [PV* = Vr + CIV* | 1(0,)- (3.16)
We further apply Korn’s inequality on T (see [30]),
IVIiz @) < C(IVIr + IDr(V)lr). (3.17)
Next, we can estimate the trace of v~ on I' through the triangle inequality,
Iv-lir < IPv™ = Vlr + [Vir < [PV = Vlir + Vg (n). (3.18)
We finally apply the following Korn inequality in Q_:
IVlz ) < C(IDV )l +Iv7Ir). (3.19)

Identity (3.14) and inequalities (3.15)—(3.19) lead to (3.13) after easy computations. O

The continuity of the bilinear forms a({-,-},{-,-}), b({-,-},{-,-}), and s(-, -) follows from standard argu-
ments based on the Cauchy-Schwarz and triangle inequalities,
a({u, U}, {v, V}) < Cl|{u, U}|lli{v, V}| forallu,ve Vg, U,V e Vr,
b({u, U}, {p, 1}) < Cll{u, U}llll{p, A}l forallue Vg, Ue Vr, p e L*(Q), me L*(I), (3.20)
s(v, ) < Cll{v, O}IlI{0, i}l forallv e V*, m € L*(T).
Problem (3.12) falls into the class of so-called generalized saddle point problems. An abstract well-posedness
result for such problems can be found, e.g., in [3, 43], which extend the Babuska—Brezzi theory. Applied to

(3.12), this well-posedness result requires coercivity (3.13), continuity (3.20) and two inf-sup conditions
formulated in the following lemma.

Lemma 2. The following inf-sup conditions hold with positive constants y1 and y,:

b({v, V}, {p, m}) + s(v, m)

su > 7T orallp € L2, m e L*(D), 3.21
Veviver: v, Vil valllp, il forallp e L, m e L(T) G.21)
b({v,Vh {p,
b, V3, tp. ) > yallip, Al forallp € L§(Q), m € L(T). (3.22)
vevzvery IV, VI

Proof. The proof follows by combining well-known results about the existence of a continuous right inverse
of the divergence operator in H(l)(Q)3 (see [5]) and Vr (see [30]): for arbitrary p € Lé(Q) and T € L(z)(l"), there
existv € H3(Q)? and V € Vr such that

p=divvinQ and |[Vlgi(q) < callpliz),

. (3.23)

am=divpVonT and [V|gmm < crinlr.

Letting v* = v|g,, (v7,v")T ¢ V5, and adding estimates in (3.23), we get
I{p, 7} < b({v, V}, {p, 71}, (3.24)
l{v, V}I < callplla + criizlr < (cq + cr)ll{p, Al (3.25)

This proves (3.22) with y, = 1/(cq + cr).

To show (3.21), we split 77 = 7o + 1+ with 71g € L(Z)(F) and 7t = |T|! fr 1 ds. For the m part of 71, we use
again (3.23) as above, while for p* € L(Z)(Qi), we use the existence of a continuous right inverse of div in
H(Q*)? to claim the existence of v € Hy(Q")> x H3(Q*)? ¢ V3 and V € Vr such that

I{p, o}l < b({v, V}, {p, 7o}) + s(v, m),  lI{v, V}I < (ca + cr)ll{p, o}, (3.26)

with some positive cq, cr depending only on I and Q. We also used that v = 0 on I" implies s(v, 1) = O.
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Let C* = +|Q*|71|T Ir x ds. To control |7+ r, we need v; € Vj such that
divvy = -C*in Qi, vi-n=xonI and |v; ||H1(Qt) <C. (3.27)

Such v, can be built, for example, as follows. Let v = Vi), where ) € H?(Q") solves the Neumann prob-
lem -A) =C~ in Q, n- Vi =k on I. Since I = 0Q~ is smooth, by the H?-regularity of the Neumann
problem, we have that v lg o) < [Pla2-) < C. The boundary 0Q is only Lipschitz, and so the Neu-
mann problem in QF is not necessarily H2-regular. To handle this, we first extend v] from Q~ to a func-
tion V1 in Hy(Q)? such that [V1]lgiq+) < cllv]lmia-) (see [56]). Next, we consider w € Hy(Q*)? such that
divw = Ct —divv; € Lé(Q*), and Wl g+ < co+lldivwlz2q+) < C (see [5]). The desired v7 is given in Q* by
v} = V1 +w. Sincedivv, = -C*, forp ¢ L2(Q) and 7 € L*(T), we have identities

b({vl’ O}’ {p’ 7'[}) =0= (din V’ ﬂl)r- (3-28)

We also note the equality |77+ ||% = ¢s(vq, mt), with

¢ = nLll"I/J k2 ds.

T

The denominator above is positive since T is closed, and so x cannot be zero everywhere on I'. We use (3.24)-
(3.28) to estimate, for some § > 0,

I{p, 7% = Il{p, o} 1> + Bl I < b({v, V}, {p, 7T0}) + S(V, 71) + s(Bévy, )

= b({v + pcvy, V}, {p, m}) + s(V + Bévy, m) — (BEVy, mo)r

26'2

< b({v + Bév1, V}, {p, }) + s(v + Bcvy, M) + B >

Wil + S 1o}
< b({v + Bevi, VY, {p, m}) + S(V + Béva, 1) + c3 Bl IF + %Hﬂo"%,
with some c3 > 0 depending only on I and Q. For 8 > 0 sufficiently small such that § - c3B% =0, we get
cli{p, mHI* < b({v + Bévy, V3, {p, }) + (v + Bévy, 1), (3.29)

with ¢ > 0 depending only on T and Q. Thanks to the triangle inequality, the second estimate in (3.26), and
the definition of ¢ and v, we find the bound

v+ Béva, VIl < llv, VIl + BéllBévy, Oll < (ca + cr)ll{p, mo}ll + Cllm*lir < Cli{p, w3,

with C > 0 depending only on I and Q. The combination of the above bound and (3.29) completes the proof
of the lemma. O

3.3 Finite Element Discretization

Let Q ¢ R3 be a fixed polygonal domain that strictly contains I'. We consider a family of shape regular tetrahe-
dral triangulations {T},-0 of Q. We adopt the convention that the elements T and edges e are open sets and
use the over-line symbol to refer to their closure. Let ht = diam(T) for T € T}. The set of elements intersecting
Q. and the set of elements having a nonzero intersection with I are

Tr={TeTp:TNQ.#0}, Tp={TeTp:TnT+0},

respectively. We assume {7,1;} n>o0 to be quasi-uniform. The domain formed by all tetrahedra in T £ is denoted
by Q; := int(Uregr T). We define the h-dependent domains

o =int( |J T)
TeT,
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and the set of faces of T}rl restricted to the interior of Q,il,
&yt ={e=int(@T1 NOT,): T1, T, € Ty and Ty NT # 0or T, NT # 0}.

For the space discretization of the bulk fluid problems, we restrict our attention to inf-sup stable finite
element pair Py,1 — Py, k > 1, i.e. Taylor-Hood elements. Specifically, we consider the spaces of continuous
finite element pressures given by

Q, ={p e C(Qy) : qlr € Pi(T) forall T € T, }.
Space Q;, is defined analogously. The trial FE pressure space is given by:
L@n={p =0 p" ;x5 [ = [ p =0}
Q- o+
and the test space by Q; = Q,, x Qj N L§(Q). Let
V,={ue C(Q;)3 :ulr € Pryg(T) forall T € 7, 3,
with the analogous definition for V; . Our FE velocity space is given by
Vy={u=(u,u") eV, xV)h

Functions in L2(Q) and V;f and their derivatives are multivalued in Qi, the overlap of Q, and Q;. The
jump of a multivalued function over the interface is defined as the difference of components coming from Q,
and Q},i.e.[u] = u” — u* onT. Note that this is the jump that we have previously denoted with [ - ];. Moreover,
we define the following averages:

ful =aqu* +Bu”, (u)=pu" +au, (3.30)

where a and B are weights to be chosen such that a + 8 =1, 0 < @, 8 < 1. For example, in [12], the setting
a=p_/(uy +p-)and B = uy/(uy + p-) is suggested. In [11], the authors choose &« = 0, B = 1 if u_ < p, and
a =1, B = 0 otherwise. Below, in (3.34) and (3.39), we will use the relationship

[ab] = [bl{a} + (b)[a]. (3.31)

For the discretization of the surface Stokes problem, we first consider the generalized Taylor-Hood bulk
spaces in the strip QF,
Vr,n = {U € C(Q})* : Ulr € Piyy(T) forall T € T} 1,
Qr,p = {m e C(Q}) : mly € P(T) forall T € T3},

Q(r), » = Qr,p N L3(T). In the trace finite element method, we use the traces of functions from Vr,, and Qr,; onT.
The inf-sup stability of the resulting trace FEM was analyzed in [48] for k = 1 and extended to higher order
isoparametric trace elements in [31].

In the treatment of the surface Stokes problem, one has to enforce the tangentiality condition U-n =0
on I'. In order to enforce it while avoiding locking, we follow [23, 24, 30, 45, 53] and add a penalty term to
the weak formulation.

A discrete variational analogue of problem (3.12) reads: find

(up, pr) € Vi xLi(Q)r and  (Up, 71p) € Vip x Qrp

such that

{ah({uh, U}, Vi, Vi}) + br({Vn, Vil {(Pn, h}) + Su(Vi, h) = rh(Vh, Vi), (3.32)

bn({an, Un}, {qn> Th}) = bp(Pn> qn) — bs(7tn, Th) = 0
forall (v, qn) € Vg’h x Q; and (Vp, Tp) € Vr,p % Q(r”h.We define all the bilinear forms in (3.32) foralluy € V%,
vy € Vg’h, U,V € Vrp, p € L2(Q), m € L?(T). Let us start from form ay({-, -}, {-,-}),

an({up, Up, {vr, Vi}) = ai(fup, Un}, (v, Vi}) + an(ay, vi) + ap({ug, Uk, {vi, Vi}) + as(Un, Vi),  (3.33)
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where we group together the terms that arise from the integration by parts of the divergence of the stress
tensors,

a;i({up, Un}, {vh, Vi}) = 2(u"D(u,), D(v}))a_ + 2(u"D(u;), D(v}))q,
+(f~(Pu, —Up), Pv, = Vp)r + (f*(Pu; — Up), Pv; — Vp)r
- 2({un"D(up)n}, [vy - n])r + 2(urDr(Up), Dr(Vp))r, (3.34)

the terms that enforce condition (3.6) weakly using Nitsche’s method,

an(up, i) = Y h—yT{u}([uh -1, [y - n])r - 2{{(un"D¥)n}, [uy - n)r, (3.35)
TeT}

and the stabilization and penalty terms

ap({up, Un}, {vh, Va}) = J, (@n, vp) +J; (@p, vp) + 75(Up -, Vy, - 0y, (3.36)
k+1
Jrup, vi) = Y lel*h Y yapt((oquyl, [05u;De. (3.37)
=1 ee&y*

In(3.37), aﬁu; denotes the derivative of order £ of u, in the direction of n. The J, terms in (3.36) are so-called
ghost-penalty stabilization [9, 10] included to avoid poorly conditioned algebraic systems due to possible
small cuts of tetrahedra from ‘IE by the interface. The terms in (3.38) and (3.40) have the same role for the
surface bilinear forms.

The last form in (3.33) is related to the algebraic stability of the surface Stokes problem,

as(Un, Vi) = pu(Vapn, Vvpn)qr. (3.38)

Similarly, the terms coming from the integration by parts of the divergence of the stress tensors are contained
in
br({Vh, Vi, {pn, mn}) = —(p,, divvy)a_ - (py, divvy)a, + ({pr}s [V - 01 + (Vr7tn, Vi)r, (3.39)

the penalty terms are grouped together in

+ k
by(Phs qn) = J;, s qn) + I, (0h, qn), J,f(ph,qh)=y—i Y Y lelPH((onpils (955 e

T+ f=
ee&y =1

and we have a term related to algebraic stability of the surface Stokes problem in
bs(mth, Th) = pp(VPh -1, Vpp - M)qr . (3.40)

Finally,
Sh(Vn, ) = —(mpk, (Vp - 0))r,
rn(Vh, Vi) = (B, vi)a_ + (£, vp)a, + (Pby, Vp)r.

We recall that some of the interface terms in a;({-,-},{-,-}) and by({-, -}, {-, -}) have been obtained using
relationship (3.31).

Parameters yy, yp, and y are all assumed to be independent of y*, h, and the position of T against the
underlying mesh. Parameter y in (3.35) needs to be large enough to provide the bilinear form ap({-, -}, {-,-})
with coercivity. Parameters yy and y;, can be tuned to improve the numerical performance of the method. As
for the parameters required by the discretization of the surface Stokes problem, we allow

Ts = C‘rh72, Pp = Cph’ Pu € [Cuh; Cuhil]’

where ¢z, ¢p, cy, and Cy are positive constants independent of h and how I' cuts the bulk mesh.
The definition of bilinear forms requires integration over I' N T and T n Q* for T from Qi In general, there
are no exact quadrature formulas to accomplish this task [49]. In practice, approximations should be made
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which introduce geometric errors. To keep these geometric errors of the order consistent with the approx-
imation properties of the finite element spaces, we use isoparametric variants of the above spaces introduced
in [35]; see also [20, 37].

We expect that the stability of the finite element formulation can be analyzed largely following the same
steps of the well-posedness analysis for the weak formulation in Section 3.2, with a special treatment of cut
elements, Nitsche terms, and surface elements as available in the literature for bulk Stokes interface and
surface Stokes problems. For the sake of brevity, we do not work out these details here, but will present them
in a follow-up paper.

4 A Partitioned Method for the Coupled Bulk-Surface Flow

For the solution of the coupled problem described in Section 3, we intend to use a partitioned strategy,
i.e. each sub-problem is solved separately and the coupling conditions are enforced in an iterative fashion.
Partitioned methods are appealing for solving coupled problems because they allow to reuse existing solvers
with minimal modifications. In order to devise such a method for the simplified problem in Section 3, let us
take a step back and look at the original problem (2.10).

Discretize problem (2.10) in time with, e.g., the backward Euler method, and consider the coupled prob-
lem at a particular time t = t"*1. Let S}, be the map that associates the jump in the normal stress across the
interface to any given surface flow velocity U = Ur + Uyn,

Sp(U) = [on]* = 6" (u*,p")N-0"(u,p")n onT,

where (u*, p*) and (u~, p~) represent the solution of the two-phase time-discrete Navier—Stokes problem at
time t associated to (2.1)—(2.2) endowed with interface conditions (2.5), (2.7), and (2.8). Moreover, let S
be the operator associated to the surface flow such that, to any given surface flow velocity U, it associates
the load fr, Sg(U) = fr on T, through the time-discrete surface Navier—Stokes problem at time ¢ associated to
(2.3)-(2.4). Note that S, and S are nonlinear and their definitions can involve also forcing terms and, in the
case of the bulk fluid problem, terms due to the boundary conditions. For the surface operator, we can define
S;! as the map that associates the surface flow velocity U to any given load fr on T.

With the above definitions, we can express the time-discrete version of coupled problem (2.10) in terms
of the solution U of a nonlinear equation defined only on I'. This interface equation is usually presented in
one of three formulations that are equivalent from the mathematical point of view, but give rise to different
iterative algorithms. The first and perhaps most used formulation is the fixed-point one: find U such that

S;1(Sp(U))=U onT. (4.1)

The second formulation is a slight modification of (4.1), which lends itself to a Newton iterative method:
find U such that
S;1Sp(U)-U=0 onT.

The third approach is given by the Steklov—Poincaré equation: find U such that
Sp(U)-Ss(U)=0 onT.

See, e.g., [50] for more details on these three formulations.
A standard algorithm for equation (4.1) uses fixed-point iterations: given UX, compute

UL = UK 4 %@ - U with T = S71(S,(UN)). (4.2)

The choice of the relaxation parameter wX determines the efficiency of the algorithm or it might be crucial
for convergence in certain ranges of the physical parameters. An effective strategy for setting wX is Aitken’s
acceleration method.
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For simplicity, we present algorithm (4.2) applied to the time-discrete version of coupled problem (2.10)
with w* = 1 for all k (i.e., no relaxation). At time t = t"*1, assuming that U is known, perform the following
steps.

Step 1: Solve the two-phase time-discrete Navier—Stokes problem at time t associated to (2.1)—(2.2) for the
bulk flow variables (w,, ,, p;,,) and (u;(r 1 PZ 1) with interface conditions

ui  n=Uf=u,, -n onT,
Poj n=f"(Puj -U%) onT,
Po,, ,n=-f"(Pu,,, - U’}) onT.

Step 2: Solve the time-discrete surface Navier—Stokes problem at time t associated to (2.3)—(2.4) for variables
(UK 77k+1) with interface condition

f1 = [gy,1n]" onT.

Step 3: Check the stopping criterion
ot — UM < el U,

where € is a given stopping tolerance.
Notice that the bulk and surface flow problems are solved separately and sequentially. In general, this algo-
rithm is easy to implement, but convergence could be slow in certain ranges of the physical parameters and
require relaxation for speed-up.

The above algorithm adapted to the simplified problem (3.1)-(3.7) reads as follows. At iteration k + 1,

assuming that (U", %) are known, perform the following steps.
Step 1: Solve two-phase problem (3.1)-(3.2) for the bulk flow variables (u,,,, p;,,) and (u;,,, p;,,) with

interface conditions

u,,-n=u_ -n onT,

Po;, n=f"(Pu;, -U%) onT, (4.3)

Po,, ,n=—f(Pu,,, - U’}) onT, (4.4)
n” oy, 1n]] = 7% onT. (4.5)

Step 2: Solve surface flow problem (3.3)-(3.4) for variables (U’}“, 1) with interface condition
Pf&*! = [Poy,in]* onT. (4.6)
Step 3: Check the stopping criterion
Ul - Ulie < elUfIr. (4.7)
Notice that only interface conditions (4.3)—(4.6) are coupling conditions for bulk and surface flows. If one
was to compute the load exerted on the surface fluid in (4.6) directly from the solution of the problem at
Step 1, the overall accuracy of the method would be spoiled. Instead, one can compute Pf%‘*l by plugging
(4.3)-(4.4) into (4.6),
Pff‘+1 =f"Pu; , +fPu_, - (f" +f‘)U’} onT.
However, we prefer to use a more implicit version of the above condition,
P! = f*Puf |+ fPu,, - (f*+f)UST onT

since it could help have a better control of approximate rigid rotations (Killing vector fields).

5 Numerical Results

The aim of the numerical results collected in this section is to provide evidence of the robustness of the pro-
posed finite element approach with respect to the contrast in viscosity in the bulk fluid, surface fluid viscosity,
value of the slip coefficients, and position of the interface relative to the fixed computational mesh.
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For the averagesin (3.30), weset @ = 0 and 8 = 1 for all the numerical experiments since we have p_ < ;.
In addition, we set y = 0.05, yj, = 0.05, and y = 80. The value of all other parameters will depend on the
specific test. The stopping tolerance for criterion (4.7) is set to € = 107°. For all the simulations, we choose
to use finite element pair P, — Py for both the bulk and surface fluid problems.

For all the results presented below, we will report the L? error and a weighted H' error for the bulk velocity
defined as

(NIt

(2u-ID(u - w3~ + 2u. D -u})l3.)?, (5.1)
and a weighted L? error for the bulk pressure defined as
(P - pplig- + uitp - PG ). (5.2)

Such weighted norms naturally arise in the error analysis of the Stokes interface problem [47]. In addition,
we will report the L? and H' errors for the surface velocity and L? error for the surface pressure.

5.1 Sphere Embedded in a Cube

We perform a series of tests where domain Q is the cube [-1.5, 1.5]° and interface I' is the unit sphere centered
at the origin. Let x = (x, y, z) € Q. Surface I' is characterized as the zero-level set of function ¢(x) = ||x||§ -1.
We consider the following solution for the bulk flow:

e

p =3x\x2+y2+22 - 2x(x® +y* +2%), u = = f}l‘ a(x, v, 2), (5.3)
2 +

pr=6x\x2+y2+22 —4x(xX® +y* +2%), ut= ]%wa(x, ¥, 2), (5.4)

where
(-y-2)x +y? +2?

3
ax,y,z) = (5 - \x2+y? +22) (x-2y+x>+22 |,

(—Xx=y)z+y? +x2

coupled to the following exact solution for the surface flow:

(~y-2)x+y?+22
n=x, U=|(-x-z2)y+x>+2%]. (5.5)
(—x-y)z+y> +x?

The forcing terms f~ and f* are found by plugging solution (5.3)—(5.4) in (3.1). We impose a Dirichlet con-
dition (2.11) on the faces x = 1.5, y = -1.5, z = —1.5, where function g is found from u* in (5.4). On the
remaining part of the boundary, we impose a Neumann condition (2.12), where fy is found from p* in (5.3)
and ut in (5.4).

The value of the physical parameters will be specified for each test.

Spatial Convergence. To check the spatial accuracy of the finite element method described in Section 3.3,
we consider exact solution (5.3)-(5.5) with viscosities = = 1, u* = 10, and ur = 1, and friction coefficients
f~=2and f* = 10. Notice that the fluid outside the sphere has a larger viscosity than the fluid inside the
sphere, which has the same viscosity as the surface fluid. We consider structured meshes of tetrahedra with
five levels of refinement, the coarsest mesh having mesh size h = 0.5, while the finest mesh has h = 0.05. All
the meshes feature a local one-level refinement near the corners of Q. Table 1 reports the number of DOFs for
each mesh. Figure 2 (left) shows the L? error and weighted H! error (5.1) for the bulk velocity, weighted L2
error (5.2) for the bulk pressure, L? and H' errors for the surface velocity, and L? error for the surface pressure
against the mesh size h. We observe optimal convergence rates for all the norms under consideration. Figure 2
(right) shows the number of bulk-surface iterations to satisfy stopping criterion (4.7) as h varies. As we can
see, the number of iterations is fairly insensitive to a mesh refinement or coarsening.
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h 0.5 0.25 0.125 0.0625 0.05
# bulk velocity DOFs l.1e4 7.4e4 5.2e5 3.6e6 6.4e6
# bulk pressure DOFs 6.2e2 3.7e3 2.3e4 1.6e5 2.8e5

# surface velocity DOFs 2.4e3 1.0e4 4.0e4 1.5e5 2.2e5
# surface pressure DOFs  1.4e2 5.9e2 2.3e3 8.5e3 1.3e4

Table 1: Sphere: DOFs for bulk and surface variables for all the meshes under consideration in the spatial convergence test.
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Figure 2: Sphere: (left) bulk and surface FE errors against the mesh size h. (right) Number of bulk-surface iterations
of the partitioned method as h varies.

Robustness with Respect to the Viscosity Contrast. It is known that the case of high contrast for the viscosi-
ties in a two-phase problem is especially challenging from the numerical point of view. To test the robustness
of our approach with respect to the viscosity contrast in the bulk, we consider exact solution (5.3)-(5.5) and
fix u~ = 1, while we let u* vary from 1 to 256. We set ur = 1 and friction coefficients f~ = 2 and f* = 10.

We consider one of the meshes adopted for the previous sets of simulations (with h = 0.125). Figure 3
(left) shows the L? error and weighted H! error (5.1) for the bulk velocity, weighted L2 error (5.2) for the bulk
pressure, L? and H' errors for the surface velocity, and L? error for the surface pressure against the value
of u*. We see that the errors remain mostly unchanged as u* varies, with the exception of the weighted L?
error for the bulk pressure, which decreases as u* increases. In [46], which focuses only on two-phase bulk
flow, we found that such error reaches a plateau as u* is further increased. Figure 3 (left) shows that our
approach is substantially robust with respect to the viscosity contrast p*/u".

Figure 3 (right) reports the number of bulk-surface iterations to satisfy stopping criterion (4.7) as u*
varies. We observe that the number of iterations increases as the u*/u~ ratio decreases, indicating that the
coupled bulk-surface problem becomes more stiff as u* decreases to match y~ and pr.
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Figure 3: Sphere: (left) bulk and surface FE errors against the value of y*. (right) Number of bulk-surface iterations
of the partitioned method as p* varies.
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Robustness with Respect to the Value of the Surface Viscosity. We now let yr vary from 1 to 256 and keep all
the other physical parameters fixed to the following values: y~ = 1, u* = 10, f~ = 2, and f* = 10. Again, we
consider exact solution (5.3)—(5.5) and the mesh with mesh size h = 0.125. Figure 4 (left) shows all the errors
we have considered so far against the value of ur. We notice that all the bulk errors stay constant as ur varies.
The L? errors for the surface velocity and pressure increase as ur increases, while the H! error for the surface
velocity slightly decreases as ur increases. This experiment suggests that more viscous embedded layer is
less controlled by the bulk fluid which effects the numerical stability of the complete system. In a water-lipid
membrane system, the ratio of lateral dynamic viscosities of the embedded bi-layer and bulk water is typically
1-10 pum (depending on the temperature and composition) with the size of a vesicle being generally between
0.1 and 10 pm. Hence the observed increase of the numerical error does not look critical for this application.

Figure 4 (right) shows the number of bulk-surface iterations to satisfy stopping criterion (4.7) as ur varies.
Our partitioned method seems to be insensitive to a variation in the value of yur. In particular, for the range
of ur under consideration the number of iterations stays constant and equal to 12.

Robustness with Respect to the Slip Coefficients. To check the sensitivity of the errors and partitioned
method to the value of the slip coefficients, we run two sets of experiments, both involving exact solution
(5.3)-(5.5). Inthe first set, we fix f* = 2 and vary f~ from 1 to 256, while in the second set, we take f* = f~ and
let them both vary from 1 to 256. The viscosities are set as follows: y~ = 1, u* = 10, and ur = 1. We consider
again the mesh with mesh size h = 0.125. Figures 5 (left) and 6 (left) show all the errors under consideration
against the value of the slip coefficient(s) for both sets of tests. The only error that shows a substantial varia-
tion is the weighted H' error of the bulk velocity, which increases as the slip coefficient(s) increase. However,
such error seems to reach a plateau in both cases.
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Figure 5: Sphere: (left) bulk and surface FE errors against the value of f*. (right) Number of bulk-surface iterations
of the partitioned method as f* varies.
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Figure 7: Sphere: relative difference of the surface
velocity between subsequent iterations in L2 norm
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number of bulk/surface iterations until stopping criterion (4.7) is met.

Figures 5 (right) and 6 (right) report the number of bulk-surface iterations to satisfy stopping criterion
(4.7) as the value of the coefficient(s) varies for both sets of tests. In Figure 5 (right), we see a rather sharp
increase in the number of iterations as f~ increases. This is even more true when both slip coefficients are
increased together, as we can see from Figure 6 (right). Figure 7 reports the relative difference of the surface
velocity between subsequent iterations in L2 norm until stopping criterion (4.7) is met for f* = f~ = 22 and
f* = f~ = 28, We see that such relative difference decreases regularly for f* = f~ = 22, while for f* = f~ = 28,
it decreases quickly for the first few iterations and then it slows down. A heuristic explanation we have for
this is that, as the two friction coefficients increase, interface conditions (2.7)—(2.8) become close to Dirichlet
conditions, making the surface flow more “passive”. Thus, separating the surface flow from the bulk flow as
in the partitioned algorithm might not make much sense.

5.2 Torus Embedded in a Cube

The domain Q is the cube [-2, 2]? and surface T is a torus centered at ¢ = (c1, C3, c3). Let

X, y)=(x-c1,y-¢C2,2-¢3), (X,5,2)€Q.

We can characterize I as the zero-level set of function ¢(x) = \/22 +(Vx2+y?2-1)2 - % Finding an exact
solution to problem (3.1)-(3.5), (2.7), and (2.8) with this more complicated surface is highly non-trivial. To
simplify the task, we relax interface conditions (2.7), (2.8), and (3.5) as follows:

Poin=+f*Pu*-U)+g* onT,

(nTon]; = 7k + g" onT,
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where g%, g7, and g" are computed such that the exact solution given below satisfies these relaxed interface
conditions. The solution is given by

x2y
1 2-44 2 2 1
p‘=<z—%)(x3+x), p*zz(x3+x), u=u=|5-xy2+22 (5.6)
VxZ +y xy
for the bulk and

_ _ T
=X +Xx, Uz[ X 24 ,\IX2+y2—1] (5.7)

Wyt ey
for the surface. The forcing terms f~ and f* are found by plugging solution (5.6)—(5.7) in (3.1). We impose
a Dirichlet condition (2.11) on the faces x = 2, y = -2, z = -2, where function g is found from u* in (5.6). On
the remaining part of the boundary, we impose a Neumann condition (2.12), where f, is found from p* and
u* in (5.6).

Spatial Convergence. Once again, we start by checking spatial accuracy. To this end, we consider exact solu-
tion (5.6)—(5.7) with ¢ = (0, 0, 0), viscosities u~ = 1, u* = 10, ur = 1, and friction coefficients f~ = 2 and
f* =10. Just like in the case of the sphere, we consider structured meshes of tetrahedra that feature a local
one-level refinement near the corners of Q. The details of the meshes under consideration are reported in
Table 2. Figure 8 shows the L? error and weighted H! error (5.1) for the bulk velocity, weighted L? error (5.2)
for the bulk pressure, L2 and H' errors for the surface velocity, and L? error for the surface pressure against
the mesh size h. Also for this second convergence test, we observe optimal convergence rates for all the norms.

Robustness with Respect to the Position of the Interface. We conclude our series of numerical results with
a set of simulations aimed at checking that our approach is not sensitive to the position of the interface with
respect to the background mesh. We vary the center ¢ = (c1, c2, c3) of the torus that represents I,

k kn k2 km kv2 kn
dlly) ot Ze(n) ootTull) s
c1 50 sin 10 cy 20 cos 10 c3 20 cos 10 (5.8)
h 0.25 0.125 0.0625 0.05
# bulk velocity DOFs 1.6e5 1.2e6 8.5e6 1.5e7

# bulk pressure DOFs 7.6e3  5.4e4  3.7e5 6.7e5
# surface velocity DOFs 1.6e4 6.0e4 2.3e5 3.4e5
# surface pressure DOFs  9.0e2  3.4e3 1.3e4 2.0e4

Table 2: Torus: DOFs for bulk and surface variables for all the meshes under consideration in the spatial convergence test.
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Figure 8: Torus: bulk and surface FE errors against the mesh size h.
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Figure 9: Torus: bulk and surface FE errors against the value of k in (5.8).

where h is the mesh size. The physical parameters are set like in the convergence test. We consider the mesh
in Table 2 with h = 0.125. Figure 9 shows all the errors against the value of k in (5.8). We see that all the
errors are fairly insensitive to the position of I' with respect to the background mesh, indicating robustness.

Acknowledgment: We are grateful to Dr. Christoph Lehrenfeld for providing us with an ngsxfem implemen-
tation of isoparametric unfitted finite elements.
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