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Abstract: This paper studies a model of two-phase flow with an immersed material viscous interface and
a finite element method for the numerical solution of the resulting system of PDEs. The interaction between
the bulk and surface media is characterized by no-penetration and slip with friction interface conditions.
The system is shown to be dissipative, and a model stationary problem is proved to be well-posed. The finite
element method applied in this paper belongs to a family of unfitted discretizations. The performance of the
method when model and discretization parameters vary is assessed. Moreover, an iterative procedure based
on the splitting of the system into bulk and surface problems is introduced and studied numerically.

Keywords: Two-Phase Flow, Surface Stokes Equations, Finite Elements, CutFEM, TraceFEM

MSC 2010: 65N12, 65N30, 76T30

1 Introduction
Motivated by applications in biomedical engineering [59] and cell biology [61], we are interested in the inter-
action between a rather viscous and dense interface material and a less viscous and dense bulk fluid, as is
the case of, e.g., a lipid vesicle or cell membrane with its content and surrounding fluid. For this purpose,
we consider two immiscible, viscous, and incompressible fluids separated by a viscous inextensible material
interface modeled as a Boussinesq–Scriven surface fluid. The following coupling conditions are prescribed
between the bulk two-phase flow and the surface fluid: (i) the immiscibility condition, i.e. the bulk fluid does
not penetrate through the interface, (ii) slip with friction between the bulk fluid and the viscous interface,
and (iii) the load exerted from the bulk fluid onto the surface fluid defined by the jump of the normal stress
across the interface. To the best of our knowledge, it is the first time that the slip with friction conditions are
imposed in this context. This extends the Navier boundary condition to the interface case and interpolates
between no-slip of the bulk phase and embedded material layer, as considered in [2, 8, 44, 51], and uncou-
pled lateral dynamics of fluidic surfaces as studied, for example, in [52, 54, 57]. We remark that the classical
Boussinesq–Scriven interfacemodel as presented in, e.g., [8, 51] canbeused to account for the viscous effects
in fluidic membranes. Its extension is needed to address complex physical phenomena known to be relevant
for lipid membranes, which include fluidity [18, 33], inextensibility [27, 41], inertia [29, 40], and slip with
respect to the surrounding fluid [1]. By accounting for all of the above phenomena, our model represents
another step towards a more realistic representation of lipid membranes interacting with bulk fluid.

We first state the problem in terms of incompressible two-phase Navier–Stokes flow in the bulk coupled
to surface fluid equations and show the energy balance for this system. This balance demonstrates that the
system with the proposed coupling conditions is thermodynamically consistent, i.e. in the absence of exter-
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nal forces and with no energy inflow through the boundary the system is dissipative. Then we introduce
a simplifying assumption: the coupled system has reached a steady state and inertia terms can be neglected.
Although the resulting surface-bulk Stokes problem is a strong simplification of the original problem, it still
retains interesting features for the purpose of numerical analysis.

For the simplified model, we show well-posedness following the abstract framework for generalized
saddle point problems proposed in, e.g., [3, 43]. Next, we present a sharp interface, geometrically unfit-
ted finite element (FE) method. Unfitted methods allow the sharp interface to cut through the elements of
a fixed background grid. Their main advantage is the relative ease in handling time-dependent domains,
implicitly defined interfaces, and problems with strong geometric deformations [7]. For the bulk two-phase
Stokes problem, we apply an isoparametric unfitted finite element approach [35] of the CutFEM (or Nitsche-
XFEM) family [12, 15, 25, 26, 38, 58]. For a (bulk only) interface Stokes problem with slip between phases,
the approach was studied in [46]. CutFEM uses overlapping fictitious domains in combination with ghost
penalty stabilization [9] to enrich and stabilize the solution. In this paper, we consider the unfitted general-
ized Taylor–Hood finite element pair Pk+1 − Pk, k ≥ 1. For more details on the isoparametric unfitted finite
element, we refer to [36, 37]. For the discretization of the surface Stokes problem, we apply the trace finite
element method [31, 48], which uses traces of the bulk finite element functions. In a set of numerical exper-
iments, we address the dependence of the discretization error of the method on variations in the friction
coefficient, ratio of bulk fluid viscosity, surface fluid viscosity, mesh size, and position of the interface relative
to the fixed computational mesh.

One option to solve the coupled bulk-surface problem is to adopt a monolithic approach. However, such
an approach would quickly lead to high computational costs as the mesh gets refined. Instead, we introduce
a partitioned schemebased onfixed-point iterations [50].With this algorithm, the bulk and surface flowprob-
lems are solved separately and sequentially, and the coupling conditions are enforced in an iterative fashion.
We choose this algorithm for its simplicity of implementation and study its performancewhenmodel and dis-
cretization parameters vary. Our numerical experiments provide evidence of the robustness of the proposed
approach with respect to the contrast in viscosity in the bulk fluid, surface fluid viscosity, and position of the
interface relative to the backgroundmesh. At the same time, convergence slowdownwas observed for certain
values of the slip coefficients.

The outline of the paper is as follows. In Section 2, we introduce the strong formulation of the coupled
problem and the associated energy balance. Section 3 presents the strong and weak formulations of the
simplified problem, together with the finite element discretization. In Section 4, we propose a partitioned
algorithm for the numerical solution of the coupled problem. Numerical results in three dimensions are
reported in Section 5. For all the simulations in this paper, we have usedNGsolve [17, 62], a high performance
multiphysics finite element software with a Python interface, and add-on library ngsxfem [63].

2 A Two-Phase Fluid with Material Viscous Interface
Consider a fixed volume Ω ⊂ ℝ3 filled with two immiscible, viscous, and incompressible fluids separated by
an interface Γ(t) for all t ∈ [0, T]. We assume that Γ(t) stays closed and sufficiently smooth (at least C2) for all
t ∈ [0, T]. Surface Γ(t) separates Ω into two phases (subdomains) Ω+(t) and Ω−(t) := Ω \ Ω+(t). We assume
Ω−(t) to be completely internal, i.e. ∂Ω−(t) ∩ ∂Ω = 0 for all times. See Figure 1. Denote by n± the outward
normals for Ω±(t) and n the normal on Γ pointing from Ω−(t) to Ω+(t); it holds that n− = n and n+ = −n at Γ.
For ease of notation, from now on, we will drop the dependence on t for Γ, Ω+, and Ω−.

Consider the bulk fluid velocities u±(t) : Ω± → ℝ3 and pressures p±(t) : Ω± → ℝ to describe the fluid
motion. Themotion of the fluids occupying subdomains Ω± is governed by the incompressible Navier–Stokes
equations

ρ± ∂̇tu± = div σ± + f± in Ω±, (2.1)
divu± = 0 in Ω±, (2.2)
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Figure 1: Fluid domains and interface inℝ2.

for all t ∈ (0, T). In (2.1), constants ρ± represent the fluid density, ∂̇t denotes thematerial derivative, f± are the
external body forces, and σ± are the Cauchy stress tensors. For Newtonian fluids in both phases, the Cauchy
stress tensors have the following expression:

σ± = −p±I + 2μ±D(u±), D(u±) = 12 (∇u
± + (∇u±)T) in Ω±,

where constants μ± represent the fluid dynamic viscosity.
We assume interface Γ to be a thinmaterial layer with possibly differentmaterial properties from the bulk

fluid. Motivated by applications in cell biology, we consider a viscous inextensible interface modeled as an
“incompressible” surface fluid. The evolution of thematerial interface can be described in terms of the veloc-
ity of this surface fluid denoted by U. Later, we will need the decomposition of U into tangential and normal
components: U = UT + UNn, with UT ⋅ n = 0, UN = n ⋅ U. The surface Navier–Stokes equations governing the
motion of a fluidic deformable layer appear in several works [30, 39, 55, 60]. Here, we adopt the formulation
in terms of tangential differential operators from [30], where the equations have been derived from conser-
vation principles. To introduce these equations, we need some further definitions. Let P(x) := I − n(x)n(x)T
for x ∈ Γ be the orthogonal projection onto the tangent plane. For a scalar function π : Γ → ℝ or a vector
function U : Γ → ℝ3, we define πe : O(Γ)→ ℝ, Ue : O(Γ)→ ℝ3, smooth extensions of π and U from Γ to its
neighborhoodO(Γ). The surface gradient and covariant derivatives on Γ are then defined as ∇Γπ = P∇πe and
∇ΓU := P∇UeP. The definitions of∇Γπ and∇ΓU are independent of the particular smooth extension of π andU
off Γ. On Γ, we consider the surface rate-of-strain tensor [22] given by

DΓ(U) :=
1
2P(∇U + (∇U)

T)P = 12 (∇ΓU + (∇ΓU)
T).

The surface divergence for a vector g : Γ → ℝ3 and a tensor A : Γ → ℝ3×3 are defined as: divΓ g := tr(∇Γg),
divΓ A := (divΓ(eT1A), divΓ(eT2A), divΓ(eT3A))T , where ei is the ith standard basis vector. With this notation,
the surface Navier–Stokes equations take the form

ρΓ ∂̇tU = −∇Γπ + 2μΓ divΓ DΓ(U) + fΓ + be + πκn on Γ, (2.3)
divΓ U = 0 on Γ, (2.4)

where ρΓ is the surface fluid density, μΓ is the surface fluid dynamic viscosity, κ denotes pointwise doubled
mean curvature on Γ, and π is the surface fluid pressure. Thematerial derivative in (2.3) is taken with respect
to surface fluid trajectories, i.e. ∂̇tU = ∂U∂t + (U ⋅ ∇)U. Note that ∂̇tU is an intrinsic surface quantity, although
both terms ∂U

∂t and (U ⋅ ∇)U depend on extension of U in the bulk. On the right-hand side of (2.3), fΓ denotes
the external area force acting on the surface as a result of the interactionwith the bulkfluids (specifiedbelow),
while be denotes other possible area force (such as elastic bending forces) and is not specified further in the
present paper.

Next, we turn to the coupling conditions between equations (2.1)–(2.2) posed in the bulk and equa-
tions (2.3)–(2.4) posed on Γ. First, the immiscibility condition means that the bulk fluid does not penetrate
through Γ, which implies that

u+ ⋅ n = UN = u− ⋅ n on Γ. (2.5)
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Normal velocity UN determines radial deformations of Γ(t), and so it governs the geometric evolution of the
interface,which canbe defined through the LagrangianmappingΨ(t, ⋅ ) from Γ(0) to Γ(t): forx ∈ Γ(0),Ψ(t, x)
solves the ODE system

Ψ(0, x) = x, ∂Ψ(t, x)
∂t
= UN(t, Ψ(t, x)), t ∈ [0, T]. (2.6)

In fluid vesicles and cells, typically a viscous and dense lipid membrane, represented by Γ, is surrounded by
a less viscous and less dense liquid. We are interested in modeling slip with friction between the bulk fluid
and the viscous membrane. Thus, we consider Navier-type conditions

Pσ+n = f+(Pu+ − UT) on Γ, (2.7)
Pσ−n = −f−(Pu− − UT) on Γ, (2.8)

where f− and f+ are friction coefficients at Γ on the Ω− and Ω+ side, respectively. Conditions (2.7)–(2.8)
model an incomplete adhesion of a bulk fluid to the material surface with 1/f± often referred to as a “slip
length” [42]; see, e.g., [4, 34] for the modern description of experimental and theoretical validations. In par-
ticular, the acceptance of nonzero slip length resolves the well-known “no-collision paradox” [13, 19, 28],
thus suggesting (2.7)–(2.8) to be an important modeling assumption in the simulation of a lipid vesicle – cell
membrane contact (and fusion). We finally note that the Navier conditions are not an uncommon choice in
numerical models if the flow in boundary region is under-resolved [32].

The area force in (2.3) coming from the bulk fluid is defined by the jump of the normal stress on Γ,

fΓ = [σn]+− = σ+n − σ−n on Γ. (2.9)

We summarize the complete system of equations and coupling conditions below:

{{{{{{{{{{{{
{{{{{{{{{{{{
{

ρ± ∂̇tu± − μ±∆u± + ∇p± = f± in Ω±,
divu± = 0 in Ω±,

ρΓ ∂̇tU − 2μΓ divΓ DΓ(U) + ∇Γπ − πκn = [σn]+− + be on Γ,
divΓ U = 0 on Γ,

u+ ⋅ n = u− ⋅ n = UN on Γ,
Pσ±n = ±f±(Pu± − UT) on Γ,

(2.10)

with the evolution of Ω± and Γ defined by the velocity solving the system through (2.6). On ∂Ω, the system is
endowed with boundary conditions either for the bulk velocity or for the bulk normal stress,

u+ = g on ∂ΩD , (2.11)
σ+n+ = fN on ∂ΩN . (2.12)

Here ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = 0. See Figure 1. At t = 0, initial velocity is given by u± = u±0 in Ω±(0)
and U = U0 on Γ(0).

2.1 Energy Balance of the Continuous Coupled Problem

We look for the energy balance of the coupled system (2.10)–(2.12). We make use of the following identities
for time-dependent domains Ω±(t), whose only moving part of the boundary is Γ(t):

1
2
d
dt ∫

Ω±(t) |u
±|2 dV = ∫

Ω±(t) u
± ⋅
∂u±
∂t

dV + 12 ∫
Γ(t)

|u±|2u± ⋅ n± dS, (2.13)

∫
Ω±(t)(u

± ⋅ ∇)u± ⋅ u± dV = 12 ∫
∂Ω±(t) |u

±|2u± ⋅ n± dS. (2.14)

Identity (2.13) is the Reynolds transport theorem, while identity (2.14) is obtained from integration by parts.
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Let us start from the kinetic energy of the fluid in Ω−,

d
dt
E− = 12

d
dt ∫

Ω− ρ
−|u−|2 dV = ∫

Ω− ρ
−u− ⋅ ∂u

−

∂t
dV + 12 ∫

Γ

ρ−|u−|2u− ⋅ n dS

= ∫
Ω− u
− ⋅ (div σ− + f− − ρ−(u− ⋅ ∇)u−) dV + 12 ∫

Γ

ρ−|u−|2u− ⋅ n dS

= ∫
Ω− ∇ ⋅ (σ

−u−) dV − ∫
Ω− σ
− : ∇u− dV + ∫

Ω− u
− ⋅ f− dV

= ∫
Γ

u− ⋅ (σ−n) dS − ∫
Ω− σ
− : D(u−) dV + ∫

Ω− u
− ⋅ f− dV

= ∫
Γ

u− ⋅ (σ−n) dS − 2μ− ∫
Ω− ‖D(u

−)‖2 dV + ∫
Ω− u
− ⋅ f− dV. (2.15)

Above, we have used (2.13), (2.1), (2.2), (2.14), and integration by parts.
We repeat similar steps for the kinetic energy of the fluid in Ω+, the main difference being that

∂Ω+ = Γ ∪ ∂ΩD ∪ ∂ΩN ,

while ∂Ω− = Γ. We obtain
d
dt
E+ = −∫

Γ

u+ ⋅ (σ+n) dS − 2μ+ ∫
Ω+ ‖D(u

+)‖2 dV + ∫
Ω+ u
+ ⋅ f+ dV + B, (2.16)

where
B = ∫

∂ΩD

(g ⋅ (σ+n) − 12ρ
+|g|2g ⋅ n+) dS + ∫

∂ΩN

(u+ ⋅ f − 12ρ
+|u+|2u+ ⋅ n+) dS. (2.17)

Putting together (2.15) and (2.16), we obtain the total kinetic energy for the bulk flow,

dE
dt
=
d
dt
(E+ + E−) = −2μ− ∫

Ω− ‖D(u
−)‖2 dV − 2μ+ ∫

Ω+ ‖D(u
+)‖2 dV − ∫

Γ

UN[nTσn]+− dS

− ∫
Γ

f−Pu− ⋅ (Pu− − UT) dS − ∫
Γ

f+Pu+ ⋅ (Pu+ − UT) dS

+ ∫
Ω− u
− ⋅ f− dV + ∫

Ω+ u
+ ⋅ f+ dV + B, (2.18)

where we have used (2.5), (2.7), and (2.8). For the kinetic energy of the surface flow, we will use the surface
analogue of the Reynolds transport theorem (see, e.g., [14, Lemma 2.1]),

d
dt ∫

Γ

f dS = ∫
Γ

(∂̇t f + f divΓ U) dS. (2.19)

We also need the surface integration by part identity

∫
Γ

(g divΓ f + f ⋅ ∇Γg) dS = ∫
Γ

κg(f ⋅ n) dS,

which is valid for a smooth closed surface with smooth scalar field g and vector field f. A componentwise
application of this equality yields the identity

∫
Γ

g ⋅ divΓ G dS = −∫
Γ

G : ∇Γg dS (2.20)

for a vector field g ∈ (C1(Γ))3 and a matrix function G ∈ (C1(Γ))3×3 such that G = PGP.
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The energy balance on Γ is given by
dEΓ
dt
=
1
2
d
dt ∫

Γ

ρΓ|U|2 dS = ∫
Γ

(ρΓU ⋅ ∂̇tU +
1
2ρΓ|U|

2 divΓ U) dS

= ∫
Γ

U ⋅ (−∇Γπ + 2μΓ divΓ DΓ(U) + fΓ + be) dS

= −2μΓ ∫
Γ

DΓ(U) : ∇ΓU dS + ∫
Γ

U ⋅ [σn]+− dS + ∫
Γ

UT ⋅ be dS

= −2μΓ ∫
Γ

‖DΓ(U)‖2 dS + ∫
Γ

UN[nTσn]+− dS

+ ∫
Γ

UT ⋅ (f+(Pu+ − UT) + f−(Pu− − UT)) dS + ∫
Γ

U ⋅ be dS, (2.21)

where we have applied (2.20) and used (2.19), (2.3)–(2.5), (2.7)–(2.9), and integration by parts.
Combining (2.18) and (2.21), we get the kinetic energy for the bulk and surface flows,

dE
dt
+
dEΓ
dt
= −2μ− ∫

Ω− ‖D(u
−)‖2 dV − 2μ+ ∫

Ω+ ‖D(u
+)‖2 dV

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
bulk fluid viscous dissipation

− 2μΓ ∫
Γ

‖DΓ(UT)‖2 dS
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

surface fluid viscous dissipation

− ∫
Γ

f−‖Pu− − UT‖2 dS − ∫
Γ

f+‖Pu+ − UT‖2d
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

frictional energy dissipation

+ ∫
Γ

u− ⋅ f− dV + ∫
Γ

u+ ⋅ f+ dV + ∫
Γ

U ⋅ be dS
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

work of external forces

+ B
⏟⏟⏟⏟⏟⏟⏟

work of b.c.

, (2.22)

where B, i.e. the work of the boundary conditions, is defined in (2.17).
From (2.22), we see that, in the absence of external forces and with no energy inflow through the bound-

ary, the system is dissipative, i.e. thermodynamically consistent.

3 A Simplified Steady Problem
In this section, we consider a (strongly) simplified version of the problem presented in Section 2. Our main
assumption is that the coupled bulk and surface fluid system has reached a steady state and inertia terms
can be neglected. Since the steady state implies Γ(t) = Γ(0), we have UN = 0 and hence U = UT . This simpli-
fied surface-bulk Stokes problem models a viscosity dominated two-phase flow with the viscous interface in
a dynamical equilibrium; see also Remark 1. It is an interesting model problem for the purpose of numerical
analysis. With these simplifications, equations (2.1)–(2.2) become

−μ±∆u± + ∇p = f± in Ω±, (3.1)
divu± = 0 in Ω±. (3.2)

We impose anon-homogeneousDirichlet conditionon the entire outer boundary ofΩ, i.e. problem (3.1)–(3.2)
is supplemented with boundary condition (2.11) with g ∈ [H1/2(∂ΩD)]3 and ∂ΩD = ∂Ω. Under our assump-
tion, the momentum equation for the surface fluid simplifies to −2μΓ divΓ DΓ(UT) + ∇Γπ − πκn = [σn]+− + be.
The tangential part of the above momentum equation together with the inextensibility condition (2.4) leads
to the surface Stokes problem

−2μΓPdivΓ DΓ(UT) + ∇Γπ = [Pσn]+− + Pbe on Γ, (3.3)
divΓ UT = 0 on Γ, (3.4)
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while the normal part simplifies to
[nTσn]−+ = πκ on Γ. (3.5)

The interface condition above is standard in many models of two-phase flows, where π has the meaning of
the surface tension coefficient.

Coupling condition (2.5) is replaced by

u+ ⋅ n = u− ⋅ n on Γ, (3.6)

while conditions (2.7) and (2.8) still hold,

Pσ±n = ±f±(Pu± − UT) on Γ. (3.7)

Finally, we will see that the (weak formulation of the) problem is well-posed under two mean conditions for
the bulk pressure,

∫
Ω± p
± dx = 0.

Remark 1. SinceU ⋅ n = 0, condition (3.6) allows the flow through the steady interface Γ. This is inconsistent
with (2.5), which assumes immiscibility of fluids. For a physically consistent formulation that describes the
true equilibrium, one has to set u+ ⋅ n = u− ⋅ n = 0 on Γ, but allow the shape of Γ to be the unknown, i.e. to
be determined as a part of the problem. For such equilibrium to exist, external forces and boundary condi-
tionsmay have to satisfy additional constraints. Finding such constraints and solving the resulting nonlinear
problem is outside the scope of this paper. We rather follow a common convention in the analysis of models
for steady two-phase problems and allow (3.6) for the steady interface; see, e.g., [6, 16, 21, 47].

3.1 Variational Formulation

The purpose of this section is to derive the variational formulation of coupled problem (3.1)–(3.7). Let us
introduce some standard notation. The space of functions whose square is integrable in a domain ω is
denoted by L2(ω). The space of functions whose distributional derivatives of order up to m ≥ 0 (integer)
belong to L2(ω) is denoted by Hm(ω). The space of vector-valued functions with components in L2(ω) is
denoted by L2(ω)3, and H1(div, ω) is the space of functions in L2(ω)with divergence in L2(ω). Moreover, we
introduce the following functional spaces:

V− = H1(Ω−)3, V+ = {u ∈ H1(Ω+)3, u|∂ΩD = g}, V+0 = {u ∈ H
1(Ω+)3, u|∂ΩD = 0},

V± = {u = (u−, u+) ∈ V− × V+, u− ⋅ n = u+ ⋅ n on Γ},
V±0 = {u = (u

−, u+) ∈ V− × V+0 , u− ⋅ n = u+ ⋅ n on Γ},

L2± = {p = (p−, p+) ∈ L2(Ω−) × L2(Ω+) : ∫
Ω± p
± dx = 0},

VΓ = {U ∈ H1(Γ)3 : U ⋅ n = 0}.

The space V± can be also characterized as (V− × V+) ∩ H1(div, Ω). We use ( ⋅ , ⋅ )ω and ⟨ ⋅ , ⋅ ⟩ω to denote the
L2 product and the duality pairing, respectively.

Multiplying (3.1) by v ∈ V±0 and (3.2) by q ∈ L20(Ω) and integrating over each subdomain, we see that
smooth bulk velocity and pressure satisfy integral identity,

− (p−, div v−)Ω− − (p+, div v+)Ω+
+ 2(μ−D(u−),D(v−))Ω− + 2(μ+D(u+),D(v+))Ω+
− ⟨πκ, v− ⋅ n⟩Γ + ⟨f−(Pu− − U), Pv−⟩Γ + ⟨f+(Pu+ − U), Pv+⟩Γ = (f−, v−)Ω− + (f+, v+)Ω+ (3.8)

(divu−, q−)Ω− + (divu+, q+)Ω+ = 0 (3.9)
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for all (v, q) ∈ V±0 × L20(Ω). The interface terms in (3.8) have been obtained using coupling conditions (3.7)
and (3.5) as follows:

−⟨σ−n, v−⟩Γ + ⟨σ+n, v+⟩Γ = −⟨Pσ−n, Pv−⟩Γ + ⟨Pσ+n, Pv+⟩Γ − ⟨[nTσn]−+, v− ⋅ n⟩Γ
= ⟨f−(Pu− − U), Pv−⟩Γ + ⟨f+(Pu+ − U), Pv+⟩Γ − ⟨πκ, v− ⋅ n⟩Γ .

Likewise, we find that the surface velocity and pressure satisfy the following integral identities:

−(π, divΓ V)Γ + 2(μΓDΓ(U),DΓ(V))Γ − ⟨f−(Pu− − U),V⟩Γ − ⟨f+(Pu+ − U),V⟩Γ = (Pbe ,V)Γ , (3.10)
(divΓ U, τ)Γ = 0 (3.11)

for all (V, τ) ∈ VΓ × L20(Γ).
The weak formulation of the coupled problem (3.1)–(3.7) follows by combining (3.8)–(3.9) and (3.10)–

(3.11). In order to write it, we introduce the following forms for all u ∈ V±, v ∈ V±0, U,V ∈ VΓ, p ∈ L2(Ω),
π ∈ L2(Γ):

a({u,U}, {v,V}) = 2(μ−D(u−),D(v−))Ω− + 2(μ+D(u+),D(v+))Ω+
+ 2(μΓDΓ(U),DΓ(V))Γ + ⟨f−(Pu− − U), Pv− − V⟩Γ
+ ⟨f+(Pu+ − U), Pv+ − V⟩Γ ,

b({v,V}, {p, π}) = −(p−, div v−)Ω− − (p+, div v+)Ω+ − (π, divΓ V)Γ ,
s(v, π) = −⟨πκ, v ⋅ n⟩Γ ,
r(v,V) = (f−, v−)Ω− + (f+, v+)Ω+ + (Pbe ,V)Γ .

Then the weak formulation reads: find (u, p) ∈ V± × L2± and (U, π) ∈ VΓ × L2(Γ) such that

{
a({u,U}, {v,V}) + b({v,V}, {p, π}) + s(v, π) = r(v,V)

b({u,U}, {q, τ}) = 0
(3.12)

for all (v, q) ∈ V±0 × L20(Ω) and (V, τ) ∈ VΓ × L20(Γ). Note that test and trial pressure spaces both involve two
(different) gauge conditions.

3.2 Well-Posedness

With thegoal of proving thewell-posedness of the stationaryproblem,we start by showing that a({ ⋅ , ⋅ }, { ⋅ , ⋅ })
is coercive. Let ‖u‖2H1(Ω±) = ‖u+‖2H1(Ω+) + ‖u−‖2H1(Ω−). Let ‖p‖2L2(Ω±) = ‖p‖2Ω+ + ‖p‖2Ω− . We define the following
additional norms:

⦀{v,V}⦀2 = ‖v‖2H1(Ω±) + ‖V‖2H1(Γ), ⦀{p, π}⦀
2 = ‖p‖2Ω± + ‖π‖2Γ .

The coercivity result is formulated in the form of a lemma.

Lemma 1. For any v ∈ V±0 and V ∈ VΓ, it holds

a({v,V}, {v,V}) ≥ C⦀{v,V}⦀2 (3.13)

with a positive constant C, which may depend on the viscosity values and Ω±.

Proof. One readily computes that

a({v,V}, {v,V}) = 2(μ−D(v−),D(v−))Ω− + 2(μ+D(v+),D(v+))Ω+
+ 2(μΓDΓ(V),DΓ(V))Γ + f−‖Pv− − V‖2Γ + f

+‖Pv+ − V‖2Γ . (3.14)

Since function v+ satisfies homogeneous Dirichlet boundary condition on ∂Ω+ \ Γ, we apply the following
Korn inequality in Ω+:

‖v+‖H1(Ω+) ≤ C‖D(v+)‖Ω+ . (3.15)
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By the triangle and trace inequalities in Γ, we get

‖V‖Γ ≤ ‖Pv+ − V‖Γ + ‖Pv+‖Γ ≤ ‖Pv+ − V‖Γ + C‖v+‖H1(Ω+). (3.16)

We further apply Korn’s inequality on Γ (see [30]),

‖V‖H1(Γ) ≤ C(‖V‖Γ + ‖DΓ(V)‖Γ). (3.17)

Next, we can estimate the trace of v− on Γ through the triangle inequality,

‖v−‖Γ ≤ ‖Pv− − V‖Γ + ‖V‖Γ ≤ ‖Pv− − V‖Γ + ‖V‖H1(Γ). (3.18)

We finally apply the following Korn inequality in Ω−:

‖v‖H1(Ω−) ≤ C(‖D(v−)‖Ω− + ‖v−‖Γ). (3.19)

Identity (3.14) and inequalities (3.15)–(3.19) lead to (3.13) after easy computations.

The continuity of the bilinear forms a({ ⋅ , ⋅ }, { ⋅ , ⋅ }), b({ ⋅ , ⋅ }, { ⋅ , ⋅ }), and s( ⋅ , ⋅ ) follows from standard argu-
ments based on the Cauchy–Schwarz and triangle inequalities,

a({u,U}, {v,V}) ≤ C⦀{u,U}⦀⦀{v,V}⦀ for all u, v ∈ V±0 , U,V ∈ VΓ ,
b({u,U}, {p, π}) ≤ C⦀{u,U}⦀⦀{p, π}⦀ for all u ∈ V±0 , U ∈ VΓ , p ∈ L2(Ω), π ∈ L2(Γ),

s(v, π) ≤ C⦀{v, 0}⦀⦀{0, π}⦀ for all v ∈ V±, π ∈ L2(Γ).
(3.20)

Problem (3.12) falls into the class of so-called generalized saddle point problems. An abstractwell-posedness
result for such problems can be found, e.g., in [3, 43], which extend the Babuşka–Brezzi theory. Applied to
(3.12), this well-posedness result requires coercivity (3.13), continuity (3.20) and two inf-sup conditions
formulated in the following lemma.

Lemma 2. The following inf-sup conditions hold with positive constants γ1 and γ2:

sup
v∈V±

0 ,V∈VΓ

b({v,V}, {p, π}) + s(v, π)
⦀{v,V}⦀ ≥ γ1⦀{p, π}⦀ for all p ∈ L2±, π ∈ L2(Γ), (3.21)

sup
v∈V±

0 ,V∈VΓ

b({v,V}, {p, π})
⦀{v,V}⦀ ≥ γ2⦀{p, π}⦀ for all p ∈ L20(Ω), π ∈ L20(Γ). (3.22)

Proof. The proof follows by combining well-known results about the existence of a continuous right inverse
of the divergence operator in H1

0(Ω)3 (see [5]) and VΓ (see [30]): for arbitrary p ∈ L20(Ω) and π ∈ L20(Γ), there
exist v ∈ H1

0(Ω)3 and V ∈ VΓ such that

p = div v in Ω and ‖v‖H1(Ω) ≤ cΩ‖p‖L2(Ω),
π = divΓ V on Γ and ‖V‖H1(Γ) ≤ cΓ‖π‖Γ .

(3.23)

Letting v± = v|Ω± , (v−, v+)T ∈ V±0 , and adding estimates in (3.23), we get

⦀{p, π}⦀2 ≤ b({v,V}, {p, π}), (3.24)
⦀{v,V}⦀ ≤ cΩ‖p‖Ω + cΓ‖π‖Γ ≤ (cΩ + cΓ)⦀{p, π}⦀. (3.25)

This proves (3.22) with γ2 = 1/(cΩ + cΓ).
To show (3.21), we split π = π0 + π⊥ with π0 ∈ L20(Γ) and π⊥ = |Γ|−1 ∫Γ π ds. For the π0 part of π, we use

again (3.23) as above, while for p± ∈ L20(Ω±), we use the existence of a continuous right inverse of div in
H1
0(Ω±)3 to claim the existence of v ∈ H1

0(Ω−)3 × H1
0(Ω+)3 ⊂ V±0 and V ∈ VΓ such that

⦀{p, π0}⦀ ≤ b({v,V}, {p, π0}) + s(v, π), ⦀{v,V}⦀ ≤ (cΩ + cΓ)⦀{p, π0}⦀, (3.26)

with some positive cΩ , cΓ depending only on Γ and Ω. We also used that v = 0 on Γ implies s(v, π) = 0.
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Let C± = ±|Ω±|−1|Γ|∫Γ κ ds. To control ‖π
⊥‖Γ, we need v1 ∈ V±0 such that

div v1 = −C± in Ω±, v1 ⋅ n = κ on Γ and ‖v1‖H1(Ω±) ≤ C. (3.27)

Such v1 can be built, for example, as follows. Let v−1 = ∇ψ, where ψ ∈ H2(Ω−) solves the Neumann prob-
lem −∆ψ = C− in Ω−, n ⋅ ∇ψ = κ on Γ. Since Γ = ∂Ω− is smooth, by the H2-regularity of the Neumann
problem, we have that ‖v−1‖H1(Ω−) ≤ ‖ψ‖H2(Ω−) ≤ C. The boundary ∂Ω is only Lipschitz, and so the Neu-
mann problem in Ω+ is not necessarily H2-regular. To handle this, we first extend v−1 from Ω− to a func-
tion ṽ1 in H1

0(Ω)3 such that ‖ṽ1‖H1(Ω+) ≤ c‖v−1‖H1(Ω−) (see [56]). Next, we consider w ∈ H1
0(Ω+)3 such that

divw = C+ − div ṽ1 ∈ L20(Ω+), and ‖w‖H1(Ω+) ≤ cΩ+‖divw‖L2(Ω+) ≤ C (see [5]). The desired v+1 is given in Ω+ by
v+1 = ṽ1 +w. Since div v1 = −C±, for p ∈ L2±(Ω) and π ∈ L2(Γ), we have identities

b({v1, 0}, {p, π}) = 0 = (divΓ V, π⊥)Γ . (3.28)

We also note the equality ‖π⊥‖2Γ = ̂cs(v1, π⊥), with

̂c = π⊥|Γ|/∫
Γ

κ2 ds.

The denominator above is positive since Γ is closed, and so κ cannot be zero everywhere on Γ. We use (3.24)–
(3.28) to estimate, for some β > 0,

⦀{p, π}⦀2 = ⦀{p, π0}⦀2 + β‖π⊥‖2Γ ≤ b({v,V}, {p, π0}) + s(v, π) + s(β ̂cv1, π⊥)
= b({v + β ̂cv1,V}, {p, π}) + s(v + β ̂cv1, π) − (β ̂cv1, π0)Γ

≤ b({v + β ̂cv1,V}, {p, π}) + s(v + β ̂cv1, π) +
β2 ̂c2

2 ‖v1‖
2
Γ +

1
2 ‖π0‖

2
Γ

≤ b({v + β ̂cv1,V}, {p, π}) + s(v + β ̂cv1, π) + c3β2‖π⊥‖2Γ +
1
2 ‖π0‖

2
Γ ,

with some c3 > 0 depending only on Γ and Ω. For β > 0 sufficiently small such that β2 − c3β2 ≥ 0, we get

c⦀{p, π}⦀2 ≤ b({v + β ̂cv1,V}, {p, π}) + s(v + β ̂cv1, π), (3.29)

with c > 0 depending only on Γ and Ω. Thanks to the triangle inequality, the second estimate in (3.26), and
the definition of ̂c and v1, we find the bound

⦀v + β ̂cv1,V⦀ ≤ ⦀v,V⦀ + β ̂c⦀β ̂cv1, 0⦀ ≤ (cΩ + cΓ)⦀{p, π0}⦀ + C‖π⊥‖Γ ≤ C⦀{p, π}⦀,

with C > 0 depending only on Γ and Ω. The combination of the above bound and (3.29) completes the proof
of the lemma.

3.3 Finite Element Discretization

LetΩ ⊂ ℝ3 be a fixed polygonal domain that strictly contains Γ. We consider a family of shape regular tetrahe-
dral triangulations {Th}h>0 of Ω. We adopt the convention that the elements T and edges e are open sets and
use the over-line symbol to refer to their closure. Let hT = diam(T) for T ∈ Th. The set of elements intersecting
Ω± and the set of elements having a nonzero intersection with Γ are

T±h = {T ∈ Th : T ∩ Ω± ̸= 0}, TΓ
h = {T ∈ Th : T ∩ Γ ̸= 0},

respectively. We assume {TΓ
h }h>0 to be quasi-uniform. The domain formed by all tetrahedra in TΓ

h is denoted
by ΩΓ

h := int(⋃T∈TΓ
h
T). We define the h-dependent domains

Ω±h = int( ⋃
T∈T±

h

T)
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and the set of faces of TΓ
h restricted to the interior of Ω

±
h ,

E
Γ,±
h = {e = int(∂T1 ∩ ∂T2) : T1, T2 ∈ T

±
h and T1 ∩ Γ ̸= 0 or T2 ∩ Γ ̸= 0}.

For the space discretization of the bulk fluid problems, we restrict our attention to inf-sup stable finite
element pair Pk+1 − Pk, k ≥ 1, i.e. Taylor–Hood elements. Specifically, we consider the spaces of continuous
finite element pressures given by

Q−h = {p ∈ C(Ω
−
h) : q|T ∈ Pk(T) for all T ∈ T

−
h }.

Space Q+h is defined analogously. The trial FE pressure space is given by:

L2±(Ω)h = {p = (p−, p+) ∈ Q−h × Q
+
h : ∫

Ω− p
− = ∫

Ω+ p
+ = 0}

and the test space by Q±h = Q
−
h × Q
+
h ∩ L

2
0(Ω). Let

V−h = {u ∈ C(Ω
−
h)

3 : u|T ∈ Pk+1(T) for all T ∈ T−h },

with the analogous definition for V+h . Our FE velocity space is given by

V±h = {u = (u
−, u+) ∈ (V−h × V

+
h )}.

Functions in L2±(Ω) and V±h and their derivatives are multivalued in ΩΓ
h, the overlap of Ω−h and Ω+h . The

jump of a multivalued function over the interface is defined as the difference of components coming from Ω−h
andΩ+h , i.e. [u] = u− − u+ on Γ. Note that this is the jump thatwehave previously denotedwith [ ⋅ ]−+. Moreover,
we define the following averages:

{u} = αu+ + βu−, ⟨u⟩ = βu+ + αu−, (3.30)

where α and β are weights to be chosen such that α + β = 1, 0 ≤ α, β ≤ 1. For example, in [12], the setting
α = μ−/(μ+ + μ−) and β = μ+/(μ+ + μ−) is suggested. In [11], the authors choose α = 0, β = 1 if μ− ≤ μ+ and
α = 1, β = 0 otherwise. Below, in (3.34) and (3.39), we will use the relationship

[ab] = [b]{a} + ⟨b⟩[a]. (3.31)

For the discretization of the surface Stokes problem, we first consider the generalized Taylor–Hood bulk
spaces in the strip ΩΓ

h,
VΓ,h = {U ∈ C(ΩΓ

h)
3 : U|T ∈ Pk+1(T) for all T ∈ TΓ

h },
QΓ,h = {π ∈ C(ΩΓ

h) : π|T ∈ Pk(T) for all T ∈ T
Γ
h },

Q0
Γ,h = QΓ,h ∩ L20(Γ). In the trace finite elementmethod,we use the traces of functions from VΓ,h andQΓ,h on Γ.

The inf-sup stability of the resulting trace FEM was analyzed in [48] for k = 1 and extended to higher order
isoparametric trace elements in [31].

In the treatment of the surface Stokes problem, one has to enforce the tangentiality condition U ⋅ n = 0
on Γ. In order to enforce it while avoiding locking, we follow [23, 24, 30, 45, 53] and add a penalty term to
the weak formulation.

A discrete variational analogue of problem (3.12) reads: find

(uh , ph) ∈ V±h × L
2
±(Ω)h and (Uh , πh) ∈ VΓ,h × QΓ,h

such that

{
ah({uh ,Uh}, {vh ,Vh}) + bh({vh ,Vh}, {ph , πh}) + sh(vh , πh) = rh(vh ,Vh),

bh({uh ,Uh}, {qh , τh}) − bp(ph , qh) − bs(πh , τh) = 0
(3.32)

for all (vh , qh) ∈ V±0,h × Q
±
h and (Vh , τh) ∈ VΓ,h × Q0

Γ,h.Wedefine all the bilinear forms in (3.32) for alluh ∈ V±h ,
vh ∈ V±0,h, U,V ∈ VΓ,h, p ∈ L2(Ω), π ∈ L2(Γ). Let us start from form ah({ ⋅ , ⋅ }, { ⋅ , ⋅ }),

ah({uh ,Uh}, {vh ,Vh}) = ai({uh ,Uh}, {vh ,Vh}) + an(uh , vh) + ap({uh ,Uh}, {vh ,Vh}) + as(Uh ,Vh), (3.33)
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where we group together the terms that arise from the integration by parts of the divergence of the stress
tensors,

ai({uh ,Uh}, {vh ,Vh}) = 2(μ−D(u−h),D(v
−
h))Ω− + 2(μ+D(u+h),D(v+h))Ω+

+ ⟨f−(Pu−h − Uh), Pv
−
h − Vh⟩Γ + ⟨f

+(Pu+h − Uh), Pv
+
h − Vh⟩Γ

− 2⟨{μnTD(uh)n}, [vh ⋅ n]⟩Γ + 2(μΓDΓ(Uh),DΓ(Vh))Γ , (3.34)

the terms that enforce condition (3.6) weakly using Nitsche’s method,

an(uh , vh) = ∑
T∈TΓ

h

γ
hT
{μ}([uh ⋅ n], [vh ⋅ n])Γ − 2⟨{μnTD(v)n}, [uh ⋅ n]⟩Γ , (3.35)

and the stabilization and penalty terms

ap({uh ,Uh}, {vh ,Vh}) = J−h(uh , vh) + J
+
h(uh , vh) + τs(Uh ⋅ n,Vh ⋅ n)Γ , (3.36)

J±h(uh , vh) =
k+1
∑
ℓ=1
|e|2ℓ−1 ∑

e∈EΓ,±
h

γ±uμ±([∂ℓnu±h], [∂
ℓ
nu±h])e . (3.37)

In (3.37), ∂ℓnu−h denotes the derivative of order ℓ of u
−
h in the direction ofn. The Jh terms in (3.36) are so-called

ghost-penalty stabilization [9, 10] included to avoid poorly conditioned algebraic systems due to possible
small cuts of tetrahedra from TΓ

h by the interface. The terms in (3.38) and (3.40) have the same role for the
surface bilinear forms.

The last form in (3.33) is related to the algebraic stability of the surface Stokes problem,

as(Uh ,Vh) = ρu(∇uhn, ∇vhn)ΩΓ
h
. (3.38)

Similarly, the terms coming from the integration by parts of the divergence of the stress tensors are contained
in

bh({vh ,Vh}, {ph , πh}) = −(p−h , div v
−
h)Ω− − (p+h , div v+h)Ω+ + ⟨{ph}, [vh ⋅ n]⟩Γ + (∇Γπh ,Vh)Γ , (3.39)

the penalty terms are grouped together in

bp(ph , qh) = J−h (ph , qh) + J
+
h (ph , qh), J±h (ph , qh) =

γ±p
μ± ∑

e∈EΓ,±
h

k
∑
ℓ=1
|e|2ℓ+1([∂ℓnp±h], [∂

ℓ
nq±h])e ,

and we have a term related to algebraic stability of the surface Stokes problem in

bs(πh , τh) = ρp(∇ph ⋅ n, ∇ph ⋅ n)ΩΓ
h
. (3.40)

Finally,
sh(vh , πh) = −⟨πhκ, ⟨vh ⋅ n⟩⟩Γ ,
rh(vh ,Vh) = (f−h , v

−
h)Ω− + (f+h , v+h)Ω+ + (Pbeh ,Vh)Γ .

We recall that some of the interface terms in ai({ ⋅ , ⋅ }, { ⋅ , ⋅ }) and bh({ ⋅ , ⋅ }, { ⋅ , ⋅ }) have been obtained using
relationship (3.31).

Parameters γ±u, γ±p, and γ are all assumed to be independent of μ±, h, and the position of Γ against the
underlyingmesh. Parameter γ in (3.35) needs to be large enough to provide the bilinear form ah({ ⋅ , ⋅ }, { ⋅ , ⋅ })
with coercivity. Parameters γ±u and γ±p can be tuned to improve the numerical performance of the method. As
for the parameters required by the discretization of the surface Stokes problem, we allow

τs = cτh−2, ρp = cph, ρu ∈ [cuh, Cuh−1],

where cτ, cp, cu, and Cu are positive constants independent of h and how Γ cuts the bulk mesh.
The definition of bilinear forms requires integration over Γ ∩ T and T ∩ Ω± for T fromΩΓ

h. In general, there
are no exact quadrature formulas to accomplish this task [49]. In practice, approximations should be made
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which introduce geometric errors. To keep these geometric errors of the order consistent with the approx-
imation properties of the finite element spaces, we use isoparametric variants of the above spaces introduced
in [35]; see also [20, 37].

We expect that the stability of the finite element formulation can be analyzed largely following the same
steps of the well-posedness analysis for the weak formulation in Section 3.2, with a special treatment of cut
elements, Nitsche terms, and surface elements as available in the literature for bulk Stokes interface and
surface Stokes problems. For the sake of brevity, we do not work out these details here, but will present them
in a follow-up paper.

4 A Partitioned Method for the Coupled Bulk-Surface Flow
For the solution of the coupled problem described in Section 3, we intend to use a partitioned strategy,
i.e. each sub-problem is solved separately and the coupling conditions are enforced in an iterative fashion.
Partitionedmethods are appealing for solving coupled problems because they allow to reuse existing solvers
with minimal modifications. In order to devise such a method for the simplified problem in Section 3, let us
take a step back and look at the original problem (2.10).

Discretize problem (2.10) in time with, e.g., the backward Euler method, and consider the coupled prob-
lem at a particular time t = tn+1. Let Sb be the map that associates the jump in the normal stress across the
interface to any given surface flow velocity U = UT + UNn,

Sb(U) = [σn]+− = σ+(u+, p+)n − σ−(u−, p−)n on Γ,

where (u+, p+) and (u−, p−) represent the solution of the two-phase time-discrete Navier–Stokes problem at
time t associated to (2.1)–(2.2) endowed with interface conditions (2.5), (2.7), and (2.8). Moreover, let Ss
be the operator associated to the surface flow such that, to any given surface flow velocity U, it associates
the load fΓ, Ss(U) = fΓ on Γ, through the time-discrete surface Navier–Stokes problem at time t associated to
(2.3)–(2.4). Note that Sb and Ss are nonlinear and their definitions can involve also forcing terms and, in the
case of the bulk fluid problem, terms due to the boundary conditions. For the surface operator, we can define
S−1s as the map that associates the surface flow velocity U to any given load fΓ on Γ.

With the above definitions, we can express the time-discrete version of coupled problem (2.10) in terms
of the solution U of a nonlinear equation defined only on Γ. This interface equation is usually presented in
one of three formulations that are equivalent from the mathematical point of view, but give rise to different
iterative algorithms. The first and perhaps most used formulation is the fixed-point one: find U such that

S−1s (Sb(U)) = U on Γ. (4.1)

The second formulation is a slight modification of (4.1), which lends itself to a Newton iterative method:
find U such that

S−1s (Sb(U)) − U = 0 on Γ.

The third approach is given by the Steklov–Poincaré equation: find U such that

Sb(U) − Ss(U) = 0 on Γ.

See, e.g., [50] for more details on these three formulations.
A standard algorithm for equation (4.1) uses fixed-point iterations: given Uk, compute

Uk+1 = Uk + ωk(Uk − Uk) with Uk = S−1s (Sb(Uk)). (4.2)

The choice of the relaxation parameter ωk determines the efficiency of the algorithm or it might be crucial
for convergence in certain ranges of the physical parameters. An effective strategy for setting ωk is Aitken’s
acceleration method.
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For simplicity, we present algorithm (4.2) applied to the time-discrete version of coupled problem (2.10)
with ωk = 1 for all k (i.e., no relaxation). At time t = tn+1, assuming that Uk is known, perform the following
steps.
Step 1: Solve the two-phase time-discrete Navier–Stokes problem at time t associated to (2.1)–(2.2) for the

bulk flow variables (u−k+1, p
−
k+1) and (u

+
k+1, p

+
k+1) with interface conditions

u+k+1 ⋅ n = U
k
N = u
−
k+1 ⋅ n on Γ,

Pσ+k+1n = f
+(Pu+k+1 − U

k
T) on Γ,

Pσ−k+1n = −f
−(Pu−k+1 − U

k
T) on Γ.

Step 2: Solve the time-discrete surfaceNavier–Stokes problemat time t associated to (2.3)–(2.4) for variables
(Uk+1, πk+1) with interface condition

fk+1Γ = [σk+1n]
+
− on Γ.

Step 3: Check the stopping criterion
‖Uk+1 − Uk‖Γ < ϵ‖Uk‖Γ ,

where ϵ is a given stopping tolerance.
Notice that the bulk and surface flow problems are solved separately and sequentially. In general, this algo-
rithm is easy to implement, but convergence could be slow in certain ranges of the physical parameters and
require relaxation for speed-up.

The above algorithm adapted to the simplified problem (3.1)–(3.7) reads as follows. At iteration k + 1,
assuming that (UkT , πk) are known, perform the following steps.
Step 1: Solve two-phase problem (3.1)–(3.2) for the bulk flow variables (u−k+1, p

−
k+1) and (u

+
k+1, p

+
k+1) with

interface conditions

u+k+1 ⋅ n = u
−
k+1 ⋅ n on Γ,

Pσ+k+1n = f
+(Pu+k+1 − U

k
T) on Γ, (4.3)

Pσ−k+1n = −f
−(Pu−k+1 − U

k
T) on Γ, (4.4)

[nTσk+1n]−+ = πkκ on Γ. (4.5)

Step 2: Solve surface flow problem (3.3)–(3.4) for variables (Uk+1T , πk+1) with interface condition

Pfk+1Γ = [Pσk+1n]
+
− on Γ. (4.6)

Step 3: Check the stopping criterion
‖Uk+1T − U

k
T‖Γ < ϵ‖U

k
T‖Γ . (4.7)

Notice that only interface conditions (4.3)–(4.6) are coupling conditions for bulk and surface flows. If one
was to compute the load exerted on the surface fluid in (4.6) directly from the solution of the problem at
Step 1, the overall accuracy of the method would be spoiled. Instead, one can compute Pfk+1Γ by plugging
(4.3)–(4.4) into (4.6),

Pfk+1Γ = f
+Pu+k+1 + f

−Pu−k+1 − (f
+ + f−)UkT on Γ.

However, we prefer to use a more implicit version of the above condition,

Pfk+1Γ = f
+Pu+k+1 + f

−Pu−k+1 − (f
+ + f−)Uk+1T on Γ

since it could help have a better control of approximate rigid rotations (Killing vector fields).

5 Numerical Results
The aim of the numerical results collected in this section is to provide evidence of the robustness of the pro-
posed finite element approachwith respect to the contrast in viscosity in the bulk fluid, surface fluid viscosity,
value of the slip coefficients, and position of the interface relative to the fixed computational mesh.
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For the averages in (3.30),we set α = 0 and β = 1 for all thenumerical experiments sincewehave μ− ≤ μ+.
In addition, we set γ±u = 0.05, γ±p = 0.05, and γ = 80. The value of all other parameters will depend on the
specific test. The stopping tolerance for criterion (4.7) is set to ϵ = 10−6. For all the simulations, we choose
to use finite element pair P2 − P1 for both the bulk and surface fluid problems.

For all the results presentedbelow,wewill report the L2 error andaweightedH1 error for the bulk velocity
defined as

(2μ−‖D(u − u−h)‖
2
Ω− + 2μ+‖D(u − u+h)‖2Ω+) 12 , (5.1)

and a weighted L2 error for the bulk pressure defined as

(μ−1− ‖p − p−h‖
2
Ω− + μ−1+ ‖p − p+h‖2Ω+) 12 . (5.2)

Such weighted norms naturally arise in the error analysis of the Stokes interface problem [47]. In addition,
we will report the L2 and H1 errors for the surface velocity and L2 error for the surface pressure.

5.1 Sphere Embedded in a Cube

Weperforma series of testswheredomainΩ is the cube [−1.5, 1.5]3 and interface Γ is theunit sphere centered
at the origin. Let x = (x, y, z) ∈ Ω. Surface Γ is characterized as the zero-level set of function ϕ(x) = ‖x‖22 − 1.
We consider the following solution for the bulk flow:

p− = 3x√x2 + y2 + z2 − 2x(x2 + y2 + z2), u− = 2f−
f− − μ−

a(x, y, z), (5.3)

p+ = 6x√x2 + y2 + z2 − 4x(x2 + y2 + z2), u+ = 2f+
f+ + μ+

a(x, y, z), (5.4)

where

a(x, y, z) = (32 −
√x2 + y2 + z2)[[

[

(−y − z)x + y2 + z2

(−x − z)y + x2 + z2

(−x − y)z + y2 + x2
]]

]

,

coupled to the following exact solution for the surface flow:

π = x, U = [[
[

(−y − z)x + y2 + z2

(−x − z)y + x2 + z2

(−x − y)z + y2 + x2
]]

]

. (5.5)

The forcing terms f− and f+ are found by plugging solution (5.3)–(5.4) in (3.1). We impose a Dirichlet con-
dition (2.11) on the faces x = 1.5, y = −1.5, z = −1.5, where function g is found from u+ in (5.4). On the
remaining part of the boundary, we impose a Neumann condition (2.12), where fN is found from p+ in (5.3)
and u+ in (5.4).

The value of the physical parameters will be specified for each test.

Spatial Convergence. To check the spatial accuracy of the finite element method described in Section 3.3,
we consider exact solution (5.3)–(5.5) with viscosities μ− = 1, μ+ = 10, and μΓ = 1, and friction coefficients
f− = 2 and f+ = 10. Notice that the fluid outside the sphere has a larger viscosity than the fluid inside the
sphere, which has the same viscosity as the surface fluid. We consider structured meshes of tetrahedra with
five levels of refinement, the coarsest mesh having mesh size h = 0.5, while the finest mesh has h = 0.05. All
the meshes feature a local one-level refinement near the corners of Ω. Table 1 reports the number of DOFs for
each mesh. Figure 2 (left) shows the L2 error and weighted H1 error (5.1) for the bulk velocity, weighted L2
error (5.2) for the bulk pressure, L2 andH1 errors for the surface velocity, and L2 error for the surface pressure
against themesh size h.We observe optimal convergence rates for all the norms under consideration. Figure 2
(right) shows the number of bulk-surface iterations to satisfy stopping criterion (4.7) as h varies. As we can
see, the number of iterations is fairly insensitive to a mesh refinement or coarsening.
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h 0.5 0.25 0.125 0.0625 0.05

# bulk velocity DOFs 1.1e4 7.4e4 5.2e5 3.6e6 6.4e6
# bulk pressure DOFs 6.2e2 3.7e3 2.3e4 1.6e5 2.8e5
# surface velocity DOFs 2.4e3 1.0e4 4.0e4 1.5e5 2.2e5
# surface pressure DOFs 1.4e2 5.9e2 2.3e3 8.5e3 1.3e4

Table 1: Sphere: DOFs for bulk and surface variables for all the meshes under consideration in the spatial convergence test.

Figure 2: Sphere: (left) bulk and surface FE errors against the mesh size h. (right) Number of bulk-surface iterations
of the partitioned method as h varies.

Robustness with Respect to the Viscosity Contrast. It is known that the case of high contrast for the viscosi-
ties in a two-phase problem is especially challenging from the numerical point of view. To test the robustness
of our approach with respect to the viscosity contrast in the bulk, we consider exact solution (5.3)–(5.5) and
fix μ− = 1, while we let μ+ vary from 1 to 256. We set μΓ = 1 and friction coefficients f− = 2 and f+ = 10.

We consider one of the meshes adopted for the previous sets of simulations (with h = 0.125). Figure 3
(left) shows the L2 error and weighted H1 error (5.1) for the bulk velocity, weighted L2 error (5.2) for the bulk
pressure, L2 and H1 errors for the surface velocity, and L2 error for the surface pressure against the value
of μ+. We see that the errors remain mostly unchanged as μ+ varies, with the exception of the weighted L2
error for the bulk pressure, which decreases as μ+ increases. In [46], which focuses only on two-phase bulk
flow, we found that such error reaches a plateau as μ+ is further increased. Figure 3 (left) shows that our
approach is substantially robust with respect to the viscosity contrast μ+/μ−.

Figure 3 (right) reports the number of bulk-surface iterations to satisfy stopping criterion (4.7) as μ+
varies. We observe that the number of iterations increases as the μ+/μ− ratio decreases, indicating that the
coupled bulk-surface problem becomes more stiff as μ+ decreases to match μ− and μΓ.

Figure 3: Sphere: (left) bulk and surface FE errors against the value of μ+. (right) Number of bulk-surface iterations
of the partitioned method as μ+ varies.
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Figure 4: Sphere: (left) bulk and surface FE errors against the value of μΓ. (right) Number of bulk-surface iterations
of the partitioned method as μΓ varies.

Robustness with Respect to the Value of the Surface Viscosity. Wenow let μΓ vary from1 to 256 and keep all
the other physical parameters fixed to the following values: μ− = 1, μ+ = 10, f− = 2, and f+ = 10. Again, we
consider exact solution (5.3)–(5.5) and themeshwithmesh size h = 0.125. Figure 4 (left) shows all the errors
we have considered so far against the value of μΓ. We notice that all the bulk errors stay constant as μΓ varies.
The L2 errors for the surface velocity and pressure increase as μΓ increases, while the H1 error for the surface
velocity slightly decreases as μΓ increases. This experiment suggests that more viscous embedded layer is
less controlled by the bulk fluid which effects the numerical stability of the complete system. In a water-lipid
membrane system, the ratio of lateral dynamic viscosities of the embeddedbi-layer andbulkwater is typically
1–10 µm (depending on the temperature and composition) with the size of a vesicle being generally between
0.1 and 10 µm. Hence the observed increase of the numerical error does not look critical for this application.

Figure 4 (right) shows thenumber of bulk-surface iterations to satisfy stopping criterion (4.7) as μΓ varies.
Our partitioned method seems to be insensitive to a variation in the value of μΓ. In particular, for the range
of μΓ under consideration the number of iterations stays constant and equal to 12.

Robustness with Respect to the Slip Coefficients. To check the sensitivity of the errors and partitioned
method to the value of the slip coefficients, we run two sets of experiments, both involving exact solution
(5.3)–(5.5). In the first set,wefix f+ = 2 and vary f− from1 to 256,while in the second set,we take f+ = f− and
let them both vary from 1 to 256. The viscosities are set as follows: μ− = 1, μ+ = 10, and μΓ = 1. We consider
again the mesh with mesh size h = 0.125. Figures 5 (left) and 6 (left) show all the errors under consideration
against the value of the slip coefficient(s) for both sets of tests. The only error that shows a substantial varia-
tion is the weighted H1 error of the bulk velocity, which increases as the slip coefficient(s) increase. However,
such error seems to reach a plateau in both cases.

Figure 5: Sphere: (left) bulk and surface FE errors against the value of f +. (right) Number of bulk-surface iterations
of the partitioned method as f + varies.
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Figure 6: Sphere: (left) bulk and surface FE errors against the value of f + = f −. (right) Number of bulk-surface iterations
of the partitioned method as the value of f + and f − (with f + = f −) varies.

Figure 7: Sphere: relative difference of the surface
velocity between subsequent iterations in L2 norm
until stopping criterion (4.7) is met.

Figures 5 (right) and 6 (right) report the number of bulk-surface iterations to satisfy stopping criterion
(4.7) as the value of the coefficient(s) varies for both sets of tests. In Figure 5 (right), we see a rather sharp
increase in the number of iterations as f− increases. This is even more true when both slip coefficients are
increased together, as we can see from Figure 6 (right). Figure 7 reports the relative difference of the surface
velocity between subsequent iterations in L2 norm until stopping criterion (4.7) is met for f+ = f− = 22 and
f+ = f− = 28. We see that such relative difference decreases regularly for f+ = f− = 22, while for f+ = f− = 28,
it decreases quickly for the first few iterations and then it slows down. A heuristic explanation we have for
this is that, as the two friction coefficients increase, interface conditions (2.7)–(2.8) become close to Dirichlet
conditions, making the surface flow more “passive”. Thus, separating the surface flow from the bulk flow as
in the partitioned algorithm might not make much sense.

5.2 Torus Embedded in a Cube

The domain Ω is the cube [−2, 2]2 and surface Γ is a torus centered at c = (c1, c2, c3). Let

(x, y) = ( ̃x − c1, ̃y − c2, ̃z − c3), ( ̃x, ̃y, ̃z) ∈ Ω.

We can characterize Γ as the zero-level set of function ϕ(x) = √z2 + (√x2 + y2 − 1)2 − 1
2 . Finding an exact

solution to problem (3.1)–(3.5), (2.7), and (2.8) with this more complicated surface is highly non-trivial. To
simplify the task, we relax interface conditions (2.7), (2.8), and (3.5) as follows:

Pσ±n = ±f±(Pu± − U) + g± on Γ,
[nTσn]−+ = πκ + gn on Γ,
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where g+, g−, and gn are computed such that the exact solution given below satisfies these relaxed interface
conditions. The solution is given by

p− = (12 −
2 − 4√x2 + y2
√x2 + y2

)(x3 + x), p+ = 12 (x
3 + x), u− = u+ = [[

[

x2y
5 − xy2 + z2
−xy

]]

]

(5.6)

for the bulk and
π = x3 + x, U = [ −zx

√x2 + y2
, −zy
√x2 + y2

,√x2 + y2 − 1]
T

(5.7)

for the surface. The forcing terms f− and f+ are found by plugging solution (5.6)–(5.7) in (3.1). We impose
a Dirichlet condition (2.11) on the faces x = 2, y = −2, z = −2, where function g is found from u+ in (5.6). On
the remaining part of the boundary, we impose a Neumann condition (2.12), where fn is found from p+ and
u+ in (5.6).

Spatial Convergence. Once again, we start by checking spatial accuracy. To this end, we consider exact solu-
tion (5.6)–(5.7) with c = (0, 0, 0), viscosities μ− = 1, μ+ = 10, μΓ = 1, and friction coefficients f− = 2 and
f+ = 10. Just like in the case of the sphere, we consider structured meshes of tetrahedra that feature a local
one-level refinement near the corners of Ω. The details of the meshes under consideration are reported in
Table 2. Figure 8 shows the L2 error and weighted H1 error (5.1) for the bulk velocity, weighted L2 error (5.2)
for the bulk pressure, L2 and H1 errors for the surface velocity, and L2 error for the surface pressure against
themesh size h. Also for this second convergence test, we observe optimal convergence rates for all the norms.

Robustness with Respect to the Position of the Interface. We conclude our series of numerical results with
a set of simulations aimed at checking that our approach is not sensitive to the position of the interface with
respect to the background mesh. We vary the center c = (c1, c2, c3) of the torus that represents Γ,

c1 = h
k
20 sin( kπ10), c2 = h

k√2
40 cos( kπ10), c3 = h

k√2
40 cos( kπ10), (5.8)

h 0.25 0.125 0.0625 0.05

# bulk velocity DOFs 1.6e5 1.2e6 8.5e6 1.5e7
# bulk pressure DOFs 7.6e3 5.4e4 3.7e5 6.7e5
# surface velocity DOFs 1.6e4 6.0e4 2.3e5 3.4e5
# surface pressure DOFs 9.0e2 3.4e3 1.3e4 2.0e4

Table 2: Torus: DOFs for bulk and surface variables for all the meshes under consideration in the spatial convergence test.

Figure 8: Torus: bulk and surface FE errors against the mesh size h.
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Figure 9: Torus: bulk and surface FE errors against the value of k in (5.8).

where h is the mesh size. The physical parameters are set like in the convergence test. We consider the mesh
in Table 2 with h = 0.125. Figure 9 shows all the errors against the value of k in (5.8). We see that all the
errors are fairly insensitive to the position of Γ with respect to the background mesh, indicating robustness.

Acknowledgment: We are grateful to Dr. Christoph Lehrenfeld for providing us with an ngsxfem implemen-
tation of isoparametric unfitted finite elements.

References
[1] G. J. Amador, D. van Dijk, R. Kieffer, M.-E. Aubin-Tam and D. Tam, Hydrodynamic shear dissipation and transmission in lipid

bilayers, Proc. Natl. Acad. Sci. USA 118 (2021), DOI 10.1073/pnas.2100156118.
[2] J. W. Barrett, H. Garcke and R. Nürnberg, A stable numerical method for the dynamics of fluidic membranes, Numer. Math.

134 (2016), no. 4, 783–822.
[3] C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes

problem, SIAM J. Numer. Anal. 25 (1988), no. 6, 1237–1271.
[4] L. Bocquet and J.-L. Barrat, Flow boundary conditions from nano-to micro-scales, Soft Matter 3 (2007), 685–693.
[5] M. E. Bogovskiı̆, Solution of the first boundary value problem for an equation of continuity of an incompressible medium,

Dokl. Akad. Nauk SSSR 248 (1979), no. 5, 1037–1040.
[6] N. Bootland, A. Bentley, C. Kees and A. Wathen, Preconditioners for two-phase incompressible Navier–Stokes flow, SIAM J.

Sci. Comput. 41 (2019), no. 4, B843–B869.
[7] S. P. A. Bordas, E. Burman, M. G. Larson and M. A. Olshanskii, Geometrically Unfitted Finite Element Methods and

Applications, Lect. Notes Comput. Sci. Eng. 121. Springer, Cham, 2018.
[8] D. Bothe and J. Prüss, On the two-phase Navier–Stokes equations with Boussinesq–Scriven surface fluid, J. Math. Fluid

Mech. 12 (2010), no. 1, 133–150.
[9] E. Burman, Ghost penalty, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21–22, 1217–1220.
[10] E. Burman, S. Claus, P. Hansbo, M. G. Larson and A. Massing, CutFEM: Discretizing geometry and partial differential

equations, Internat. J. Numer. Methods Engrg. 104 (2015), no. 7, 472–501.
[11] E. Cáceres, J. Guzmán and M. Olshanskii, New stability estimates for an unfitted finite element method for two-phase

Stokes problem, SIAM J. Numer. Anal. 58 (2020), no. 4, 2165–2192.
[12] S. Claus and P. Kerfriden, A CutFEM method for two-phase flow problems, Comput. Methods Appl. Mech. Engrg. 348

(2019), 185–206.
[13] M. Cooley and M. O’neill, On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or

stationary sphere,Mathematika 16 (1969), 37–49.
[14] G. Dziuk and C. M. Elliott, L2-estimates for the evolving surface finite element method,Math. Comp. 82 (2013), no. 281,

1–24.
[15] T. Frachon and S. Zahedi, A cut finite element method for incompressible two-phase Navier–Stokes flows, J. Comput. Phys.

384 (2019), 77–98.
[16] S. Ganesan, G. Matthies and L. Tobiska, On spurious velocities in incompressible flow problems with interfaces, Comput.

Methods Appl. Mech. Engrg. 196 (2007), no. 7, 1193–1202.



M. Olshanskii et al., A FE Method for Two-Phase Flow with Material Viscous Interface | 463

[17] P. Gangl, K. Sturm, M. Neunteufel and J. Schöberl, Fully and semi-automated shape differentiation in NGSolve, Struct.
Multidiscip. Optim. 63 (2021), no. 3, 1579–1607.

[18] R. B. Gennis, Biomembranes: Molecular Structure and Function, Springer, New York, 1989.
[19] D. Gérard-Varet, M. Hillairet and C. Wang, The influence of boundary conditions on the contact problem in a 3D

Navier–Stokes flow, J. Math. Pures Appl. (9) 103 (2015), no. 1, 1–38.
[20] J. Grande, C. Lehrenfeld and A. Reusken, Analysis of a high-order trace finite element method for PDEs on level set

surfaces, SIAM J. Numer. Anal. 56 (2018), no. 1, 228–255.
[21] S. Gross and A. Reusken, Numerical Methods for Two-Phase Incompressible Flows, Springer Ser. Comput. Math. 40,

Springer, Berlin, 2011.
[22] M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57 (1975),

291–323.
[23] P. Hansbo, M. G. Larson and K. Larsson, Analysis of finite element methods for vector Laplacians on surfaces, IMA J. Numer.

Anal. 40 (2020), no. 3, 1652–1701.
[24] P. Hansbo, M. G. Larson and A. Massing, A stabilized cut finite element method for the Darcy problem on surfaces, Comput.

Methods Appl. Mech. Engrg. 326 (2017), 298–318.
[25] P. Hansbo, M. G. Larson and S. Zahedi, A cut finite element method for a Stokes interface problem, Appl. Numer. Math. 85

(2014), 90–114.
[26] X. He, F. Song and W. Deng, Stabilized nonconforming Nitsche’s extended finite element method for Stokes interface

problems, preprint (2019), https://arxiv.org/abs/1905.04844.
[27] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforschung 28 (1973), 693–703.
[28] L. M. Hocking, The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres, J. Engrg. Math. 7

(1973), 207–221.
[29] M. Hömberg and M. Müller, The role of inertia and coarse-graining on the transverse modes of lipid bilayers, EPL 97

(2012), Article ID 68010.
[30] T. Jankuhn, M. A. Olshanskii and A. Reusken, Incompressible fluid problems on embedded surfaces: modeling and

variational formulations, Interfaces Free Bound. 20 (2018), no. 3, 353–377.
[31] T. Jankuhn, M. A. Olshanskii, A. Reusken and A. Zhiliakov, Error analysis of higher order trace finite element methods for

the surface Stokes equation, J. Numer. Math. 29 (2021), no. 3, 245–267.
[32] V. John, Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes

equations—numerical tests and aspects of the implementation, J. Comput. Appl. Math. 147 (2002), no. 2, 287–300.
[33] K. Kawano, E. Onose, Y. Hattori and Y. Maitani, Higher liposomal membrane fluidity enhances the in vitro antitumor activity

of folate-targeted liposomal mitoxantrone,Molecular Pharmaceutics 6 (2009), 98–104.
[34] E. Lauga, M. Brenner and H. Stone, Microfluidics: The no-slip boundary condition, in: Springer Handbooks, Springer,

Berlin (2007), 1219–1240.
[35] C. Lehrenfeld, High order unfitted finite element methods on level set domains using isoparametric mappings, Comput.

Methods Appl. Mech. Engrg. 300 (2016), 716–733.
[36] C. Lehrenfeld, A higher order isoparametric fictitious domain method for level set domains, in: Geometrically Unfitted

Finite Element Methods and Applications, Springer, Cham (2017), 65–92.
[37] C. Lehrenfeld and A. Reusken, Analysis of a high-order unfitted finite element method for elliptic interface problems, IMA J.

Numer. Anal. 38 (2018), no. 3, 1351–1387.
[38] A. Massing, M. G. Larson, A. Logg and M. E. Rognes, A stabilized Nitsche overlapping mesh method for the Stokes

problem, Numer. Math. 128 (2014), no. 1, 73–101.
[39] T.-H. Miura, On singular limit equations for incompressible fluids in moving thin domains, Quart. Appl. Math. 76 (2018),

no. 2, 215–251.
[40] P. B. Moore, C. F. Lopez and M. L. Klein, Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular

dynamics simulation, Biophys. J. 81 (2001), 2484–2494.
[41] C. Morris and U. Homann, Cell surface area regulation and membrane tension, J. Membrane Biol. 179 (2001), Paper No. 79.
[42] C. Navier, Mémoire sur les lois du mouvement des fluides,Mém. Acad. Roy. Sci. Inst. France 6 (1823), 389–440.
[43] R. A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems, SIAM J. Numer. Anal. 19

(1982), no. 2, 349–357.
[44] I. Nitschke, A. Voigt and J. Wensch, A finite element approach to incompressible two-phase flow on manifolds, J. Fluid

Mech. 708 (2012), 418–438.
[45] M. A. Olshanskii, A. Quaini, A. Reusken and V. Yushutin, A finite element method for the surface Stokes problem, SIAM J.

Sci. Comput. 40 (2018), no. 4, A2492–A2518.
[46] M. A. Olshanskii, A. Quaini and Q. Sun, An unfitted finite element method for two-phase Stokes problems with slip

between phases, preprint (2021), https://arxiv.org/abs/2101.09627.
[47] M. A. Olshanskii and A. Reusken, Analysis of a Stokes interface problem, Numer. Math. 103 (2006), no. 1, 129–149.
[48] M. A. Olshanskii, A. Reusken and A. Zhiliakov, Inf-sup stability of the trace P2–P1 Taylor–Hood elements for surface PDEs,

Math. Comp. 90 (2021), no. 330, 1527–1555.

https://arxiv.org/abs/1905.04844
https://arxiv.org/abs/2101.09627


464 | M. Olshanskii et al., A FE Method for Two-Phase Flow with Material Viscous Interface

[49] M. A. Olshanskii and D. Safin, Numerical integration over implicitly defined domains for higher order unfitted finite
element methods, Lobachevskii J. Math. 37 (2016), no. 5, 582–596.

[50] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Numer. Math. Sci. Comput.,
The Clarendon, New York, 1999.

[51] A. Reusken and Y. Zhang, Numerical simulation of incompressible two-phase flows with a Boussinesq–Scriven interface
stress tensor, Internat. J. Numer. Methods Fluids 73 (2013), no. 12, 1042–1058.

[52] S. Reuther and A. Voigt, The interplay of curvature and vortices in flow on curved surfaces,Multiscale Model. Simul. 13
(2015), no. 2, 632–643.

[53] S. Reuther and A. Voigt, Solving the incompressible surface Navier–Stokes equation by surface finite elements, Phys.
Fluids 30 (2018), Article ID 012107.

[54] D. S. Rodrigues, R. F. Ausas, F. Mut and G. C. Buscaglia, A semi-implicit finite element method for viscous lipid membranes,
J. Comput. Phys. 298 (2015), 565–584.

[55] G. Salbreux and F. Jülicher, Mechanics of active surfaces, Phys. Rev. E 96 (2017), Article ID 032404.
[56] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University,

Princeton, 1970.
[57] A. Torres-Sánchez, D. Millán and M. Arroyo, Modelling fluid deformable surfaces with an emphasis on biological interfaces,

J. Fluid Mech. 872 (2019), 218–271.
[58] N. Wang and J. Chen, A nonconforming Nitsche’s extended finite element method for Stokes interface problems, J. Sci.

Comput. 81 (2019), no. 1, 342–374.
[59] Y. Wang, A. Zhiliakov, A. Quaini, M. Olshanskii and S. Majd, Lipid domain formation and dynamics in multicomponent

membranes: Experimental validation of a phase-field model, Biophys. J. 120 (2021), Article ID 225.
[60] A. Yavari, A. Ozakin and S. Sadik, Nonlinear elasticity in a deforming ambient space, J. Nonlinear Sci. 26 (2016), no. 6,

1651–1692.
[61] V. Yushutin, A. Quaini, S. Majd and M. Olshanskii, A computational study of lateral phase separation in biological

membranes, Int. J. Numer. Methods Biomed. Eng. 35 (2019), no. 3, Article ID e3181.
[62] Netgen/NGSolve, https://ngsolve.org/.
[63] ngsxfem, https://github.com/ngsxfem/ngsxfem/tree/49205a1ae637771a0ed56d4993ce99008f3a00e0.

https://ngsolve.org/
https://github.com/ngsxfem/ngsxfem/tree/49205a1ae637771a0ed56d4993ce99008f3a00e0

	A Finite Element Method for Two-Phase Flow with Material Viscous Interface
	1 Introduction
	2 A Two-Phase Fluid with Material Viscous Interface
	2.1 Energy Balance of the Continuous Coupled Problem

	3 A Simplified Steady Problem
	3.1 Variational Formulation
	3.2 Well-Posedness
	3.3 Finite Element Discretization

	4 A Partitioned Method for the Coupled Bulk-Surface Flow
	5 Numerical Results
	5.1 Sphere Embedded in a Cube
	5.2 Torus Embedded in a Cube



