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Abstract

We propose PartGAN, a novel generative model that disentangles and generates back-
ground, object shape, object texture, and decomposes objects into parts without any mask
or part annotations. To achieve object-level disentanglement, we build upon prior work
and maximize the mutual information between the generated factors and sampled latent
prior codes. To achieve part-level decomposition, we learn a part generator, which de-
composes an object into parts that are spatially localized, disjoint, and consistent across
instances. Extensive experiments on multiple datasets demonstrate that PartGAN discov-
ers consistent object parts, which enable part-based controllable image generation.

1 Introduction

Consider Fig. 1. Prior disentangled image generation work [23, 25, 37] can take the object
texture from one image (B) and combine it with the object shape and background of another
(A) to generate a new image (left). But what if we want a model which can take the texture of
a specific object part like the bird’s head? Such a part decomposition and generation model
would be valuable for a number of different applications, including (1) visual recognition
tasks since parts are a robust representation for dealing with occlusion and changes in camera
viewpoint [18] as well as for recognizing localized object details for fine-grained category
recognition [34, 51]; (2) data augmentation, e.g., to improve a model’s invariance to the
appearance changes of an object at the part-level; and (3) artistic applications like swapping
clothing items [28], if the discovered parts are semantically meaningful.

In recent years, several unsupervised/weakly-supervised generative models [25, 28, 37,
40, 45] have been proposed to disentangle and model different factors of variation for im-
age generation. For example, MixNMatch [25] can disentangle and combine object shape,
texture, pose, and background from real images to generate a new image, as shown in Fig. 1
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Prior work

Figure 1: (Left) Prior disentanglement work (e.g., [25]) can only disentangle and transfer
appearance at the full object-level. (Right) Our model, PartGAN, can disentangle and trans-
fer texture at the part-level without any object mask or part annotations.

(‘Prior work’). However, a common limitation is that these methods cannot achieve part-
level control. This means that if one wants to change the texture of only one part of an
object, like the bird’s head, it is not possible to do with such methods. The only exception is
the approach of [28], which can disentangle an object’s shape and texture at the part-level.
However, it has two key limitations: (1) it uses a Gaussian distribution to model each part’s
spatial location, and (2) it cannot disentangle foreground from background. These two limi-
tations impede its performance in part decomposition as demonstrated in our experiments.

In this paper, our goal is to learn a generative model that can generate images with part-
level control with only object-level bounding box annotations and without any part or object
mask supervision.! Importantly, we want our model to learn detailed pixel-level masks for
each discovered part, rather than Gaussian distributions, and to disentangle the foreground
from background. There are two key reasons why we believe a mask is better than a Gaussian
distribution for part representation. First, a mask can provide precise pixel-level boundaries
of parts while a Gaussian distribution is only able to provide a blurry description of part
shape, such as its location (mean) and rough extent (variances). Second, a Gaussian repre-
sentation is not suitable for describing all shapes, especially those that are non-convex; for
example, it is not appropriate to use a Gaussian distribution to model the shape of a bird’s
head with its pointed beak, which with a mask, in contrast, can be precisely outlined. These
reasons make a mask representation better at preserving the part shape when transferring its
texture from one image to another (e.g., for conditional image generation). Moreover, we de-
sire disentanglement of foreground from background because we can obtain better and more
consistent object part decomposition by avoiding interference with the background. This
can be especially useful when we want to only transfer the object texture from one image to
another without changing the background.

In order to fulfill our goal of part-based image generation with only object-level bounding
box supervision, we need a model that can disentangle background, object shape, pose,
texture, and decompose an object into parts. This is because the model needs to understand
what an object part is, without being confused with background, and irrespective of specific
shape (e.g., understand that a duck’s head and sparrow’s head are the same part), pose (e.g.,
understand that a left-facing duck’s head and right-facing duck’s head are the same part), and
texture (e.g., understand that a green duck’s head and brown duck’s head are the same part).
And this can be extremely challenging to achieve without any part or mask annotations.

To this end, we propose PartGAN, a hierarchical generative model that learns part decom-
position for image generation and segmentation. To disentangle background, object shape,
and texture, we build upon prior work [25, 40] and use information theory [7] to maximize

'We focus on single category, object-centric datasets that are often cropped using bounding box annotations,
following prior related work [21, 25, 28, 40, 53].
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the mutual information between the generated images and their latent codes. To decompose
objects into parts, we design a novel part generator, which via several complementary losses
learns to predict spatially disjoint part masks without supervision. In order to help discover
consistent object parts, we force the generator to reconstruct the object with spatially-pooled
features within each generated part mask. In this way, the learned parts converge to regions
that are relatively homogeneous (intuitively, in deep feature space, a region covering a single
object part will be more homogeneous than that covering multiple or non-object parts) so
that the pooled feature can accurately reconstruct the corresponding part.

To summarize, our main contribution is a novel generative model that can discover and
generate different parts of objects. Unlike prior work [28], PartGAN represents parts with
masks rather than Gaussian distributions, and can disentangle foreground from background,
leading to more consistent and precise part decomposition.

2 Related Work

Image generation and disentanglement. Unconditional image generation [2, 14, 35, 40]
takes as input random noise vectors, whereas conditional image generation takes input pri-
ors such as class labels [4, 30, 32], text [36, 46, 50], or semantic maps or images [17, 20,
25, 28, 33, 43, 55, 56]. Some conditional work disentangle factors of variation (e.g., shape
vs appearance) for controllable image generation [12, 22, 25, 37, 40, 44]. However, [12]
requires pairs of images depicting the same object appearance; [22] only focuses on human
data; [37] usually works on data with less shape/pose variation such as faces, and gener-
alizes poorly to objects with large shape/pose changes such as birds, as indicated in [25];
[44] is a self-supervised approach that disentangles object shape and color, but it requires
video data. Among these FineGAN [40] and MixNMatch [25] are most related to our work.
They can disentangle four factors (background, object shape, pose, texture). However, Fine-
GAN is an unconditional model, thus cannot synthesize an image based on real reference
images. Although MixNMatch is a conditional model, like all other mentioned work, it can-
not further decompose an object at the part level. Supervised part-based generative models
do exist [3, 38, 56], but require expensive (and often difficult to define) part-level annota-
tions. There are also VAE models considering the compositional nature of images [5, 10, 15].
However, they can only decompose and generate images in toy data. ([15] does have results
on ImageNet, but it only groups regions by color.) In contrast, our approach is applicable
to real-world images and can decompose foreground objects into parts without any part or
mask annotations in both unconditional and conditional settings.

Part-based learning. Describing an object as a composition of its different parts is a
well-studied problem. Most methods propose discriminative models [13, 29, 31, 49], some-
times without any supervision [1, 8, 18, 39, 41, 47]. In contrast, we propose an part decom-
position model that is generative, which also allows it to generate and modify specific object
parts. A related generative model [28] can achieve part-level control for image generation.
However, it uses Gaussian distributions to represent the spatial extent of the discovered parts
and cannot disentangle background from foreground. We instead learn detailed pixel-level
part masks and disentangle background from foreground, which lead to more accurate shape
preservation for part-based texture transfer for image generation.

3 Approach

LetZ = {x,...,xy} be an image collection of a single object category (e.g., birds). Our goal
is to learn a generative model, which can automatically represent objects as an assembly
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Figure 2: PartGAN architecture. The first three stages aim for object-level (background,
shape/pose and texture) generation and disentanglement. The part stage further decomposes
the object into parts. No part or mask annotations are used during training.

of parts with only object-level bounding box supervision, and without any object mask or
part supervision. To this end, we propose PartGAN, which can (1) achieve object-level
disentanglement (i.e., background, object shape, texture, and pose), (2) further decompose
objects into parts by learning a part-based mask representation, and (3) control the texture at
the part-level for both unconditional and conditional image generation.

Fig. 2 shows our overall architecture. PartGAN takes in four randomly sampled codes
from prior distributions to hierarchically generate images in four stages (background, shape,
texture, and part). Specifically, it takes in a noise vector z ~ N(0,1), a categorical back-
ground code b ~ Cat(K = N,,p = 1/N,), a shape code s ~ Cat(K = N;,p = 1/N;), and a
texture code 7 ~ Cat(K = N;,p = 1/N,). Ny, Ny, N, are the number of latent background,
shape, and texture categories and are set as hyperparameters. The categorical distribution
is a natural choice as our prior, as the corresponding factors are mostly discrete; e.g, back-
ground: water vs. trees; shape: duck vs. seagull shape; texture: duck color palette vs. seagull
color palette. We perform stage-wise image generation, similar to [25, 40, 48], as each stage
can be designed to uniquely control one factor of variation.

Background stage. PartGAN generates the background image conditioned on latent
background code b and random noise z; see Fig. 2, background stage. b learns to control the
background type (category) while z adds small variations to the background.

Shape stage. A one-hot shape code s and random noise z together generate a shape
mask and shape foreground image which capture the object’s shape and pose information. s
learns to control the shape type (category) while z learns to control pose. The masked shape
foreground image is stitched to the background image from the background stage to form
the shape image. The computed shape feature Fy from generator G, is used in the ensuing
stages; see Fig. 2, shape stage.

Texture stage. A one-hot texture code ¢ is combined with the shape feature F; to generate
a texture mask and texture foreground image. ¢ learns to control the texture type (category).
The texture mask is used to stitch the texture foreground image onto the shape image from
the shape stage to form the final generated image; see Fig. 2, texture stage.

Part stage. In this stage, PartGAN takes in the shape feature F; and the masked texture
foreground image, and learns to discover different parts. For each part, it generates a part
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mask so that it can control the texture at the part-level during image generation.

Next, in Sec. 3.1, we explain how PartGAN achieves object-level disentanglement in the
background, shape, and texture stages. Then, in Sec. 3.2, we describe how it can further
decompose an object into parts.

3.1 Object-level disentanglement

To disentangle background, we apply adversarial training [14] to learn the distribution of
background patches. For this stage, and this stage only, we assume access to object bounding
boxes, so that we can sample patches outside the boxes to model the background distribution.

Next, to achieve disentanglement of shape and texture without supervision, we use infor-
mation theory [7, 40]. Specifically, in the shape and texture stages, we maximize the mutual
information between the shape code s and masked shape foreground image, and texture code
t and the masked texture foreground image, respectively, as demonstrated in Fig. 2. The
masked image in each stage is obtained by performing an element-wise multiplication be-
tween the generated mask and generated foreground image. Following FineGAN [40], we
impose constraints on the relationships between the latent codes to induce the desired dis-
entanglement: we (1) constrain the sampled texture codes into disjoint groups so that each
group shares the same shape code, and (2) enforce the sampled background and texture codes
to be the same. These two constraints model two aspects of real-world data: (1) some object
instances share a common shape even if they have different textures (e.g., different seagull
species with different texture details share the same seagull shape); (2) a specific object type
often appears with correlated background (e.g., ducks typically have water as background).
And finally, by setting the number of latent shape categories N, to be much smaller than all
possible pose variations of shape in the data, the continuous code z can be made to control the
object’s pose; i.e., so that each particular shape instance (e.g., a left-facing duck) can be de-
scribed as a combination of general shape plus pose (e.g., duck shape code s plus left-facing
pose z). The losses used to train the background, shape, and texture stages are identical to
FineGAN [40]. Due to limited space, we provide more details in the supp.

3.2 Part-level decomposition

We design a new part stage to discover and control different object parts. In this stage, the
part generator G, takes in the shape feature F; from the shape stage and outputs k part
masks M, where i = 1,2,..., k. Each part mask has pixel values in [0, 1]. We use the shape
feature F; from the shape stage because it already contains spatially rich part information
due to texture stage training. Specifically, since it is used to generate different texture details
conditioned on different texture codes, F; must understand different object parts in order
to accurately generate part-level texture details. Nonetheless, despite F; having part-level
information, the part details are entangled together as one feature, which means that we
cannot control the texture of each part separately. In order to achieve part decomposition
without supervision, we apply the following constraints.

Merge constraint. Recall that our model generates an object-level texture mask in the
texture stage to stitch the generated texture foreground image onto the shape image from the
shape stage. Thus, to make sure the generated parts together focus on the entire object, we
enforce the sum of part masks to be equal to the object-level texture mask M;:

k
‘Cmerge: |ZM;7;*MI| (1)
i=1
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part mask_1 part mask_k

Figure 3: Details of the part stage. We first use our model’s predicted part masks to pool
the foreground texture feature (pink block). The pooled features (red and green vertical bars)
are then used with the part masks to reconstruct the full foreground texture feature (orange
block). This operation forces the model to learn more meaningful parts that are conditioned
on the object, which are usually more homogeneous compared to arbitrary spatial partitions.

Concentration constraint. We desire each part to be concentrated in a spatially local
region. To achieve this, we leverage the concentration loss [53], where we consider each part
mask as the density of a bivariate (x,y) distribution in image coordinate space:

k
Lcom‘entmtion = % ,Z{ 27'[6(6)621_ + Gyz,) @
where 0' and 0' are variances along the two axes for part mask M.,. Importantly, we use
these statistics only for computing this loss while our part representatlons are still pixel-level
masks. In contrast, [28] uses them (plus the mean) as the final representation of each part.
Partition constraint. Ideally, each part mask should depict a unique spatially disjoint
region. To this end, we penalize any spatial overlap between any two part masks:

1 .
L partition = m ;M;; pt? where i # j. 3)

Here C(k,2) is the binomial coefficient (i.e., k choose 2) and - denotes the dot product.
Balancing constraint. We prefer each part to have reasonable size; i.e., so that no one
part dominates the entire object or is represented only by a few pixels. Thus, we constrain

the ratio of each part mask over the texture mask to be equal to 1/k within threshold ¢:
k
Lo = %Zmax(|r,~—%|—t,0) @)
i=1
where 7; is ratio of total mass (sum over pixels) of i’th part mask M’ f,, to texture mask M,.

Reconstruction constraint. Although the above constraints restrict each part mask to
be non-overlapping, locally concentrated, and balanced in size, they do not enforce the parts
to be meaningful (i.e., conditioned on the object). For example, the parts could be chosen to
divide an image purely based on spatial location (e.g., horizontally divide the image into top,
middle, and bottom regions for k = 3, as shown in the supp ablation studies) while ignoring
the object. In order to push the part generator G, to learn consistent and meaningful part
masks, we apply a novel reconstruction constraint on the generated part masks.

As shown in the part stage of Fig. 2 and Fig. 3, we first process the masked texture fore-
ground image from the texture stage through an encoder E to get its feature representation
(pink block). We next mask it with each generated part mask (via elementwise multipli-
cation) and perform average pooling to get the feature representation vector for each part.
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CuB Stanford Cars CelebA Cat Head V DeepFashion

Figure 4: Part segmentation on real images. PartGAN can discover consistent parts, which
are sometimes semantically meaningful, on diverse datasets without part supervision. Here
the number of parts are k = 5,4, 10, 10,4, respectively.

We then paste the part feature back to all spatial locations, weighted by the part mask, and
sum the result across all parts to get the reconstructed full feature representation (orange
block). A decoder D takes the reconstructed feature representation along with channel-wise
concatenated part masks, and tries to reconstruct the masked texture foreground image. Here
we apply the L1 loss for the reconstruction task. Since the pooling operation destroys spa-
tial information, it is easier for the model to learn meaningful parts, which are usually more
homogeneous than arbitrary spatial partitions, for the reconstruction task.

3.3 Part based image generation

For unconditional generation, we first sample a background code b, shape code s, and a
noise vector z to generate the background and shape image. In the texture stage, the shape
feature F; and a texture code ¢ are used to fill in the foreground texture details to generate
the complete image I. Fj is also given to the part stage for part decomposition and part mask
generation. To change the texture of a specific part, say the i’th part, a different texture code
can be input to the texture stage (with the same F; as before) to generate a new foreground
texture. Then the i’th part mask can be used to stitch the new texture foreground onto the
existing image I to only change the texture of the i’th part.

For conditional generation, we train a set of encoders that take in a real image and predict
the corresponding pose z, background b, shape s, and texture ¢ codes. To make the encoders
learn to extract those disentangled factors, without supervision, we use the technique pro-
posed in MixNMatch [25]. Briefly, we train the encoders and generator using BiGAN [9]
for paired image-code distribution matching, so that the encoded codes match the same prior
distributions as the sampled latent codes in the unconditional setting, while simultaneously
making the generated image look real. The extracted codes can then be fed into our Part-
GAN generator, and adjusted in the same way as in the unconditional setting, for changing
the texture of specific parts during image generation.

4 Experiments

In this section, we qualitatively evaluate part segmentation and part-level texture control on
image generation, and quantitatively evaluate the consistency of our learned parts. We do not
quantitatively evaluate image generation quality directly using metrics like FID [16], since
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Figure 5: Unconditional generation. The images in each column share the same back-
ground, shape, and texture codes except for one part. We randomly sample different texture
codes for the remaining part to change the texture of the head (a), chest (b), and wing (c).
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Figure 6: Conditional generation. For each sub-figure, the three real images on the left
provide texture information for one part (chest (a), head (b), wing (c)), while the top three
real images provide background, shape, and texture information for the rest of the parts.

the generated images with appearance changes made to one or more parts would not follow
the real distribution. Implementation details can be found in the supp.

Datasets. (1) CUB [42]: 11,788 bird images from 200 classes. (2) Stanford Cars [24]:
8,144 car images from 196 classes. (3) Deepfashion: a clothes dataset [27], we follow [28]
and select images of full bodies (all keypoints visible, measured by [54]) for quantitative
comparison. (4) BBC Pose [60] contains videos of sign-language signers, we use the same
train-test split as [28]. (5) Human3.6M [19] contains videos of human activities. We remove
the background following [28, 53]. (6) CelebA [26] contains celebrity faces. For evaluation,
we use the MAFL subset. (7) Cat head [52] has 9,997 images of cat heads.

4.1 Qualitative Results

Part segmentation. Fig. 4 shows PartGAN’s discovered parts in the conditional image
generation setting. PartGAN generates consistent part masks across different instances of
an object category for a variety of datasets. Although our model does not use any part
supervision, it can also sometimes discover semantic parts like the head, wing, and belly for
birds, and lips, eyes, and forehead for human faces. We believe this is due to such semantic
parts being spatially local and mostly consistent in appearance across instances, which are
properties that our part constraints try to capture.

Unconditional part generation. Fig. 5 shows unconditional generation results from
sampled latent codes. The images in each column share the same background, shape, pose
codes, and same texture code for all but one part. We change the texture code for the (a)
head, (b) chest, and (c) wing. The results show that our learned masks are meaningful
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Figure 7: Multi-part texture transfer. Multiple parts texture can be transferred; e.g., (top
right) car hood and body are made yellow and blue, and windows are darkened.
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and consistent across instances, and that PartGAN can successfully change the texture of a
specific region. Note that our model does not learn with any part supervision, and we only
provide semantic names for these parts to ease our explanation.

Conditional part generation. We show part-level texture transfer given real reference
images in Fig. 6. In each sub-figure, the real reference images on the top provide background,
shape, and texture (for all but one part) information, while the reference images on the left
provide the texture information of the part to be transferred: (a) chest, (b) head, and (c) wing.
In Fig. 7, we show the results of transferring the texture of multiple parts. In the first row,
we successfully transfer the texture of the shirt (2nd image) and pants (3rd image) to the first
image. In the third row, we transfer the texture of the cat’s ear and forehead. For the cars, we
transfer the texture of the hood, body, and windows. These results demonstrate PartGAN’s
accurate part decomposition and texture transfer for image generation. In the supp, we also
show an application for colorizing sketch images with different colors for different parts.

4.2 Quantitative Results

Landmark prediction. Following prior work [18, 28], we predict keypoints from the dis-
covered parts as a proxy to evaluate their consistency across instances of a class. For each
dataset, we train a convolutional landmark predictor (imp. details in supp) which takes the
learned part masks as input and predicts 2D landmark points. We compare with baseline
generative models [21, 28, 53] that can perform landmark discovery. Unlike our approach,
which predicts pixel-level segmentation part masks, these methods predict hard/soft key-
points. Hence, they instead train a regressor to regress from their predicted 2D keypoints to
ground-truth landmarks, as they cannot take advantage of more detailed part segmentation
masks. Moreover, according to [21], these methods sometimes rely on ground truth key-
points to first select a subset of the best candidate parts before learning a regressor, likely
due to their lack of ability to explicitly differentiate foreground from background.

Table | shows landmark prediction error results. For all datasets, we follow same train/test
splits as [28]. We obtain state-of-the-art results on all but one dataset, which shows that Part-
GAN discovers more consistent parts than the baselines. This can be attributed to both Part-
GAN’s prediction of detailed pixel-level part masks and its ability to disentangle foreground
from background. The closest baseline to ours is [28], which also learns a generative model
to perform part decomposition without part supervision. However, it only models rough part
shape using a Gaussian distribution and cannot disentangle foreground from background.
Hence, we have better landmark prediction, except for CUB. The worse result on CUB is in
part due to PartGAN sometimes predicting the bird’s tail as part of the branch that it sits on
(e.g., when their colors are similar), which can confuse the tail landmark predictor.
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| CAT | MAFL | CUB | BBC | Human3.6

Zhang [53] | 1535 | 3.46 5.36 - 4.14

Jakab [21] - 3.19 - 68.4% -

Lorenz [28] | 9.88 3.24 391 | 74.5% 279
Ours 9.34 3.08 5.05 | 77.0% 2.76

Table 1: Landmark prediction error results. The error is in % of inter-ocular distance for
Cat Head, MAFL and in % of the image edge length for CUB, Human3.6. Percentage of
correct landmarks within 6 pixels reported for BBC pose.

‘ a=2.5% ‘ o =5% ‘ o =7.5% ‘ o =10%
Lorenz [28] | 85.6% | 94.2% 96.5% 97.4%
Esser [11] 952% | 98.4% 98.9% 99.1%
Ours 96.6% | 991% | 99.6% 99.7 %
Table 2: Shape consisency results. We transfer texture from image B to image A to gen-
erate image C, and measure shape consistency between A and C. PCK measures the % of
keypoints within &% (pixel distance / image diagonal) between images A and C.

Shape consistency. We next evaluate Percentage of Correct Keypoints (PCK) on Deep-
Fashion dataset [27] following the same train/test split as [28]. We measure the consistency
in shapes between the generated and real source image (from which shape is borrowed) dur-
ing conditional image generation. As both our method and [28] try to reconstruct the full
object shape from the predicted parts, their shape consistency would be reflective of the
quality of the discovered parts. Specifically, for each image A, we assign its texture accord-
ing to a random image B, to generate image C. We use [54] to predict keypoints of images
A and C, and calculate PCK in image C according to image A.

Table 2 shows that we significantly outperform [28]. Since PartGAN generates pixel-
level masks to represent a part, whereas [28] uses a Gaussian representation, PartGAN better
preserves shape details of source image A when generating image C. We also compare to
VU-Net [11], which relies on a supervised human pose detector [54] to transfer the texture.
Still, PartGAN performs better, which again demonstrates that a mask representation can
better preserve spatial details than keypoints.

Ablation studies. We conduct detailed ablation studies, where we show necessities of
all losses. Please refer supp for details.

Comparison to [18] and failure cases. In the supp, we provide more analyses including
a comparison to a discriminative part segmentation model [18] and discussing failure cases.

5 Conclusion and Limitations

We proposed PartGAN, a novel generative model that can decompose objects at the part-level
without any mask or part annotations. On diverse datasets, we showed that it consistently
discovers meaningful parts and can transfer part-level texture for image generation. One
limitation is that the number of parts has to be set manually and when the number of parts
is set too large, a meaningful part can get broken down into several not so relevant sub-
parts (e.g., we obtain three different parts for the human forehead in Figure 4). How to
automatically set the number of parts without part supervision is an interesting and important
topic for future work. Nonetheless, we believe this work makes an important contribution in
weakly-supervised part decomposition for generative image modeling.
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