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Abstract 

In this work we accomplished the monitoring and prediction of porosity in laser powder bed fusion 

(LPBF) additive manufacturing process. This objective was realized by extracting physics-informed 

meltpool signatures from an in-situ dual-wavelength imaging pyrometer, and subsequently, analyzing 

these signatures via computationally tractable machine learning approaches. Porosity in LPBF occurs 

despite extensive optimization of processing conditions due to stochastic causes. Hence, it is essential to 

continually monitor the process with in-situ sensors for detecting and mitigating incipient pore formation. 

In this work a tall cuboid-shaped part (10 mm × 10 mm × 137 mm, material ATI 718Plus) was built with 

controlled porosity by varying laser power and scanning speed. This test caused various types of porosity, 

such as lack-of-fusion and keyhole formation, with varying degrees of severity in the part. The meltpool 

was continuously monitored using a dual-wavelength imaging pyrometer installed in the machine. 

Physically intuitive process signatures, such as meltpool length, temperature distribution, and ejecta 

(spatter) characteristics, were extracted from the meltpool images. Subsequently, relatively simple 

machine learning models, e.g., K-Nearest Neighbors, were trained to predict both the severity and type of 

porosity as a function of these physics-informed meltpool signatures. These models resulted in a 

prediction accuracy exceeding 95% (statistical F1-score). The same analysis was carried out with a 

complex, black-box deep learning convolutional neural network which directly used the meltpool images 

instead of physics-informed features. The convolutional neural network produced a comparable F1-score 

in the range of 89% to 97%. These results demonstrate that using pragmatic, physics-informed meltpool 

signatures within a simple machine learning model is as effective for flaw prediction in LPBF as using a 

complex and computationally demanding black-box deep learning model. 

Keywords: Laser Powder Bed Fusion; Porosity Prediction; Meltpool Monitoring; Imaging Pyrometer; 

Physics-Informed Machine Learning.  
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1 Introduction  

1.1 Motivation and Objective 

In laser powder bed fusion (LPBF) additive manufacturing, energy from a laser beam is used to 

selectively fuse powder particles to produce three-dimensional objects in a layer-by-layer manner (Sames 

et al., 2016). A schematic representation of the LPBF process is shown in Figure 1. The process can 

produce geometries which are difficult, if not impossible, to make using traditional subtractive and 

formative processes (Druzgalski et al., 2020). Despite the potential of LPBF to overcome the material and 

design barriers of traditional manufacturing, safety-critical industries such as aerospace are reticent in 

adopting the process due to the lack of part consistency and tendency of the process to create flaws 

(Grasso and Colosimo, 2019). This uncertainty in part quality leads to large variation in functional 

properties (Yadollahi and Shamsaei, 2017).  

 

Figure 1: Schematic representation of the laser powder bed fusion (LPBF) additive manufacturing 

process. 

Some of the quality-related challenges in LPBF include porosity, microstructure inhomogeneity, 

cracking, etc., that result from substandard powder feedstock, improper selection of the process 

parameters, and unsuitable design of the part (Guo et al., 2020). Optimizing process parameters to 

minimize flaw formation via empirical design of experiments is both expensive and time consuming 
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(Megahed et al., 2019). Further, an experimentally derived processing window may not transfer to 

different parts built with the same material and using the same equipment because flaw formation in 

LPBF depends on part design, build orientation, presence of support structures, among others (Yavari et 

al., 2021b). Moreover, despite extensive process optimization, flaw formation in LPBF is liable to occur 

on account of stochastic (chance-related) factors, such as presence of ejecta (spatter) from the process 

(Schwerz et al., 2021). Hence, in-process monitoring of build quality using data acquired from in-situ 

sensors is a critical and urgent need in LPBF (Mani et al., 2017).  

The objective of this work is to detect and predict the type and the severity of porosity in a LPBF part 

using in-process meltpool signatures acquired from an imaging pyrometer. This is an important area of 

research, because, porosity can significantly degrade the functional properties of the part, such as its 

fatigue life, and compromise its structural integrity (Lewandowski and Seifi, 2016). To explain further, 

the meltpool is the region where the laser melts the powder to create a dynamic volume of molten 

material, typically 50 to 100 µm in depth or width, and close to one millimeter in length (Lane et al., 

2020a). The complex thermal and fluid flow phenomena of the meltpool influences the microstructure 

evolved and flaw formation, including porosity, in LPBF (Oliveira et al., 2020b). Although quality 

benchmarks in LPBF are in their early stages (Ronneberg et al., 2020), as an industry consensus, LPBF-

processed parts are expected to exceed 99% of the theoretical density of the material to be considered 

functionally deployable (Kamath et al., 2014). In this work, physics-informed features are extracted from 

the meltpool images based on theoretical simulations and experimental observations reported in the 

literature (Khairallah et al., 2016). These features are subsequently used to predict the type and severity of 

pore formation via relatively simple, readily implemented and computationally tractable machine learning 

models, such as K-Nearest Neighbors. The underlying hypothesis is that a small set of pragmatic, 

physics-informed features extracted from meltpool data when used with simple machine learning models 

will detect part flaws at par with a complex and computationally intensive deep machine learning model 

that uses raw meltpool images (Du et al., 2021). 
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From a practical perspective, it is important to detect both the severity (amount) of porosity and its 

nature (type) to aid process correction (Seifi et al., 2016). This is not only an active research area in 

LPBF, but also in other AM processes, such as wire and arc AM (Ramalho et al., 2022). To explain 

further, in LPBF, and metal-based AM processes in general, the type of porosity can be classified into 

three broad categories contingent on the causal process phenomena, these are: (i) lack-of-fusion, (ii) 

keyhole formation, and (iii) gas porosity (Snow et al., 2020). Lack-of-fusion pores are characterized by 

their irregular (acicular) shape and are caused by partial fusion of powder material on account of 

insufficient input energy. In contrast to lack-of-fusion porosity, keyhole pores are caused by vaporization 

of material due to excessive input energy and are typically circular in appearance (DebRoy et al., 2018). 

The third category of porosity called gas porosity, is typified by circular shaped pores which can result 

either from voids present in the feedstock material, or gasses escaping from the meltpool (Snow et al., 

2020). Given their large size and irregular size, lack-of-fusion pores are comparatively more detrimental 

to functional integrity (Gorelik, 2017). In this work, only lack-of-fusion and keyhole porosity were 

observed.  

1.2 Previous Work and Novelty  

In-process monitoring in LPBF is an area of active research. Several recent review articles have 

detailed the various sensing modalities and data-driven monitoring approaches that are currently being 

investigated. We point the reader to articles by Lane et al. (2020b), Everton et al. (2016), Spears and Gold 

(2016), and Grasso and Colosimo (2017), which provide comprehensive review of the state-of-the-art in 

sensing and process monitoring in LPBF. Likewise, the application of machine learning for process 

monitoring in LPBF has been recently reviewed by Mozaffar et al. (2022), Wang et al. (2020), Meng et 

al. (2020), and Razvi et al. (2019).  Herewith we review a few representative papers from the literature.  

In previous work reported in the literature, the characteristics of meltpool region has been extensively 

used for monitoring build quality (Li et al., 2022). For example, Felix et al. (2021) used a multiple sensor 

setup including a photodiode and an optical camera to predict shift in process conditions at two levels, 
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i.e., increase in laser power and decrease in scanning speed by 10%. Furthermore, the authors predicted 

the occurrence of defects (porosity and cracking) due to these process drifts. For these prediction tasks, 

the authors proposed a novel Bayesian approach along with least squares regression models that yielded 

prediction fidelity (𝑅2) of up to 92%. Similarly, Clijsters et al. (2014) proposed an in-situ monitoring 

system equipped with two optical sensors (a photodiode and an IR camera), allowing the LPBF operator 

to log and analyze meltpool data. A high correlation between the in-situ meltpool signatures and offline 

porosity analysis was reported by Clijsters et al. (2014) thus providing an opportunity for future closed-

loop process control. Scime and Beuth (2019) used an off-axis high-speed imaging camera to obtain in-

situ images of the meltpool and trained a support vector machine (SVM) model to correlate meltpool 

signatures with porosity. Likewise, Kwon et al. (2020)  used meltpool images acquired via a high speed 

camera and classified the images using a deep learning neural network to show the potential of the 

approach for in-situ defect detection. Recently, Forien et al. (2020) combined data from a high-speed 

infrared diode-based pyrometer and a high-speed imaging camera for in-situ monitoring of defects in 

LPBF processed single track constructs.  

Apart from meltpool characteristics, several studies have also correlated plume and spatter formation 

with the part quality (Snow et al., 2020). Plume forms due to the ionization of metal vapor released from 

the meltpool, while spatter refers to the semi-solid droplets that escape from the meltpool on account of 

the recoil pressure (Wang et al., 2020) or partially melted particles entrained by the vapor jet (Ly et al., 

2017). In this context, Zhang et al. (2018) used an off-axis high speed camera for monitoring an LPBF 

process and observed that combining features from the plume, spatter and meltpool improved the ability 

of a SVM model to predict the quality (continuity and width) of single tracks made using LPBF. 

Additionally, the authors employed a complex, deep learning neural network using raw images to make 

these predictions and observed a better classification performance compared to SVM. Similarly, Ye et al. 

(2018) and Tan et al. (2020) used deep learning  neural networks to correlate plume and spatter formation 

with the build quality.  
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More recently, Snow et al. (2022) used in-situ sensor data, including layer-wise images, multi-spectra 

emission and laser scan vector data, for process monitoring in LPBF. The author correlated the in-situ 

acquired data to lack-of-fusion defects identified via XCT. Further, they trained convolutional neural 

networks (CNN) to differentiate nominal build conditions from those leading to flaw formation. The 

trained network was applied to an independent build and yielded defect detection with a high accuracy 

(>93%), which suggests the high likelihood of real-time flaw detection using this approach. Ultimately, 

the results from machine learning were correlated with the fatigue properties of the parts as lack-of-fusion 

defects are considered fatigue critical defects (Snow et al., 2022).  

Thus, researchers in the previous works have used in-situ monitoring of plume and spatter signatures, 

meltpool shape and intensity and layer-wise images using various sensors to qualify the build quality in 

LPBF (Wang et al., 2020). However, a drawback in these previous studies is that the sensor signatures are 

correlated to flaw formation using complex machine learning techniques such as deep learning 

convolutional neural networks. Such deep learning techniques lack physical interpretability and are hard 

to generalize beyond specific situations (Gaikwad et al., 2019). Moreover, such complex machine 

learning models require high-end graphical processing units to train and deploy given their 

computationally demanding nature.  Hence, the data acquired must be transferred from the sensors to a 

separate, dedicated computation unit. The storage and transfer of this high volume of in-process data for 

analysis introduces a latency in process monitoring. Consequently, there is a need for computationally 

tractable monitoring approaches that eliminate the need to transfer memory-intensive sensor data to a 

dedicated analysis engine. To overcome these challenges with black-box machine learning approaches, 

researchers have recently embarked on combining fundamental understanding of the process physics to 

aid machine learning models in flaw detection. Efforts towards such a physics-informed machine learning 

approach to aid process monitoring in additive manufacturing is evident in recent articles by Ness et al. 

(2022), Guo et al. (2022), Du et al. (2021), and Yavari et al. (2021a).  
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The novelty of this work lies in extracting only four physically intuitive meltpool features, such as 

meltpool shape and temperature, from an imaging pyrometer and consequently using these features to 

predict porosity via simple machine learning models. Such a physics-aided approach to a flaw monitoring 

and detection in LPBF is shown to have the following advantages: 

(1) The low-level meltpool temperature and shape features used in this work are physically intuitive and 

relatively tractable to extract. Their interpretability and ease of computation aids rapid training of 

models with smaller data sets, and potentially facilitates transferability across different materials and 

machines.  

(2) Computationally tractable machine learning approaches can be used to predict flaw formation instead 

of complex deep learning algorithms. Consequently, the large volume of meltpool data can be 

analyzed on the edge, i.e., on-board the LPBF machine, without the need to transfer data away from 

the machine to a separate analysis engine. Such near-the-edge computation facilitates rapid process 

feedback correction.  

The rest of this paper is organized as follows. Sec. 2 details the methodology, encompassing the 

experimental setup, creation of test coupons, characterization of samples, extraction of meltpool 

signatures from the pyrometry data, and their subsequent use in machine learning for prediction of 

porosity. Sec. 3 describes the results, including elucidation of the physical link between meltpool 

signatures and porosity and prediction of the type and severity of porosity. Conclusion and avenues for 

future work are summarized in Sec. 4. 
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2 Methods 

2.1 Experimental Setup  

Experiments were conducted on an EOS M280 LPBF system that utilizes a continuous mode 

ytterbium-fiber laser (wavelength 1070 nm), which has a Gaussian distribution with a spot size of 100 µm 

(1/ε2). The system was integrated with a dual wavelength imaging pyrometer (Stratonics, ThermaViz) to 

acquire meltpool images. A schematic of this apparatus is shown in Figure 2(a). The pyrometer was in an 

off-axis configuration, and was inclined at 81° to the horizontal as illustrated in Figure 2(a). The meltpool 

images were acquired at a sampling rate of 800 Hz and resolution of 370 × 384 pixels (29 µm per pixel 

spatial resolution). The sensor images approximately 120 mm2 in the center of the part.  A sample 

meltpool image is exemplified in Figure 2(b). The change in the meltpool behavior as a function of 

process conditions is summarized later in Sec. 2.4. 

 

Figure 2: Schematic representation of the experimental setup showing (a) the off-axis dual wavelength 

imaging pyrometer (Stratonics, ThermaViz) and (b) a sample meltpool image and temperature field 

acquired by the pyrometer at 800 Hz sampling rate and 29 µm/pixel resolution. 

The working principle of the pyrometry is governed by Planck’s law, which states that the intensity 

(𝐼𝜆) of radiation from a heated object is proportional to the object’s temperature (𝑇𝜆) at a particular 

wavelength (𝜆), i.e. 𝐼𝜆 = 𝜖 𝑇𝜆 (Hooper, 2018). The constant of proportionality (𝜖) is the thermal 
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emissivity of the object. However, in practice the thermal emissivity of an object is not constant and is 

dependent on several factors such as the temperature of the object, surface characteristics, and the 

inclination of the sensor to the surface at which the temperature is measured (Moylan et al., 2014). To 

mitigate the effect of change in thermal emissivity as a function of temperature, the dual-wavelength 

imaging pyrometer in this work measures the intensity of radiation at two wavelengths (𝜆1 = 720 nm and 

𝜆2 = 900 nm). The key idea is to estimate the temperature of the body as a function of ratio of the 

intensity radiation at two different wavelengths. Taking the ratio of intensities at two different 

wavelengths, (
𝐼𝜆1

𝐼𝜆2
) has the effect of canceling out the emissivity term. Hence, the temperature 

measurement obtained by the dual-wavelength imaging pyrometer used in this work is a close 

approximation of the absolute meltpool temperature and is more accurate than the temperature 

measurement obtained by a single-wavelength pyrometer or an infrared thermal camera (Wang et al., 

2007). The pyrometer was calibrated using the industry-standard black-body measurement approach 

(Mitchell et al., 2020). The accuracy of temperature measurement using a pyrometer, albeit instrument 

dependent, is typically within ±5°C (Everton et al., 2016). To ensure generalizability to different 

materials, and as a standard practice in machine learning, the meltpool temperatures in this work are 

normalized between 0 and 1.   

2.2 Experiments 

A large cuboid (10 mm × 10 mm × 137 mm, Figure 3) was built with varying processing conditions 

contingent on the build height. The material used in this experiment was ATI 718Plus alloy powder with 

a particle size in the range of 10 – 60 µm. The chemical composition of the powder is shown in Table 1. 

The ATI 718Plus alloy is a modified version of Inconel 718, in which Co is replaced with ½ of its Fe-

content, 1wt.% W is added, and Al/Ti ratio is increased (Kennedy, 2005).  This modification increases the 

service temperature of the ATI 718Plus alloy and improves its mechanical properties (Kennedy, 2005).  

Table 1: Nominal chemical composition (wt. %) of ATI 718Plus alloy. 
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Alloy 
Chemical Composition (wt.%) 

Ni Cr Fe Co Nb Mo Al W Ti C 

ATI 718Plus 

Powder 
Balance 17.7 9.59 9.19 5.62 2.51 1.58 1.00 0.78 0.020 

During the build, two process parameters were varied, namely laser power (𝑃) and scanning speed 

(𝑉) at different build heights. Figure 3 and Table 2 summarize these experimental conditions. The intent 

is to create different types of porosity (lack-of-fusion and keyhole) with varying level of severity.  

Previous work has shown that the laser power (𝑃) and scanning speed (𝑉), along with the layer height (𝑇) 

and hatch spacing (𝐻) are the most consequential to flaw formation (du Plessis, 2019). The effect of 

varying these parameters on the type and severity of porosity is elucidated in depth in Sec. 3.1 and Sec. 

3.2, respectively.  The rationale for building one tall test part instead of several small coupons as 

commonly done in the literature (Montazeri et al., 2020), is as follows. In LPBF the location of the part 

on the build plate is known to have a significant effect on part quality (Foster et al., 2015). Hence, to 

mitigate the effect of part location, instead of processing several small samples each under a different 

process condition, in this work, we built one part with processing conditions changed at different layers, 

as demarcated in Figure 3.  

Referring to Figure 3 and Table 2, the build was started with a nominal condition, labeled P0, and 

processed with laser power (𝑃) 300 W, and scanning speed (𝑉) 1650 mm·s−1. These nominal conditions 

were recommended by the powder supplier (ATI) based on empirical studies. The processing continued 

under nominal conditions for 25 mm (layer 0 – 833).  For the entirety of the experiment, the layer 

thickness (T) was fixed at 30 µm and a rectilinear scanning strategy with 90° shift between successive 

layers was followed.  

The next 25 mm (layer 833 – 1667) of the part, labeled P1-P5, was built with laser power (𝑃) varying 

from 120 W to 325 W with scanning speed (𝑉) fixed at 1650 mm·s−1. We note that P2 is identical to the 

nominal condition (P0). From 50 mm (layer 1667) to 75 mm (layer 2500), labeled S1-S5, the laser power 
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(𝑃) was fixed at 370 W, the scanning speed (𝑉) was varied from 880 mm·s−1 to 3780 mm·s−1, and the 

hatch spacing (𝐻) was increased from 0.09 mm for P0-P5 to 0.14 mm for S1-S5. The rest of the part was 

built with variation of contour patterns, the effects of which are not studied in this work.     

 
Figure 3: Photograph of as-build ATI 718Plus part, demarcating segments produced under different 

processing parameters (reported in Table 2). The part is 10 mm × 10 mm ×137 mm (build height), 

consisting of 4567 individual layers of 30 µm layer height. 

Table 2: Process parameters used for LPBF experiments used in this work. 

Process Step 
Laser Power 

𝑃 [W] 

Scanning Speed 

𝑉 [mm·s−1] 

Hatch Spacing 

𝐻 [mm] 

Build Height 

𝑇 [mm] 

Layer 

Number 

Nominal, P0 300 1650 0.09 0 – 25 1-833 

V
ar

ia
ti

o
n
 i

n
  

L
as

er
 P

o
w

er
 

P1 325 

1650 0.09 

25 – 30 833-1000 

P2 300 30 – 35 1000-1167 

P3 275 35 – 40 1167-1333 

P4 180 40 – 45 1333-1500 

P5 120 45 – 50 1500-1667 

V
ar

ia
ti

o
n
 i

n
 

S
ca

n
n
in

g
 S

p
ee

d
 S1 

370 

3780 

0.14 

50 – 55 1667-1833 

S2 3000 55 – 60 1833-2000 

S3 2200 60 – 65 2000-2167 

S4 1320 65 – 70 2167-2333 

S5 880 70 – 75 2333-2500 
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2.3 Porosity Characterization and Measurement 

After processing, the part was detached from the build plate using wire electro-discharge machining. 

Subsequently, the severity of porosity was quantified using non-destructive X-ray computed tomography 

(XCT, Nikon XTH 225 ST). The entire part was scanned at a voxel resolution of 15 µm and the resulting 

XCT image slices were analyzed using the Volume Graphics software (VGSTUDIOMAX 3.3.4) native to 

the XCT machine.  The level of porosity is reported in terms of defect volume ratio (𝐷𝑉𝑅) – a commonly 

used metric in the literature to quantify porosity (Wells, 2007); 𝐷𝑉𝑅 is defined as, 

 𝐷𝑉𝑅[%] =
∑ 𝑣𝑖

𝑛
𝑖=1

𝑉𝑃
× 100, (1) 

where 𝑛 is the total number of voxels belongs to porosity in a part, 𝑣𝑖 is a single voxel belong to a pore 

detected by the XCT software, and 𝑉𝑃  is the total volume of the part in voxels. We note that the voxel 

resolution of 15 µm used for the XCT analysis, limits the minimum pore size that can be reliably detected 

to 30 µm. Apart from XCT, we measured the relative density of each segment corresponding to the 

changes in laser power (P0 – P5) and scanning speed (S1 – S5) using the Archimedes method (Slotwinski 

and Garboczi, 2014).  

The type of porosity was investigated using optical microscopy and scanning electron microscopy 

(Jeol JCM-6000 Plus). Sample preparation for microscopy analysis included further sectioning of the part 

into smaller samples of 10 mm × 10 mm × 5 mm along the vertical height corresponding to the processing 

segments (P1 – P5, S1 – S5) reported in Table 2 and Figure 3. Next, the samples for each the ten 

processing conditions (P1-P5, S1-S5) were further cross-sectioned into two smaller sections for 

characterization along the XY-plane (normal to the build direction) and XZ-plane (parallel to the build 

direction).  The resulting 20 samples after cross-sectioning were embedded in resin, progressively ground 

with finer silicon carbide abrasive pads, and polished using diamond paste (3, 1, 0.5 µm) to a mirror 

finish. After polishing, the samples were etched by swabbing the surface with aqua regia (HCL: HNO3, 

3:1) for approximately ten seconds. 
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2.4 Representative Sensor Data 

Shown in Figure 4 are representative examples of the meltpool images acquired from the pyrometer 

under various laser power (𝑃) and scanning speed (𝑉) conditions. The top row of Figure 4 shows 

representative meltpool images acquired while varying the laser power over the segments (P1 – P5). Over 

the segments (P1 – P5), which are 5 mm tall and separated along the build height, the laser power was 

reduced from 325 W – 120 W while the scanning speed was fixed at 𝑉 = 1650 mm·s−1.  

In Figure 4, the power (𝑃), scanning speed (𝑉), layer thickness (𝑇) and hatch spacing (𝐻) are 

combined into the volumetric energy density (𝐸𝑣,  J·mm−3) which is expressed as follows. 

 𝐸𝑣 =
𝑃

𝑇 ∙ 𝑉 ∙ 𝐻
 (2) 

Visual examination of the meltpool images obtained by the imaging pyrometer (Figure 4) indicates 

that the meltpool size and shape are related to the processing conditions. For example, referring to the top 

row of Figure 4, the meltpool size and shape remain consistent when the laser power was reduced over 

the segments (P1 – P4) from 325 W to180 W. Likewise, the temperature distribution of the meltpool and 

ejecta also remained consistent as the laser power was reduced from 325 W to 180 W. However, when the 

laser power was further reduced to 120 W (segment P5), the spatter becomes prominent and relatively 

hotter ejecta particles were observed in the areas further away from the core meltpool region.  

The bottom row of Figure 4 shows representative meltpool images acquired while varying the 

scanning speed over the segments (S1 – S5), wherein the scanning speed was reduced from 3780 mm·s−1 

to 880 mm·s−1 and the laser power was fixed at 𝑃 = 370 W. For the high scanning speed conditions (𝑉 > 

2200 mm·s−1) compared to laser power conditions (P1 – P4), the meltpool is relatively elongated and the 

ejecta travels further from the meltpool. Likewise, the meltpool images from the higher scanning speed 

conditions (𝑉 > 2200 mm·s−1) depict hotter ejecta particles when compared with those from the lower 

scanning speed conditions (𝑉 ≤ 2200 mm·s−1). These observations provided the bases for extracting 

meltpool shape and temperature features and correlating these features to porosity type and severity. 
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Figure 4: Representative meltpool images acquired in-situ using the imaging pyrometer for the build 

segments printed with varying laser power (top row) and scanning speed (bottom row). The meltpool 

shape and spatter characteristics change significantly with the processing conditions. For example, 

comparing P1 and S1, the large increase in scanning speed at S1 (3780 mm·s−1) compared to P1 (1650 

mm·s−1) results in prominent spatter. 
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2.5 Processing of Pyrometer Data and Feature Extraction 

To extract meltpool signatures, we first separated the ejecta (spatter and meltpool tail) from the body 

of the meltpool.  The meltpool body was defined as a 40 pixel × 40 pixel area with its center coincident 

with the hottest pixel in the meltpool as shown in Figure 5(a). At this spatial resolution, the meltpool body 

was ~1160 µm×1160 µm. The rest of the image was considered part of the ejecta.  

The meltpool body was further processed using K-means image segmentation (Gaikwad et al., 2020). 

This approach was used to segment the meltpool body into 3 clusters based on the image intensity. Then 

the cluster belonging to the hottest region of the meltpool was considered as the final meltpool image as 

shown in Figure 5(b). We note that K-means image segmentation is readily implemented through a pre-

existing function in MATLAB.  

From the pyrometer images in Figure 5, physically intuitive meltpool and spatter morphology (shape) 

and temperature distribution signatures were extracted. Figure 5(b) and (c) are representative meltpool 

and ejecta images, respectively, for temperature-based signatures, while Figure 5(d) and (e) are the 

corresponding binarized (black-and-white) images used for morphology-based signatures. For 

morphology- or shape-based features, the Euclidean distance from the center of the meltpool to edge 

pixels and ejecta pixels was used (indicated by red arrows shown in Figure 5(d) and (e)). For temperature-

based features, the normalized temperature values of all pixels belonging to the meltpool, and ejecta were 

computed. The meltpool temperature was normalized between 0 to 1 to aid machine learning models and 

facilitate generalizability of the approach across different materials in the future. 

A total of four physics-informed meltpool and ejecta features were devised to capture the meltpool 

characteristics for each segment representative of a different processing condition. The rationale for 

selection of these features based on literature and the approach to estimate these from the pyrometer 

images are described herewith. 
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Figure 5: Separation of meltpool body and ejecta using image processing: (a) original image, where the 

meltpool body is indicated by a square of 40 ×40 pixels; (b) and (c) separated meltpool and ejecta 

images, respectively, used for extracting temperature-based features; (d) and (e) are binarized meltpool 

and ejecta images used for extracting shape-based features. Red arrows refer to the Euclidean distance 

measured from the center of the meltpool body.  

(a) Meltpool Length (Lm) 

The Meltpool Length (Lm) is defined as twice as the largest distance from the center of the meltpool to 

its edge as visually depicted in Figure 5(d).  It was calculated from each frame of the meltpool image 

obtained from the pyrometer as follows 

 𝐿𝑚 = 2𝑑𝑚𝑎𝑥, (3) 

where dmax is the largest Euclidean distance from the center of meltpool to its edge.  

The meltpool length was related to part quality in the literature. For example, Guo et al. (2019) relate 

the meltpool shape and size to the build quality. Among different experimental studies conducted by Guo 

et al. (2019), meltpool length was observed to increase as a function of  laser power and scanning speed, 

even when the energy density was held constant.  Heigel and Lane (2018) observed a similar increasing 

trend with the laser power.  

Recently, Li et al. (2021) also confirmed the increase in meltpool length as a function of both laser 

power and scanning speed, using theoretical simulation of meltpool which resulted in meltpool images 

similar to those observed in this work (Figure 4, Sec. 2.4). In other words, increasing laser power within 
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the extent of conduction mode regime, typically results in an overall increase in the meltpool size, while 

increasing the scanning speed results in meltpool elongation, i.e., increase in meltpool length and decrease 

in width. We note that the meltpool shape is also contingent on other factors such as the scanning strategy 

(Oliveira et al., 2020a). 

The elongation of the meltpool as a function of scanning velocity was similarly observed in 

theoretical meltpool-scale simulations by Khairallah et al. (2016). They concluded that the elongation of 

the meltpool at high scanning speeds (relative to the laser power) is symptomatic of a phenomenon called 

balling. To explain further, the elongated meltpool breaks into separate chunks (balling) on account of the 

Plateau-Rayleigh effect at higher scanning speeds. These discrete meltpool parts fail to completely 

coalesce on solidification, resulting in incomplete fusion, and subsequent formation of porosity. The onset 

of balling was recently observed by Gaikwad et al. (2020) in the sintering of single track LPBF parts who 

reported that a 𝑃/𝑉 ratio of less than 0.5 [J·mm-1] resulted in balling. Thus, the meltpool length is 

considered an important indicator of the process regime in LPBF. 

(b) Mean Ejecta Spread (𝑆𝑒) 

The Mean Ejecta Spread (𝑆𝑒) feature is intended to capture the distance travelled by the ejecta 

particles and represents the spatial distribution (spread) of spatter particles. It was quantified as the 

average distance measured from the center of the meltpool to every ejecta pixel as indicated by arrows in 

Figure 5(e). We note that the ejecta is demarcated as the rest of the meltpool other than the body (1160 

µm ×1160 µm). The mean ejecta spread is estimated as follows 

 𝑆𝑒 =
1

𝑛
∑ 𝑑𝑖

𝑒

𝑛

𝑖=1

 , (4) 

where 𝑛 is the total number of nonzero ejecta pixels and 𝑑𝑖
𝑒 is the Euclidian distance from meltpool center 

to the ith ejecta pixel. For example, examining S1 – S5 in bottom row of Figure 4, the ejecta spread 

decreases with decrease in scanning speed. Thus, 𝑆𝑒 captures the average distance travelled by each ejecta 
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particle. In this work, based on the following key findings concerning the ejecta distribution, quantity, and 

induced flaw formation from the literature, spread of ejecta (𝑆𝑒) was chosen as one of the main predictors 

of porosity.  

 Nassar et al. (2019) attributed formation of large ejecta to two effects based on high-speed 

imaging: (i) inelastic collision between powder particles that are removed from the laser-powder 

interaction zone, and (ii) the coalescence of partially fused particles.  These ejecta particles were found to 

disturb the meltpool stability and result in lack-of-fusion porosity. Ali et al. (2019) showed that the ejecta 

tends to become more violent and extend farther from the meltpool due to the onset of meltpool 

instability. The authors correlated the phenomenon of ejecta spread to the increased porosity. 

 In a similar study, Esmaeilizadeh et al. (2019) investigated the effect of ejected spatter particles on 

the quality of the parts produced by LPBF. The authors compared the parts printed on ejecta rich regions 

with those printed on virgin powders and observed that the ejecta rich regions of the build plate resulted 

in parts with higher porosity. Ly et al. (2017) studied the underlying phenomena of ejecta formation in 

LPBF, both experimentally and through simulation. The authors observed that the angle of ejection is 

significantly dependent on processing parameters, namely, laser power and scanning speed.  

The spread of ejecta has also been linked with the direction of argon gas flow in LPBF. For example, 

Schwerz et al. (2021) observed that ejecta particles travel farther in the direction of gas flow and result in  

porosity in regions of the part away from the gas inlet.  Qiu et al. (2015) studied the interaction between 

laser beam and powder particles both experimentally and through modeling approaches. Apart from 

reporting that increased scanning speed (𝑉 > 2700 mm·s−1) and powder layer thickness (T > 40µm) lead 

to porosity formation in LPBF, they further concluded that the porosity is linked to the meltpool 

instability and ejecta spread.  

In a similar vein, Repossini et al. (2017) used the characteristics of ejecta formation such as statistical 

features in a logistic regression model to predict flaw formation in LPBF. The authors underscored the 
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effectiveness of ejecta characteristics in determining the build quality, represented by under-melted, 

normal-melted, or over-melted parts. Hence, based on these prior results, linking the spread (spatial 

distribution) of ejecta to porosity we derived the 𝑆𝑒 metric. 

(c) Mean Ejecta Temperature (𝑇𝑒) 

The Mean Ejecta Temperature (𝑇𝑒) is the average temperature of the ejecta (Figure 5(b)), and it was 

calculated as follows 

 𝑇𝑒 =
1

𝑛
∑ 𝑇𝑖

𝑛

𝑖=1

 , (5) 

where 𝑛 is the total number of nonzero ejecta pixels and 𝑇𝑖 is the temperature of ith pixel.  

In the literature, the temperature of the ejecta is closely associated with the onset of meltpool 

instability, which is also contingent on the material type and is influenced by the partial vapor pressures 

of the elements that compose the material (Khairallah et al., 2016). For example, during the LPBF 

processing of 17-4 PH stainless steel, Ali et al. (2019) noticed that unstable meltpool tends to eject hot 

spatter particles. Ly et al. (2017), demarcated two types of particles (depending on temperature) that are 

ejected from the meltpool in the LPBF process. These were broadly termed hot and cold particles (ejecta). 

The difference between the two types of particles ejected is that the hot particles result from interaction of 

the particle with the laser beam. Hot particles typically reach the melting point of the material and are in a 

completely or partially molten state.  

Fedina et al. (2021) hypothesized that high temperature ejecta that results from hot particles can 

interact with the virgin powder particles after landing on the bed, leads to agglomeration of fused 

particles. In contrast, cold particles, as explained by Ly et al. (2017), are powder particles that discharge 

from the laser-powder interaction zone, but do not interact with the laser beam. The collision between 

ejecta particles may result in a merger and consolidation into a larger particle after cooling. These larger 

particles settling on the powder bed can lead to lack-of-fusion defects in the subsequent layers in LPBF 
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parts (Darvish et al., 2016). Since these agglomerates are usually larger than the feedstock material and 

therefore, become a source of powder contamination, which also promotes formation of lack-of-fusion 

porosity. 

(d) Distribution of Meltpool Temperature (𝑆𝑘𝑚) 

The temperature distribution of the meltpool region shown in Figure 5(b) is quantified in terms of its 

skewness (third moment of the mean) as follows 

 𝑆𝑘𝑚 =
1

𝑚
∑ (𝑇𝑖−𝜇)3𝑚

𝑖=1

𝜎3 , (6) 

where 𝜇 is the mean of meltpool temperature, 𝜎 is the standard deviation of meltpool temperature and 

m is the total number of nonzero pixels in the meltpool temperature image. 

The skewness feature captures the symmetry of the meltpool temperature distribution about the mean. 

Results from the literature indicate that the temperature distribution of the meltpool is symptomatic of 

meltpool instability and consequently relates to flaw formation.  

Romano et al. (2015) suggested that the temperature distribution of the meltpool in LPBF plays a 

critical role in determining the final part quality, including porosity level in the part. The geometry of the 

liquidous region of meltpool and the amount of liquid material, which is at a temperature greater than the 

melting point of the material being processed, is dependent on the processing conditions. Ly et al. (2017) 

simulated meltpool behavior in LPBF and observed that processing at a relatively low scanning speed 

resulted in a deep meltpool depression with a large amount of liquid material. Increasing laser power and 

scanning speed changed the meltpool shape and temperature significantly, resulting in a shallower and 

elongated meltpool. 
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2.6 Machine Learning for Porosity Prediction 

The meltpool features described in Sec. 2.5 were used as inputs to supervised machine learning 

models trained towards the following two tasks. Task 1 ‒ detection of type of porosity or process regime 

(lack-of-fusion, conduction, keyhole formation); and Task 2 ‒ classification of the severity of porosity. 

These machine learning-based classification tasks are summarized in Table 3 and Figure 6. 

The type of porosity was classified into three modes: lack-of-fusion, conduction mode (ideal case, 

minimal porosity), and keyhole formation based on optical and scanning electron microscopy. Depending 

on the volume of the porosity detected in the part in term of defect volume ratio (𝐷𝑉𝑅 from XCT) and 

Archimedes relative density (𝜌𝑟𝑒𝑙), the severity of porosity was discretized into different levels. The 

discretization ranges from a 2-way (high and low) classification to higher resolution 5-way classification. 

The basis for this demarcation is explained in detail in Sec. 3.2.  

 

Figure 6: Schematic representation of data processing and machine learning approach used in this work 

for classifying severity and type of porosity. 
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Table 3: The various machine learning tasks implemented in this work. The aim is to classify the type and 

severity of porosity at various levels.  

Task 1 – Classify Type of Porosity (Process Regime) 

Classification 

Level 
Porosity Mode 

Number of Meltpool 

Images Per Class 

3-way 

1. Lack-of-fusion porosity 

2. Conduction mode (ideal case, minimal porosity) 

3. Keyhole formation 

3,500 

Task 2 – Classify Severity of Porosity 

Classification 

Level 
Severity of Porosity 

Number of Meltpool 

Images Per Class 

2-way 
1. Nominal (𝐷𝑉𝑅= 0.00%, and  𝜌𝑟𝑒𝑙 ≥ 99%) 

2. Porous (𝐷𝑉𝑅> 0.00%, and 𝜌𝑟𝑒𝑙 ≥ 86%) 
10,000 

3-way 

1. Nominal (𝐷𝑉𝑅= 0.00%, and  𝜌𝑟𝑒𝑙 ≥ 99%) 

2. Medium (0.08% < 𝐷𝑉𝑅 ≤ 0.61%, and  𝜌𝑟𝑒𝑙 ≥ 93%) 

3. High (𝐷𝑉𝑅> 1.00%, and  𝜌𝑟𝑒𝑙 ≤ 90%) 

5,600 

4-way 

1. Nominal (𝐷𝑉𝑅= 0.00%, and 𝜌𝑟𝑒𝑙 ≥ 99%) 

2. Low (0.00% < 𝐷𝑉𝑅 ≤ 0.08%, and 𝜌𝑟𝑒𝑙 ≥ 97%) 

3. Medium (0.08% < 𝐷𝑉𝑅 ≤ 0.61%, and 𝜌𝑟𝑒𝑙 ≥ 93%) 

4. High (𝐷𝑉𝑅 > 1.00%, and 𝜌𝑟𝑒𝑙 ≤ 90%) 

5,600 

5-way 

1. Nominal (𝐷𝑉𝑅= 0.00%, and 𝜌𝑟𝑒𝑙 ≥ 99%) 

2. Low (0.00% < 𝐷𝑉𝑅 ≤ 0.08%, and 𝜌𝑟𝑒𝑙 ≥ 97%), 

3. Medium (0.08% < 𝐷𝑉𝑅 ≤ 0.61%, and 𝜌𝑟𝑒𝑙 ≥ 93%) 

4. High (0.61% < 𝐷𝑉𝑅 ≤ 1.38%, and 𝜌𝑟𝑒𝑙 ≥ 90%) 

5. Very High (1.38 < 𝐷𝑉𝑅 ≤ 1.96%, and 𝜌𝑟𝑒𝑙 ≥ 86%) 

3,000 

The machine learning classification models used in this work are basic supervised machine learning 

models, namely, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and logistic regression 

(LR). These models were chosen given their ease of implementation and computationally tractable nature. 

For example, KNN is considered one of the simplest and readily implemented machine learning 

classification models, with no complex activation function and computation of chain derivatives as with 

neural networks (Mucherino et al., 2009). It can in turn be potentially implemented with rudimentary 

computational processing on board a LPBF machine with sparse computational resources.  

The classification results obtained from KNN, SVM, and LR are compared with a complex deep-

learning convolutional neural network (CNN). The CNN does not use the physics-informed features, but 

instead learns to discern the type and severity of porosity directly from raw meltpool images – an 
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inherently data and computationally intensive process. A detailed explanation of the implementation of 

the CNN is provided in Appendix A. 

The training and testing process of the machine learning models is explained for the 4-way pore 

severity classification. The approach remained same for all machine learning tasks. For the 4-way pore 

severity classification study a total of 22,400 data points (meltpool images) were available (5600 data 

points per class). Out of these, 17,920 data points (80%) were used to train and validate the models and 

the remaining 4480 data points are used for testing. For hyperparameter optimization, a 5-fold cross-

validation and sequential Bayesian optimization schema was used. The accuracy of prediction for the 

various machine learning models was quantified in terms of the F1-score, which ranges between 0 and 1 

(highest accuracy); false positive rate (FPR, Type I error rate); and false negative rate (FNR, Type II error 

rate) (Wardhani et al., 2019).  
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3 Results 

3.1 Porosity Characterization Using SEM and Optical Microscopy 

Figure 7 (top two rows) shows the SEM images obtained in the X-Z directions of the segments (P1 – 

P5, S1 – S5) built under varying process conditions. In Figure 7 two SEM images were captured at 

different scales are shown for each processing condition. In context of P1 – P5, pores were not observed 

until the laser power is reduced to 120 W (P5), at which juncture a lack-of-fusion type of pore is noted. 

Such lack-of-fusion porosity is characterized by its irregular shape, and it caused due to insufficient 

energy to melt the powder (Snow et al., 2021).  

As evident in Figure 7 (bottom two rows), the lack-of-fusion porosity increases proportionally to the 

scanning speed due to decrease in the energy density (𝐸𝑣). In the scanning speed range of 2200 mm·s−1 

(S3) to 3780 mm·s−1 (S1) (𝐸𝑣, 23 to 40 J·mm−3) lack-of-fusion porosity is prominent. Apart from their 

characteristic irregular shape, partially melted powder particles are observed in the voids in the bottom 

two rows of Figure 7. 

On decreasing the scanning speed to 𝑉 = 1320 mm·s−1 with 𝑃 = 370 W, which corresponds to an 

increased energy density (𝐸𝑣 = 67 J·mm−3), lack-of-fusion porosity was largely eliminated.  However, 

with a further reduction in scanning speed to 𝑉= 880 mm·sec−1, resulting in 𝐸𝑣 = 100 J·mm−3 in segment 

S5 (the highest level of 𝐸𝑣 in this work), keyhole type porosity was observed. Keyhole porosity forms at 

high energy density levels as the laser penetrates deeper into the deposited material, causing material to 

vaporize (King et al., 2014). The resulting cavity in the part collapses, causing a pore typically in the 

range of 30 – 50 µm. Thus, the scanning speed experiments manifest in transition of porosity from lack-

of-fusion to keyhole porosity. While such high energy density values can cause both keyhole porosity and 

gas porosity (Snow et al., 2020), however, under high-resolution scanning electron microscopy, the pores 

in region S5 (Figure 7) were observed to have an irregular shape characteristic of keyhole formation, as 

opposed to the uniform circular shape typical of gas porosity.  
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Figure 7: (Top Row) SEM images of the XZ- cross sections of the segments processed under varying laser 

power while the other processing parameters maintained constant (𝑉 =1650 mm·s−1, 𝐻 = 0.090 mm, and 

𝑇 = 0.030 mm). The porosity content corresponding to different laser powers remains insignificant while 

in the laser power range of 325 W to 180 W (P1 - P4). Lack-of-fusion pores are observed in the segment 

P5 processed at a lower laser power (120 W). (Bottom Row) SEM images of the XZ-cross sections of the 

segments processed under varying scanning speed while the other processing parameters maintained 

constant (𝑃 =300 W, 𝐻 = 0.140 mm, and 𝑇 = 0.030 mm). Segments S1 – S3 processed under very high 

scanning speed (3000 – 3780 mm·s−1) are replete with large lack-of-fusion pores. The porosity is 

mitigated as the scanning speed is reduced. Keyhole pores are observed in the S5 segment processed at 

the lowest scanning speed (880 mm·s−1). 
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The severe lack-of-fusion porosity observed at the highest scanning speed range of 2200 mm·s−1 (S3) 

to 3780 mm·s−1 (S1) in this experiment is explained by a phenomena called balling, which is a result of 

meltpool instability due to the Plateau-Rayleigh effect (Khairallah et al., 2016). Considering a deposition 

track as cylinder of liquid metal with diameter D and length L, Scipioni Bertoli et al. (2017) suggested 

that the condition for Plateau Rayleigh meltpool instability is satisfied when L/D > π. Under this 

condition, the meltpool track breaks down into small droplets to minimize its surface energy. King et al. 

(2015) observed a similar phenomenon during the meltpool simulation in LPBF process in meltpool-level 

theoretical simulations. They noted balling of the meltpool at a relatively high scanning speed while 

processing the first layer on the top of virgin powder. In the simulation studies of King et al. (2015), 

balling was mitigated as the scanning speed was decreased. Guo et al. (2020) observed a similar type of 

balling-initiated porosity as the scanning speed was increased to 3000 mm·s−1 (𝐸𝑣= 29.63 J·mm−3) during 

the LPBF processing of Inconel 738LC.   

To explain these observations further, Figure 8 compares the optical micrographs of individual 

samples from three modes of processing conditions as observed from XY- and XZ- planes: severe lack-

of-fusion, represented by high-speed processing condition S2 (𝑃 =370 W, 𝑉 = 3000 mm·s−1, Figure 8(a) 

and (b)) ; conduction mode, represented by nominal processing condition P0 (𝑃 =370 W, 𝑉 = 1650 

mm·s−1, Figure 8(c) and (d)); and keyholing mode, represented by low scanning speed processing 

condition S5 (𝑃 =370 W, 𝑉 = 880 mm·s−1, Figure 8(e) and (f)). We note that during the processing of 

segment S5, referring to Figure 8(f), the pores are observed to form near the bottom of the meltpool track, 

and have an irregular funnel-like shape characteristic of keyhole formation. 

While continuous meltpool tracks are observed for both the nominal (Figure 8(c) and Figure 8 (d)) 

and keyholing regime (Figure 8(e) and Figure 8(f)), partial fusion of tracks is noticed for the lack-of-

fusion mode (Figure 8(a) and (b)). In the literature, Guo et al. (2020) related the scanning speed to the 

viscosity of melt track during solidification and suggested that the reduced energy density at high 

scanning speed results in a viscous meltpool that does not flow sufficiently to wet the adjacent tracks. 



27 

 

Subsequently, the powder in a layer is not uniformly melted resulting in lack-of-fusion porosity. 

Similarly, Qiu et al. (2015) attributed severe lack-of-fusion porosity to meltpool instability, which 

increases with scanning speed and results in discontinuous tracks and violent ejecta.  

 

Figure 8: Optical microscopy images of the LPBF-processed ATI 718Plus alloy: (a) and (b) are optical 

images in the XY- and XZ- planes, respectively, of segment S2 (𝑃 = 370 W, 𝑉 = 3000 mm·s−1). This 

condition represents severe lock-of-fusion porosity due to balling effect. (c) and (d) are the optical images 

of segment P2 (𝑃 = 300 W, 𝑉 = 1650 mm·s−1) in the XY- and XZ- planes, respectively. This condition is a 

representative of the ideal conduction mode, where continuous tracks are observed along the laser path 

with no porosity detected. Finally, (e)and (f) are the optical images of segment S5 in the XY- and XZ- 

planes, respectively, in which keyhole porosity is observed.   
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3.2 Pore Severity Quantification using XCT and Archimedes Method 

The severity of porosity observed in the test part from the XCT is summarized in Figure 9. The 

porosity level in term of the defect volume ratio (𝐷𝑉𝑅) for this work ranges from 0% to 2%. The highest 

variation in 𝐷𝑉𝑅 is observed in the segments (S1 – S5), where the laser scanning speed was varied. In 

this work, the effect of laser power on porosity density (P1 – P5) was found to be insignificant in 

comparison with scanning speed, except for the segment P5, where the laser power is greatly reduced to 

120 W as shown in the inset of Figure 9. In segment P5 the porosity is observed to be 0.01%. 

Summarized in Figure 9 are also the relative density measurements from the Archimedes method (𝜌𝑟𝑒𝑙), 

which ranges from ~99% to 86.5%. 

 

Figure 9: XCT analysis of the part showing the effect different processing parameters on the overall 

defect volume ratio (𝐷𝑉𝑅) and relative density (𝜌𝑟𝑒𝑙). Four clusters of part porosity are evident. 

The 𝐷𝑉𝑅 and relative density (𝜌𝑟𝑒𝑙 , Archimedes) are reported in Table 4. Based on these, the severity 

of porosity can be divided into multiple discrete categories. For example, in Figure 9 the porosity can be 

demarcated into four classes, as Nominal (𝐷𝑉𝑅= 0.00%, 𝜌𝑟𝑒𝑙 ≥ 99%), Low (0.00% < 𝐷𝑉𝑅 ≤ 0.08%, 𝜌𝑟𝑒𝑙 

≥ 97%), Medium (0.08% < 𝐷𝑉𝑅 ≤ 0.61%, 𝜌𝑟𝑒𝑙 ≥ 93%), and High (𝐷𝑉𝑅 > 1.00%,  𝜌𝑟𝑒𝑙: ≤ 90%). To 

further elucidate these observations, the effect of volumetric energy density on severity of porosity is 
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discussed herewith. We note that for ease of explanation, we will mainly focus our analysis on the 4-way 

classification of pore severity demarcated above.   

Practitioners often use 𝐸𝑣 as an approximate guide to set LPBF process parameters for a material 

class with the aim of mitigating porosity (Kasperovich et al., 2016). However, 𝐸𝑣 is affected by other 

factors beyond the main process parameters, such as laser spot size, scan strategy, gas flow, material 

properties, and the size of powder particles, which limit its transferability between different materials, 

processing conditions, and machines (Oliveira et al., 2020b). To mitigate porosity formation, 𝐸𝑣 should 

be sufficiently large (contingent on the type of material) to achieve complete melting and fusion of the 

powder particles (Gibson et al., 2021). When the 𝐸𝑣 is inordinately low, lack-of-fusion porosity is 

observed as explained in the context of Figure 7. Likewise, very high 𝐸𝑣 should be avoided to prevent 

vaporization of the material and entrapment of gases, which lead to gas (pinhole) porosity and keyhole 

porosity, respectively (Gibson et al., 2021). However, it should be noted that porosity formation in LPBF 

process is a function of several factors beyond process parameters. Material characteristics, build 

condition, part shape, location of the part on the build plate, among others, are linked to porosity 

formation. Hence, 𝐸𝑣 alone is an insufficient quantifier of porosity (Giovagnoli et al., 2021).   

The effect of 𝐸𝑣 on porosity is shown in Figure 10 in terms of XCT volumetric analysis. The top row 

of Figure 10 corresponds to segments P1-P5 where the laser power (𝑃 ) was decreased from 325 W to 120 

W, while keeping the scanning speed (𝑉) constant at 1650 mm·s−1. Consequently, 𝐸𝑣 decreases 

proportionally from 73 J·mm−3 at 325 W to 27 J·mm−3 at 120 W. No significant porosity is observed in 

the build (𝐷𝑉𝑅 = 0.00%) when using a laser power between 𝑃 = 325 W (73 J·mm−3) to 180 W (40 

J·mm−3). However, pores appear with decrease in laser power to 𝑃 =120 W, which corresponds to an 

𝐸𝑣=26 J·mm−3, resulting in a 𝐷𝑉𝑅 = 0.01%. 
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Table 4 Archimedes measurements corresponding to the defect volume ratio (𝐷𝑉𝑅) for each processing 

condition (section) of the part.   

Process Step 

Laser 

Power 

𝑃 [W] 

Scanning 

Speed 

V [mm×s−1] 

Hatch 

Spacing 

H [mm] 

Archimedes 

Relative Density, 

ρrel [%] 

XCT Defect 

Volume Ratio, 

𝐷𝑉𝑅 [%] 

Nominal 300 

1650 0.09 

99.285 0 

V
ar

ia
ti

o
n

 i
n
 

L
as

er
 P

o
w

er
 P1 325 99.054 0 

P2 300 98.796 0 

P3 275 99.733 0 

P4 180 99.947 0 

P5 120 98.564 0.01 

V
ar

ia
ti

o
n

 i
n

 

S
ca

n
n

in
g

 S
p

ee
d

 

S1 

370 

3780 

0.14 

89.833 1.38 

S2 3000 86.522 1.96 

S3 2200 92.504 0.61 

S4 1320 97.142 0.08 

S5 880 98.997 0.01 

In a similar vein, from the bottom row of Figure 10 it is observed that an increase in the scanning 

speed, which reduces Ev, leads to an increase in the porosity level. For example, the scanning speed 

setting of V = 3000 mm·s−1
 with 𝑃 = 370 (S2), corresponding to 𝐸𝑣 = 29 J·mm−3 results in a 𝐷𝑉𝑅 of 

nearly 1.96%. An insight from Figure 10 is that the porosity level in the build is generally mitigated by 

reducing the scanning speed and consequently increasing the energy density.  Another observation from  

Figure 10 is that the majority of the pores are concentrated within a distance of 3 mm near the edges. This 

is because, the central area of an LPBF part is generally at an elevated temperature compared to the edges 

(Pantawane et al., 2020), which facilities fusion of powder particles and thereby mitigates the lack-of-

fusion porosity. Recently, concentration of porosity near the edge has also been observed by Diehl and 

Nassar (2020).  

However, using the energy density as a sole measure to control porosity may result in contradictory 

results.  For instance, referring to Figure 8, the same energy density of 𝐸𝑣= 40 J·mm−3 is obtained for 

condition P4 (𝑃 = 180 W and V = 1650 mm·s−1) and condition S3 (𝑃 = 370 W and V = 2200 mm·s−1). 

However, in P4 the 𝐷𝑉𝑅 = 0%, while in the latter 𝐷𝑉𝑅 ~ 0.6%.  Another anomalous behavior observed in 

Figure 10 is that the segment S2 processed at the highest scanning speed (V= 3780 mm·s−1) with 𝐸𝑣= 23 
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J·mm−3 has a 𝐷𝑉𝑅 = 1.38%. However, this level of porosity is lower for S2 which is processed at V = 

3000 mm·s−1 (𝐸𝑣= 29 J··mm−3) and has a 𝐷𝑉𝑅= 1.96%.  

This outcome in the context of Figure 10 indicates that the energy density is not a viable universal 

parameter that can be reliably used to correlate with the porosity severity in LPBF as indicated in the 

recent literature (Oliveira et al., 2020b). Similar shortcoming with 𝐸𝑣 has been noted by previous 

researchers. For example, Tang et al. (2017) found that utilizing the same energy density (𝐸𝑣) obtained by 

changing different process parameters in LPBF resulted in different levels of lack-of-fusion porosity in 

the part. Similar results cautioning the reliability of 𝐸𝑣 were reported by Giovagnoli et al. (2021), who 

studied the limitation of volumetric energy density as an approach to estimate the severity of porosity in 

LPBF.  
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Figure 10: XCT analysis of the various sections showing the effect of laser power (𝑃) and scanning speed 

(𝑉) on porosity in 3D. 𝐷𝑉𝑅 is the defect volume ratio from Volume Graphics software while 𝜌𝑟𝑒𝑙 is the 

relative density measured using Archimedes method. 
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One of the main shortcomings with the volume energy density (𝐸𝑣) that hampers its generalizability is 

that it does not include the material properties. To overcome this gap, recently, Rankouhi et al. (2021) 

proposed a dimensionless number that aggregates LPBF process parameters and thermophysical 

properties of the material. Further, this dimensionless number was related to relative density of a variety 

of metal alloys. The dimensionless number (𝛱1) is expressed as, 

 𝛱1 =
𝐶𝑝 𝑃

𝑘 𝑉2 ℎ
 (7) 

where  𝐶𝑝 is specific heat [J·kg−1·K−1], 𝑃 laser power [W], k thermal conductivity [W·K−1·m−1], 𝑉 laser 

scanning speed [m·s−1], and ℎ  hatch spacing [m].  

Based on analysis of data from literature, Rankouhi et al. (2021) observed that for a fully dense as-

built part, the dimensionless number should be in the range of 61<  𝛱1 < 146, which defines an optimal 

window for selecting process parameters that results in maximum density. Parts built outside this range 

consistently have a lower density. For 𝛱1 < 61, the density is reduced due to lack of fusion porosity while 

for 𝛱1 > 146 it is reduced due to keyhole or gas porosity. Rankouhi et al. (2021) proposed a relationship 

between the relative density of as-built part and the dimensionless number (𝛱1) determined by statistical 

analysis of results reported in the literature. The relative density of a part (𝜌𝑟𝑒𝑙) as a function of 𝛱1is, 

 𝜌𝑟𝑒𝑙 = 𝑒−2.391×10−5×𝛱1 − 0.15𝑒−0.06688×𝛱1 (8) 

We used the above relationship to verify the experimental observations reported in Sec. 3.2 (Figure 9 

and Table 4). For this purpose, we used the Archimedes method to measure the density of test coupons 

(𝜌𝑟𝑒𝑙). Figure 11 correlates the dimensionless number (𝛱1) with both the measured density from 

Archimedes method and predicted relative density (𝜌𝑟𝑒𝑙) from Eq. (8). It is observed that the measured 

density closely follows the predicted density with equivalent labeling of the porosity type demarcated by 

Rankouhi et al. (2021). 
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 Based on the dimensionless number (𝛱1), as shown in Figure 11, most of the porosity observed in 

this work falls in the lack-of-fusion region. The onset of lack-of-fusion porosity was observed for 𝛱1 < 

41, while keyhole melting was observed for 𝛱1 > 126. These match closely with the observations of 

Rankouhi et al. (2021) who suggest the onset of lack-of-fusion  at 𝛱1 < 61 and keyhole at 𝛱1 > 146.  

The slight discrepancy between the observed relative density values and those predicted by Rankouhi 

et al. (2021) from Eqn. (8) is attributed to the novelty of the material studied in this work (ATI 718Plus). 

This material is not present in the data set examined by Rankouhi et al. (2021). Moreover, Eqn. (8) was 

derived through statistical regression analysis of porosity observed in eight different LPBF materials 

ranging from low melting temperature alloys, such as Copper and AlSiMg10 to extreme temperature 

Nickel-based superalloys and Tungsten. This materials-related distinction also explains the difference in 

the 𝛱1 regime demarcations between our work and Rankouhi et al. (2021). 

  

Figure 11: Porosity classification based on relative density as a function of dimensionless number 𝛱1. 

SEM images on the right represent the actual porosity type corresponding to points numbered inside the 

figure. Lack-of-fusionn porosity is observed for 𝛱1 < 41, conduction regime (minimal prorosity) for 41 <
𝛱1 < 126, and Keyhole formation for 𝛱1 > 126.   
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3.3 Prediction of Porosity Using Meltpool Signatures and Machine Learning 

The aim of this section is to predict the severity of porosity as a function of the meltpool signatures 

extracted from the pyrometer (described in Sec.2.5). For illustration, the XCT for the four levels of 

porosity levels observed at different processing conditions are depicted in Figure 12 and visually 

correlated with the meltpool signatures. 

 

Figure 12: Correlation of porosity levels with meltpool images acquired from the dual wavelength 

imaging pyrometer.  The shape, size, and temperature of meltpool and ejecta change with porosity level 

in the part.   

Figure 13 shows the correlation between different features extracted from the dual-wavelength 

imaging pyrometer frames, and the level of porosity. As depicted in Figure 13, the relationships between 

the two shape-based features (Meltpool Length (𝐿𝑚) and Mean Ejecta Spread (𝑆𝑒)) and the two 

temperature-based features (Skewness of Meltpool Temperature (𝑆𝑘𝑚) and Mean Ejecta Temperature 

(𝑇𝑒)), have complex trends. 
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Figure 13: Shape and temperature-based statistical features extracted from pyrometry images, including 

(a) Meltpool Length (Lm), (b) Distribution of Meltpool Temperature (Skm), (c) Mean Ejecta Spread (Se), 

and (d) Mean Ejecta Temperature (Te), as a function of the four porosity levels depicted in Figure 9. 

For example, as shown in Figure 13(a), the meltpool length is smaller for the Nominal porosity 

(𝐷𝑉𝑅= 0.00%,  𝜌𝑟𝑒𝑙 ≥ 99%) condition. The meltpool elongates as the processing condition deviates from 

the nominal, and ultimately breaks down for processing condition (S2) where High porosity level (𝐷𝑉𝑅 > 

0.61%,  𝜌𝑟𝑒𝑙 ≤ 90%) was observed.  The breakdown of the meltpool at higher scanning speeds was 

explained before in Sec. 3.2 as a consequence of the Plateau-Rayleigh effect (Guo et al., 2019). The 

breakdown of the meltpool into separate chunks of molten material leads to poor fusion as depicted in 

Figure 8(a).  

The meltpool and ejecta temperature are correlated with porosity levels in Figure 13(b) and (d), 

respectively. It is observed that both the skewness of meltpool temperature (𝑆𝑘𝑚) and the mean ejecta 
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temperature (𝑇𝑒) show an increasing trend with porosity level.  To explain further, the meltpool 

temperature distribution (𝑆𝑘𝑚) captures the symmetry of the meltpool temperature distribution. High 𝑆𝑘𝑚 

indicates increase in skewness and asymmetry. As shown in Figure 13(b), 𝑆𝑘𝑚 increases linearly with the 

porosity level in the part. The increasing positive skewness indicates that a large area of the meltpool has 

low temperature values. Hence, there is insufficient thermal energy to completely fuse powder particles 

together, resulting in lack-of-fusion porosity.  

The spread of ejecta (𝑆𝑒) as a function of porosity level is mapped in Figure 13(c). It is observed that 

𝑆𝑒 increases with the severity of porosity in the part. The ejecta spreads farther as the meltpool becomes 

instable. The increase in 𝑇𝑒 in Figure 13(d) is also associated with the meltpool instability, which leads to 

ejection of hot meltpool particles during the process (Qiu et al., 2015).  

Next, in Figure 14 we test the ability of the four extracted features to differentiate between the three 

types of porosity and the four porosity levels without the need for a machine learning model. It is noticed 

that the porosity type (Figure 14(a) and (b)) shows more discernable clustering compared to pore severity 

(Figure 14(c) and (d)). For example, in Figure 14 (a), while there is significant overlap between lack-of-

fusion and conduction (minimal porosity) regimes, a clear separation of features is evident for the keyhole 

regime. The significant overlap between these clusters and nonlinear interaction between features 

necessitates the need for machine learning algorithm to predict porosity.  

The pore severity and type classification results from the machine learning models, including KNN, 

SVM, LR, and CNN are shown in Table 5 and pictorially reported in Figure 15. The results indicate that 

only four features, as porosity predictors in this study, were sufficient to predict the porosity level in 

LPBF with accuracy exceeding 95% (F1-score) with a simple KNN model.  

The false positive rate (FPR, Type I error rate) and false negative rate (FNR, Type II error rate) are 

both within 3%. This error mainly originates from mislabeling different porosity levels with the high 

porosity level. This misclassification is particularly associated with the breakdown of meltpool for the 
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high scanning speed condition as a result of Plateau-Rayleigh effect, which in turn results in the high 

porosity level observed in this work. For example, shown in Figure 16 is the confusion matrix for the 4-

way classification of porosity severity using KNN, wherein, the prediction column under high porosity 

level has values, while all other off-diagonal elements are zero. In other words, the machine learning 

algorithm erroneously tags nominal to medium-level porosity as belonging to high porosity. 

 

Figure 14: Correlation between features extracted from the dual-wavelength imaging pyrometer frames, 

where (a) and (b) depict type of porosity, and (c) and (d) depict the severity of porosity.    

The results reported in Table 5 are based on the application of the trained machine learning models to 

the 20% of the unseen data. The logistic regression (LR) model provides the least prediction fidelity of 

~70%. The large difference in prediction fidelity of LR and KNN (and SVM) stems from the complex 

(non-linear) relationship between meltpool signatures and porosity. The SVM model has inferior 



39 

 

performance compared to the KNN as it uses a linear function (kernel) to demarcate the nonlinear cluster 

boundaries depicted in Figure 14. Furthermore, the performance of these physics-informed models was 

compared with the CNN.  

Despite its complex, black-box nature, the CNN did not outperform the KNN model. This is because, 

CNN models are data hungry and generally require more training data than simpler models (Gaikwad et 

al., 2020). To explain further, CNN models use the meltpool image data directly without explicitly 

extracting low-level features. Consequently, a considerably larger number of data points is required by the 

CNN to capture the natural process variation. Thus, increasing the amount of training data could 

potentially improve the CNN model results (we exhausted the available data in the current work for 

training the CNN). Therefore, in Table 5, given its inherently data intensive nature, the performance of 

the CNN degrades compared to KNN with increasing complexity of the classification task. For example, 

the F1-score for 2-way pore severity classification the CNN achieves an F1-score of 97%, which 

decreases to 89% for the 5-way case. To ensure that the models were not trained to the verge of 

overfitting, learning curve analyses were implemented. Such learning curves are detailed in Appendix B. 

The results affirm that the number of data points used for training and validating the various models (as 

reported in Table 3) were appropriate. 

Table 5: Results of porosity severity and type classification using different machine learning classifiers in 

terms of the F1-score, false positive rate (FPR), false negative rate (FNR). The simple machine learning 

models like KNN perform at par with a black-box CNN.  

Porosity 

classification 

Logistic Regression 

(LR) 

Support Vector 

Machine (SVM) 

K-Nearest Neighbors 

(KNN) 

Convolutional Neural 

Network (CNN) 

F1-

score 
FPR FNR 

F1-

score 
FPR FNR 

F1-

score 
FPR FNR 

F1-

score 
FPR FNR 

Task 1 – Classify Type of Porosity (Lack-of-fusion, Conduction, Keyholing) 

3-way 0.83 0.083 0.165 0.85 0.075 0.149 0.97 0.013 0.026 0.94 0.029 0.06 

Task 2 – Classify Severity of Porosity 

2-way 0.82 0.185 0.185 0.84 0.159 0.159 0.97 0.030 0.030 0.97 0.034 0.034 

3-way 0.74 0.133 0.265 0.77 0.117 0.233 0.98 0.009 0.019 0.95 0.026 0.053 

4-way 0.65 0.114 0.341 0.71 0.097 0.029 0.97 0.009 0.027 0.93 0.024 0.072 

5-way 0.60 0.101 0.403 0.64 0.090 0.359 0.97 0.013 0.040 0.89 0.028 0.110 
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Figure 15: Graphical representation of the porosity type and severity classification using various 

machine learning models, viz., Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest 

Neighbors (KNN), Convolutional Neural Network (CNN) in terms of the F1-score. Note the KNN model 

with physics-informed features performs at par with the CNN which uses the raw meltpool images. 

 

Figure 16: Confusion matrix for 4-way classification of porosity severity using K-nearest neighbor (KNN) 

model. It is noticed that the misclassification error originates from mislabeling different porosity levels 

with the High porosity level.  



41 

 

4 Conclusion 

In this work, we demonstrated the online prediction of flaw formation (porosity) in laser powder bed 

fusion (LPBF) additive manufacturing process using meltpool signatures acquired from a dual-

wavelength pyrometer. The main contribution of this work lies in monitoring and predicting the severity 

of porosity formation as well as its type based on four physically intuitive meltpool signatures via simple 

machine learning models. The correlation of meltpool signatures to porosity is achieved through relatively 

simple and computationally tractable machine learning models, such as K-Nearest Neighbors (KNN) and 

Support Vector Machine (SVM).  

A key finding is that a simple KNN machine learning model performed at par (F1-score > 95%) to a 

complex black-box deep learning model. The use of easy and interpretable physics-informed process 

signatures, coupled with readily implementable machine learning, as opposed to black-box deep learning 

techniques, facilitates rapid detection of flaws, and can therefore eliminate the latency in the data transfer 

and analysis loop inherent to complex data-driven flaw detection algorithms. In effect, this work takes the 

first step towards online, real-time flaw detection (qualify-as-you-build) in LPBF.  

Specific conclusions from this work are as follows:   

(1) A large LPBF part 10 mm × 10 mm × 137 mm (ATI 718Plus) was processed under varying laser 

power and scanning speed conditions (ten conditions) to engender porosity of different types and 

varying severity of porosity. A dual wavelength imaging pyrometer was used to continuously 

monitor the process. The pyrometer acquires meltpool images and temperature maps at a 

sampling rate of 800 Hz and resolution of 370 × 384 pixels (29 µm per pixel spatial resolution). 

(2) The type of porosity in the part was characterized using SEM and optical microscopy. Two types 

of porosity (lack-of-fusion and keyhole formation) were observed in the sample. The severity of 

porosity in the part was characterized using non-destructive XCT and Archimedes method. The 
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XCT analysis revealed that the porosity in the samples ranged from 0 – 2% (defect volume ratio). 

The corresponding relative density measured from the Archimedes method was 99% ‒ 86%. 

(3) Four physically intuitive features were extracted from the meltpool images. These features are 

based on experimental and theoretical simulation results reported in the literature. Two features 

capture the shape (morphology) and temperature distribution of the meltpool, and two features 

capture the temperature and spatial distribution (spread) of the ejecta (spatter).  

(4) These meltpool signatures were used as inputs to various types of simple machine learning 

models, such as Logistic Regression (LR), K-Nearest Neighbors (KNN), Support Vector Machine 

(SVM) trained to predict the severity and type of porosity. The pore severity and type were 

classified with a statistical fidelity (F1-score) exceeding 95% with the KNN.  

(5) The results obtained from the KNN were comparable to those from deep learning convolutional 

neural network (CNN) that uses raw meltpool images instead of meltpool features. 

In the future, we will endeavor to extend our studies to complex geometries and different materials to 

test for transferability of the proposed approach. 

Acknowledgements 

The experiments and data acquired for this work was funded by Defense Advanced Research Projects 

Agency (DARPA) Defense Sciences Office (DSO) under contract HR00110120C-0037 Rapid Low Cost 

Additive Manufacturing (Program Officers: Mick Maher and Jan Vandenbrande).    

Prahalada Rao thanks the National Science Foundation (NSF) and Department of Energy (DoE) for 

funding his work under awards OIA-1929172, CMMI-1920245, CMMI-1739696, ECCS-2020246, PFI-

TT 2044710, CMMI-1752069, CMMI-1719388, and DE-SC0021136.  Understanding the causal 

influence of process parameters on part quality and detection of defect formation using in-situ sensing 

was the major aspect of CMMI-1752069 (Program Officer: Kevin Chou). The use of AI algorithms for 

defect detection in additive manufacturing was proposed in ECCS-2020246 (Program Officer: Donald 

Wunsch). Supplemental funding for CMMI-1752069 was obtained through the NSF INTERN program 

(Program Officer: Prakash Balan) and CMMI Data Science Activities (Program Officer:  Martha Dodson) 

is greatly appreciated. The latter supplement funded Ziyad Smoqi and Aniruddha Gaikwad’s research. 

The X-ray CT analysis was conducted on the instrument partially funded through the Major Research 

Instrumentation grant (CMMI-1920245, program officer: Wendy C. Crone). Ben Bevans’ work was 

funded partially through the DoE Grant DE-SC0021136. The materials characterization research was 

performed in part in the Nebraska Nanoscale Facility: National Nanotechnology Coordinated 

Infrastructure under award no. ECCS: 2025298, and with support from the Nebraska Research Initiative 



43 

 

through the Nebraska Center for Materials and Nanoscience and the Nanoengineering Research Core 

Facility at the University of Nebraska-Lincoln. 

References 

Ali, U., Esmaeilizadeh, R., Ahmed, F., Sarker, D., Muhammad, W., Keshavarzkermani, A., 

Mahmoodkhani, Y., Marzbanrad, E., Toyserkani, E., 2019. Identification and characterization of 

spatter particles and their effect on surface roughness, density and mechanical response of 17-

4 PH stainless steel laser powder-bed fusion parts. Materials Science and Engineering: A 756, 98-

107. https://doi.org/10.1016/j.msea.2019.04.026 

Clijsters, S., Craeghs, T., Buls, S., Kempen, K., Kruth, J.P., 2014. In situ quality control of the selective 

laser melting process using a high-speed, real-time melt pool monitoring system. The 

International Journal of Advanced Manufacturing Technology 75, 1089-1101. 

https://doi.org/10.1007/s00170-014-6214-8 

Darvish, K., Chen, Z.W., Pasang, T., 2016. Reducing lack of fusion during selective laser melting of 

CoCrMo alloy: Effect of laser power on geometrical features of tracks. Materials & Design 112, 

357-366. https://doi.org/10.1016/j.matdes.2016.09.086 

DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-

Heid, A., De, A., Zhang, W., 2018. Additive manufacturing of metallic components – Process, 

structure and properties. Progress in Materials Science 92, 112-224. 

https://doi.org/10.1016/j.pmatsci.2017.10.001 

Diehl, B., Nassar, A., 2020. Reducing near-surface voids in metal (Ti-6Al-4V) powder bed fusion 

additive manufacturing: the effect of inter-hatch travel time. Additive Manufacturing 36, 101592. 

https://doi.org/10.1016/j.addma.2020.101592 

Druzgalski, C.L., Ashby, A., Guss, G., King, W.E., Roehling, T.T., Matthews, M.J., 2020. Process 

optimization of complex geometries using feed forward control for laser powder bed fusion 

additive manufacturing. Additive Manufacturing 34, 101169. 

https://doi.org/10.1016/j.addma.2020.101169 

du Plessis, A., 2019. Effects of process parameters on porosity in laser powder bed fusion revealed by X-

ray tomography. Additive Manufacturing 30, 100871. 

https://doi.org/10.1016/j.addma.2019.100871 

Du, Y., Mukherjee, T., DebRoy, T., 2021. Physics-informed machine learning and mechanistic modeling 

of additive manufacturing to reduce defects. Applied Materials Today 24, 101123. 

https://doi.org/10.1016/j.apmt.2021.101123 

Esmaeilizadeh, R., Ali, U., Keshavarzkermani, A., Mahmoodkhani, Y., Marzbanrad, E., Toyserkani, E., 

2019. On the effect of spatter particles distribution on the quality of Hastelloy X parts made by 

laser powder-bed fusion additive manufacturing. Journal of Manufacturing Processes 37, 11-20. 

https://doi.org/10.1016/j.jmapro.2018.11.012 

Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T., 2016. Review of in-situ process 

monitoring and in-situ metrology for metal additive manufacturing. Materials & Design 95, 431-

445. https://doi.org/10.1016/j.matdes.2016.01.099 

https://doi.org/10.1016/j.msea.2019.04.026
https://doi.org/10.1007/s00170-014-6214-8
https://doi.org/10.1016/j.matdes.2016.09.086
https://doi.org/10.1016/j.pmatsci.2017.10.001
https://doi.org/10.1016/j.addma.2020.101592
https://doi.org/10.1016/j.addma.2020.101169
https://doi.org/10.1016/j.addma.2019.100871
https://doi.org/10.1016/j.apmt.2021.101123
https://doi.org/10.1016/j.jmapro.2018.11.012
https://doi.org/10.1016/j.matdes.2016.01.099


44 

 

Fedina, T., Sundqvist, J., Kaplan, A.F.H., 2021. Spattering and oxidation phenomena during recycling of 

low alloy steel powder in Laser Powder Bed Fusion. Materials Today Communications 27, 

102241. https://doi.org/10.1016/j.mtcomm.2021.102241 

Felix, S., Majumder, S.R., Mathews, H.K., Lexa, M., Lipsa, G., Ping, X., Roychowdhury, S., Spears, T., 

2021. In situ process quality monitoring and defect detection for direct metal laser melting. arXiv 

preprint arXiv:2112.01921.  

Forien, J.-B., Calta, N.P., DePond, P.J., Guss, G.M., Roehling, T.T., Matthews, M.J., 2020. Detecting 

keyhole pore defects and monitoring process signatures during laser powder bed fusion: A 

correlation between in situ pyrometry and ex situ X-ray radiography. Additive Manufacturing 35, 

101336. https://doi.org/10.1016/j.addma.2020.101336 

Foster, B., Reutzel, E., Nassar, A., Hall, B., Brown, S., Dickman, C., 2015. Optical, layerwise monitoring 

of powder bed fusion, Solid Freeform Fabrication Symposium, Austin, TX, Aug, pp. 10-12. 

Gaikwad, A., Giera, B., Guss, G.M., Forien, J.-B., Matthews, M.J., Rao, P., 2020. Heterogeneous sensing 

and scientific machine learning for quality assurance in laser powder bed fusion – A single-track 

study. Additive Manufacturing 36, 101659. https://doi.org/10.1016/j.addma.2020.101659 

Gaikwad, A., Imani, F., Yang, H., Reutzel, E., Rao, P., 2019. In Situ Monitoring of Thin-Wall Build 

Quality in Laser Powder Bed Fusion Using Deep Learning. Smart and Sustainable Manufacturing 

Systems 3. SSMS 2019 0027.R2 

Gibson, I., Rosen, D.W., Stucker, B., Khorasani, M., 2021. Additive manufacturing technologies. 

Springer. 

Giovagnoli, M., Silvi, G., Merlin, M., Di Giovanni, M.T., 2021. Optimisation of process parameters for 

an additively manufactured AlSi10Mg alloy: Limitations of the energy density-based approach on 

porosity and mechanical properties estimation. Materials Science and Engineering: A 802, 

140613. https://doi.org/10.1016/j.msea.2020.140613 

Gorelik, M., 2017. Additive manufacturing in the context of structural integrity. International Journal of 

Fatigue 94, 168-177. https://doi.org/10.1016/j.ijfatigue.2016.07.005 

Grasso, M., Colosimo, B.M., 2017. Process defects and in situ monitoring methods in metal powder bed 

fusion: a review. Meas. Sci. Technol. 28, 044005. https://doi.org/10.1088/1361-6501/aa5c4f 

Grasso, M., Colosimo, B.M., 2019. A statistical learning method for image-based monitoring of the 

plume signature in laser powder bed fusion. Robotics and Computer-Integrated Manufacturing 

57, 103-115. https://doi.org/10.1016/j.rcim.2018.11.007 

Guo, C., Li, S., Shi, S., Li, X., Hu, X., Zhu, Q., Ward, R.M., 2020. Effect of processing parameters on 

surface roughness, porosity and cracking of as-built IN738LC parts fabricated by laser powder 

bed fusion. Journal of Materials Processing Technology 285, 116788. 

https://doi.org/10.1016/j.jmatprotec.2020.116788 

Guo, Q., Zhao, C., Qu, M., Xiong, L., Escano, L.I., Hojjatzadeh, S.M.H., Parab, N.D., Fezzaa, K., 

Everhart, W., Sun, T., Chen, L., 2019. In-situ characterization and quantification of melt pool 

variation under constant input energy density in laser powder bed fusion additive manufacturing 

process. Additive Manufacturing 28, 600-609. https://doi.org/10.1016/j.addma.2019.04.021 

https://doi.org/10.1016/j.mtcomm.2021.102241
https://doi.org/10.1016/j.addma.2020.101336
https://doi.org/10.1016/j.addma.2020.101659
https://doi.org/10.1016/j.msea.2020.140613
https://doi.org/10.1016/j.ijfatigue.2016.07.005
https://doi.org/10.1088/1361-6501/aa5c4f
https://doi.org/10.1016/j.rcim.2018.11.007
https://doi.org/10.1016/j.jmatprotec.2020.116788
https://doi.org/10.1016/j.addma.2019.04.021


45 

 

Guo, S., Agarwal, M., Cooper, C., Tian, Q., Gao, R.X., Guo, W., Guo, Y.B., 2022. Machine learning for 

metal additive manufacturing: Towards a physics-informed data-driven paradigm. Journal of 

Manufacturing Systems 62, 145-163. https://doi.org/10.1016/j.jmsy.2021.11.003 

Heigel, J.C., Lane, B.M., 2018. Measurement of the melt pool length during single scan tracks in a 

commercial laser powder bed fusion process. Journal of Manufacturing Science and Engineering 

140. https://doi.org/10.1115/1.4037571 

Hooper, P.A., 2018. Melt pool temperature and cooling rates in laser powder bed fusion. Additive 

Manufacturing 22, 548-559. https://doi.org/10.1016/j.addma.2018.05.032 

Kamath, C., El-dasher, B., Gallegos, G.F., King, W.E., Sisto, A., 2014. Density of additively-

manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. The 

International Journal of Advanced Manufacturing Technology 74, 65-78. 10.1007/s00170-014-

5954-9 

Kasperovich, G., Haubrich, J., Gussone, J., Requena, G., 2016. Correlation between porosity and 

processing parameters in TiAl6V4 produced by selective laser melting. Materials & Design 105, 

160-170. https://doi.org/10.1016/j.matdes.2016.05.070 

Kennedy, R., 2005. ALLVAC® 718PLUS™, superalloy for the next forty years. The Minerals, Metals & 

Materials Society, 1-14.  

Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E., 2016. Laser powder-bed fusion additive 

manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and 

denudation zones. Acta Materialia 108, 36-45. https://doi.org/10.1016/j.actamat.2016.02.014 

King, W., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., Khairallah, S.A., 2015. Overview of 

modelling and simulation of metal powder bed fusion process at Lawrence Livermore National 

Laboratory. Materials Science and Technology 31, 957-968. 

https://doi.org/10.1179/1743284714Y.0000000728 

King, W.E., Barth, H.D., Castillo, V.M., Gallegos, G.F., Gibbs, J.W., Hahn, D.E., Kamath, C., 

Rubenchik, A.M., 2014. Observation of keyhole-mode laser melting in laser powder-bed fusion 

additive manufacturing. Journal of Materials Processing Technology 214, 2915-2925. 

https://doi.org/10.1016/j.jmatprotec.2014.06.005 

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980.  

Kwon, O., Kim, H.G., Ham, M.J., Kim, W., Kim, G.-H., Cho, J.-H., Kim, N.I., Kim, K., 2020. A deep 

neural network for classification of melt-pool images in metal additive manufacturing. Journal of 

Intelligent Manufacturing 31, 375-386. https://doi.org/10.1007/s10845-018-1451-6 

Lane, B., Heigel, J., Ricker, R., Zhirnov, I., Khromschenko, V., Weaver, J., Phan, T., Stoudt, M., 

Mekhontsev, S., Levine, L., 2020a. Measurements of Melt Pool Geometry and Cooling Rates of 

Individual Laser Traces on IN625 Bare Plates. Integrating Materials and Manufacturing 

Innovation 9, 16-30. https://doi.org/10.1007/s40192-020-00169-1 

Lane, B., Jacquemetton, L., Piltch, M., Beckett, D., 2020b. Thermal Calibration of Commercial Melt Pool 

Monitoring Sensors on a Laser Powder Bed Fusion System. National Institute of Standards and 

https://doi.org/10.1016/j.jmsy.2021.11.003
https://doi.org/10.1115/1.4037571
https://doi.org/10.1016/j.addma.2018.05.032
https://doi.org/10.1016/j.matdes.2016.05.070
https://doi.org/10.1016/j.actamat.2016.02.014
https://doi.org/10.1179/1743284714Y.0000000728
https://doi.org/10.1016/j.jmatprotec.2014.06.005
https://doi.org/10.1007/s10845-018-1451-6
https://doi.org/10.1007/s40192-020-00169-1


46 

 

Technology (NIST),  Advanced Manufacturing Series. Series 100-35. 

https://doi.org/10.6028/NIST.AMS.100-35 

Lewandowski, J.J., Seifi, M., 2016. Metal Additive Manufacturing: A Review of Mechanical Properties. 

Annual Review of Materials Research 46, 151-186. https://doi.org/10.1146/annurev-matsci-

070115-032024 

Li, E.L., Wang, L., Yu, A.B., Zhou, Z.Y., 2021. A three-phase model for simulation of heat transfer and 

melt pool behaviour in laser powder bed fusion process. Powder Technology 381, 298-312. 

https://doi.org/10.1016/j.powtec.2020.11.061 

Li, J., Cao, L., Xu, J., Wang, S., Zhou, Q., 2022. In situ porosity intelligent classification of selective laser 

melting based on coaxial monitoring and image processing. Measurement 187, 110232. 

https://doi.org/10.1016/j.measurement.2021.110232 

Ly, S., Rubenchik, A.M., Khairallah, S.A., Guss, G., Matthews, M.J., 2017. Metal vapor micro-jet 

controls material redistribution in laser powder bed fusion additive manufacturing. Scientific 

Reports 7, 4085. https://doi.org/10.1038/s41598-017-04237-z 

Mani, M., Lane, B.M., Donmez, M.A., Feng, S.C., Moylan, S.P., 2017. A review on measurement science 

needs for real-time control of additive manufacturing metal powder bed fusion processes. 

International Journal of Production Research 55, 1400-1418. 

https://doi.org/10.1080/00207543.2016.1223378 

Megahed, M., Mindt, H.-W., Willems, J., Dionne, P., Jacquemetton, L., Craig, J., Ranade, P., Peralta, A., 

2019. LPBF Right the First Time—the Right Mix Between Modeling and Experiments. 

Integrating Materials and Manufacturing Innovation 8, 194-216. https://doi.org/10.1007/s40192-

019-00133-8 

Meng, L., McWilliams, B., Jarosinski, W., Park, H.-Y., Jung, Y.-G., Lee, J., Zhang, J., 2020. Machine 

Learning in Additive Manufacturing: A Review. JOM 72, 2363-2377. 

https://doi.org/10.1007/s11837-020-04155-y 

Mitchell, J.A., Ivanoff, T.A., Dagel, D., Madison, J.D., Jared, B., 2020. Linking pyrometry to porosity in 

additively manufactured metals. Additive Manufacturing 31, 100946. 

https://doi.org/10.1016/j.addma.2019.100946 

Montazeri, M., Nassar, A.R., Dunbar, A.J., Rao, P., 2020. In-process monitoring of porosity in additive 

manufacturing using optical emission spectroscopy. IISE Transactions 52, 500-515. 

https://doi.org/10.1080/24725854.2019.1659525 

Moylan, S., Whitenton, E., Lane, B., Slotwinski, J., 2014. Infrared thermography for laser-based powder 

bed fusion additive manufacturing processes. AIP Conference Proceedings 1581, 1191-1196. 

https://doi.org/10.1063/1.4864956 

Mozaffar, M., Liao, S., Xie, X., Saha, S., Park, C., Cao, J., Liu, W.K., Gan, Z., 2022. Mechanistic 

artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced 

manufacturing processes: Current state and perspectives. Journal of Materials Processing 

Technology 302, 117485. https://doi.org/10.1016/j.jmatprotec.2021.117485 

https://doi.org/10.6028/NIST.AMS.100-35
https://doi.org/10.1146/annurev-matsci-070115-032024
https://doi.org/10.1146/annurev-matsci-070115-032024
https://doi.org/10.1016/j.powtec.2020.11.061
https://doi.org/10.1016/j.measurement.2021.110232
https://doi.org/10.1038/s41598-017-04237-z
https://doi.org/10.1080/00207543.2016.1223378
https://doi.org/10.1007/s40192-019-00133-8
https://doi.org/10.1007/s40192-019-00133-8
https://doi.org/10.1007/s11837-020-04155-y
https://doi.org/10.1016/j.addma.2019.100946
https://doi.org/10.1080/24725854.2019.1659525
https://doi.org/10.1063/1.4864956
https://doi.org/10.1016/j.jmatprotec.2021.117485


47 

 

Mucherino, A., Papajorgji, P.J., Pardalos, P.M., 2009. k-Nearest Neighbor Classification, In: Mucherino, 

A., Papajorgji, P.J., Pardalos, P.M. (Eds.), Data Mining in Agriculture. Springer New York, New 

York, NY, pp. 83-106. 

Nassar, A.R., Gundermann, M.A., Reutzel, E.W., Guerrier, P., Krane, M.H., Weldon, M.J., 2019. 

Formation processes for large ejecta and interactions with melt pool formation in powder bed 

fusion additive manufacturing. Scientific Reports 9, 5038. https://doi.org/10.1038/s41598-019-

41415-7 

Ness, K.L., Paul, A., Sun, L., Zhang, Z., 2022. Towards a generic physics-based machine learning model 

for geometry invariant thermal history prediction in additive manufacturing. Journal of Materials 

Processing Technology 302, 117472. https://doi.org/10.1016/j.jmatprotec.2021.117472 

Oliveira, J.P., LaLonde, A.D., Ma, J., 2020a. Processing parameters in laser powder bed fusion metal 

additive manufacturing. Materials & Design 193, 108762. 

https://doi.org/10.1016/j.matdes.2020.108762 

Oliveira, J.P., Santos, T.G., Miranda, R.M., 2020b. Revisiting fundamental welding concepts to improve 

additive manufacturing: From theory to practice. Progress in Materials Science 107, 100590. 

https://doi.org/10.1016/j.pmatsci.2019.100590 

Pantawane, M.V., Ho, Y.-H., Joshi, S.S., Dahotre, N.B., 2020. Computational Assessment of 

Thermokinetics and Associated Microstructural Evolution in Laser Powder Bed Fusion 

Manufacturing of Ti6Al4V Alloy. Scientific Reports 10, 7579. https://doi.org/10.1038/s41598-

020-63281-4 

Qiu, C., Panwisawas, C., Ward, M., Basoalto, H.C., Brooks, J.W., Attallah, M.M., 2015. On the role of 

melt flow into the surface structure and porosity development during selective laser melting. Acta 

Materialia 96, 72-79. https://doi.org/10.1016/j.actamat.2015.06.004 

Ramalho, A., Santos, T.G., Bevans, B., Smoqi, Z., Rao, P., Oliveira, J.P., 2022. Effect of contaminations 

on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel. 

Additive Manufacturing 51, 102585. https://doi.org/10.1016/j.addma.2021.102585 

Rankouhi, B., Agrawal, A.K., Pfefferkorn, F.E., Thoma, D.J., 2021. A dimensionless number for 

predicting universal processing parameter boundaries in metal powder bed additive 

manufacturing. Manufacturing Letters 27, 13-17. https://doi.org/10.1016/j.mfglet.2020.12.002 

Razvi, S.S., Feng, S., Narayanan, A., Lee, Y.-T.T., Witherell, P., 2019. A Review of Machine Learning 

Applications in Additive Manufacturing, ASME 2019 International Design Engineering 

Technical Conferences and Computers and Information in Engineering Conference. 

Repossini, G., Laguzza, V., Grasso, M., Colosimo, B.M., 2017. On the use of spatter signature for in-situ 

monitoring of Laser Powder Bed Fusion. Additive Manufacturing 16, 35-48. 

https://doi.org/10.1016/j.addma.2017.05.004 

Romano, J., Ladani, L., Razmi, J., Sadowski, M., 2015. Temperature distribution and melt geometry in 

laser and electron-beam melting processes – A comparison among common materials. Additive 

Manufacturing 8, 1-11. https://doi.org/10.1016/j.addma.2015.07.003 

https://doi.org/10.1038/s41598-019-41415-7
https://doi.org/10.1038/s41598-019-41415-7
https://doi.org/10.1016/j.jmatprotec.2021.117472
https://doi.org/10.1016/j.matdes.2020.108762
https://doi.org/10.1016/j.pmatsci.2019.100590
https://doi.org/10.1038/s41598-020-63281-4
https://doi.org/10.1038/s41598-020-63281-4
https://doi.org/10.1016/j.actamat.2015.06.004
https://doi.org/10.1016/j.addma.2021.102585
https://doi.org/10.1016/j.mfglet.2020.12.002
https://doi.org/10.1016/j.addma.2017.05.004
https://doi.org/10.1016/j.addma.2015.07.003


48 

 

Ronneberg, T., Davies, C.M., Hooper, P.A., 2020. Revealing relationships between porosity, 

microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through 

heat treatment. Materials & Design 189, 108481. https://doi.org/10.1016/j.matdes.2020.108481 

Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S., 2016. The metallurgy and processing 

science of metal additive manufacturing. International Materials Reviews 61, 315-360. 

https://doi.org/10.1080/09506608.2015.1116649 

Schwerz, C., Raza, A., Lei, X., Nyborg, L., Hryha, E., Wirdelius, H., 2021. In-situ detection of 

redeposited spatter and its influence on the formation of internal flaws in laser powder bed fusion. 

Additive Manufacturing 47, 102370. https://doi.org/10.1016/j.addma.2021.102370 

Scime, L., Beuth, J., 2019. Using machine learning to identify in-situ melt pool signatures indicative of 

flaw formation in a laser powder bed fusion additive manufacturing process. Additive 

Manufacturing 25, 151-165. https://doi.org/10.1016/j.addma.2018.11.010 

Scipioni Bertoli, U., Wolfer, A.J., Matthews, M.J., Delplanque, J.-P.R., Schoenung, J.M., 2017. On the 

limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting. 

Materials & Design 113, 331-340. https://doi.org/10.1016/j.matdes.2016.10.037 

Seifi, M., Salem, A., Beuth, J., Harrysson, O., Lewandowski, J.J., 2016. Overview of materials 

qualification needs for metal additive manufacturing. Jom 68, 747-764. 

https://doi.org/10.1007/s11837-015-1810-0 

Slotwinski, J.A., Garboczi, E.J., 2014. Porosity of additive manufacturing parts for process monitoring, 

AIP conference proceedings. American Institute of Physics, pp. 1197-1204. 

Snow, Z., Diehl, B., Reutzel, E.W., Nassar, A., 2021. Toward in-situ flaw detection in laser powder bed 

fusion additive manufacturing through layerwise imagery and machine learning. Journal of 

Manufacturing Systems 59, 12-26. https://doi.org/10.1016/j.jmsy.2021.01.008 

Snow, Z., Nassar, A.R., Reutzel, E.W., 2020. Invited Review Article: Review of the formation and impact 

of flaws in powder bed fusion additive manufacturing. Additive Manufacturing 36, 101457. 

https://doi.org/10.1016/j.addma.2020.101457 

Snow, Z., Reutzel, E.W., Petrich, J., 2022. Correlating in-situ sensor data to defect locations and part 

quality for additively manufactured parts using machine learning. Journal of Materials Processing 

Technology 302, 117476. https://doi.org/10.1016/j.jmatprotec.2021.117476 

Spears, T.G., Gold, S.A., 2016. In-process sensing in selective laser melting (SLM) additive 

manufacturing. Integrating Materials and Manufacturing Innovation 5, 16-40. 

https://doi.org/10.1186/s40192-016-0045-4 

Tan, Z., Fang, Q., Li, H., Liu, S., Zhu, W., Yang, D., 2020. Neural network based image segmentation for 

spatter extraction during laser-based powder bed fusion processing. Optics & Laser Technology 

130, 106347. https://doi.org/10.1016/j.optlastec.2020.106347 

Tang, M., Pistorius, P.C., Beuth, J.L., 2017. Prediction of lack-of-fusion porosity for powder bed fusion. 

Additive Manufacturing 14, 39-48. https://doi.org/10.1016/j.addma.2016.12.001 

https://doi.org/10.1016/j.matdes.2020.108481
https://doi.org/10.1080/09506608.2015.1116649
https://doi.org/10.1016/j.addma.2021.102370
https://doi.org/10.1016/j.addma.2018.11.010
https://doi.org/10.1016/j.matdes.2016.10.037
https://doi.org/10.1007/s11837-015-1810-0
https://doi.org/10.1016/j.jmsy.2021.01.008
https://doi.org/10.1016/j.addma.2020.101457
https://doi.org/10.1016/j.jmatprotec.2021.117476
https://doi.org/10.1186/s40192-016-0045-4
https://doi.org/10.1016/j.optlastec.2020.106347
https://doi.org/10.1016/j.addma.2016.12.001


49 

 

Wang, C., Tan, X.P., Tor, S.B., Lim, C.S., 2020. Machine learning in additive manufacturing: State-of-

the-art and perspectives. Additive Manufacturing 36, 101538. 

https://doi.org/10.1016/j.addma.2020.101538 

Wardhani, N.W.S., Rochayani, M.Y., Iriany, A., Sulistyono, A.D., Lestantyo, P., 2019. Cross-validation 

Metrics for Evaluating Classification Performance on Imbalanced Data, 2019 International 

Conference on Computer, Control, Informatics and its Applications (IC3INA), pp. 14-18. 

Wells, J.M., 2007. Quantitative XCT evaluation of porosity in an aluminum alloy casting, Shape casting: 

2nd international symposium, pp. 978-970. 

Yadollahi, A., Shamsaei, N., 2017. Additive manufacturing of fatigue resistant materials: Challenges and 

opportunities. International Journal of Fatigue 98, 14-31. 

https://doi.org/10.1016/j.ijfatigue.2017.01.001 

Yavari, R., Riensche, A., Tekerek, E., Jacquemetton, L., Halliday, H., Vandever, M., Tenequer, A., 

Perumal, V., Kontsos, A., Smoqi, Z., Cole, K., Rao, P., 2021a. Digitally twinned additive 

manufacturing: Detecting flaws in laser powder bed fusion by combining thermal simulations 

with in-situ meltpool sensor data. Materials & Design 211, 110167. 

https://doi.org/10.1016/j.matdes.2021.110167 

Yavari, R., Smoqi, Z., Riensche, A., Bevans, B., Kobir, H., Mendoza, H., Song, H., Cole, K., Rao, P., 

2021b. Part-scale thermal simulation of laser powder bed fusion using graph theory: Effect of 

thermal history on porosity, microstructure evolution, and recoater crash. Materials & Design 

204, 109685. https://doi.org/10.1016/j.matdes.2021.109685 

Ye, D., Hsi Fuh, J.Y., Zhang, Y., Hong, G.S., Zhu, K., 2018. In situ monitoring of selective laser melting 

using plume and spatter signatures by deep belief networks. ISA Transactions 81, 96-104. 

https://doi.org/10.1016/j.isatra.2018.07.021 

Zhang, Y., Hong, G.S., Ye, D., Zhu, K., Fuh, J.Y.H., 2018. Extraction and evaluation of melt pool, plume 

and spatter information for powder-bed fusion AM process monitoring. Materials & Design 156, 

458-469. https://doi.org/10.1016/j.matdes.2018.07.002 

  

  

https://doi.org/10.1016/j.addma.2020.101538
https://doi.org/10.1016/j.ijfatigue.2017.01.001
https://doi.org/10.1016/j.matdes.2021.110167
https://doi.org/10.1016/j.matdes.2021.109685
https://doi.org/10.1016/j.isatra.2018.07.021
https://doi.org/10.1016/j.matdes.2018.07.002


50 

 

Appendix A: Convolutional Neural Network (CNN) 

A deep convolutional neural network (CNN) was used to classify the severity and type of porosity 

using the meltpool images acquired from the dual-wavelength pyrometer. The meltpool images were 

centered and rotated before using them as inputs to the CNN as shown in Figure A1. Subsequently, the 

images were cropped to a dimension of 200 × 200 pixels to reduce the computational burden while 

training the CNN. 

 
Figure A1: Image preprocessing for Convolutional Neural Network (CNN). (a) Representative meltpool 

images acquired from the dual-wavelength pyrometer. (b) Centered and reoriented meltpool images.  
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Figure A2 elucidates the architecture of the CNN used in this work. The first layer is the input layer 

which uses the rotated and centered meltpool images. This is followed by four blocks, with each block 

consisting of convolutional layers, batch normalization layer, and max pooling layers (L2-regularization 

was used in the convolutional layers to avoid overfitting). Similarly, the last block has a dropout layer to 

further avoid overfitting of the model while training. The CNN was trained using the adaptive learning 

optimization with the help of the Adam solver (Kingma and Ba, 2014). The convolutional layers and fully 

connected layers use ReLU (Rectified Linear Unit) activation function to introduce nonlinearity. The size 

of the output layer depends on the classification task. For example, for the 4-way pore severity 

classification the output layer has 4 neurons. 

 
Figure A2: Schematic of the Convolutional Neural Network’s (CNN) architecture. Preprocessed meltpool 

images (Figure A1) were used as inputs to the CNN. The size of the output layer (N) depends on the 

complexity of the classification task. 
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Appendix B: Learning Curves for K-Nearest Neighbors (KNN) 

To estimate the minimum data required to train the machine learning modes, a learning curve was 

generated for each of the prediction cases using its original set of data. The various models were trained 

on increasing increments of 100 datapoints, using 80% of the data. Then, the trained model was validated 

on an independent test data (20%) after each run. Figure A3 shows the learning curves for the KNN 

model with respect to 2-, 3-, and 4-way classification of pore severity and 3-way classification of pore 

type. From the Figures A3, we observe that the minimum number of datapoints required for training lies 

between 4,000 and 7,000, depending on the complexity of the machine learning task.  

 

Figure A3: Learning curves for the KNN model used to classify porosity based on the level of pore 

severity (a – c), and pore type (d). The minimum number of datapoints required to train the model to 

result in a stable F1-score is estimated to be between 4,000 and 7,000 datapoints.  


