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This work concerns solutions of the heat equation with the spectral graph method, for which the tem-
perature is defined at discrete points in the domain and the spatial relationship among the points is
described by a graph. The heat equation on the graph is solved using matrix techniques involving the
eigenvectors and eigenvalues of the Laplacian matrix. The spectral graph approach precludes the compu-
tationally intensive meshing and numerous time-integration steps of the finite element method. In the
present work, the spectral graph method is extended to include heat loss at the boundaries with a gener-
alized boundary condition, and physics-based edge weights are introduced which simplify the calibration
process. From this approach a discrete Green’s function is defined which allows for solutions under a
variety of heating conditions including: space-varying initial conditions; time-and-space varying inter-
nal heating; and, time-and-space-varying heating at boundaries of type 1 (Dirichlet), type 2 (Neumann)
and type 3 (Robin). Results are provided for benchmark heat transfer problems in one spatial dimen-
sion and in three spatial dimensions, and verification is provided by comparison with exact analytical
solutions and finite difference solutions. The spectral graph method converges within 0.4% error of the
analytical solution. The practical utility of the approach is demonstrated by thermal simulation of a multi-
layer additive manufacturing process. The spectral graph results are compared to experimentally-obtained
temperature data for two metal parts, with error less than 5% of the experimental measurements, with
computation time less than one minute on a desktop computer.
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steps if the GF is known. Discrete building-block solutions can be
constructed from the GF to treat heating conditions that vary over

1. Introduction

In the spectral graph method the heat equation is solved over
a discrete set of nodes. The novelty of the present work is that the
spectral graph method is combined with discrete Green’s functions
through treatment of a generalized boundary condition.

The strength of the spectral graph (SG) method lies in the ease
with which any geometry may be represented by a collection of
nodes dispersed throughout the body. Previous work by the au-
thors has shown that the SG method may be computed faster
than commercial finite element codes for comparable precision, for
thermal simulation of additive manufacturing [1-5]. That previous
work involved insulated boundaries, with boundary heat loss in-
cluded as an adjustment to the boundary temperatures, external
to the SG method.

The strength of the Green’s function (GF) method is that several
types of heating conditions may be addressed with straightforward
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space and over time [6]. However finding the GF is a central chal-
lenge [7, p. 101].

In the present work, the geometric universality and computa-
tional speed of the SG method is combined with the multiple-
heating capability and mathematical rigor of the GF method. The
improved method can treat boundary conditions of type 1, 2, and
3, under a variety of heat-addition conditions, and has great poten-
tial to provide rapid thermal simulations of a variety of industrial
processes.

1.1. Literature review

The pertinent literature will be reviewed in the areas of the
spectral graph method, discrete Green’s functions, and thermal
simulation of additive manufacturing.

1.1.1. Spectral graph method
Recently the spectral graph (SG) method has been used to solve
the heat conduction equation in the context of image processing
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and filtering of other large data sets [8-10]. In a study of image
smoothing, Zhang and Hancock use randomly assigned node lo-
cations to construct a discrete Laplacian matrix and subsequently
to solve the heat conduction equation [10]. A review paper by
Solomon [11] shows that the Laplacian matrix constructed from
a uniformly spaced grid gives a solution to the heat conduction
equation. However, if the grid is not equally spaced, the relation-
ship to the correct solution of the heat conduction equation is not
clear.

1.1.2. Discrete Green’s function

Several authors have developed a discrete Green’s function (GF)
for steady diffusion. Bendito et al. [12] give a procedure for find-
ing the steady discrete GF using graph theory for Dirichlet (type 1)
boundary conditions for application to electric resistor networks.
Zhang et al. [8] discuss discrete GF for diffusion in large data
graphs for a social network application, and an approximate ma-
trix inversion technique is used to obtain a few eigenvalues from
very large Laplacian matrices. Gilbert et al. [13] develop discrete GF
with boundary conditions of type 1, 2 or 3 with application to scat-
tering of light, with examples provided in one and two dimensions.
Arauz et al. [14] discuss procedures for finding the discrete GF from
graph theory by studying subnetworks, to mitigate the computa-
tional burden when the Laplacian matrix is very large. Tewary and
Garboczi [15] find the discrete GF for a two dimensional compos-
ite body using a semi-analytic Fourier integral method applied to
steady heat transfer and electrostatic potential.

There has been some work on a discrete GF for transient diffu-
sion using graph theory. Chung et al. [16] introduce a discrete form
of Green’s theorem on graphs and give an example of diffusion
driven by non-homogeneous Dirichlet (type 1) boundary. However
no numerical results are provided. Xu et al. [17] studied random
walks on graphs and defined a discrete GF for Neumann (type 2)
boundary conditions. Time evolution of the solution is replaced by
a focus on the number of steps in a random walk for transport
from one point to another on the graph.

There are many applications of the finite element method for
discrete GF applied to the heat equation. Mansur et al. have a se-
ries of papers based on the finite element method: one paper in-
troduces the method for the heat equation and provides examples
in two spatial dimensions [18]; another paper provides details of
the time integration of the discrete GF to control numerical stabil-
ity [19]; and, another defines the discrete GF in the Laplace domain
with a Laplace-inversion integral in place of a time integral [20].
Zhang and Li [21] use the discrete GF for two-dimensional heat
transfer in soil surrounding subway tunnels. Sodan et al. [22] use
time convolution to apply discrete GF to thermal effects in gallium-
nitride electronic devices.

Several authors have worked with discrete GF constructed by
other means. Melnikov and Reshniak [23] incorporated analyti-
cal GF which satisfied some of the boundary conditions into a
boundary integral formulation in order to numerically satisfy all
of the boundary conditions; examples in two spatial dimensions
were provided. Mai et al. [24] developed the GF for a finite two-
dimensional domain by distributing fundamental solutions along
the boundary, which may be type 1, 2 or 3. Wang et al. [25] used
an integral-transform technique to find the GF for non-Fourier heat
conduction in unbounded domains, with application to microscale
heat transfer. Eaton [26] built a discrete GF from analytical bound-
ary layer solutions for convection heat transfer.

1.1.3. Thermal simulation of additive manufacturing

The impact of thermal effects on defects in additive manufac-
turing is well documented [27-31]. Through the use of thermal
simulation, it is possible to minimize the occurrence of defects,
such as geometric deformation and microstructure heterogeneity,
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by predicting the effect of process conditions and part design on
the temperature history in the build, without relying on extensive
build-and-repeat empirical optimization [32].

Accurate quantitative modeling approaches based on finite ele-
ment (FE) analyses have been successfully developed and applied
for understanding the thermal aspects of AM at the part-level,
as summarized in several references [33-37]. However, these pi-
oneering non-proprietary approaches are computationally expen-
sive, with simulation of a few deposited layers amounting to many
hours, if not days [38,39]. For example, Cheng et al. reported that
the computation time for thermomechanical analysis for a 6 mm
cuboid shape part exceeds 92 hours [38].

Hence, newer efficient approaches are needed to predict the
temperature distribution under different part designs and with var-
ious process parameters; this is the motivation for the present
work. In the context of FE-based modeling there exist several com-
mercial, proprietary approaches, such as Autodesk Netfabb and An-
sys 3DSim, that have leveraged adaptive meshing principles to
drastically reduce the computational time. However, the underlying
mathematics of these commercial software applications is propri-
etary [36,40]. Furthermore, there is a large variation in the results
among proprietary software, as large as 80% in a recent bench-
marking study [41].

1.2. Organization of the paper

In the remainder of the paper, Section 2 provides a develop-
ment of the Green’s function approach, with the discrete GF con-
structed from the spectral graph method based on nodal energy
balances on an unstructured grid. Section 3 contains examples
of the method applied to geometries with planar boundaries un-
der two different heating conditions, with verification provided by
comparison with exact analytical solutions and finite difference so-
lutions in one spatial dimension and with exact analytical solutions
in three spatial dimensions. Section 4 demonstrates the method for
thermal simulation of a multilayer additive manufacturing process
on bodies with severe overhang, and the results are validated by
comparison with experimental temperature values. Section 5 con-
tains a summary and discussion of the work.

2. Theory and development

The discrete Green’s function (GF) is a matrix of size (n x n),
where n is the number of nodes in the body. Each row of the GF
matrix contains the temperature response in the body caused by
an impulse of heat at one node. All the rows of the GF matrix to-
gether provide the overall response to heating at any of the nodes
in the body.

In this section the discrete GF method is introduced in several
steps. Section 2.1 provides the overall relation between tempera-
ture and the discrete GF for several heating conditions, which we
call the discrete GF solution equation. In Section 2.2 the discrete
GF is constructed from the spectral graph method which involves
the Laplacian matrix of a graph. Section 2.3 provides details of the
Laplacian matrix by examining an energy balance on each node in
the body. Section 2.4 shows how the distribution of nodes in the
body affects the edge weights used to connect nodes to one an-
other. Section 2.5 demonstrates that although the discrete GF is
discrete in space, it is analytic in time. Section 2.6 provides an
overview of the method and its limitations.

2.1. Discrete Green’s function solution equation
In the continuous Green'’s function (GF) method, the boundary

value problem for temperature is recast into an integral expression
containing the GF multiplied by each of the heating effects present
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in the problem, such as the initial condition, the internal heating
function, and any boundary heating functions [7, chap. 3|. This GF
solution equation is flexible and powerful because one GF allows
for a large family of solutions to be treated in a straightforward
manner. In this section, the discrete GF solution equation is pre-
sented by analogy with the continuous GF method. The starting
point is the boundary value problem for temperature:

10T, 1 .
T VT + Eg(r, t) (domain R) (1)
T \
kW +hmT = hpToom +qm (M boundary of R) (2)
m
T(r,t =0) = To(r) (initial condition) (3)

Material properties are conductivity k [Wm~1K-1] and diffusivity
o [m2s~1]. Here ny, represents the outward normal vector on the
mt" portion of the body surface, each of which is characterized by
convection coefficient hy, [Wm—2K-1 ], heat flux ¢, [Wm~2], and
local ambient temperature Teom.

The temperature is driven by three causative functions: internal
heating g; initial condition Ty; and, boundary heating (hmTeom +
qm). Here the boundary heating is a generalized condition which
provides for three types of boundary heating conditions depend-
ing on the values of hy and gy [42]. For nonhomogeneous type
3 (Robin) boundary take g, =0. For boundary heating of type
2 (Neumann), take hy; = 0 and gm # 0. For the nonhomogeneous
type 1 (Dirichlet) boundary, divide Eq. (2) by h;; and take the limit
as hy — oo, as follows:

19T +T = Toom + qm (mth boundary of R) (4)
hm 8ﬂm Bm
—_—— ——

=0 =0

This is a nonhomogeneous type 1 condition on the m‘" boundary.
This problem will be made dimensionless with the following
variables:

= T-To - at _ T _ Ny _ hal
T=ror = Tep e Be=nye
_qul g

=}

m—ﬁ, g_ﬁ (5)

Here L [m] is a length scale and T; [K] is a temperature scale. In-
troduce the above variables for the normalized temperature prob-
lem:

% = V2T 4+ §#,f) (domain R) (6)
aT . N . "

- T = BuToom + Gm (m** boundary of R) (7)
Ofiy
T f=0) = Ty(¥) (initial condition) (8)

Because the boundary value problem for temperature is linear,
the GF solution equation for the temperature is the sum of three
terms:

T(r,t) = Tin(r, ) + Ty(r, ) + T (r, £) (9)

Quantity T, is the temperature contribution from the initial con-
dition, Tg is from internal (volumetric) heating, and T, is from the
nonhomogeneous boundary conditions. In Table 1 the expression
for each of these three terms is given for the analytical GF solu-
tion [7, chap. 3] and by analogy, for the discrete GF solution. The
entries in Table 1 will be discussed one at a time.
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Table 1

Temperature expressions with the continuous GF and with the discrete
GF, with contributions to temperature caused by: initial condition T,;
internal heating T,; and, boundary conditions Tj..

Continuous GF Discrete GF

Gl To

t
[ Gadr
0

t
/ Ggndr, where
0

[C|r Ufg(r’)dV’
T, / /Gg(r 7)dV'dt
Toc / / Cly, BT + ) dA, dT
=0

&m = (BmTocm + qm)l‘;ﬂ

m

The first row of Table 1 shows the contribution to tempera-
ture from a non-zero initial condition. To discern the discrete tem-
perature expression from the continuous temperature expression,
the spatial integral in the continuous temperature expression is re-
placed by the discrete GF matrix multiplied by the initial temper-
ature vector To. This matrix multiplication insures that all nodes
with non-zero initial condition have an impact on the resulting
temperature.

The second row of Table 1 gives the contribution to the temper-
ature caused by internal heat generation, and as for the first row,
the spatial integral from the continuous temperature expression is
replaced by the GF matrix multiplied by the causative effect, this
time the internal heating vector g to produce the discrete temper-
ature expression. Vector § may vary in space and in time.

The third row of Table 1 gives the contribution to temperature
for heating at the boundary. For the continuous GF method, there
is a surface integral involving the GF evaluated at the boundary
¥ =), multiplied by the boundary heat flux (BiToom + m). This
surface integral is developed from a volume integral using Green'’s
theorem. In contrast, the discrete GF can only be evaluated at node
locations, which may or not be located at the boundary. To con-
struct the discrete temperature expression for boundary heating,
the surface integral from the continuous temperature expression is
replaced by the GF matrix multiplied by an n-vector g, whose el-
ements are non-zero only at boundary nodes where heating takes
place. The elements of vector g, are given by
s {(BmToom +@mn)An/Vm:  node m on boundary

Em 0; otherwise (10)

which represent the equivalent volumetric heating caused by heat-
ing at boundary nodes. That quantity g, should contain the ra-
tio Am/Vm can be demonstrated by equating the energy added to a
node by volume generation g to that added by boundary heat flux

q.

g-V=q-A or g=q-9 (11)
This energy balance states that the equivalent volumetric genera-
tion [W m~3] is equal to the applied heat flux [W m~2] times area
[m?2] divided by nodal volume [m?3].

The discrete GF solution equation provides a comprehensive
and systematic approach for a family of solutions with a variety of
heating conditions, once the discrete GF is known. In the follow-
ing section, the discrete GF is developed from the spectral graph
method.

2.2. Spectral graph method for the discrete Green’s function

The Green'’s function will be found as the solution to an initial-
condition problem with homogeneous boundary conditions, which
is a standard approach [7, p. 28]. However here the spectral graph
method will be applied to the heat equation, by replacing the
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Laplacian operator (V2) with a discrete operator called the Lapla-
cian matrix (L). Also the continuous temperature is replaced by a
vector of discrete temperatures (T) at node points in the domain.
The discrete form of the heat diffusion equation, with homoge-
neous boundary conditions and specified initial condition, may be

written as
0Tin

57 = —-LT;, (domain R) (12)
0Ty, T th

77 +BnTi, =0 (m*" boundary of R) (13)
Tin|._, =To (initial condition) (14)

Note the sign change in Eq. (12), as the Laplacian matrix L from
graph theory is defined with sign opposite to that of the contin-
uous Laplacian operator (V2). A contribution of the present work
is the type 3 boundary condition in Eq. (13); although elements of
the following development are similar to our previous work with
the type 2 (insulated) boundary [2], the present analysis goes fur-
ther to define the discrete Green’s function. For the moment we as-
sume that the Laplacian matrix satisfies the type 3 boundary con-
dition; internal details of this Laplacian matrix are developed later
in Section 2.3.

The next step is to solve an eigenvalue problem using standard
matrix methods. Laplacian matrix L satisfies the following eigen-
value equation:

Lp = pA (15)
where ¢ is the orthogonal eigenvector matrix
A is the diagonal eigenvalue matrix
The eigenvector matrix ¢ is orthogonal because L is symmetric and
diagonally dominant [11]. Since for an orthogonal matrix the trans-

pose is equal to its inverse, the product of the eigenvector matrix
and its transpose is the identity matrix. That is:

PP =o' =1 (16)

Using this property, post-multiply the eigenvalue equation, Eq.
(15), by the matrix ¢':

Lpd' = pAP’

Ll = pAQ’

L=¢Ad (17)
Replace this result into the discrete diffusion equation, Eq. (12):
oT; .

= = —(pAP)T;, (18)
at

This above equation is a first order matrix differential equation
whose solution has the form of a matrix exponential [10,11]:

Tin = e #49T, (19)

Recall that T, is the initial temperature vector. Next the exponen-
tial in the above solution will be expanded using a Taylor series.
The exponential of matrix u is given by

Apply the above Taylor series expansion to the exponential term
from Eq. (19), and simplify:

N / \2 \3
eﬂi)Aq)/r — l*f¢11\'¢ +f2 (¢1;(;b ) 7{:3 (‘17[;? ) +...

|90 2 GAP)GAP)
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@A) @A) GAY)

31
pADY | (ADP)  ($(ADP)
R | Y R
AE (AD? (A )
:¢[I_u+2!_3!+"']¢
= ¢[e " ]¢’ (20)

The final exponential argument contains only the eigenvalue ma-
trix multiplied by time. With this simplification the temperature
solution (Eq. 19) is given by

Tin = pe Mg’ Ty (21)

In this solution, the spatial behavior is embodied in the eigenfunc-
tion matrix ¢ and the time-evolution behavior is embodied in the
eigenvalue matrix A.

Next the above solution is compared to that from the GF ap-
proach. Assuming for the moment that the GF is known, the so-
lution to the discrete initial-temperature problem (Eq. 12 - 14) is
constructed by multiplying the GF by the initial temperature Ty as
given in the first row of Table 1:

Tin = G|r:0 TO (22)

Here G|;—o is the discrete GF evaluated at heating time t =0.
Now compare the formal statement of the discrete GF solution in
Eq. (22) to the spectral graph solution given in Eq. (21). As the
solution to a boundary value problem is unique, the discrete GF
evaluated at T = 0 must be

Glr—o = pe g/ (23)

The final step is to recognize that the time behavior of every GF
for the heat equation has functional form (t — t) where t is the
observation time and t is the heating time [7, p. 37]. Then the
discrete GF for t # 0 is given by:

G = ¢e—A(f—f)¢/ (24)

This is the discrete GF, in the form of a matrix, as provided by the
spectral graph (SG) method. The discrete GF satisfies a (discrete)
boundary value problem with homogeneous boundary conditions
and impulsive initial condition. One column of the GF matrix con-
tains the temperature response to a unit-impulse initial condition
at one node; all the columns together provide the comprehensive
response.

The above GF matrix was developed assuming that the Lapla-
cian matrix is known, has well-behaved eigenvectors and eigen-
values, and satisfies type 3 boundary conditions that are homoge-
neous. In the next section the details of the Laplacian matrix are
developed.

2.3. Energy balance for a node at a convection boundary

In this section the required Laplacian matrix is constructed
from the node equations for the discrete form of the heat con-
duction equation. The node equations are found from an energy
balance using the finite-volume theory of Patankar [43]. A node at
the boundary is examined with convection heat loss, and then the
result for a non-boundary (interior) node is a straightforward spe-
cial case.

The discussion begins with the energy balance on the element
containing node i at temperature T; shown in Fig. 1. The sum of
the heat flow into element i is equal to the energy storage in the
element:

o,
YQ=chil (25)
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P boundary T
a

area A Tb
[ [

' [
1 A}

\ 1.
v S
o) \‘ ‘
] !
' — C |‘"—'
1 1
1

neighbors

T.

hA kA

Fig. 1. Boundary node with thermal resistance for heat loss to surroundings at T..

Here Q [W] is heat flow into the element, C is volumetric specific
heat [] m=3 K], V; is element volume [m?], and ¢ is time [s]. The
energy storage is proportional to the time-rate-of-change of tem-
perature in the element, T;. The heat flow may come from neighbor
nodes or it may come through the boundary. The heat flow coming
from the jth neighbor node is given by

Qi = wi(T; - Tp) (26)
where
T; ... temperature of node i of interest [K]
T; ... temperature of neighbor node j [K]
wj; ... edge weight between nodes i and j [W K]

It is important to note that edge weights are non-zero only for
near-neighbor nodes, and they depend only on the distance be-
tween nodes. More information on edge weights is given later in
Section 2.4.
The heat flow from the boundary into node i is found from the
thermal resistance:
Toc — Tl
- 27
Q= (27)
where
T, ... ambient temperature [K]

R; ... total thermal resistance at boundary [K W-1]

The thermal resistance is the sum of two thermal resistors, shown
in Fig. 1:

1 Ci

N=hatia

(28)
where h; is the heat transfer coefficient [W m~2 K~1], A; is the area
for boundary heat transfer [m?], ¢; [m] is distance from node i to
the boundary as shown in Fig. 1, and k is thermal conductivity [W
m~! K-1]. Heat transfer coefficient h; is an effective value that in-
cludes both convective and linearized radiative contributions; non-
linear boundary conditions are not included here. Replace the two
types of heat flow into Eq. (25) to find the boundary node heat
balance:

T —T oT;

n
D owy(Tj = T) + =— =V,

R, 5t (29)

j=1
where n is the number of nodes in the body. Although the sum

in the above expression is shown over all the nodes in the body,
weights w;; are non-zero only for near-neighbor nodes.
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2.3.1. Normalized energy balance
The node equation will be normalized with the following di-
mensionless variables:

T— T*TOQ. Fo kt. W”_Wl’j[‘z
T T cZ 9T v
- A o~ Vi . g h;L
Ai=L7'; Vi:l?l; Ci:zl§ Ff (30)

where T is a characteristic temperature [K] and L is a characteristic
global length [m], and B; is the Biot number describing heat loss at
the boundary. Replace these dimensionless variables into Eq. (25),
use the definition of resistance R; from Eq. (28), and after some
algebra, the boundary node heat balance takes the form

L U |
>y (T 1) BT = 52 (1)
i1

. A/ B
here E-=f‘( ' ~> 32
W ! Vi 1+ B;G; G2

Here E; is a dimensionless conductance for heat loss when node
i is located at a type 3 boundary. Note the sign change on this
boundary term, which comes from the definition of the normal-
ized temperature. Finally, separate those terms involving neighbor
temperatures from the temperature at the ith node:

n s n o aa 8.1’:1
>owyTy =Y wyTi-ETi = = (33)
P s ot
——

off diagonal diagonal

In the above expression the labels ’'diagonal’ and ’off diagonal’
identify the locations of these terms in the ith row of the Lapla-
cian matrix when the ith node is at a type 3 boundary. For non-
boundary nodes, or for nodes on insulated boundaries, the devel-
opment is identical, except that there is no external heat flow. That
is, set E; = 0 at interior nodes, then the heat balance is given by

n n
dowTy = > wyT = % (interior node) (34)
j=1 j=1
= — S
off diagonal diagonal

2.3.2. Details of the Laplacian matrix

In this section the Laplacian matrix is assembled from the en-
ergy balance relations at each node. The Laplacian matrix is the
discrete matrix that replaces the spatial derivatives when the con-
tinuous heat equation is replaced by the discrete heat equation.
The discrete heat equation is given by Eq. (12):

. of
-LT= =
Y

Recall that L is the Laplacian matrix and T is the (dimensionless)
temperature vector. Next write out the full matrix form of the
above energy equation, as follows:

(35)

Ln L e Lin 7:"1 @
Ly L R & L 9|k

: . Ln—],n ot .
Lnl U Ln,n—l Lnn Tn Tn

Next, consider the ith row of the above expression, and compare
it to the node equations given earlier for boundary nodes (Eq. 33)
and for interior nodes (Eq. 34). A careful examination shows that
the elements of the Laplacian matrix have the following form:
i#]

i (37)

L. — 1= Wij 3
U X Wy + s
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(a) (b) °

(c)

Fig. 2. Geometry for heat flow between nodes for (a) 1-D uniform grid (b) 3-D uniform rectangular grid (c) 3-D random grid.

Recall that E; # 0 only for nodes located on a boundary exchanging
heat with the surroundings.

The above Laplacian matrix was developed from an energy bal-
ance. The addition of the heat-loss term E; at boundary nodes
is a unique contribution of the present work; without this term
the above development is equivalent to the usual graph theory
approach involving an adjacency matrix and a diagonal matrix
[10,11].

2.4. Physics-based edge weights

Edge weights w;; were defined earlier in Eq. (26) as Q =
w;j(Tj — T)). The edge weight multiplies a temperature difference
to give the heat flow. The edge weights developed here are con-
sistent with the finite volume method of Patankar [43]. For heat
transfer in a solid body, the heat flow rate from node j to node i
is given by

Q= (T;-T) (38)
The heat flow rate depends on the conductivity k [W m~1K~!], the
area for heat flow A;; [m?], and the distance between the nodes d;;
[m]. Then the edge weights are given by
KA : A

Wi = = or, WU = Ti] (39)
The normalized edge weight is constructed using the normalized
variables in Eqn 30, where V; is the (normalized) small volume as-
sociated with node i. To fully specify the edge weight, geometric
information on the nodal grid is required to determine ratio A;;/V;.
Three grid geometries are discussed below.

2.4.1. 1-D uniform grid.

In the one-dimensional uniform grid, the node spacing and the
heat transfer area is the same for every pair of adjacent nodes. Re-
fer to Fig. 2a for a schematic of the 1-D uniform grid. Let d be
the (normalized) node spacing and let A be the (normalized) heat
transfer area, so that the nodal volume is given by V = Ad. Then
the edge weights are given by
- A 1
Yt d T @ 40
These edge weights are identical to the temperature coefficients
used in the finite difference method, which means that the one-
dimensional SG method and the one-dimensional finite difference
method have the same spatial behavior [2].

2.4.2. 3D Uniform rectangular grid.

In the 3-D uniform rectangular grid shown in Fig. 2b, the node
spacing and the heat transfer area is the same for every pair of
adjacent nodes, and the volume associated with node i is a small
cube. Let d be the (normalized) node spacing, let A = d? be the

area for heat transfer, and let V = d3 be the nodal volume. Then

the edge weights are given by

N d? 1

Wij = == = = (41)
dd3 d?

which are identical to the 1-D case.

2.4.3. 3-D random grid.

In the 3-D random grid shown in Fig. 2¢, the edge weight de-
pends upon the details of the geometric relationships among all of
the nodes surrounding node i. In the spectral graph method, how-
ever, it is important that the edge weights depend primarily on
the internodal distance, rather than on geometric details. In the
authors’ previous work, the edge weights for the 3-D random grid
had an exponential form, drawn from image processing applica-
tions, as follows

2 .
N fexp —G—'; ;o dij <t

Wij = (42)

0; dij =, and i=j

Quantity o is the standard deviation of all lengths tfu Quantity
f is the gain factor and r, is the neighbor radius, and these two
quantities need to be chosen through a calibration process for the
method to provide good results. This approach provided reasonable
precision with very low computation cost for mesh generation.

In the present work, edge weights for the 3-D random grid
were sought that are based on the physics of the problem yet were
compatible with the spectral graph method. Edge weights were
sought that would: depend on internodal distance d~ij; build upon
our experience with exponential weights used previously; avoid
dependence on local ratio ;\U/Vi; and; reduce to 1/d~i2j in the limit
as the random grid moves toward a uniform rectangular grid.

This last requirement suggested that a simple yardstick was
needed to determine when a given grid deviates from the uniform
rectangular grid. The average distance between adjacent nodes is
defined

0= (@)]B. (43)

n

Quantity ¢ may be viewed as the width of a cube containing the
average nodal volume; for a uniform rectangular grid ¢ is the ex-
actly the distance between nearest nodes. With quantity ¢, the fol-
lowing edge weights satisfy the above constraints:

f o (E29). g
iy = e —— ) dy< V2¢ (44)
O; (fUZ\/jL arldi:j

These physics-based edge weights have several important features.
First, in the limit as distance d;; approaches the average nodal
distance ¢, the exponential becomes unity and the edge weight
has functional form 1/¢2 which is in agreement with the energy-
conserving finite volume formulation. Therefore this expression for
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the edge weights applies to every geometry. Second, radius /2 ¢
defines a sphere which provides a small number of nearest neigh-
bors; this would be six neighbors for a uniform rectangular grid
(for an interior node). In contrast, in previous work the nearest
neighbors were defined by an independently-chosen neighbor ra-
dius. The present work has linked the neighbor radius to the num-
ber of nodes, thus reducing the number of calibration parameters
from two to one which simplifies the calibration process. Third, be-
cause the edge weights are scaled by length ¢ which depends on
the number of nodes, the calibration may be carried out on one
grid and the calibration does not have to be repeated if the node
count is changed, for example, as part of a grid refinement study.

Quantity E; for boundary heat loss, defined in Eq. (32), must
also be determined, which depends upon the nodal surface area
for external heat loss Ap. Although the details of the body shape
could be used to provide a precise surface area A, for each surface
node, this is not consistent with the geometry-blind edge weights
discussed above. Instead an average external surface area is used,
the same for each boundary node, defined by the overall surface
area of the body, divided by the number of surface nodes. This is
congruent with the goal of the present work for rough and rapid
thermal simulations, as distinct from FE solutions, which require
burdensome meshing calculations. This approach is most accurate
for bodies with high node counts and generous fillets, and the level
of approximation increases as the node count decreases and the
fillet radius decreases.

2.5. Discrete in space, analytic in time

Through the discrete GF, the spectral graph method has been
extended to provide for internal heating, with heating at the
boundary treated as a special case of internal heating. The tem-
perature expression for internal heating contains a time integral,
which is discussed here to demonstrate that the spectral graph
method is discrete in space and analytic in time.

Consider an internal heating function g which produces a tem-
perature response described by the time integral given in Table 1.
Into this time integral substitute the spectral graph form of the GF
matrix given by Eq. (24), to find

TG0 = [ pe 0y gar (45)

The ease or difficulty in evaluating this time integral depends on
the time behavior of internal heating function g. In the special case
of time invariant internal heating, then the time integral may be
evaluated in closed form. Recall that the eigenvector matrix ¢ is a
function of space, not of time. Then eigenvector matrix ¢ and its
transpose may be removed from the time integral, and the time
integral may be evaluated as follows:

T, (. ©) = ¢>[/[_O e AED df}b’ g

— ¢)[A71 (I _ e*Af)]¢/ g
—pAPE - pATeNGE  gAED  (46)
Here the temperature expression is the sum of a steady part and
a complementary transient part. Consequently, the above solution
does not apply if the steady solution does not exist, for example,
if all the boundaries are insulated (Neumann type). In this circum-
stance the smallest eigenvalue is zero so that the inverse of the
eigenvalue matrix (A~!) does not exist. There are techniques for
dealing with this zero-eigenvalue problem which will not be dis-
cussed here in the interest of brevity; see for example [44, p. 164].
A closed-form solution may also be found for heating that is
piecewise constant in time. Suppose the internal heating function
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1. Place nodes in body (block-random mesh)

!

2. Create graph with edge weights w;; (Eq. 44)

'

3. Find Laplacian matrix L. (Egs. 32, 37)

!

4.Solve Lo = 6A to find GF: G = ge~ M=) g/

'

5. Use G to find temp. at nodes (Eq. 9, Table 1)

Fig. 3. Steps to carry out the discrete GF method for temperature simulation.

varies in space and is on-off in time, given by

gz{gom, 0<f=<F

0, t>1t (47)

Replace this function into Eq. (45) and the integral may be evalu-
ated to give a piecewise-constant-in-time temperature response:

forf <t :
T, 6) = ¢ A7 (1-e72T)¢' &o(F)
forf>f:
TEDH =g A (e T —e 2 )p go(F)  (48)

This solution may be used as a building block to construct the re-
sponse to any piecewise-constant-in-time heating function, which
has application for simulation of a variety of manufacturing pro-
cesses such as laser welding [45].

2.6. Overview of the discrete GF method

The development of the discrete GF method given above was
organized according to mathematical and physical principles. How-
ever, the steps needed to carry out a temperature simulation have
a somewhat different order, as shown in Fig. 3.

The first step is to distribute nodes throughout the body of in-
terest, and a block-random distribution is recommended for the
additive manufacturing application. Next the nodes are connected
with edge weights (Eq. 44) to construct a graph. The Laplacian ma-
trix is constructed next, using the energy balance at each node
(Eq. 37), taking care to include any heat loss at boundary nodes
(Eq. 32). The eigenvalue problem for the Laplacian matrix (Eq. 15)
is then solved using standard methods, and the eigenvectors and
eigenvalues are used to construct the discrete GF (Eq. 24). Finally,
the discrete GF equation (Eq. 9 and Table 1) is used to assemble
the temperature response caused by the heating effects which are
present in the problem. As long as the spatial geometry does not
change, the same discrete GF may be used to find the temperature
response to a variety of heating conditions.

2.6.1. Limitations of the method

There are some limitations specific to the discrete GF method.
The temperature problem must be linear, so that the material
properties must not be functions of the temperature. In practice
this means that the properties are evaluated at an effective value
during each heating cycle. Actual thermal properties vary with
temperature, and to approximately address this non-linear effect,
the thermal properties could be iteratively adjusted in response to
the calculated temperature. Such iteration has not been attempted.
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In the present embodiment of the spectral graph method, the
Laplacian matrix is symmetric so that the eigenvalues are real (not
complex) and non-negative. This requires that the edge weights are
symmetric w;; = wj;, consequently spatial variation in the material
properties is not accommodated. Further, spatial variation in the
node density is ruled out because the present approach assumes
that each node, on average, represents the same volume subset V.
A point of future work is to relax this limitation on spatial varia-
tion of nodal properties which, combined with iteration, could be
used to address temperature dependent thermal properties. A re-
lated point for future work is to lower the node count in regions
where thermal gradients are low, to increase computational speed
with minimal impact on precision.

There are other sources of uncertainty that are present in all
thermal simulation methods. The precision depends strongly on
the node density in the body, and this effect is quantified in ex-
amples given later in Section 3. There is uncertainty in the amount
of heat loss at the boundaries, that is, uncertainty in the bound-
ary heat transfer coefficient. Additionally for laser heating which
is one motivation for the present work, there is uncertainty in the
amount of energy actually absorbed during the process. To address
such uncertainties, comparison with experiments is needed to de-
termine the heat budget, heat in and heat out. A consequence of
experimental calibration is that although the shape of the temper-
ature history will be imperfect (from imperfect thermal properties
or low node density, for example), the end point of the tempera-
ture history may closely match the experiment.

2.6.2. Relation to separation of variables method

The discrete GF method has some elements in common with
the separation of variables (SOV) method. In both methods the co-
efficients of the heat equation and the boundary conditions must
be constant, that is, the problem must be linear in temperature.
In both methods the solution contains a product of a spatially-
dependent function and a time-dependent one. In both methods
a standard procedure for finding a basic solution is through an
initial-value problem. The discrete GF contains an exponential on
time e~A(-7) so that at small time, many eigenvalues are active
in determining the temperature. This is analogous to the many se-
ries terms needed in an SOV solution at small values of time. The
number of eigenvalues available in the discrete GF method is equal
to the number of nodes in the body, consequently the grid spacing
determines the smallest time for which the temperature can be
obtained without degradation of precision.

A point of difference is that the SOV method applies only to
simple body shapes for which the boundaries are defined by a con-
stant value of one coordinate (orthogonal body), but the discrete
GF method applies to any body shape. Finally, the SOV method is
fully analytical so the temperature may be found at any time and
at any spatial location. For the discrete GF method the tempera-
ture may also be found at any value of the time (analytic in time),
however temperature is provided only at node locations (discrete
in space).

3. Verification by comparison with exact solutions

In this section examples are given for heat diffusion in bodies
with plane surfaces for which exact analytical solutions are avail-
able, and the exact solutions are compared with numerical results
from the improved spectral graph method. The first example is a
slab body heated internally in an on-off fashion, and the second
example is a three dimensional body (parallelepiped) with a piece-
wise initial condition.
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}12 ) Txg =0

Fig. 4. Schematic of problem X23B00OG(x5t5)T0, the slab with on-off internal heat-
ing over region (0 < x < a) with one insulated boundary and one convection bound-
ary.

3.1. Example 1. Slab body with on-off internal heating

Consider the following 1D problem with on-off internal heating
that is piecewise in space, with one boundary insulated, and with
convection heat loss from the other boundary:

of 02T _ .
rraairrl + &%, t) (49)
- oT
at X =0, ﬁ_O
. T -
at X =1, kﬁ—szT:O
atf=0, T@&0)=0

1; O0<X<dand i<f

0; otherwise (50)

and where g(%,f) = {
This problem has been normalized with the variables given in
Eq. (4). The geometry for this problem is shown in Fig. 4. This
problem is denoted case X23B00G(x5t5)TO in the numbering sys-
tem for heat conduction [7, chap. 2].

The exact analytic solution to this problem, denoted Ton—off'
will be assembled from a building-block solution for which the
heating is always on, denoted Top. Consider the same problem as
above but for always-on internal heating described by

s 1;, O0<X<d

g(x): {0. )?'jﬁ_ (51)

Then the temperature for the on-off heating problem is given by

~ ~ > Ton(i,f); 0<fffl

T, ) =1 S s U 52
on-off (% 0) {Ton(x, y—Ton®Ef-8); >0 (52)

The exact analytic solution for building block Top is given by [46]
TOH = Tss(i) + Tct (’z E) (53)

where T is the steady state portion of the solution and T is the
complementary transient portion of the solution. The steady-state
solution is piecewise in space.

For x < a:

. 1 BiB, By B\,
fx)= —~  [(_2b2_DB1_ D
R e e o | i )

G2
+(——B‘fzaz+31325+315)2+(——Bzza +Bzﬁ+ﬁ>] (54)
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x=0 t=1.00 Biot=1
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Fig. 5. Temperature results for case X23B00G(x5t5)TO for on-off heating over (0 < x/a < 0.25): (a) temperature at insulated surface x=0; (b) temperature at f = 1.0; and, (c)

temperature at Biot = 1 at four times.

For x > a:
= o 1 B1B,d A
L& = 5575 75 [(‘ _Bza)x
+<—Ble 24 B “2+Bza+31a>] (55)
2 2
The complementary transient portion is given by
Ta (R, F) = =) exp(=Bpb)[Bmn cos(BuX) + By sin(Bn)]
m=1
[sin(nd — 2 cos(Bnd) + 2]
. (56)
ﬁmNm
where N, = 1 (B2 +B?) 1+372 +B
m = 2 m 1 ,Brzn +B% 1
where B satisfies tan B, = Pn(B1 +By) (57)
B2 — B1B;

The above solution for Top is actually for case X33BOOGx5TO, but
the insulated boundary at x = 0 may be obtained from this solu-
tion, to high precision, by taking B; small, say 10-1,

Some temperature values for Example 1 are shown in Fig. 5
which were computed from the exact solution, Eqs. (52-57) for
heating region of size d = 0.25 and for heating-off time f; = 0.25.
Figure 5a shows temperature versus time at the x = 0 insulated
boundary for three values of the Biot number B,. Note the tem-
perature for different Biot numbers have the same shape initially,
and then the effect of the boundary at x = L causes the curves for
different Biot to diverge for f > 0.4. Figure 5b shows the tempera-
ture versus position at £ = 1.0 for three values of the Biot number.
Figure 5c¢ shows temperature versus position at four dimensionless
times for Biot =1.0. For the first two times the heating is on so
temperature is rising; for the last two times the heating is off and
the temperature is falling.

Next a comparison is made between temperature values com-
puted from the exact solution, from the SG method, and from a
fully implicit finite difference solution [43]. Temperatures from the
SG method for this problem were computed from Eq. (48) with
Laplacian given in Eq. (37) and edge weights from Eqn 44. In Fig 6
the comparison is made for the specific conditions B, = 1.0, nt =
20, and nx = 20. As before the heated region is of size d = 0.25 and
the heating-off time is f; = 0.25. Figs. 6a and 6 b show the temper-
ature, and Figs 6¢c and 6 d show the relative error |T — Texqact |/ Texact-
The relative error is used to identify the distance from the exact
temperature at a single location in space and time, as a fraction
of the exact temperature value. The numerical results are close to
the exact values, even though the grid is coarse and the timesteps

x=0,nt= 20,nx = 20 B=1.0,t= 05
0.12 0.12
0.1 0.1
0.08 0.08
9. Q
£ 006 E 006
= =
0.04 ; — —-8G6 0.04 ———S6
oo2tf, v |77 i 002 1y |7 i
(a) exact (b) exact
0 0
0 01 02 03 04 0 0.5 1
time WL
10" 10
2 - E.. 5
5 10 5 10
7] i
2 107 . 2 107
= . 2
@ @
o & )
10 10
FDemr FD emr
(© @ Yoces)

0 01 02 03 04 0 0.5 1

time WL

Fig. 6. Results for Example 1, case X23B0OOG(x5t5)TO0, for spectral graph (SG), fi-
nite difference (FD), and exact solutions. The on-off heating is over spatial re-
gion (0 < x/a < 0.25) with heating-off time (f; = 0.25), under conditionsB, = 1.0,
nt = 20, and nx = 20. (a) Temperature history at the node nearest x = 0, (b) tem-
perature distribution at f = 0.5, (c) relative error for the temperature history, (d)
relative error for the temperature distribution.

are few. The errors for the SG method are smaller than those of FD
method by about an order of magnitude, and the errors for both
method decrease somewhat over time. The errors for both meth-
ods are somewhat larger nearer the boundaries.

The error was also computed from the temperature history at
x =0 over the time range (0 < < 0.5), for several combinations
of spatial nodes nx and timesteps nt. For each temperature history
the symmetric mean absolute percentage error was computed, de-
fined by

TEX(tl T(tl)|
Tex(ti) + T(t;)

where nt is the number of timesteps, Tex(t;) is the exact tem-
perature and T(t;) is the numerically computed temperature.
The SMAPE results for several temperature histories are listed in
Table 2. The errors for the SG method are insensitive to the num-
ber of timesteps; recall that the SG method is analytic in time.
At nt = 20 and Biot = 0.1 the SG method has much lower er-
ror than the FD method; as nt increases the error for the FD

SMAPE = Z | x 100% (58)
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Table 2

Symmetric mean absolute percentage error (SMAPE) in SG and FD values for
Example 1, case X23B00G(x5t5)T0, versus number of spatial nodes nx and time
steps nt. The comparison is made at the node closest to the x = 0 boundary
over the time range (0 <f < 0.5). The body has on-off internal heating over
(0 <X<025)and (0 <{<0.25).

Biot nx nt SG-SMAPE FD-SMAPE
0.1 20 20 0.145852 2.639843
100 0.146105 0.596043
500 0.145807 0.161724
40 20 0.036419 2.684466
100 0.036515 0.632578
500 0.036437 0.119548
80 20 0.009102 2.695560
100 0.009128 0.642124
500 0.009109 0.128321
10 20 20 0.144412 2.054895
100 0.144291 0.461525
500 0.143922 0.125292
40 20 0.036052 2.112728
100 0.036055 0.506753
500 0.035960 0.092108
80 20 0.009010 2.128024
100 0.009013 0.520565
500 0.008989 0.102658
T y
: w
@m
H; z
By H
/Z L

Fig. 7. Geometry for the parallelepiped with piecewise initial condition and con-
vection heat loss at the boundaries, case X33B00Y33B00Z33B0OT5.

method decreases, becoming comparable with the SG method only
at nt = 500. The SG method is sensitive to the number of nodes,
improving from about 0.14% error at nx = 20 to 0.009% error at nx
= 80 for all values of nt and Biot number listed. In contrast the er-
ror for the FD method changes little as nx increases, with no clear
trend. All of the errors in Table 2 are small, less than 0.15% for the
SG method and less than 2.7% for the FD method.

3.2. Example 2. Parallelepiped with piecewise initial condition

The method is applied to a parallelepiped with piecewise ini-
tial condition for which an exact analytical solution is available for
verification. First the exact solution is given, and then the spectral
graph method is applied to nodes distributed in a uniform grid and
also with a block-random grid, appropriate for the authors’ interest
in the thermal modelling of additive manufacturing.

3.2.1. Exact solution in the parallelepiped

Consider heat conduction in a parallelepiped with a piece-
wise initial condition and with convection heat loss at the bound-
aries. The geometry is shown in Fig. 7, and this case is denoted
X33B00Y33B00Z33B0OOT5 in the heat conduction numbering sys-
tem.

10
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The temperature in the parallelepiped satisfies the following
energy equation and boundary conditions:

LOREL SRR -
oX2 W2 0y2 {2 022 9t |0<z<1
>0

at ¥ =0, —g—zwﬂf:o

atf =1, —%Z—szfzo

aty =0, —g—;—kBy]T:O

atj=1, —g—;—BﬂT:O

atz=0, —g—Z+BﬂT:O

atz=1, —?TZ—BZZTZO (60)

The above problem has been made dimensionless by the following
parameters:

e X s Y s ZzZ &5 W 5 H
X=p V=gyi =g W=T3 H=1
~_L1. ~_W1. ~_H1'~_Olt ~_T
b=T: 1_W’H1_H't_L’T_To
Il hel hyt W hy,W
By = K By, = o Bn=— B X
h, H ho,H
Bz]— Z;( B 8222;77 (62)

The dimensionless temperature in the parallelepiped is given by:

. X ®) K gor || XY@ N oz i
T(x’y’Z,t) =8 Zmie Bt Zie it/
m=1 Nx n=1 Y
x izp(j;) IZPe—r]‘%,f/l:I2 (63)
p=1 z
where
Xm (&) = Bm cos(BmX) + By sin(BnX)
1 . - -
X = F[Bm + B Sin(BnL1) — Ba cos(Bml1) |
m
Ne= (B2 +B2)| 1+ D2 |48
X m 'x1 ,Brzn +B,2(2 x1
Ya () = ¥ncos(yny) + By1 sin(yny)
1 . ~ -
IY, = V—[Bﬂ + Ya sin(yaWh) — By cos(yaWs) |
n
N, = (y?+B%) 1+B$2 + B,
y n y1 )/nz +B}2,2 y
Zp(Z) = npcos(npZ) + By sin(npZ)
1 . N .
1z, = n—[le + np sin(npHy) — By cos(n,Hy) ]
p
N = R+ B 14+ =22 | 4B, (64)
? g+ B2
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Fig. 8. Locations for observing temperature in the parallelepiped: (1) center of
heated region; (2) face of heated region; (3) outside heated region. Bodies studied
had square cross section (W/L = 1) and varying H/L values.

Eigenvalues By, yn, and 1, are roots of the following relations

_ Bm (Bx1 + sz). W (By1 + B)’Z).

tanBp = —(5————"=; tany, = ;
" B2 — BBy " y2-BuBp
B B
tann, = 777”2( a1 +Bn) (65)
My — leBzz

The above series expression converges somewhat slowly when
evaluated at small time, but even so ten-digit precision can be ob-
tained for the time ranges needed here. A full discussion of this so-
lution, including a small-time form, tables of numeric values, and
computer algorithms, is available elsewhere [47].

3.2.2. Numerical results for uniform rectangular grid

The spectral graph method was carried out for parallelepiped
bodies which were initially hot over a small region (L = W; =
H; =0.5). No calibration is needed for the uniform rectangular
grid. The temperature was tracked at three points in each body,
identified in Fig. 8: (1) at the center of the initially heated region,
(2) at an interior face of the initially-heated region, and (3) outside
the initially heated region.

First an equal-sided body with L =W = H is studied. The tem-
perature history at the three points is plotted versus time in Fig. 9
for spatially uniform heat transfer coefficient over all surfaces of
the cube at levels Bi = 0.1, 1, and 10, and for n/vol = 1728 in a
12x12x12 grid. Location (1) starts at T =1, location (2) starts at
T = 0.5, and location (3) starts at T = 0. Fig. 9 shows that the SG
solution agrees very closely with the exact solution. As the Biot
number increases, the temperature at locations (1) and (2) fall
more rapidly, and further towards zero. At location (3) the tem-
perature first rises then falls, and for higher Biot number the peak
temperature is lower. At large time (not shown) all the tempera-
tures approach zero, and the time it takes to reach zero tempera-
ture decreases as the Biot number increases. That is, the cool down
is faster at higher heat loss.

Two error measures are used to quantify the agreement be-
tween the SG method and the exact solution: the symmetric mean
absolution percentage error (SMAPE) defined in Eq. (56) and the
root mean square error (RMSE) defined by

RMSE =

Table 3 shows the error measures for the SG solution at three lo-
cations, at three Biot numbers, over time range (0 < < 0.2), for
the equal-sided body L =W = H. Three different node densities
are included at njvol = 512, 1728, and 4096. Table 3 shows that

1
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the SMAPE for n/vol = 1728 (Fig. 9 data) is less than 0.5% and is
less than 0.3% for the n/vol = 4096 data. The error values increase
slightly as Biot number increases.

The study depicted in Fig. 9 and Table 3 for the equal-sided
body was repeated for three other parallelepipeds. Specifically,
box-shaped bodies were studied with square cross section W/L =1
but with varying length along the z axis described by H/L = 0.5,
0.75, and 1.5. The initial condition was identical (L; = W; = H; =
0.5) and the same temperature-observation locations were used
(see Fig. 8). The temperature from the SG method for these bod-
ies was compared to the exact solution as before. The tempera-
ture plots, omitted for brevity, show close agreement with the ex-
act solution. Table 4 shows the SMAPE and RMSE error values for
one body, the parallelepiped W/L =1 and H/L = 1.5, for three val-
ues of the Biot number and for three node densities. Note that
the error values are very close in size to those for the equal-sided
body (H/L = 1) shown in Table 3. Error values for two additional
body shapes H/L = 0.5 and H/L = 0.75 (not shown in the interest
of brevity) are also comparable to those in Tables 3 and 4. The
point of the discussion is that the SG method can provide high
precision temperature values for a variety of body shapes at vari-
ous levels of surface heat loss, and the level of precision depends
strongly on the node density and less strongly on the Biot number.

3.2.3. Numerical results for block-random grid

In this section temperature results are given for the improved
spectral graph method carried out on block-random grids on the
parallelepiped. The body is divided into equal-sized blocks, and
then a fixed number of nodes are placed in each block at ran-
dom locations. This provides a large-scale uniform node distribu-
tion that is small-scale random. This method of node placement
is appropriate for thermal simulation of an additive manufacturing
process by the spectral graph method, in which the body shape
changes as layers (or hatches) are added. The random placement of
nodes in each added layer (or hatch) is straightforward and com-
putationally efficient.

Several block-random grids were created for the cube-shaped
part by specifying the same number of blocks along each coordi-
nate direction, np, and the number of nodes within each block, ng.
Table 5 shows the total number of nodes in grids created from dif-
ferent combinations of nj, and ng. For example, n, =4 and ng =3
give the total number of nodes as 4-4-4.3 =192. To study the
effect of random node locations within blocks, ten grids were cre-
ated by different random embodiments of each block-grid combi-
nation studied, and the results are reported as the mean and vari-
ance over these ten grids. The randomly determined points within
each block were sampled from a finely divided grid placed on each
block, without replacement. In the present work each block was
subdivided into 63 = 216 points.

The calibration procedure for obtaining the gain factor involves
a data-fitting procedure between the SG method and the exact so-
lution (refer to Section 2.4.3). The benchmark data for the compar-
ison is the time history of the temperature from the exact solution
in the time range (0,0.2) at the center of the initially heated re-
gion for a cubic body. This location and this time range was shown
to be optimal for calibration through a previous sensitivity study
[2]. Twenty temperature values at uniformly-spaced time points
were used. The data fitting procedure was the minimization of the
sum-of-square error between the exact solution and the SG model
carried out with a Gauss-Newton method [48, p. 29]. The method
converged to four-digit precision in about six iterations and the re-
sulting gain factor was not sensitive to the initial guess.

The calibration was carried out for several block-random grids
at several Biot numbers. Ten block-random grids were studied
for each node density so that averages and variance could be
found. The resulting average gain factor is plotted in Fig. 10 ver-
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(b) Biot = 1.0, (c) Biot 10. Parameters for the SG solution are 1536 nodes per unit volume and 80 timesteps.

Table 3

For the cube with L =W = H with uniform rectangular grid, error (SMAPE and RMSE) for the SG method is
compared to exact solution at locations shown in Fig. 8 at three grid densities and three Biot numbers.

SMAPE RMSE
H/L  location “‘\’]gles Bi=0.1 Bi=10 Bi—10.  Bi=0.1 Bi=1.0 Bi = 10.
1.0 1 512 0318811 0448006 0870092 0.007398 0.010026  0.016782
1728 0.141872 0.198788 0386930 0.003398  0.004616  0.008010
4096 0079635 0.111562 0217432 0001920 0.002617  0.004614
2 512 0246750  0.449466 0.563780  0.002870  0.004095  0.006862
1728 0.109734  0.198981  0.248496 0.001309  0.001865  0.003206
4096 0061604 0.111649 0139236  0.000739  0.001054  0.001833
3 512 0670107 0927687 0978781 0.001884 0.001936  0.001538
1728 0321845 0435693 0459108  0.000878  0.000903  0.000728
4096 0184793 0248705 0261999  0.000497  0.000512  0.000414
Table 4

For the parallelepiped with (L,W,H) = (1,1, 1.5), error (SMAPE and RMSE) for the SG method with uniform
rectangular grid compared to exact solution at locations shown in Fig. 8 at three grid densities and three Biot

numbers.
SMAPE RMSE

H/L  location “33165 Bi=0.1 Bi=10 Bi—10.  Bi=0.1 Bi=1.0 Bi = 10.
15 1 512 0314239 0456059 0914614 0.007408 0.010030  0.016782
1728 0139413 0202147 0407239  0.003403  0.004618  0.008010
4096 0078168 0.113409 0228961 0001922 0.002618  0.004614
2 512 0253966 0454544  0.585879  0.002884  0.004102  0.006862
1728 0112648 0201332 0259505 0.001315 0.001868  0.003206
4096 0063186 0.112990 0.145656  0.000742  0.001056  0.001833
3 512 0.698852  0.929852  0.955982  0.001898  0.001940  0.001537
1728 0334778 0436741 0448406 0.000884  0.000905  0.000728
4096 0192099 0249311 0255869 0000501 0.000513  0.000414

Table 5
Number of nodes in a parallelepiped body created by n, blocks along each
axis and ng nodes within each block. Total number of nodes = n3 - .

Ng
ny 1 2 3 4 5 6 7 8
4 64 128 192 256 320 384 448 512
6 216 432 648 864 1080 1296 1512 1728
8 512 1024 1536 2048 2560 3072 3584 4096

sus node density (n/vol) and the variances are shown as error bars.
Fig. 10 shows that the gain factor resides in a narrow band of val-
ues in the range (0.48 - 0.67), and has no clear trend as node den-
sity n/vol varies

In examining these values it is important to consider the ap-
plication to metal additive manufacturing. In cooling of metal the
Biot number is usually small. For example, for a large stainless
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steel part (L 15 cm and k~ 20 W/m/K) exposed to a large
heat transfer coefficient (h = 100 W/m?2/K), the Biot number is Bi
=100-0.15/20 = 0.75. Other metals with higher thermal conduc-
tivity give even lower values of the Biot number. This suggests that
the gain values in Fig. 10 should be examined for Bi < 1.0 values.
For these smaller Biot values, the gain values lie in the range (0.58
- 0.67), a range of 14%, and the variation is smaller as the node
density increases. This suggests that the gain is independent of the
Biot number, so that one calibration is sufficient to characterize
the spectral graph method for the range of Biot numbers found
in metal additive manufacturing.

Figure 11 shows temperature versus time for the SG method on
a single block-random grid with node density 1536 (nodes per unit
volume) compared to the exact solution at three locations and for
three Biot numbers, The results agree very closely at location 1,
the center of the heated region, because this location was used
to fit the gain factor f. The agreement is also good at location 3
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Fig. 10. Average gain versus node density (n/vol) at several Biot numbers. For each
node density n/vol, ten block-random grids were used to find averages; error bars
show the variance.

(unheated region). At location 2 the SG method slightly overesti-
mates the temperature at early time and slightly underestimates
the temperature at middle time. The long time temperature trends
are correct at all locations.

As before, a quantitative measure of the error in the SG method
for the block-random grid is provided by SMAPE defined in Eq. (58)
and RSME defined in Eq. (66) as shown in Table 6. Table 6 shows
error values for the block-random grid at three locations, three Biot
numbers, and three grid densities. To address the issue of random-
ness in assigning node locations, ten different block-random grids
were created for each node density to obtain the averages and vari-
ances reported in Table 6.

Table 6 shows that the SMAPE error for n/vol = 1536 is every-
where less than 10% and less than 6% for n/vol = 4096, with the
highest value for Biot = 10 (high cooling rate). The RMSE errors
are included because SMAPE errors skew large at large Biot num-
ber, because of division by very small temperature values at later
times. The RMSE values for n/vol = 1536 are everywhere less than
0.019 and less than 0.014 for n/vol = 4096. No exploration of the
number of time steps is included here; error in the spectral graph
method varies little with the number of time steps, which was evi-
dent earlier in Table 2 for the one-dimensional example. Recall that
the SG method is analytic in time, as discussed in Section 2.5.

Earlier the Biot number was identified to be in the range Bi
< 1.0 for metal additive manufacturing. For this limited range of
Biot values, the SMAPE errors in Table 6 for nfvol = 1536 are ev-
erywhere less than 6% and are less than 3% for n/vol = 4096.
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4. Validation with experimental data from additive
manufacturing

Validation of the improved spectral graph method was carried
out by comparison with experimental temperatures from infrared
camera data obtained during a test build with the laser powder
bed fusion (LPBF) process.

4.1. Experimental setup

The additive manufacturing build was created on an open ar-
chitecture LPBF system at Edison Welding Institute, Columbus,
Ohio. A long wave infrared (LWIR) thermal camera was placed off-
axis with an angle about 80° to the horizontal. A representative
schematic along with an image of the experimental setup in shown
in Fig. 12. The Micro Epsilon model TIM-640 LWIR thermal camera
used in the experiment has a resolution of 640 by 480 pixels. At
the camera’s height, the spatial resolution of the build plate was
approximately 20 pixels per mm2. The camera was calibrated ac-
cording to a black-body technique detailed in previous work [4].
This calibration technique enabled the thermal camera to accu-
rately measure top surface temperatures up to 550 °C.

The parts in the experiment were made from the Inconel 718
powder. Seventeen parts were created from six different geome-
tries, each with a different purpose. Part distortion, recoater crash
and powder feed failures were investigated in a previous work by
[5] using several geometries in this build. For the purposes of this
work, data from two inverted half cones were studied with base
height 6 mm, base radius 4 mm, and part height 20 mm. These
two geometries as well as the completed build plate containing
these parts are shown in Fig. 13.

These two geometries with overhang were selected as they
were expected to experience significant overheating, which can
lead to superelevation and build failure in LPBF. For this reason,
rapid prediction of the thermal history is of interest.

4.2. Experimental end-of-cycle temperature

The procedure for obtaining the end-of-cycle surface temper-
ature from the thermal images is described for the cone-shaped
part with 45° inclination angle (C45). For C45, a 9 pixel by 9 pixel
region from the IR camera data was selected. This sampled area
is annotated in Fig. 14(a) and equates to a 4 mm?2 area on the
top surface of the part. Measurement near the edge of the part
was avoided as the blur from the thermal image would lead to
measurement error. Temperature readings from the infrared ther-
mal camera image from this 4 mm? area were averaged to obtain
a top surface temperature. The temperature trend for this sampled

1
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Fig. 11. Temperature history at three points in the cube (see Fig. 8 for locations) to compare exact and SG solutions at (a) Biot = 0.1, (b) Biot = 1.0, (c) Biot = 10. Parameters

for the SG solution are 1536 nodes on a block-random grid and 80 timesteps.
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Table 6

International Journal of Heat and Mass Transfer 183 (2022) 122112

Error in temperature for the SG method on the block-random grid at three locations defined in Fig. 8 and for three Biot
numbers. For each grid density n/vol, ten block-random grids were studied to obtain averages and variances over time

range (0 <f <0.2).

SMAPE RMSE

Location Bi n average variance average variance
1 0.1 512 1.876834 0.331491 0.01719120 0.00001359
1536 0.940356 0.156959 0.00992803 0.00000993
4096 0.935124 0.234455 0.00887210 0.00001160
1 512 2.753140 0.660255 0.01666274 0.00000743
1536 1.520414 0.395436 0.01001318 0.00000968
4096 1.090323 0.276723 0.00785373 0.00000529
10 512 6.598844 7.072547 0.01498143 0.00000495
1536 5.905686 10.858103 0.01013748 0.00000395
4096 3.859102 3.502287 0.00782939 0.00000339
2 0.1 512 2.190329 1.210556 0.01494754 0.00006074
1536 2.393353 2.395105 0.01890678 0.00011668
4096 2.030881 1911114 0.01358837 0.00007339
1 512 1.866639 0.454295 0.01264575 0.00005338
1536 2.829961 2.987142 0.01816824 0.00012125
4096 1.944417 2.135573 0.01215211 0.00006857
10 512 5.921486 12.519991 0.01069555 0.00005730
1536 8.302355 28.161460 0.01847190 0.00022798
4096 4.754935 9.625067 0.01063742 0.00003648
3 0.1 512 4.632983 4.616591 0.01179445 0.00002433
1536 4.022486 3.960269 0.01011096 0.00002245
4096 2.179375 1.051766 0.00550174 0.00000649
1 512 5.234295 5.352751 0.01009804 0.00001224
1536 5.128025 6.565621 0.00960630 0.00002222
4096 2.755790 0.987612 0.00549648 0.00000388
10 512 9.902535 33.144596 0.00645721 0.00000949
1536 9.050974 17.936956 0.00720693 0.00001416
4096 5.492360 3.038816 0.00443783 0.00000254

LWIR Infrared
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Thermal Camera
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Fig. 12. (Left) Schematic of open architecture LPBF platform and the LWIR camera setup. (Right) Photograph of the build setup used in the experiment.

region over the entire build duration of C45 is shown in Fig. 14(b).
The cone-shaped parts were completed at layer 500, the entire
build completed at layer 650. A sample of the temperature trend
over three layers is shown in Fig. 14(c).

From the raw temperature data shown in Fig. 14(b), the end-of-
cycle surface temperature was extracted in the following manner.
Referring to Fig. 14(c), the raw temperature has three prominent
features, demarcated (A), (B), and (C), which correspond to specific
process events. Note that the thermal camera acquires data only
when the laser is active through a triggering mechanism. The first
large spike marked (A) is when the laser is striking the sampled
4 mm? pixel region. The temperature recorded at (B) is momentar-
ily interrupted at the time the laser and camera are both switched
off. The epoch marked (C) and beyond is for the next layer pro-
cessed by the laser. In the interim between (B) and (C) the recoater
fetches powder, and a fresh powder layer is deposited.
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The time for recoating is measured to be 11 seconds, and re-
mains fixed irrespective of the process conditions or number of
parts on the build plate. The temperature in the instant just be-
fore the laser strikes the sampled area again, before the melting
of a new layer, is termed as the end-of-cycle surface temperature.
Plotted in Fig. 14(d) is the end-of-cycle surface temperature for the
9 pixel by 9 pixel area (4 mm?) of the cone-shaped part C45 sam-
pled in Fig. 14(a). More information on the experimental set up
and on the reduction of the LWIR data is available elsewhere [5].

4.3. Assumptions in the thermal model

There are several simplifying assumptions applied to both SG
and FE methods for thermal modeling of the LPBF process. Be-
cause the duration of laser scan on one part (less than 0.5 s) is
much shorter than interlayer time (> 30 s), the laser scan is mod-
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Fig. 13. (Left) Inverted half cone geometry used to validate this work. Two similar
geometries were created, one with overhang angle 40 degrees and one with 45
degrees. (Right) Completed build plate with the two inverted half cones (C40, C45)
used in this work. Other parts on this build plate were used for a different research
topic.

eled as the instantaneous appearance of a newly fused layer. La-
tent heat effects of melting and fusing are neglected. The thermal
model is carried out on a succession of heating cycles, with each
cycle starting with the addition of the newly-fused layer and con-
tinuing to the end-of-cycle condition before the next laser scan.
The interlayer time, which can vary throughout the build depend-
ing on the area to be fused at each layer, was obtained directly
from the G-code, the machine language which encodes the pro-
cessing parameters to carry out the actual build. The end-of-cycle
temperature from one cycle is the initial condition for the body
in the subsequent heating cycle, except for the newly-fused sur-
face layer which increases the size of the computational domain.
In the present embodiment of the SG method, the energy added
by the laser is modeled as a temperature jump above the previous
layer’s end-of-cycle temperature. The temperature jump is deter-
mined at the first layer as AT = Tt — Tympienr = 1600C — 250C in
the present example. In this way the same energy per unit volume
is added to each newly fused layer. Refer to [2] for further discus-
sion of these assumptions.

4.4. Calibration

Every numerical method contains parameters that must be cho-
sen so that the results are physically meaningful. For the SG
method, calibration is needed to find the gain factor using the
method described in Section 3.2.3. The analytical solution de-
scribed in Section 3.2.1 was used to compute a single heat-
ing/cooling cycle in an Inconel 718 parallelepiped depicted in
Fig. 8 with each side of length 25 mm. The spectral graph method
was applied to this geometry. and the gain factor was chosen to
provide the best fit between the analytical solution and the spec-
tral graph model. The comparison was carried out at the center of
the initially-heated region. In this way the gain factor of f = 0.555
was chosen at which the SMAPE was 0.4%. This gain factor was
used for all subsequent model calculations. Other parameters used
in the calibration are given in Table 7.

Another calibration step is to determine the correct level of
heat loss for the simulation. To do this, the SG model was ap-
plied to inverted-cone geometry C40, with the larger overhang, and
end-of-cycle temperatures were compared to data from the exper-
imental build. The model was run with 50 superlayers, that is, 50
heating cycles in succession to represent the actual 500 layers in
the build. The build plate on which the part is built, the primary
heat sink in the problem, was modeled as a large convection co-
efficient (also called a contact conductance). The value of h, =
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Table 7
Summary of simulation of parameters used for the gain factor calibration and
inverted half cone simulations.

Parameters, calibration on parallelepiped Values
Parallelepiped side length [mm] 25
Specific Heat [] kg~'K~'] 435
Conductivity [Wm~1K"1] 19.47
Density, [kg m—3] 8,193
Melting Point [C] 1,600
Ambient chamber temperature, [C] 250
Gain factor 0.555
Parameters, simulation of inverted half cones Values
Radius factor (€) V2
Convection coeff. for powder, hy, [Wm=2K-1] 2.5
Convection coeff. for build plate, h, [Wm—2K-'] 300
Superlayer thickness [mm] 0.4 (10 actual layers)
Node density [nodes mm~—3] 1.0

Computer hardware Ryzen 3970X CPU

3.70 GHz, 128 GB RAM.

Table 8

Results of convergence study on node density applied to inverted half cone C40.
Density 1.0 node/mm? was selected to balance decreases in model error against
increases in computation time.

Node Density Number Time SMAPE RMSE
(node/mm?3) of nodes (sec) (%) (°0)
0.3 1678 2.6 4.06 46.7
0.5 2804 5.1 2.68 32.7
0.8 4478 12.6 2.66 301
1 5565 193 2.64 293
1.5 8256 43.7 2.09 21.7
2 11094 90.3 2.04 21.0

300 W/(m2K) was chosen for the build plate; this value is suffi-
ciently large to represent a fixed-temperature boundary condition,
because larger h, values give the same result. The effect of heat
loss to the surrounding powder was modeled as another convec-
tion coefficient, to describe the heat loss to the low-conductivity
metal powder on the sides of the fused part, and heat loss to
the gas at the exposed upper surface of the fused part. To choose
the heat-loss coefficient, the error (SMAPE) between the SG model
for the C40 part and the end-of-cycle temperature obtained from
the LWIR thermal camera was minimized. In this way the value
of hy = 2.5 [W m2 K-'] was chosen; other parameters for the
50-layer simulation are provided in Table 7. The SG model for the
calibration case is shown in Fig. 15a. The dashed line shows the
ensemble average of 10 computer runs using 10 different block-
random grids and the shaded region shows the variance of the 10
different grids. The average error is less than 3% SMAPE and 30 °C
RMSE.

A convergence study was also carried out on the node density
for the 50-layer simulation of the C40 part. Fig. 16 shows some of
the results from this study compared to experimental data for the
end-of-cycle temperature. A list of SMAPE error values from the
temperature histories in the convergence study, along with compu-
tation time for each simulation, is given in Table 8. Table 8 shows
that the chosen node density of 1.0 node/mm? provides a good bal-
ance between rapid computation and acceptable precision.

4.5. Results for test case

Using the simulation parameters from calibration procedure,
the simulation was carried out for the C45 geometry, with the
smaller overhang. The results of the comparison between the SG
model and the experimental data is presented in Fig. 15b. The
trends are correct and the general shape of the temperature is cor-
rect, with the error in the SG model prediction for the C45 part
(test case) less than 5% SMAPE and 41 ° C RMSE. The run time for
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Fig. 14. (a) IR image showing the 9 pixel by 9 pixel area over which the surface temperature trends are averaged for the C45 cone-shaped test artifact. (b) The surface
temperature trends for the entire duration of the build. (¢) The zoomed in area of the temperature trends over three process cycles, including the where the end-of-cycle
temperature is obtained. There are three prominent epochs that are observed in the temperature trends on account of process events, labeled (A) through (C) (d) the end-
of-cycle surface temperature for the duration of build corresponding to C45. (e) The process events that cause the three epochs observed in the temperature trends in

(c).

the C45 test part is smaller than for the C40 calibration part be-
cause the smaller part volume contains fewer nodes at fixed node
density.

The simulation for the C45 test case somewhat overestimates
the end-of-cycle temperature in the overhang region of the part.
This mismatch is primarily a function of the overall energy budget
in each heating cycle, that is, heat in minus heat out. Evidence for
this is the large Fourier number associated with one heating cycle,
specifically, Fo = at/L? = 0.55 for o = 5.46(10)~¢ m?/s (Inconel),
t =40 s (interlayer time at end of build) and L =20 mm (height
at end of build). At this Fourier number the spatial details of the
initial temperature are long forgotten and the temperature distri-
bution is quasi-steady in space and decaying in time. To address
the energy budget, areas for future work include improving heat
addition in the simulation to more closely agree with the physics
of laser absorption, and, improving heat loss to the surroundings,
for example by including radiation heat loss.

16

5. Summary and discussion

The SG method has been extended to directly incorporate heat
loss with a generalized boundary condition, which is a distinct
improvement over the ad hoc heat loss method used previously.
Improved edge weights in the Laplacian matrix are now based
on the physics of the problem, which reduces the number of
calibration parameters and consequently simplifies the calibration
process. The improved SG method has been used to develop a
discrete Green’s function for comprehensive treatment of several
heating effects: space-varying initial conditions; time-and-space
varying boundary heating; and, time-and-space varying internal
heating. The precision of the method was determined from one-
dimensional and three dimensional benchmark examples for which
exact solutions were available. The one-dimensional example was
also compared with a finite difference solution. The method was
also applied to a 50-layer simulation of an additive manufacturing
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Fig. 15. End-of-cycle temperature histories for the inverted half cones. The dashed red lines are the ensemble average SG model values and the shaded region show the
variance from ten block-random grids. The solid black lines are the experimentally measured values for each geometry. (a) The C40 data was used to calibrate the part-to-
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Fig. 16. Convergence study on node density for a 50-layer simulated build of the
C40 inverted half cone, compared to experimental data. Model results are shown
for node density of 0.3, 1.0, and 2.0 nodes/mm? and fixed gain factor f = 0.555.

process for two bodies with severe overhang, and the simulation
results were validated by comparison with experimental tempera-
ture measurements. The model agrees with the experiments within
5% SMAPE with model computation time of less than one minute
on a desktop computer. The rapid computation time of this im-
proved thermal model provides an opportunity for application to
flaw detection using real-time thermal sensor data; this is an area
of ongoing research [49].

The computational advantage of the SG method applied to ad-
ditive manufacturing comes from a combination of low-cost grid
generation, only one eigenvalue solution to find the GF, and an-
alytic behavior on time which allows for time steps of any size.
In contrast the finite element (FE) method has high-cost mesh
generation and numerical time-integration with many small time
steps required to control precision. The computational advantage
of the SG method is strong for the rough and rapid thermal sim-
ulations that are presently sufficient to advance the field of ther-
mal modeling of 3D printing. However, the computational cost of

17

the eigenvalue problem in the SG method scales as 0(n?), com-
pared to the computational cost of the FE method which scales as
O(m - n?) where n is the number of nodes and m is the number of
timesteps [50]. This suggests that the computational advantage of
the SG method may wane when n is large, for example, in simula-
tion of large bodies. To address this concern, work is in progress to
develop techniques for SG simulation of large bodies, to limit the
number of nodes while maintaining acceptable precision [51].
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