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a b s t r a c t 

This work concerns solutions of the heat equation with the spectral graph method, for which the tem- 

perature is defined at discrete points in the domain and the spatial relationship among the points is 

described by a graph. The heat equation on the graph is solved using matrix techniques involving the 

eigenvectors and eigenvalues of the Laplacian matrix. The spectral graph approach precludes the compu- 

tationally intensive meshing and numerous time-integration steps of the finite element method. In the 

present work, the spectral graph method is extended to include heat loss at the boundaries with a gener- 

alized boundary condition, and physics-based edge weights are introduced which simplify the calibration 

process. From this approach a discrete Green’s function is defined which allows for solutions under a 

variety of heating conditions including: space-varying initial conditions; time-and-space varying inter- 

nal heating; and, time-and-space-varying heating at boundaries of type 1 (Dirichlet), type 2 (Neumann) 

and type 3 (Robin). Results are provided for benchmark heat transfer problems in one spatial dimen- 

sion and in three spatial dimensions, and verification is provided by comparison with exact analytical 

solutions and finite difference solutions. The spectral graph method converges within 0.4% error of the 

analytical solution. The practical utility of the approach is demonstrated by thermal simulation of a multi- 

layer additive manufacturing process. The spectral graph results are compared to experimentally-obtained 

temperature data for two metal parts, with error less than 5% of the experimental measurements, with 

computation time less than one minute on a desktop computer. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the spectral graph method the heat equation is solved over 

 discrete set of nodes. The novelty of the present work is that the 

pectral graph method is combined with discrete Green’s functions 

hrough treatment of a generalized boundary condition. 

The strength of the spectral graph (SG) method lies in the ease 

ith which any geometry may be represented by a collection of 

odes dispersed throughout the body. Previous work by the au- 

hors has shown that the SG method may be computed faster 

han commercial finite element codes for comparable precision, for 

hermal simulation of additive manufacturing [1–5] . That previous 

ork involved insulated boundaries, with boundary heat loss in- 

luded as an adjustment to the boundary temperatures, external 

o the SG method. 

The strength of the Green’s function (GF) method is that several 

ypes of heating conditions may be addressed with straightforward 
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teps if the GF is known. Discrete building-block solutions can be 

onstructed from the GF to treat heating conditions that vary over 

pace and over time [6] . However finding the GF is a central chal- 

enge [7 , p. 101]. 

In the present work, the geometric universality and computa- 

ional speed of the SG method is combined with the multiple- 

eating capability and mathematical rigor of the GF method. The 

mproved method can treat boundary conditions of type 1, 2, and 

, under a variety of heat-addition conditions, and has great poten- 

ial to provide rapid thermal simulations of a variety of industrial 

rocesses. 

.1. Literature review 

The pertinent literature will be reviewed in the areas of the 

pectral graph method, discrete Green’s functions, and thermal 

imulation of additive manufacturing. 

.1.1. Spectral graph method 

Recently the spectral graph (SG) method has been used to solve 

he heat conduction equation in the context of image processing 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122112
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.122112&domain=pdf
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nd filtering of other large data sets [8–10] . In a study of image

moothing, Zhang and Hancock use randomly assigned node lo- 

ations to construct a discrete Laplacian matrix and subsequently 

o solve the heat conduction equation [10] . A review paper by 

olomon [11] shows that the Laplacian matrix constructed from 

 uniformly spaced grid gives a solution to the heat conduction 

quation. However, if the grid is not equally spaced, the relation- 

hip to the correct solution of the heat conduction equation is not 

lear. 

.1.2. Discrete Green’s function 

Several authors have developed a discrete Green’s function (GF) 

or steady diffusion. Bendito et al. [12] give a procedure for find- 

ng the steady discrete GF using graph theory for Dirichlet (type 1) 

oundary conditions for application to electric resistor networks. 

hang et al. [8] discuss discrete GF for diffusion in large data 

raphs for a social network application, and an approximate ma- 

rix inversion technique is used to obtain a few eigenvalues from 

ery large Laplacian matrices. Gilbert et al. [13] develop discrete GF 

ith boundary conditions of type 1, 2 or 3 with application to scat- 

ering of light, with examples provided in one and two dimensions. 

rauz et al. [14] discuss procedures for finding the discrete GF from 

raph theory by studying subnetworks, to mitigate the computa- 

ional burden when the Laplacian matrix is very large. Tewary and 

arboczi [15] find the discrete GF for a two dimensional compos- 

te body using a semi-analytic Fourier integral method applied to 

teady heat transfer and electrostatic potential. 

There has been some work on a discrete GF for transient diffu- 

ion using graph theory. Chung et al. [16] introduce a discrete form 

f Green’s theorem on graphs and give an example of diffusion 

riven by non-homogeneous Dirichlet (type 1) boundary. However 

o numerical results are provided. Xu et al. [17] studied random 

alks on graphs and defined a discrete GF for Neumann (type 2) 

oundary conditions. Time evolution of the solution is replaced by 

 focus on the number of steps in a random walk for transport 

rom one point to another on the graph. 

There are many applications of the finite element method for 

iscrete GF applied to the heat equation. Mansur et al. have a se- 

ies of papers based on the finite element method: one paper in- 

roduces the method for the heat equation and provides examples 

n two spatial dimensions [18] ; another paper provides details of 

he time integration of the discrete GF to control numerical stabil- 

ty [19] ; and, another defines the discrete GF in the Laplace domain 

ith a Laplace-inversion integral in place of a time integral [20] . 

hang and Li [21] use the discrete GF for two-dimensional heat 

ransfer in soil surrounding subway tunnels. Sodan et al. [22] use 

ime convolution to apply discrete GF to thermal effects in gallium- 

itride electronic devices. 

Several authors have worked with discrete GF constructed by 

ther means. Melnikov and Reshniak [23] incorporated analyti- 

al GF which satisfied some of the boundary conditions into a 

oundary integral formulation in order to numerically satisfy all 

f the boundary conditions; examples in two spatial dimensions 

ere provided. Mai et al. [24] developed the GF for a finite two- 

imensional domain by distributing fundamental solutions along 

he boundary, which may be type 1, 2 or 3. Wang et al. [25] used

n integral-transform technique to find the GF for non-Fourier heat 

onduction in unbounded domains, with application to microscale 

eat transfer. Eaton [26] built a discrete GF from analytical bound- 

ry layer solutions for convection heat transfer. 

.1.3. Thermal simulation of additive manufacturing 

The impact of thermal effects on defects in additive manufac- 

uring is well documented [27–31] . Through the use of thermal 

imulation, it is possible to minimize the occurrence of defects, 

uch as geometric deformation and microstructure heterogeneity, 
2 
y predicting the effect of process conditions and part design on 

he temperature history in the build, without relying on extensive 

uild-and-repeat empirical optimization [32] . 

Accurate quantitative modeling approaches based on finite ele- 

ent (FE) analyses have been successfully developed and applied 

or understanding the thermal aspects of AM at the part-level, 

s summarized in several references [33–37] . However, these pi- 

neering non-proprietary approaches are computationally expen- 

ive, with simulation of a few deposited layers amounting to many 

ours, if not days [38,39] . For example, Cheng et al. reported that 

he computation time for thermomechanical analysis for a 6 mm 

uboid shape part exceeds 92 hours [38] . 

Hence, newer efficient approaches are needed to predict the 

emperature distribution under different part designs and with var- 

ous process parameters; this is the motivation for the present 

ork. In the context of FE-based modeling there exist several com- 

ercial, proprietary approaches, such as Autodesk Netfabb and An- 

ys 3DSim, that have leveraged adaptive meshing principles to 

rastically reduce the computational time. However, the underlying 

athematics of these commercial software applications is propri- 

tary [36,40] . Furthermore, there is a large variation in the results 

mong proprietary software, as large as 80% in a recent bench- 

arking study [41] . 

.2. Organization of the paper 

In the remainder of the paper, Section 2 provides a develop- 

ent of the Green’s function approach, with the discrete GF con- 

tructed from the spectral graph method based on nodal energy 

alances on an unstructured grid. Section 3 contains examples 

f the method applied to geometries with planar boundaries un- 

er two different heating conditions, with verification provided by 

omparison with exact analytical solutions and finite difference so- 

utions in one spatial dimension and with exact analytical solutions 

n three spatial dimensions. Section 4 demonstrates the method for 

hermal simulation of a multilayer additive manufacturing process 

n bodies with severe overhang, and the results are validated by 

omparison with experimental temperature values. Section 5 con- 

ains a summary and discussion of the work. 

. Theory and development 

The discrete Green’s function (GF) is a matrix of size ( n × n ), 

here n is the number of nodes in the body. Each row of the GF

atrix contains the temperature response in the body caused by 

n impulse of heat at one node. All the rows of the GF matrix to-

ether provide the overall response to heating at any of the nodes 

n the body. 

In this section the discrete GF method is introduced in several 

teps. Section 2.1 provides the overall relation between tempera- 

ure and the discrete GF for several heating conditions, which we 

all the discrete GF solution equation. In Section 2.2 the discrete 

F is constructed from the spectral graph method which involves 

he Laplacian matrix of a graph. Section 2.3 provides details of the 

aplacian matrix by examining an energy balance on each node in 

he body. Section 2.4 shows how the distribution of nodes in the 

ody affects the edge weights used to connect nodes to one an- 

ther. Section 2.5 demonstrates that although the discrete GF is 

iscrete in space, it is analytic in time. Section 2.6 provides an 

verview of the method and its limitations. 

.1. Discrete Green’s function solution equation 

In the continuous Green’s function (GF) method, the boundary 

alue problem for temperature is recast into an integral expression 

ontaining the GF multiplied by each of the heating effects present 
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Table 1 

Temperature expressions with the continuous GF and with the discrete 

GF, with contributions to temperature caused by: initial condition ˜ T in ; 

internal heating ˜ T g ; and, boundary conditions ˜ T bc . 

Continuous GF Discrete GF 

˜ T in 

∫ 
R 

G | τ=0 ̃
 T 0 (r ′ ) d V ′ G | τ=0 ̃

 T 0 

˜ T g 

∫ t 

τ=0 

∫ 
R 

G ̃  g (r ′ , τ ) d V ′ dτ

∫ t 

0 

G ̃  g dτ

˜ T bc 

∫ t 

τ=0 

∫ 
A m 

G | r ′ m (B m ̃ T ∞ m + ̃  q m ) d A 
′ 
m d τ

∫ t 

0 

G ̃  g m dτ, where 

˜ g m = 

(
B m ̃ T ∞ m + ̃

 q m 
) ˜ A m 

˜ V m 

t

p
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n the problem, such as the initial condition, the internal heating 

unction, and any boundary heating functions [7, chap. 3] . This GF 

olution equation is flexible and powerful because one GF allows 

or a large family of solutions to be treated in a straightforward 

anner. In this section, the discrete GF solution equation is pre- 

ented by analogy with the continuous GF method. The starting 

oint is the boundary value problem for temperature: 

1 

α

∂T 

∂t 
= ∇ 

2 T + 

1 

k 
g( r , t) (domain R) (1) 

 

∂T 

∂n m 

+ h m 

T = h m 

T ∞ m 

+ q m 

( m 

th boundary of R) (2) 

 (r , t = 0) = T 0 (r ) (initial condition) (3) 

aterial properties are conductivity k [ W m 

−1 K 

−1 ] and diffusivity 

[ m 

2 s −1 ]. Here n m 

represents the outward normal vector on the 

 

th portion of the body surface, each of which is characterized by 

onvection coefficient h m 

[ W m 

−2 K 

−1 ], heat flux q m 

[ W m 

−2 ], and

ocal ambient temperature T ∞ m 

. 

The temperature is driven by three causative functions: internal 

eating g; initial condition T 0 ; and, boundary heating (h m 

T ∞ m 

+ 

 m 

) . Here the boundary heating is a generalized condition which 

rovides for three types of boundary heating conditions depend- 

ng on the values of h m 

and q m 

[42] . For nonhomogeneous type 

 (Robin) boundary take q m 

= 0 . For boundary heating of type 

 (Neumann), take h m 

= 0 and q m 

� = 0 . For the nonhomogeneous

ype 1 (Dirichlet) boundary, divide Eq. (2) by h m 

and take the limit 

s h m 

→ ∞ , as follows: 

1 

h m 

∂T 

∂n m 

 ︷︷ ︸ 
=0 

+ T = T ∞ m 

+ 

q m 

B m ︸︷︷︸ 
=0 

( m 

th boundary of R) (4) 

his is a nonhomogeneous type 1 condition on the m 

th boundary. 

This problem will be made dimensionless with the following 

ariables: 

˜ T = 

T − T ∞ 

T 1 − T ∞ 

; ˜ t = 

αt 

L 2 
; ˜ r = 

r 

L 
; ˜ n m 

= 

n m 

L 
; B m 

= 

h m 

L 

k 

˜ q m 

= 

q m 

L 

kT 1 
; ˜ g = 

gL 2 

kT 1 
(5) 

ere L [m] is a length scale and T 1 [K] is a temperature scale. In-

roduce the above variables for the normalized temperature prob- 

em: 

∂ ̃  T 

∂ ̃  t 
= 

˜ ∇ 

2 ˜ T + 

˜ g ( ̃ r , ̃  t ) (domain R) (6) 

∂ ̃  T 

∂ ̃  n m 

+ B m ̃

 T = B m ̃

 T ∞ m 

+ 

˜ q m 

( m 

th boundary of R) (7) 

˜ 
 ( ̃ r , ̃  t = 0) = 

˜ T 0 ( ̃ r ) (initial condition) (8) 

Because the boundary value problem for temperature is linear, 

he GF solution equation for the temperature is the sum of three 

erms: 

˜ 
 (r , t) = 

˜ T in (r , t) + 

˜ T g (r , t) + 

˜ T bc (r , t) (9) 

uantity ˜ T in is the temperature contribution from the initial con- 

ition, ˜ T g is from internal (volumetric) heating, and 

˜ T bc is from the 

onhomogeneous boundary conditions. In Table 1 the expression 

or each of these three terms is given for the analytical GF solu- 

ion [7, chap. 3] and by analogy, for the discrete GF solution. The 

ntries in Table 1 will be discussed one at a time. 
3 
The first row of Table 1 shows the contribution to tempera- 

ure from a non-zero initial condition. To discern the discrete tem- 

erature expression from the continuous temperature expression, 

he spatial integral in the continuous temperature expression is re- 

laced by the discrete GF matrix multiplied by the initial temper- 

ture vector ˜ T 0 . This matrix multiplication insures that all nodes 

ith non-zero initial condition have an impact on the resulting 

emperature. 

The second row of Table 1 gives the contribution to the temper- 

ture caused by internal heat generation, and as for the first row, 

he spatial integral from the continuous temperature expression is 

eplaced by the GF matrix multiplied by the causative effect, this 

ime the internal heating vector ˜ g to produce the discrete temper- 

ture expression. Vector ˜ g may vary in space and in time. 

The third row of Table 1 gives the contribution to temperature 

or heating at the boundary. For the continuous GF method, there 

s a surface integral involving the GF evaluated at the boundary 

 

 

′ = ̃

 r ′ m 

, multiplied by the boundary heat flux (B m ̃

 T ∞ m 

+ ˜ q m 

) . This 

urface integral is developed from a volume integral using Green’s 

heorem. In contrast, the discrete GF can only be evaluated at node 

ocations, which may or not be located at the boundary. To con- 

truct the discrete temperature expression for boundary heating, 

he surface integral from the continuous temperature expression is 

eplaced by the GF matrix multiplied by an n -vector ˜ g m 

whose el- 

ments are non-zero only at boundary nodes where heating takes 

lace. The elements of vector ˜ g m 

are given by 

˜ 
 m 

= 

{(
B m ̃

 T ∞ m 

+ 

˜ q m 

)
˜ A m 

/ ̃  V m 

; node m on boundary 

0 ; otherwise 
(10) 

hich represent the equivalent volumetric heating caused by heat- 

ng at boundary nodes. That quantity ˜ g m 

should contain the ra- 

io A m 

/V m 

can be demonstrated by equating the energy added to a 

ode by volume generation g to that added by boundary heat flux 

 : 

 · V = q · A, or, g = q · A 

V 

(11) 

his energy balance states that the equivalent volumetric genera- 

ion [W m 

−3 ] is equal to the applied heat flux [W m 

−2 ] times area

m 

2 ] divided by nodal volume [m 

3 ]. 

The discrete GF solution equation provides a comprehensive 

nd systematic approach for a family of solutions with a variety of 

eating conditions, once the discrete GF is known. In the follow- 

ng section, the discrete GF is developed from the spectral graph 

ethod. 

.2. Spectral graph method for the discrete Green’s function 

The Green’s function will be found as the solution to an initial- 

ondition problem with homogeneous boundary conditions, which 

s a standard approach [7, p. 28]. However here the spectral graph 

ethod will be applied to the heat equation, by replacing the 
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e∑
aplacian operator ( ̃  ∇ 

2 ) with a discrete operator called the Lapla- 

ian matrix ( L ). Also the continuous temperature is replaced by a 

ector of discrete temperatures ( ̃ T ) at node points in the domain. 

he discrete form of the heat diffusion equation, with homoge- 

eous boundary conditions and specified initial condition, may be 

ritten as 

∂ ̃  T in 

∂ ̃  t 
= −L ̃ T in (domain R) (12) 

∂ ̃  T in 

∂ ̃  n m 

+ B m ̃

 T in = 0 ( m 

th boundary of R) (13) 

˜ T in 

∣∣
˜ t =0 

= 

˜ T 0 (initial condition) (14) 

ote the sign change in Eq. (12), as the Laplacian matrix L from 

raph theory is defined with sign opposite to that of the contin- 

ous Laplacian operator ( ̃  ∇ 

2 ). A contribution of the present work 

s the type 3 boundary condition in Eq. (13); although elements of 

he following development are similar to our previous work with 

he type 2 (insulated) boundary [2] , the present analysis goes fur- 

her to define the discrete Green’s function. For the moment we as- 

ume that the Laplacian matrix satisfies the type 3 boundary con- 

ition; internal details of this Laplacian matrix are developed later 

n Section 2.3 . 

The next step is to solve an eigenvalue problem using standard 

atrix methods. Laplacian matrix L satisfies the following eigen- 

alue equation: 

L φ = φ� (15) 

here φ is the orthogonal eigenvector matrix 

� is the diagonal eigenvalue matrix 

he eigenvector matrix φ is orthogonal because L is symmetric and 

iagonally dominant [11] . Since for an orthogonal matrix the trans- 

ose is equal to its inverse, the product of the eigenvector matrix 

nd its transpose is the identity matrix. That is: 

φφ′ = φφ−1 = I (16) 

sing this property, post-multiply the eigenvalue equation, Eq. 

15), by the matrix φ′ : 

 φφ′ = φ�φ′ 

LI = φ�φ′ 

L = φ�φ′ (17) 

eplace this result into the discrete diffusion equation, Eq. (12): 

∂ ̃  T in 

∂ ̃  t 
= −(φ�φ′ ) ̃ T in (18) 

his above equation is a first order matrix differential equation 

hose solution has the form of a matrix exponential [10,11] : 

˜ 
 in = e −φ�φ′ ˜ t ˜ T 0 (19) 

ecall that ˜ T 0 is the initial temperature vector. Next the exponen- 

ial in the above solution will be expanded using a Taylor series. 

he exponential of matrix u is given by 

 

−u = I − u 

1! 
+ 

u 

2 

2! 
− u 

3 

3! 
+ . . . 

pply the above Taylor series expansion to the exponential term 

rom Eq. (19) , and simplify: 

 

−φ�φ′ ˜ t = I − ˜ t 
φ�φ′ 

1! 
+ ̃

 t 2 
(φ�φ′ ) 2 

2! 
− ˜ t 3 

(φ�φ′ ) 3 
3! 

+ . . . 

= I − ˜ t 
φ�φ′ 

+ ̃

 t 2 
(φ�φ′ )(φ�φ′ ) 
1! 2! 

4 
− ˜ t 3 
(φ�φ′ )(φ�φ′ )(φ�φ′ ) 

3! 
+ . . . 

= I − φ(�˜ t ) φ′ 
1! 

+ 

(φ(�˜ t ) 2 φ′ ) 
2! 

− (φ(�˜ t ) 3 φ′ ) 
3! 

+ . . . 

= φ

[
I − �˜ t 

1! 
+ 

(�˜ t ) 2 

2! 
− (�˜ t ) 3 

3! 
+ . . . 

]
φ′ 

= φ
[
e −�˜ t 

]
φ′ (20) 

he final exponential argument contains only the eigenvalue ma- 

rix multiplied by time. With this simplification the temperature 

olution ( Eq. 19 ) is given by 

˜ 
 in = φe −�˜ t φ′ ˜ T 0 (21) 

n this solution, the spatial behavior is embodied in the eigenfunc- 

ion matrix φ and the time-evolution behavior is embodied in the 

igenvalue matrix �. 

Next the above solution is compared to that from the GF ap- 

roach. Assuming for the moment that the GF is known, the so- 

ution to the discrete initial-temperature problem (Eq. 12 - 14) is 

onstructed by multiplying the GF by the initial temperature ˜ T 0 as 

iven in the first row of Table 1 : 

˜ 
 in = G | τ=0 

˜ T 0 (22) 

ere G | τ=0 is the discrete GF evaluated at heating time τ = 0 . 

ow compare the formal statement of the discrete GF solution in 

q. (22) to the spectral graph solution given in Eq. (21) . As the

olution to a boundary value problem is unique, the discrete GF 

valuated at τ = 0 must be 

 | τ=0 = φe −�˜ t φ′ (23) 

he final step is to recognize that the time behavior of every GF 

or the heat equation has functional form (t − τ ) where t is the 

bservation time and τ is the heating time [7 , p. 37]. Then the 

iscrete GF for τ � = 0 is given by: 

 = φe −�( ̃ t − ˜ τ ) φ′ (24) 

his is the discrete GF, in the form of a matrix, as provided by the

pectral graph (SG) method. The discrete GF satisfies a (discrete) 

oundary value problem with homogeneous boundary conditions 

nd impulsive initial condition. One column of the GF matrix con- 

ains the temperature response to a unit-impulse initial condition 

t one node; all the columns together provide the comprehensive 

esponse. 

The above GF matrix was developed assuming that the Lapla- 

ian matrix is known, has well-behaved eigenvectors and eigen- 

alues, and satisfies type 3 boundary conditions that are homoge- 

eous. In the next section the details of the Laplacian matrix are 

eveloped. 

.3. Energy balance for a node at a convection boundary 

In this section the required Laplacian matrix is constructed 

rom the node equations for the discrete form of the heat con- 

uction equation. The node equations are found from an energy 

alance using the finite-volume theory of Patankar [43] . A node at 

he boundary is examined with convection heat loss, and then the 

esult for a non-boundary (interior) node is a straightforward spe- 

ial case. 

The discussion begins with the energy balance on the element 

ontaining node i at temperature T i shown in Fig. 1 . The sum of

he heat flow into element i is equal to the energy storage in the 

lement: 

 

Q = CV i 

∂T i 
(25) 
∂t 
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Fig. 1. Boundary node with thermal resistance for heat loss to surroundings at T ∞ . 

H

h  

e

p

n

f

w

I

n

t

S

t

w

T

i

R

w  

f  

t  

m

c

l

t

b

∑

w

i

w

2

m

A

w

g

t

u

a

∑

w

H

i

b

i

t

o

I

i

c  

b

o

i

o

2

e

d

t

T

−

R

t

a

−

N

i  

a

t

L

ere Q [W] is heat flow into the element, C is volumetric specific 

eat [J m 

−3 K], V i is element volume [m 

3 ], and t is time [s]. The

nergy storage is proportional to the time-rate-of-change of tem- 

erature in the element, T i . The heat flow may come from neighbor 

odes or it may come through the boundary. The heat flow coming 

rom the jth neighbor node is given by 

Q j = w i j (T j − T i ) (26) 

here 

T i . . . temperature of node i of interest [K] 

T j . . . temperature of neighbor node j [K] 

w i j . . . edge weight between nodes i and j [W K 

−1 ] 

t is important to note that edge weights are non-zero only for 

ear-neighbor nodes, and they depend only on the distance be- 

ween nodes. More information on edge weights is given later in 

ection 2.4 . 

The heat flow from the boundary into node i is found from the 

hermal resistance: 

Q = 

T ∞ 

− T i 
R i 

(27) 

here 

T ∞ 

. . . ambient temperature [K] 

R i . . . total thermal resistance at boundary [K W 

−1 ] 

he thermal resistance is the sum of two thermal resistors, shown 

n Fig. 1 : 

 i = 

1 

h i A i 

+ 

c i 
kA i 

(28) 

here h i is the heat transfer coefficient [W m 

−2 K 

−1 ], A i is the area

or boundary heat transfer [m 

2 ], c i [m] is distance from node i to

he boundary as shown in Fig. 1 , and k is thermal conductivity [W

 

−1 K 

−1 ]. Heat transfer coefficient h i is an effective value that in- 

ludes both convective and linearized radiative contributions; non- 

inear boundary conditions are not included here. Replace the two 

ypes of heat flow into Eq. (25) to find the boundary node heat 

alance: 

n 
 

j=1 

w i j (T j − T i ) + 

T ∞ 

− T i 
R i 

= CV i 

∂T i 
∂t 

(29) 

here n is the number of nodes in the body. Although the sum 

n the above expression is shown over all the nodes in the body, 

eights w i j are non-zero only for near-neighbor nodes. 
5 
.3.1. Normalized energy balance 

The node equation will be normalized with the following di- 

ensionless variables: 

˜ T = 

T − T ∞ 

T 1 − T ∞ 

; ˜ t = 

kt 

CL 2 
; ˜ w i j = 

w i j L 
2 

kV i 

˜ 
 i = 

A i 

L 2 
; ˜ V i = 

V i 

L 3 
; ˜ c i = 

c i 
L 

; B i = 

h i L 

k 
(30) 

here T 1 is a characteristic temperature [K] and L is a characteristic 

lobal length [m], and B i is the Biot number describing heat loss at 

he boundary. Replace these dimensionless variables into Eq. (25) , 

se the definition of resistance R i from Eq. (28) , and after some 

lgebra, the boundary node heat balance takes the form 

n 
 

j=1 

˜ w i j ( ̃  T j − ˜ T i ) − ˜ E i ̃  T i = 

∂ ̃  T i 

∂ ̃  t 
(31) 

here ˜ E i = 

˜ A i 

˜ V i 

(
B i 

1 + B i ˜ c i 

)
(32) 

ere ˜ E i is a dimensionless conductance for heat loss when node 

 is located at a type 3 boundary. Note the sign change on this 

oundary term, which comes from the definition of the normal- 

zed temperature. Finally, separate those terms involving neighbor 

emperatures from the temperature at the i th node: 

n ∑ 

j=1 

˜ w i j ̃
 T j ︸ ︷︷ ︸ 

ff diagonal 

−
n ∑ 

j=1 

˜ w i j ̃
 T i − ˜ E i ̃  T i ︸ ︷︷ ︸ 

diagonal 

= 

∂ ̃  T i 

∂ ̃  t 
(33) 

n the above expression the labels ’diagonal’ and ’off diagonal’ 

dentify the locations of these terms in the i th row of the Lapla- 

ian matrix when the i th node is at a type 3 boundary. For non-

oundary nodes, or for nodes on insulated boundaries, the devel- 

pment is identical, except that there is no external heat flow. That 

s, set ˜ E i = 0 at interior nodes, then the heat balance is given by 

n ∑ 

j=1 

˜ w i j ̃
 T j ︸ ︷︷ ︸ 

ff diagonal 

−
n ∑ 

j=1 

˜ w i j ̃
 T i ︸ ︷︷ ︸ 

diagonal 

= 

∂ ̃  T i 

∂ ̃  t 
(interior node) (34) 

.3.2. Details of the Laplacian matrix 

In this section the Laplacian matrix is assembled from the en- 

rgy balance relations at each node. The Laplacian matrix is the 

iscrete matrix that replaces the spatial derivatives when the con- 

inuous heat equation is replaced by the discrete heat equation. 

he discrete heat equation is given by Eq. (12): 

L ̃  T = 

∂ ̃  T 

∂ ̃  t 
(35) 

ecall that L is the Laplacian matrix and 

˜ T is the (dimensionless) 

emperature vector. Next write out the full matrix form of the 

bove energy equation, as follows: ⎡ 

⎢ ⎢ ⎣ 

L 11 L 12 · · · L 1 n 
L 21 L 22 · · · L 2 n 

. . . 
. . . L n −1 ,n 

L n 1 · · · L n,n −1 L nn 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

˜ T 1 
˜ T 2 
. . . 
˜ T n 

⎤ 

⎥ ⎥ ⎦ 

= 

∂ 

∂ ̃  t 

⎡ 

⎢ ⎢ ⎣ 

˜ T 1 
˜ T 2 
. . . 
˜ T n 

⎤ 

⎥ ⎥ ⎦ 

(36) 

ext, consider the i th row of the above expression, and compare 

t to the node equations given earlier for boundary nodes ( Eq. 33 )

nd for interior nodes ( Eq. 34 ). A careful examination shows that 

he elements of the Laplacian matrix have the following form: 

 i j = 

{
− ˜ w i j ; i � = j ∑ n 

j=1 ˜ w i j + 

˜ E i ; i = j 
(37) 
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Fig. 2. Geometry for heat flow between nodes for (a) 1-D uniform grid (b) 3-D uniform rectangular grid (c) 3-D random grid. 
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ecall that ˜ E i � = 0 only for nodes located on a boundary exchanging 

eat with the surroundings. 

The above Laplacian matrix was developed from an energy bal- 

nce. The addition of the heat-loss term 

˜ E i at boundary nodes 

s a unique contribution of the present work; without this term 

he above development is equivalent to the usual graph theory 

pproach involving an adjacency matrix and a diagonal matrix 

10,11] . 

.4. Physics-based edge weights 

Edge weights ˜ w i j were defined earlier in Eq. (26) as Q = 

 i j (T j − T i ) . The edge weight multiplies a temperature difference 

o give the heat flow. The edge weights developed here are con- 

istent with the finite volume method of Patankar [43] . For heat 

ransfer in a solid body, the heat flow rate from node j to node i 

s given by 

 = 

kA i j 

d i j 

(T j − T i ) (38) 

he heat flow rate depends on the conductivity k [W m 

−1 K 

−1 ], the

rea for heat flow A i j [m 

2 ], and the distance between the nodes d i j 

m]. Then the edge weights are given by 

 i j = 

kA i j 

d i j 

or, ˜ w i j = 

˜ A i j 

˜ d ̃  V i 

(39) 

he normalized edge weight is constructed using the normalized 

ariables in Eqn 30 , where ˜ V i is the (normalized) small volume as- 

ociated with node i . To fully specify the edge weight, geometric 

nformation on the nodal grid is required to determine ratio ˜ A i j / ̃  V i . 

hree grid geometries are discussed below. 

.4.1. 1-D uniform grid. 

In the one-dimensional uniform grid, the node spacing and the 

eat transfer area is the same for every pair of adjacent nodes. Re- 

er to Fig. 2 a for a schematic of the 1-D uniform grid. Let ˜ d be

he (normalized) node spacing and let ˜ A be the (normalized) heat 

ransfer area, so that the nodal volume is given by ˜ V = 

˜ A ̃

 d . Then 

he edge weights are given by 

˜ 
 i j = 

˜ A i 

˜ d ̃  A i 
˜ d 

= 

1 

˜ d 2 
(40) 

hese edge weights are identical to the temperature coefficients 

sed in the finite difference method, which means that the one- 

imensional SG method and the one-dimensional finite difference 

ethod have the same spatial behavior [2] . 

.4.2. 3D Uniform rectangular grid. 

In the 3-D uniform rectangular grid shown in Fig. 2 b, the node 

pacing and the heat transfer area is the same for every pair of 

djacent nodes, and the volume associated with node i is a small 

ube. Let ˜ d be the (normalized) node spacing, let ˜ A = 

˜ d 2 be the 
6 
rea for heat transfer, and let ˜ V = 

˜ d 3 be the nodal volume. Then 

he edge weights are given by 

˜ 
 i j = 

˜ d 2 

˜ d ̃  d 3 
= 

1 

˜ d 2 
(41) 

hich are identical to the 1-D case. 

.4.3. 3-D random grid. 

In the 3-D random grid shown in Fig. 2 c, the edge weight de- 

ends upon the details of the geometric relationships among all of 

he nodes surrounding node i . In the spectral graph method, how- 

ver, it is important that the edge weights depend primarily on 

he internodal distance, rather than on geometric details. In the 

uthors’ previous work, the edge weights for the 3-D random grid 

ad an exponential form, drawn from image processing applica- 

ions, as follows 

˜ 
 i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

f exp 

( 

−
˜ d 2 
i j 

σ 2 

) 

; ˜ d i j < r n 

0 ; ˜ d i j ≥ r n , and i = j 

(42) 

uantity σ is the standard deviation of all lengths ˜ d i j . Quantity 

f is the gain factor and r n is the neighbor radius, and these two 

uantities need to be chosen through a calibration process for the 

ethod to provide good results. This approach provided reasonable 

recision with very low computation cost for mesh generation. 

In the present work, edge weights for the 3-D random grid 

ere sought that are based on the physics of the problem yet were 

ompatible with the spectral graph method. Edge weights were 

ought that would: depend on internodal distance ˜ d i j ; build upon 

ur experience with exponential weights used previously; avoid 

ependence on local ratio ˜ A i j / ̃  V i ; and; reduce to 1 / ̃  d 2 
i j 

in the limit

s the random grid moves toward a uniform rectangular grid. 

This last requirement suggested that a simple yardstick was 

eeded to determine when a given grid deviates from the uniform 

ectangular grid. The average distance between adjacent nodes is 

efined 

 = 

(
V tot 

n 

)1 / 3 

. (43) 

uantity � may be viewed as the width of a cube containing the 

verage nodal volume; for a uniform rectangular grid � is the ex- 

ctly the distance between nearest nodes. With quantity � , the fol- 

owing edge weights satisfy the above constraints: 

˜ 
 i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

f 

� 2 
exp 

( 

� 2 − ˜ d 2 
i j 

σ 2 

) 

; ˜ d i j < 

√ 

2 � 

0 ; ˜ d i j ≥
√ 

2 �, and i = j 

(44) 

hese physics-based edge weights have several important features. 

irst, in the limit as distance d i j approaches the average nodal 

istance � , the exponential becomes unity and the edge weight 

as functional form 1 /� 2 which is in agreement with the energy- 

onserving finite volume formulation. Therefore this expression for 
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Fig. 3. Steps to carry out the discrete GF method for temperature simulation. 
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he edge weights applies to every geometry. Second, radius 
√ 

2 � 

efines a sphere which provides a small number of nearest neigh- 

ors; this would be six neighbors for a uniform rectangular grid 

for an interior node). In contrast, in previous work the nearest 

eighbors were defined by an independently-chosen neighbor ra- 

ius. The present work has linked the neighbor radius to the num- 

er of nodes, thus reducing the number of calibration parameters 

rom two to one which simplifies the calibration process. Third, be- 

ause the edge weights are scaled by length � which depends on 

he number of nodes, the calibration may be carried out on one 

rid and the calibration does not have to be repeated if the node 

ount is changed, for example, as part of a grid refinement study. 

Quantity ˜ E i for boundary heat loss, defined in Eq. (32) , must 

lso be determined, which depends upon the nodal surface area 

or external heat loss A m 

. Although the details of the body shape 

ould be used to provide a precise surface area A m 

for each surface 

ode, this is not consistent with the geometry-blind edge weights 

iscussed above. Instead an average external surface area is used, 

he same for each boundary node, defined by the overall surface 

rea of the body, divided by the number of surface nodes. This is 

ongruent with the goal of the present work for rough and rapid 

hermal simulations, as distinct from FE solutions, which require 

urdensome meshing calculations. This approach is most accurate 

or bodies with high node counts and generous fillets, and the level 

f approximation increases as the node count decreases and the 

llet radius decreases. 

.5. Discrete in space, analytic in time 

Through the discrete GF, the spectral graph method has been 

xtended to provide for internal heating, with heating at the 

oundary treated as a special case of internal heating. The tem- 

erature expression for internal heating contains a time integral, 

hich is discussed here to demonstrate that the spectral graph 

ethod is discrete in space and analytic in time. 

Consider an internal heating function 

˜ g which produces a tem- 

erature response described by the time integral given in Table 1 . 

nto this time integral substitute the spectral graph form of the GF 

atrix given by Eq. (24) , to find 

˜ 
 g ( ̃ r , ̃  t ) = 

∫ t 

τ=0 

φe −�( ̃ t − ˜ τ ) φ′ ˜ g d ̃  τ (45) 

he ease or difficulty in evaluating this time integral depends on 

he time behavior of internal heating function 

˜ g . In the special case 

f time invariant internal heating , then the time integral may be 

valuated in closed form. Recall that the eigenvector matrix φ is a 

unction of space, not of time. Then eigenvector matrix φ and its 

ranspose may be removed from the time integral, and the time 

ntegral may be evaluated as follows: 

˜ 
 g ( ̃ r , ̃  t ) = φ

[∫ t 

τ=0 

e −�( ̃ t − ˜ τ ) d ̃  τ

]
φ′ ˜ g 

= φ
[
�−1 

(
I − e −�˜ t 

)]
φ′ ˜ g 

= φ �−1 φ′ ˜ g − φ �−1 e −�˜ t φ′ ˜ g ; ˜ g � = 

˜ g ( ̃ t ) (46) 

ere the temperature expression is the sum of a steady part and 

 complementary transient part. Consequently, the above solution 

oes not apply if the steady solution does not exist, for example, 

f all the boundaries are insulated (Neumann type). In this circum- 

tance the smallest eigenvalue is zero so that the inverse of the 

igenvalue matrix ( �−1 ) does not exist. There are techniques for 

ealing with this zero-eigenvalue problem which will not be dis- 

ussed here in the interest of brevity; see for example [44 , p. 164].

A closed-form solution may also be found for heating that is 

iecewise constant in time. Suppose the internal heating function 
7 
aries in space and is on-off in time, given by 

˜ 
 = 

{
˜ g 0 ( ̃ r ) , 0 < 

˜ t ≤ ˜ t 1 
0 , ˜ t > 

˜ t 1 
(47) 

eplace this function into Eq. (45) and the integral may be evalu- 

ted to give a piecewise-constant-in-time temperature response: 

or ˜ t ≤ ˜ t 1 : 

˜ T g ( ̃ r , ̃  t ) = φ �−1 
(
I − e −�˜ t 

)
φ′ ˜ g 0 ( ̃ r ) 

or ˜ t > 

˜ t 1 : 

˜ T g ( ̃ r , ̃  t ) = φ �−1 
(
e −�( ̃ t −˜ t 1 ) − e −�˜ t 

)
φ′ ˜ g 0 ( ̃ r ) (48) 

his solution may be used as a building block to construct the re- 

ponse to any piecewise-constant-in-time heating function, which 

as application for simulation of a variety of manufacturing pro- 

esses such as laser welding [45] . 

.6. Overview of the discrete GF method 

The development of the discrete GF method given above was 

rganized according to mathematical and physical principles. How- 

ver, the steps needed to carry out a temperature simulation have 

 somewhat different order, as shown in Fig. 3 . 

The first step is to distribute nodes throughout the body of in- 

erest, and a block-random distribution is recommended for the 

dditive manufacturing application. Next the nodes are connected 

ith edge weights ( Eq. 44 ) to construct a graph. The Laplacian ma- 

rix is constructed next, using the energy balance at each node 

 Eq. 37 ), taking care to include any heat loss at boundary nodes 

 Eq. 32 ). The eigenvalue problem for the Laplacian matrix (Eq. 15) 

s then solved using standard methods, and the eigenvectors and 

igenvalues are used to construct the discrete GF ( Eq. 24 ). Finally, 

he discrete GF equation ( Eq. 9 and Table 1 ) is used to assemble

he temperature response caused by the heating effects which are 

resent in the problem. As long as the spatial geometry does not 

hange, the same discrete GF may be used to find the temperature 

esponse to a variety of heating conditions. 

.6.1. Limitations of the method 

There are some limitations specific to the discrete GF method. 

he temperature problem must be linear, so that the material 

roperties must not be functions of the temperature. In practice 

his means that the properties are evaluated at an effective value 

uring each heating cycle. Actual thermal properties vary with 

emperature, and to approximately address this non-linear effect, 

he thermal properties could be iteratively adjusted in response to 

he calculated temperature. Such iteration has not been attempted. 
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Fig. 4. Schematic of problem X23B00G(x5t5)T0, the slab with on-off internal heat- 
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In the present embodiment of the spectral graph method, the 

aplacian matrix is symmetric so that the eigenvalues are real (not 

omplex) and non-negative. This requires that the edge weights are 

ymmetric w i j = w ji , consequently spatial variation in the material 

roperties is not accommodated. Further, spatial variation in the 

ode density is ruled out because the present approach assumes 

hat each node, on average, represents the same volume subset V i . 

 point of future work is to relax this limitation on spatial varia- 

ion of nodal properties which, combined with iteration, could be 

sed to address temperature dependent thermal properties. A re- 

ated point for future work is to lower the node count in regions 

here thermal gradients are low, to increase computational speed 

ith minimal impact on precision. 

There are other sources of uncertainty that are present in all 

hermal simulation methods. The precision depends strongly on 

he node density in the body, and this effect is quantified in ex- 

mples given later in Section 3 . There is uncertainty in the amount 

f heat loss at the boundaries, that is, uncertainty in the bound- 

ry heat transfer coefficient. Additionally for laser heating which 

s one motivation for the present work, there is uncertainty in the 

mount of energy actually absorbed during the process. To address 

uch uncertainties, comparison with experiments is needed to de- 

ermine the heat budget, heat in and heat out. A consequence of 

xperimental calibration is that although the shape of the temper- 

ture history will be imperfect (from imperfect thermal properties 

r low node density, for example), the end point of the tempera- 

ure history may closely match the experiment. 

.6.2. Relation to separation of variables method 

The discrete GF method has some elements in common with 

he separation of variables (SOV) method. In both methods the co- 

fficients of the heat equation and the boundary conditions must 

e constant, that is, the problem must be linear in temperature. 

n both methods the solution contains a product of a spatially- 

ependent function and a time-dependent one. In both methods 

 standard procedure for finding a basic solution is through an 

nitial-value problem. The discrete GF contains an exponential on 

ime e −�( ̃ t − ˜ τ ) , so that at small time, many eigenvalues are active 

n determining the temperature. This is analogous to the many se- 

ies terms needed in an SOV solution at small values of time. The 

umber of eigenvalues available in the discrete GF method is equal 

o the number of nodes in the body, consequently the grid spacing 

etermines the smallest time for which the temperature can be 

btained without degradation of precision. 

A point of difference is that the SOV method applies only to 

imple body shapes for which the boundaries are defined by a con- 

tant value of one coordinate (orthogonal body), but the discrete 

F method applies to any body shape. Finally, the SOV method is 

ully analytical so the temperature may be found at any time and 

t any spatial location. For the discrete GF method the tempera- 

ure may also be found at any value of the time (analytic in time), 

owever temperature is provided only at node locations (discrete 

n space). 

. Verification by comparison with exact solutions 

In this section examples are given for heat diffusion in bodies 

ith plane surfaces for which exact analytical solutions are avail- 

ble, and the exact solutions are compared with numerical results 

rom the improved spectral graph method. The first example is a 

lab body heated internally in an on-off fashion, and the second 

xample is a three dimensional body (parallelepiped) with a piece- 

ise initial condition. 
8 
.1. Example 1. Slab body with on-off internal heating 

Consider the following 1D problem with on-off internal heating 

hat is piecewise in space, with one boundary insulated, and with 

onvection heat loss from the other boundary: 

∂ ̃  T 

∂ ̃  t 
= 

∂ 2 ˜ T 

∂ ̃  x 2 
+ 

˜ g ( ̃  x , ̃  t ) (49) 

at ˜ x = 0 , 
∂ ̃  T 

∂ ̃  x 
= 0 

at ˜ x = 1 , k 
∂ ̃  T 

∂ ̃  x 
+ B 2 ̃

 T = 0 

at ˜ t = 0 , ˜ T ( ̃  x , 0) = 0 

nd where ˜ g ( ̃  x , ̃  t ) = 

{
1 ; 0 < 

˜ x ≤ ˜ a and 

˜ t ≤ ˜ t 1 
0 ; otherwise 

(50) 

his problem has been normalized with the variables given in 

q. (4) . The geometry for this problem is shown in Fig. 4 . This

roblem is denoted case X23B00G(x5t5)T0 in the numbering sys- 

em for heat conduction [7, chap. 2] . 

The exact analytic solution to this problem, denoted 

˜ T on-off, 

ill be assembled from a building-block solution for which the 

eating is always on, denoted 

˜ T on 

. Consider the same problem as 

bove but for always-on internal heating described by 

˜ 
 ( ̃  x ) = 

{
1 ; 0 < 

˜ x ≤ ˜ a 
0 ; ˜ x > 

˜ a 
(51) 

hen the temperature for the on-off heating problem is given by 

˜ 
 on-off( ̃  x , ̃  t ) = 

{
˜ T on 

( ̃  x , ̃  t ) ; 0 < 

˜ t ≤ ˜ t 1 
˜ T on 

( ̃  x , ̃  t ) − ˜ T on 

( ̃  x , ̃  t − ˜ t 1 ) ; ˜ t > 

˜ t 1 
(52) 

he exact analytic solution for building block ˜ T on 

is given by [46] 

˜ 
 on 

= 

˜ T ss ( ̃  x ) + 

˜ T ct ( ̃  x , ̃  t ) (53) 

here ˜ T ss is the steady state portion of the solution and 

˜ T ct is the 

omplementary transient portion of the solution. The steady-state 

olution is piecewise in space. 

For x ≤ a : 

˜ 
 ss (x ) = 

1 

B 1 B 2 + B 1 + B 2 

[ (
− B 1 B 2 

2 
− B 1 

2 
− B 2 

2 

)
˜ x 2 

+ 

(
− B 1 B 2 

2 
˜ a 2 + B 1 B 2 ̃  a + B 1 ̃  a 

)
˜ x + 

(
− B 2 ̃  a 2 

2 
+ B 2 ̃  a + ˜ a 

)]
(54) 
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Fig. 5. Temperature results for case X23B00G(x5t5)T0 for on-off heating over ( 0 < x/a < 0 . 25 ): (a) temperature at insulated surface x = 0; (b) temperature at ̃  t = 1 . 0 ; and, (c) 

temperature at Biot = 1 at four times. 
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Fig. 6. Results for Example 1, case X23B00G(x5t5)T0, for spectral graph (SG), fi- 

nite difference (FD), and exact solutions. The on-off heating is over spatial re- 

gion ( 0 < x/a < 0 . 25 ) with heating-off time ( ̃ t 1 = 0 . 25 ), under conditions B 2 = 1 . 0 , 

nt = 20 , and nx = 20 . (a) Temperature history at the node nearest x = 0 , (b) tem- 

perature distribution at ˜ t = 0 . 5 , (c) relative error for the temperature history, (d) 

relative error for the temperature distribution. 
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A

r

or x > a : 

˜ 
 ss ( ̃  x ) = 

1 

B 1 B 2 + B 1 + B 2 

[(
−B 1 B 2 ̃  a 

2 

− B 2 ̃  a 

)
˜ x 

+ 

(
B 1 B 2 

2 

˜ a 2 + 

B 1 

2 

˜ a 2 + B 2 ̃  a + B 1 ̃  a 

)] 
(55) 

he complementary transient portion is given by 

˜ 
 ct ( ̃  x , ̃  t ) = −

∞ ∑ 

m =1 

exp (−β2 
m ̃

 t ) [ βm 

cos (βm ̃

 x ) + B 1 sin (βm ̃

 x ) ] 

×
[
sin (βm ̃

 a ) − B 1 
βm 

cos (βm ̃

 a ) + 

B 1 
βm 

]
β2 

m 

N m 

(56) 

where N m 

= 

1 

2 

[
(β2 

m 

+ B 

2 
1 ) 

(
1 + 

B 2 

β2 
m 

+ B 

2 
2 

)
+ B 1 

]
here βm 

satisfies tan βm 

= 

βm 

(B 1 + B 2 ) 

β2 
m 

− B 1 B 2 

(57) 

he above solution for ˜ T on 

is actually for case X33B00Gx5T0, but 

he insulated boundary at x = 0 may be obtained from this solu- 

ion, to high precision, by taking B 1 small, say 10 −10 . 

Some temperature values for Example 1 are shown in Fig. 5 

hich were computed from the exact solution, Eqs. (52–57) for 

eating region of size ˜ a = 0 . 25 and for heating-off time ˜ t 1 = 0 . 25 .

igure 5 a shows temperature versus time at the x = 0 insulated 

oundary for three values of the Biot number B 2 . Note the tem- 

erature for different Biot numbers have the same shape initially, 

nd then the effect of the boundary at x = L causes the curves for

ifferent Biot to diverge for ˜ t > 0 . 4 . Figure 5 b shows the tempera-

ure versus position at ˜ t = 1 . 0 for three values of the Biot number.

igure 5 c shows temperature versus position at four dimensionless 

imes for Biot = 1.0. For the first two times the heating is on so

emperature is rising; for the last two times the heating is off and 

he temperature is falling. 

Next a comparison is made between temperature values com- 

uted from the exact solution, from the SG method, and from a 

ully implicit finite difference solution [43] . Temperatures from the 

G method for this problem were computed from Eq. (48) with 

aplacian given in Eq. (37) and edge weights from Eqn 44 . In Fig 6

he comparison is made for the specific conditions B 2 = 1 . 0 , nt =
0 , and nx = 20 . As before the heated region is of size ˜ a = 0 . 25 and

he heating-off time is ˜ t 1 = 0 . 25 . Figs. 6 a and 6 b show the temper-

ture, and Figs 6 c and 6 d show the relative error | T − T exact | /T exact .

he relative error is used to identify the distance from the exact 

emperature at a single location in space and time, as a fraction 

f the exact temperature value. The numerical results are close to 

he exact values, even though the grid is coarse and the timesteps 
9 
re few. The errors for the SG method are smaller than those of FD 

ethod by about an order of magnitude, and the errors for both 

ethod decrease somewhat over time. The errors for both meth- 

ds are somewhat larger nearer the boundaries. 

The error was also computed from the temperature history at 

 = 0 over the time range ( 0 < ̃

 t < 0 . 5 ), for several combinations

f spatial nodes nx and timesteps nt . For each temperature history 

he symmetric mean absolute percentage error was computed, de- 

ned by 

MAPE = 

1 

nt 

nt ∑ 

i =1 

| T ex (t i ) − T (t i ) | 
T ex (t i ) + T (t i ) 

× 100% (58) 

here nt is the number of timesteps, T ex (t i ) is the exact tem- 

erature and T (t i ) is the numerically computed temperature. 

he SMAPE results for several temperature histories are listed in 

able 2 . The errors for the SG method are insensitive to the num- 

er of timesteps; recall that the SG method is analytic in time. 

t nt = 20 and Biot = 0.1 the SG method has much lower er- 

or than the FD method; as nt increases the error for the FD 
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Table 2 

Symmetric mean absolute percentage error (SMAPE) in SG and FD values for 

Example 1, case X23B00G(x5t5)T0, versus number of spatial nodes nx and time 

steps nt . The comparison is made at the node closest to the x = 0 boundary 

over the time range ( 0 < ̃

 t < 0 . 5 ). The body has on-off internal heating over 

( 0 < ̃  x < 0 . 25 ) and (0 < ̃

 t ≤ 0 . 25) . 

Biot nx nt SG-SMAPE FD-SMAPE 

0.1 20 20 0.145852 2.639843 

100 0.146105 0.596043 

500 0.145807 0.161724 

40 20 0.036419 2.684466 

100 0.036515 0.632578 

500 0.036437 0.119548 

80 20 0.009102 2.695560 

100 0.009128 0.642124 

500 0.009109 0.128321 

10 20 20 0.144412 2.054895 

100 0.144291 0.461525 

500 0.143922 0.125292 

40 20 0.036052 2.112728 

100 0.036055 0.506753 

500 0.035960 0.092108 

80 20 0.009010 2.128024 

100 0.009013 0.520565 

500 0.008989 0.102658 

Fig. 7. Geometry for the parallelepiped with piecewise initial condition and con- 

vection heat loss at the boundaries, case X33B00Y33B00Z33B00T5. 
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ethod decreases, becoming comparable with the SG method only 

t nt = 500 . The SG method is sensitive to the number of nodes,

mproving from about 0.14% error at nx = 20 to 0.009% error at nx 

 80 for all values of nt and Biot number listed. In contrast the er- 

or for the FD method changes little as nx increases, with no clear 

rend. All of the errors in Table 2 are small, less than 0.15% for the

G method and less than 2.7% for the FD method. 

.2. Example 2. Parallelepiped with piecewise initial condition 

The method is applied to a parallelepiped with piecewise ini- 

ial condition for which an exact analytical solution is available for 

erification. First the exact solution is given, and then the spectral 

raph method is applied to nodes distributed in a uniform grid and 

lso with a block-random grid, appropriate for the authors’ interest 

n the thermal modelling of additive manufacturing. 

.2.1. Exact solution in the parallelepiped 

Consider heat conduction in a parallelepiped with a piece- 

ise initial condition and with convection heat loss at the bound- 

ries. The geometry is shown in Fig. 7 , and this case is denoted

33B00Y33B00Z33B00T5 in the heat conduction numbering sys- 

em. 
10 
The temperature in the parallelepiped satisfies the following 

nergy equation and boundary conditions: 

∂ 2 ˜ T 

∂ ̃  x 2 
+ 

1 

˜ W 

2 

∂ 2 ˜ T 

∂ ̃  y 2 
+ 

1 

˜ H 

2 

∂ 2 ˜ T 

∂ ̃  z 2 
= 

∂ ̃  T 

∂ ̃  t 
;

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 < 

˜ x < 1 

0 < 

˜ y < 1 

0 < 

˜ z < 1 

˜ t > 0 

(59) 

t ˜ x = 0 , −∂ ̃  T 

∂ ̃  x 
+ B x 1 ̃

 T = 0 

t ˜ x = 1 , −∂ ̃  T 

∂ ̃  x 
− B x 2 ̃

 T = 0 

t ˜ y = 0 , −∂ ̃  T 

∂ ̃  y 
+ B y 1 ̃

 T = 0 

t ˜ y = 1 , −∂ ̃  T 

∂ ̃  y 
− B y 2 ̃

 T = 0 

at ˜ z = 0 , −∂ ̃  T 

∂ ̃  z 
+ B z1 ̃

 T = 0 

at ˜ z = 1 , −∂ ̃  T 

∂ ̃  z 
− B z2 ̃

 T = 0 (60) 

˜ 
 ( ̃  x , ̃  y , ̃  z , 0) = 

{
1 ; ˜ x < 

˜ L 1 ; ˜ y < 

˜ W 1 ; ˜ z < 

˜ H 1 

0 ; otherwise 
(61) 

he above problem has been made dimensionless by the following 

arameters: 

˜ x = 

x 

L 
; ˜ y = 

y 

W 

; ˜ z = 

z 

H 

; ˜ W = 

W 

L 
; ˜ H = 

H 

L 

˜ L 1 = 

L 1 
L 

; ˜ W 1 = 

W 1 

W 

; ˜ H 1 = 

H 1 

H 

; ˜ t = 

αt 

L 2 
; ˜ T = 

T 

T 0 

B x 1 = 

h x 1 L 

k 
; B x 2 = 

h x 2 L 

k 
; B y 1 = 

h y 1 W 

k 
; B y 2 = 

h y 2 W 

k 

B z1 = 

h z1 H 

k 
; B z2 = 

h 2 H 

k 
; (62) 

he dimensionless temperature in the parallelepiped is given by: 

˜ 
 ( ̃  x , ̃  y , ̃  z , ̃  t ) = 8 

[ 

∞ ∑ 

m =1 

X m 

( ̃  x ) IX m 

N x 
e −β2 

m ̃
 t 

] [ 

∞ ∑ 

n =1 

Y n ( ̃  y ) IY n 
N y 

e −γ 2 
n ̃
 t / ̃  W 

2 

] 

×
[ 

∞ ∑ 

p=1 

Z p ( ̃  y ) IZ p 
N z 

e −η2 
p ̃
 t / ̃ H 2 

] 

(63) 

here 

X m 

( ̃  x ) = βm 

cos (βm ̃

 x ) + B x 1 sin (βm ̃

 x ) 

IX m 

= 

1 

βm 

[
B x 1 + βm 

sin (βm ̃

 L 1 ) − B x 1 cos (βm ̃

 L 1 ) 
]

N x = (β2 
m 

+ B 

2 
x 1 ) 

[
1 + 

B x 2 

β2 
m 

+ B 

2 
x 2 

]
+ B x 1 

Y n ( ̃  y ) = γn cos (γn ̃  y ) + B y 1 sin (γn ̃  y ) 

IY n = 

1 

γn 

[
B y 1 + γn sin (γn ˜ W 1 ) − B y 1 cos (γn ˜ W 1 ) 

]
N y = (γ 2 

n + B 

2 
y 1 ) 

[
1 + 

B y 2 

γ 2 
n + B 

2 
y 2 

]
+ B y 1 

Z p ( ̃ z ) = ηp cos (ηp ̃  z ) + B z1 sin (ηp ̃  z ) 

IZ p = 

1 

ηp 

[
B z1 + ηp sin (ηp ̃  H 1 ) − B z1 cos (ηp ̃  H 1 ) 

]
N z = (η2 

p + B 

2 
z1 ) 

[
1 + 

B z2 

η2 
p + B 

2 
z2 

]
+ B z1 (64) 
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Fig. 8. Locations for observing temperature in the parallelepiped: (1) center of 

heated region; (2) face of heated region; (3) outside heated region. Bodies studied 

had square cross section ( W/L = 1 ) and varying H/L values. 
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igenvalues βm 

, γn , and ηp are roots of the following relations 

an βm 

= 

βm 

(B x 1 + B x 2 ) 

β2 
m 

− B x 1 B x 2 

; tan γn = 

γn (B y 1 + B y 2 ) 

γ 2 
n − B y 1 B y 2 

;

tan ηp = 

ηp (B z1 + B z2 ) 

η2 
p − B z1 B z2 

(65) 

he above series expression converges somewhat slowly when 

valuated at small time, but even so ten-digit precision can be ob- 

ained for the time ranges needed here. A full discussion of this so- 

ution, including a small-time form, tables of numeric values, and 

omputer algorithms, is available elsewhere [47] . 

.2.2. Numerical results for uniform rectangular grid 

The spectral graph method was carried out for parallelepiped 

odies which were initially hot over a small region ( L 1 = W 1 =
 1 = 0 . 5 ). No calibration is needed for the uniform rectangular

rid. The temperature was tracked at three points in each body, 

dentified in Fig. 8 : (1) at the center of the initially heated region,

2) at an interior face of the initially-heated region, and (3) outside 

he initially heated region. 

First an equal-sided body with L = W = H is studied. The tem- 

erature history at the three points is plotted versus time in Fig. 9 

or spatially uniform heat transfer coefficient over all surfaces of 

he cube at levels Bi = 0.1, 1, and 10, and for n /vol = 1728 in a

2x12x12 grid. Location (1) starts at ˜ T = 1 , location (2) starts at 
˜ 
 = 0 . 5 , and location (3) starts at ˜ T = 0 . Fig. 9 shows that the SG

olution agrees very closely with the exact solution. As the Biot 

umber increases, the temperature at locations (1) and (2) fall 

ore rapidly, and further towards zero. At location (3) the tem- 

erature first rises then falls, and for higher Biot number the peak 

emperature is lower. At large time (not shown) all the tempera- 

ures approach zero, and the time it takes to reach zero tempera- 

ure decreases as the Biot number increases. That is, the cool down 

s faster at higher heat loss. 

Two error measures are used to quantify the agreement be- 

ween the SG method and the exact solution: the symmetric mean 

bsolution percentage error (SMAPE) defined in Eq. (56) and the 

oot mean square error (RMSE) defined by 

MSE = 

√ 

1 

n t 

n t ∑ 

k =1 

(
T k 

SG 
− T k 

EX 

)2 
. (66) 

able 3 shows the error measures for the SG solution at three lo- 

ations, at three Biot numbers, over time range ( 0 < ̃

 t < 0 . 2 ), for

he equal-sided body L = W = H. Three different node densities 

re included at n /vol = 512, 1728, and 4096. Table 3 shows that
11 
he SMAPE for n /vol = 1728 ( Fig. 9 data) is less than 0.5% and is

ess than 0.3% for the n /vol = 4096 data. The error values increase 

lightly as Biot number increases. 

The study depicted in Fig. 9 and Table 3 for the equal-sided 

ody was repeated for three other parallelepipeds. Specifically, 

ox-shaped bodies were studied with square cross section W/L = 1 

ut with varying length along the z axis described by H/L = 0 . 5 ,

.75, and 1.5. The initial condition was identical ( L 1 = W 1 = H 1 =
 . 5 ) and the same temperature-observation locations were used 

see Fig. 8 ). The temperature from the SG method for these bod- 

es was compared to the exact solution as before. The tempera- 

ure plots, omitted for brevity, show close agreement with the ex- 

ct solution. Table 4 shows the SMAPE and RMSE error values for 

ne body, the parallelepiped W/L = 1 and H/L = 1 . 5 , for three val-

es of the Biot number and for three node densities. Note that 

he error values are very close in size to those for the equal-sided 

ody ( H/L = 1 ) shown in Table 3 . Error values for two additional

ody shapes H/L = 0 . 5 and H/L = 0 . 75 (not shown in the interest

f brevity) are also comparable to those in Tables 3 and 4 . The

oint of the discussion is that the SG method can provide high 

recision temperature values for a variety of body shapes at vari- 

us levels of surface heat loss, and the level of precision depends 

trongly on the node density and less strongly on the Biot number. 

.2.3. Numerical results for block-random grid 

In this section temperature results are given for the improved 

pectral graph method carried out on block-random grids on the 

arallelepiped. The body is divided into equal-sized blocks, and 

hen a fixed number of nodes are placed in each block at ran- 

om locations. This provides a large-scale uniform node distribu- 

ion that is small-scale random. This method of node placement 

s appropriate for thermal simulation of an additive manufacturing 

rocess by the spectral graph method, in which the body shape 

hanges as layers (or hatches) are added. The random placement of 

odes in each added layer (or hatch) is straightforward and com- 

utationally efficient. 

Several block-random grids were created for the cube-shaped 

art by specifying the same number of blocks along each coordi- 

ate direction, n b , and the number of nodes within each block, n g .

able 5 shows the total number of nodes in grids created from dif- 

erent combinations of n b and n g . For example, n b = 4 and n g = 3

ive the total number of nodes as 4 · 4 · 4 · 3 = 192 . To study the

ffect of random node locations within blocks, ten grids were cre- 

ted by different random embodiments of each block-grid combi- 

ation studied, and the results are reported as the mean and vari- 

nce over these ten grids. The randomly determined points within 

ach block were sampled from a finely divided grid placed on each 

lock, without replacement. In the present work each block was 

ubdivided into 6 3 = 216 points. 

The calibration procedure for obtaining the gain factor involves 

 data-fitting procedure between the SG method and the exact so- 

ution (refer to Section 2.4.3 ). The benchmark data for the compar- 

son is the time history of the temperature from the exact solution 

n the time range (0,0.2) at the center of the initially heated re- 

ion for a cubic body. This location and this time range was shown 

o be optimal for calibration through a previous sensitivity study 

2] . Twenty temperature values at uniformly-spaced time points 

ere used. The data fitting procedure was the minimization of the 

um-of-square error between the exact solution and the SG model 

arried out with a Gauss-Newton method [48 , p. 29]. The method 

onverged to four-digit precision in about six iterations and the re- 

ulting gain factor was not sensitive to the initial guess. 

The calibration was carried out for several block-random grids 

t several Biot numbers. Ten block-random grids were studied 

or each node density so that averages and variance could be 

ound. The resulting average gain factor is plotted in Fig. 10 ver- 
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Fig. 9. Temperature history at three points in the cube L = W = H (see Fig. 8 for locations) to compare exact and SG solution on a uniform rectangular grid at (a) Biot = 0.1, 

(b) Biot = 1.0, (c) Biot 10. Parameters for the SG solution are 1536 nodes per unit volume and 80 timesteps. 

Table 3 

For the cube with L = W = H with uniform rectangular grid, error (SMAPE and RMSE) for the SG method is 

compared to exact solution at locations shown in Fig. 8 at three grid densities and three Biot numbers. 

SMAPE RMSE 

H/L location 
nodes 

vol 
Bi = 0.1 Bi = 1.0 Bi = 10. Bi = 0.1 Bi = 1.0 Bi = 10. 

1.0 1 512 0.318811 0.448006 0.870092 0.007398 0.010026 0.016782 

1728 0.141872 0.198788 0.386930 0.003398 0.004616 0.008010 

4096 0.079635 0.111562 0.217432 0.001920 0.002617 0.004614 

2 512 0.246750 0.449466 0.563780 0.002870 0.004095 0.006862 

1728 0.109734 0.198981 0.248496 0.001309 0.001865 0.003206 

4096 0.061604 0.111649 0.139236 0.000739 0.001054 0.001833 

3 512 0.670107 0.927687 0.978781 0.001884 0.001936 0.001538 

1728 0.321845 0.435693 0.459108 0.000878 0.000903 0.000728 

4096 0.184793 0.248705 0.261999 0.000497 0.000512 0.000414 

Table 4 

For the parallelepiped with (L, W, H) = (1 , 1 , 1 . 5) , error (SMAPE and RMSE) for the SG method with uniform 

rectangular grid compared to exact solution at locations shown in Fig. 8 at three grid densities and three Biot 

numbers. 

SMAPE RMSE 

H/L location 
nodes 

vol 
Bi = 0.1 Bi = 1.0 Bi = 10. Bi = 0.1 Bi = 1.0 Bi = 10. 

1.5 1 512 0.314239 0.456059 0.914614 0.007408 0.010030 0.016782 

1728 0.139413 0.202147 0.407239 0.003403 0.004618 0.008010 

4096 0.078168 0.113409 0.228961 0.001922 0.002618 0.004614 

2 512 0.253966 0.454544 0.585879 0.002884 0.004102 0.006862 

1728 0.112648 0.201332 0.259505 0.001315 0.001868 0.003206 

4096 0.063186 0.112990 0.145656 0.000742 0.001056 0.001833 

3 512 0.698852 0.929852 0.955982 0.001898 0.001940 0.001537 

1728 0.334778 0.436741 0.448406 0.000884 0.000905 0.000728 

4096 0.192099 0.249311 0.255869 0.000501 0.000513 0.000414 

Table 5 

Number of nodes in a parallelepiped body created by n b blocks along each 

axis and n g nodes within each block. Total number of nodes = n 3 
b 

· n g . 

n g 

n b 1 2 3 4 5 6 7 8 

4 64 128 192 256 320 384 448 512 

6 216 432 648 864 1080 1296 1512 1728 

8 512 1024 1536 2048 2560 3072 3584 4096 
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us node density ( n /vol) and the variances are shown as error bars. 

ig. 10 shows that the gain factor resides in a narrow band of val-

es in the range (0.48 - 0.67), and has no clear trend as node den-

ity n /vol varies 

In examining these values it is important to consider the ap- 

lication to metal additive manufacturing. In cooling of metal the 

iot number is usually small. For example, for a large stainless 
12 
teel part (L = 15 cm and k ≈ 20 W/m/K) exposed to a large 

eat transfer coefficient ( h = 100 W/m 

2 /K), the Biot number is Bi 

 100 · 0 . 15 / 20 = 0 . 75 . Other metals with higher thermal conduc-

ivity give even lower values of the Biot number. This suggests that 

he gain values in Fig. 10 should be examined for Bi ≤ 1 . 0 values.

or these smaller Biot values, the gain values lie in the range (0.58 

 0.67), a range of 14%, and the variation is smaller as the node 

ensity increases. This suggests that the gain is independent of the 

iot number, so that one calibration is sufficient to characterize 

he spectral graph method for the range of Biot numbers found 

n metal additive manufacturing. 

Figure 11 shows temperature versus time for the SG method on 

 single block-random grid with node density 1536 (nodes per unit 

olume) compared to the exact solution at three locations and for 

hree Biot numbers, The results agree very closely at location 1, 

he center of the heated region, because this location was used 

o fit the gain factor f . The agreement is also good at location 3 
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Fig. 10. Average gain versus node density ( n /vol) at several Biot numbers. For each 

node density n /vol, ten block-random grids were used to find averages; error bars 

show the variance. 
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unheated region). At location 2 the SG method slightly overesti- 

ates the temperature at early time and slightly underestimates 

he temperature at middle time. The long time temperature trends 

re correct at all locations. 

As before, a quantitative measure of the error in the SG method 

or the block-random grid is provided by SMAPE defined in Eq. (58) 

nd RSME defined in Eq. (66) as shown in Table 6 . Table 6 shows

rror values for the block-random grid at three locations, three Biot 

umbers, and three grid densities. To address the issue of random- 

ess in assigning node locations, ten different block-random grids 

ere created for each node density to obtain the averages and vari- 

nces reported in Table 6 . 

Table 6 shows that the SMAPE error for n /vol = 1536 is every-

here less than 10% and less than 6% for n /vol = 4096, with the

ighest value for Biot = 10 (high cooling rate). The RMSE errors 

re included because SMAPE errors skew large at large Biot num- 

er, because of division by very small temperature values at later 

imes. The RMSE values for n /vol = 1536 are everywhere less than 

.019 and less than 0.014 for n /vol = 4096. No exploration of the 

umber of time steps is included here; error in the spectral graph 

ethod varies little with the number of time steps, which was evi- 

ent earlier in Table 2 for the one-dimensional example. Recall that 

he SG method is analytic in time, as discussed in Section 2.5 . 

Earlier the Biot number was identified to be in the range Bi 

1 . 0 for metal additive manufacturing. For this limited range of 

iot values, the SMAPE errors in Table 6 for n /vol = 1536 are ev-

rywhere less than 6% and are less than 3% for n /vol = 4096. 
ig. 11. Temperature history at three points in the cube (see Fig. 8 for locations) to compa

or the SG solution are 1536 nodes on a block-random grid and 80 timesteps. 

13 
. Validation with experimental data from additive 

anufacturing 

Validation of the improved spectral graph method was carried 

ut by comparison with experimental temperatures from infrared 

amera data obtained during a test build with the laser powder 

ed fusion (LPBF) process. 

.1. Experimental setup 

The additive manufacturing build was created on an open ar- 

hitecture LPBF system at Edison Welding Institute, Columbus, 

hio. A long wave infrared (LWIR) thermal camera was placed off- 

xis with an angle about 80 ◦ to the horizontal. A representative 

chematic along with an image of the experimental setup in shown 

n Fig. 12 . The Micro Epsilon model TIM-640 LWIR thermal camera 

sed in the experiment has a resolution of 640 by 480 pixels. At 

he camera’s height, the spatial resolution of the build plate was 

pproximately 20 pixels per mm 

2 . The camera was calibrated ac- 

ording to a black-body technique detailed in previous work [4] . 

his calibration technique enabled the thermal camera to accu- 

ately measure top surface temperatures up to 550 ◦C. 

The parts in the experiment were made from the Inconel 718 

owder. Seventeen parts were created from six different geome- 

ries, each with a different purpose. Part distortion, recoater crash 

nd powder feed failures were investigated in a previous work by 

5] using several geometries in this build. For the purposes of this 

ork, data from two inverted half cones were studied with base 

eight 6 mm, base radius 4 mm, and part height 20 mm. These 

wo geometries as well as the completed build plate containing 

hese parts are shown in Fig. 13 . 

These two geometries with overhang were selected as they 

ere expected to experience significant overheating, which can 

ead to superelevation and build failure in LPBF. For this reason, 

apid prediction of the thermal history is of interest. 

.2. Experimental end-of-cycle temperature 

The procedure for obtaining the end-of-cycle surface temper- 

ture from the thermal images is described for the cone-shaped 

art with 45 ◦ inclination angle (C45). For C45, a 9 pixel by 9 pixel

egion from the IR camera data was selected. This sampled area 

s annotated in Fig. 14 (a) and equates to a 4 mm 

2 area on the

op surface of the part. Measurement near the edge of the part 

as avoided as the blur from the thermal image would lead to 

easurement error. Temperature readings from the infrared ther- 

al camera image from this 4 mm 

2 area were averaged to obtain 

 top surface temperature. The temperature trend for this sampled 
re exact and SG solutions at (a) Biot = 0.1, (b) Biot = 1.0, (c) Biot = 10. Parameters 
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Table 6 

Error in temperature for the SG method on the block-random grid at three locations defined in Fig. 8 and for three Biot 

numbers. For each grid density n /vol, ten block-random grids were studied to obtain averages and variances over time 

range ( 0 < ̃

 t < 0 . 2 ). 

SMAPE RMSE 

Location Bi n average variance average variance 

1 0.1 512 1.876834 0.331491 0.01719120 0.00001359 

1536 0.940356 0.156959 0.00992803 0.00000993 

4096 0.935124 0.234455 0.00887210 0.00001160 

1 512 2.753140 0.660255 0.01666274 0.00000743 

1536 1.520414 0.395436 0.01001318 0.00000968 

4096 1.090323 0.276723 0.00785373 0.00000529 

10 512 6.598844 7.072547 0.01498143 0.00000495 

1536 5.905686 10.858103 0.01013748 0.00000395 

4096 3.859102 3.502287 0.00782939 0.00000339 

2 0.1 512 2.190329 1.210556 0.01494754 0.00006074 

1536 2.393353 2.395105 0.01890678 0.00011668 

4096 2.030881 1.911114 0.01358837 0.00007339 

1 512 1.866639 0.454295 0.01264575 0.00005338 

1536 2.829961 2.987142 0.01816824 0.00012125 

4096 1.944417 2.135573 0.01215211 0.00006857 

10 512 5.921486 12.519991 0.01069555 0.00005730 

1536 8.302355 28.161460 0.01847190 0.00022798 

4096 4.754935 9.625067 0.01063742 0.00003648 

3 0.1 512 4.632983 4.616591 0.01179445 0.00002433 

1536 4.022486 3.960269 0.01011096 0.00002245 

4096 2.179375 1.051766 0.00550174 0.00000649 

1 512 5.234295 5.352751 0.01009804 0.00001224 

1536 5.128025 6.565621 0.00960630 0.00002222 

4096 2.755790 0.987612 0.00549648 0.00000388 

10 512 9.902535 33.144596 0.00645721 0.00000949 

1536 9.050974 17.936956 0.00720693 0.00001416 

4096 5.492360 3.038816 0.00443783 0.00000254 

Fig. 12. (Left) Schematic of open architecture LPBF platform and the LWIR camera setup. (Right) Photograph of the build setup used in the experiment. 

r  

T

b

o

c

R

f

p

w

l

4

i

o

c

f

m

p

f

o

P

9  

p

a

4

a

c

egion over the entire build duration of C45 is shown in Fig. 14 (b).

he cone-shaped parts were completed at layer 500, the entire 

uild completed at layer 650. A sample of the temperature trend 

ver three layers is shown in Fig. 14 (c). 

From the raw temperature data shown in Fig. 14 (b), the end-of- 

ycle surface temperature was extracted in the following manner. 

eferring to Fig. 14 (c), the raw temperature has three prominent 

eatures, demarcated (A), (B), and (C), which correspond to specific 

rocess events. Note that the thermal camera acquires data only 

hen the laser is active through a triggering mechanism. The first 

arge spike marked (A) is when the laser is striking the sampled 

 mm 

2 pixel region. The temperature recorded at (B) is momentar- 

ly interrupted at the time the laser and camera are both switched 

ff. The epoch marked (C) and beyond is for the next layer pro- 

essed by the laser. In the interim between (B) and (C) the recoater 

etches powder, and a fresh powder layer is deposited. 

m

14 
The time for recoating is measured to be 11 seconds, and re- 

ains fixed irrespective of the process conditions or number of 

arts on the build plate. The temperature in the instant just be- 

ore the laser strikes the sampled area again, before the melting 

f a new layer, is termed as the end-of-cycle surface temperature. 

lotted in Fig. 14 (d) is the end-of-cycle surface temperature for the 

 pixel by 9 pixel area (4 mm 

2 ) of the cone-shaped part C45 sam-

led in Fig. 14 (a). More information on the experimental set up 

nd on the reduction of the LWIR data is available elsewhere [5] . 

.3. Assumptions in the thermal model 

There are several simplifying assumptions applied to both SG 

nd FE methods for thermal modeling of the LPBF process. Be- 

ause the duration of laser scan on one part (less than 0.5 s) is 

uch shorter than interlayer time ( > 30 s), the laser scan is mod- 
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Fig. 13. (Left) Inverted half cone geometry used to validate this work. Two similar 

geometries were created, one with overhang angle 40 degrees and one with 45 

degrees. (Right) Completed build plate with the two inverted half cones (C40, C45) 

used in this work. Other parts on this build plate were used for a different research 

topic. 
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Table 7 

Summary of simulation of parameters used for the gain factor calibration and 

inverted half cone simulations. 

Parameters, calibration on parallelepiped Values 

Parallelepiped side length [mm] 25 

Specific Heat [J kg −1 K −1 ] 435 

Conductivity [Wm 

−1 K −1 ] 19.47 

Density, [kg m 

−3 ] 8,193 

Melting Point [C] 1,600 

Ambient chamber temperature, [C] 250 

Gain factor 0.555 

Parameters, simulation of inverted half cones Values 

Radius factor ( ε) 
√ 

2 

Convection coeff. for powder, h w [Wm 

−2 K −1 ] 2.5 

Convection coeff. for build plate, h b [Wm 

−2 K −1 ] 300 

Superlayer thickness [mm] 0.4 (10 actual layers) 

Node density [nodes mm 

−3 ] 1.0 

Computer hardware Ryzen 3970X CPU 

3.70 GHz, 128 GB RAM. 

Table 8 

Results of convergence study on node density applied to inverted half cone C40. 

Density 1.0 node/mm 

3 was selected to balance decreases in model error against 

increases in computation time. 

Node Density Number Time SMAPE RMSE 

(node/mm 

3 ) of nodes (sec) (%) ( o C) 

0.3 1678 2.6 4.06 46.7 

0.5 2804 5.1 2.68 32.7 

0.8 4478 12.6 2.66 30.1 

1 5565 19.3 2.64 29.3 

1.5 8256 43.7 2.09 21.7 

2 11094 90.3 2.04 21.0 
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led as the instantaneous appearance of a newly fused layer. La- 

ent heat effects of melting and fusing are neglected. The thermal 

odel is carried out on a succession of heating cycles, with each 

ycle starting with the addition of the newly-fused layer and con- 

inuing to the end-of-cycle condition before the next laser scan. 

he interlayer time, which can vary throughout the build depend- 

ng on the area to be fused at each layer, was obtained directly 

rom the G-code, the machine language which encodes the pro- 

essing parameters to carry out the actual build. The end-of-cycle 

emperature from one cycle is the initial condition for the body 

n the subsequent heating cycle, except for the newly-fused sur- 

ace layer which increases the size of the computational domain. 

n the present embodiment of the SG method, the energy added 

y the laser is modeled as a temperature jump above the previous 

ayer’s end-of-cycle temperature. The temperature jump is deter- 

ined at the first layer as �T = T melt − T ambient = 1600 C − 250 C in

he present example. In this way the same energy per unit volume 

s added to each newly fused layer. Refer to [2] for further discus- 

ion of these assumptions. 

.4. Calibration 

Every numerical method contains parameters that must be cho- 

en so that the results are physically meaningful. For the SG 

ethod, calibration is needed to find the gain factor using the 

ethod described in Section 3.2.3 . The analytical solution de- 

cribed in Section 3..2.1 was used to compute a single heat- 

ng/cooling cycle in an Inconel 718 parallelepiped depicted in 

ig. 8 with each side of length 25 mm. The spectral graph method 

as applied to this geometry. and the gain factor was chosen to 

rovide the best fit between the analytical solution and the spec- 

ral graph model. The comparison was carried out at the center of 

he initially-heated region. In this way the gain factor of f = 0 . 555

as chosen at which the SMAPE was 0.4%. This gain factor was 

sed for all subsequent model calculations. Other parameters used 

n the calibration are given in Table 7 . 

Another calibration step is to determine the correct level of 

eat loss for the simulation. To do this, the SG model was ap- 

lied to inverted-cone geometry C40, with the larger overhang, and 

nd-of-cycle temperatures were compared to data from the exper- 

mental build. The model was run with 50 superlayers, that is, 50 

eating cycles in succession to represent the actual 500 layers in 

he build. The build plate on which the part is built, the primary 

eat sink in the problem, was modeled as a large convection co- 

fficient (also called a contact conductance). The value of h = 
b 

15 
00 W/(m 

2 K) was chosen for the build plate; this value is suffi- 

iently large to represent a fixed-temperature boundary condition, 

ecause larger h b values give the same result. The effect of heat 

oss to the surrounding powder was modeled as another convec- 

ion coefficient, to describe the heat loss to the low-conductivity 

etal powder on the sides of the fused part, and heat loss to 

he gas at the exposed upper surface of the fused part. To choose 

he heat-loss coefficient, the error (SMAPE) between the SG model 

or the C40 part and the end-of-cycle temperature obtained from 

he LWIR thermal camera was minimized. In this way the value 

f h w 

= 2.5 [W m 

−2 K 

−1 ] was chosen; other parameters for the 

0-layer simulation are provided in Table 7 . The SG model for the 

alibration case is shown in Fig. 15 a. The dashed line shows the 

nsemble average of 10 computer runs using 10 different block- 

andom grids and the shaded region shows the variance of the 10 

ifferent grids. The average error is less than 3% SMAPE and 30 ◦C 

MSE. 

A convergence study was also carried out on the node density 

or the 50-layer simulation of the C40 part. Fig. 16 shows some of 

he results from this study compared to experimental data for the 

nd-of-cycle temperature. A list of SMAPE error values from the 

emperature histories in the convergence study, along with compu- 

ation time for each simulation, is given in Table 8 . Table 8 shows

hat the chosen node density of 1.0 node/mm 

3 provides a good bal- 

nce between rapid computation and acceptable precision. 

.5. Results for test case 

Using the simulation parameters from calibration procedure, 

he simulation was carried out for the C45 geometry, with the 

maller overhang. The results of the comparison between the SG 

odel and the experimental data is presented in Fig. 15 b. The 

rends are correct and the general shape of the temperature is cor- 

ect, with the error in the SG model prediction for the C45 part 

test case) less than 5% SMAPE and 41 ◦ C RMSE. The run time for 
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Fig. 14. (a) IR image showing the 9 pixel by 9 pixel area over which the surface temperature trends are averaged for the C45 cone-shaped test artifact. (b) The surface 

temperature trends for the entire duration of the build. (c) The zoomed in area of the temperature trends over three process cycles, including the where the end-of-cycle 

temperature is obtained. There are three prominent epochs that are observed in the temperature trends on account of process events, labeled (A) through (C) (d) the end- 

of-cycle surface temperature for the duration of build corresponding to C45. (e) The process events that cause the three epochs observed in the temperature trends in 

(c). 
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he C45 test part is smaller than for the C40 calibration part be- 

ause the smaller part volume contains fewer nodes at fixed node 

ensity. 

The simulation for the C45 test case somewhat overestimates 

he end-of-cycle temperature in the overhang region of the part. 

his mismatch is primarily a function of the overall energy budget 

n each heating cycle, that is, heat in minus heat out. Evidence for 

his is the large Fourier number associated with one heating cycle, 

pecifically, Fo = αt/L 2 = 0 . 55 for α = 5 . 46(10) −6 m 

2 /s (Inconel),

 = 40 s (interlayer time at end of build) and L = 20 mm (height

t end of build). At this Fourier number the spatial details of the 

nitial temperature are long forgotten and the temperature distri- 

ution is quasi-steady in space and decaying in time. To address 

he energy budget, areas for future work include improving heat 

ddition in the simulation to more closely agree with the physics 

f laser absorption, and, improving heat loss to the surroundings, 

or example by including radiation heat loss. 
16 
. Summary and discussion 

The SG method has been extended to directly incorporate heat 

oss with a generalized boundary condition, which is a distinct 

mprovement over the ad hoc heat loss method used previously. 

mproved edge weights in the Laplacian matrix are now based 

n the physics of the problem, which reduces the number of 

alibration parameters and consequently simplifies the calibration 

rocess. The improved SG method has been used to develop a 

iscrete Green’s function for comprehensive treatment of several 

eating effects: space-varying initial conditions; time-and-space 

arying boundary heating; and, time-and-space varying internal 

eating. The precision of the method was determined from one- 

imensional and three dimensional benchmark examples for which 

xact solutions were available. The one-dimensional example was 

lso compared with a finite difference solution. The method was 

lso applied to a 50-layer simulation of an additive manufacturing 
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Fig. 15. End-of-cycle temperature histories for the inverted half cones. The dashed red lines are the ensemble average SG model values and the shaded region show the 

variance from ten block-random grids. The solid black lines are the experimentally measured values for each geometry. (a) The C40 data was used to calibrate the part-to- 

powder convection coefficient of the model, and (b) the C45 data served as the test case. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 16. Convergence study on node density for a 50-layer simulated build of the 

C40 inverted half cone, compared to experimental data. Model results are shown 

for node density of 0.3, 1.0, and 2.0 nodes/mm 

3 and fixed gain factor f = 0.555. 
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rocess for two bodies with severe overhang, and the simulation 

esults were validated by comparison with experimental tempera- 

ure measurements. The model agrees with the experiments within 

% SMAPE with model computation time of less than one minute 

n a desktop computer. The rapid computation time of this im- 

roved thermal model provides an opportunity for application to 

aw detection using real-time thermal sensor data; this is an area 

f ongoing research [49] . 

The computational advantage of the SG method applied to ad- 

itive manufacturing comes from a combination of low-cost grid 

eneration, only one eigenvalue solution to find the GF, and an- 

lytic behavior on time which allows for time steps of any size. 

n contrast the finite element (FE) method has high-cost mesh 

eneration and numerical time-integration with many small time 

teps required to control precision. The computational advantage 

f the SG method is strong for the rough and rapid thermal sim- 

lations that are presently sufficient to advance the field of ther- 

al modeling of 3D printing. However, the computational cost of 
17 
he eigenvalue problem in the SG method scales as O (n 3 ) , com-

ared to the computational cost of the FE method which scales as 

 (m · n 2 ) where n is the number of nodes and m is the number of

imesteps [50] . This suggests that the computational advantage of 

he SG method may wane when n is large, for example, in simula- 

ion of large bodies. To address this concern, work is in progress to 

evelop techniques for SG simulation of large bodies, to limit the 

umber of nodes while maintaining acceptable precision [51] . 
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